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Abstract 

 

The adoption of electricity generation from renewable sources, as well as the push for a speedy 

electrification of sectors such as transportation and buildings, makes peak electric load 

management an essential aspect to ensure the electric grid’s reliability and safety. Utilities have 

established peak load charges that can amount to up to 70% of electricity costs to transfer the 

financial burden of managing these loads to the consumers. These pricing schemes have created a 

need for efficient peak electric load management strategies that consumers can implement in order 

to reduce the financial impact of this type of load. Research has shown that the impact of peak load 

charges can be reduced by acting on the intelligence provided by peak electric load days (PELDs) 

forecasts. Unfortunately, published PELDs forecasting methodologies have not addressed the 

increasing number of facilities adopting behind the meter renewable electricity generation. The 

presence of this type of intermittent generation adds substantial complexity and other challenges 

to the PELDs forecasting process. 

 

The work reported in this dissertation is organized in terms of its three main contributions to the 

body of knowledge and to society. First, the development and testing of a first of its kind PELDs 

forecasting methodology able to accurately predict upcoming PELDs for a consumer regardless of 

the presence or absence of renewable electricity generation. Experimental results showed that 93% 

and 90% of potential savings (approximately US$ 142,129.01 and US$ 123,100.74) could be 

achieved by a consumer with and a consumer without behind the meter solar generation 

respectively. The second contribution is the development and testing of a novel methodology that 

allows virtually any type of consumer to determine an efficient electricity demand threshold value 

before the start of a billing period. This threshold value allows consumers to proactively trigger 

demand response actions and reduce peak demand charges without receiving any type of signal or 

information from the utility. Experimental results showed 65% to 82% of total potential demand 

charge reductions achieved during a year for three different consumers: residential, industrial, and 

educational with solar generation. These results translate to US$ 149.09, US$ 23,290.00, and US$ 

107,610.00 in demand charges savings a year respectively. As a third contribution, we present 

experimental results that show how the implementation of machine learning based ensemble 

classification techniques improves the PELDs forecasting methodology’s performance beyond 

previously published ensemble techniques for three different consumers. 
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Chapter 1: Introduction 

 

This first chapter is divided into eight sections that will serve to introduce the reader into the 

research motivation, the problem statement, and the societal context surrounding this dissertation. 

A brief state of the art summary will be provided covering topics such as the worldwide impact of 

electricity consumption, peak electric loads, peak electric load days, and behind the meter 

renewable electricity generation adoption. The chapter will conclude with a description of the 

research questions and dissertation objectives to be addressed, and a summary of the methodology.  

 

1.1 Research Motivation 

The constant evolution of the electric grid with the integration of generation from renewable 

sources and “smart” components makes peak electric load management an essential aspect to 

ensure the grid’s reliability and safety. In order to pass the financial burden of managing these 

loads on to the consumers, utilities around the world have established peak load charges that can 

amount to up to 70% of electricity costs in the case of the United States of America (Xu et al., 

2019; Zhang and Augenbroe, 2018; McLaren et al., 2017). These pricing schemes have created a 

need for efficient electric load management strategies that consumers can implement in order to 

reduce the financial impact of peak electric loads. 
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1.2 Worldwide Impact of Electricity Consumption 

Commercial and residential facilities require a significant amount of energy and contribute a 

considerable amount of greenhouse gas emissions worldwide. International and domestic agencies 

that focus on energy related statistics include a distinct category to report the energy consumed by 

commercial and residential buildings. This practice is a testament to the significant impact of these 

consumers’ energy usage. The International Energy Agency reported that buildings were 

responsible for 28% of global energy-related CO2 emissions in 2018 (IEA, 2019). The United 

States’ Energy Information Administration reported that the residential and commercial sectors 

represented 39% of the total energy consumption in the United States of America (USA) during 

2019 including losses (USEIA, 2020). During 2018, sustained ongoing efforts to decarbonize 

energy generation worldwide increased the share of renewable energy in global power capacity to 

33% (REN21, 2019). However, the increase in building electricity consumption was five-times 

faster than the improvements in the carbon intensity of the power sector during the 2000-2018 

period (IEA, 2019). Given buildings’ significant energy requirements and contributions to 

greenhouse gas emissions, it is imperative that research efforts continue to focus on ways to 

increase buildings’ energy efficiency in order to reduce their energy related costs. 

 

1.3 Peak Electric Loads 

Many commercial and residential buildings are billed under dynamic pricing schemes that can 

include peak demand charges (Dutta and Mitra, 2017; McLaren et al., 2017; Hledik, 2014). Peak 

load charges are typically based on the highest electric load (measured in kilowatts (kWs)) 

observed during a billing period, typically a month, and are charged in $/kW (McLaren et al., 2017; 
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Hledik, 2014). These peak load charges can amount to up to 70% of an electric bill in the USA 

(Xu et al., 2019; Zhang and Augenbroe, 2018; McLaren et al., 2017). However, the number of 

days in a month contributing to peak load charges is typically very small. Figure 1 illustrates real 

electric load data for an educational consumer in the USA during the month of April 2019. Figure 

1 clearly shows that April 8th, 12th and 18th have significantly higher load levels than the other days 

of the month. If these peak load days are forecasted ahead of time, demand response actions could 

be executed to mitigate the electric load during these specific days and reduce the peak load 

charges described earlier. The lead-time provided by these peak electric load days (PELDs) 

forecasts is very important because some demand response actions require several hours either to 

be executed, to show results, or both. 

 

Fig. 1. Electric load for a circuit during April 2019. 

  

1.4 Peak Electric Load Days 

Most of the published research on electric load forecasting focuses on generating accurate electric 

load forecasts for both utilities and consumers, but there is limited research on the application of 

these forecasts to avoid the peak load charges described earlier. Saxena et al. (2019) noted that 
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studies focusing on forecasting a billing period’s peak electric load days (PELDs) in order to 

trigger demand response actions to reduce peak load charges are scarce. These authors reviewed 

how machine learning based models have been used to develop forecasting methodologies for 

next-day building electric load and peak load. However, being able to predict the next day’s 

electric load does not provide actionable intelligence to determine if the next day will contribute 

to peak load charges for the billing period. Saxena et al. developed an ensemble machine-learning 

model focused specifically on predicting if the next day will be a peak electric load day for a billing 

period. Saxena et al. tested their model using data from an educational consumer; the ensemble 

model predicted 70% of actual peak electric load days and revealed potential savings in the 

neighborhood of US $80,000 after a yearlong testing period. The testing phase was limited to one 

out of four total distribution circuits at the campus.  

 

As Saxena et al.’s methodology was being prepared for implementation by the educational 

consumer, the campus’ electricity infrastructure was combined into just two main distribution 

circuits. Each of these main circuits now included a solar field designed to provide up to 2 

megawatts (MW) of behind the meter renewable electricity generation (BTMREG). Even though 

the Saxena et al. methodology had been validated for an electrical circuit without BTMREG at an 

educational consumer’s campus, the methodology had not been tested for circuits with BTMREG. 

 

 

 



A Customer Agnostic Machine Learning Based Peak Electric Load Days Forecasting Methodology for Consumers With and Without Renewable Electricity Generation 

Page 19 of 173 

1.5 Impact of Behind the Meter Renewable Electricity Generation Adoption 

Researchers had already noted that renewable electricity generation (REG) output is as variable as 

weather itself (Staffell and Pfenninger, 2018; Chaiamarit and Nuchprayoon, 2014). Aponte and 

McConky (2019) documented how behind the meter renewable electricity generation (BTMREG) 

output could represent a challenge for the accuracy of current peak electric load days (PELDs) 

forecasting methodologies. REG output can fluctuate for periods ranging from minutes to hours to 

multiple days (Staffell and Pfenninger, 2018). This characteristic of REG challenges the accuracy 

of both electric load forecasts (Tushar et al., 2018) and peak electric load days forecasts (Aponte 

and McConky, 2019). 

 

1.6 Problem Statement and Societal Context 

Mismanaged peak electric loads are not only a threat to the electric grid’s reliability and safety; 

they can also cause unplanned increases in electricity costs for consumers, and negatively affect 

the environment. Even though efforts to decarbonize the electric sector have been increasing 

significantly worldwide, electricity consumption has increased at a more accelerated pace. The 

amount of commercial and residential electricity consumers adopting some type of REG 

worldwide has been increasing year after year. Utilities worldwide pass the financial burden of 

managing peak electric loads on to the consumers through dynamic pricing schemes. Some of 

these schemes include peak load charges that can amount to up to 70% of electricity costs in the 

USA. Given this market reality, efficient electric load management strategies become even more 

important for consumers to reduce the significant financial impact of peak electric loads. 

Additionally, these strategies need to be applicable not only to consumers without behind the meter 
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renewable electricity generation (BTMREG) but also to the increasing number of consumers 

adopting BTMREG worldwide.   

 

1.7 Research Questions and Dissertation Objectives 

The main objective of this dissertation is inspired by the thorough study of the state of the art that 

will be detailed in Chapter 2 of this manuscript, as well as by the problem and societal context 

previously described in Section 1.6. The main objective is to provide electricity consumers with 

and without behind the meter renewable electricity generation (BTMREG), with accurate and 

accessible machine learning based peak electric load days (PELDs) forecasting techniques able to 

help them react in order to reduce the significant financial impact of peak electric loads. Three 

research questions related to the use of PELDs forecasting techniques are addressed throughout 

this dissertation in order to achieve the main objective: 

1. Can threshold based and/or classification based forecasting methodologies accurately 

forecast more than 70% of a year’s peak electric load days for consumers with behind the 

meter renewable electricity generation using autoregressive integrated moving average 

(ARIMA), classification and regression trees (CART), random classification and 

regression forest, and artificial neural network (ANN) based machine learning techniques? 

 

Even though there is an abundance of published work related to future load 

forecasting methodologies, published research detailing PELDs forecasting 

methodologies based on accessible ARIMA, CART, and ANN based techniques 

applicable to the increasing number of facilities adopting BTMREG is very limited. 
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Furthermore, published studies comparing the performance of PELDs forecasting 

methodologies with and without BTMREG while providing insights into the 

impacts of BTMREG adoption on forecasting strategies are not available. 

 

2. Can regression tree and random regression forest based machine learning models 

outperform widely used expert based and arithmetic based methodologies at forecasting an 

efficient electricity demand threshold value for triggering cost saving peak demand shaving 

actions, before the start of a billing period, and without receiving any signal or information 

from the utility? 

 

Threshold-based peak electric load classification is one of the approaches for 

electric load classification currently available in the published literature (Saxena et 

al., 2019). The vast majority of the published methodologies on peak demand 

shaving and other demand response actions has focused on the consumer reacting 

to signals or information coming from the utility. Electric load forecasting 

techniques that rely on the use of machine learning based models have been widely 

used in the published literature to forecast future electric load values. However, this 

work will be the first to use these techniques to empower consumers under demand 

charges to proactively determine an appropriate electricity demand threshold value 

in order to trigger peak demand shaving and other demand response actions even 

without receiving any signal or information from the utility. 
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3. Can classification tree, random classification forest, adaptive boosting (AdaBoost), and 

artificial neural network (ANN) based ensemble modeling techniques outperform majority 

based and single-vote based ensemble modeling techniques at forecasting peak electric 

load days (PELDs)? 

 

At present, a published methodology for forecasting PELDs for consumers without 

BTMREG produced the best results by using a majority-classifier based ensemble 

approach (Saxena et al., 2019). However, this ensemble approach has not been 

contrasted with machine learning based alternatives in order to ensure that the 

consumers are indeed achieving the best possible results.  
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Chapter 2: State of the Art 

 

This second chapter is divided into ten sections that will allow the reader to take a deep dive into 

the state of the art of electric load forecasting, peak electric load forecasting, electricity demand 

threshold forecasting, ensemble peak electric load days forecasting, and the most relevant models 

to be discussed within this dissertation. The initial sections (2.1 to 2.4) will be dedicated to 

presenting the most important contributions found during an extensive review of the published 

literature relevant to the different forecasting tasks to be discussed within this dissertation. Five 

sections (2.5 to 2.9) will be dedicated to tracing the origins, mathematical foundations, and 

characteristics of each of the four key models that will be used to develop the methodology 

described within this dissertation. The chapter will conclude with a brief and all encompassing 

summary of the state of the art relevant to the topics discussed within this dissertation.  

 

2.1 Electric Load Forecasting 

Future electric load forecasts have been a core activity for utilities since the electricity industry 

began in the late 1800’s (Hong, 2014). Utilities rely on electric load forecasts to plan their supply 

and generating capacities (Dutta and Mitra, 2017; Hong and Fan, 2016; Alfares and Mohammad, 

2002), to inform revenue projections, rate design, energy trading, and more (Hong and Fan, 2016). 

The capacity of electric utilities to ensure a reliable service to their clients depends heavily on 

these demand forecasts. Electric load forecasting methods have been extensively researched over 

the past few decades. The literature provides an ample range of studies featuring various 



A Customer Agnostic Machine Learning Based Peak Electric Load Days Forecasting Methodology for Consumers With and Without Renewable Electricity Generation 

Page 24 of 173 

methodologies and models for this purpose (Yildiz et al., 2017; Hong and Fan, 2016; Garulli et 

al., 2015; Alfares and Mohammad, 2002).  

 

Alfares and Mohammad (2002) conducted a review of more than 100 works published between 

the comprehensive review by Moghram and Rahman (1989) and February 2000. Alfares and 

Mohammad classified the published methodologies into the first nine categories shown in Table 

1. The researchers also provided a brief description along with the advantages and disadvantages 

identified for each category. The authors observed what they described as a clear trend towards 

new, stochastic, and dynamic forecasting techniques. Fuzzy logic, expert systems and artificial 

neural network (ANN) were specific techniques highlighted by the authors. They also highlighted 

a trend towards hybrid methods that combine two or more techniques.  
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Table 1 

Categorization of techniques found in electric load forecasting literature reviews. 

Category Alfares and 

Mohammad 

(2002) 

Hong and 

Fan 

(2016) 

Yildiz  

et al.  

(2017) 

1) Regression models 

(Including Semi-Parametric Additive 

Models) 

X X X 

2) Exponential smoothing X X   

3) Iterative reweighted least-squares X     

4) Adaptive load forecasting X     

5) Stochastic time series X     

6) Autoregressive moving average with 

external variables models based on genetic 

algorithms 

(Including other autoregressive models) 

X X X 

7) Fuzzy logic X X   

8) Artificial neural network (ANN) X X X 

9) Knowledge-based expert systems X     

10) Support vector regression and machine 

(SVRM) 

  X X 

11) Gradient boosting machine   X   

12) Thermal models     X 

13) Classification and regression trees 

(CART) 

    X 

 

Hong and Fan (2016) published a tutorial review based on more than 25 representative load 

forecasting papers (13 of which were literature review papers) published between the work by 

Abu-El-Magd and Sinha (1982) and November 2015. The techniques evaluated by the authors are 
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included within the categories specified in Table 1. One of the authors’ conclusions was that a 

universally best load forecasting technique does not exist. Hong and Fan concluded that the data 

and jurisdictions are the factors that determine the appropriate technique and not the other way 

around. 

 

Yildiz et al. (2017) reviewed more than 50 commercial building load forecasting works published 

between 1984 and March 2016 and identified the techniques within the categories specified in 

Table 1. The authors concluded that the machine learning models reviewed (ANN, support vector 

regression machine (SVRM), and classification and regression tree (CART) based) had a superior 

forecasting performance than the regression models included in the review. Forecasting daily peak 

electric load proved to be a more difficult task than forecasting day ahead hourly electric load for 

Yildiz et al. Kim and Kim (2019) performed a study comparing the performance of more than 10 

models (including ARIMA, Holt-Winters exponential smoothing, and ANN) at forecasting peak 

electricity demand for buildings at the Chung-Ang University campus in Seoul, South Korea. The 

researchers concluded that all models performed similarly when forecasting 1 hour ahead, but the 

nonlinear autoregressive network with exogenous inputs (NARX) model outperformed the rest of 

the models at complete day ahead forecasts. The wide range of electric load forecasting 

methodologies and techniques currently found in the literature can be simplified into a general 

approach. This general approach entails the estimation of a load model from past data, and then 

using this model to predict future loads (Garulli et al., 2015). 

Deep learning methods using Long Short Term Memory (LSTM) sequential models and 

Convolutional Neural Networks (CNN) have been used successfully to address building level 



A Customer Agnostic Machine Learning Based Peak Electric Load Days Forecasting Methodology for Consumers With and Without Renewable Electricity Generation 

Page 27 of 173 

electricity demand forecasts. Gao et al. (2019) presented a deep learning methodology using LSTM 

with an attention layer that achieved a better MAPE than just using LSTM at predicting electricity 

demand for an office building in Qingdao, China. Khan et al. (2020) developed a hybrid model 

based on CNNs and LSTM models. The researchers showed how the proposed hybrid model 

outperformed other state-of-the-art models at forecasting electricity consumption for both 

residential and commercial scenarios. One drawback of deep learning methodologies is the 

expertise required to implement them. A consistent conclusion among the researchers is that there 

is no one best performing model for all types of facilities. 

 

2.2 Peak Electric Load Days Forecasting 

Most of the published research on electric load forecasting focuses on generating accurate electric 

load forecasts for both utilities and consumers, but there is limited research on the application of 

these forecasts to avoid the peak load charges described earlier in Section 1.3. Saxena et al. (2019) 

noted that studies focusing on forecasting a billing period’s peak electric load days (PELDs) in 

order to trigger demand response actions to reduce peak load charges are scarce. These authors 

reviewed how autoregressive integrated moving average (ARIMA), support vector regression 

machine (SVRM), classification and regression trees (CART), artificial neural network (ANN), 

and multivariate adaptive regression splines (MARS) based models, among others, have been used 

to develop forecasting models for next-day building electric load and peak load. However, being 

able to predict the next day’s electric load does not provide actionable intelligence to determine if 

the next day will contribute to peak load charges for the billing period. 
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Saxena et al. (2019) developed an ensemble machine-learning model focused specifically on 

predicting if the next day will be a PELD for a billing period. Saxena et al. tested their model using 

data from an educational consumer; the ensemble model predicted 70% of actual PELDs and 

revealed potential savings in the neighborhood of USD$80,000 after a yearlong testing period. 

This work provided evidence of how consumers could potentially reduce peak load charges by 

executing demand response actions based on the results of PELDs forecasting efforts.  

 

As Saxena et al.’s (2019) methodology was being prepared for implementation at the educational 

consumer’s campus; the campus’ electricity infrastructure underwent a reconfiguration. The 

campus’ electricity infrastructure was divided into two main circuits. Each of these main circuits 

now included a solar field designed to provide up to 2 megawatts (MW) of behind the meter 

renewable electricity generation (BTMREG). Even though Saxena et al.’s methodology had been 

validated for an electrical circuit without BTMREG at an educational consumer’s campus, the 

methodology had not been tested for circuits with BTMREG able to make up for as much at 25% 

of the electric load. 

 

Researchers had already noted that renewable electricity generation (REG) output is as variable as 

weather itself (Staffell and Pfenninger, 2018; Chaiamarit and Nuchprayoon, 2014). Aponte and 

McConky (2019) documented how REG output could represent a challenge for the accuracy of 

current PELDs forecasting methodologies. These findings will be described later in this section. 

REG output can fluctuate for periods ranging from minutes to hours to multiple days (Staffell and 

Pfenninger, 2018). Figure 2 illustrates the intermittency of solar-based REG at the educational 
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consumer’s campus for three non-consecutive days, each day with different predominant weather 

from 6:00 AM to 6:00 PM.  

 

Fig. 2. Solar Generation during three days with different weather  

from 6:00 AM to 6:00 PM in 2019. 

 

This intermittency of REG challenges the accuracy of both electric load forecasts (Tushar et al., 

2018) and PELDs forecasts (Aponte and McConky, 2019). Chaiamarit and Nuchprayoon (2014) 

demonstrated that REG affects electric load characteristics and net demand. Net demand is defined 

as the result of subtracting the electricity generated behind the meter (on the consumer’s side) from 

the total load required by the consumer. From this point on, whenever the term net demand is used, 

it will be referring to a scenario with BTMREG; and whenever the term demand is used, it will be 

referring to a scenario without BTMREG. 

 

Aponte and McConky (2019) performed a data-driven analysis of a yearlong electric load and solar 

generation data for an educational consumer that highlighted five main findings. First, as expected 

the load values for the net demand scenario were lower than the load values for the demand 

scenario when the BTMREG was active. Second, the peak loads observed when BTMREG was 



A Customer Agnostic Machine Learning Based Peak Electric Load Days Forecasting Methodology for Consumers With and Without Renewable Electricity Generation 

Page 30 of 173 

present, happened during the hours when the BTMREG was either low or inactive and normal 

operations were still ongoing at the facilities. Third, as a direct consequence of the previous 

finding, demand response strategies need to be reevaluated to ensure that demand response actions 

can be performed during the new times with high concentration of peak loads. 

  

Fourth, the number of PELDs during a month changed with the adoption of BTMREG. 

Consequently, the number of days during which demand response actions needed to be executed 

also changed with the adoption of BTMREG. Fifth, the adoption of BTMREG also changed the 

potential savings after executing demand response actions. The study concluded that new demand 

response strategies have to be developed as soon as facilities adopt BTMREG in order to ensure 

maximum reduction of peak demand charges. 

 

A preliminary analysis of the electric load and solar generation data from an educational 

consumer’s campus revealed that the presence of BTMREG increases the hour-to-hour net demand 

variability substantially. This net demand profile is the most important component of a consumer’s 

electricity cost. Figure 3 illustrates the difference between the electric load to be forecasted when 

BTMREG is present (net demand) and the electric load to be forecasted in its absence (demand) 

for May 9th, 10th, and 11th, 2019. 
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Fig. 3. Demand, net demand, and solar generation during May 9th-11th, 2019. 

 

Figure 4(a) provides a closer view of May 9th 2019 as a sample case. This figure includes a 

smoothed load curve using a 2 points (One-Hour) moving average along with the corresponding 

Mean Absolute Percentage Deviation (MAPD) calculated according to Equation 1. 

𝑀𝐴𝑃𝐷 = (
1

𝑛
∑

|𝐴𝑐𝑡𝑢𝑎𝑙𝑖−𝑆𝑚𝑜𝑜𝑡ℎ𝑒𝑑 𝑉𝑎𝑙𝑢𝑒𝑖|

|𝐴𝑐𝑡𝑢𝑎𝑙𝑖|
𝑛
𝑖=1 ) × 100                    (1) 

The higher MAPD value (2.2519 vs 1.3518) along with the noticeably worse fit illustrates how net 

demand exhibits a higher variability than demand. Figure 4(b) further supports this claim by 

illustrating how the hourly standard deviation tends to be higher for net demand during most of 

the hours with active BTMREG (6-19). In the absence of BTMREG, the load profile can be 

predicted using the consumer’s past electric load data, weather and operations data, along with 

some minor influence from other factors. With the introduction of BTMREG, the influence of 

highly variable and difficult to predict weather conditions in the load profile is anticipated to make 

the forecasting process significantly more challenging. These initial findings, along with those 

documented by Aponte and McConky (2019), motivated a search for published research detailing 
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accurate PELDs forecasting methodologies for facilities with BTMREG that revealed a lack of 

published literature on the topic. 

 

Fig. 4. (a) Demand, net demand, moving average and  

(b) hourly standard deviation during May 9th, 2019. 

 

2.3 Electricity Demand Threshold Value Forecasting 

Some utilities provide signals to consumers in order to influence their consumption behavior by 

letting the consumer know when the electricity prices might be high because of peak demand 

(Dutta and Mitra, 2017). The expectation is that the consumer will respond to these signals by 

avoiding the use of non-essential loads thus contributing to a system-wide demand level reduction. 

However, in many pricing schemes that include peak load charges such as the one we described in 

Figure 1, these charges are determined at the end of the billing period. The consumer does not 

receive any signal from the utility during the billing period, and there is nothing that the consumer 

can do after the end of the billing period to avoid these charges. Therefore, it is up to these 

consumers to set their own signal, or electricity demand threshold, at the beginning of each month 

so that they can proactively trigger demand response actions and significantly reduce their peak 

load charges. 
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Figure 5 shows a consumer’s demand profile for a billing period. Three days, 8, 12, and 18, can 

be identified as the days with the highest, or peak, electricity demand. At the end of the billing 

period, this consumer will be charged for the peak demand level represented by the red arrow. 

However, if the consumer proactively triggers demand response actions such as peak demand 

shaving during all of the days with peak consumption, and these actions effectively reduce the load 

to a more “normal” level such as the one represented by the blue arrow, then the consumer can 

avoid a significant amount of demand charges.   

 

Fig. 5. Example of peak demand shaving. 

 

The process of establishing an efficient electricity demand threshold right before the start of a 

billing period to proactively trigger cost saving demand response actions is challenging. For 

starters, the typical consumer does not have any information in regards to how his load profile will 

look during the upcoming billing period in order to determine what a “normal” demand level can 

look like. If the threshold is set higher than the optimal level, then the consumer will not be able 

to achieve all of the potential savings as illustrated by the red box with the solid outline in Figure 

6(b). Alternatively, if the threshold is set below the optimal level, then the consumer could find 

himself in a situation where the number of demand response events necessary during the billing 
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period will increase as well as user inconvenience. This scenario is illustrated in Figure 7 where 

the greater number of red boxes with dashed outlines in Figure 7(b) shows an increased number 

of demand response events needed. There is definitely the potential to achieve more savings under 

this scenario as illustrated by the red box with the solid outline in Figure 7(b). However, the 

additional savings might not be enough to offset the increased number of demand response events 

required and the user inconvenience that these events often produce. 

 

Fig. 6. Comparison between (a) an optimal threshold and (b) a higher than optimal threshold. 

 

 

Fig. 7. Comparison between (a) an optimal threshold and (b) a lower than optimal threshold. 

Researchers have placed significant emphasis on methodologies that focus on consumers reacting 

to time-based rate differentiation and price signals coming from the utility (Ganesan et al., 2022; 

Silva et al., 2020; Almahmoud et al., 2019; Li et al., 2018; Asadinejad & Tomsovic, 2017; Park et 
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al., 2017; Siano, 2014). However, little attention has been paid to methodologies that would allow 

consumers under demand charges to proactively determine an appropriate electricity demand 

threshold value in order to trigger peak demand shaving and other demand response actions. As 

we mentioned earlier, peak demand shaving and other demand response actions are designed to 

minimize demand charges. However, these same actions often generate undesired inconvenience 

to users, such as sub optimal thermostat settings (Pi et al., 2021). The work of Saxena et al. (2019) 

detailed how both the demand charges and the need to perform demand response actions were 

minimized by performing these actions only when demand reached a set threshold. 

 

Most of the published work on peak demand shaving and demand response actions on the 

consumer side focuses on scheduling algorithms that minimize the electric bill based on signals or 

information previously provided by the utility. Park et al. (2018) proposed a residential demand 

response methodology that achieved electricity cost reductions in the order of 10% while 

considering the user inconvenience. Asadinejad et al. (2017) developed a novel optimization 

model to determine an adequate threshold value to trigger incentive-based demand response 

actions. The model achieved monthly electricity costs savings of up to 10% for consumers and 

revenue increases of up to 50% for utilities when evaluated using utility level data collected from 

California, USA. Later on, Xu et al. (2019) developed an adaptive optimal monthly peak demand 

limiting strategy combining probabilistic demand profiles, weather forecasts, electricity charge 

tariffs, and measured electricity demand. The strategy successfully reduced the monthly peak 

demand and achieved considerable monthly net cost savings for an educational building in Hong 

Kong, China, by establishing adaptive optimal monthly thresholds. In addition, Pi et al. (2021) 

critically reviewed 15 published methodologies on peak demand shaving and 19 published 
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methodologies on demand response. User satisfaction was identified in this work as a key element 

of successful demand response programs that has only been evaluated by a handful of studies. 

 

2.4 Ensemble Peak Electric Load Days Forecasting 

Alfares and Mohammad (2002) identified a trend in load forecasting research towards ensemble 

methods that combine two or more techniques. These authors reviewed more than 100 works about 

load forecasting published between a comprehensive review by Moghram and Rahman (1989) and 

February 2000. By 2014, research had shown that ensemble machine learning models often 

outperform the individual models that make them up (Fan et al., 2014). These models tend to 

deliver better generalization performance by integrating a number of base models to generate a 

final output. This integration can compensate for the individual imperfections of the base models. 

Fan et al. (2014) applied ensemble modeling to developed next-day energy consumption and peak 

power demand forecasts that achieved mean absolute percentage errors (MAPE) of 2.32% and 

2.85% respectively for a building in Hong Kong, China. These results were better than the results 

of any of the eight individual models used to build the ensembles. Jingrui Xie’s winning solution 

to the probabilistic load forecasting track of the Global Energy Forecasting Competition 2014 

incorporated the use of simple arithmetic averaging to combine individual forecasts in order to 

enhance the accuracy of the final forecast (Xie and Hong, 2016). 

 

Liu et al. (2017) applied quantile regression to produce probabilistic load forecasts based on an 

ensemble of point load forecasts. The results of the ensemble model showed higher levels of 
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accuracy than those of the individual models based on several probabilistic scores. Li et al. (2018) 

developed an ensemble approach based on support vector regression (SVR) models to forecast 

short-term electric load. Li et al’s approach was tested with utility level data from the Jiangxi 

Province in China and data from New South Wales Electric Utility in the United Kingdom. In both 

scenarios, the approach outperformed all of the non-SVR based models while achieving either 

better or similar results to those achieved by pure SVR based models. Lee et al. (2019) proposed 

a day-ahead electric load forecasting approach for a residential building using a stacking ensemble 

learning methodology. Lee et al.’s approach outperformed single models based on multiple linear 

regression, artificial neural network, and support vector regression, as well as other ensemble 

models such as gradient boosting machine, adaptive boosting, and extreme gradient boosting. 

 

Within the realm of peak electric load forecasting, Saxena et al. (2019) presented a majority-

classifier ensemble model that achieved the highest accuracy (86%), the lowest inaccuracy (14%) 

and the lowest percentage of false positives (9%) when compared to all of its individual base 

models at classifying upcoming days as either PELDs or Non-PELDs. Due to the novelty and 

relevance of Saxena et al.’s work, there is still an opportunity for published works evaluating the 

performance of additional ensemble methodologies for PELDs forecasting. A drawback of 

ensemble models based on a majority-vote as well as models based on simple arithmetic averaging 

is that the effect of all of the base models carries the same weight in determining the final answer. 

As will be described later in Sections 2.6 through 2.9, machine learning strategies such as 

classification and regression tree (CART), adaptive boosting (AdaBoost), and artificial neural 

network (ANN) models automatically assign weights to each input based on the inputs effect on 

the output’s accuracy. The exploration of these ensembling options to potentially develop a better 
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performing ensembling approach will not only improve Saxena et al.’s approach to classification-

based PELDs forecasting, it will also ensure that the consumers are indeed achieving the best 

possible results in their forecasting efforts. 

 

2.5 ARIMA Based Forecasting 

Autoregressive integrated moving average (ARIMA) models are an adaptation of the Wiener filter, 

which was presented by the American mathematician Norbert Wiener first as part of a classified 

report during the Second World War in 1942, and later published as part of his book 

“Extrapolation, Interpolation, and Smoothing of Stationary Time Series” in 1949 (Wiener, 1949). 

The Wiener filter was used by the allies during the Second World War to predict the position of 

German bombers from radar reflections. British statisticians George Box and Gwilym Jenkins 

published systematic methods for applying the Wiener filter to business and economics data in 

their 1976 book titled “Time Series Analysis: Forecasting and Control” (Box and Jenkins, 1976). 

Since then, ARIMA models have also being referred to as Box-Jenkins models and have been 

widely used to model and forecast stationary and non-stationary data.  

 

ARIMA forecasting models operate under the assumption that the future values to be forecasted 

are related to a finite combination of exponentially and non-exponentially weighted past 

disturbances. These models are applicable when evaluating time series with correlated 

observations and seasonal characteristics (Montgomery et al., 2015). ARIMA models do not take 

into account the effect of independent variables on the response, only the effects already embedded 

within the values in the time-series. A variation of ARIMA called autoregressive integrated 
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moving average with exogenous variables (ARIMAX) has been developed in order to forecast 

future values taking into account the effect of independent variables. ARIMA based models have 

been good performers at forecasting future electric load values (Saxena et al., 2019; Yildiz et al., 

2017; Hong and Fan, 2016; Alfares and Mohammad, 2002). However, Saxena et al. (2019) found 

that ARIMAX models significantly increased the computational complexity of forecasting future 

electric load values while failing to provide significantly better forecasts for a university campus. 

The work described in this manuscript will rely on arguably less computational intensive and more 

parsimonious models than ARIMAX such as classification and regression trees (CART), random 

classification and regression forest, and artificial neural network (ANN) in order to incorporate the 

effect of independent variables on the response. 

 

Equation 2 illustrates Montgomery et al.’s  (2015) mathematical representation of a generalized 

seasonal ARIMA model of orders (p,d,q) x (P,D,Q) with period s, also represented as ARIMA 

(p,d,q) x (P,D,Q)s. 

 

 ∗ (𝐵𝑠)(𝐵)(1 − 𝐵)𝑑(1 − 𝐵𝑠)𝐷𝑦𝑡 =  +  ∗ (𝐵𝑠)(𝐵)𝜀𝑡                         (2) 

Where  B is a backward shift operator such that B(yt) = yt-1, 

s is the number of periods in a season, 

(Bs) = (1  1B
s … pB

sP) is a seasonal autoregressive operator of order P, 

(B) = (1  1B
s … pB

p) is a regular autoregressive operator of order p, 

(1  B)d is the regular difference operator d of the time series yt, 
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(1  Bs)D is the seasonal difference operator D of the time series yt, 

 is a constant term, 

(Bs) = 1  1(Bs) … Q(BsQ) is the seasonal moving average operator of order Q, 

(B) = 1  1(Bs) … q(Bq) is the regular moving average operator of order q, and 

t is a white noise process. 

 

2.6 Classification and Regression Trees Based Forecasting 

The use of classification and regression trees (CART) models to forecast future values taking into 

account the effect of independent variables was increased during the rise of the computer age after 

the publication of the book “Classification and Regression Trees” by Breiman et al. (1984) (Loh, 

2014). These authors strengthened and extended the theta automatic interaction detection (THAID) 

methodology for classification trees presented by Messenger & Mandell (1972), and the automatic 

interaction detection (AID) methodology for regression trees presented by Morgan & Sonquist 

(1963) (Breiman et al., 1984). The manuscript by Morgan & Sonquist is considered the first 

regression tree algorithm published in the literature (Loh, 2014). Electric load forecasting 

techniques based on CART based models such as random forest have been used in the published 

literature to forecast future electric load values (Saxena et al., 2019; Yildiz et al., 2017). One of 

the most important reasons to include this type of models into the work described in this manuscript 

is that they are designed to complete a variable selection process. This process will be key to keep 

the techniques proposed by this manuscript on the more parsimonious side, by incorporating the 
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least amount of independent variables, while also keeping the same techniques on the lower 

computational intensity side. 

 

 2.6.1 Classification Trees Based Forecasting 

Classification trees are used to forecast a future discrete class based on independent variables. The 

process of developing a classification tree is formulated by James et al. (2013) as two main steps: 

1) The predictor space (the set of possible values for the response y) gets divided into J distinct 

and non-overlapping high-dimensional regions based on the P amount of training 

observations X1, X2,…Xp, such that the regions R1, R2, …,RJ minimize either: 

 

a. The classification error rate E given by Equation 3. If increased prediction accuracy 

is the main goal of the model. 

𝐸 = 1 −  max
𝑘

(�̂�𝑚𝑘)                                   (3) 

Where  �̂�𝑚𝑘 is the proportion of training obervations in the jth region that are from 

the kth class. 

 

b. The Gini index G, is a measure of total variance across the K classes given by 

Equation 4. It is considered a measure of node purity. A small value of G indicates 

that most observations within a node belong to a single class k. 

𝐺 =  ∑ �̂�𝑚𝑘
𝐾
𝑘=1 (1 − �̂�𝑚𝑘)                           (4) 
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c. The cross-entropy index D as an alternative to the Gini index to measure the total 

variance across the K classes given by Equation 5. Just as with the Gini index, a 

small value of D indicates that most observations within a node belong to a single 

class k. G and D are actually very similar numerically. 

𝐷 =  − ∑ �̂�𝑚𝑘
𝐾
𝑘=1 log �̂�𝑚𝑘                           (5) 

 

2) For any given test observation that falls into the region Rj, generate the same forecast value, 

which is the most commonly occurring class k among the training observations in the 

region Rj. 

 

 2.6.2 Regression Trees Based Forecasting 

Regression trees are used to forecast a future quantitative value based on independent variables. 

Similar to classification trees, the process of developing a regression tree is also formulated by 

James et al. (2013) as two main steps: 

1) The predictor space (the set of possible values for the response y) gets divided into J distinct 

and non-overlapping high-dimensional regions based on the P amount of training 

observations X1, X2,…Xp, such that the regions R1, R2, …,RJ minimize the residual sum of 

squares (RSS) given by Equation 6. 

∑ ∑ (𝑦𝑖 −  �̂�𝑅𝑗
)

2

𝑖∈𝑅𝑗

𝐽
𝑗=1                                   (6) 

Where  �̂�𝑅𝑗
 is the mean response for the training observations within the jth region. 
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2) For any given test observation that falls into the region Rj, generate the same forecast value, 

which is the mean of the response values for the training observations in the region Rj. 

 

2.7 Random Classification and Regression Forest Based Forecasting 

Classification and regression trees (CART) models are simple and useful for interpretation. 

However, they suffer from high variance and are likely to overfit the training data because of their 

selection of the strongest independent variable to produce each split (James et al., 2013). Random 

classification and regression forest models overcome this challenge by building a number of trees 

on randomly selected training samples. Additionally, each one of these trees is built by using a 

random selection of the available independent variables at each node to split. The final predicted 

value is the average of the predicted values of all trees built (James et al., 2013; Biau, 2012). In 

other words, random forest models force each split to consider only a subset of the independent 

variables. Therefore, some of the splits will not even consider the strongest predictor, and other 

predictors will have a chance to be selected. The average of the resulting trees that make up the 

random forest is less variable and hence more reliable because of the decorrelation of the trees that 

happens while developing the random forest (James et al., 2013; Biau, 2012).  

 

Random forest models were first proposed by American statistician Leo Breiman in the 2000’s 

(Biau, 2012). Breiman went on to develop these models after co-authoring the 1984 book 

“Classification and Regression Trees” (Breiman et al., 1984). The process of developing a random 

forest is formulated by James et al. (2013) as: 
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1) Generate B different training datasets by randomly splitting the original training dataset 

into smaller datasets. 

 

2) Train the CART model on the bth training dataset using a random sample of m independent 

variables from the full set of p independent variables as split candidates at each split 

considered while building the tree. The split is only allowed to use one of those m 

independent variables as split candidates and a new random selection of independent 

variables m is chosen at each split. Repeat b where b=1, 2, …,B. 

 

3) Obtain the prediction �̂�∗𝑏(𝑥) corresponding to the CART model trained using the bth 

training dataset. Repeat b where b=1, 2, …,B. 

 

4) Using Equation 7, calculate the random forest’s final predicted value �̂�(𝑥) by determining 

the most occurring class (for classification cases) or averaging (for regression cases) all of 

the predictions �̂�∗𝑏(𝑥) obtained across all of the B different training datasets. 

�̂�(𝑥) =  
1

𝐵
∑ �̂�∗𝑏(𝑥)𝐵

𝑏=1                (7) 

 

2.8 Artificial Neural Networks Based Forecasting 

Artificial neural networks are multivariate statistical models structured to approach problems by 

mimicking the way a human brain would approach such problems (Montgomery et al., 2015). The 

origins of this technique can be traced back to the early 1940’s when American neurophysiologist 

Warren McCulloch along with American logician Walter Pitts created a computational model for 
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a neural network (Kleene, 1956). American psychologist Frank Rosenblatt developed the first 

algorithm for supervised learning of binary classifiers using a single layer of links, also known as 

the perceptron, in 1957 (Rosenblatt, 1957). More effective and accurate models integrating 

multiple layers of neurons were later developed by Ivakhnenko and Grigorʹevich Lapa in the late 

1960’s (Ivakhnenko and Grigorʹevich Lapa, 1968). 

 

The architecture of an ANN model consists of interconnected units known as neurons that are 

arranged in multiple layers in order to exchange information between each neuron. Each neuron 

in the ANN receives a weighted input that is processed through a transfer or activation function in 

order to generate a neuron output. The most basic architectures include three types of layers of 

neurons: the inputs layer, containing the independent variables or original predictors; the hidden 

layers, containing transformed variables; and the output layer, containing the responses 

(Montgomery et al., 2015; Yadav et al., 2015; Agatonovic-Kustrin and Beresford, 2000). 

 

Montgomery et al. (2015) formulates a general ANN model as follows: 

1. Let x1, x2, …, xp be the p independent variables or predictors to be incorporated in the 

model. 

 

2. Let y be a response variable or future value to be predicted. 
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3. Let the value of each node au within each of the k hidden layers be a linear combination of 

its inputs according to Equation 8. 

𝑎𝑢 =  ∑ 𝑤1𝑗𝑢𝑥𝑗 + 𝜃𝑢
𝑝
𝑗=1                 (8) 

Where  w1ju are unknown parameters referred to as weights that must be estimated, and 

u is a parameter that plays the role of an intercept in linear regression and is 

sometimes referred to as the bias node. 

 

4. Generate a transformed value zu for each node au using a transfer or activation function 

g(x) according to Equation 9. 

zu = g(au)                 (9) 

 

5. Use Equation 10 to form a linear combination b of the zu inputs. 

𝑏 =  ∑ 𝑤𝑢𝑒𝑣𝑧𝑢
𝑘
𝑢=1                      (10) 

 

6. Use Equation 11 to obtain the output response, also referred to as the response variable or 

future value to be forecasted y, which will be a transformation of b. 

𝑦 =  �̃�(𝑏)                             (11) 

Where  �̃�(𝑏) is the transfer or activation function for the output response, also referred to 

as the response variable or future value to be forecasted. 

Figure 8 illustrates the architecture of an ANN model with three input variables (x1, x2, and x3), 

one hidden layer containing four nodes, and a single output y as an example. 
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Fig. 8. Example of an ANN model architecture. 

 

All ANN models evaluated in this study were generated using the function “nnet” from the R 

package “nnet” v7.3-14 (Ripley and Venables, 2022) with manually selected values for the 

required hyper parameters size, decay, and maxit. Size refers to the number of nodes in the single 

hidden layer. Decay specifies the value of the regularization parameter that determines the weight 

decay in each iteration during training in order to avoid over-fitting. Maxit establishes the 

maximum amount of iterations during training. 
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2.9 Adaptive Boosting Based Ensemble Forecasting 

The adaptive boosting (AdaBoost) algorithm is an ensemble method used to improve the accuracy 

of a machine learning algorithm by overcoming overfitting and converting weak learners into 

strong learners (Freund and Schapire, 1999). A learner is considered “weak” or “strong” based on 

how correleated it is with the actual target variable. The methodology was developed in 1995 by 

Freund and Schapire (1997) as the first practical boosting algorithm and remains as one of the 

most widely used boosting options in several fields. Boosting models such as AdaBoost, use 

training samples to train one unit of a decision tree and pick over-weighted data as a replacement. 

Each decision tree generated learns from its predecessors and updates the residuals error. A 

weighted average of the estimates generated by these learners (trained decision trees) is used to 

produce a final prediction. Freund and Schapire (1999) developed the pseudocode in Figure 9 to 

describe their adaptive boosting algorithm AdaBoost. 

 

Fig. 9. Pseudocode for AdaBoost by Freund and Schapire (1999). 
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2.10 Summary of the State of the Art 

Predicting future electric load forecasts have been a core activity for utilities since the electricity 

industry began in the late 1800’s (Hong, 2014). Utilities rely on electric load forecasts to plan their 

supply and generating capacities (Dutta and Mitra, 2017; Hong and Fan, 2016; Alfares and 

Mohammad, 2002), to inform revenue projections, rate design, energy trading, and more (Hong 

and Fan, 2016). The capacity of electric utilities to ensure a reliable service to their clients depends 

heavily on these demand forecasts. Electric load forecasting methods have been extensively 

researched over the past few decades. The literature provides an ample range of studies featuring 

various methodologies and models for this purpose (Yildiz et al., 2017; Hong and Fan, 2016; 

Garulli et al., 2015; Alfares and Mohammad, 2002). Autoregressive integrated moving average 

(ARIMA), classification and regression trees (CART), random classification and regression forest, 

and artificial neural network (ANN) are among the most widely used models found within the 

electric load forecasting literature. 

 

Most of the published research on electric load forecasting focuses on generating accurate electric 

load forecasts for both utilities and consumers, but there is limited research on the application of 

these forecasts to avoid the peak load charges described earlier in Section 1.3. Saxena et al. (2019) 

noted that studies focusing on forecasting a billing period’s peak electric load days (PELDs) in 

order to trigger demand response actions to reduce peak load charges are scarce. Saxena et al. 

developed an ensemble machine-learning model focused specifically on predicting if the next day 

will be a PELD for a billing period. Saxena et al. tested their model using data from an educational 

consumer; the ensemble model predicted 70% of actual PELDs and revealed potential savings in 
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the neighborhood of USD$80,000 after a yearlong testing period. This work provided evidence of 

how consumers could potentially reduce peak load charges by executing demand response actions 

based on the results of PELDs forecasting efforts. 

 

During 2018, sustained ongoing efforts to decarbonize energy generation worldwide increased the 

share of renewable energy in global power capacity to 33% (REN21, 2019). Researchers have 

already noted that renewable electricity generation (REG) output is as variable as weather itself 

(Staffell and Pfenninger, 2018; Chaiamarit and Nuchprayoon, 2014). Aponte and McConky (2019) 

documented how REG output could represent a challenge for the accuracy of current PELDs 

forecasting methodologies. A preliminary analysis of the electric load and solar generation data 

from an educational consumer revealed that the presence of BTMREG increases the hour-to-hour 

net demand variability substantially. A search for published research detailing accurate PELDs 

forecasting methodologies for facilities with BTMREG revealed a lack of published literature on 

the topic. 

 

Threshold-based peak electric load classification is one of the approaches for electric load 

classification currently available in the published literature (Saxena et al., 2019). Some utilities 

provide signals to consumers in order to influence their consumption behavior by letting the 

consumer know when the electricity prices might be high because of peak demand (Dutta and 

Mitra, 2017). The expectation is that the consumer will respond to these signals by avoiding the 

use of non-essential loads thus contributing to a system-wide demand level reduction. However, 

in many pricing schemes demand charges are determined at the end of the billing period based on 



A Customer Agnostic Machine Learning Based Peak Electric Load Days Forecasting Methodology for Consumers With and Without Renewable Electricity Generation 

Page 51 of 173 

each consumer’s specific demand profile. Consumers under this type of pricing schemes do not 

receive any signal from the utility during the billing period, and there is nothing that the consumer 

can do after the end of the billing period to avoid these charges. The process of establishing an 

efficient electricity demand threshold right before the start of a billing period to proactively trigger 

cost saving demand response actions is challenging. Our survey of the published literature revealed 

that researchers have placed significant emphasis on methodologies that focus on consumers 

reacting to time-based rate differentiation and price signals coming from the utility (Ganesan et 

al., 2022; Silva et al., 2020; Almahmoud et al., 2019; Li et al., 2018; Asadinejad & Tomsovic, 

2017; Park et al., 2017; Siano, 2014). However, little attention has been paid to methodologies that 

would allow consumers under demand charges to proactively determine an appropriate electricity 

demand threshold value in order to trigger peak demand shaving and other demand response 

actions even without receiving signals or information from the utility. 

  

Alfares and Mohammad (2002) identified a trend in load forecasting research towards ensemble 

methods that combine two or more techniques. Research has shown that ensemble machine 

learning models often outperform the individual models that make them up (Lee et al., 2019; 

Saxena et al., 2019; Li et al., 2018; Ahmad et al., 2017; Liu et al., 2017; Xie and Hong, 2016; Fan 

et al., 2014). Ensemble models tend to deliver better generalization performance by integrating a 

number of base models to generate a final output. Within the realm of peak electric load 

forecasting, Saxena et al. (2019) presented a majority-classifier ensemble model that outperformed 

all of its individual base models at classifying upcoming days as either PELDs or Non-PELDs. 

However, this ensemble approach has not been contrasted with machine learning based alternatives 

in order to ensure that the consumers are indeed achieving the best possible results. The exploration 
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of these ensembling options to potentially develop a better performing ensembling approach will 

not only improve Saxena et al.’s approach to classification-based PELDs forecasting, it will also 

ensure that the consumers are indeed achieving the best possible results in their forecasting efforts. 
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Chapter 3: Methodology 

 

This chapter will present the three main methodologies developed as part of the research covered 

within this dissertation. First, the peak electric load days forecasting methodology developed for 

consumers regardless of the presence of behind the meter renewable generation (BTMREG). 

Second, the proposed methodology to forecast efficient electricity demand threshold values to 

trigger demand response actions. Third, the proposed methodology to use machine learning 

approaches to conduct ensemble based PELD forecasting. 

 

3.1 Peak Electric Load Days Forecasting Methodology 

This section will provide an overview of the methodology developed for the current study. The 

methodology developed to determine the performance of both load forecasting and PELDs 

forecasting methodologies was predominantly based on the previous work by Saxena et al. (2019). 

Saxena et al. established two general approaches for PELDs prediction. We will refer to the first 

approach as the threshold-based approach. This approach can be separated into two phases. During 

the first phase, regression-based load forecasting models are used to generate day ahead load 

forecasts. During the second phase, these forecasts are compared to a pre-determined monthly 

threshold (Dlim) in order to classify each day as either a PELD or a Non-PELD. The second 

approach will be referred to as the classification-based approach. For this approach, classification 

models are used to classify an upcoming day as either a PELD or a Non-PELD. Saxena et al. 

combined the results of some of the evaluated individual models into one ensemble approach and 
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tested the methodology using electric load data from an electrical circuit without BTMREG at an 

educational consumer’s campus. As an addition to the previous work by Saxena et al., the 

methodology for the current study includes an additional ensemble approach, it also includes the 

results of all individual models in both ensembles, and considers the presence of BTMREG by 

including electricity generation data (when applicable) and additional weather related features 

expected to affect REG. The proposed improved methodology is outlined in Figure 10. 

 

Fig. 10. PELDs forecasting methodology overview. 

 

3.1.1 Methodology Overview 

The methodology for the current study can be outlined in five phases. Data collection, dataset 

development, base machine learning models implementation within each of the two general 

approaches (threshold and classification based), ensemble models implementation using all of the 
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base models as its components, and best PELDs forecasting model selection. This methodology 

was applied for a scenario with BTMREG and then repeated for a scenario without BTMREG. 

The methodologies tested were based on autoregressive integrated moving average (ARIMA), 

classification and regression trees (CART), random classification and regression forest, and 

artificial neural network (ANN) techniques. Details about the experimental implementation of this 

methodology will be provided in Sections 3.1.2 through 3.1.6. 

 

3.1.2 Data Collection and Dataset Development 

A dataset containing 29,952 records of electric load, electricity generation, weather, and 

operational data at 30 minute intervals was developed. The records in the dataset cover the period 

between June 16th, 2018 at 00:00 hours and February 29th, 2020 at 23:30 hours. All times are 

represented at the official local time of the educational consumer’s campus. Table 2 provides a list 

of the 30 variables contained in the dataset along with each of the variable’s description and type. 

Electric load and generation related data (measured in kW), such as that represented by variables 

1, 4, and 8 in Table 2, was collected at 30 minute intervals from a smart metered circuit at an 

educational consumer’s campus that included a solar field designed to provide up to 2 MW of 

BTMREG. Weather data was collected using hourly values from the publicly available local 

climatological data summaries corresponding to the airport weather station in closest proximity to 

the campus and provided by the National Oceanic and Atmospheric Administration (NOAA) of 

the USA (NOAA, 2020). This weather data was later imputed using linear interpolation for 

continuous variables and last value carried forward for categorical variables in order to generate a 

30 minute intervals dataset. Building\facility operational data and calendar data, such as that 
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represented by variables 9, 10, and 19 to 30 in Table 2, were collected from the campus’ heating, 

ventilation, and air conditioning (HVAC) management system and the campus’ academic calendar. 

The following data pre-processing steps were completed for the complete dataset as described by 

Saxena et al. (2019) in order to ensure the quality of the dataset: 1) uniformly-spaced time indices 

generation; 2) outlier detection and removal; and 3) missing value interpolation using linear 

interpolation for continuous variables and last value carried forward for categorical variables. 

Table 2 

Dataset variables. 

Variable name Description Type 

1) Demand Load without BTMREG present (Demand) at the 

time of observation registered in kW 

Continuous 

2) DemDlim Calculated monthly threshold (Dlim) for Demand as 

described by Saxena et al. (2019) in kW 

Continuous 

3) DemDmaxTm1 Maximum Demand registered during the previous 

day in kW 

Continuous 

4) NetDemand Load with BTMREG present (Net Demand) at the 

time of observation registered in kW 

Continuous 

5) NetDemDlim Calculated monthly threshold (Dlim) for Net 

Demand as described by Saxena et al. (2019) in kW 

Continuous 

6) NetDemDmaxTm1 Maximum Net Demand registered during the 

previous day in kW 

Continuous 

7) LastDemTM1 Last Demand registered during the previous day in 

kW (Demand and Net Demand are the same at this 

point because REG is not active during this time) 

Continuous 

8) SolarREG Solar REG at the time of observation registered in 

kW 

Continuous 
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9) OP_CoolReq If at the time of observation, HVAC system cooling 

set point < indoor air temperature; 

Then, OP_CoolReq = Positive difference between 

HVAC system cooling set point and indoor air 

temperature in degrees Fahrenheit (°F); 

Else, OP_CoolReq = 0 

Continuous  

10) OP_HeatReq If at the time of observation, HVAC system heating 

set point > indoor air temperature; 

Then, OP_HeatReq = Positive difference between 

HVAC system heating set point and indoor air 

temperature in degrees Fahrenheit (°F); 

Else, OP_HeatReq = 0 

Continuous  

11) NW_DBTemp Outdoor dry bulb temperature at the time of 

observation in degrees Fahrenheit (°F) recorded by 

NOAA 

Continuous 

12) NW_RelHum Outdoor relative humidity at the time of observation 

to the nearest whole percentage recorded by NOAA 

Continuous 

13) NW_WindSpe Outdoor wind speed at the time of observation in 

miles per hour (mph) recorded by NOAA 

Continuous 

14) NW_WeatherClassShort Outside weather classification at the time of 

observation recorded by NOAA and grouped into 5 

categories. 

Categories: 1 = Clear/Sunny , 2 = Cloudy, 3 = 

Rain, 4 = Snow, 5 = Windy 

Categorical 

15) DemActPEL If at the time of observation, Demand > DemDlim; 

Then, DemActPEL = 1; 

Else, DemActPEL = 0 

Categorical 

16) DemActPELD Identification of the day as 1 for actual PELD or 0 

for actual Non-PELD for the Demand data as 

described by Saxena et al. (2019) 

 

Categorical 

17) NetDemActPEL If at the time of observation, NetDemand > 

NetDemDlim; 

Then, NetDemActPEL = 1; 

Else, NetDemActPEL = 0 

Categorical 

18) NetDemActPELD Identification of the day as 1 for actual PELD or 0 

for actual Non-PELD for the NetDemand data as 

described by Saxena et al. (2019) 

Categorical 

19) Time Date (MM/DD/YYYY) and time (HH:MM) in 24 

hours format at the time of observation 

Categorical 
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20) Month Month component of Time at the time of 

observation. 

Categories: 1, 2, 3, …, 12 

Categorical 

21) HoD Hour component of Time at the time of observation. 

Categories: 0, 1, 2, …, 23 

Categorical 

22) DoW Day of the week at the time of observation 

Categories: 1 = Mon, 2 = Tue, …, 7 = Sun 

Categorical 

23) OP_Semester Academic semester at the time of observation 

Categories: 1 = Fall, 2 = Spring, 3 = Summer 

Categorical 

24) OP_Classes If the day is an official class day; 

Then, OP_Classes = 1; 

Else, OP_Classes = 0 

Categorical 

25) OP_ResHallsOpen If the on-campus residence halls are officially open 

during the day; 

Then, OP_ResHallsOpen = 1; 

Else, OP_ResHallsOpen = 0 

Categorical 

26) OP_CampusOpen If the campus is officially open for administrative 

operations during the day; 

Then, OP_CampusOpen = 1; 

Else, OP_CampusOpen = 0 

Categorical 

27) OP_SpringBreak If the day is part of spring break; 

Then, OP_SpringBreak = 1; 

Else, OP_SpringBreak = 0 

Categorical 

28) OP_FirstDayAfterBreak If the day is the first after a break period; 

Then, OP_FirstDayAfterBreak = 1; 

Else, OP_FirstDayAfterBreak = 0 

Categorical 

29) OP_Increase If there is an event during the day that can 

potentially cause an increase in electric load 

(festival, fair, convention, concert, etc); 

Then, OP_Increase = 1; 

Else, OP_Increase = 0 

Categorical 

30) OP_Decrease If there is an event during the day that can 

potentially cause a decrease in electric load (holiday, 

half-day, exams week, etc); 

Then, OP_Decrease = 1; 

Else, OP_Decrease = 0 

Categorical 
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The calculated monthly threshold (Dlim) values for the demand scenario (DemDlim) and the net 

demand scenario (NetDemDlim) included in the dataset, were determined using Equation 12 from 

the previous work by Saxena et al. (2019). 

Dlim,i = i + 2i               (12) 

Where i = the mean of every electric load observation at time interval t for the given month i, and 

i = the standard deviation of every electric load observation of the given month i. 

 

3.1.3 Model Training, Validation, and Testing Process 

Thirteen PELDs forecasting models were developed and tested for this study. The testing period 

selected for this study included 12 months from March 1st, 2019 at 00:00 hours to February 29th, 

2020 at 23:30 hours. For each month m in the test period, a training data used was created using a 

random selection of 80% of all the available data in the dataset covering the period between June 

16th, 2018 at 00:00 hours and the final day of the previous month, month m-1, at 23:30 hours. The 

remaining 20% of the data leading up to month m was used as validation dataset in order to 

optimize any model parameters. All final ANN models were selected based on their performance 

on the validation set. The parameters for each ANN model were optimized by testing the values 

specified in Table 3. After the parameter optimization process, the model for each month m was 

retrained using all of the training and validation data available prior to the start of month m before 

forecasting month m for testing purposes. This procedure was followed for all models, with the 

exception of the seasonal ARIMA model. Because of the continuity requirement of ARIMA based 

models, the Seasonal ARIMA model was retrained daily at the end of each day in the testing period 
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at 23:59 hours using all of the available data from June 16th, 2018 at 00:00 hours up to the most 

recent record available before the retraining time. 

Table 3 

Values tested for ANN parameters. 

Parameter Values tested 

# Hidden Nodes 2 to 30 by increments of 1 

Decay Rate 0.0001, 0.001, 0.01, 0.05, and 0.1 

# of Iterations 200 to 5000 by increments of 200 

 

In order to test the models, all of the models were used at the end of each day at 23:59 hours to 

generate 48 predictions (each at 30 minute intervals) corresponding to the next day. Regression-

based models generated a load prediction for each of the 48 time intervals. Classification-based 

models on the other hand, generated either a peak electric load (PEL) for the month or Non-PEL 

for the month class label for each of the 48 time intervals. A PEL for the month is defined as any 

load that is above the monthly threshold (Dlim) for the month (See variables 15 and 17 in Table 

2). For final testing purposes during each month of the testing period, the load predictions 

generated by the regression-based models were compared to a monthly threshold (Dlim), any load 

found above this threshold was considered a PEL, and any day during which a PEL occurred was 

forecasted as a PELD. Similarly, the classification PEL and Non-PEL labels generated by the 

classification-based models were used to classify any day during which a PEL was forecasted as a 

PELD. 
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The process to generate the 48 predictions for October 5th, 2019 using any of the evaluated models 

except the seasonal ARIMA will be explained next as an example. On September 30th, 2019 at 

23:59 hours, a new model to be used for the month of October 2019 is developed. The October 

2019 model is initially trained using 80% of all the available data in the dataset covering the period 

between June 16th, 2018 at 00:00 hours through September 30th, 2019 at 23:30 hours, and validated 

using the remaining 20% of the data. Once optimal parameters are identified, the October 2019 

model is retrained using all of the training and validation data available prior to September 30th, 

2019. This October 2019 model is used to generate 48 predictions, one for each 30-minute interval 

starting with October 5th, 2019 at 00:00 hours and ending at 23:30 hours of the same day. In the 

case of the seasonal ARIMA model, the model available by October 4th, 2019 at 23:59 hours would 

have been trained using all of the available data between June 16th, 2018 at 00:00 hours up to the 

most recent record available before generating the first prediction for October 5th, 2019. The hyper 

parameters used to generate all seasonal ARIMA models for this study were determined using the 

“auto.arima” function from the R package “forecast” v8.12 (Hyndman and Khandakar, 2008) with 

a value s=336. All other parameters remained at their default value. The 48 predictions are then 

converted to a single PELD binary classification. If a PEL is found, then the day is forecasted as a 

PELD and this prediction is compared to the actual classification of the day in order to determine 

the model’s performance. All the models evaluated during this research were implemented using 

the R language and environment for statistical computing (R Core Team, 2013). Information about 

specific R libraries and packages used to implement each model can be found on Tables 4, 7, 12, 

13, and 17.  
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3.1.4 Threshold-based PELDs Forecasting Models 

 

 

Fig. 11. Threshold-based PELDs forecasting process. 

 

Five threshold-based PELDs forecasting models were developed for this study. These models were 

used to generate a day ahead load forecast that would later be compared to a pre-calculated monthly 

threshold (Dlim) in order to classify each day in the testing period as either a PELD or a Non-

PELD (see Figure 11). Table 4 shows the characteristics of each of these models that were 

developed using the open source software R (R Core Team, 2013). Table 4 also includes details 

about the specific R libraries and packages used to develop each model. Table 5 shows the values 

used as the monthly threshold (Dlim) for each of the months in the testing period. These values 

were determined using Equation 12. The focus of the current study does not include evaluating the 

accuracy of the monthly threshold (Dlim) prediction method suggested by Saxena et al. (2019). 

For this reason, the current study used ground truth monthly thresholds (Dlim) for PELD 

determination.  
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Table 4 

Threshold-based PELDs forecasting models characteristics. 

Name Description Response Inputs used  

from Table 2 

M01_RegSARIMA Seasonal ARIMA generated using 

the “auto.arima” function from the 

R package “forecast” v8.12 with a 

value s=336. All other parameters 

remained at their default value. 

Electric load at the 

time of 

observation. 

 

(Variable 4 for 

electric load with 

BTMREG present 

(net demand) or 

Variable 1 for 

electric load 

without BTMREG 

present (demand) 

from Table 2) 

 

Variable 4, for 

electric load with 

BTMREG present 

(net demand); 

Variable 1, for 

electric load 

without BTMREG 

present (demand). 

M02_RegST Regression single decision tree 

generated using the function “tree” 

from the R package “tree” v1.0-40 

with default parameters. 

Variables 2, 3, 5, 6, 

7, 9:14, and 20:30 

M03_RegRF Regression random decision forest 

generated using the function 

“randomForest” from the R package 

“randomForest” v4.6-14 with values 

ntree=1000 and importance=TRUE. 

All other parameters remained at 

their default value.  

 

 

 

M04_RegANN Regression feed-forward artificial 

neural network with a single hidden 

layer generated using the function 

“nnet” from the R package “nnet” 

v7.3-14 with manually selected 

values for size, decay, maxit, and 

MaxNWts, and linout = TRUE. All 

other parameters remained at their 

default value. 

M05_RegANNST M04 but only using the variables 

selected by the regression single 

decision tree in M02 as inputs.  

Variables selected 

by the regression 

single decision tree 

in M02. 
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Table 5 

Monthly threshold (Dlim) values for the months in the testing period for the net demandand the 

demand scenarios. 

Month and year Monthly threshold 

for net demand 

(NetDemDlim) 

Monthly threshold 

for demand 

(DemDlim) 

Mar. 2019 5,277.62 5,584.79 

Apr. 2019 5,442.61 5,759.57 

May 2019 4,732.92 5,242.71 

Jun. 2019 5,192.39 5,962.64 

Jul. 2019 6,730.34 7,359.20 

Aug. 2019 6,125.85 6,809.69 

Sep. 2019 6,490.20 7,063.56 

Oct. 2019 5,657.77 5,957.91 

Nov. 2019 5,660.77 5,764.58 

Dec. 2019 5,373.77 5,410.37 

Jan. 2020 5,492.00 5,583.62 

Feb. 2020 5,638.32 5,792.96 
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3.1.5 Classification-based PELDs Forecasting Models 

 

 

Fig. 12. Classification-based PELDs forecasting process. 

 

Six classification-based PELDs forecasting models were developed to classify the electric load at 

time t as either a PEL for the month or not. Any day with a PEL present was automatically tagged 

as a PELD; otherwise, the day was classified as a Non-PELD (see Figure 12). Saxena et al. (2019) 

found a class imbalance while developing similar classification-based PELDs forecasting models 

for a circuit without BTMREG. The current study found similar class imbalances while evaluating 

circuits with and without BTMREG. Table 6 shows comparisons between the amount of PELs and 

Non-PELs, and PELDs and Non-PELDs to illustrate the class imbalance present in the complete 

dataset. After observing the class imbalance while developing the first two classification-based 

PELDs forecasting models (M06_ClassST and M07_ClassRF), the full training set (before 

splitting into the training and validation datasets) was balanced using the synthetic minority 

oversampling technique (SMOTE) developed by Chawla et al. (2002) and also applied by Saxena 
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et al.. The SMOTE technique was applied using the function “SMOTE” from the R package 

“DMwR” v0.4.1 with default parameters. The remaining four classification-based PELDs 

forecasting models were developed using the balanced full training dataset. Table 7 shows the 

characteristics of each of the six classification-based PELDs forecasting models developed using 

the open source software R (R Core Team, 2013). 

 

Table 6 

Amount of PELs and Non-PELs, and PELDs and Non-PELDs for the net demand and the demand 

scenarios. 

 Net demand Demand 

PELs 608 559 

Non-PELs 29,344 29,393 

Total observations 29,952 

PELs to non-PELs ratio 1:48.26  (0.021) 1:52.58  (0.019) 

PELDs 85 65 

Non-PELDs 539 559 

Total observations 624 

PELDs to non-PELDs ratio 1:6.34  (0.158) 1:8.6  (0.116) 
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Table 7 

Classification-based PELDs forecasting models characteristics. 

Name Description Response Inputs used  

from Table 2 

M06_ClassST Classification single decision tree 

generated using the function 

“tree” from the R package “tree” 

v1.0-40 with default parameters. 

Is the electric 

load at time t a 

Peak Electric 

Load (PEL) for 

the month? 

1 (Yes) | 0 (No) 

Variables 2, 3, 

5, 6, 7, 9:14, 

and 20:30 

M07_ClassRF Classification random decision 

forest generated using the 

function “randomForest” from 

the R package “randomForest” 

v4.6-14 with values ntree=1000 

and importance=TRUE. All other 

parameters remained at their 

default value. 

M08_ClassSTwSMOTE M06 trained and validated using 

the dataset balanced with the 

SMOTE technique. 

M09_ClassRFwSMOTE M07 trained and validated using 

the dataset balanced with the 

SMOTE technique. 

M10_ClassANNwSMOTE Classification feed-forward 

artificial neural network with a 

single hidden layer generated 

using the function “nnet” from 

the R package “nnet” v7.3-14 

with manually selected values for 

size, decay, maxit, and 

MaxNWts, linout = FALSE, and 

softmax = TRUE. All other 

parameters remained at their 

default value. Trained and 

validated using the dataset 

balanced with the SMOTE 

technique. 

M11_ClassANNSTwSMOTE M10 but only using the variables 

selected by the classification 

single decision tree in M08 as 

inputs. 

Variables 

selected by the 

classification 

single decision 

tree in M08. 
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3.1.6 Ensemble PELDs Forecasting Models and Best Model Selection Process 

Two ensemble PELDs forecasting models were developed by combining the results generated by 

all of the eleven base models evaluated in Sections 3.1.4 and 3.1.5 to classify each day in the 

testing period as either a PELD or a Non-PELD. These ensemble models were developed based 

on the ensemble model proposed by Saxena et al. (2019) to classify an upcoming day as either a 

PELD or a Non-PELD using demand data. The first ensemble model, E01_Majority, was a 

majority class classifier. This model follows the same ensemble approach proposed by Saxena et 

al. The majority class identifier can be represented mathematically using Equation 13. 

 

𝐶𝑗 = {1 𝑖𝑓 ∑ 𝑋𝑖,𝑗𝑖∈M >
|𝑀|

2
    ∀ j ∈  D  

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
            (13) 

Where M: Set of base models used for day classification,  

D: Set of days in the billing period, 

|M|: Represents the cardinality of set M,  

Xi, j: Binary variable, takes a value of 1 when model i classifies day j in set D as a PELD, otherwise 

it takes a value of 0, and 

Cj: Returns the proposed ensemble model’s forecasted classification for day j as a binary result of 

1 for PELD or 0 for Non-PELD.  

 

The second ensemble model, E02_SingleVote, was a single vote classifier. This model differs from 

the first ensemble model in that it only needs one the component models to classify a day as a 

PELD in order to classify the observed day as a PELD. This methodology was included in this 

study to account for the possibility of having PELDs that were only detected by a minority of the 
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models because of certain special characteristics not noticeable by the majority of the base models 

in the ensemble. 

 

The model results for all thirteen models (M01 through M11, E01, and E02) for each month of a 

12 months testing period were compared to the actual values. The best model was selected based 

on the Total Score obtained by evaluating the ranked scorecard presented in Table 8. A higher 

Total Score identifies a better model.  

 

Table 8 

Ranked scorecard for selecting the best PELDs forecasting model. 

Performance Measure (PM) Rank Score 

(PM x Rank) 

False negatives during testing period 

 

(FN / Number of days in testing period) * ( -1) 

5  

False positives during testing period 

 

(FP / Number of days in testing period) * ( -1) 

4  

Model complexity 

 

(Model complexity level * ( -1)) 

3  

Average monthly sensitivity 

during testing period 

2  

Average monthly balanced accuracy 

during testing period 

1  

TOTAL SCORE   
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The elements of the ranked scorecard for selecting the best PELDs forecasting model in Table 8 

are defined as follows: 

FN = number of the false negatives i.e. amount of PELDs incorrectly predicted as non-PELDs, 

FP = the false positives i.e. amount of non-PELDs incorrectly predicted as PELDs 

The values for sensitivity were calculated according to Equation 14. This performance measure 

refers to the probability of a positive test, conditioned on the actual state of the instance being 

positive. 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                             (14) 

Where TP = the true positives i.e. amount of correctly predicted instances of PELDs; and FN has 

already being defined in this section. 

 

The balanced accuracy values were calculated according to Equation 15. This performance 

measure refers to the probability of accurate positive and negative tests when one class appears 

much more than the other. 

𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
(

𝑇𝑃

𝑇𝑃+𝐹𝑁
+ 

𝑇𝑁

𝑇𝑁+𝐹𝑃
)

2
                          (15) 

Where TN = the True Negatives i.e. amount of correctly predicted instances of Non-PELDs; and 

TP, FP, and FN have already being defined in this section. 

 

The values for Rank are consumer defined, based on how the consumer would like to prioritize the 

performance measures. The higher the value, the higher the importance of that specific 
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performance measure. There should be no duplicate values for Rank. For this study it is suggested 

to assign the highest priority to the number of false negatives produced during the testing period 

by each model. A false negative means that the consumer will be billed demand charges that could 

have been avoided. The next priority suggested is the number of false positives produced during 

the testing period by each model. Even though these events do not produce demand charges, they 

generate unnecessary user inconvenience that can reduce productivity and negatively affect the 

work environment. Model complexity according to the values in Table 9 is recommended as the 

third most important performance measure in order to ensure the selection of the simplest yet also 

accurate model. The model complexity values in Table 9 are suggested by this study based on 

factors related to model implementation such as hyper parameter tuning, training time, and amount 

of model inputs. A Rank value of 2 is recommended for the average monthly sensitivity given that 

it is desirable to maximize the probability of a positive test, conditioned on the actual state of the 

instance being positive, over the remaining performance measure. 

 

Using the area under the curve (AUC) of the receiver operating characteristic (ROC) curve as an 

additional performance metric was considered but dismissed for the current study. The ROC curve 

is a probability curve that plots True Positive Rate against False Positive Rate at different threshold 

values. This is a very useful performance metric for situations where classification is more accurate 

if performed considering different classification thresholds. The AUC delivers a combined 

performance evaluation across all possible classification thresholds included in the ROC. At first 

glance, this might seem like a good performance metric to evaluate PELDs classification models 

given the fact that we have a threshold that varies from month to month. However, the proposed 

methodology only forecasts PELDs within the same month, which means that the threshold is 
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constant for all classifications. Furthermore, given the significant financial impact of false 

negatives, the proposed methodology favors PELDs forecasting models that minimize this type of 

classification error over any other errors. One of the characteristics of the AUC-ROC curve 

optimization method is that it is classification-threshold-invariant. This means that it is designed 

to not favor any type of classification error over another. Nonetheless the use of some variation of 

the AUC-ROC curve to develop PELDs forecasting models that might eliminate the need to 

forecast a monthly threshold can be a very interesting avenue for future research.           

 

Table 9 

Suggested values for model complexity level. 

Type of Model Model Complexity Level 

Base Model : Arithmetic 0.1 

Base Model : Single Decision Tree 0.2 

Base Model : Random Decision Forest 0.3 

Base Model : ARIMA | Seasonal ARIMA | ARIMAX 0.4 

Base Model : Artificial Neural Network (ANN) 0.5 

Ensemble Model : Arithmetic 0.6 

Ensemble Model : Single Decision Tree 0.7 

Ensemble Model : Random Decision Forest 0.8 

Ensemble Model : Adaptive Boosting (AdaBoost) 0.9 

Ensemble Model : Artificial Neural Network (ANN) 1.0 
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3.2 Electricity Demand Threshold Value Forecasting Methodology 

This section will provide an overview of the methodology developed for forecasting electricity 

demand threshold values. After collecting monthly data and developing a dataset, six base 

forecasting models were developed to forecast future demand threshold values. Using the results 

generated by the base models, seven ensemble forecasting models were developed. The results 

generated by all 13 models will be evaluated in order to determine the best model. The proposed 

methodology is outlined in Figure 13. 

 

 

Fig. 13. Electricity demand threshold value forecasting methodology overview. 

 

3.2.1 Methodology Overview 

The methodology developed for forecasting electricity demand threshold values can be outlined 

in five phases (See Figure 13): data collection, threshold forecasting dataset development, base 
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threshold forecasting models development, ensemble threshold forecasting models development, 

and best threshold forecasting model selection. During the first phase, data collection, hourly (or 

higher resolution) electric load and/or electricity consumption data as well as hourly (or higher 

resolution) electricity generation data (when applicable) and monthly operational data is collected 

from the building or facility of interest. Monthly weather data is obtained from a local weather 

data source such as the National Oceanic and Atmospheric Administration (NOAA) for buildings 

or facilities in the USA. The period covered by the data collected will depend on the availability 

of data about the consumer of interest. A period of at least 24 months is recommended. Section 3 

provides details about the period of data collected and the data resolution for each of the consumers 

evaluated during this study. It is important to highlight that the period covered by all of the data 

collected should be the same for each type of data. 

   

At the beginning of the second phase, threshold forecasting dataset development, the hourly (or 

higher resolution) electric load and/or electricity consumption data is used to calculate an actual 

electricity demand threshold value (Dlim) for each month. These monthly values will serve as 

ground truth for future model training and testing purposes. Equation 16, a slightly modified 

version of an original proposal by Saxena et al. (2019) is used to calculate the actual electricity 

demand threshold value (Dlim) for each month. 

Dlimi = i + i                                           (16) 

Where 

i = the mean of every electric load observation for the given month i,  
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 = consumer defined factor (2 for industrial and educational consumer | 3 for residential 

consumer), and 

i = the standard deviation of every electric load observation of the given month i. 

The resulting threshold forecasting dataset will contain values for the actual electricity demand 

threshold value (Dlim), electricity consumption and generation related data, weather related data, 

and operational data all at a monthly resolution. 

 

The third phase of the proposed methodology involves the development of base threshold 

forecasting models. These models can be arithmetic based such as a last known value model. This 

model will use the threshold value observed during the same month on the previous year or any 

other last known value for that month as the forecasted value for the month of interest. Another 

arithmetic based model can entail calculating the average of the threshold values observed during 

the previous three months and using this average as the forecasted value for the month of interest. 

Machine learning based models such as regression single decision tree and regression random 

decision forest can also be developed as base forecasting models to determine the threshold value 

using data collected from the threshold forecasting dataset as inputs. 

 

Considering that many researchers agree that ensemble models often outperform the individual 

models that make them up, the fourth phase of the proposed methodology involves the 

development of ensemble threshold forecasting models. These models can also be arithmetic based 

such as an average of the results obtained from all models. This model will calculate the average 

of the values forecasted by all of the base models and use this average as the forecasted value for 
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the month of interest. Machine learning based models such as regression single decision and 

regression random decision forest can also be developed as ensemble forecasting models to 

determine the threshold value using the values forecasted by all of the base models as inputs. These 

models could also use a combination of the values forecasted by all of the base models and data 

collected from the threshold forecasting dataset as inputs. The overall best performing threshold 

forecasting model will be selected during the fifth phase based on performance metrics such as the 

mean absolute percentage error (MAPE), the percentage of savings achievable by using the model, 

and the amount of user inconvenience. User inconvenience was measured in terms of the number 

of days during the testing period when peak demand shaving actions are unnecessarily triggered. 

  

  3.2.2 Data Collection and Dataset Development 

Four threshold forecasting datasets, each containing 24 records of monthly actual electricity 

demand threshold values (Dlim), electricity consumption and generation (when applicable) related 

data, weather related data, and operational data were developed. Real electricity demand data from 

three different consumers, an industrial, an educational with behind the meter solar generation, 

and a residential were collected to develop the datasets. The amount of data available from the 

industrial consumer was enough to develop two different threshold forecasting datasets using the 

data collected from this consumer. The researchers decided to take advantage of this opportunity 

and develop a dataset to forecast the threshold values during the 12 months prior to the beginning 

of the COVID-19 pandemic in the USA (approximately March 2020). A second threshold 

forecasting dataset for the same consumer is used to forecast the values during the full first year 

of the pandemic. As part of the response to this pandemic near-global shutdowns occurred that 
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expanded from weeks to moths. These shutdowns came accompanied with stay at home orders, 

curfews, and business disruptions that completely altered electricity consumption worldwide. 

Table 10 shows details about the location, data availability, presence of behind the meter renewable 

electricity generation (BTMREG), and availability of operational data for each of the threshold 

forecasting datasets. Appendix 1 provides a detailed list of the 62 variables considered for this 

study, each variable’s description and type, and a checkbox identifying each dataset in which the 

variable is present. 

 

Table 10 

Details about each threshold forecasting dataset. 

Threshold 

Forecasting 

Dataset 

Consumer 

Location 

Period of 

Monthly Data 

Available 

BTMREG 

Present 

Operational 

Data Available 

Industrial_PRE  

(Pre-Pandemic) 

Rochester, NY, 

USA 

Zip Code 14607  

Mar. 2018  

to Feb. 2020 

24 Months 

No  Calendar 

Industrial_YR1 

(Year 1 of 

Pandemic) 

Rochester, NY, 

USA 

Zip Code 14607  

Mar. 2019  

to Feb. 2021 

24 Months 

No  Calendar 

Educational Rochester, NY, 

USA 

Zip Code 14623  

Sep. 2019  

to Aug. 2021 

24 Months 

Yes 

(Solar) 

Calendar 

Open/Closed 

Days 

Special Events 

Residential Wethersfield, CT, 

USA 

Zip Code 06109  

Dec. 2019  

to Nov. 2021 

24 Months 

No Calendar 
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Electric load and generation related data was collected at hourly intervals from each consumer’s 

smart meter. Weather data was collected using monthly values from the publicly available local 

climatological data summaries corresponding to the weather station in closest proximity to each 

consumer and provided by the National Oceanic and Atmospheric Administration (NOAA) of the 

USA. Operational related data, such as calendar data, open/closed days (when available), and days 

with special events (when available), was collected from each consumer. The educational 

consumer’s threshold forecasting dataset contained the most detailed operational data, which 

included days when classes, residence halls, and other specific areas of the campus were 

open/closed, also days with special events such as graduation, and calendar related data. 

  

3.2.3 Model Training, Validation, and Testing Process 

Thirteen threshold forecasting models were developed and tested for each of the four datasets 

generated for this study. Ten of these models were of the tree-based machine learning type, 

specifically either regression single decision tree based or regression random decision forest based. 

These two families of models were purposely selected to take advantage of their ability to clearly 

perform variable selection and provide insight into the effect of each variable selected, their auto-

validation capabilities, and the reduced number of parameters required to setup as compared to 

other machine learning based models. These characteristics will be key to keep the methodology 

proposed on the more parsimonious side by incorporating the least number of independent 

variables in the models while also keeping the techniques on the low computational intensity side. 

In addition to the implementation complexity, computational costs, and unclear variable 

importance hierarchy of other more complex techniques such as artificial neural network, the 
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researchers were also concerned about the risk of overfitting given the reduced number (24 

records) of data points in each dataset. All of the training and validation data available prior to the 

start of month m was used for training and validation by the all of the tree-based machine learning 

models before forecasting a threshold value for month m for testing purposes. Table 11 provides 

details in regards to the training and validation period as well as the testing period for each of the 

threshold forecasting datasets. 

 

Table 11 

Training, validation, and testing periods for each threshold forecasting dataset. 

Threshold Forecasting Dataset Training & Validation Period 

(12+ Months) 

Testing Period 

(12 Months) 

Industrial_PRE  

(Pre-pandemic) 

Mar. 2018 to Feb. 20191 

 

Mar. 2019 to Feb. 2020 

 

Industrial_YR1 

(Year 1 of pandemic) 

Mar. 2019 to Feb. 20201 

 

Mar. 2020 to Feb. 2021 

 

Educational Sep. 2019 to Aug. 20201 Sep. 2020 to Aug. 2021 

Residential Dec. 2019 to Nov. 20201 Dec. 2020 to Nov. 

2021 

1 The training and validation set increases by one month at the beginning of each new month in the testing period. For 

example, in order to test the month of Mar. 2019, the training and validation set contains all of the data points from 

Mar. 2018 to Feb. 2019 (12 months). However, in order to test the following month of Apr. 2019, the training and 

validation set increases by one month and contains all of the data points from Mar. 2018 to Mar. 2019 (13 months).  

 

3.2.4 Base Threshold Value Forecasting Models 

Six base threshold forecasting models were developed for this study. Table 12 shows 

implementation parameters, response, and inputs used for each model. The six models were used 
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to generate a forecasted electricity demand threshold value. Models BM05 and BM06 are reduced 

versions of models BM03 and BM04 respectively. These reduced versions were obtained by first 

performing a manual feature selection applying a variation of the elbow method (first discussed 

by Thorndike (1953)) to the variable importance results generated by model BM04, specifically 

the percentage increase in mean standard error (%IncMSE), and selecting only the input variables 

before the elbow to include in each reduced model BM05 and BM06. The elbow method is the 

oldest and still state-of-the-art method to determine the potential optimal amount of clusters when 

performing cluster analysis (Shi et al., 2021; Fritz et al., 2020). The method has been adapted for 

other selection tasks by researchers. Similarly, the method has been adapted and used to perform 

manual variable selection for this research. The MAPE was calculated for each of these first 

reduced versions (BM05 and BM06) of the BM04 model. Using the variable importance results 

generated by the first BM06 model, the input variable with the lowest %IncMSE was removed, 

new versions of the reduced models (BM05 and BM06) were generated using the new list of input 

variables, and the MAPE was calculated for each of these new reduced versions. This process of 

removing one input variable at a time and calculating the MAPE was repeated until there were no 

more input variables to remove. Out of all the reduced versions for model BM05, the version with 

the lowest MAPE value was selected as the best reduced version for model BM05. The same 

process was completed for model BM06. 
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Table 12 

Details about the development of each base threshold value forecasting model. 

Name Type Description Response Inputs used  

from Appendix 1  

BM01_LKV Arithmetic 

based 

Use the monthly threshold 

value observed during the 

same month on the previous 

year. If this value is not 

available, use the most 

recent known value for the 

month of interest. 

 

Dlimi = Dlimi-12periods 

 

where i = period of interest 

expressed as Month.Year, 

and each period is one 

month. 

 

For example, the value for 

the forecasted threshold in 

Mar.2020 (DlimMar2020) 

would be equal to the 

threshold value observed 

during Mar.2019 

(DlimMar2019). 

 

DlimMar2020 = DlimMar2019 

Forecasted 

electricity 

demand 

threshold 

value. 

 

(Variable 

4 from 

Appendix

1) 

 

Variable 5 

BM02_AvPast3 Use the average of the past n 

observed threshold values. 

The value of n selected for 

this study was 3. 

Previous 3 values 

of Variable 4 

BM03_ST Tree 

based 

machine 

learning 

Regression single decision 

tree 1 

Varies by threshold 

forecasting 

dataset.3 
BM04_RF1000 Regression random decision 

forest 2 
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BM05_ST_BestRed Regression single decision 

tree 1 

Varies by threshold 

forecasting 

dataset.3 
BM06_RF1000_ 

BestRed 

Regression random 

decision forest 2 

1 Regression single decision tree generated using the function “tree” from the R software (R Core Team, 2013) 

package “tree” (Ripley, 2019) v1.0-40 with default parameters. 

2 Regression random decision forest generated using the function “randomForest” from the R software (R Core 

Team, 2013) package “randomForest” (Liaw and Wienner, 2002) v4.6-14 with values ntree=1000 and 

importance=TRUE. All other parameters remained at their default value. 

3 Please see Appendix 2 within the Supporting Information document accompanying this paper for details. 

 

3.2.5 Ensemble Threshold Value Forecasting Models 

Seven ensemble threshold forecasting models were developed for this study. Table 13 shows 

implementation parameters, response, and inputs used for each model. The seven models were 

used to generate a forecasted electricity demand threshold value. Models EM04 and EM05 are 

reduced versions of models EM02 and EM03 respectively. These reduced versions were obtained 

by following the same process previously described in Section 3.2.4 to obtain models BM05 and 

BM06. Models EM06 and EM07 only include a variable identifying the month and the results of 

all of the six base models as inputs.  
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Table 13 

Details about the development of each ensemble threshold value forecasting model. 

Name Type Description Response Inputs 

EM01_Ave Arithmetic 

based 

Use the average of the values 

forecasted by all of the base 

models. 

Forecasted 

electricity 

demand 

threshold 

value. 

 

(Variable 4 

from 

Appendix 

1) 

 

Electricity demand 

threshold values 

forecasted by each of 

the 6 base models. 

EM02_ST Tree based 

machine 

learning 

Regression single decision tree 1 Varies by threshold 

forecasting dataset.3  

 EM03_RF1000 Regression random decision 

forest 2 

EM04_ST_BestRed Regression single decision tree 1 Varies by threshold 

forecasting dataset.3  

 EM05_RF1000_BestRed Regression random decision 

forest 2 

EM06_ST_BM Regression single decision tree 1 Variable 3 from 

Appendix 1 (Month) 

and electricity 

demand threshold 

values forecasted by 

each of the 6 base 

models.4 

EM07_RF1000_BM Regression random decision 

forest 2 

1 Regression single decision tree generated using the function “tree” from the R software (R Core Team, 2013) 

package “tree” (Ripley, 2019) v1.0-40 with default parameters. 

2 Regression random decision forest generated using the function “randomForest” from the R software (R Core 

Team, 2013) package “randomForest” (Liaw and Wienner, 2002) v4.6-14 with values ntree=1000 and 

importance=TRUE. All other parameters remained at their default value. 

3 Please see Appendix 3 within the Supporting Information document accompanying this paper for details. 

4 Electricity demand threshold value forecasted by base model BM01 was not included for the residential consumer 

because of insufficient data. 
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3.2.6 Best Model Selection Process 

The overall best performing threshold forecasting model was selected based on the Total Score 

obtained by evaluating the ranked scorecard presented in Table 14. A higher Total Score identifies 

a better model. The ranked scorecard evaluates 4 performance metrics. The first performance 

metric was the percentage of model savings achievable by using the threshold value forecasted by 

each model each month of the full testing period. This metric was calculated using the method 

proposed by Aponte et al. (2020) to calculate potential savings. Potential savings in kW after 

executing demand response actions for each month were determined according to Equation 17. 

𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 𝑠𝑎𝑣𝑖𝑛𝑔𝑠 𝑖𝑛 𝑘𝑤 = 𝐻𝑃𝐸𝐿 − 𝐷𝑙𝑖𝑚                              (17) 

Where 

HPEL = highest peak electric load of the month in kW, and 

Dlim = monthly threshold established for the month. 

This methodology assumes that all peak loads predicted in the month are reduced to the level of 

the monthly threshold (Dlim) established for the month. The potential savings using the actual 

threshold were calculated first and then the same process was repeated using the threshold value 

forecasted by each model each month. For each month in the testing period, out of the potential 

savings calculated using the actual threshold value, those achieved by using the threshold value 

forecasted by each model were calculated. Totals for all savings during the testing period 

calculated using actual threshold values and for all model savings during the same period were 

calculated in order to determine the percentage of model savings. Higher values were considered 

as indicators of better performance.  
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Table 14 

Ranked scorecard for selecting the best threshold forecasting model. 

Performance Measure (PM) Rank Score 

(PM x Rank) 

Percentage of model savings during testing period 

 

Expressed in decimal form 

4  

User inconvenience during testing period 

 

(FP / Number of days in testing period) * ( -1) 

3  

Model complexity 

 

(Model complexity level * ( -1)) 

2  

MAPE 

 

(MAPE during testing period) * ( -1) 

1  

TOTAL SCORE   

 

The second performance metric calculated was the amount of unnecessary user inconvenience 

produced by each model in terms of the number of days during the testing period when peak 

demand shaving actions were unnecessarily triggered. Similarly to what was previously illustrated 

in Figures 6 and 7, the electricity demand profile for each month was used along with the actual 

threshold value to identify true peaks. The results were then compared to those obtained by 

repeating the same procedure but using the threshold values forecasted by each model. All of the 

days identified by using the forecasted threshold values as having peaks that were not also 

identified using the actual threshold values as having peaks were considered days when peak 
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demand shaving actions were unnecessarily triggered. This is the same procedure described 

previously in Section 3.1.6 for the false positives performance metric. 

 

The third performance metric, model complexity, was calculated using the same procedures 

described previously in Section 3.1.6 to calculate the same performance metric. The final 

performance metric was the mean absolute percentage error (MAPE) achieved by each model 

during the full testing period. The values for MAPE were calculated according to Equation 18 and 

the lowest values were considered as indicators of better performance. 

𝑀𝐴𝑃𝐸 = (
1

𝑛
∑

|𝐴𝑐𝑡𝑢𝑎𝑙𝑖−𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑖|

|𝐴𝑐𝑡𝑢𝑎𝑙𝑖|
𝑛
𝑖=1 ) × 100                                         (18) 

 

3.3 Ensemble Peak Electric Load Days Forecasting Methodology 

This section will provide an overview of the methodology developed to test machine learning 

based approaches to for ensemble peak electric load days forecasting. Six ensemble PELDs 

forecasting models were developed by combining the results generated by models M01 through 

M05 (previously described in Section 3.1.4) and those generated by models M08 through M11 

(previously described in Section 3.1.5). The results generated by models M06 and M07 (previously 

described in Section 3.1.5) were not included in any of the ensemble models because of the poor 

preliminary results for unbalanced datasets to be described in Section 4.1.2. The ensemble models 

were developed based on the ensemble model proposed by Saxena et al. (2019) to classify an 

upcoming day as either a PELD or a Non-PELD. The results generated by all base and ensemble 
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models will be evaluated in order to determine the best model. The proposed methodology is 

outlined in Figure 14.  

 

Fig. 14. Ensemble PELDs forecasting methodology overview. 

 

3.3.1 Methodology Overview 

The methodology developed for ensemble peak electric load days forecasting can be outlined in 

five phases. Data collection, dataset development, base models implementation, ensemble models 

implementation using the results generated by all of the base models as its components, and best 

overall forecasting model selection. The best performing model was selected based on the 

scorecard combining Sensitivity, Balanced Accuracy, number of False Negatives, and number of 

False Positives values as previously  described in Section 3.1.6. Real electricity demand data from 

an industrial, an educational with behind the meter solar generation, and a residential consumer 
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was collected to test the methodology. Details about the experimental implementation of this 

methodology will be provided in Section 4.3. 

 

3.3.2 Data Collection and Dataset Development 

Three ensemble PELD forecasting datasets, two containing 2 years of data and one containing 1 

year and 9 months of data on daily actual electricity demand threshold values (Dlim), electricity 

consumption and generation (when applicable) related data, weather related data, and operational 

data were developed. Real electricity demand data from an industrial, an educational with behind 

the meter solar generation, and a residential consumer was collected to develop the datasets. Each 

dataset contains the results generated by models M01 through M05 (previously described in 

Section 3.1.4) as well as those generated by models M08 through M11 (previously described in 

Section 3.1.5). In addition, weather and building/facility operational data (when available) was 

also included. Table 15 shows details about the location, data availability, and availability of 

operational data for each dataset. Appendix 4 provides a detailed list of 62 variables, each 

variable’s description and type, and a checkbox identifying each dataset in which the variable is 

present. 

 

Weather data was collected from the publicly available local climatological data summaries 

corresponding to the airport weather station in closest proximity to the consumer and provided by 

the National Oceanic and Atmospheric Administration (NOAA) of the USA. When necessary, the 

weather data was imputed using linear interpolation for continuous variables and last value carried 

forward for categorical variables. Calendar data was constructed from the date and time of each 
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reading in the dataset and building/facility operational data was collected from the consumer when 

available. The following data pre-processing steps were completed for the complete datasets as 

described by Saxena et al. (2019) in order to ensure the quality of the dataset: 1) uniformly-spaced 

time indices generation; 2) outlier detection and removal; and 3) missing value interpolation using 

linear interpolation for continuous variables and last value carried forward for categorical 

variables.  

 

Table 15 

Details about each ensemble PELD forecasting dataset. 

Ensemble PELD 

Forecasting Dataset 

Consumer Location Period of Daily 

Data Available 

BTMREG 

Present 

Operational 

Data 

Available 

Industrial 

 

Rochester, NY, USA 

Zip Code 14607  

May. 2020  

to Apr. 2022 

2 years 

No  

 

Calendar 

Educational Rochester, NY, USA 

Zip Code 14607 

Jun. 2018  

to Feb. 2020 

1 year + 9 months 

Yes  

 

Calendar 

Events 

Residential Wethersfield, CT, USA 

Zip Code 06109  

May. 2020  

to Apr. 2022 

2 years 

No  

 

Calendar 

 

3.3.3 Model Training, Validation, and Testing Process 

Six ensemble PELDs forecasting models were developed and tested for this study. The testing 

period selected for this study included 12 months. The first two models (E01 and E02) followed 

the same methodology previously described in Section 3.1.6 without including models M06 and 
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M07 as previously explained at the beginning of Section 3.1. The next four models were 

classification single tree, classification random forest, AdaBoost, and single layer classification 

artificial neural network respectively. All of these six models combined the results generated by 

models M01 through M05 (previously described in Section 3.1.4) and those generated by models 

M08 through M11 (previously described in Section 3.1.5) in order to generate their own 

classification.  

 

Because of the imbalanced nature of the dataset previously explained in Section 3.1.5, all of the 

training and validation datasets were balanced using the SMOTE technique previously described 

in Section 3.1.5. All of the training and validation data available prior to the start of month m was 

used for training and validation by the all of the models before the start of a new month m for 

testing purposes. Table 16 provides details in regards to the training and validation period as well 

as the testing period for each of the threshold forecasting datasets. 

 

Table 16 

Training, validation, and testing periods for each threshold forecasting dataset. 

Threshold Forecasting 

Dataset 

Training & Validation Period 

(9+ Months) 

Testing Period 

(12 Months) 

Industrial May 2020 to Apr. 20211 May 2021 to Apr. 2022 

Residential 

Educational Jun 2018 to Feb. 20191 Mar 2019 to Feb. 2020 

1 The training and validation set increases by one month at the beginning of each new month in the testing period. For 

example, in order to test the month of Mar. 2019, the training and validation set contains all of the data points from 

Mar. 2018 to Feb. 2019 (12 months). However, in order to test the following month of Apr. 2019, the training and 

validation set increases by one month and contains all of the data points from Mar. 2018 to Mar. 2019 (13 months).  



A Customer Agnostic Machine Learning Based Peak Electric Load Days Forecasting Methodology for Consumers With and Without Renewable Electricity Generation 

Page 91 of 173 

3.3.4 Model Implementation and Best Model Selection Process 

Six ensemble PELD forecasting models were developed for this study. Table 17 shows 

implementation parameters, response, and inputs used for each model. The six models were used 

to generate a classification of an upcoming day as either a PELD or a Non-PELD. The model 

results for each month of a 12 months testing period were compared to the actual values and the 

best performing model will be selected based on the same ranked scorecard previously described 

in Section 3.1.6. 

 

Table 17 

Details about the development of each ensemble threshold value forecasting model. 

Name Type Description Response Inputs 

E01_Majority Arithmetic 

based 

Majority classifier previously 

described in Section 3.1.6.  

0 – The day will 

not be a PELD 

1 – The day will 

be a PELD 

 

(Variable 1 

from 

Appendix 4) 

 

Please see 

Appendix 4 for 

details. 
E02_SingleVote Single vote classifier previously 

described in Section 3.1.6. 

E03_ST Machine 

learning 

based 

Regression single decision tree 1 

E4_RF1000 Regression random decision 

forest 2 

E5_ANN Single layer artificial neural 

network 3 

E6_AdaBoost Adaptive boosting model 4 

1 Regression single decision tree generated using the function “tree” from the R software (R Core Team, 2013) 

package “tree” (Ripley, 2019) v1.0-40 with default parameters. 

2 Regression random decision forest generated using the function “randomForest” from the R software (R Core 

Team, 2013) package “randomForest” (Liaw and Wienner, 2002) v4.6-14 with values ntree=1000 and 

importance=TRUE. All other parameters remained at their default value. 
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3 Single layer artificial neural network generated using the function “nnet” from the R software (R Core Team, 2013) 

package “nnet” (Ripley and Venables, 2022) v7.3-17 with parameters optimized as previously described in Section 

3.1.3. All other parameters remained at their default value. 

4 Adaptive boosting model generated using the function “adaboost” from the R software (R Core Team, 2013) 

package “fastAdaboost” (Chatterjee, 2016) v1.0-0 with value nIter=100. All other parameters remained at their 

default value. 
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Chapter 4: Experimental Results and Discussion 

 

This chapter will present the results of the experimentation detailed in the previous Chapter 3 in 

order to investigate the three main research questions motivating this dissertation. These research 

questions were previously defined in Section 1.7. Section 4.1 will present the results related to 

peak electric load days forecasting for consumers with and without BTMREG following the 

methodology previously described in Section 3.1. Section 4.2 will present the results related to 

electricity demand threshold value forecasting following the methodology previously described in 

Section 3.2. The final Section 4.3 will present the results related to ensemble peak electric load 

days forecasting following the methodology previously described in Section 3.3. Each section will 

include a discussion of the results presented.  

 

4.1 Peak Electric Load Days Forecasting Results and Discussion 

 4.1.1 Threshold-based PELDs Forecasting Results 

Figure 15 shows the monthly mean absolute percentage error (MAPE) achieved by the five 

threshold-based PELDs forecasting models previously described in Section 3.1.4 during their 

regression-based load forecasting stage. The MAPE values are presented for both the net demand 

(see Figure 15.a) and the demand (see Figure 15.b) scenarios. The values in Figure 15 show how 

most of the evaluated models achieved better electric load forecasting performance (lower MAPE 

values) when applied to a scenario without BTMREG instead of a scenario with BTMREG. A 

paired T-test for a mean difference equal to 0 (vs ≠ 0) was performed for each of the five models 
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using the monthly MAPE values for both scenarios (net demand and demand). The null hypothesis 

was rejected for all models with a 95% of confidence demonstrating that the results between the 

scenarios show a statistical significant difference. Detailed results of these paired T-tests are 

available in Appendix 5. The results of these paired T-tests demonstrate that it is more challenging 

for the regression-based electric load forecasting models evaluated to achieve high performance 

levels when BTMREG is present. Table 18 illustrates how the M03_RegRF and M05_RegANNST 

models outperformed the remaining two models at achieving the lowest average monthly MAPE 

values for both the net demand and the demand scenarios. 

 

Fig. 15. MAPE achieved by the M01 to M05 models for the (a) net demand and the (b) demand 

scenarios. 
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Table 18 

Average monthly MAPE values achieved by the M01 to M05 models for the net demand and the 

demand scenarios. 

Model Average monthly MAPE 

Net demand Demand 

M01_RegSARIMA 10.4121 7.6004 

M02_RegST 11.2159 8.9645 

M03_RegRF 8.2921 5.6494 

M04_RegANN 9.9221 7.3715 

M05_RegANNST 8.8404 5.1544 

 

Figure 16 shows the monthly values for sensitivity achieved by the five threshold-based PELDs 

forecasting models during their threshold-based PELDs classification stage. The sensitivity values 

are presented for both the net demand (see Figure 16.a) and the demand (see Figure 16.b) scenarios. 

The November 2019, January 2020, and February 2020 periods are not shown in Figure 16 because 

there were no PELD occurrences during these periods. Paired T-tests for a mean difference equal 

to 0 (vs ≠ 0) were performed for both the sensitivity and the balanced accuracy monthly results of 

each of the five models for both scenarios (net demand and demand). Detailed results of these 

paired T-tests are available in Appendix 5. The null hypothesis failed to be rejected for all tests 

except the test comparing the balanced accuracy obtained by model M05_RegANNST with a 95% 

of confidence. These results demonstrate that the sensitivity values for all five models and the 

balanced accuracy values for four of the models do not show a statistical significant difference 
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caused by the presence of BTMREG. These results suggest that the performance of the five 

threshold-based PELD forecasting models at the classification stage is statistically the same 

regardless of the presence of BTMREG, which means that the PELD forecasting methodology 

developed is equally effective for both scenarios. 

 

Fig. 16. Sensitivity achieved by the M01 to M05 models for the (a) net demand and the (b) 

demand scenarios. 

Table 19 shows the average monthly sensitivity and balanced accuracy values achieved by the 

threshold-based PELDs forecasting models during their threshold-based PELDs classification 

stage. This table illustrates how the ANN-based models M04_RegANN and M05_RegANNST 

outperformed the remaining models at achieving the highest values for average monthly sensitivity 

and balanced accuracy for both the net demand and the demand scenarios. 

 

 

 

 



A Customer Agnostic Machine Learning Based Peak Electric Load Days Forecasting Methodology for Consumers With and Without Renewable Electricity Generation 

Page 97 of 173 

Table 19 

Average monthly sensitivity and balanced accuracy values achieved by the M01 to M05 models 

for the net demand and the demand scenarios. 

Model Average monthly 

sensitivity 

Average monthly 

balanced accuracy 

Net demand Demand Net demand Demand 

M01_RegSARIMA 0.4167 0.3481 0.6294 0.6102 

M02_RegST 0.2963 0.3852 0.6258 0.6508 

M03_RegRF 0.0741 0.1000 0.5370 0.5500 

M04_RegANN 0.5417 0.5185 0.6953 0.6963 

M05_RegANNST 0.3981 0.6852 0.6652 0.8236 

 

 4.1.2 Classification-based PELDs Forecasting Results 

Figure 17 shows the monthly values for sensitivity achieved by the six classification-based PELDs 

forecasting models previously described in Section 3.1.5. The sensitivity values are presented for 

both the net demand (see Figure 17.a) and the demand (see Figure 17.b) scenarios. The November 

2019, January 2020, and February 2020 periods are not shown in Figure 17 because there were no 

PELD occurrences during these periods. These results demonstrate how the class imbalance issue 

described in Section 3.1.5 needs to be addressed in order to achieve the best sensitivity values 

when implementing the classification-based PELDs forecasting approach regardless of the 

presence or absence of BTMREG. Figure 17 shows how the models using a balanced training and 

validation dataset overwhelmingly outperformed those obtained when using the original datasets 
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during eight or more of the months in the testing period for the net demand (see Figure 17.a) and 

the demand (see Figure 17.b) scenarios. 

  

Paired T-tests for a mean difference equal to 0 (vs ≠ 0) were performed for both the sensitivity and 

the balanced accuracy monthly results of each of the six models for both scenarios (net demand 

and demand). Detailed results of these paired T-tests are available in Appendix 5. The null 

hypothesis failed to be rejected for all tests with a 95% of confidence. These results demonstrate 

that the sensitivity and balanced accuracy values for all six models do not show a statistical 

significant difference caused by the presence of BTMREG. These results suggest that the 

performance of the six classification-based PELD forecasting models developed is statistically the 

same regardless of the presence of BTMREG, which means that the PELD forecasting 

methodology developed is equally effective for both scenarios. 

 

 

Fig. 17. Sensitivity achieved by the M06 to M11 models for the (a) net demand and the (b) 

demand scenarios. 
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Table 20 shows the average monthly sensitivity and balanced accuracy values achieved by the 

classification-based PELDs forecasting models. This table illustrates how the ANN-based models 

M10_ClassANNwSMOTE and M11_ClassANNSTwSMOTE outperformed the remaining 

models at achieving the highest values for average monthly sensitivity and balanced accuracy for 

both the net demand and the demand scenarios. The values in this table do not provide any clear 

evidence of a reduction in the performance level of the classification-based models caused by the 

presence of BTMREG. 

 

Table 20 

Average monthly sensitivity and balanced accuracy values achieved by the M06 to M11 models 

for the net demand and the demand scenarios. 

Model Average monthly 

sensitivity 

Average monthly 

balanced accuracy 

Net demand Demand Net demand Demand 

M06_ClassST 0.0000 0.1111 0.5000 0.5517 

M07_ClassRF 0.0000 0.0778 0.5000 0.5389 

M08_ClassSTwSMOTE 0.5185 0.5852 0.6315 0.6770 

M09_ClassRFwSMOTE 0.6574 0.5593 0.7211 0.7055 

M10_ClassANNwSMOTE 0.8981 0.8778 0.8329 0.8430 

M11_ClassANNSTwSMOTE 0.9444 0.9778 0.8913 0.8906 
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 4.1.3 Ensemble PELDs Forecasting Results and Best Model Selection 

Figure 18 shows the monthly values for sensitivity achieved by the two ensemble PELDs 

forecasting models previously described in Section 3.1.6. This figure also includes the monthly 

values for sensitivity achieved by the M11_ClassANNSTwSMOTE model. This model achieved 

the best average monthly sensitivity and balanced accuracy values out of the eleven base models 

evaluated for both the net demand and the demand scenarios (see Tables 19 and 20). Figure 18 

shows the results for both the net demand (see Figure 18.a) and the demand (see Figure 18.b) 

scenarios. The November 2019, January 2020, and February 2020 periods are not shown in Figure 

18 because there were no PELD occurrences during these periods. These results show how both 

the proposed E02_SingleVote model and the M11_ClassANNSTwSMOTE model outperformed 

the E01_Majority model previously proposed by Saxena et al. (2019) for both the net demand and 

the demand scenario. The E02_SingleVote model outperformed the M11_ClassANNSTwSMOTE 

model on two out of nine months for the net demand scenario and on one month for the demand 

scenario.  

 

Paired T-tests for a mean difference equal to 0 (vs ≠ 0) were performed for both the sensitivity and 

the balanced accuracy monthly results of each of the ensemble models for both scenarios (net 

demand and demand). Detailed results of these paired T-tests are available in Appendix 5. The null 

hypothesis failed to be rejected for all tests with a 95% of confidence. These results demonstrate 

that the sensitivity and balanced accuracy values for the two ensemble models do not show a 

statistical significant difference caused by the presence of BTMREG. These results suggest that 

the performance of the ensemble PELD forecasting models developed is statistically the same 
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regardless of the presence of BTMREG, which means that the PELD forecasting methodology 

developed is equally effective for both scenarios. 

 

Fig. 18. Sensitivity achieved by the M11, E01 and E02 models for the (a) net demand  

and (b) the demand scenarios. 

 

Table 21 shows the average monthly sensitivity and balanced accuracy values, as well as the total 

number of false positives and false negatives predictions produced by the two ensemble PELDs 

forecasting models evaluated and the M11_ClassANNSTwSMOTE model. This table illustrates 

how the M11_ClassANNSTwSMOTE model outperformed the remaining models at achieving the 

highest values for average monthly balanced accuracy. In terms of average monthly sensitivity and 

total number of false negatives, the M11_ClassANNSTwSMOTE model was only slightly 

outperformed by the E02_SingleVote model. However, the total number of false positives 

produced by the E02_SingleVote model is significantly greater than that produced by the other 

two models. Based on these results and the intent to select the most parsimonious of the models, 

the M11_ClassANNSTwSMOTE was selected as the best model to use for PELDs prediction with 

BTMREG for this facility because of the model’s performance and lower complexity. Table 22 

shows the ranked scorecard results that corroborate this model selection for both scenarios, net 

demand and demand. 
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Table 21 

Average monthly sensitivity and balanced accuracy values, number of false positives and false 

negatives produced by the M11, E01, and E02 models for the net demand and the demand 

scenarios. 

  M11 

ClassANNST

wSMOTE 

E01 

Majority 

E02 

SingleVote 

Average monthly 

sensitivity 

Net demand 0.9444 0.3009 1 

Demand 0.9778 0.4333 1 

Average monthly 

balanced accuracy 

Net demand 0.8913 0.6505 0.7046 

Demand 0.8906 0.7124 0.7333 

Total number of 

false negatives 

Net demand 3 34 0 

Demand 1 18 0 

Total number of  

false positives 

Net demand 37 0 136 

Demand 48 2 133 

 

Table 22 

Ranked scorecard results for selecting best overall performing PELDs forecasting model. 

 False Negatives (FN) False Positives (FP) Model Complexity Sensitivity Balanced Accuracy  

 Number 

of FN 

R

a
n

k 

Score Number 

of FP 

R

a
n

k 

Score Value R

a
n

k 

Score Value R

a
n

k 

Score Value R

a
n

k 

Score Total 

Score 

Net Demand 

M11 3 5 -0.04 37 4 -0.41 0.5 3 -1.50 0.944 2 1.89 0.891 1 0.89 0.83 

E01 34 5 -0.47 0 4 0.00 0.6 3 -1.80 0.301 2 0.60 0.651 1 0.65 -1.01 

E02 0 5 0.00 136 4 -1.49 0.6 3 -1.80 1.000 2 2.00 0.705 1 0.70 -0.59 

Demand 

M11 1 5 -0.01 48 4 -0.53 0.5 3 -1.50 0.978 2 1.96 0.891 1 0.89 0.81 

E01 18 5 -0.25 2 4 -0.02 0.6 3 -1.80 0.433 2 0.87 0.712 1 0.71 -0.49 

E02 0 5 0.00 133 4 -1.46 0.6 3 -1.80 1.000 2 2.00 0.733 1 0.73 -0.52 
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 4.1.4 Potential and model savings calculation 

Table 23 shows the potential and model savings expected upon implementation of the selected 

M11_ClassANNSTwSMOTE model for both the net demand and the demand scenarios. Potential 

savings were calculated using the methodology previously described in Section 3.2.6. Model 

savings were only applicable for months during which the day with the highest peak load of the 

month was predicted by the model as a PELD. These savings were determined according to 

Equation 19. 

 

𝑀𝑜𝑑𝑒𝑙 𝑠𝑎𝑣𝑖𝑛𝑔𝑠 𝑖𝑛 𝑘𝑤 =  𝐻𝑃𝐸𝐿 − max {𝐻𝐹𝑁, 𝐷𝑙𝑖𝑚}           (19) 

Where HFN = highest non-detected (ergo not reduced) peak load (or false negative PELD 

prediction) of the month in kW, and HPEL and Dlim are the same as in Equation 19.  
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Table 23 

Potential and model savings, and model achievement percentage during the testing period. 

 Net demand Demand 

Period Potential 

savings 

(in kW) 

Model 

savings 

(in kW) 

% Model 

achievement 

 

Potential 

savings 

(in kW) 

Model 

savings 

(in kW) 

% Model 

achievement 

Mar. 2019 247.38  247.38  100%        38.20  38.20  100% 

Apr. 2019 749.38  749.38  100%            513.42  513.42  100% 

May 2019 766.07  766.07  100%            775.28  0.00    0% 

Jun. 2019 884.60  884.60  100%         1,045.36  1,045.36  100% 

Jul. 2019 1,657.66  1,657.66  100%         1,281.79  1,281.79  100% 

Aug. 2019 1,247.15  1,008.00  81%            835.31  835.31  100% 

Sep. 2019 1,169.79  753.00  64%            731.44  731.44  100% 

Oct. 2019 2,163.22  2,163.22  100%         2,701.08  2,701.08  100% 

Dec. 2019 131.22  131.22  100% 94.62  94.62  100% 

Aggregate 9,016.47  8,360.53  93%        8,016.50  7,241.22  90% 

 

Potential and model savings in US$ were calculated by applying a US$17.00 per kW peak load 

rate to the previously calculated potential and model savings in kW (see Table 23). This peak load 

rate was obtained from the utility that serves the educational consumer evaluated. However, this 

rate is not necessarily the actual rate that the consumer pays for demand charges. The actual rates 

are negotiated confidentially. This was still the approximate active peak load rate at the time of 

this manuscript submission. The results presented in Tables 23 and 24 demonstrate how the 

selected M11_ClassANNSTwSMOTE model would have achieved 93% of the potential savings 

in kW and US$ 142,129.01 savings in electricity costs for the educational consumer within the net 
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demand scenario. The results also show how there are more potential and model savings to be 

achieved after adopting BTMREG. At first glance, this is a very counterintuitive finding because 

by definition a customer’s load profile is reduced when BTMREG is present as we have seen in 

Figures 3 and 4. Figure 19 illustrates how this finding can be explained by the fact that the demand 

reduction targets set for demand response actions (based on the monthly threshold (Dlim)) when 

BTMREG is present, are typically lower than the targets set when BTMREG is not present. The 

values for monthly threshold (Dlim) for the complete testing period can be compared by looking 

back at Table 5. In addition, there is always the possibility of peak loads within the net demand 

scenario to be as high as those within the demand scenario if there is a considerable drop in 

BTMREG levels. 
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Table 24 

Potential, model, and missed savings in US$ during the testing period. 

 Net demand Demand 

Period Potential 

savings 

Model 

savings 

Missed 

savings 

Potential 

savings 

Model 

savings 

Missed 

savings 

Mar. 2019        4,205.46  4,205.46  0.00             649.40  649.40  0.00 

Apr. 2019 12,739.46  12,739.46  0.00          8,728.14  8,728.14  0.00 

May 2019 13,023.19  13,023.19  0.00       13,179.76  0.00    13,179.76  

Jun. 2019 15,038.20  15,038.20  0.00     17,771.12  17,771.12  0.00    

Jul. 2019 28,180.22  28,180.22  0.00       21,790.43  21,790.43  0.00    

Aug. 2019 21,201.55  17,136.00  4,065.55    14,200.27  14,200.27  0.00    

Sep. 2019 19,886.43  12,801.00  7,085.43  12,434.48  12,434.48  0.00    

Oct. 2019 36,774.74  36,774.74  0.00       45,918.36  45,918.36  0.00    

Dec. 2019 2,230.74  2,230.74  0.00      1,608.54  1,608.54  0.00    

Aggregate 153,279.99  142,129.01  11,150.98  136,280.50  123,100.74  13,179.76  

 

 

Fig. 19. Model savings calculations for the (a) net demand and 

(b) the demand scenarios during July 2019. 
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Figure 20 provides more insight into this finding by illustrating the demand, net demand, solar 

generation, monthly thresholds (Dlim), and model savings during the day with the highest peak 

electric load for the month. Which was the 19th  of July 2019. The figure shows how the peak 

electric load in the scenario without BTMREG is higher than the peak electric load in the scenario 

with BTMREG. This figure also shows how the peak electric load in the scenario with BTMREG 

was caused by a drop in solar generation. However, more model savings (1,911 kW vs 1,282 kW) 

are achieved because the presumptive demand reduction target set for demand response actions 

(based on the monthly threshold (Dlim)) is lower when BTMREG is present (net demand). The 

results shown in Tables 23 and 24 also indicate that the highest savings for the educational 

consumer are achieved during the summer months (June to August) and the first two months of 

fall, September and October. This can be explained by the fact that these are typically the months 

with the highest outside temperatures and consequently the highest energy usage for cooling 

purposes at the educational consumer’s campus.  

 

Fig. 20. Demand, net demand, solar generation, monthly thresholds (Dlim),  

and model savings during July 19th, 2019. 
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4.2 Electricity Demand Threshold Value Forecasting Results and Discussion 

 4.2.1 Industrial Consumer Threshold Forecasting Results 

Figure 21 presents a side by side comparison of the top 5 lowest MAPE values achieved by the 

models when applied to the (a) Industrial_PRE (Pre-pandemic) and (b) Industrial_YR1 (Year 1 of 

pandemic) datasets developed with data collected from an industrial consumer. Appendix 6 

provides the MAPE values achieved by all of the models. The regression random decision forest 

based ensemble model EM05 was the best performing model on this performance metric for this 

consumer before and after the COVID-19 pandemic. Figure 21(b) illustrates how the performance 

of the models on this performance metric was negatively affected with the pandemic overall. It is 

also interesting to notice that none of the arithmetic based forecasting models made it to the list of 

the top 5 performers. These results show that tree-based machine learning models achieve better 

MAPE values than arithmetic based models for this consumer.      

 

 

Fig. 21. Top 5 lowest MAPE value results for the (a) Industrial_PRE and (b) Industrial_YR1 

datasets. 
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Figure 22 presents a side by side comparison of the top 5 high percentage model savings results 

achieved by the models when applied to the (a) Industrial_PRE and (b) Industrial_YR1 datasets. 

Appendix 6 provides the percentage model savings results achieved by all of the models. Once 

again, the regression random decision forest based ensemble model EM05 was the best performing 

model before and after the pandemic for this consumer. The EM05 model performed even better 

during the pandemic than before the pandemic in this performance metric for this consumer. It is 

interesting to notice how the arithmetic based BM02 model makes it to the list of the top 5 

performers during the pandemic. Based on the results presented in Figure 22, tree-based machine 

learning models achieved a higher percentage of model savings before the pandemic, but the same 

cannot be said during the pandemic for this consumer. 

 

 

Fig. 22. Top 5 high percentage model savings results for the (a) Industrial_PRE and (b) 

Industrial_YR1 datasets. 

 

Figure 23 presents a side by side comparison of the top 5 least number of false positive days 

achieved by the models when applied to the (a) Industrial_PRE and (b) Industrial_YR1 datasets. 

Appendix 6 provides the number of false positive days achieved by all of the models. The 
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regression random decision forest based ensemble model EM05 that clearly outperformed all other 

models in the previous two performance metrics, comes third in this performance metric before 

and after the pandemic for this consumer.  

 

Fig. 23. Top 5 least number of false positive days for the (a) Industrial_PRE and (b) 

Industrial_YR1 datasets. 

 

Table 25 shows the ranked scorecard results used to select the BM06 RF1000 BestRed as the best 

overall performing model for threshold forecasting for this consumer before the COVID-19 

pandemic and the EM05 Ensamble RF1000 BestRed model after the pandemic. All top performing 

models were included in the scorecard evaluation. These models achieved model savings, in terms 

of electricity, of 922 kW and 1,370 kW during the testing period before and during the pandemic 

respectively. In financial terms, these savings translate into US$ 15,674 and US$ 23,290 for each 

test year period. These values were calculated based on a peak load rate of US$ 17.00 per kW 

charged by the local utility for the industrial and the educational consumer by the time that this 

research was completed. 
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Table 25 

Ranked scorecard results for selecting best overall threshold forecasting model for the Industrial 

consumer. 

 % Model Savings User Inconvenience Model Complexity MAPE  

 Value R

a

n

k 

Score Number 

of FP 

R

a

n

k 

Score Value R

a

n

k 

Score Value R

a

n

k 

Score Total 

Score 

Industrial_PRE              

BM01 - LKV 0.5167 4 2.07 1 3 -0.01 0.1 2 -0.20 4.440 1 -4.44 -2.58 

BM04 - RF1000 0.5630 4 2.25 2 3 -0.02 0.3 2 -0.60 2.703 1 -2.70 -1.07 

BM05 - ST BestRed 0.5935 4 2.37 16 3 -0.13 0.2 2 -0.40 4.363 1 -4.36 -2.52 

BM06 -  

RF1000 BestRed 

0.5774 4 2.31 0 3 0.00 0.3 2 -0.60 2.551 1 -2.55 -0.84 

EM03 -  

Ens. RF1000 

0.5649 4 2.26 2 3 -0.02 0.8 2 -1.60 2.695 1 -2.70 -2.05 

EM04 -  

Ens. ST BestRed 

0.5935 4 2.37 16 3 -0.13 0.7 2 -1.40 4.363 1 -4.36 -3.52 

EM05 - Ens. 

RF1000 BestRed 

0.6376 4 2.55 2 3 -0.02 0.8 2 -1.60 2.461 1 -2.46 -1.53 

EM07 - 

RF1000 BM 

0.5617 4 2.25 2 3 -0.02 0.8 2 -1.60 3.097 1 -3.10 -2.47 

Industrial_YR1              

BM01 - LKV 0.1522 4 0.61 0 3 0.00 0.1 2 -0.20 11.469 1 -11.47 -11.06 

BM02 - AvPast3 0.5782 4 2.31 46 3 -0.38 0.1 2 -0.20 12.175 1 -12.18 -10.44 

BM04 - RF1000 0.3826 4 1.53 4 3 -0.03 0.3 2 -0.60 7.406 1 -7.41 -6.51 

BM05 - ST BestRed 0.5064 4 2.03 8 3 -0.07 0.2 2 -0.40 7.554 1 -7.55 -5.99 

BM06 - 

RF1000 BestRed 

0.4293 4 1.72 1 3 -0.01 0.3 2 -0.60 6.394 1 -6.39 -5.29 

EM03 - 

Ens. RF1000 

0.4744 4 1.90 7 3 -0.06 0.8 2 -1.60 6.520 1 -6.52 -6.28 

EM04 - 

Ens. ST BestRed 

0.5064 4 2.03 8 3 -0.07 0.7 2 -1.40 7.117 1 -7.12 -6.56 

EM05 - Ens. 

RF1000 BestRed 

0.6571 4 2.63 7 3 -0.06 0.8 2 -1.60 4.572 1 -4.57 -3.60 

EM07 - 

RF1000 BM 

0.5319 4 2.13 8 3 -0.07 0.8 2 -1.60 6.497 1 -6.50 -6.04 

 

Figure 24 presents a side by side comparison of the evolution of the top variable importance values 

throughout the testing set with model BM06 for the (a) Industrial_PRE and (b) Industrial_YR1 

datasets. Even though the EM05 was selected as the best performing model for the Industrial_YR1 

dataset by the scorecard, the only input for this model is the base BM06 model. It is interesting to 
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notice how the last known value of the threshold (Demand_Dlim_LKV) becomes one of the most 

important input variables for this model to forecast the electricity demand threshold during the 

pandemic (Industrial_YR1). Also, more consumption related inputs such as “AvDemand_PM”, 

“AvLowDemand_PM”, and “AvHighDemand_PM” become important during the pandemic 

(Industrial_YR1). This shows how the model starts to rely more on historical consumption data 

than on weather data to forecast the demand threshold for this consumer during the pandemic. 

These results show that calendar related data is not very relevant for this consumer. Only the input 

“Month” is seen and this only happens in the pre-pandemic scenario. 

 

Fig. 24. Evolution of the variables with the highest importance values with model BM06 for the 

(a) Industrial_PRE and (b) Industrial_YR1 datasets.  

 

 4.2.2 Educational Consumer Threshold Forecasting Results 

Figure 25 presents the top 5 lowest MAPE values achieved by the models when applied to the 

educational consumer. Appendix 7 provides MAPE values achieved by all of the models. The 

regression random decision forest based ensemble model EM05 was the best performing model 

on this performance metric for this consumer. None of the arithmetic based as well as none of the 

regression single decision tree based forecasting models made it to the list of the top 5 performers. 
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These results show that tree-based machine learning models, especially regression random 

decision forest based models in this case; achieve better MAPE values than arithmetic based 

models for this consumer.  

 

Fig. 25. Top 5 lowest MAPE value results for an educational consumer. 

 

Figure 26 presents the top 5 highest percentage model savings results achieved by the models when 

applied to the educational consumer. Appendix 7 provides the percentage model savings results 

achieved by all of the models. The regression random decision forest based ensemble model EM03 

was the best performing model on this performance metric for this consumer. None of the 

regression single decision tree based forecasting models made it to the list of the top 5 performers. 

These results show that both arithmetic and tree-based machine learning models, especially 

regression random decision forest based models in this case; can achieve high percentage model 

savings results for this consumer.  

 

Fig. 26. Top 5 highest percentage model savings results for an educational consumer. 
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Figure 27 presents the top 5 lowest number of false positive days achieved by the models when 

applied to the educational consumer. Appendix 7 provides the number of false positive days 

achieved by all of the models. The regression random decision forest based base model BM06 

was the best performing model on this performance metric for this consumer. None of the 

arithmetic based forecasting models made it to the list of the top 5 performers. These results 

show that tree-based machine learning models can generate a lower number of false positive 

days than the number generated by arithmetic based models for this consumer. 

 

Fig. 27. Top 5 least number of false positive days for an educational consumer. 

 

Table 26 shows the ranked scorecard results used to select the BM06 RF1000 BestRed as the best 

overall performing model for this consumer. All top performing models were included in the 

scorecard evaluation. This model achieved model savings of 6,330 kW during the testing period, 

which translates into US$ 107,610 for the full testing period using the same US$/kW rate 

previously described at the end of Section 4.2.1. 
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Table 26 

Ranked scorecard results for selecting best overall threshold forecasting model for the Educational 

consumer. 

 % Model Savings User Inconvenience Model Complexity MAPE  

 Value R

a

n

k 

Score Number 

of FP 

R

a

n

k 

Score Value R

a

n

k 

Score Value R

a

n

k 

Score Total 

Score 

BM02 - AvPast3 0.8772 4 3.51 70 3 -0.58 0.1 2 -0.20 10.158 1 -10.16 -7.42 

BM04 - RF1000 0.8301 4 3.32 37 3 -0.30 0.3 2 -0.60 6.642 1 -6.64 -4.23 

BM06 - 

RF1000 BestRed 

0.8185 4 3.27 28 3 -0.23 0.3 2 -0.60 5.623 1 -5.62 -3.18 

EM03 - 

Ens. RF1000 

0.8773 4 3.51 41 3 -0.34 0.8 2 -1.60 6.292 1 -6.29 -4.72 

EM04 - 

Ens. ST BestRed 

0.7989 4 3.20 40 3 -0.33 0.7 2 -1.40 6.990 1 -6.99 -5.52 

EM05 - Ens. 

RF1000 BestRed 

0.8680 4 3.47 35 3 -0.29 0.8 2 -1.60 5.541 1 -5.54 -3.96 

EM06 - 

Ens. ST BM 

0.6793 4 2.72 38 3 -0.31 0.7 2 -1.40 8.015 1 -8.02 -7.01 

EM07 - 

RF1000 BM 

0.8708 4 3.48 56 3 -0.46 0.8 2 -1.60 6.989 1 -6.99 -5.57 

 

Figure 28 presents the evolution of the highest variable importance values throughout the testing 

set with model BM06 for the educational consumer. Inputs related to operational data that were 

available for the educational consumer such as “Ev_Classes”, “Ev_CampusOpen”, and 

“Ev_ResHallsOpen” were determined to be of high importance value by the model. This means 

that an additional effort should be made to gather these type of input variables when implementing 

the proposed methodology for an educational consumer.  
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Fig. 28. Evolution of the variables with the highest importance values with model BM06 for an 

educational consumer. 

 

The BM06 model also selected weather related data. However, similar to what was observed with 

the industrial consumer, calendar related data such as number of weekdays, number of weekend 

days, and the number of each day of the week are not of high importance for the educational 

consumer. Another interesting aspect is the presence of data related to previous months and 

historical electricity consumption. Input variables such as “NetDemand_Dlim_PM”, 

“AvHighSolarF01_PM”, and “AvNetDemand_PM” are considered of high importance by base 

model BM06. 

 

 4.2.3 Residential Consumer Threshold Forecasting Results 

Figure 29 presents the top 5 lowest MAPE values achieved by the models when applied to the 

residential consumer. Appendix 7 provides the MAPE values achieved by all of the models. The 

regression random decision forest based base model BM06 was the best performing model on this 

performance metric for this consumer. None of the arithmetic based base models as well as none 
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of the regression single decision tree based forecasting models made it to the list of the top 5 

performers. These results show that tree-based machine learning models, especially regression 

random decision forest based models in this case; achieve better MAPE values although the 

arithmetic based ensemble model was also a top performer on this performance metric for this 

consumer.   

  

Fig. 29. Top 5 lowest MAPE value results for a residential consumer. 

 

The MAPE values obtained for the residential consumer can look surprisingly high when 

compared with those obtained for the industrial and the educational consumer. Such a comparison 

might even raise questions in regards to the validity of the methodology for residential consumers. 

However, this difference can be explained by remembering that the MAPE is a percentage and 

taking a closer look at the actual and forecasted values for each consumer. Table 27 shows how 

the threshold values for the residential consumer are so low in comparison to those of the 

educational consumer, that a very small error value can represent a significant increase in the 

MAPE.  
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Table 27 

Actual thresholds, forecast errors, and MAPE values for educational and residential consumer by 

month. 

 Educational Consumer [BM06] Residential Consumer [BM06] 

Period Actual 

Threshold 

Forecast 

Error 

MAPE Actual 

Threshold 

Forecast 

Error 

MAPE 

Jan. 4,742.14 134 0.023 5.96 0.86 0.160 

Feb. 5,038.34 501 0.097 6.15 -0.19 0.032 

Mar. 5,166.36 314 0.061 10.91 -0.30 0.049 

Apr. 5,041.99 485 0.109 9.59 -4.82 0.442 

May. 5,199.10 190 0.040 9.39 -1.18 0.123 

Jun. 6,863.66 104 0.021 8.02 -0.32 0.034 

Jul. 6,326.17 -161 0.031 6.22 0.58 0.072 

Aug. 6,873.45 61 0.012 5.63 1.35 0.217 

Sep. 5,874.17 23 0.005 7.50 1.13 0.200 

Oct. 5,176.91 -1080 0.157 7.01 -1.33 0.177 

Nov. 5,125.73 -140 0.022 7.68 0.28 0.041 

Dec. 4,456.31 -667 0.097 5.36 -0.93 0.121 

   5.623   13.895 

 

Figure 30 presents the top 5 high percentage model savings results achieved by the models when 

applied to the residential consumer. Appendix 7 provides the percentage model savings results 

achieved by all of the models. The arithmetic based base model BM01 - Last known value was the 

best performing model on this performance metric for this consumer. None of the regression single 

decision tree based forecasting models made it to the list of the top 5 performers. These results 

show that both arithmetic and tree-based machine learning models, especially regression random 
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decision forest based models in this case; can achieve high percentage model savings results for 

this consumer. 

 

Fig. 30. Top 5 high percentage model savings results for a residential consumer. 

 

Figure 31 presents the top 5 least number of false positive days achieved by the models when 

applied to the residential consumer. Appendix 7 provides the number of false positive days 

achieved by all of the models. The regression random decision forest based ensemble model EM05 

was the best performing model on this performance metric for this consumer. None of the 

regression single decision tree based forecasting models made it to the list of the top 5 performers. 

These results show that both arithmetic and tree-based machine learning models, especially 

regression random decision forest based models in this case; can achieve the least number of false 

positive days for this consumer. 

   

Fig. 31. Top 5 number of false positive days for a residential consumer. 
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Only the tree-based machine learning models BM04, BM06, and EM03 have consistently made 

the top 5 performers list for the three performance metrics being evaluated to select an overall best 

performing model for this consumer. Table 28 shows the ranked scorecard results used to select 

the BM06 RF1000 BestRed as the best overall performing model for this consumer. All top 

performing models were included in the scorecard evaluation. This model achieved model savings 

of 8.77 kW during the testing period, which translates into US$ 149 for the full testing period using 

the same US$/kW rate previously described at the end of Section 4.2.1. 

 

Table 28 

Ranked scorecard results for selecting best overall threshold forecasting model for the Residential 

consumer. 

 % Model Savings User Inconvenience Model Complexity MAPE  

 Value R

a

n

k 

Score Number 

of FP 

R

a

n

k 

Score Value R

a

n

k 

Score Value R

a

n

k 

Score Total 

Score 

BM02 - AvPast3 0.8772 4 3.51 70 3 -0.58 0.1 2 -0.20 10.158 1 -10.16 -7.42 

BM01 - LKV 0.7688 4 3.08 131 3 -1.08 0.1 2 -0.20 36.041 1 -36.04 -34.24 

BM02 - AvPast3 0.5344 4 2.14 61 3 -0.50 0.1 2 -0.20 22.089 1 -22.09 -20.65 

BM04 - RF1000 0.7472 4 2.99 66 3 -0.54 0.3 2 -0.60 15.293 1 -15.29 -13.45 

BM06 - 

RF1000 BestRed 

0.7016 4 2.81 60 3 -0.49 0.3 2 -0.60 13.895 1 -13.90 -12.18 

EM01 - 

Ens. Ave 

0.7392 4 2.96 75 3 -0.62 0.6 2 -1.20 16.001 1 -16.00 -14.86 

EM03 - 

Ens. RF1000 

0.6960 4 2.78 62 3 -0.51 0.8 2 -1.60 15.654 1 -15.65 -14.98 

EM05 - Ens. 

RF1000 BestRed 

0.6048 4 2.42 58 3 -0.48 0.8 2 -1.60 15.662 1 -15.66 -15.32 

 

Figure 32 presents the evolution of the highest variable importance values throughout the testing 

set with model BM06 for the residential consumer. Contrary to what was observed with the 

industrial and the educational consumers, inputs related to historical electricity consumption, even 



A Customer Agnostic Machine Learning Based Peak Electric Load Days Forecasting Methodology for Consumers With and Without Renewable Electricity Generation 

Page 121 of 173 

those looking as far back as 3 months before, are the most important for this residential consumer. 

It is clear that weather and calendar related data did not play a high importance role in any of these 

models for this consumer. This observation can be explained by considering that the family that 

resides in this residence follows such a fixed routine month after month, that their consumption 

patterns are best captured by looking at their historical consumption without the need to 

incorporate additional weather and/or operational related data available. 

 

Fig. 32. Evolution of the variables with the highest importance values with model BM06 for a 

residential consumer. 

 

Table 29 shows how there were no actual peak loads during 3 months (Mar., Apr., and May) of 

the test set for the residential consumer. When there are no actual peaks, most of the high loads of 

the month tend to stay at a similar level. Looking back at Table 27, the overall best performing 

model for the residential consumer (BM06) under-predicted the threshold value during these 

months. All of these events explain how, as shown in Table 29, 43 of the 60 false positive days for 

the whole year occurred during these 3 months. 
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Table 29 

Number of actual peaks and of false positives for educational and residential consumer by month. 

  Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.  

Educational 

Consumer 

[BM06] 

Number of 

actual peaks 

6 11 8 5 7 4 6 3 9 4 4 3 70 

Number of  

false 

positives 

0 3 13 1 0 4 0 5 0 0 0 0 28 

Residential 

Consumer 

[BM06] 

Number of 

actual peaks 

11 7 0 0 0 2 8 6 7 10 4 11 66 

Number of  

false 

positives 

3 1 23 15 5 0 0 0 5 0 9 0 60 

 

 4.2.4 Summary of Results and Model Savings Calculations 

Table 30 provides a summary of the main results obtained through the case study developed. The 

overall best performing models for all three consumers evaluated were regression random decision 

forest based models. These models achieved the best results when manual feature reduction 

techniques were applied for the industrial and the educational consumer. The results also showed 

that the consumers evaluated could potentially achieve model savings within the range of 65% and 

82% during a year. These results translate to US$ 149.09, US$ 23,290.00, and US$ 107,610.00 in 

savings for the residential, industrial, and educational consumer respectively. However, these 

results also showed that in order to achieve these savings, consumers would have to experience 

unnecessary user inconvenience during 0 to 60 days in a year. Consumers with larger differences 

between their peak loads and demand thresholds stand to gain the most benefit from implementing 

these models. 
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Table 30 

Summary of main results obtained through the case study developed. 

 Industrial_PRE 

(Pre-pandemic) 

Industrial_YR1 

(Year 1 of 

pandemic) 

Educational Residential 

Overall best performing 

model 

BM06 

Regression random 

decision forest 

based base model 

with manual 

feature reduction. 

EM05 

Regression random 

decision forest 

based ensemble 

model with manual 

feature reduction. 

BM06 

Regression random 

decision forest 

based base model 

with manual 

feature reduction. 

BM06 

Regression random 

decision forest 

based base model 

with manual 

feature reduction.  

MAPE   2.55 4.57 5.62 13.90 

Model savings  

achieved (Percentage) 

57.74% 65.71% 81.85% 70.16% 

Model savings  

achieved (Electricity) 

922.00 kW 1,370.00 kW 6,330.00 kW 8.77 kW 

Model savings  

achieved (Costs) 

US$ 15,674.00 US$ 23,290.00 US$ 107,610.00 US$ 149.09 

Number of false positive 

days per year 

(User inconvenience) 

0 7 28 60 

Average difference 

between monthly peak 

load and monthly 

threshold 

177.24 kW 207.00 kW 617.33 kW 0.91 kW 

 

4.3 Ensemble Peak Electric Load Days Forecasting Results and Discussion 

 4.3.1 Industrial Consumer Ensemble Forecasting Results 

Table 31 shows the average monthly sensitivity and balanced accuracy values, as well as the total 

number of false positives and false negatives predictions produced by the top 6 performing models 

and the arithmetic based models across these indicators for the Industrial consumer. All of the top 
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performing models achieved perfect predictions. These metrics were evaluated for all 15 models: 

5 threshold-based regression models, 4 classification models, and 6 ensemble models. Appendix 

8 provides a table with the results for all 15 models for this consumer. These results show how 

machine learning based ensemble models clearly outperform the majority classifier (E01) and the 

single-vote (E02) classifier for PELD forecasting for this consumer. Only two classification 

models were top performing models M07_ClassRF100 and M08_ClassANN. The machine 

learning based ensemble models clearly picked up on these models and therefore were able to 

adjust and achieve a perfect performance. The E03_Ens.ClassST model, a decision tree model, 

only picked the output of the M07_ClassRF1000 model as a selected feature during the 12 test 

months.  

 

Figure 33 shows how the random forest model E04_Ens.ClassRF1000 consistently picked the 

output of the M07_ClassRF100 and M08_ClassANN models as two of the most important features 

during training. It is interesting to notice how the input of other base models that were not “top 

performing” is considered by this ensemble approach and adjusted through time. It is also 

interesting to notice how the ensemble models consider variables such as the Month, Day of the 

Week (DoW), Day of the Month (DoM), and the forecasted threshold (Dlim). Table 32 shows the 

ranked scorecard results used to select the E03 Ensemble Class ST as the best overall performing 

ensemble PELDs forecasting model for this consumer. All ensemble models were included in the 

scorecard evaluation. 
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Table 31 

Average monthly sensitivity and balanced accuracy values, number of false positives and false 

negatives produced by the by the top 6 performing models across these indicators for the Industrial 

consumer. 

 E01 

Majority 

E02 

Single-

Vote 

M07 

Class 

RF1000  

M08 

Class 

ANN 

E03 

Ens. 

Class 

ST  

E04 

Ens. 

Class 

RF1000  

E05 
Ens. 

Class 

ANN  

E06 

Ens. 

Class 

AdaBoost  

Average monthly 

sensitivity 

0.344 1 1 1 1 1 1 1 

Average monthly 

balanced accuracy 

0.659 0.526 1 1 1 1 1 1 

Total number of 

false negatives 

23 0 0 0 0 0 0 0 

Total number of 

false positives 

12 313 0 0 0 0 0 0 

 

 

Fig. 33. Evolution of the variables with the highest importance values with model 

E04_Ens.ClassRF1000 for an Industrial consumer. 
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Table 32 

Ranked scorecard results for selecting best overall performing ensemble PELDs forecasting model 

for the Industrial consumer. 

 False Negatives (FN) False Positives (FP) Model Complexity Sensitivity Balanced Accuracy  

 Number 

of FN 

R

a
n

k 

Score Number 

of FP 

R

a
n

k 

Score Value R

a
n

k 

Score Value R

a
n

k 

Score Value R

a
n

k 

Score Total 

Score 

E01 23 5 -0.32 12 4 -0.13 0.6 3 -1.80 0.344 2 0.69 0.659 1 0.66 -0.90 

E02 0 5 0.00 313 4 -3.43 0.6 3 -1.80 1.000 2 2.00 0.526 1 0.53 -2.70 

E03 0 5 0.00 0 4 0.00 0.7 3 -2.10 1.000 2 2.00 1.000 1 1.00 0.90 

E04 0 5 0.00 0 4 0.00 0.8 3 -2.40 1.000 2 2.00 1.000 1 1.00 0.60 

E05 0 5 0.00 0 4 0.00 1.0 3 -3.00 1.000 2 2.00 1.000 1 1.00 0.00 

E06 0 5 0.00 0 4 0.00 0.9 3 -2.70 1.000 2 2.00 1.000 1 1.00 0.30 

 

 4.3.2 Educational Consumer Ensemble Forecasting Results 

Table 33 shows the average monthly sensitivity and balanced accuracy values, as well as the total 

number of false positives and false negatives predictions produced by the top 5 performing models 

and the arithmetic based models across these indicators for the Educational consumer. Appendix 

9 provides a table with the results for all 15 models for this consumer. Contrary to what happened 

with the Industrial consumer, it is difficult to select a best performing models with this information. 

Table 34 shows the ranked scorecard results used to select the E03 Ensemble Class ST as the best 

overall performing ensemble PELDs forecasting model for this consumer. All ensemble models 

were included in the scorecard evaluation. Even though the best performing model is machine 

learning based, some of the machine learning based ensemble models were not able to outperform 

the arithmetic based models for this consumer. A combination of limited data compared to the 

other two consumers, more input variables, and the effect of renewable energy could be playing a 

role in making the forecasting task more challenging for these models.    
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Table 33 

Average monthly sensitivity and balanced accuracy values, number of false positives and false 

negatives produced by the by the top 5 performing models across these indicators for the 

Educational consumer. 

 E01 

Majority 

E02 

Single-

Vote 

M09 

Class 

ANN_ST 

M08 

Class 

ANN 

M06 

Class 

ST 

E03 

Ens. Class 

ST 

E04 

Ens. Class 

RF 

Average monthly 

sensitivity 

0.301 1 0.944 0.898 0.585 0.681 0.537 

Average monthly 

balanced accuracy 

0.651 0.705 0.891 0.833 0.677 0.796 0.741 

Total number of 

false negatives 

34 0 3 6 11 17 20 

Total number of 

false positives 

0 136 37 55 54 21 13 

 

Table 34 

Ranked scorecard results for selecting best overall performing ensemble PELDs forecasting model 

for the Educational consumer. 

 False Negatives (FN) False Positives (FP) Model Complexity Sensitivity Balanced Accuracy  

 Number 
of FN 

R
a

n

k 

Score Number 
of FP 

R
a

n

k 

Score Value R
a

n

k 

Score Value R
a

n

k 

Score Value R
a

n

k 

Score Total 

Score 

E01 34 5 -0.47 0 4 0.00 0.6 3 -1.80 0.301 2 0.60 0.651 1 0.65 -1.01 

E02 0 5 0.00 136 4 -1.49 0.6 3 -1.80 1.000 2 2.00 0.705 1 0.71 -0.59 

E03 17 5 -0.23 21 4 -0.23 0.7 3 -2.10 0.681 2 1.36 0.796 1 0.80 -0.41 

E04 20 5 -0.27 13 4 -0.14 0.8 3 -2.40 0.537 2 1.07 0.741 1 0.74 -1.00 

E05 27 5 -0.37 33 4 -0.36 1.0 3 -3.00 0.315 2 0.63 0.615 1 0.62 -2.49 

E06 29 5 -0.40 10 4 -0.11 0.9 3 -2.70 0.437 2 0.87 0.697 1 0.70 -1.64 
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Figure 34 shows how the random forest model E04_Ens.ClassRF1000 consistently picked the 

output of classification ANN based base models as two of the most important features during 

training. It is interesting to notice how calendar data such as Day of the Week (DoW) and Day of 

the Month (DoM) is selected as important by the model as well as the cooling requirements. 

  

Fig. 34. Evolution of the variables with the highest importance values with model 

E04_Ens.ClassRF1000 for an Educational consumer. 

 

 4.3.3 Residential Consumer Ensemble Forecasting Results 

Table 35 shows the average monthly sensitivity and balanced accuracy values, as well as the total 

number of false positives and false negatives predictions produced by the top 5 performing models 

and the arithmetic based models across these indicators for the Residential consumer. Four of these 

models achieved perfect predictions. These metrics were evaluated for all 15 models: 5 threshold-

based regression models, 4 classification models, and 6 ensemble models. Appendix 10 provides 

a table with the results for all 15 models for this consumer. Similar to the results for the Industrial 

consumer, these results also show how machine learning based ensemble models clearly 



A Customer Agnostic Machine Learning Based Peak Electric Load Days Forecasting Methodology for Consumers With and Without Renewable Electricity Generation 

Page 129 of 173 

outperform the majority classifier (E01) and the single-vote (E02) classifier for PELD forecasting 

for this consumer. Only one classification base model was a top performing model 

(M07_ClassRF1000). The machine learning based ensemble models clearly picked up on this 

model and therefore were able to adjust and achieve a perfect performance, with an exception for 

the ANN model. The E03_Ens.ClassST model, a decision tree model, picked the output of the 

M07_ClassRF1000 model along with the output of the M06_ClassST model, and the maximum 

electric demand registered the day before as features during the seven test months.  

 

Table 35 

Average monthly sensitivity and balanced accuracy values, number of false positives and false 

negatives produced by the by the top 5 performing models across these indicators for the 

Residential consumer. 

 E01 

Majority 

E02 

Single-

Vote 

M07 

Class 

RF1000  

E03 

Ens. 

Class 

ST 

E04 

Ens. Class 

RF1000 

E06 

Ens. 

Class 

AdaBoost 

E05 
Ens. 

Class 

ANN  

Average monthly 

sensitivity 

0.618 1 1 1 1 1 0.996 

Average monthly 

balanced accuracy 

0.777 0.500 1 1 1 1 0.991 

Total number of 

false negatives 

80 0 0 0 0 0 1 

Total number of 

false positives 

9 154 0 0 0 0 2 
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Table 36 shows the ranked scorecard results used to select the E03 Ensemble Class ST as the best 

overall performing ensemble PELDs forecasting model for this consumer. All ensemble models 

were included in the scorecard evaluation. Figure 35 shows how the random forest model 

E04_Ens.ClassRF1000 consistently picked the output of the M07_ClassRF1000 model as one of 

the most important features during training. It is interesting to notice how the input of other base 

models that were not “top performing” is considered by this ensemble approach and adjusted 

through time. It is also interesting to notice how the ensemble models also consider weather related 

variables in addition to the models as oppose to calendar related as it was observed for the 

Industrial and Educational consumers. This shows that the methodology truly adapts to each 

consumer. 

 

Table 36 

Ranked scorecard results for selecting best overall performing ensemble PELDs forecasting model 

for the Educational consumer. 

 False Negatives 

(FN) 

False Positives (FP) Model Complexity Sensitivity Balanced Accuracy  

 Number 

of FN 

R

a

n

k 

Score Number 

of FP 

R

a

n

k 

Score Value R

a

n

k 

Score Value R

a

n

k 

Score Value R

a

n

k 

Score Total 

Score 

E01 80 5 -1.10 9 4 -0.10 0.6 3 -1.80 0.618 2 1.24 0.777 1 0.78 -0.98 

E02 0 5 0.00 154 4 -1.69 0.6 3 -1.80 1.000 2 2.00 0.500 1 0.50 -0.99 

E03 0 5 0.00 0 4 0.00 0.7 3 -2.10 1.000 2 2.00 1.000 1 1.00 0.90 

E04 0 5 0.00 0 4 0.00 0.8 3 -2.40 1.000 2 2.00 1.000 1 1.00 0.60 

E05 1 5 -0.01 2 4 -0.02 1.0 3 -3.00 0.996 2 1.99 0.991 1 0.99 -0.05 

E06 0 5 0.00 0 4 0.00 0.9 3 -2.70 1.000 2 2.00 1.000 1 1.00 0.30 
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Fig. 35. Evolution of the variables with the highest importance values with model 

E04_Ens.ClassRF1000 for a Residential consumer. 
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Chapter 5: Conclusions 

 

This chapter will present the author’s conclusions drawn from the results of the completed stages 

of the research detailed within this dissertation. These results have been previously presented in 

Sections 4.1 through 4.3. Emphasis will be placed on the results’ implications and contributions in 

the field of peak electric load days (PELDs) forecasting methodologies for consumers with and 

without behind the meter renewable electricity generation (BTMREG) when applicable. 

 

5.1 Peak Electric Load Days Forecasting Conclusions 

The results presented in this dissertation have provided evidence that shows that threshold based 

and/or classification based forecasting methodologies can accurately forecast more than 70% of a 

year’s peak electric load days (PELDs) for consumers with behind the meter renewable electricity 

generation (BTMREG).  This task was completed using autoregressive integrated moving average 

(ARIMA), classification and regression trees (CART), random classification and regression forest, 

and artificial neural network (ANN) based machine learning techniques. The research described 

in this manuscript has provided three main contributions in order to address the lack of published 

studies detailing accurate PELDs forecasting methodologies applicable to the increasing number 

of facilities adopting BTMREG, as well as the lack of published studies comparing the 

performance of these methodologies in both the presence and absence of BTMREG. 
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The most interesting insight provided by these contributions is that counterintuitively, there can 

be more potential and model savings to be achieved by facilities using PELDs forecasting 

methodologies after adopting BTMREG. The results show how implementing these 

methodologies after BTMREG adoption becomes even more important than before the adoption 

in order to achieve financial savings. At first, many researchers and practitioners might not 

consider this outcome because by definition, a customer’s load profile is reduced when BTMREG 

is adopted which on the surface may appear to reduce the number of load reduction opportunities. 

  

The first of the three main contributions is the development and testing of a PELDs forecasting 

methodology applicable to both consumers with and without BTMREG. This methodology was 

tested using ARIMA, CART, random regression and classification forest, ANN, and ensemble 

based models. However, the methodology is model agnostic and different models can be tested in 

future research efforts. The experimental results showed that an ANN based model using features 

selected by a CART based model (M11_ClassANNSTwSMOTE) and one of the ensemble models 

(E02_SingleVote) achieved the highest average monthly sensitivity values for both the net demand 

and the demand scenarios. Based on the average monthly sensitivity and balanced accuracy values, 

the number of false positives and negatives produced by the model, and the intent to select the 

most parsimonious of the models, the M11_ClassANNSTwSMOTE was selected as the preferred 

model to use for PELDs prediction for this facility with BTMREG present. This model showed 

superior performance and reduced complexity. Furthermore, this model demonstrated the capacity 

to have achieved 93% of the potential savings in kW and US$ 142,129.01 savings in electricity 

costs during a yearlong testing period for the scenario with BTMREG. Given these results, it was 

concluded that practitioners interested in achieving the best model performance using 
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parsimonious models should start with the implementation of classification-based models. Based 

on the results obtained from these models, more elaborated approaches such as threshold-based 

PELDs classification and ensemble approaches might not be needed. 

 

The second contribution is the documentation of the first of their kind side-by-side empirical 

comparisons between the performance of ARIMA, CART, random regression and classification 

forest, ANN, and ensemble based models at forecasting electric load and PELDs in both scenarios, 

with and without BTMREG. The results obtained while testing the proposed methodology in the 

scenario without BTMREG serve as additional validation of the work published by Saxena et al. 

(2019) about forecasting PELDs without BTMREG. The results obtained through the side-by-side 

empirical comparisons in the scenario with BTMREG provided four important insights in regards 

to past, present, and potential future research. First, both a random forest (M03_RegRF) and an 

ANN based regression model (M05_RegANNST) outperformed ARIMA and CART regression-

based models at predicting future electric load levels for both the net demand and the demand 

scenarios. Second, comparing the results of the scenario with BTMREG and the scenario without 

BTMREG, empirical evidence suggesting that the presence of BTMREG affects the performance 

of the models was only observed for the regression-based models evaluated. The results obtained 

from the classification-based models as well as the ensemble models evaluated did not show 

evidence of an effect on the performance of these models due to the presence of BTMREG.  

 

The third and fourth insights provide important details about the methodology to consider for 

future research based on past publications and the current results. The third insight was that class 
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imbalance issues in the dataset need to be addressed in order to achieve the best performances 

when implementing the classification-based PELDs forecasting approach regardless of the 

presence or absence of BTMREG. The fourth insight was that the single vote ensemble approach 

outperformed the current majority vote approach proposed by Saxena et al. (2019) but produced a 

significantly greater number of false positive predictions when compared to the other models 

evaluated. The use of ensemble forecasting for PELDs forecasting can be further explored by 

evaluating other ensemble forecasting methodologies. 

  

A first of its kind PELDs forecasting model savings comparison for scenarios with and without 

BTMREG was presented as the third and final contribution of this first phase of the research. We 

have already discussed the first insight provided by this contribution at the beginning of this 

section. This was also the most interesting insight, the discovery of the possibility for more 

potential and model savings to be achieved by facilities using PELDs forecasting methodologies 

when BTMREG is adopted. The second insight provided by this contribution was that the months 

with the highest outside temperatures and consequently the highest energy usage for cooling 

purposes were also the months with the greatest savings to be achieved at the educational 

consumer’s campus. 
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5.2 Electricity Demand Threshold Value Forecasting Conclusions 

The results disclosed within this dissertation also allow us to determine that regression tree and 

random regression forest based machine learning models can outperform widely used expert based 

and arithmetic based methodologies at forecasting an efficient electricity demand threshold value. 

Demand thresholds have proven useful to trigger cost saving peak demand shaving actions and 

can be determined before the start of a billing period without receiving any signal or information 

from the utility. This dissertation presented a novel methodology that empowers any electricity 

consumer paying for peak demand charges to proactively execute demand response actions even 

without receiving signals or information coming from the utility, and only when necessary to 

effectively reduce demand charges and user inconvenience. The results obtained using real data 

from three different types of consumers showed that the overall best performing models for all 

three consumers evaluated were regression random decision forest based models. These models 

achieved the best results when manual feature reduction techniques were applied for the industrial 

(both before and during the COVID-19 pandemic) and the educational consumer. The results also 

showed that the consumers evaluated could potentially achieve model savings within the range of 

65% and 82% during a year. These results translate to US$ 149.09, US$ 23,290.00, and US$ 

107,610.00 in savings for the residential, industrial, and educational consumer respectively. 

 

The most influential input variables vary from consumer to consumer. In addition to the values 

forecasted by the base models, weather and historical electricity consumption related variables 

were the most important for the industrial consumer. In the case of the educational consumer, 

which had the most detailed operational data available, the input variables related to operation 
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details were the most important in addition to the values forecasted by the base models. Calendar 

related data such as number of weekdays, number of weekend days, and the number of each day 

of the week did not achieve high importance values for any of the consumers, except “Month” for 

the industrial consumer and only before the pandemic. The residential consumer was the only one 

for whom variables related to historical electricity consumption were the most important input 

variables. These results show that some consumers can have such a fixed electricity consumption 

routine month after month, that their consumption patterns are best captured by looking at their 

historical consumption without the need to incorporate additional weather, calendar, and/or 

operational related data available. 

 

5.3 Ensemble Peak Electric Load Days Forecasting Conclusions 

In addition, the results provided by this dissertation show that classification tree, random 

classification forest, adaptive boosting (AdaBoost), and artificial neural network (ANN) based 

ensemble modeling techniques can outperform majority based and single-vote based ensemble 

modeling techniques at forecasting peak electric load days (PELDs). The machine learning based 

ensemble models demonstrated the ability to adjust to the strongest features in order to generate 

the best forecast. When comparing the features selected by the one of the best performing models 

for the Residential consumer and the Industrial consumer, it was evident that the model adapted to 

each consumer’s particular situation. 
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Choosing machine learning based models such as classification tree, random classification forest, 

adaptive boosting (AdaBoost), and artificial neural network (ANN), ensures that an ongoing PELD 

management system will adapt to the latest conditions for each consumer. Approaches that provide 

a clear understanding in regards to what features are being the most influential, such as 

classification trees and random classification forest can allow administrator to focus on those 

features and potentially simplify the PELD monitoring tasks. One drawback of using machine 

learning based ensemble models is that they will require more historical data. They might not be 

an option to start from zero, but definitely the option to build towards.      
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Chapter 6: Recommendations for Future Studies 

 

There is a considerable amount of potential future work open for further exploration within the 

proposed methodologies and the PELD forecasting topic. Research into additional strategies to 

overcome the class imbalance problem for classification-based models as well as the exploration 

of additional ensemble forecasting methodologies have already been mentioned as potential future 

research opportunities. Before recommendations on policies can be made, the effects of this type 

of strategy being run on an entire set of consumers across a utility’s service area needs to be 

completed. Future research should evaluate the input on utility demand curves as more consumers 

adopt such a strategy. It is unclear from the current research if this strategy would complement 

utility’s attempt to curb peak demand or if it could potentially exacerbate the problem. 

 

Taking advantage of the model agnostic characteristic of the proposed methodologies, additional 

models that might outperform the models already evaluated could be integrated in a future study. 

However, researchers exploring additional models, especially more complex models, are 

encouraged to pay close attention and take measures in order to minimize the risk of overfitting. 

The use of area under the curve (AUC) of the receiver operating characteristic (ROC) curve to 

develop PELDs forecasting models that might eliminate the need to forecast a monthly threshold 

can be a very interesting avenue for future research. As previously stated, this performance metric 

is especially useful in situations where classification is more accurate if performed considering 

different classification thresholds. 
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Future studies could also focus on developing model selection techniques based on optimization 

models designed specifically for the PELD forecasting application for every model evaluated. A 

potential total cost function could integrate the known cost of false negatives based on the peak 

demand charges applicable to the customer. The function could also include a cost of false 

positives based on the financial cost of user inconvenience given by evaluating elements such as 

reduced productivity and the labor cost of executing unnecessary demand response events. 

Researchers can determine these costs, as well as other applicable costs, establish applicable 

constraints, and develop an optimization model with the objective of minimization a total cost 

function in order to select the best performing model at every stage. The approach can also be 

modified to maximize a net profit, or in this case net savings function, that includes the savings 

generated by every true positive and the cost associated with executing the required demand 

response events to generate each of those true positives.   

 

In regards to the task of forecasting an efficient monthly threshold, given a dataset bigger than 24 

data points, models that are more complex might be considered. However, when considering these 

models, it should also be considered that a clear feature selection process might still be of interest 

to researchers and practitioners. Furthermore, another approach worth exploring and comparing to 

the proposed monthly threshold forecasting methodology is using forecasting techniques to 

produce an hourly forecast for the entire billing period of interest and calculating the threshold 

using Equation 12. Even though the accuracy of the threshold will be highly dependent on the 

accuracy of the hourly forecast, the researchers believe that this could be a natural next step to the 

research presented in this paper. From another angle, typical regression techniques such as the 

ones used during this study are optimized to produce results as close as possible to the actual value 
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rather than favoring either under-prediction or over-prediction. Nevertheless, for this application, 

modifying already existing regression techniques or developing new ones that are optimized to 

favor slightly under-predicting models in order to reduce over-prediction could prove useful if the 

consumer is willing to allow a certain amount of user inconvenience in order to secure higher cost 

savings.  

 

During the experimentation stage, it was noticed that the consumer with behind the meter 

renewable electricity generation (BTMREG) always had a positive net demand. This leads the 

researchers to also suggest the evaluation of how the proposed methodology would perform in 

cases where a consumer with BTMREG produces more electricity than it consumes. This type of 

consumer has a negative net demand and most likely either stores the excess energy or sells it back 

to the grid. 

 

Other paths for future research that have been revealed by the insights discovered during the 

execution of this study as well as those provided by the results include:  

o How does the resolution of the dataset (30 mins. vs 60 mins. vs x mins) affect the 

performance of the models? 

o What is the optimal size of the training dataset for each model? 

o What are the effects of training the models with just the hours when peak loads occur in 

order to reduce the class imbalance? 

o How effective is the methodology for other types of REG sources such as wind and hydro? 
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Further research into these questions will help researchers and practitioners develop improved 

PELDs forecasting methodologies that support consumers with and without BTMREG on their 

task to reduce peak electric load related costs. 
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Appendix 1 

Variables per dataset. 

 Variable name Description Type Industrial 

PRE 

Industrial 

YR1 

Educational Residential 

1 Label Year and month using the 

format YYYYMM at the 

time of observation. 

Categorical X X X X 

2 Year Year component of Label 

at the time of 

observation. 

Categories: 2018, 2019, 

2020, and 2021 

Categorical X X X X 

3 Month Month component of 

Label at the time of 

observation. 

Categories: 1, 2, 3, …, 12 

Categorical X X X X 

4 Demand_Dlim Calculated monthly 

threshold (Dlim) for 

Demand using Equation 

12 in kW. 

Continuous X X X X 

5 Demand_Dlim_LKV Calculated monthly 

threshold (Dlim) for the 

same month on the 

previous year or any 

other last known value 

for the month of interest. 

Continuous X X X X 

6 MonthMaxTemp_F Maximum outdoor 

temperature for the 

month of interest in 

degrees Fahrenheit (°F) 

recorded by NOAA. 

Continuous X X X X 

7 DailyMaxTemp_Ave_F Average daily maximum 

outdoor temperature for 

the month of interest in 

degrees Fahrenheit (°F) 

recorded by NOAA. 

 

 

Continuous X X X X 
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8 DailyMaxTemp_Min_F Minimum daily 

maximum outdoor 

temperature for the 

month of interest in 

degrees Fahrenheit (°F) 

recorded by NOAA. 

Continuous X X X X 

9 DailyAveTemp_Max_F Maximum daily average 

outdoor temperature for 

the month of interest in 

degrees Fahrenheit (°F) 

recorded by NOAA. 

Continuous X X X X 

10 MonthAveTemp_F Average outdoor 

temperature for the 

month of interest in 

degrees Fahrenheit (°F) 

recorded by NOAA. 

Continuous X X X X 

11 DailyAveTemp_Min_F Minimum daily average 

outdoor temperature for 

the month of interest in 

degrees Fahrenheit (°F) 

recorded by NOAA. 

Continuous X X X X 

12 DailyMinTemp_Max_F Maximum daily 

minimum outdoor 

temperature for the 

month of interest in 

degrees Fahrenheit (°F) 

recorded by NOAA. 

Continuous X X X X 

13 DailyMinTemp_Ave_F Average daily minimum 

outdoor temperature for 

the month of interest in 

degrees Fahrenheit (°F) 

recorded by NOAA. 

Continuous X X X X 

14 MonthMinTemp_F Minimum outdoor 

temperature for the 

month of interest in 

degrees Fahrenheit (°F) 

recorded by NOAA. 

Continuous X X X X 

15 AmtDoW1 Total number of 

Mondays in the month of 

interest. 

Continuous X X X X 

16 AmtDoW2 Total number of 

Tuesdays in the month of 

interest. 

Continuous X X X X 
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17 AmtDoW3 Total number of 

Wednesdays in the month 

of interest. 

Continuous X X X X 

18 AmtDoW4 Total number of 

Thursdays in the month 

of interest. 

Continuous X X X X 

19 AmtDoW5 Total number of Fridays 

in the month of interest. 

Continuous X X X X 

20 AmtDoW6 Total number of 

Saturdays in the month of 

interest. 

Continuous X X X X 

21 AmtDoW7 Total number of Sundays 

in the month of interest. 

Continuous X X X X 

22 AmtWeekdays Total number of 

weekdays in the month of 

interest. 

Continuous X X X X 

23 Ev_Classes Total number of days 

with active classes in the 

month of interest. 

Continuous   X  

24 Ev_ResHallsOpen Total number of days 

with residence halls open 

during the month of 

interest. 

Continuous   X  

25 Ev_CampusOpen Total number of days 

with the campus open 

during the month of 

interest. 

Continuous   X  

26 Ev_HalfDayClass Total number of days 

with only half day of 

classes during the month 

of interest. 

Continuous   X  

27 Ev_HalfDayCampus Total number of days 

with only half day of 

campus open during the 

month of interest. 

Continuous   X  

28 Ev_ExamOrReadDay Total number of exam or 

reading days during the 

month of interest. 

Continuous   X  
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29 Ev_SpringBreak Total number of 

SpringBreak days during 

the month of interest. 

Continuous   X  

30 Ev_FirstDayAfterBreak Total number of days that 

are a first day after a 

break period during the 

month of interest. 

Continuous   X  

31 Ev_CareerFair Total number of days 

with career fair during 

the month of interest. 

Continuous   X  

32 Ev_Graduation Total number of days 

with graduation during 

the month of interest. 

Continuous   X  

33 Ev_Orientation Total number of days 

with orientation during 

the month of interest. 

Continuous   X  

34 Ev_Festival Total number of days 

with festival during the 

month of interest. 

Continuous   X  

35 Ev_Homecoming Total number of days 

with homecoming during 

the month of interest. 

Continuous   X  

36 Ev_Hackathon Total number of days 

with hackathon during 

the month of interest. 

Continuous   X  

37 Ev_EventInc Total number of days 

with expected electricity 

demand increase during 

the month of interest. 

Continuous   X  

38 Ev_EventRed Total number of days 

with expected electricity 

demand decrease during 

the month of interest. 

Continuous   X  

39 Demand_Dlim_PM Calculated monthly 

threshold (Dlim) for 

Demand during the 

previous month using 

Equation 12 in kW. 

Continuous X X X X 

40 Demand_Dmax_PM Maximum Demand 

registered during the 

previous month in kW. 

Continuous X X X X 
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41 AvDemand_PM Average Demand 

registered during the 

previous month in kW. 

Continuous X X X X 

42 AvHighDemand_PM Average high daily 

Demand registered 

during the previous 

month in kW. 

Continuous X X X X 

43 AvLowDemand_PM Average low daily 

Demand registered 

during the previous 

month in kW. 

Continuous X X X X 

44 MaxSolar_PM Maximum solar 

generation registered 

during the previous 

month in kW. 

Continuous   X  

45 AvSolar_PM Average solar generation 

registered during the 

previous month in kW. 

Continuous   X  

46 AvHighSolar_PM Average maximum daily 

solar generation 

registered during the 

previous month in kW. 

Continuous   X  

47 Demand_Dlim_PM2 Calculated monthly 

threshold (Dlim) for 

Demand during the 

second previous month 

using Equation 12 in kW. 

Continuous X X X X 

48 Demand_Dmax_PM2 Maximum Demand 

registered during the 

second previous month in 

kW. 

Continuous X X X X 

49 AvDemand_PM2 Average Demand 

registered during the 

second previous month in 

kW. 

Continuous X X X X 

50 AvHighDemand_PM2 Average high daily 

Demand registered 

during the second 

previous month in kW. 

 

 

Continuous X X X X 
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51 AvLowDemand_PM2 Average low daily 

Demand registered 

during the second 

previous month in kW. 

Continuous X X X X 

52 MaxSolar_PM2 Maximum solar 

generation registered 

during the second 

previous month in kW 

Continuous   X  

53 AvSolar_PM2 Average solar generation 

registered during the 

second previous month in 

kW 

Continuous   X  

54 AvHighSolar_PM2 Average maximum daily 

solar generation 

registered during the 

second previous month in 

kW 

Continuous   X  

55 Demand_Dlim_PM3 Calculated monthly 

threshold (Dlim) for 

Demand during the third 

previous month as 

described by Saxena et 

al. (2019) in kW 

Continuous X X X X 

56 Demand_Dmax_PM3 Maximum Demand 

registered during the 

third previous month in 

kW 

Continuous X X X X 

57 AvDemand_PM3 Average Demand 

registered during the 

third previous month in 

kW 

Continuous X X X X 

58 AvHighDemand_PM3 Average high daily 

Demand registered 

during the third previous 

month in kW 

Continuous X X X X 

59 AvLowDemand_PM3 Average low daily 

Demand registered 

during the third previous 

month in kW 

Continuous X X X X 

60 MaxSolar_PM3 Maximum solar 

generation registered 

during the third previous 

month in kW 

Continuous   X  



A Customer Agnostic Machine Learning Based Peak Electric Load Days Forecasting Methodology for Consumers With and Without Renewable Electricity Generation 

Page 157 of 173 

61 AvSolar_PM3 Average solar generation 

registered during the 

third previous month in 

kW 

Continuous   X  

62 AvHighSolar_PM3 Average maximum daily 

solar generation 

registered during the 

third previous month in 

kW 

Continuous   X  
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Appendix 2 

Inputs used from Appendix 1 for base threshold value forecasting models. 

Model name Industrial 

PRE 

Industrial 

YR1 

Educational Residential 

BM01_LKV Variable 5 

BM02_AvPast3 Previous 3 values of Variable 4 

BM03_ST 

Variables 2,3, 5-22, 39-43, 47-51,  

and 55-59 

Variables 2, 3,  

and 5-62 

(Same as Industrial 

PRE & YR1) 

BM04_RF1000 (Same as Industrial 

PRE & YR1) 

BM05_ST_BestRed Variable 13 Variable 14 Variables 5, 7,  

and 23 

Variables 39, 40, 

and 47 

BM06_RF1000_BestRed Variables 3, 5, 

and 6-14 

Variables 5, 7-14, 

and 41-43 

Variables 5, 7, 8, 

10-14, 21, 23-25, 

39-43, 45, 53,  

and 54 

Variables 6, 9, 11, 

12, 39-43, 47, 48, 

50, 51, 55, 57,  

and 58 

 

 

 

 

 

 

 

 



A Customer Agnostic Machine Learning Based Peak Electric Load Days Forecasting Methodology for Consumers With and Without Renewable Electricity Generation 

Page 159 of 173 

Appendix 3 

Inputs used from Appendix 1 for ensemble threshold value forecasting models. 

Model name Industrial 

PRE 

Industrial 

YR1 

Educational Residential 

EM01_Ave Electricity demand threshold values forecasted by each of the  

6 base models (BM01-BM06). 

EM02_ST Variables 2,3, 6-22, 39-43, 47-51,  

and 55-59 from Appendix 1, as well as 

electricity demand threshold values 

forecasted by each of the 6 base models 

(BM01-BM06). 

Variables 2,3,  

and 6-62 from 

Table Appendix 1, 

as well as 

electricity demand 

threshold values 

forecasted by each 

of the 6 base 

models (BM01-

BM06). 

(Same as Industrial 

PRE & YR1) 

EM03_RF1000 

EM04_ST_BestRed Electricity demand 

threshold values 

forecasted by base 

model BM06 

Electricity demand 

threshold values 

forecasted by base 

model BM06 

Variable 7 from 

Table Appendix 1, 

as well as 

electricity demand 

threshold values 

forecasted by base 

models BM03 and 

BM06. 

Variables 40 and 

55 from Table 

Appendix 1, as 

well as electricity 

demand threshold 

values forecasted 

by base model 

BM06. 

EM05_RF1000_BestRed Variables 10 and 

13 from Table 

Appendix 1, as 

well as electricity 

demand threshold 

values forecasted 

by base models 

BM04 and BM06. 

Electricity demand 

threshold values 

forecasted by base 

model BM06 

Variables 7, 8, 10-

14, 23-25, 39-42, 

and 46 from Table 

Appendix 1, as 

well as electricity 

demand threshold 

values forecasted 

by each of the 6 

base models 

(BM01-BM06). 

Variables 39, 40, 

42, 51, 55, and 57 

from Table 

Appendix 1, as 

well as electricity 

demand threshold 

values forecasted 

by base models 

BM03-BM06. 

EM06_ST_BM Variable 3 from Table Appendix 1 (Month), as well as electricity 

demand threshold values forecasted by each of the 6 base models 

(BM01-BM06). 

Variable 3 from 

Table Appendix 1 

(Month), as well as 

electricity demand 

threshold values 

forecasted by base 

models BM02-

BM06. BM01 

values not included 

because of 

insufficient data. 

EM07_RF1000_BM 
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Appendix 4 

Variables per dataset for threshold forecasting. 

 Variable name Description Type Industrial 

PRE 

Industrial 

YR1 

Educational Residential 

1 Label Year and month using the 

format YYYYMM at the 

time of observation. 

Categorical X X X X 

2 Year Year component of Label 

at the time of 

observation. 

Categories: 2018, 2019, 

2020, and 2021 

Categorical X X X X 

3 Month Month component of 

Label at the time of 

observation. 

Categories: 1, 2, 3, …, 12 

Categorical X X X X 

4 Demand_Dlim Calculated monthly 

threshold (Dlim) for 

Demand using Equation 

1 in kW. 

Continuous X X X X 

5 Demand_Dlim_LKV Calculated monthly 

threshold (Dlim) for the 

same month on the 

previous year or any 

other last known value 

for the month of interest. 

Continuous X X X X 

6 MonthMaxTemp_F Maximum outdoor 

temperature for the 

month of interest in 

degrees Fahrenheit (°F) 

recorded by NOAA. 

Continuous X X X X 

7 DailyMaxTemp_Ave_F Average daily maximum 

outdoor temperature for 

the month of interest in 

degrees Fahrenheit (°F) 

recorded by NOAA. 

 

 

Continuous X X X X 
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8 DailyMaxTemp_Min_F Minimum daily 

maximum outdoor 

temperature for the 

month of interest in 

degrees Fahrenheit (°F) 

recorded by NOAA. 

Continuous X X X X 

9 DailyAveTemp_Max_F Maximum daily average 

outdoor temperature for 

the month of interest in 

degrees Fahrenheit (°F) 

recorded by NOAA. 

Continuous X X X X 

10 MonthAveTemp_F Average outdoor 

temperature for the 

month of interest in 

degrees Fahrenheit (°F) 

recorded by NOAA. 

Continuous X X X X 

11 DailyAveTemp_Min_F Minimum daily average 

outdoor temperature for 

the month of interest in 

degrees Fahrenheit (°F) 

recorded by NOAA. 

Continuous X X X X 

12 DailyMinTemp_Max_F Maximum daily 

minimum outdoor 

temperature for the 

month of interest in 

degrees Fahrenheit (°F) 

recorded by NOAA. 

Continuous X X X X 

13 DailyMinTemp_Ave_F Average daily minimum 

outdoor temperature for 

the month of interest in 

degrees Fahrenheit (°F) 

recorded by NOAA. 

Continuous X X X X 

14 MonthMinTemp_F Minimum outdoor 

temperature for the 

month of interest in 

degrees Fahrenheit (°F) 

recorded by NOAA. 

Continuous X X X X 

15 AmtDoW1 Total number of 

Mondays in the month of 

interest. 

Continuous X X X X 

16 AmtDoW2 Total number of 

Tuesdays in the month of 

interest. 

Continuous X X X X 
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17 AmtDoW3 Total number of 

Wednesdays in the month 

of interest. 

Continuous X X X X 

18 AmtDoW4 Total number of 

Thursdays in the month 

of interest. 

Continuous X X X X 

19 AmtDoW5 Total number of Fridays 

in the month of interest. 

Continuous X X X X 

20 AmtDoW6 Total number of 

Saturdays in the month of 

interest. 

Continuous X X X X 

21 AmtDoW7 Total number of Sundays 

in the month of interest. 

Continuous X X X X 

22 AmtWeekdays Total number of 

weekdays in the month of 

interest. 

Continuous X X X X 

23 Ev_Classes Total number of days 

with active classes in the 

month of interest. 

Continuous   X  

24 Ev_ResHallsOpen Total number of days 

with residence halls open 

during the month of 

interest. 

Continuous   X  

25 Ev_CampusOpen Total number of days 

with the campus open 

during the month of 

interest. 

Continuous   X  

26 Ev_HalfDayClass Total number of days 

with only half day of 

classes during the month 

of interest. 

Continuous   X  

27 Ev_HalfDayCampus Total number of days 

with only half day of 

campus open during the 

month of interest. 

Continuous   X  

28 Ev_ExamOrReadDay Total number of exam or 

reading days during the 

month of interest. 

Continuous   X  
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29 Ev_SpringBreak Total number of 

SpringBreak days during 

the month of interest. 

Continuous   X  

30 Ev_FirstDayAfterBreak Total number of days that 

are a first day after a 

break period during the 

month of interest. 

Continuous   X  

31 Ev_CareerFair Total number of days 

with career fair during 

the month of interest. 

Continuous   X  

32 Ev_Graduation Total number of days 

with graduation during 

the month of interest. 

Continuous   X  

33 Ev_Orientation Total number of days 

with orientation during 

the month of interest. 

Continuous   X  

34 Ev_Festival Total number of days 

with festival during the 

month of interest. 

Continuous   X  

35 Ev_Homecoming Total number of days 

with homecoming during 

the month of interest. 

Continuous   X  

36 Ev_Hackathon Total number of days 

with hackathon during 

the month of interest. 

Continuous   X  

37 Ev_EventInc Total number of days 

with expected electricity 

demand increase during 

the month of interest. 

Continuous   X  

38 Ev_EventRed Total number of days 

with expected electricity 

demand decrease during 

the month of interest. 

Continuous   X  

39 Demand_Dlim_PM Calculated monthly 

threshold (Dlim) for 

Demand during the 

previous month using 

Equation 1 in kW. 

Continuous X X X X 

40 Demand_Dmax_PM Maximum Demand 

registered during the 

previous month in kW. 

Continuous X X X X 
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41 AvDemand_PM Average Demand 

registered during the 

previous month in kW. 

Continuous X X X X 

42 AvHighDemand_PM Average high daily 

Demand registered 

during the previous 

month in kW. 

Continuous X X X X 

43 AvLowDemand_PM Average low daily 

Demand registered 

during the previous 

month in kW. 

Continuous X X X X 

44 MaxSolar_PM Maximum solar 

generation registered 

during the previous 

month in kW. 

Continuous   X  

45 AvSolar_PM Average solar generation 

registered during the 

previous month in kW. 

Continuous   X  

46 AvHighSolar_PM Average maximum daily 

solar generation 

registered during the 

previous month in kW. 

Continuous   X  

47 Demand_Dlim_PM2 Calculated monthly 

threshold (Dlim) for 

Demand during the 

second previous month 

using Equation 1 in kW. 

Continuous X X X X 

48 Demand_Dmax_PM2 Maximum Demand 

registered during the 

second previous month in 

kW. 

Continuous X X X X 

49 AvDemand_PM2 Average Demand 

registered during the 

second previous month in 

kW. 

Continuous X X X X 

50 AvHighDemand_PM2 Average high daily 

Demand registered 

during the second 

previous month in kW. 

 

 

Continuous X X X X 
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51 AvLowDemand_PM2 Average low daily 

Demand registered 

during the second 

previous month in kW. 

Continuous X X X X 

52 MaxSolar_PM2 Maximum solar 

generation registered 

during the second 

previous month in kW 

Continuous   X  

53 AvSolar_PM2 Average solar generation 

registered during the 

second previous month in 

kW 

Continuous   X  

54 AvHighSolar_PM2 Average maximum daily 

solar generation 

registered during the 

second previous month in 

kW 

Continuous   X  

55 Demand_Dlim_PM3 Calculated monthly 

threshold (Dlim) for 

Demand during the third 

previous month as 

described by Saxena et 

al. (2019) in kW 

Continuous X X X X 

56 Demand_Dmax_PM3 Maximum Demand 

registered during the 

third previous month in 

kW 

Continuous X X X X 

57 AvDemand_PM3 Average Demand 

registered during the 

third previous month in 

kW 

Continuous X X X X 

58 AvHighDemand_PM3 Average high daily 

Demand registered 

during the third previous 

month in kW 

Continuous X X X X 

59 AvLowDemand_PM3 Average low daily 

Demand registered 

during the third previous 

month in kW 

Continuous X X X X 

60 MaxSolar_PM3 Maximum solar 

generation registered 

during the third previous 

month in kW 

Continuous   X  
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61 AvSolar_PM3 Average solar generation 

registered during the 

third previous month in 

kW 

Continuous   X  

62 AvHighSolar_PM3 Average maximum daily 

solar generation 

registered during the 

third previous month in 

kW 

Continuous   X  
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Appendix 5 

Results of paired T-Test of mean difference=0 (vs ≠ 0) for Net Demand - Demand. 

Model : Metric T-Value P-Value 95% CI for Mean Difference 

M01 : MAPE* 7.620 0.000 (2.000, 3.624) 

M02 : MAPE* 6.190 0.000 (1.451, 3.052) 

M03 : MAPE* 6.780 0.000 (1.650, 3.236) 

M04 : MAPE* 4.260 0.001 (1.233, 3.868) 

M05 : MAPE* 5.780 0.000 (2.283, 5.089) 

M01 : Sensitivity 1.180 0.272 (-0.065, 0.202) 

M02 : Sensitivity -0.790 0.450 (-0.347, 0.169) 

M03 : Sensitivity -0.690 0.510 (-0.113, 0.061) 

M04 : Sensitivity 0.150 0.882 (-0.326, 0.372) 

M05 : Sensitivity -2.030 0.077 (-0.613, 0.039) 

M01 : Balanced Accuracy 0.610 0.562 (-0.054, 0.092) 

M02 : Balanced Accuracy -0.450 0.665 (-0.153, 0.103) 

M03 : Balanced Accuracy -0.690 0.510 (-0.056, 0.030) 

M04 : Balanced Accuracy -0.020 0.988 (-0.150, 0.148) 

M05 : Balanced Accuracy* -2.510 0.036 (-0.304, -0.013) 

M06 : Sensitivity -1.000 0.347 (-0.367, 0.145) 

M07 : Sensitivity -1.360 0.211 (-0.210, 0.054) 
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M08 : Sensitivity -0.520 0.616 (-0.361, 0.228) 

M09 : Sensitivity 0.800 0.447 (-0.185, 0.381) 

M10 : Sensitivity 0.590 0.573 (-0.060, 0.100) 

M11 : Sensitivity -0.690 0.511 (-0.145, 0.078) 

M06 : Balanced Accuracy -1.000 0.347 (-0.171, 0.068) 

M07 : Balanced Accuracy -1.360 0.211 (-0.105, 0.027) 

M08 : Balanced Accuracy -1.340 0.216 (-0.123, 0.033) 

M09 : Balanced Accuracy 0.310 0.768 (-0.102, 0.134) 

M10 : Balanced Accuracy -0.420 0.689 (-0.066, 0.046) 

M11 : Balanced Accuracy 0.040 0.968 (-0.041, 0.043) 

E01 : Sensitivity -1.430 0.191 (-0.346, 0.081) 

E02 : Sensitivity X X No Difference | Equal Values 

E01 : Balanced Accuracy -1.350 0.214 (-0.168, 0.044) 

E02 : Balanced Accuracy -1.380 0.206 (-0.077, 0.019) 

* The Null Hypothesis, mean difference = 0, was rejected for the results obtained by these models. 
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Appendix 6 

Industrial consumer results. 

 Industrial_PRE (Pre-Pandemic) Industrial_YR1 (Year 1 of pandemic) 

Model MAPE %Model 

Savings 

Number of 

False 

Positives 

MAPE %Model 

Savings 

Number of 

False 

Positives 

BM01_LKV 4.440 51.67% 1 11.469 15.22% 0 

BM02_AvPast3 9.610 50.49% 53 12.175 57.82% 46 

BM03_ST 6.521 35.61% 16 8.531 32.39% 11 

BM04_RF1000 2.703 56.30% 2 7.406 38.26% 4 

BM05_ST_BestRed 4.363 59.35% 16 7.554 50.64% 8 

BM06_RF1000_BestRed 2.551 57.74% 0 6.394 42.93% 1 

EM01_Ave 3.157 54.86% 3 7.828 40.21% 8 

EM02_ST 6.521 35.61% 16 8.531 32.39% 11 

EM03_RF1000 2.695 56.49% 2 6.520 47.44% 7 

EM04_ST_BestRed 4.363 59.35% 16 7.117 50.64% 8 

EM05_RF1000_BestRed 2.461 63.76% 2 4.572 65.71% 7 

EM06_ST_BM 5.305 52.07% 6 9.334 27.49% 8 

EM07_RF1000_BM 3.097 56.17% 2 6.497 53.19% 8 
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Appendix 7 

Educational and Residential consumer results. 

 Educational Residential 

Model MAPE %Model 

Savings 

Number of 

False 

Positives 

MAPE %Model 

Savings 

Number of 

False 

Positives 

BM01_LKV 20.302 70.56% 121 36.041 76.88% 131 

BM02_AvPast3 10.158 87.72% 70 22.089 53.44% 61 

BM03_ST 8.113 75.92% 49 19.637 63.52% 77 

BM04_RF1000 6.642 83.01% 37 15.293 74.72% 66 

BM05_ST_BestRed 7.134 81.72% 45 17.786 56.88% 68 

BM06_RF1000_BestRed 5.623 81.85% 28 13.895 70.16% 60 

EM01_Ave 8.104 81.60% 53 16.001 73.92% 75 

EM02_ST 8.227 72.95% 45 22.759 48.40% 71 

EM03_RF1000 6.292 87.73% 41 15.654 69.60% 62 

EM04_ST_BestRed 6.990 79.89% 40 20.354 54.08% 69 

EM05_RF1000_BestRed 5.541 86.80% 35 15.662 60.48% 58 

EM06_ST_BM 8.015 67.93% 38 22.759 48.40% 71 

EM07_RF1000_BM 6.989 87.08% 56 17.653 64.72% 71 
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Appendix 8 

 

Average monthly accuracy, sensitivity and balanced accuracy values; as well as the total number 

of false positives and false negatives predictions produced by all 15 PELD forecasting models for 

the Industrial consumer. 

 

Model_Type Av. Acc. Av. Sens. Av. BalAcc. Total FNs Total FPs 

Reg_SARIMA 0.867 0.302 0.628 35 14 

Reg_ST 0.872 0.074 0.535 46 1 

Reg_RF1000 0.867 0.121 0.556 46 3 

Reg_ANN 0.850 0.372 0.642 28 27 

Reg_ANNST 0.671 0.364 0.512 26 95 

Class_ST 0.781 0.742 0.764 5 74 

Class_RF1000 1.000 1.000 1.000 0 0 

Class_ANN 1.000 1.000 1.000 0 0 

Class_ANNST 0.225 0.864 0.499 11 272 

Ens_Majority 0.904 0.344 0.659 23 12 

Ens_SingleVote 0.142 1.000 0.526 0 313 

Ens_ST 1.000 1.000 1.000 0 0 

Ens_RF1000 1.000 1.000 1.000 0 0 

Ens_ANN 1.000 1.000 1.000 0 0 

Ens_AdaBoost 1.000 1.000 1.000 0 0 
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Appendix 9 

 

Average monthly accuracy, sensitivity and balanced accuracy values; as well as the total number 

of false positives and false negatives predictions produced by all 15 PELD forecasting models for 

the Educational consumer. 

 

Model_Type Av. Acc. Av. Sens. Av. BalAcc. Total FNs Total FPs 

Reg_SARIMA 0.829 0.417 0.629 27 36 

Reg_ST 0.878 0.296 0.626 35 10 

Reg_RF1000 0.877 0.074 0.537 45 0 

Reg_ANN 0.856 0.542 0.695 20 33 

Reg_ANNST 0.883 0.398 0.665 28 15 

Class_ST 0.824 0.585 0.677 11 54 

Class_RF1000 0.832 0.657 0.721 14 48 

Class_ANN 0.835 0.898 0.833 6 55 

Class_ANNST 0.891 0.944 0.891 3 37 

Ens_Majority 0.907 0.301 0.651 34 0 

Ens_SingleVote 0.632 1.000 0.705 0 136 

Ens_ST 0.897 0.681 0.796 17 21 

Ens_RF1000 0.910 0.537 0.741 20 13 

Ens_ANN 0.835 0.315 0.615 27 33 

Ens_AdaBoost 0.894 0.437 0.697 29 10 
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Appendix 10 

 

Average monthly accuracy, sensitivity and balanced accuracy values; as well as the total number 

of false positives and false negatives predictions produced by all 15 PELD forecasting models for 

the Residential consumer. 

 

Model_Type Av. Acc. Av. Sens. Av. BalAcc. Total FNs Total FPs 

Reg_SARIMA 0.460 0.175 0.502 172 25 

Reg_ST 0.419 0.000 0.495 211 1 

Reg_RF1000 0.421 0.000 0.500 211 0 

Reg_ANN 0.467 0.175 0.511 173 22 

Reg_ANNST 0.502 0.525 0.503 101 81 

Class_ST 0.579 1.000 0.500 0 154 

Class_RF1000 1.000 1.000 1.000 0 0 

Class_ANN 0.717 0.970 0.665 6 98 

Class_ANNST 0.568 0.914 0.507 19 139 

Ens_Majority 0.758 0.618 0.777 80 9 

Ens_SingleVote 0.579 1.000 0.500 0 154 

Ens_ST 1.000 1.000 1.000 0 0 

Ens_RF1000 1.000 1.000 1.000 0 0 

Ens_ANN 0.992 0.996 0.991 1 2 

Ens_AdaBoost 1.000 1.000 1.000 0 0 
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