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Abstract

Revisiting Ad-hoc Polymorphism

Apurav Khare, M.S.

Rochester Institute of Technology, 2022

Supervisor: Dr. Arthur Nunes-Harwitt

Ad-hoc polymorphism is a type of polymorphism where different func-

tion definitions can be given the same name. Programming languages utilize

constructs like Type classes and Object classes to provide a mechanism for

implementing ad-hoc polymorphism.

System O, by Odersky, Wadler, and Wehr is a language which defines

a dynamic semantics that supports ad-hoc polymorphism. It also describes

static type checking for its programs and a transformation to the Hindley/Mil-

ner system.

In this study, we present extensions to System O by defining constructs

that make the language more practical to use. We utilize the dynamic se-

mantics to define the ability to express type classes. We define additional

optimizations on the transform that aim to reduce redundant function calls at

run-time and simplify the generated code.
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Finally, we implement an interpreter for this programming language in

Clojure, and provide several examples of programs utilizing ad-hoc polymor-

phism with the constructs we have defined.
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Chapter 1

Introduction

Modern programming languages provide a wide array of tools to pro-

grammers for writing reusable and easy-to-understand code, with features like

inheritance, encapsulation, and polymorphism. These tools also include vari-

ous safety net features, like type checking, that provide feedback allowing the

programmers to write code that doesn’t fail at run-time.

Ad-hoc polymorphism is one such feature that allows application of

polymorphic functions to arguments of different types, for example, overload-

ing the + operator to work on integers and floating point numbers, hiding the

primitive implementation of these operations from the programmer [23].

A type class [26] is a construct that supports ad-hoc polymorphism,

and is implemented in languages like Haskell and Coq. It encapsulates the

behavior to be overloaded, and instances of the type classes provide definitions

for the overloaded operations. They are intuitive and expressive in their way

of expressing and implementing the overloading behavior. Type classes also

have the flexibility of separating type definitions from type class instantiation.

An alternate approach to implementing ad-hoc polymorphism is System

O, defined as an extension to the Hindley/Milner system by Odersky, Wadler,
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and Wehr [18]. It eliminates type class declaration, allowing overloaded func-

tions to be declared at the top program level. It also exhibits type soundness

and principal type properties analogous to the Hindley/Milner system.

One approach to implementing ad-hoc polymorphism is statically dur-

ing the type checking process. These implementations require some form of

program transformation. For instance, Haskell implements type classes by

creating dictionaries for the type class instances that contain the overloaded

functions [20]. This requires more plumbing in order to provide the context

beforehand [24]. For existing implementations of ad-hoc polymorphism with

type classes, a dynamic semantics does not exist, which would be desirable to

have for demonstrating theoretical results, and have practical applications in

programming pedagogy.

Ad-hoc polymorphism can also be implemented dynamically, resolving

the function instance to be called at run-time. The values passed to the

function are used to decide the overloaded instance to call. Though easier

to implement, this approach can have a run-time performance overhead.

In this study, we show how it is possible to construct a dynamic seman-

tics for implementing ad-hoc polymorphism using type classes. We define this

language as an extension of System O. By utilizing the static type checking

for the language and augmenting that with a transformation, the run-time

overhead of ad-hoc polymorphism is eliminated. Additional optimizations are

made possible by the transformation that make the resulting code more effi-

cient and easier to understand. We develop an interpreter in Clojure with these

2



features to execute programs that utilize the ad-hoc polymorphism constructs

we have introduced.
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Chapter 2

Background

This study focuses on ad-hoc polymorphism in the context of functional

programming languages, specifically using type classes to implement ad-hoc

polymorphism. In this chapter, we cover the concepts of polymorphism and

the related terminology. We then review the implementations of ad-hoc poly-

morphism in different paradigms, with focus on type classes and its variations.

Finally, we look at the semantics for implementing ad-hoc polymorphism and

their implications relevant to our study.

2.1 Ad-hoc Polymorphism

In programming languages, polymorphism is a mechanism that pro-

vides a single interface to entities of different types [5]. Strachey distinguished

between the two major kinds of polymorphism [23]:

• Parametric Polymorphism, where a function works uniformly across a

range of types, which typically exhibit a common structure.

• Ad-hoc Polymorphism, where a function works, or appears to work, on

different types that may not exhibit a common structure, and the func-

tion may behave in different ways for each type.
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Cardelli and Wegner further refined this categorization by introducing

a hierarchy of polymorphism, which, at the top level, comprises universal

polymorphism and ad-hoc polymorphism [5]. This categorization is described

below:

• Universal Polymorphism is a generalization of functions that can a be

applied to an infinite number of types, given that they all exhibit a

common structure. It is further categorized into the following:

– Parametric Polymorphism, where functions determine the type of

the arguments for each application with implicit or explicit type pa-

rameters. Functions exhibiting parametric polymorphism are also

called generic functions. An example of parametric polymorphism

is the generic function length, and can be defined with the type def-

inition List α → Integer. Here, α can be any type, allowing length

to work on lists of integers, floats, or any other type.

– Inclusion Polymorphism, where an object may belong to multiple

classes which may not be disjoint, i.e., there is inclusion of classes.

It is used to model subtypes and inheritance. It is also called run-

time polymorphism, because the right function to be invoked is

determined at run-time.

Consider the classes FileWriter and StreamWriter, defined under a

Writer class that implement the virtual write function. When a

program calls the function write on an instance of Writer, the actual

5



function to be called would be determined at run-time, based on

the concrete instance that the variable holds.

• Ad-hoc polymorphism works on a finite set of potentially unrelated types.

It is worth noting that ad-hoc polymorphism gets its name from the fact

that “there is no single systematic way of determining the type of the

result from the type of the arguments”, and that there may be rules that

reduce the number of cases, but they are themselves ad-hoc in scope

and content [23]. Ad-hoc polymorphism is further categorized into the

following:

– Overloading, where the same variable name is used to denote differ-

ent functions. An example of overloading is the + operator, which

can be applied to integers and floating point, and in some imple-

mentations, strings and lists.

– Coercion, which is a semantic operation used to convert arguments

to a type that the function expects. It can be implemented statically

or dynamically.

Both coercion and overloading can be used to implement ad-hoc poly-

morphism, depending on the implementation details of the language. Consider

the expression 3 + 4.0; one way to implement this operation is by overloading

the + operator to accept one integer and one double. Another option is to

coerce the integer argument to a double type in this case.

6



Sometimes, “overloading” is used to refer to static polymorphism, which

can be resolved at compile time, and “polymorphism” is used to refer to the

dynamic case of inclusion polymorphism. In this study, we focus on over-

loading, and it is taken to be synonymous with ad-hoc polymorphism, unless

otherwise specified.

2.2 Approaches to implementing Ad-hoc polymorphism

Ad-hoc polymorphism implementations solve the problem of selecting

which function definition to call when an overloaded function is called, without

having to specify the exact function being called. In this section, we review

existing practical and theoretical implementations of ad-hoc polymorphism,

with focus on type classes and its variations.

2.2.1 Object classes

In Object-Oriented languages, an object is an encapsulation of data and

behavior, or methods, that can be invoked on the object. A “class” acts as a

template for objects. It is the type, and all instances of the class have that

type [12].

Ad-hoc polymorphism can be achieved by defining multiple methods

in the same class that have the same return type. The overloaded function to

call is resolved at compile time. The overloaded functions are allowed to vary

in the following ways:

7



• The number of arguments

• The order of arguments

• The type of arguments

Some languages allow for the return type of the function to be different,

as long as it is not the only thing that is different. Listing 2.1 shows an example

of ad-hoc polymorphism in Java, using method overloading. The operator +

is defined to operate on arguments of primitive types integer and double. The

call to the overloaded function sum is resolved at compile time, using the

arguments passed to the function.

public class Demo {

public static int sum(int x, int y)
{

return (x + y);
}

public static double sum(double x, double y)
{

return (x + y);
}

public static void main(String args[])
{

System.out.println(Demo.sum(10, 20));
System.out.println(Demo.sum(10.5, 20.5));

}
}

Listing 2.1: Ad-hoc polymorphism in Java

Inclusion polymorphism is achieved through inheritance. The behavior

is also referred to as overriding. The function to be called is then determined

8



at run-time based on the instance of the class that the function was called on.

Inheritance is usually restricted to class definitions, meaning that overriding

behavior across a class can be defined only when the class is defined.

2.2.2 Type Classes

Type Classes are a construct that support ad-hoc polymorphism, intro-

duced by Wadler and Blott, and implemented in Haskell, to allow overloading

of arithmetic operators. They were introduced as a generalization of eqtype

variables of Standard ML [26].

Type classes encapsulate the names and type signatures of overloaded

functions in their declaration, and instances of these type classes implement

the behavior for these functions. Parametric polymorphism is used to define

type constraints, and in turn, quantify the function definition for types that

instantiate the type class. An example of type class declaration and instanti-

ation in Haskell is shown in Listing 2.2.

9



class Num a where
(+) :: a -> a -> a
(*) :: a -> a -> a
negate :: a -> a

-- The ’primitive’ functions are assumed
-- to have been defined for given types
instance Num Int where

(+) = primitiveAddInt
(*) = primitiveMulInt
negate = primitiveNegateInt

instance Num Float where
(+) = primitiveAddFloat
(*) = primitiveMulFloat
negate = primitiveNegateFloat

square :: Num a => a -> a
square x = x * x

Listing 2.2: Haskell Type Class example

In the listing 2.2, the function square can be understood as a function

of type a → a, for every a that belongs to the type class Num, i.e., every type

a that has the functions (+), (*), and (negate) defined on it. That makes it

possible to make the following function calls:

square 3
square 3.14

The programming language Axiom [25], defines algebraic constructs

like groups, rings, and fields, with a type class-like construct called Categories.

Categories can extend other categories to define overloaded behavior.

Type classes provide a concise and expressive way to implement ad-

hoc polymorphism. By separating type definition and type class instantiation,

type classes allow programmers to write more modular code.

10



Type class features have been adopted in other languages to varying

degrees, such as traits in Rust, the template extension “Concepts” in C++,

and generalized interfaces in Java.

2.2.3 Alternative approaches

Odersky, Wadler, and Wehr describe “System O”, an alternative ap-

proach to ad-hoc polymorphism, that eliminates type class declaration and

instead allows overloaded functions to be declared directly at the top program

level [18]. This allows overloaded instances to have unique type signatures, as

they don’t have to conform to a defined signature.

Listing 2.3 shows an example of overloading the + operator using Sys-

tem O. It is worth noting in the listing that this construct allows defining

overloaded instances of the + function on values of type String, as the over-

loading is not restricted by a type class. In a system with type classes, it

would be required to define all the functions associated with the type class.

A workaround to solving this problem would be to define a more fine-

grained system of type classes. However, this may not always be a possible

solution. For example, a system with type classes cannot define an exponen-

tiation function to cover all choices for basis and exponent, and would need

to define different exponentiation operators for Integral and Fractional types.

Even with the multi-parameter type class extension, one common exponen-

tiation operator cannot be implemented due to ambiguity arising from cases

where the exponent can be of type Int or Integer.

11



-- Define the overloaded variable
over (+)

-- The ’primitive’ functions are assumed
-- to have been defined for given types
inst (+) :: Int -> Int -> Int

(+) = primitiveAddInt

inst (+) :: String -> String -> String
(+) = primitiveStringConcat

-- Unary plus
inst (+) :: Double -> Double

(+) x = x

Listing 2.3: An example of overloaded addition in System O

System O defines a dynamic semantics for its programs, that extends

the semantics for the language Exp [13] to include overloaded variables and

function definitions. This extension requires all instances of the overloaded

functions to be distinguished by the type of the function’s first argument.

This limits the overloaded functions that can be defined. For instance, in

Listing 2.3, it wouldn’t be possible to define another overload that represents

unary plus operation of type Int → Int.

Shields and Peyton Jones describe λO, a system for modeling object-

oriented style ad-hoc overloading and specialization in the context of type

class overloading [22]. Overloading in λO resembles System O, where each class

specifies a single overloaded name and each instance has a single interpretation.

In addition, λO introduces “closed classes” – classes for which no instance is

defined. They are added as a part of an additional unification step during type

checking, and reduce the need for type annotations by improving the inferred

12



types. Listing 2.4 shows an example of overloading the + operation in λO.

-- Define the closed class +
class closed (+) a where a

-- The ’primitive’ functions are assumed
-- to have been defined for given types
instance (+) (Int -> Int -> Int) where primitiveAddInt
instance (+) (String -> String -> String) where

primitiveStringConcat

Listing 2.4: An example of overloaded addition in λO

Consider a function inc, that uses the constraint (+) defined above, with

the signature inc :: ((+) (a → Int → b)) ⇒ a → b. With closed classes, the

inference algorithm is able to commit to a more concrete signature Int → Int,

since the class is “closed”, and can have no other instances where the second

type parameter is of type Int.

λO also includes “overlapping instances”, which allows for specialization

of type class implementations. This kind of specialization is common in object-

oriented languages. It does so by raising an error only when an overlapping

instance arises that creates an ambiguity in selecting an overloaded instance.

For example, the instances in Listing 2.5 would be rejected in Haskell be-

cause the constraint Overlap (Int, Int) matches both declarations. In contrast,

λO would raise an error only if the constraint Overlap (Int, Int) comes up in

practice.

instance Eq a => Overlap (Int, a) where ...
instance Eq a => Overlap (a, Int) where ...

Listing 2.5: Overlapping instances in λO

Morris proposes a theoretical formulation for implementing ad-hoc poly-

13



morphism [15], building on Ohori’s simple semantics for ML polymorphism

[19]. In this approach, polymorphic expressions are interpreted as type-indexed

collections of monomorphic terms. This is referred to as a specialization-based

approach, because it relates polymorphic terms to their ground-typed special-

izations. A functional language called H– is introduced, with denotational

semantics using the specialization-based approach.

2.3 Semantics for overloading

In this section, we look at the semantics for the overloading implemen-

tations that we have reviewed, and the implications of static and dynamic

approaches to implementing ad-hoc polymorphism. The semantics of a pro-

gramming language specifies the meaning of programs.

2.3.1 Dynamic Semantics

Dynamic semantics specify how a program is to be executed; they’re

concerned with what happens at run-time. This involves describing the effect

of executing programs, by defining the steps of computation of the program,

or as elements of some suitable mathematical structure.

For instance, System O defines a dynamic semantics for its programs,

where the type of the first argument of the overloaded function is used to

identify the function instance to be used at run-time. Overloaded functions

are associated with functions that choose the instance to be executed at run-

time, starting with the most recent definition of the overloaded variable.

14



2.3.2 Static Semantics

Static semantics specify the rules about the program pertaining to in-

formation that can be ascertained at compile time. This can include data

typing, variable declarations, and valid function or operator names, etc. In

many languages, type checking is part of the static semantics.

In Haskell, type classes are resolved as a part of the static analysis

during type checking [20]. Type class instances are associated with a 4-tuple

containing the data type, type class, a dictionary, and the context associated

with the instance. The dictionary contains the overloaded functions, as man-

ifested in the context of the type class instance declaration. The context is a

(possibly empty) list of class constraints to be applied to the type variables

defined by the instance.

In the resulting generated code, overloaded function definitions receive

additional parameters to bind dictionaries, and references to the overloaded

functions are passed dictionaries. This is done by adding a dictionary passing

transform during the code walk performed by the type checker [20].

Functions that select appropriate methods from the dictionary are also

defined during static analysis, and they simply extract a component of the

dictionary tuple. This requires more plumbing in order to provide the con-

text beforehand [24]. Implementations of type classes typically do not have a

dynamic semantics, so it is not possible to express the soundness result [13].

Another example of a static semantics for ad-hoc polymorphism is Sys-

15



tem O, which describes a static semantics by defining a transformation to the

Hindley/Milner system. Type annotations are optional, as a complete type in-

ference algorithm is defined. The typing rules of the language are augmented

with a function passing transform that eliminates overloaded variables by gen-

erating unique function instances for each of the overloaded instances [18].

Similarly, polymorphic expressions are transformed to accept concrete

implementations of the overloaded variables as function arguments. It is fur-

ther shown that the semantic soundness result [13] holds for programs written

in System O.
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Chapter 3

System O

System O is an extension of the Hindley/Milner system, introduced

by Odersky, Wadler, and Wehr as an alternative to using type classes for

supporting ad-hoc polymorphism [18]. It exhibits type soundness and principal

type properties analogous to the Hindley/Milner system. In this chapter, we

review the syntax, semantics, and type system of System O, and discuss the

limitations posed by the system.

3.1 Abstract Syntax

The terms of the language described by System O are based on the lan-

guage Exp, described by Milner [13]. The terms and type schemes are extended

to accommodate for overloading. The syntax allows overloaded functions to

be defined at the program level. This syntax is summarized in Figure 3.1.
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Unique Variables u ∈ U
Overloaded Variables o ∈ O
Constructors k ∈ K =

⋃
{KD | D ∈ D}

Variables x = u | o | k
Terms e = x | λu.e | e e′ | let u = e in e′

Programs p = e | inst o : σT = e in p

Type Variables α ∈ A
Datatype Constructors D ∈ D
Type Constructors T ∈ T = D ∪ {→}
Types τ = α | τ → τ ′ | D τ1 . . . τn

Type Schemes σ = τ | ∀α.πα ⇒ σ

Constraints on α πα = o1 : α → τ1, . . . , on : α → τn

Typotheses Γ = x1 : σ1, . . . , xn : σn

Figure 3.1: Abstract Syntax of System O

The variables, ranged over by x are divided into U for unique variables,

O for overloaded variables, and K for data constructors. The datatypes are

constructed from the datatype constructors D. The type constructors T range

over all the data type constructors D, and the function type constructor (→).

The types, ranged over by τ are comprised of type variables, α, functions,

τ → τ ′, and data types, D τ1 . . . τn.

Type schemes, σ, consist of a type τ and quantifiers for the type vari-

ables in τ . A constraint on a type variable is represented as πα, and is a set

of bindings o : α → τ . An overloaded variable o can appear at most once in a
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constraint πα. These constraints ensure that the overloaded types are defined

at the given types, and hence restrict the instance types of a type scheme.

Overloaded variables are declared with an explicit type scheme σT ,

and it is required that the type constructor T is different in each overloaded

instance. This is necessary to ensure that principal types always exist. These

syntactic restrictions also ensure that the argument types of the overloaded

instances uniquely determine the result type, and that they work uniformly

for all arguments of a given type constructor. σT ranges over the closed type

schemes that have T as the outermost argument type constructor:

σT = T α1 . . . αn → τ (tv(τ) ∈ {α1, . . . , αn})

| ∀α.πα ⇒ σ′
T (tv(πα) ∈ {tv(σ′

T )})

Instance declarations (inst o : σT = e in p), are used to define overloaded

instances, where the meaning of an overloaded variable o is overloaded with the

expression e, where the first argument is constructed from the type constructor

T . Programs in System O consist of a nested sequence of instance declarations

and a term.

3.2 Semantics

The compositional semantics of System O are defined, which specify

lazy evaluation for functions. However, overloaded functions are strict in their

first argument [18]. The meaning of a term is a value in the CPO V , where V
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is the least solution of Equation 3.1. The value W denotes a type error, and

is pronounced “wrong”.

V = W⊥ + V → V +
∑
k∈K

(k V1 . . .Varity(k))⊥ (3.1)

The meaning function, J·K takes a term and an environment η, and

yields an element of V . Unique variables are mapped to arbitrary elements

of V , and overloaded variables are mapped to strict functions, as described in

equation 3.2

η : U → V ∪ O → (V ◦→ V) (3.2)

The notation η[x := v] indicates that the variable x is bound to the

value v, and the environment η is extended with this association. The dynamic

semantics for System O is defined in Figure 3.2.

The meaning of a variable x yields the value stored against that variable

in the environment, which is a value in the semantic domain V . The meaning

of a λ expression is evaluated by recursively evaluating the meaning of the

function expression.

Similarly, the meaning of data type constructors k is evaluated by re-

cursively finding the meaning of the arguments to the constructor, represented

in the semantics with the variables e1 . . . en. The semantics assumes that all

data type constructors are defined in a fixed initial environment.
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The meaning of a let expression is evaluated by finding the meaning of

the expression e′, where, the variable u has meaning of the expression e.

JxKη = η(x)

Jλu.eKη = λv.JeKη[u := v]

Jk e1 . . . enKη = k(Je1Kη) . . . (JenKη),
where n = arity(k)

Je e′Kη = if JeKη ∈ V → V then (JeKη)(Je′Kη) else W

Jlet u = e in e′Kη = Je′Kη[u := JeKη]
Jinst o : σT = e in pKη = if JeKη ∈ V → V then

JpKη[o := extend(T, JeKη, η(o))
else W

where

extend((→), f, g) = λv.if v ∈ V → V then f(v) else g(v)

extend(D, f, g) = λv.if ∃k ∈ KD.v ∈ k V . . .V︸ ︷︷ ︸
arity(k)

then f(v) else g(v)

Figure 3.2: Semantics of System O

Function application is implemented using the expression form e e′, and

its meaning is evaluated by applying the meaning of the expression e′ to the

meaning of the expression e. It is ensured that the expression e is a valid

function of type V → V in the semantic domain V .

Finally, inst expressions, that implement the overloading definitions,

use the extend operation to create a nesting of expressions that select the

appropriate function definition when an overloaded function is applied.
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3.3 Typing Rules

The typing rules for System O are derived from those of the language

Exp [7], with modifications to the rules (∀I) and (∀E). These typing rules are

summarized in Figure 3.3. The substitution of type variables with types is

denoted with [τ1/α, . . . , τn/αn]σ, or [τi/αi]σ, representing the type obtained

by replacing the type variable αi with τi in σ [7].

x : σ ∈ Γ(TAUT)
Γ ⊢ x : σ

Γ ⊢ x1 : σ1 . . . Γ ⊢ xn : σn(SET)
Γ ⊢ x1 : σ1 . . . xn : σn

Γ, u : τ ⊢ e : τ ′
(→I)

Γ ⊢ λu.e : τ → τ ′

Γ, πα ⊢ e : σ (α /∈ tv(Γ))
(∀I)

Γ ⊢ e : ∀α.πα ⇒ σ

Γ ⊢ e : τ ′ → τ Γ ⊢ e′ : τ ′(→E)
Γ ⊢ e e′ : τ

Γ ⊢ e : ∀α.πα ⇒ σ Γ ⊢ [τ/α]πα
(∀E)

Γ ⊢ e : [τ/α]σ

Γ ⊢ e : σ Γ, u : σ ⊢ e′ : τ
(LET)

Γ ⊢ let u = e in e′ : τ

(o : σT ′ ∈ Γ ⇒ T ̸= T ′)

Γ ⊢ e : σT Γ, o : σT ⊢ p : σ′
(INST)

Γ ⊢ inst o : σT = e in p : σ′

Figure 3.3: Typing Rules for System O
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The typing rules (∀I) and (∀E) are symmetric to the rules (→ I) and

(→ E). In the rule (∀I), the constraint πα on the introduced bound variable

α is traded between typothesis and type scheme. The rule (∀E) checks for a

valid substitution of the constraint πα, by replacing the type variable α with

a type τ .

The rule for instance declarations, (INST) is similar to the rule (LET),

and differs in that the overloaded variable o has an explicit type scheme σT ,

and that the constructor T is different in each instance of o. This is also

enforced through the syntactic restrictions.

3.4 Function-passing Transform

Odersky, Wadler, and Wehr describe a function-passing transform to

translate System O terms to the Hindley/Milner system [18]. The core idea

of this transform is to transform terms of type ∀α.πα ⇒ τ to a function

that accepts implementations of the overloaded variables as arguments. This

transform is formulated as a function of type derivations. The component

e∗ represents the translation of a term, added to the typing judgement as

Γ ⊢ e : τ ≻ e∗.

Figure 3.4 defines the translation of types and type schemes.
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τ ∗ = τ

(∀α.ϵ ⇒ σ)∗ = ∀α.σ∗

(∀α.o : α → τ, πα ⇒ σ)∗ = ∀α.(α → τ) → (∀πα ⇒ σ)∗

Figure 3.4: Translation of types and type schemes

Overloaded variables o are transformed into a new unique variable uo,σT
,

whose identity depends on the name o and the type scheme σT . This transla-

tion is defined in Figure 3.5.

(u : σ)∗ = u : σ∗

(o : σ)∗ = uo,σ : σ∗

o1 : σ1, . . . , on : σn = (o1 : σ1)
∗, . . . , (on : σn)

∗

Figure 3.5: Translation of bindings and typotheses

The rule (∀I) transforms an expression to a λ expression that expects

as arguments the implementations of the overloaded functions. The corre-

sponding rule (∀E) applies the function with the appropriate overloaded in-

stance. To ensure coherence of the transformation, it is assumed that the

overloaded identifiers o are ordered lexicographically in a type variable con-

straint {o1 : α → τ1, . . . , on : α → τn}. The transform is summarized in Figure

3.6.
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u : σ ∈ Γ(TAUT)
Γ ⊢ u : σ

≻ u

k : σ ∈ Γ
Γ ⊢ k : σ

≻ u

o : σ ∈ Γ
Γ ⊢ o : σ
≻ uo,σ

Γ, u : τ ⊢ e : τ ′ ≻ e∗
(→I)

Γ ⊢ λu.e : τ → τ ′

≻ λu.e∗

Γ, o1 : τ1, . . . , on : τn ⊢ e : σ ≻ e∗ α /∈ tv(Γ)
(∀I)

Γ ⊢ e : ∀α.(o1 : τ1, . . . , on : τn) ⇒ σ

≻ λuo1,τ1 . . . uon,τn .e
∗

Γ ⊢ e1 : τ
′ → τ ≻ e∗1 Γ ⊢ e2 : τ

′ ≻ e∗2(→E)
Γ ⊢ e1 e2 : τ

≻ e∗1 e∗2

Γ ⊢ e : ∀α.(o1 : τ1, . . . , on : τn) ⇒ σ ≻ e∗

Γ ⊢ oi : [τ/α]τi ≻ e∗i (i = 1, . . . , n)
(∀E)

Γ ⊢ e : [τ/α]σ

≻ e∗ e∗1 . . . e
∗
n

Γ ⊢ e : σ ≻ e∗ Γ, u : σ ⊢ e′ : τ ≻ e′∗
(LET)

Γ ⊢ let u = e in e′ : τ
≻ let u = e∗ in e′∗

(o : σT ′ ∈ Γ ⇒ T ̸= T ′)

Γ ⊢ e : σT ≻ e∗ Γ, o : σT ⊢ p : σ′ ≻ p∗
(INST)

Γ ⊢ inst o : σT = e in p : σ′

≻ let uo,σT
= e∗ in p∗

Figure 3.6: Function passing transform
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3.5 Programs in System O

Consider the Haskell program in Listing 3.1. The program defines over-

loading behavior using type classes, then defines a polymorphic function using

that type class.

We first define the type class Pointed, with the functions xcoord and

ycoord to extract the x and y coordinates of an instance of Pointed. The types

Point, with the two fields of type Float representing the x and y coordinates of

a point, and CPoint, for colored points, containing the x, y coordinates and a

color of type String. Using pattern matching on their respective constructors,

the types Point and CPoint implement the functions defined by the type class

Pointed, creating instances of the type class.

Finally, the polymorphic function dist is defined, that operates on in-

stances of Pointed to calculate the distance of points from the origin.

class Pointed a where
xcoord :: a -> Float
ycoord :: a -> Float

data Point = MkPoint Float Float
data CPoint = MkCPoint Float Float String

instance Pointed Point where
xcoord (MkPoint x y) = x
ycoord (MkPoint x y) = y

instance Pointed CPoint where
xcoord (MkCPoint x y c) = x
ycoord (MkCPoint x y c) = y

dist :: (Pointed a) => a -> Float
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dist p = sqrt (sqr (xcoord p) + sqr (ycoord p))

Listing 3.1: A program implementing overloading in Haskell

In Listing 3.2, we rewrite the Haskell example in System O. We observe

the impact of eliminating type class declarations in the definitions of the func-

tions xcoord and ycoord. These functions are now defined using the keyword

inst, indicating that they are overloaded for the types Point and CPoint. The

function definitions also differ in the type of the first parameter to the over-

loaded function definitions, as required by System O. For brevity, we have writ-

ten the functions using pattern matching, as in the Haskell program, though

System O doesn’t explicitly specify pattern matching in its formal syntax.

Furthermore, the type annotation on the function dist is now more

verbose, as there is no mechanism like type classes to group together the

related functions. This type annotation explicitly lists the names and types of

the overloaded functions it uses. These type annotations can become lengthy,

potentially affecting the readability of the code.

System O specifies a complete type inference algorithm, eliminating

the need for type annotations. However, writing type annotations improves

the readability and maintainability of programs. In certain cases, they are re-

quired to resolve ambiguity in programs. Further, type annotations can reduce

the burden on a type reconstruction algorithm. Odersky and Läufer present

extensions to the Hindley/Milner system with this goal [17]. We discuss the

implications of verbose type annotations in the following section, as this is a

problem we aim to address in this study.
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data Point = MkPoint Float Float
data CPoint = MkCPoint Float Float String

inst xcoord :: Point -> Float
xcoord (MkPoint x y) = x

inst ycoord :: Point -> Float
ycoord (MkPoint x y) = y

inst xcoord :: CPoint -> Float
xcoord (MkCPoint x y c) = x

inst ycoord :: CPoint -> Float
ycoord (MkCPoint x y c) = y

dist :: (xcoord, ycoord :: a -> Float) => a -> Float
dist p = sqrt (sqr (xcoord p) + sqr (ycoord p))

Listing 3.2: A program implementing overloading in System O

3.5.1 Limitations and Proposed Extensions

From the example in Listing 3.2, we observe the verbosity in type anno-

tations for polymorphic functions in System O. The function names and types

have to be explicitly stated in the type annotation. For brevity, we grouped

together the functions xcoord and ycoord as they share the same signature, but

a type annotation in this format can become increasingly tedious to write for

more complex functions.

In contrast, in Listing 3.1, we observe the merits of expressing types

using type classes in this context. The type annotations are concise, as type

classes provide a mechanism to group together related overloaded names. It

follows that the type annotations are more readable and make the purpose of
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the functions clearer.

One possible approach to overcoming this issue of conciseness is to

extend System O to add the ability to provide constraint aliases to groups of

functions for the purpose of using them in type annotations. These aliases

can then be used in the type annotations. In our example from Listing 3.2, it

would require providing an alias to the group of functions xcoord and ycoord.

In this study, we present extensions to System O to add the ability to

define and instantiate type classes, closely following their implementation in

Haskell. This is an elegant way to solve the problem discussed above, with a

mechanism to write more expressive and readable code.

Another limitation of System O is that the type of the first argument

of overloaded functions should be different. As our implementation of type

classes is a direct extension of the System O dynamic semantics, this limitation

is inherently carried over to it.

Consider the type class Parser, that defines the function parse, with

the type signature String → a. The type of the type variable a is defined by

instances of the type class. If we were to dispatch on only the type of the first

argument, implementing this type class would not be possible. As a part of

implementing an extended System O, we aim to address this restriction.

Another related limitation arises when trying to implement type classes

with functions where dispatch depends on the return type of a function, like

Functor or Reader. Consider the type class Functor, which defines the function
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fmap. The type signature of this function is (a → b) → f a → f b, . Given

the dynamic semantics that we are implementing, addressing this scenario

is out of the scope of this study. This limits the type classes that we can

define using our construct, which impacts the flexibility of the programming

language. However, retaining the System O dynamic semantics has a value

in making the programming language easy to understand, and hence reducing

the complexity of the interpreter implementation. We present workarounds

that can help alleviate the problem.

In the rest of this study, we present extensions and modifications to

System O to make the programming language more practical. Then we define

type classes on top of the extended System O, and introduce optimizations

to the function-passing transform that aim to improve the performance and

readability of code.
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Chapter 4

Implementing an Extended System O

In this chapter, we present extensions to System O that aim to make the

programming language more practical and overcome some of the limitations

described in Chapter 3. With these extensions in place, we describe the con-

struction of an interpreter to run programs using this extended programming

language.

We develop a “metacircular evaluator”, inspired by the interpreters of

Abelson and Sussman [1] to implement the dynamic semantics. The interpreter

is designed to load and run programs written in System O, or run interactively

as a read–eval–print loop (REPL) [9]. The implementation language chosen

for the interpreter is Clojure [21].

We proceed with the development in multiple steps, starting with a

fully functioning interpreter based on the dynamic semantics with our exten-

sions. This system is capable of handling ad-hoc overloading and resolves the

overloaded instances at run-time.

We then implement the type checker for this interpreter, implementing

the rules defined for System O in Chapter 3, with modifications to accommo-

date for the syntactic extensions.
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Finally, we implement the function-passing transform, adding the abil-

ity to resolve overloaded instances during the type checking process, hence

reducing the run-time overhead.

4.1 The Interpreter Environment

The environment is a core data structure used throughout the inter-

preter. It provides a store for variable names and their values. It determines

the context in which an expression should be evaluated. The implementation

is based on the “Environment Model of Evaluation” by Abelson and Sussman

[1].

The environment is implemented as a sequence of frames, which are

(possibly empty) tables of bindings that associate variable names with their

values. A frame is represented as a pair of lists: a list of the variables bound in

that frame and a list of the associated values. A frame also contains a pointer

to its enclosing environment.
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Figure 4.1: Structure of a simple environment

Figure 4.1 shows the structure of a simple environment, with the frames

I, II, and III. The pointers to these frames are labeled A, B, C, and D. The

process of looking up a variable in the environment begins with looking at the

first (outermost) frame, II or III, in this figure, and successively looking at the

enclosing environments if the variable is not found.

For example, looking for the variable x starting with frame I will return

the value 1, while looking for the same variable starting with frame II will

return the value 2.

The last (innermost) frame has no enclosed frames, and is defined as the

global environment. In our implementation, we use this global environment to

define the constant data types and the operations on them, which are defined

with the corresponding operations in the implementation language.

The following operations on the environment allow us to store and
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access variables. All functions take as argument the environment that the

program being executed has in its current context, denoted as 〈env〉. The

function parameter 〈var〉 denotes the variable to look for, or add to, the envi-

ronment. The parameter 〈val〉 denotes the value to be set against a variable

in the environment.

• lookup 〈var〉〈env〉: Finds and returns the value associated with the vari-

able 〈var〉 in the environment 〈env〉, throws an error if the variable is

unbound.

• extend 〈var〉〈val〉〈env〉: Returns an environment with a new frame which

points to the current environment 〈env〉. The new frame binds the vari-

able 〈var〉 to the value 〈val〉. This operation is often used to create a new

context when evaluating nested expressions, where variables are assigned

new values in the context of an inner expression.

• define! 〈var〉〈val〉〈env〉: Binds the variable 〈var〉 to the value 〈val〉 in the

first frame of the environment 〈env〉. Overrides the value for a variable

if it has already been defined. This is essentially a side effect that allows

us to implement declaration of top level variables.

4.2 Syntactic Extensions

We define the syntax for our language by extending the syntax of Sys-

tem O. These extensions are added to provide common programming con-

structs to the language, making it more palatable.
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We begin with adding primitive types, ranging over the types Integer,

Double, Char, String, and Boolean. The constant values are the set of all values

ranging over the primitive types. These types correspond to primitive types

in the implementation language, Clojure.

We use the datatype constructors to model “record” structures found

in common programming languages, with constructors k, that accept zero or

more arguments. We add this declaration with the keyword record. A record

is defined as (record k [u1 . . .un]), where k is the name of the record, and u1

. . .un are the names of the fields.

In addition to datatype constructors, we add the ability to define al-

gebraic data types, with the keyword data. These are defined as a set of one

or more constructors associated with a datatype. Algebraic data types would

allow programmers to define additional data structures, such as Maybe or List.

Algebraic data types are defined with the syntax (data ka (k1 [u11 . . .u1m])

. . . (kn [un1 . . .unm])), where ka is the name of the algebraic data type, k1 . . . kn

are its constructors with fields u11 . . .unm .

All datatype constructors are associated with a predicate function and

functions for selecting fields from an instance of the datatype. These functions

accept one argument, the datatype instance. For a constructor k, a predicate

takes the form k?. The record selectors are defined as k-u1 . . . k-un where k

is the constructor with fields u1 . . .un. These functions are generated by the

interpreter when a data type constructor is defined.
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We also extend the terms of the language e to contain constants. We

modify the λ expressions to accept multiple arguments, to avoid the overhead

of desugaring, and to keep the interpreter simple.

Consequently, function application is also modified to allow multiple

arguments to functions. if expressions and cond for conditionals are also added

to the terms.

Another addition to the syntax is the ability to associate names with

terms, using the define construct. Functions declared using this construct are

allowed to be recursive, referring to the name that they are defined with. This

is an implementation detail defined in the interpreter.

We make explicit the declaration of overloaded variables, o, which

are declared in a program using the over construct. Instance declarations

(inst o τ e) are used to overload the definition of o for type τ with the ex-

pression e. The interpreter ensures that the expression e is a λ expression.

Consequently, programs are a sequence of expression, overload, and instance

definitions.

4.3 Semantics

Implementing the semantics involves defining a procedure correspond-

ing to the meaning function J·K, defined in Chapter 3. It accepts a term and

the environment η. In this section, we describe the implementation of the

meaning function, accounting for the extensions in syntax.
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The terms are represented as S-expressions and resemble expressions

in Clojure. The environment initially supplied to this function is the global

environment defined previously.

The interpreter is implemented by performing a case analysis on the

form of the expression. This section describes these cases implemented on the

dynamic semantics of System O, described in Figure 3.2, accounting for the

modifications to the syntax. Expressions in the semantics that evaluate to

W throw an error at run-time that stops the execution of the program. For

constants of a valid type, their value is returned as-is.

Variable values are retrieved from the environment in the current con-

text using the lookup function on the environment, as (lookup x η), where x is

the variable and η is the environment.

λ expressions are transformed into a closure by packaging together the

parameters and body of the expression with the environment of the evaluation.

We define the structure of this closure as a triple that contains the function

body, the list of arguments that it accepts, and the environment in which the

λ expression was created. In implementing the expression defined above, we

also account for λ expressions accepting multiple arguments.

Instances of data type constructors are created by storing the values

obtained by evaluating the parameters e1 . . . en with the constructor in a tagged

structure. Consequently, the predicate and accessor functions defined for the

constructors use these tagged structures to type check data type instances or
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extract specific parameters. These predicate and accessor functions ensure

that they operate on values of the type that they are created for, by checking

the tagged structure.

if expressions are evaluated using the underlying implementations in

Clojure. By extension, cond expressions are essentially treated as nested if

expressions and are evaluated recursively till a predicate is satisfied, or there

are no more predicates to check.

Function application of the form (e e1 . . . en) gathers the closure corre-

sponding to the value of the expression e, evaluates the expressions e1 . . . en

to get the values associated with the arguments, then applies the closure to

these values. By nature of this implementation, recursive calls are handled

as the values are supplied to the interpreter with the extend operation on the

environment. The implementation of the above expression in the interpreter

accounts for functions accepting multiple arguments.

When applying overloaded functions, the interpreter attempts to find

a suitable overload for the type of arguments specified, and throws an excep-

tion if none is found. As the interpreter operates on multiple arguments, the

process of finding an overloaded instance verifies the entire type signature of

the functions.

let expressions evaluate the meaning of the expression e, and associate

it with the variable u using the extend operation on the environment, then

evaluate the expression e′ with this new context. By the nature of the im-
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plementation of the environment and the meaning function, this context is

discarded once the expression is evaluated.

The define construct evaluates the value of the expression e and stores

it against the variable u in the current environment using the define! operation.

In a similar vein, the over construct defines a default value against the name

of the overloaded expression that throws an error.

Programs are evaluated in the order that they are defined, and declared

expressions can refer to variables declared before them.

Overloaded expressions defined using the inst construct are restricted

to be functions, and are added to the environment against the overloaded

variable o using the define! operation on the environment. When applied, these

definitions are evaluated in order from the most recent definition to the oldest

to find an applicable overload, and result in an error (expression evaluates to

W) if no matching overload can be found for a function call. In defining the

overloaded instances, we check that an instance with the same signature has

not been previously defined, using all the types defined for the overload.

4.4 Typing Rules

The type checker implements the typing rules defined by System O in

Figure 3.3, accounting for the extensions in syntax that we have added. Types

are specified in a program with the construct shown in Figure 4.2. Here, u

is the name of an expression declared using the define construct, and τ is its
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type. For functions, the types are declared in the form [τ1 . . . τn] to keep the

syntax concise.

(type u τ)

Figure 4.2: Syntax for Type Declarations

Before a program is type checked, it undergoes preprocessing to split

the code into expressions declared using the define construct, type classes, and

data types. The declared expressions undergo type checking, and the type

classes and data types are used in the process of checking the type. The

implementation of type checking with type classes is discussed in Chapter 5.

This process also ensures that type annotations are specified for all expressions

declared at the top level.

Similar to the implementation of the semantics, the type of expressions

is checked by performing a case analysis on the form of the expression. The

typing judgement function takes a typothesis and an expression, and uses the

typing environment to recursively determine the type of the expression. The

typing environment Γ reuses the environment structure we defined previously

in Section 4.1.

Starting with the topmost expression, that the type annotation is spec-

ified for, the function recurses down to the innermost expressions. As the

recursion unwinds, the type of each subsequent expression is checked, finally

checking the type of the topmost expression. If the type check is successful,
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the type of the expression is returned. For the type checker, this return value

is not used, but it is important that the function returns, indicating that the

type checking was successful. However, these returned values are required for

the function-passing transform.

In the following section, we describe the implementation for the System

O typing rules case-by-case, with emphasis on the details accounting for the

extensions we have added.

Values of constant types are defined as default implementations in the

type checker, and use standard Clojure functions to identify the type of values

of constant type.

The type of variables is checked by looking up their types in the typing

environment, using the lookup function defined on the environment. This

corresponds to the rule (TAUT) defined by System O.

Similarly, for let expressions of the form, let u = e in e′, we check for

the type of the expression e′ in the context of an extended typing environ-

ment, where the variable u has the type of the expression e. The type of the

expression e is inferred. It is assigned a unification variable, which is used to

extend the environment with the inferred type, and the type of the overall let

expression is checked under the inferred type.

For conditionals, it is verified that the predicates of the expressions are

of type Boolean, and the resultant expressions all yield the same declared type.

To check the type of λ expressions, we extend the typing environment
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with the function arguments and their types using the extend operation on

the environment, and recursively check that the expression of the body of the

function conforms to the declared type. This corresponds to the rule (→I)

defined by System O, accounting for functions accepting multiple arguments.

Type checking λ expressions also accounts for expressions that use over-

loaded functions in their definitions. The function definitions collected during

preprocessing are used to identify when an expression uses an overloaded func-

tion. It is assumed to be of the general type, ∀α.πα ⇒ σ, which would be the

type defined in the type class definition.

Note that in the process of developing this interpreter, we implemented

type classes before adding type checking, and the general type of the expression

is taken from the type of the function as defined in the type class. Specifying a

constraint with a type class for a type variable in the annotation restricts the

type variable α to instances of the type class. To check that the expression

conforms to the type annotation, it is checked that the type of the argu-

ments matches one unique overloaded definition of the function. This involves

checking the type of the arguments against every overloaded definition for the

function in the typing environment, which is similar to the computation of the

constraint πα = o1 : α → τ1, . . . , on : α → τn. This ensures that the type

specified in the annotation is no more general than the type of the type class

itself. This is an extension of the rule (∀I).

Type checking function application is more intricate, as there are sev-

eral types of functions, including those generated internally by the interpreter,
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like, the predicate and accessor functions. Additionally, this process needs to

handle type checking on overloaded functions, which involves checking that the

function application conforms to one unique overloaded instance. In general,

there are three cases for type checking function application:

• The first case applies to primitive functions, accessors, predicates, and

declared functions that are not overloaded. In this case, we identify the

type of the function, and check that each of the arguments correspond

to the types expected by the function, in order. Then, we can say that

this function application is of the type denoted by the annotation. This

corresponds to the rule (→E).

• The second case pertains to application of overloaded functions. Type

checking in this case is similar to the first case, where a variable name is

associated with multiple function definitions. As a part of the preprocess-

ing, overloaded function definitions are added to the typing environment

against the overloaded variable name, and evaluated in order from the

most recent definition to the oldest. This implementation also handles

the ambiguity arising from overlapping instances, discussed in Chapter

2 with λO, by ensuring that no two overloaded functions resolve to the

same signature with the concrete type of the arguments provided.

• The third case applies to functions that use overloaded functions. The

constraint specified in the type annotation is used to type check the
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arguments in order to ensure that they conform to the type of one unique

overloaded instance. This corresponds to the typing rule (∀E).

Finally, type checking expressions declared using the define construct

involves checking the type of the expression that is being assigned to the

variable.

4.5 Function-passing transform

The type checker is augmented with the function-passing transform that

translates overloaded functions and expressions that use overloaded functions

to be resolved during the type checking. The implementation follows the rules

defined in Figure 3.6, accounting for the changes in syntax and the typing

rules.

The function passing transform is also implemented by performing a

case analysis on the form of the input expression, albeit with fewer cases

undergoing any major transformation.

The cases of interest are expressions that use overloaded functions in

their definitions, or application of overloaded functions, which correspond to

the rules (∀I) and (∀E).

Expressions that use overloaded functions are transformed into λ ex-

pressions, that accept implementations of the overloaded arguments. Listing

4.1 shows an excerpt of a program before it is transformed. The polymorphic
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function double uses the overloaded function add, and can operate on values

of type Integer or Double.

(overload add)

(inst add [Integer Integer Integer] (lambda [x y] (*prim+i x y)))
(inst add [Double Double Double] (lambda [x y] (*prim+d x y)))

(define double (lambda [x] (add x x)))

(double 2.0)

Listing 4.1: Program before transformation

Before the transformation being implemented, calling the function double

with some arguments would require the interpreter to look at the type of the

arguments, verify if the arguments conform to the type defined by any of the

overloads, then call the function with the arguments. At run-time, this can

cause a significant overhead during code execution. The transform aims to

reduce this overhead by deciding the overloaded function to call, if any, before

the code execution begins. Listing 4.2 shows an excerpt of the function double

after the transformation.

(define double (lambda [add:a] (lambda [x] (add:a x x))))

((double (lambda [x y] (*prim+d x y))) 2.0)

Listing 4.2: Code generated by the transformation

As a result of the transformation, the call to the function double has

been resolved during the type checking process, and the interpreter immedi-

ately knows what function definition to use with the argument 2.0, reducing

the overhead of making this decision at run-time.
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Note that the above listings demonstrate the effect of transformation

without taking type classes into account, resulting in slightly different trans-

formed code, as the name-mangled functions use type class instance names in

the final implementation.

Since the type checker, and by extension, the transformation work re-

cursively bottom-up, we notice that the transformation results in code littered

with these λ expressions. We devise a method to clean these up as a part of

optimizations in Chapter 6.

As a result of the above transformation, function application for over-

loaded functions results in supplying the definitions for the overloaded func-

tions where a concrete type for the arguments to the overloaded functions can

be determined, and an overload exists with those types.

4.6 Examples

Using the interpreter developed in this chapter, we have a platform to

write and execute programs using the dynamic semantics. In this section, we

look at several examples that utilize the overloading semantics and features

that we have developed so far.

In Listing 4.3, we rewrite the Point example from Listing 3.2 using the

extended System O. We define two datatypes, Point, with the fields x and y,

and CPoint for colored point, with the fields c, x, and y. We then define an

overloaded function second that retrieves the y value for any type of point. We
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use the instance record accessors to define the underlying functionality.

The function dist takes in a point and returns its distance from the

origin. As noted in the previous sections, the interpreter was developed to

support type classes before type checking, and hence, the type constraints

on the function dist are a representation of what they would look like in an

extended System O, accounting for the changes in syntax we have added.

(record Point [x y])
(record CPoint [c x y])

(overload first)
(inst first [Point] (lambda [p] (Point-x p)))
(inst first [CPoint] (lambda [cp] (CPoint-x cp)))

(overload second)
(inst second [Point] (lambda [p] (Point-y p)))
(inst second [CPoint] (lambda [cp] (CPoint-y cp)))

(type dist [a Double] [(first :: a -> Double, second :: a ->
Double)])

(define dist (lambda [p] (sqrt (sqr (first p) + sqr (second p)))))

Listing 4.3: An example of overloading with record data types

Listing 4.4 demonstrates a program that overloads the function add to

work on types Integer, Double, and String. The listing declares the overloaded

variable with the construct overload add. The type of the overloaded functions

is given in the instance declaration using the syntax [τ1 . . . τn], as a shorthand

for the type declaration τ1 → · · · → τn.

(overload add)

(inst add [Integer Integer Integer] (lambda [x y] (*prim+i x y)))
(inst add [String String String] (lambda [x y] (*prim+str x y)))
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(inst add [Double Double Double] (lambda [x y] (*prim+d x y)))

(add 1 1) ;; outputs 2
(add "Hello, " "World!") ;; outputs "Hello, World!"
(add 3.0 2.0) ;; outputs 5.0

Listing 4.4: An example of overloading using the dynamic semantics

Listing 4.5 demonstrates the extensions allowing definition of algebraic

data types. It defines the type Maybe, with the constructors Just, and Nothing.

The constructor Just for the type Maybe accepts an argument of any

type, declared with the type variable a in the declaration of the algebraic data

type (Maybe a) and the constructor (Just [x] [a]). We notice the type checking

for the concrete type of this type variable for the declared variable j.

We define a simple function, hasValue that takes an instance of type

Maybe, and returns a boolean indicating the type of the instance. It uses

instance predicates to check for the specific type constructor.

(data (Maybe a) (Just [x] [a])
(Nothing))

(type hasValue [(Maybe a) boolean])
(define hasValue (lambda [v] (cond

(Just? v) true
(Nothing? v) false)))

(type j (Maybe integer))
(define j (Just 1))

(type n (Maybe a))
(define n (Nothing))

(hasValue (Just 1)) ;; outputs true
(hasValue (Nothing)) ;; outputs false

Listing 4.5: Implementing the type Maybe
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Listing 4.6 defines the operation append on the type List, as a means

to concatenate two lists together. We define a structurally recursive data type

List using an approach similar to Listing 4.5, with the constructors Cons and

Empty. Cons holds an element of the type of the list as the head, a recursive

instance of List as its tail.

The function append accepts a list of any type, and an accumulator to

build the result. The value of the accumulator is Empty in the examples below.

The function first appends the values from the list l1 to the accumulator, and

once it is empty, it appends the values from the list l2.

By the nature of the implementation, this result in the accumulator has

the last value from the list l2 as its “head” – the result is in reverse. The helper

function rev is defined to reverse this result, and return the concatenated list.

(data (List a) (Cons [h t] [a (List a)])
(Empty))

(type rev [(List a) (List a)])
(define rev
(lambda [l a]
(cond (Empty? l) a

(Cons? l) (rev (Cons (Cons-h l) a)))))

(type append [(List a) (List a) (List a)])
(define append
(lambda [l1 l2 acc]
(cond
(*prim-and (Empty? l1) (Empty? l2)) (rev acc (Empty))
(Cons? l1) (append (Cons-t l1) l2 (Cons (Cons-h l1) a))
(Cons? l2) (append l1 (Cons-t l2) (Cons (Cons-h l2) a)))))

(append (Cons 1 (Cons 2 (Empty))) (Cons 3 (Cons 4 (Empty))) (Empty
))

;; outputs (Cons 1 (Cons 2 (Cons 3 (Cons 4 (Empty)))))
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(append (Cons 1.0 (Cons 2.0 (Empty))) (Cons 3.0 (Cons 4.0 (Empty))
) (Empty))

;; outputs (Cons 1.0 (Cons 2.0 (Cons 3.0 (Cons 4.0 (Empty)))))

Listing 4.6: An example of using the overloaded functions with the type List
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Chapter 5

A Semantics for Type Classes

Type classes provide a framework for implementing ad-hoc polymor-

phism by encapsulating overloading behavior in their definition [26]. Instances

of the type classes provide implementation for overloading for any declared

type. With the semantics for overloading defined in Chapter 4, we proceed to

define type classes on top of the dynamic semantics. We utilize the underlying

mechanism for defining instances of overloaded functions at the program level,

using the inst declarations.

5.1 Syntax

We extend the abstract syntax from Chapter 4 to include definition and

instantiation of type classes. Implementing type classes consists of two parts

[26]:

• Declaring the type class. For instance, to overload the methods (+), (*),

and negate, we declare the type class Num, that declares the name and

signatures of the functions to be overloaded. It can be understood as,

“a type belongs to the type class Num if it has the functions (+), (*),

and negate of the appropriate types defined.”
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• Instantiating the type class. The instantiation Num Int can be under-

stood as “declaring these are the definitions of (+), (*), and negate, for

the type Int, the function definitions justify the assertion with appropri-

ate bindings for each function, as required by Num.”

Type Class Tc = typeclass u α (o1 [τ11 . . . τ1m τ ′1]) . . . (on [τn1 . . . τnm τ ′n])

Type Class Instance = typeclass-inst u τ (o1[x11 . . . x1m ] e1) . . . (on[xn1 . . . xnm ] en)

Figure 5.1: Syntax for declaring and instantiating Type Classes

The syntax for type classes follows the two parts described above. The

syntax is summarized in Figure 5.1. A type class declaration Tc defines a type

class with the name u. The type variable α is replaced in function definitions

by the type specified in the instances of the type class. The type class declares

function signatures that the instances must implement with type signatures

[τ1 . . . τn τ ′], where n is the arity of the functions and τ ′ is the co-domain.

The types τ may themselves by type variables α. These declarations have the

name of the overloaded function o, from the set of overloaded variables O.

Type class instances are defined with the typeclass-inst construct. The

datatype D replaces the type variable α in the function type signatures, and

the function definitions justify the types. The instance declaration provides

implementations for the functions declared by the type class. The syntax

presented is a shorthand for defining a λ expression, where [x1 . . . xm] are the

arguments to the function of arity m, and e is the body of the function.
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5.2 Implementation

The implementation of type classes utilizes the constructs from the

dynamic semantics implemented in Chapter 4. In order to translate these

terms, the interpreter implements the following steps:

• A type class declaration creates “default” functions for each function de-

fined in the type class, that would result in an error. This is a translation

to the over construct defined in the dynamic semantics. The type defi-

nition of these functions with the type variables is preserved, to create

function signatures for the overloaded instances.

• Members of a type class instance are translated to an inst declaration.

The two operations specified below help implement this translation:

– Functions on type class instances are defined with a shorthand,

eliminating the need to explicitly declare a λ expression. This ex-

pression is desugared to the λ expression syntax expected by the

semantics.

– In order to specify the full type of the overloaded instance, the

function signature declared as a part of the type class declaration

is revised. The type τ of the type class instance replaces the type

variable α defined in the type class. This revised function signature

is used to create an instance declaration of the form:

inst o [τ1 . . . τn τ ′] (lambda [x1 . . . xn] e).
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5.3 Type Checking

Type classes are used to add constraints to type signatures. To imple-

ment this, we extend the syntax for defining types for declarations by adding

an extra optional parameter for specifying type classes, described below.

(type u τ [(u1 α1) . . . (un αn)])

The type constraints are specified for the type variables in the type

declaration, with type class names and respective type variables. Multiple type

class constraints can be specified on the same type variable, further restricting

the type of the declaration.

Listing 5.1 shows an example of defining type annotations for the func-

tion div using the type classes Num and Eq. The constraint specifies that the

type variable a is restricted to only those types that instantiate both Num and

Eq.

(type div [a a a] [(Num a) (Eq a)])
(define div ...)

Listing 5.1: Type annotations with type classes

Specifying type constraints using type classes also provides a much

more concise way to represent the constraints, as we can avoid having to

specify explicitly the type of each individual overloaded function in use, and

instead group them together with a potentially more understandable name.
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The type checker is modified for handling type constraints on declared

types, with the constraints being passed down with each recursive call for

checking the expressions. When a type class constraint is specified in the type

annotations, the type checker ensures that the type of the expression is no more

general than the type classes, and that it conforms to all type classes specified

in the constraint. These constraints are discussed in detail with examples in

the following section.

5.4 Examples

With the ability to define type classes in place, the language now allows

more expressive type definitions, where related types can be grouped together

with type classes. The type constraints introduced in the type checking allow

for defining concise constraints on functions using the type classes.

We now proceed to create a Prelude environment for the language, and

define the type classes Num, Eq, and Ord, and create instances for these type

classes for the primitive types.

Consider the type class Num in Listing 5.2, defined with the type vari-

able a. The functions (+), (-), (*) have the type signature [a a a], indicating

that the functions accept two arguments of a type that instantiates Num, and

return a value of the same type. Similarly, the function neg accepts one argu-

ment of an instance of Num, and returns a value of the same type.

A type class instance, such as the one for Integer provides definitions
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for these function declarations, with implementations that adhere to the form

defined by the type signatures in the type class. For instance, the function

(+) for the type Integer accepts two arguments, of type Integer, and uses the

primitive add operation to return an Integer value. The operations on the

primitive types are defined as a part of the interpreter implementation Chapter

4. This example is shown in the program fragment in Listing 5.2.

(typeclass Num a
(+ [a a a])
(- [a a a])
(* [a a a])
(neg [a a]))

(typeclass Eq a
(== [a a Boolean])
(!= [a a Boolean]))

(typeclass Ord a
(< [a a Boolean])
(> [a a Boolean])
(<= [a a Boolean])
(>= [a a Boolean]))

(typeclass-inst Num Integer
(+ [x y] (*prim+i x y))
(- [x y] (*prim-i x y))
(* [x y] (*prim*i x y))
(neg [x] (*prim*i -1 x)))

(typeclass-inst Eq Integer
(== [x y] (*prim=i x y))
(!= [x y] (*prim!bool (*prim=i x y))))

(typeclass-inst Ord Integer
(< [x y] (*prim<i x y))
(> [x y] (*prim>i x y))
(<= [x y] (*prim<=i x y))
(>= [x y] (*prim>=i x y)))

(typeclass-inst Num Double
(+ [x y] (*prim+d x y))
(- [x y] (*prim-d x y))
(* [x y] (*prim*d x y))
(neg [x] (*prim*d -1.0 x)))
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. . .

Listing 5.2: An example of type classes defining the Prelude environment

Listing 5.3 defines a sorting program on the List data type we defined

in Listing 4.6. Unlike the sum function, insertionSort can operate only on lists

that contain certain types of elements, namely, those that implement functions

that allow comparison between elements of the type. This is reflected in the

type annotation of the helper function insert, and the function insertionSort.

To implement this, we constrain the type variable a defined in the

function to instances of the type class Ord, defined in Listing 5.2. The function

insert uses the operation <= defined in the type class Ord to compare the

elements. The calls to the function then resolve the <= function based on the

type of the arguments passed, as a part of the function-passing transform.

(data (List a) (Cons [h t] [a (List a)])
(Empty))

(type insert [a (List a) (List a)] [(Ord a)])
(define insert (lambda [x L]

(if (Empty? L)
(Cons x (Empty))
(if (<= x (Cons-h L))

(Cons x L)
(Cons (Cons-h L) (insert x (Cons-t L)))))))

(type insertionSort [(List a) (List a)] [(Ord a)])
(define insertionSort (lambda [xs]

(if (Empty? xs)
(Empty)
(insert (Cons-h xs)

(insertionSort (Cons-t xs))))))

(insertionSort (Cons 3 (Cons 2 (Cons 1 (Empty)))))
;; outputs (Cons 1 (Cons 2 (Cons 3 (Empty))))
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(insertionSort (Cons 3.0 (Cons 2.0 (Cons 1.0 (Empty)))))
;; outputs (Cons 1.0 (Cons 2.0 (Cons 3.0 (Empty))))

Listing 5.3: Implementing sort on Lists

Listing 5.4 defines a “Pair” type that accepts values of any type, defined

with the type variables a and b. It implements the function addPairs to add

the first and second values of two pairs.

The type class constraints are specified as the last argument to the type

declaration construct, restricting both elements of the pair to be of type Num,

defined in Listing 5.2. This allows us to use the + operation on the individual

elements of pairs.

We use record accessors to extract the individual elements of the pairs,

where the field x of type a is type checked under the constraint (Num a), and

the field y of b is type checked under the constraint (Num b).

Finally, we call the function addPairs with pairs of type (Pair Integer Integer)

and (Pair Integer Double), with each call resolving the + function to use an

overloaded instance of appropriate type.

(record Pair [x y] [a b])

(type addPairs [(Pair a b) (Pair a b) (Pair a b)]
[(Num a) (Num b)])

(define addPairs (lambda [p1 p2]
(Pair (+ (Pair-x p1) (Pair-x p2)) (+ (Pair-y p1) (Pair-y p2)))))

(addPairs (Pair 1 2) (Pair 3 4))
;; outputs (data-inst Pair {x 4, y 6})

(addPairs (Pair 1 2.0) (Pair 3 4.0))
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;; outputs (data-inst Pair {x 4, y 6.0})

Listing 5.4: Implementing type checking for a polymorphic function

Listing 5.5 defines a simple recursive function that uses the overloaded

operators defined on the type class Num and Eq. The function accepts three

arguments of the generic type a, that are constrained to those types that

instantiate Num and Eq. This allows us to use the functions -, *, and ==

defined on those type classes for all the values passed to the function.

As noted earlier, since we have not defined type-coercion, which requires

the function to accept default values (zero and one) to use in the definition.

When the function is called, the function-passing transform selects an

appropriate overload when valid arguments are specified.

(type fact [a a a a] [(Num a) (Eq a)])
(define fact
(lambda [x zero one]
(if (== zero x)

one
(* x (fact (- x one) zero one)))))

(fact 5 0 1) ;; outputs 120
(fact 5.0 0.0 1.0) ;; outputs 120.0

Listing 5.5: Recursive polymorphic function with type classes

Listing 5.6 presents a more practical example of using type classes. We

define a structurally recursive definition for polynomials with the algebraic

datatype MPoly. The type contains two cases: one to define constants with

the constructor Const, and the other to define the form a ∗ x + b with the

constructor ProdPlus, where a and b are themselves polynomials.
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We then define the functions addPolynomials and mulPolynomials to de-

fine addition and multiplication on type MPoly. The functions use the helper

functions scale, normalPoly, and mul-var.

Finally, we create an instance of the type class Num with the type

MPoly. This allows us to write programs that use the overloaded functions

like (+) and (-) on polynomials, just like any other instances of the type class

Num.

(data MPoly
(Const [c] [double])
(ProdPlus [p1 x p2] [MPoly string MPoly]))

(define scale (lambda [a p]
(cond (== 0.0 a) (Const 0.0)

(Const? p) (Const (* a (Const-c p)))
(ProdPlus? p) (ProdPlus (scale a (ProdPlus-p1 p))

(ProdPlus-x p)
(scale a (ProdPlus-p2 p))))))

(define normalPoly (lambda [p1 x p2]
(if (*prim-and (Const? p1) (== 0.0 (Const-c p1))) p2

(ProdPlus p1 x p2))))

(define addPolynomials (lambda [p1 p2]
(cond (*prim-and (Const? p1) (Const? p2))

(Const (+ (Const-c p1) (Const-c p2)))
(*prim-and (ProdPlus? p1) (Const? p2))
(ProdPlus (ProdPlus-p1 p1)

(ProdPlus-x p1)
(addPolynomials p2 (ProdPlus-p2 p1)))

(*prim-and (Const? p1) (ProdPlus? p2))
(ProdPlus (ProdPlus-p1 p2)

(ProdPlus-x p2)
(addPolynomials p1 (ProdPlus-p2 p2)))

(*prim-and (ProdPlus? p1) (ProdPlus? p2))
(normalPoly (addPolynomials (ProdPlus-p1 p1)

(ProdPlus-p1 p2))
(ProdPlus-x p1)
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(addPolynomials (ProdPlus-p2 p1) (ProdPlus-p2
p2))))))

(define mul-var (lambda [x p]
(cond (Const? p) (ProdPlus p x (Const 0.0))

(ProdPlus? p) (ProdPlus (mul-var x (ProdPlus-p1 p)) (
ProdPlus-x p) (mul-var x (ProdPlus-p2 p))))))

(define mulPolynomials (lambda [p1 p2]
(cond (Const? p1) (scale (Const-c p1) p2)

(ProdPlus? p1) (addPolynomials
(mulPolynomials (ProdPlus-p1 p1)

(mul-var (ProdPlus-x p1) p2
))

(mulPolynomials (ProdPlus-p2 p1) p2)))))

(typeclass-inst Num MPoly
(+ [p1 p2] (addPolynomials p1 p2))
(- [p1 p2] (addPolynomials p1 (scale -1.0 p2)))
(* [p1 p2] (mulPolynomials p1 p2))
(neg [p] (scale -1.0 p)))

(+ (ProdPlus (Const 1.0) "x" (Const 2.0)) (ProdPlus (Const 1.0) "x
" (Const 2.0)))

;; outputs (data-inst ProdPlus {p1 (data-inst Const {c 2.0}), x x,
p2 (data-inst Const {c 4.0})})

(* (Const 2.0) (ProdPlus (Const 1.0) "x" (Const 2.0)))
;; outputs (data-inst ProdPlus {p1 (data-inst Const {c 2.0}), x x,

p2 (data-inst Const {c 4.0})})

Listing 5.6: Defining polynomials as an instance of Num

5.4.1 Impact of implementing type classes

We have seen several examples of programs using our implementation

of type classes. By extending the System O semantics with type classes, we

notice the following advantages:

• Type classes provide an expressive way to group together related behav-
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ior, which scales well as programs grow, and improves readability of the

code. However, we lose the ability to define overloaded functions inde-

pendent of type classes, which reduces some flexibility in the overloaded

function definitions. To alleviate this limitation, some type class imple-

mentations allow defining functions with the same name in multiple type

classes, as long as the fully qualified names of the functions are different.

In our implementation, we limit defining functions with the same name

in multiple type classes, as we lack a mechanism to define high level

modules.

• By extending the type checker to allow constraints on type variables us-

ing type classes, we can avoid writing lengthy type constraints, and have

a concise and understandable mechanism for defining type signatures.

• Utilizing the System O dynamic semantics to implement type classes has

made the language easier to understand and implement. In developing

the interpreter for this study, this has been of value, as the implemen-

tation remains fairly simple, making it easier to add new features as the

language grows.
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Chapter 6

Additional Optimizations

The function-passing transform implemented in Chapter 4 reduces the

overhead of selecting an overloaded function at run-time, by transforming ex-

pressions during the type checking process. In this chapter, we describe op-

timizations on the function-passing transform that aim to further reduce the

run-time overhead. We modify our interpreter implementation to include these

optimizations, and present several examples to demonstrate their advantages.

6.1 Impact of the function-passing transform

In this section, we look at the code generated by the function-passing

transform, which will help us identify areas of optimization in the transform.

We take another look at the Pair example from Chapter 5, and observe the

transformation of the polymorphic function addPairs. Listing 6.1 redefines the

type and the function.

(record Pair [x y] [a b])

(type addPairs [(Pair a b) (Pair a b) (Pair a b)]
[(Num a) (Num b)])

(define addPairs (lambda [p1 p2]
(Pair (+ (Pair-x p1) (Pair-x p2)) (+ (Pair-y p1) (Pair-y p2)))))

Listing 6.1: Defining the polymorphic function addPairs
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Listing 6.2 shows the transformed expression for the function addPairs.

The function now accepts as arguments two implementations of a + function

as the type Pair is defined on two potentially different type variables, a and b,

specified in the arguments +:a and +:b. The names are generated as a part

of the transformation process, based on the type variables defined by Pair.

The underlying function definition is transformed to use the implementation

of these functions passed as parameters. Note that Listing 6.2 is generated by

commenting out parts of the implementation, as the final implementation of

the interpreter generates optimized code during the transformation.

(define addPairs
(lambda [+:a +:b]
(lambda [p1 p2]
((lambda [+:a +:b]
(Pair (+:a (Pair-x p1) (Pair-x p2))

(+:b (Pair-y p1) (Pair-y p2)))) +:a +:b))))

Listing 6.2: Transformed definition of the polymorphic function

Finally, the calls to the function addPairs provide implementations for

the + function based on the type of the actual arguments passed to the func-

tion. This is demonstrated in Listing 6.3. The functions *+:integer* and

*+:double* are primitive operations defined as a part of the initial environ-

ment in Chapter 4.

(addPairs (Pair 1 2) (Pair 3 4))
;; transforms to ((addPairs *+:integer* *+:integer*) (Pair 1 2)

(Pair 3 4))
;; outputs (data-inst Pair {x 4, y 6})

(addPairs (Pair 1 2.0) (Pair 3 4.0))
;; transforms to ((addPairs *+:integer* *+:double*) (Pair 1 2.0)
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(Pair 3 4.0))
;; outputs (data-inst Pair {x 4, y 6.0})

Listing 6.3: Transformed calls to the polymorphic function

6.2 Optimizing the transform

The function-passing transform significantly reduces the overhead of

resolving overloading at run-time, because it is all done during the type check-

ing process. However, it is possible to optimize the transformation further,

improving the performance and readability of the resulting code. In this sec-

tion, we describe the optimizations we have implemented, and their impact in

improving the performance and readability of the generated code.

6.2.1 Eliminating redundant λ expressions

As mentioned in Chapter 4, and observed in Listing 6.2, the function-

passing transform generates code with redundant λ expressions. This would

result in the interpreter making multiple function calls with the same param-

eter for each expression that requires the overloaded function definitions.

Lambda lowering is the process of moving parts of expressions that do

not depend on the function parameters, out of the function definition [16].

This applies to conditional expressions where some branches may not depend

on the function parameters.

Similar to Lambda lowering, expression lifting is the process of moving

an entire expression out of the λ expression, if it does not depend on the
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parameters [16]. This applies to function application. For the scope of our

interpreter, we apply expression lifting in the context of λ expressions that

accept overloaded function definitions as parameters. We identify expressions

that do not depend on function parameters, then move them out of the function

body, eliminating the need for the λ expressions entirely.

β-reduction is reduction of expressions by function application [3]. The

λ expression is eliminated by substituting the value of the argument for the

parameter in the function’s body.

These procedures optimize the expressions generated by the rule (∀I) to

create λ expressions only for those expressions that use overloaded functions.

This process looks at every expression generated when traversing the code

tree during the transformation, and adds λ expressions only where overloaded

functions are defined, or called.

Listing 6.4 demonstrates the transformation from Listing 6.2 after this

optimization. Here, β-reduction is applied to substitute the λ expression by

applying the arguments +:a and +:b directly. For functions with deeply nested

definitions or multiple recursive calls, this optimization can greatly improve

the quality of the generated code.

(define addPairs
(lambda [+:a +:b]
(lambda [p1 p2]
(Pair (+:a (Pair-x p1) (Pair-x p2))

(+:b (Pair-y p1) (Pair-y p2))))))

Listing 6.4: Transformed expressions with redundant lambdas removed
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6.2.2 Reducing the overhead of function calls

The next optimization involves generating new unique variables for

overloaded function instances with the concrete type parameters specified. The

function definitions are recursively revised to use these parameters directly in

their expressions.

When the type checker encounters an overloaded function being ap-

plied, it identifies the specific overloaded instance to be called, as discussed

in Chapter 4. It then declares a new function at the top-level, whose name is

generated using the function name, and the type of arguments that it is being

invoked with. The function definition then applies the overloaded arguments

to the new name-mangled function.

This ad-hoc monomorphization aims to reduce the overhead of redun-

dant function calls during run-time, and additionally improves the quality of

the code generated.

Adding this optimization makes the language more suited for being im-

plemented in a fully compiled system. Defining these functions would mean

that concrete versions of overloaded functions are generated at compile-time,

instead of the parameters being supplied at run-time, which would consider-

ably improve run-time performance.
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6.2.3 Examples

Listing 6.5 shows two transformed functions, created for calls to the

function addPairs, with arguments of type (Integer, Integer) and (Integer, Double)

respectively.

(define *addPairs*+:integer**+:integer**
(lambda [p1 p2]

(Pair (*+:integer* (Pair-x p1) (Pair-x p2))
(*+:integer* (Pair-y p1) (Pair-y p2)))))

(define *addPairs*+:integer**+:double**
(lambda [p1 p2]

(Pair (*+:integer* (Pair-x p1) (Pair-x p2))
(*+:double* (Pair-y p1) (Pair-y p2)))))

Listing 6.5: Concrete functions generated for addPairs

Finally, the calls to the function addPairs are transformed to use these

newly defined functions directly.

(addPairs (Pair 1 2) (Pair 3 4))
;; transforms to (*addPairs*+:integer**+:integer** (Pair 1 2)

(Pair 3 4))
;; outputs (data-inst Pair {x 4, y 6})

(addPairs (Pair 1 2.0) (Pair 3 4.0))
;; transforms to (*addPairs*+:integer**+:double** (Pair 1 2.0)

(Pair 3 4.0))
;; outputs (data-inst Pair {x 4, y 6.0})

Listing 6.6: Optimized calls to the polymorphic function

In Listing 6.7, we look at the impact of the transformation on the

recursive fact function, defined in Chapter 5.

(type fact [a a a a] [(Num a) (Eq a)])
(define fact
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(lambda [x zero one]
(if (== zero x)

one
(* x (fact (- x one) zero one)))))

Listing 6.7: Recursive polymorphic function with type classes

On transformation, this function definition is transformed into a func-

tion that accepts three arguments, for the functions -, *, and ==, all con-

strained by the type classes Num and Eq, as shown in Listing 6.8.

(define fact
(lambda [*:a ==:a -:a]
(lambda [x zero one]
(if (==:a zero x)

one
(*:a x ((fact *:a ==:a -:a) (-:a x one) zero one))))))

Listing 6.8: Transformed version of the function fact

Finally, calls to this function generate functions appropriate for the

type of arguments passed. We observe this transformation in the recursive

call as well, where the optimized fact function makes a recursive call to the

same optimized version of itself.

;; function call:
(fact 5 0 1)

;; generates the function:
(define *fact**:integer**==:integer**-:integer**
(lambda [x zero one]
(if (*==:integer* zero x)

one
(**:integer* x (*fact**:integer**==:integer**-:integer**

(*-:integer* x one) zero one)))))

;; resulting in the call:
(*fact**:integer**==:integer**-:integer** 5 0 1)
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;; function call:
(fact 5.0 0.0 1.0)

;; generates the function:
(define *fact**:double**==:double**-:double**
(lambda [x zero one]
(if (*==:double* zero x)

one
(**:double* x (*fact**:double**==:double**-:double** (*-:

double* x one) zero one)))))

;; resulting in the call:
(*fact**:double**==:double**-:double** 5.0 0.0 1.0)

Listing 6.9: Calls to the transformed function fact

6.3 Impact of the optimizations

From the examples listed in the above section, we notice that the gen-

erated code is more concise, and reduces the number of run-time operations.

By cleaning up the generated expressions to use λ expressions only

where necessary, the overhead of redundant function calls is reduced, as there

are fewer λ expressions to execute. The generated code also becomes much

more readable, and easier to debug.

Building on the above optimization, by selectively defining functions for

concrete definitions of polymorphic functions, we are further able to reduce the

run-time overhead. The expressions using overloaded functions are completely

converted to expressions that apply functions which have already been defined.

This optimization also makes the language more suited for implemen-
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tation in a fully compiled system, where the monomorphization will generate

concrete versions of overloaded functions at compile-time.

One noticeable side effect of this optimization is namespace pollution.

For the scope of this interpreter, the function names generated are unique

enough to prevent collision.

6.4 Comparing the System O extensions with other im-
plementations

In this section, we implement a Rational type, representing rational

numbers, with numerator and denominator of type Int. We add common

math operations to the type with the goal to use it in programs like one would

use any other numeric type. We use this example to contrast the differences

in implementing this type and related functions in a common programming

language, Java, and in System O. For brevity, we skip some boilerplate and

implementation details, and focus on how type definitions and overloading are

implemented in each example.

In Listing 6.10, we implement the type in Java. The private fields

numerator and denominator represent the numerator and denominator parts of

the rational number. The class implements the functions add, mul, and div on

the type.

The overloaded function meanSquare calculates the mean square of two

input numbers. The function is overloaded to work on values of type double

or Rational.
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class Rational {
private int numerator;
private int denominator;

public Rational(int n, int d) {
// set the private fields

}

public Rational add(Rational c) {
// implementation of add

}

public Rational mul(Rational c) {
// implementation of mul

}

public Rational div(Rational c) {
// implementation of div

}
}

class Main {
public static double meanSquare(double x, double y) {

return ((x * x) + (y * y))/2;
}

public static Rational meanSquare(Rational x, Rational y) {
return x.mul(x).add(y.mul(y)).div(new Rational(2, 1));

}

public static void main(String args[]) {
System.out.println(meanSquare(1.0, 2.0));
System.out.println(meanSquare(new Rational(1, 2), new Rational

(1, 3)));
}

}

Listing 6.10: Rationals in Java

The calls to the function meanSquare are resolved at compile time, with

the compiler using the order, number, and type of the arguments to decide

which overloaded instance to call.
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We notice that operations like add and mul are defined as functions

encapsulated within the class. Any new operations on the type would need

to be added within the class, which may not always be possible if the class is

imported from another package.

In a broader sense, this limits the scope of being able to define poly-

morphic behavior across classes and modules, as it must be declared with the

class definition. One possible solution to this problem is an implementation

like “Extension Methods” in the language C#, that allow augmenting meth-

ods to modules such that they appear to be a part of the same public interface

[4].

In Listing 6.11, we rewrite the Rationals example in System O. We

define the type constructor Rational, accepting two values of type Int for the

numerator and denominator. The functions add, mul, and div are assumed to

be overloaded and implemented for primitive types. We overload them here

to accept arguments of Rational type.

The function meanSquare is defined using the overloaded definitions of

add, div, and square, as denoted in the type annotation. The function accepts

an additional parameter, z, as the divisor. Since overloaded functions need to

vary in the type of the first argument, we cannot define an overloaded function

of the form fromInteger :: Integer → a to eliminate the need for an additional

parameter.

data Rational = Rational Int Int
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inst add :: Rational -> Rational -> Rational
-- function implementation here

inst mul :: Rational -> Rational -> Rational
-- function implementation here

inst div :: Rational -> Rational -> Rational
-- function implementation here

meanSquare :: (add :: a -> a -> a,
div :: a -> a -> a,
mul :: a -> a -> a) -> a -> a -> a -> a

meanSquare x y z = div (add (mul x x) (mul y y)) z

Listing 6.11: Rationals in System O

As discussed in Chapter 3, System O allows defining overloaded func-

tions independent of a grouping, which can impact the readability and main-

tainability of code as the size of the program grows. We also notice the tedious

type signature for the function meanSquare arising from the need to list the

overloaded functions used in the type annotation.

Finally, in Listing 6.12, we implement the function meanSquare using

the extensions that we have defined on top of System O. The program reuses

the definitions for the type class Num, and the functions + and ∗ from Listings

5.2 and 5.6. We assume that the type class Fractional has been defined with

the method /, and that the primitive type Double instantiates this class to

provide an implementation for division.

This results in the function squareSum being simply restricted in its

signature by the type classes Num and Fractional, as specified in the type

annotation. The definition of the function uses the functions + and / imple-

mented by instances of the type classes Num and Fractional. Like in the System
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O implementation, an extra parameter z has to be supplied to the function to

specify the divisor.

(record Rational [numerator denominator] [Int Int])

(typeclass-inst Num Rational
(+ [x y] ;; implementation of +)
(- [x y] ;; implementation of -)
(* [x y] ;; implementation of *)
(neg [x] ;; implementation of neg))

(typeclass-inst Fractional Rational
(/ [x y] ;; implementation of /))

(type meanSquare [a a a a] [(Num a) (Fractional a)])
(define meanSquare

(lambda [x y z]
(/ (+ (* x x) (* x y)) z)))

Listing 6.12: Rationals in extended System O

From the simple examples above, we notice that the code written using

the extended System O has the following advantages over the other examples:

• The ability to define type classes elegantly solves the problem with code

littering and the restrictions of class inheritance seen in Listing 6.10.

• The type annotations on functions are much more concise, when com-

pared to Listing 6.11. They make the code easier to understand and

extend as requirements may grow.

• Common programming language constructs like algebraic data types al-

low programmers to express types with lesser boilerplate.

75



Further, extending System O with the type class construct allows us to

utilize the underlying dynamic semantics, which makes the language easier to

understand and implement. In implementing the interpreter for this study, this

has been of great value, as the implementation remains fairly simple despite

having many constructs used in common programming languages.

An alternative approach to implementing type classes would be to al-

low the ability to provide aliases to groups of functions. This would be an

intermediate approach between the System O programming language and our

extensions, providing more flexibility while solving the problem of lengthy type

annotations.

However, by defining type classes, we lose the flexibility provided by

System O in defining overloaded instances with any type, independent of a

grouping. We are also restricted by the limitation that overloaded functions

should differ in the type of the first argument, which limits us from defining

some common type classes like Parser and Monad, which is a limitation beyond

the scope of our implementation. As a workaround, we can define specific

functions on types for operations that would otherwise be defined via type class

instances. This approach resembles the implementation of certain common

type class functions in Elm [10], a functional programming language for web

applications that does not support type classes. Though suitable for one-off

cases, this approach can affect the readability of programs, as we lose the

mechanism to group together related functions, and a more rigid solution is

desirable.
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Chapter 7

Conclusion and Future Work

We have presented modest extensions to System O, that utilize dynamic

semantics to implement a type class-based approach to ad-hoc polymorphism.

By adding static type checking and a subsequent transform, we are able to

eliminate the run-time overhead of ad-hoc polymorphism. We have developed

an interpreter in Clojure, implementing all the semantics, extensions, and

optimizations discussed in this study.

The programming language we have developed in this study extends

System O with the goal to make the language more suited to practical ap-

plications. We show several examples using this language that demonstrate

real-world programming scenarios.

Of the extensions we have added to System O, the ability to define and

instantiate type classes allows programmers to write programs more expres-

sively, with the ability to specify concise function constraints. Building the

type classes on top of the dynamic semantics allows us to retain the theoretical

results demonstrated by System O.

We also introduced several optimizations to the function-passing trans-

form defined by System O. These optimizations reduce the overhead of redun-
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dant function calls at run-time and also simplify the generated code.

7.1 Future Work

A desirable feature to add to this programming language would be

subtyping. It would allow for more fine-grained declaration of overloading

behavior across type hierarchies, and help us utilize the dynamic semantics to

its full extent.

A system like the one we have developed would also benefit from being

applied in a compiled language like ALTO [2]. This would help to fully utilize

the performance optimizations implemented in this study.
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