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Many different techniques have been used for parameter estimation in cardiac electro-

physiology models, from optimization algorithms to heuristic and frequentist statistical

methods. However, the fixed parameter values obtained from such approaches cannot

provide a complete description of variability within an individual or across a population.

To overcome this shortcoming, in this work we adopt a Bayesian approach by applying the

Hamiltonian Monte Carlo (HMC) algorithm to cardiac electrophysiology models and data

for the first time through three studies. (i) Using HMC, we fit synthetic and experimen-

tal cardiac voltage data from different pacing rates and find the probability distributions

of the parameters of two relatively low-dimensional models, the Mitchell-Schaeffer (MS)

and Fenton-Karma (FK) models. We successfully fit synthetic and experimental voltage

traces and build populations of action potentials with the posterior probability distribu-

tions of the parameters. (ii) We compare the performance of HMC with that of the main

Bayesian approach used previously for similar applications, the Approximate Bayesian

Computation Sequential Monte Carlo (ABC SMC) algorithm. Both techniques are able

to describe the dynamics of synthetic and experimental voltage data using the MS and

FK models, with HMC more consistent and ABC SMC more versatile and easier to im-

plement. (iii) We study the variability of cardiac action potentials in space within an

individual. We use HMC and a novel approach employing a Gaussian process prior for

one spatially varying MS model parameter along with a hierarchical model for the remain-

ing parameters, considered spatially invariant. Using this approach, we do inference and

prediction on synthetic cardiac voltage data, exploiting the spatial correlations in cardiac

tissue that arise from cellular coupling to use voltage information from a small number

of sites to predict parameter value distributions and families of voltage data in other

locations. Together these three studies show the potential of Bayesian inference and pre-

diction in providing a framework to represent variability within cardiac electrophysiology

modeling.
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Chapter 1

Introduction

1.1 Motivation

Heart disease is the leading cause of death in the United States, causing about one in four

deaths [68]. Examples of heart disease include heart failure, sudden cardiac arrest and

stroke, all of which can be caused by non-treated arrhythmias. Arrhythmias like atrial

flutter, atrial fibrillation and ventricular fibrillation arise from disruptions to the heart’s

electrical signaling, which triggers contraction. Despite being a subject of study since at

least 1847 [57], the origin of arrhythmias is not completely understood.

Mathematical models can be used to improve our understanding of real-world phenomena

such as the electrophysiology and dynamics of the heart. As a simplification of a physical

or engineered system, a model can provide insights into observed behavior, describe pat-

terns, or make predictions. While the form of the model equations can express qualitative

relationships among the system variables, well-chosen parameter values are needed for a

quantitative understanding. The first mathematical model of cardiac electrophysiology

was published in 1962 by Noble [73] as a modification of the influential neuronal model of

the squid giant axon developed by Hodgkin and Huxley in 1952 [44] to study the electrical

dynamics of cardiac Purkinje cells. The Hodgkin-Huxley model, and consequently, the

Noble model, were based on the analogy of a circuit mathematically represented by an

ordinary differential equation, where the excitation of cells starts with a sudden change

in the electrical potential across the cell membrane as the result of a flux of charged ions
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passing across the cell membrane, and where the initiation and propagation of electrical

signals is caused by controlled opening and closing of ion channels in the membrane [41].

Among other properties, the Noble model was able to reproduce alternans, a behavior that

can occur after applying a sufficiently strong periodic stimulus to a cardiac cell, where the

duration of an action potential—the time that it takes for a cardiomyocyte to depolarize

and repolarize for a given threshold—alternates between long and short. Because alter-

nans are known to be precursors of arrhythmias ([77]), cardiac electrophysiology models

can help in understanding alternans, and in turn, in the initiation and cessation of ar-

rhythmias [56]. Although cardiac electrophysiology models typically are developed to

describe the cellular level, they can be used to study the propagation of electrical waves

in the heart by adding a diffusion term (in a cable or in a two dimensional space) to

represent intercellular coupling.

Since the Noble model, many other cardiac models have been developed to study cells

from different regions of the heart (e.g., Purkinje network [73, 26], ventricles [9], atria [62],

sinoatrial node [86], and atrioventricular node [47]) in different species (e.g., guinea pig

[55, 54, 18], human [97, 9, 75], dog [101], rabbit [43], rat [76], and mouse [4]). Some models

have been developed from first principles [84] while others are phenomenological [50, 31,

66]; some models have only a few parameters [46, 66], while others include more than a

hundred [48]. These different models demonstrate different dynamics and properties; for

example, despite its importance, alternans is only exhibited by a minority of models [15].

Cardiac cell models can be classified by the types of components they include as well

as by the breakthroughs [74] they have represented in describing cardiac cells. First-

generation models are limited to a small number of ionic currents and in many cases a

description of the intracellular calcium concentration. As an example, the Beeler-Reuter

model (1977) [1] has four main currents, including a calcium current that had not been

described when earlier models like the Noble model were developed along with a calcium

concentration based on that current. Second-generation models include more components
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such as pump and exchanger currents as well as additional intracellular ion concentra-

tions and can enforce charge conservation, for example. The Luo-Rudy II model (1994)

[54] is a widely used second-generation model developed as a modification of the earlier

first-generation Luo-Rudy I model [55], which in turn was based on the Beeler-Reuter

model. In addition, some second-generation models use Markov models of ion channels

to describe transitions among a small set of discrete states [18]. In third-generation mod-

els, which are still being developed, a cardiac cell is considered a spatially extended entity

instead of a point; this approach allows a spatiotemporal treatment of the intracellular

calcium concentration, which has an effect on the excitation–contraction coupling dy-

namics of cardiac cells. The Greenstein-Winslow model [38], which is an updated version

of the Winslow model from 1999 [101], is a third-generation model that was designed to

incorporate more detailed descriptions of intracellular calcium handling [79].

All of the models described above have been published with a single set (or occasionally

a few sets) of parameter values that represent a good fit to the data used during model

development. However, different individuals have differences in properties such as ion

channel expression that lead to differences that typically are captured in models through

changed parameter values. Thus, researchers may want to determine individualized pa-

rameter values in order to use a model to customize a treatment or therapy. In addition,

in the case of drug development, parameter values are desired not only to represent the

population mean, but also to express variability across a population. Furthermore, since

many models are non-identifiable [23], having just a set of fixed parameters oversimplifies

the information that a probability distribution of parameters could give. As a result,

having robust tools to identify personalized parameter values from real-world data is of

great importance.

Nevertheless, parameter estimation is a notoriously challenging problem. For cardiac

electrophysiology models, many different techniques have been used, from optimization

algorithms to heuristic and statistical methods [100]. Traditional optimization approaches

provide several advantages including simplicity and relatively quick execution; however,

they are less suitable for uncertainty quantification and probabilistic modeling. For these
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purposes, a statistical modeling framework may be desirable. The modern frequentist

approach has been widely used for around a century, and its popularity is partially due to

the fact that it has been able to address many kinds of problems but also because of its

computational tractability. Despite these advantages, well-known limitations like the use

of p values and the fact that experimental design most be established in advance restricts

the applicability of the frequentist approach [49].

To avoid the limitations of traditional optimization and frequentist-based statistical-

modeling approaches, this thesis is focused on the use of a Bayesian approach for de-

scribing parameter values based on available data. Bayesian methods can provide a more

complete description of randomness in parameter values as an effect of all the sources

of uncertainty involved in the modeling and fitting of cardiac electrical data (e.g., model

variability and structural variability) [65]. One type of Bayesian approach, Markov Chain

Monte Carlo (MCMC) methods, has been used successfully toward this end in a variety

of fields, including pharmacometrics ([72]). However, such approaches have known limi-

tations when used to do inference in nonlinear differential equations models; for instance,

Metropolis-Hastings can become stuck in local minima [63]. As an alternative, Approx-

imate Bayesian Computation methods, which use an approximation of the likelihood

by employing a distance function between summary statistics [96], can be used. These

methods can avoid some problems with full Bayesian methods like MCMC, including

poor scaling with the number of parameters, and have been used in cardiac and neu-

ronal electrophysiology models [21], but result in an approximation of the true posterior

distribution.

In this thesis, we consider the application of a full Bayesian method designed to surpass

the limitations of traditional MCMC algorithms, like Metropolis-Hastings and Gibbs sam-

pling, to the problem of parameter estimation for cardiac models. The specific algorithm

we use, which was developed in 1987 [28] as hybrid Monte Carlo and later called Hamil-

tonian Monte Carlo (HMC) [3], is known for exploring the parameter space in an efficient

manner, since it uses the gradient of the likelihood and improved scalability and con-

vergence. Here we apply HMC to fit synthetic and experimental cardiac voltage data
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in three separate studies. (i) As an initial proof of concept, we use HMC to find the

distributions of the parameters of two low-dimensional cardiac electrophysiology models,

the Mitchell-Schaeffer [66] and Fenton-Karma [31] models. (ii) Using the same type of

data and the two models from the previous study, we compare the performance of HMC

and the approximate Bayesian computation sequential Monte Carlo algorithm. (iii) As

a final demonstration of the usefulness of HMC in cardiac electrophysiology modeling,

we study the variability of cardiac action potentials in space within an individual. Using

HMC and a novel approach employing a Gaussian process prior in one of the parameters

of the MS model and a hierarchical model in the non-spatial parameters, we do inference

and prediction on synthetic cardiac action potentials. We exploit the correlation found in

contiguous cells using training points in a few locations, where only voltage measurements

known, to do inference on the locations and prediction in the rest of the locations in the

domain.

1.2 Outline

The rest of this thesis is organized as follows. In Chapter 2 we present an overview

of previous work on inference and variability in cardiac electrophysiology, some basic

concepts of cardiac action potential modeling and terminology, the main ideas behind the

Bayesian approach and some Gaussian process concepts. Chapter 3 introduces the cardiac

electrophysiology models used in this work, the Mitchell-Schaeffer (MS) and Fenton-

Karma (FK) models, as well as the two algorithms employed in this work, Hamiltonian

Monte Carlo (HMC) and Approximate Bayesian Computation Sequential Monte Carlo

(ABC SMC). In Chapter 4, we fit the MS and FK models to synthetic and experimental

data using HMC and present our results. In Chapter 5, we compare the performance

of HMC and ABC SMC, explore the robustness of these methods and suggest cases for

their use. In Chapter 6, we study variability in space of cardiac electrophysiology using

the MS model to fit synthetic data, employing a Gaussian prior on one of the parameters

considered in space and a hierarchical model on the rest of the non-spatial parameters.

Finally, in Chapter 7, we present our conclusions and some limitations and discuss future
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directions this work might take.



7

Chapter 2

Background

In this chapter we present an overview of previous work on inference and variability in

cardiac electrophysiology models. We later introduce some concepts related to cardiac

electrophysiology and the modeling of cardiac action potentials. Finally, the main ideas

behind the Bayesian approach and Bayesian estimation in dynamical systems are pre-

sented, and some concepts associated with Gaussian processes are discussed at the end.

2.1 Inference and variability

In this section we review studies where inference and variability have been explored in car-

diac electrophysiology, highlighting the Bayesian approaches that researchers have taken.

2.1.1 Parameter estimation in cardiac electrophysiology models

A broad range of models of cardiac action potentials have been developed [30] to describe

the heart’s complex electrical dynamics across multiple species and regions of the heart.

These models also vary in complexity and level of detail, from simple two-variable models

with a few parameters up to as many as dozens of variables and hundreds of parameters.

In most cases, these models have been published with a single set of parameter values.

Nevertheless, there is often a desire to customize the models by obtaining parameter

values that can be used to match particular experimental recordings [39], to represent

individual patients [6], or to create virtual cohorts [70].
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The challenges of finding parameter values to match specific input data or properties are

well known. Within cardiac electrophysiology modeling, many approaches have been used,

from optimization techniques to heuristic methods. Some examples include least squares

variations [27, 103], sequential quadratic programming [9], genetic algorithms [94, 5, 11],

automatic optimization [29, 51], and a hybrid method combining particle swarm opti-

mization with a gradient-based local algorithms [53]. More recently, parameterizations

have been obtained using Bayesian approaches, such as history matching [19], Bayesian

active learning [102], and a combination of Metropolis-Hastings and Gibbs sampling [90].

Nevertheless, models that include a single set of parameter values, however well fitted,

lack deeper information that can be included when a distribution of parameter values is

obtained. For example, when multiple data sets are available, simplification by fitting to

the mean may misrepresent properties of the data [78]. In addition, models with a single

set of parameter values neglect the fact that many models are not fully identifiable from

the necessarily limited input data used for fitting [27, 22, 11].

2.1.2 Bayesian algorithms for parameter estimation

While the optimization-centric approaches in the previous section yield several advantages

including simplicity and relatively quick execution, they are less suitable for uncertainty

quantification and probabilistic modeling. For these purposes, a statistical modeling

framework may be desirable.

Adopting a Bayesian approach is useful for two primary reasons; first, by using Monte

Carlo methods, it is possible to freely use any statistical model of choice for analyses

without functional or distributional restrictions. Second, this approach allows rigorous

uncertainty quantification (UQ) to be conducted via characterization of the posterior

distribution over the model parameters given the data and also permits appropriate spec-

ification of prior distributions over model parameters. This characterization can be per-

formed using Markov chain Monte Carlo (MCMC) to draw samples from the posterior

distribution. The objective of MCMC methods within the context of Bayesian modeling

is to design a Markov chain in such a way that the stationary distribution of the chain
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coincides with that of the posterior distribution. In the case of parameter estimation for

an ordinary differential equation (ODE), the interest lies in finding the distribution of pa-

rameters used as inputs for the ODE model. In [80], a review of methods to parametrize

ODEs, some of which are Bayesian, is presented.

A diverse range of MCMC methods have been developed, some of which are widely

applicable and generic, while others are problem-specific. The Metropolis-Hastings algo-

rithm [64, 42] is perhaps the simplest method and requires only evaluating the model’s

non-normalized posterior density a single time for each Monte Carlo iteration. Gibbs

sampling [34] is another popular MCMC method and is applied by iteratively selecting a

single parameter and sampling conditionally on values of all other parameters.

These traditional full Bayesian MCMC methods have limitations, including sensitivity

of the desired posterior distribution to the full Bayesian specification [99]. Also, they

do not make use of gradient information from the posterior and may exhibit random

walk behavior, which slows convergence to the posterior distribution, as well as poor

scalability with the dimensionality of parameter space [69]. As a consequence, it may be

advantageous to use gradients of the log-posterior for models with a continuous parameter

space. Hamiltonian Monte Carlo (HMC) [28, 69] makes Monte Carlo proposals guided by

these gradient terms and exhibits much more rapid convergence to the target distribution

[2, 61]. An alternative paradigm is to identify a simplified surrogate distribution for the

posterior distribution and employ optimization to minimize a variational loss function.

Generic methods to do this for arbitrary probability models with continuous parameter

spaces are now widely available [52] as a complement to MCMC methods. If the likelihood

is unknown or intractable, approximate methods like Approximate Bayesian Computation

[60] can be used.

2.1.3 Applications of Bayesian modeling in electrophysiology

Several methods have been developed to overcome the computational limitations of tra-

ditional Bayesian methods. One approach, as mentioned above, is the use of approximate

Bayesian methods [91], where the likelihood, which can be expensive to compute, is not
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used, resulting in greater efficiency at the cost of obtaining an approximation of the poste-

rior distributions. An example is Approximate Bayesian Computation Sequential Monte

Carlo (ABC SMC) [95, 25], which has been applied to obtain parameter distributions

for the Hodgkin-Huxley neural model [22] and for the O’Hara et al. model [75] of car-

diac cells [21]. HMC has been used successfully for model calibration in ecology [67] and

pharmacometry [59], but its utility for cardiac action potential models [71] compared to

approximate methods has not been studied.

2.1.4 Variability in cardiac electrophysiology models

Appropriate selection of parameter values can be challenging for systems that exhibit

variability. In biology, variability occurs naturally across all levels, from the microscopic to

the macroscopic. Cardiac cells in particular exhibit variability in the shape and duration

of their action potentials, the electrical signals that trigger contraction, not only among

individuals, but also in space and time within a single individual.

The presence of variability makes it difficult to predict outcomes, such as the effects of

a drug or treatment on a population, because different individuals may exhibit different

behavior. Some aspects of natural variation can be represented in a model through the

use of different parameter sets that describe separate individuals. In the previous section,

we mentioned the problems that can arise when models of cardiac action potentials do

not consider any kind of variability and are published using a single set of parameter

values.

Several approaches have been used previously to describe variability in cardiac electro-

physiology [65]. Britton et al. [7] developed a population of models by selecting random

sets of parameters for a model of interest and keeping only those with properties falling

within defined ranges. The population then could be used to characterize variability in

responses to specific interventions like treatment with antiarrhythmic drugs. Sánchez et

al. [85] used a similar approach to characterize variability in the properties of cells from

patients under normal sinus rhythm and chronic atrial fibrillation. The populations cre-

ated were used to identify the ionic determinants of variability in action potential shape
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and duration among the patients. In a different study, Sarkar et al. [87] used a linear

regression approach based on parameter sensitivities to relate parameter space to output

space as specified through measured biomarkers.

However, these approaches have some limitations. For example, the population-based

approaches are inefficient, as many of the generated candidate parameter sets do not

satisfy the inclusion criteria (nearly 98 percent for the study by Britton et al. [7]). The

assumption by Sarkar et al. [87] of a linear relationship between the sets of parameters

used as inputs and the responses obtained may be too restrictive. In addition, none of

these studies addressed intra-subject variability, and variability was considered only at

the cellular level, not at the tissue or organ level. Further, none of these approaches

provides a method for obtaining different sets of parameter values consistent with given

experiments.

Following a statistical approach, Pathmanathan et al. [78] developed a description for

sodium channel inactivation that included terms to describe mean behavior as well as

individual-level variation. Other relevant studies have looked at parameter sensitivity

analysis via multivariate regression [92] and parameter estimation under multiple action

potential models [58]. As we mentioned earlier, Bayesian approaches have been used

previously with cardiac models for parameterization [19, 22, 90] and parameter sensitivity

[13, 19]. However, Bayesian techniques have not been used to study spatiotemporal

variability.

2.2 Cardiac electrophysiology

In this section we introduce some basic cardiac electrophysiology concepts needed to un-

derstand the ideas behind the mathematical modeling of cardiac action potential models,

their dynamics and the estimation of their parameters.
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2.2.1 Some basic concepts

A cardiomyocyte is a muscle cell in the heart. If a cardiomyocyte receives a sufficiently

strong electrical stimulus, its membrane potential changes and, in response, ions move

across the membrane through specialized proteins called ion channels, following electro-

chemical gradients, thereby inducing an electric current. Individual ion channels stochas-

tically open and close, a phenomenon called gating, to allow or inhibit ion transport, with

the open probability depending on properties such as the electrical potential across the

membrane or ion concentrations. If the applied stimulus increases the cell’s membrane

potential above a threshold value, the cell depolarizes rapidly followed by a slow (hun-

dreds of ms for large mammals) return to its resting potential, a response called an action

potential (AP). After an action potential, the cell must recover to be able to respond to

another stimulus with a similar action potential. If an electrical stimulus is applied too

soon after a previous stimulus, the cell may respond with an abbreviated action potential

or even may fail to respond.

The sinoatrial node spontaneously generates an action potential at a species-dependent

rate, typically around once per second for humans. In many experimental preparations,

the sinoatrial node is not present and thus cardiomyocytes are periodically stimulated

externally to mimic the natural heart rhythm. The period of stimulation, which can

be varied to elicit different dynamical behavior, is also known as the cycle length (CL).

One way to quantify differences in action potentials, such as characteristic shortening for

shorter CLs, is by measuring the action potential duration (APD), which is the time it

takes for a cell to return to its rest state after initiating an action potential. After waiting

some time for the cell to reach a steady state, the APDs of consecutive action potentials

typically are constant for long CLs, but rapid pacing can produce a shortening of action

potential duration and, at sufficiently fast rates, alternans (Fig. 2.1), a phenomenon in

which action potentials elicited from a constant CL alternate between long and short

durations. At extremely short CLs, every other stimulus may arrive well within the

preceding action potential, resulting in block, which is the failure of an action potential

to develop. The different dynamics can be represented in a bifurcation plot (BP) where
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CL is the bifurcation parameter; for CLs with alternans, two branches are present in the

bifurcation plot.
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Figure 2.1: Action potential duration as a function of cycle length

using the Mitchell-Schaeffer model introduced below. The left panel shows

action potentials at CLs of 350 and 250 ms, with alternans present for the

shorter CL. Horizontal lines correspond to APDs at 90%.

To observe the electrophysiological heterogeneity of the heart, it is important to char-

acterize the spatiotemporal dynamics of cardiac action potentials. Optical mapping is

an experimental technique that can be used towards this end. More specifically, opti-

cal mapping is a method used to indirectly record the electrical activity of the heart

at high spatio-temporal resolution through the use of voltage (or calcium) fluorescent

dyes. It allows for mapping the propagation of electrical signals across the myocardium,

thereby allowing characterization of electrical dynamics through surface imaging (Figure

[82]). After these signals are recorded, action potential durations may be calculated and

mapped in order to visualize the variability of action potentials in space at specific CLs.
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Figure 2.2: Voltage mapping obtained with optical mapping from a

rabbit heart paced at 280 ms (left), where two series of action potentials

are shown at two different locations represented by the center of the black

circles.

2.2.2 Modeling cardiac action potentials

The excitation of a cardiac myocyte (or neuron) starts with an abrupt change in the

electrical potential across the cell membrane as the result of a flux of charged ions passing

though it. The initiation and propagation of electrical signals is caused by controlled

opening and closing of ion channels. Hodgkin and Huxley [44] created the first mechanistic

model for the neuronal action potential of a squid axon in 1952. This model is based on

the analogy of a circuit [41]. The action potential evolution is described by the differential

equation

Cm

dV

dt
+ Iion = Iapp, (2.1)
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where Cm represents the membrane capacitance per unit area, V is the voltage, Iion is the

sum of ionic currents and Iapp is the applied external current. Each individual ion current,

that in this particular case were defined as sodium (Na), potassium (K) or leakage (L),

is modeled according to Ohm’s law

Ii = gi(V � Vi),

where i =Na, K, L, gi = ĝi(t;V ) is a conductance function that depends on the time t

and voltage, and Vi is the Nernst potential for the ions species i. The Nernst potential

is the potential at which the electrical and chemical gradients across the membrane are

balanced for current i, producing no net movement of ions as a result.

Different models may incorporate different descriptions of intracellular ion concentrations

or other processes, as we will see in the models presented in the next chapter. To incor-

porate spatial coupling, a diffusion term D
@
2
V

@x2 can be added to equation 2.1, where x

represents space and D is a diffusion function, usually assumed constant.

Denis Noble developed the first cardiac action potential model in 1962 to simulate the

action potential dynamics of Purkinje cells [73]. This model was itself a modification of

the Hodgkin-Huxley model. Since then, several types of cardiac action potential models

have been developed, representing different kinds of cells from diverse species. Over time,

the models have become more complex, usually including more ionic currents, and as a

consequence, more differential equations and parameters. They have also been modified

to include cell communication and spatiotemporal calcium cycling dynamics. Depending

on what is being studied, phenomenological models or more detailed models developed

from first principles can be used [79].
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2.3 The Bayesian approach

In this section we explain how to estimate the parameters of cardiac electrophysiology

models to fit action potential recordings using a Bayesian approach. We introduce dif-

ferent Markov chain Monte Carlo algorithms that have traditionally been used for this

end.

2.3.1 Bayesian estimation in dynamical systems

Given the system x0(t) = f(x, t,✓) where x = x(t) 2 Rn, t 2 R, and ✓ 2 Rm is a vector

of parameters, we consider the statistical model

yij = x(t|✓) + ✏ij ,

where yij is the j-th observation of the i-th individual being considered for the state

x(t|✓) 2 R registered at time tij and ✏ij is a random error corresponding to outcome yij .

Because the values of parameters used in cardiac models are usually difficult to measure

experimentally, they often are inferred by fitting the model to data recorded by specific

devices. In this work, we will infer the distributions of the parameters of a given model

by applying different Bayesian approaches. Essentially, Bayesian inference is the process

of fitting a probability model to a set of data where the result is summarized by a prob-

ability distribution on the parameters of the model and on unobserved quantities (e.g.,

predictions for new observations). We note that the parameters ✓ are fixed but unknown.

By choosing a Bayesian approach, the uncertainty in the parameter values is described

by a probability model. Therefore, the parameters are considered random variables and

posterior sampling can be applied.

By Bayes’ theorem,

p(✓|y) / p(y|✓)p(✓),

where p(✓|y) is the final distribution (also known as the target or posterior distribution),

p(y|✓) is the likelihood, and p(✓) is the prior or initial distribution.
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To sample from the final distribution, either a full Bayesian approach can be applied,

meaning that we use the likelihood function on the right-hand side of Bayes’ rule along

with the prior, or an approximate Bayesian scheme can be used where instead of con-

sidering the likelihood, an approximate function is used. Examples of full Bayesian ap-

proaches are Markov Chain Monte Carlo (MCMC) methods [33] like Metropolis-Hastings

and Hamiltonian Monte Carlo (HMC) algorithms. Approximate Bayesian Computation

(ABC) methods are examples of the approximate approach [60].

2.3.2 Markov Chain Monte Carlo (MCMC)

To sample from the final distribution, Markov Chain Monte Carlo (MCMC) methods can

be applied. A Markov chain is a sequence of points (for our application, in parameter

space) generated by sequentially applying a random map. The objective of MCMC meth-

ods is to design a Markov chain in such a way that the stationary distribution of the chain

coincides with that of the target distribution; in our case, we are interested in the final

distribution of the parameters of a specified model. The goal is for the sample obtained

with the Markov chain also to be a sample of the target distribution.

The Metropolis-Hastings algorithm [16] is the simplest of the MCMC methods. To obtain

a sample from the final distribution, the chain is given an initial value; next, a proposal

(also called transition) distribution from which it is easy to sample (q) is used to gen-

erate a candidate whose probability is conditional on the previous state. The value is

accepted or rejected according to a rule and a correlated sample of the target distribution

is obtained. To make an independent sample from the final distribution, only every k-th

element of the correlated sample for some number k is taken. This procedure is known

as lagging. Because the rule for this algorithm involves a ratio of probabilities, there is

no need to have a normalized distribution from which to sample, which is an advantage.

Metropolis-Hastings Algorithm

Given ✓(t)a,
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1. Draw ✓⇤ ⇠ q(✓|✓(t))

2. Take ✓(t+1) =

8
>><

>>:

✓⇤ with probability ↵,

✓(t) with probability 1� ↵,

where

↵ = min

 
1,

p(✓⇤)

p(✓(t))

q(✓(t)|✓⇤)

q(✓⇤|✓(t))

!
.

at 2 |mathbbN here, so it means ✓ at step t. The same applies for the next algorithm.

When a Markov chain is initialized, the chain will move in the state space around it.

Therefore, if several chains are generated using different initial states, at first, the gen-

erated states of these chains will be close to one another. The period in which this

phenomenon happens is known as the warm-up period or burn-in. A crucial property of

Markov chains is that the initial state does not affect the state of the chain after a suffi-

ciently long succession of transitions, assuming that certain conditions about the Markov

chain are fulfilled1. When this state has been reached, it is said that the chain has reached

a steady state and that the states reflect samples of the stationary distribution.

Another MCMC method is Gibbs sampling. This is a procedure in which all samples are

accepted, which results in an improvement in computational efficiency over Metropolis-

Hastings. An additional advantage of this method is that a transition distribution is not

needed. However, the procedure can only be applied when all conditional distributions

of each multivariate distribution parameter are known given the rest of the parameters.

Gibbs sampling

Given ✓(t), obtain

1. ✓
(t+1)
1 ⇠ q(✓1|✓(t)2 , . . . , ✓

(t)
N
),

...

1
This property is a consequence of the Ergodic Theorem, which states that if a Markov chain is

homogeneous, irreducible and aperiodic, it will reach an equilibrium distribution [33].
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i. ✓
(t+1)
i

⇠ q(✓i|✓(t+1)
1 , . . . ✓

(t+1)
i�1 , ✓

(t)
i+1, . . . , ✓

(t)
N
),

...

N. ✓
(t+1)
N

⇠ q(✓N |✓(t+1)
1 , . . . , ✓

(t+1)
N�1 ).

2.4 Gaussian processes

We present the multivariate normal distribution and its properties. This distribution is

intrinsically related to Gaussian processes, which we also define in this section.

2.4.1 The multivariate normal and its properties

A multivariate normal distribution is an extension of the real random normal variable X

with parameters µ and �, whose probability density function is defined as

pX(x;µ,�) =
1p
2⇡ �

exp

✓
� 1

2�2
(x� µ)2

◆
.

A random variable X 2 Rd is said to have a multivariate normal or Gaussian distribution

with mean µ 2 Rd and covariance matrix ⌃ 2 S
d
++ if

pX(x;µ,⌃) =
1p

(2⇡)d|⌃|
exp

✓
�1

2
(x� µ)T⌃�1(x� µ)

◆
,

where S
d
++ represents the set of positive definite matrices. Let X 2 Rd with X ⇠

N (µ,⌃). Let x be partitioned into xA = (x1, . . . , xr)T 2 R
d�r and xB = (xr+1, . . . , xd)T 2

R
d�r (and similarly for µ and ⌃) such that

x =

0

B@
xA

xB

1

CA µ =

0

B@
µA

µB

1

CA ⌃ =

0

B@
⌃AA ⌃AB

⌃BA ⌃BB

1

CA .

Fig. 2.3 shows an example of a bivariate normal distribution sample where the two

random variables involved are correlated
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Figure 2.3: Sample of a normal distribution in R2
. The marginal dis-

tributions (in blue and red) are also normally distributed.

The multivariate normal distribution has useful mathematical properties, because its

marginal and conditional distributions are normally distributed. The sum of two univari-

ate normally distributed random variables is also normally distributed.

• (marginals):

XA ⇠ N (µA,⌃AA), XB ⇠ N (µB,⌃BB).

• (conditionals):

XA|XB ⇠ N (⌃AB⌃
�1(xB � µB),⌃AA �⌃AB⌃

�1⌃T

AB)

XB|XA ⇠ N (⌃BA⌃
�1(xA � µA),⌃BB �⌃BA⌃

�1⌃T

BA)

• (sum transformation):

If X,Z 2 Rd such that X ⇠ N (µ,⌃) and Z ⇠ N (µ0
,⌃0) then

X +Z ⇠ N (µ+ µ0
,⌃+⌃0).

2.4.2 Gaussian process

A collection of random variables {f(x) : x 2 X} is said to be drawn from a Gaussian

process (GP) with mean function m(·) and covariance function kij = k(xi, xj) if for
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any finite set of elements x1, ..., xn 2 X, the associated finite set of random variables

f(x1), ..., f(xn) have distribution

f ⇠ N (m(·),K) where K = (kij)

or

f(·) ⇠ GP(m(·), k(·, ·)).

Any real-valued function m(·) is acceptable, but for the function k(·, ·) called kernel, it

must be the case that the resulting matrix K is positive definite.

2.4.3 The squared exponential kernel

There exist many kernel distributions, but the most popular is the squared exponential

kernel. Consider a zero-mean GP , f(·) ⇠ GP(0, k(·, ·)); the squared exponential kernel

function is defined as

kSE(x, x
0|↵, ⇢) = ↵

2 exp

✓
1

2⇢2
kx� x

0k22
◆
.

The parameter ⇢ is called the length-scale and alpha is called the marginal standard

deviation. The first corresponds to the frequency of the functions represented by the

Gaussian process prior with respect to the domain; alpha adjusts the magnitude of the

range of the function represented by the Gaussian process.

Since the covariance matrix needs to be invertible, the kernel k(x, x0) = �(x, x0)�2 needs

to be added to the previous kernel. In Fig. 2.4 we see different graphs of the squared

exponential function when the length-scale parameter is varied.

2.4.4 Gaussian processes in a Bayesian context

A Gaussian process generates data located throughout some domain such that any finite

subset of the range follows a multivariate Gaussian distribution. Bayesian algorithms

do not attempt to identify best-fit models of the data, nor do they make best-guess
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Figure 2.4: Different graphs of the square exponential kernel varying

the length-scale parameter ⇢ .

predictions for new test inputs. They compute a posterior distribution over models or,

equivalently, compute posterior predictive distributions for new test inputs. These distri-

butions provide a useful way to quantify uncertainty in model estimates, and to exploit

knowledge of this uncertainty in order to make more robust predictions for new test

points.

2.4.5 Predictive inference with a Gaussian process

Bayesian predictive inference for Gaussian processes with Gaussian observations can speed

up calculations by deriving the posterior analytically, then directly sampling from it.

Suppose for a given sequence of inputs x that the corresponding outputs y are observed.

Given a new sequence of inputs x̃, the posterior predictive distribution of their labels is

computed by sampling outputs ỹ according to

Ỹ |X̃,X,Y ⇠ N (KT⌃�1y,⌦�KT⌃�1K) (2.2)

where
⌃ = (k(xi, xj)) = K(x|↵, ⇢,�),

⌦ = (k(x̃i, x̃j)) = K(x̃|↵, ⇢),

K is the covariance matrix between x and x̃.
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Chapter 3

Methods

Below we describe the cardiac action potential models used for fitting the data, the

datasets to be fit, and the methods used for Bayesian inference in this thesis, including

details of our implementations. For our study in variability, some of the details and the

theory will be given in the related chapter.

3.1 Cardiac action potential models

In this work we seek parameter value distributions for two cardiac action potential models:

the Mitchell-Schaeffer model and the Fenton-Karma model. Because the model parame-

ters will be referred to frequently, we include the model equations in full.

The Mitchell-Schaeffer (MS) model [66] uses two variables, the voltage u and inactivation

gating variable h, along with inward, outward, and stimulus currents (Iin, Iout, and Istim,

respectively) to describe the transmembrane currents that give rise to action potentials.

du(t)

dt
= Iin(u, h) + Iout(u) + Istim(t),

dh(t)

dt
=

8
><

>:

1�h

⌧open
, u < ugate

�h

⌧close
, u > ugate,
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where

Iin = h
u
2(1� u)

⌧in
,

Iout = � u

⌧out
.

The five parameters include a threshold ugate that determines the dynamics of the gating

variable h; the remaining four parameters are time constants that effectively govern the

durations of the depolarization (⌧in) and repolarization (⌧out) phases as well as the closing

(⌧close) and opening (⌧open) of the gate. Initial values were set to u = 0 and h = 1 for each

cycle length used. The stimulus current, whose units are 1
ms

, was applied periodically

according to the specified cycle length (CL) for 1ms with a magnitude of 0.66. In Fig.

3.1 we can see the graphs of the two variables of the model after reaching steady state.

Figure 3.1: Mitchell-Schaeffer model solution after reaching steady

state. The system was paced with a period of 276ms.

We also used the Fenton-Karma (FK) model [31], which is a phenomenological model

that describes cardiac action potentials. It includes three state variables (voltage u and

gating variables v and w) and 13 parameters.
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du(t)

dt
= �(Ifi + Iso + Isi) + Istim,

dv(t)

dt
=

8
>>>><

>>>>:

� v

⌧
+
v
, u � uc

1�v

⌧
�
v1

, uc > u � uv,

1�v

⌧
�
v2

, u < uv

dw(t)

dt
=

8
><

>:

� w

⌧
+
w
, u � uc

1�w

⌧
�
w

, u < uc

where

Ifi =

8
><

>:

� (1�u)(u�uc)v
⌧d

, u � uc

0, u < uc

Iso =

8
><

>:

1
⌧r
, u � uc

u

⌧0
, u < uc

Isi = � w

2⌧si
(1 + tanh(k(u� u

si

c ))).

The fast inward current Ifi, the slow outward current Iso, and the slow inward current

Isi represent summary sodium, potassium, and calcium transmembrane currents, respec-

tively. The magnitude of the 1ms-long stimulus current was 0.35. Initial values were set

to u = 0, v = 1, and w = 1 for each cycle length considered. In Fig. 3.2 we can see the

graphs of the three variables of the model after reaching steady state.

3.2 Numerical solution of the electrophysiology models

To avoid discontinuities, the Heaviside functions in the MS and FK models were replaced

by smooth functions when using HMC or when comparing HMC vs. ABC SMC, to make

a fair comparison. For instance, in the case of the MS model, the equation for the gating
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Figure 3.2: Fenton-Karma model solution after reaching steady state.

The system was paced with a period of 375 ms.

variable was modified to

dh(t)

dt
=

1� h

⌧open
(1� p)� h

⌧close
p,

where p = 1
2(1 + tanh(s(u� ugate))). The steepness parameter s was set to a large value

of 50 for a steep transition resembling the Heaviside function.

3.3 Datasets

In this thesis, we use synthetic and experimental datasets to test the different statistical

algorithms. The datasets include significant changes in action potential shape and du-

rations as a result of rate changes, including a bifurcation to alternans (alternating long

and short APDs despite a constant CL) at the shortest CLs. The specifications for the

data set used for each study are described in the following subsections.

3.3.1 Datasets for the HMC study

Synthetic data were generated for the MS model using the parameter set given in the

first column of Table 3.1, where the values for ⌧open and ⌧close were interchanged from the

original parameters found in [66]. For the FK model, the parameter set can be seen in

Table 3.2. In this section and the following, the sets of parameters used to generate the

synthetic data for each model are subsequently referred to as the true values.
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Pacing was applied for six beats at the chosen CLs and time series of points were taken

from the last two of the six action potentials at a resolution of 0.1ms for the first 4ms,

to ensure adequate temporal resolution of the upstroke, followed by a resolution of 15ms

until the next stimulus was applied. The reason of our choice for the resolution was to

accelerate the computational time while giving enough data information for the algorithm.

Gaussian noise was then added with a mean of 0 and standard deviation of 0.03. The

choice for the variance comes from the estimation of the noise shown in experimental

data we used for fitting. For both models, the differential equations were solved using an

adaptive forward Euler scheme, with a timestep size of 0.1 ms for the first 4 ms after the

beginning of the stimulus followed by an increase to 0.5 ms in all cases.

Table 3.1: MS model parameter values for the HMC study.

Dataset Center values for HMC
folded normal priors Initial values for HMC

⌧in 0.3 0.3 0.3
⌧out 6 6 6
⌧open 150 150 150
⌧close 120 120 120
vgate 0.13 0.31 0.31

Table 3.2: FK model parameter values for the HMC study.

Dataset Center values for HMC
folded normal priors Initial values for HMC

⌧d 0.48 0.48 0.3
⌧r 89 89 110
⌧0 26 26 20
⌧si 276 276 280
⌧
+
v 44 44 27
⌧
�
v1 82 82 80
⌧
�
v2 589 589 350
⌧
+
w 200 200 200
⌧
�
w 215 215 200
uc 0.17 0.17 0.2
uv 0.01 0.01 0.01
u
si
c 0.37 0.37 0.45
k 4.5 4.5 5

The experimental dataset consisted of microelectrode recordings of voltage from zebrafish
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hearts obtained previously [88]. Hearts were stimulated for a series of CLs until steady-

state dynamics were achieved and included transitions to alternans. The last two APs

from the same three CLs of 350 ms, 300 ms, and 276 ms were included in the final

experimental dataset, with the smaller two producing alternans. Measurements were

considered to include random Gaussian error with mean 0 and standard deviation �

(which was the standard deviation of added noise for the synthetic dataset and which

represents uncertainty for the experimental dataset). The original resolution of the data

was 0.1ms.

Data points were spaced every 0.1 ms (0.5 ms) for the first 4 ms of each AP and otherwise

every 15 ms (10 ms) when using the MS model with the synthetic (experimental) dataset.

With the FK model, data points were 0.5 ms apart for the first 4 ms of each AP and 1 ms

apart for the next 3 ms, with a spacing of 15 ms otherwise, for both datasets.

3.3.2 Datasets for the comparative study

As for the previous study, both synthetic and experimental datasets were used to test the

methods. Synthetic data were generated for the MS model using the default parameter

set [66], with values given in the first column of Table 3.3. For the FK model, parameter

set 4 from [32] was used; see the first column of Table 3.4. Pacing was applied as described

in the previous section as well the Gaussian noise added to the solution.

For both models, the differential equations were solved using an adaptive forward Euler

scheme, with a timestep size of 0.1 ms for the first 4 ms after the beginning of the stimulus

followed by an increase to 0.5 ms in all cases except when fitting the MS model to synthetic

data, in which case the time step was increased to 0.25 ms.

The experimental dataset is the same as the one used in the previous section; examples of

action potentials from the dataset along with the bifurcation plot are shown in Fig. 3.3. To

form the dataset in this case, a nonuniform resolution of 0.5ms was used for the first 4ms

after applying the stimulus followed by an increase to 15ms until the next stimulus was

applied. This approach allowed us to reduce the size of the dataset (and correspondingly
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Table 3.3: MS model parameter values and intervals for the comparative

study.

Dataset Intervals for initial
SMC priors

Center values for HMC
folded normal priors Initial values for HMC

⌧in 0.3 (0.1,1) 0.3 0.3
⌧out 6 (3,15) 6 6
⌧open 120 (50,250) 120 120
⌧close 150 (100,200) 150 150
vgate 0.13 (0.1,0.5) 0.13 0.13

Table 3.4: FK model parameter values and intervals for the comparative

study.

Dataset Intervals for initial
SMC priors

Center values for HMC
folded normal priors Initial values for HMC

⌧d 0.407 (0.03,1) 0.44 0.3
⌧r 34 (1,209) 84.29 100
⌧0 9 (1,50) 26.69 20
⌧si 26.5 (5,300) 283.38 200
⌧
+
v 3.33 (1,100) 50.81 27
⌧
�
v1 15.6 (1,300) 84.81 80
⌧
�
v2 5 (1,2500) 591.19 350
⌧
+
w 350 (1,800) 199.52 200
⌧
�
w 80 (1,500) 218.63 200
uc 0.15 (0.01,0.3) 0.15 0.2
uv 0.04 (0.001,0.04) 0.01 0.01
u
si
c 0.45 (0.1,1.5) 0.36 0.45
k 15 (1,50) 4.25 5

the computational time) while retaining good accuracy during the upstroke. Voltage

values were normalized.

For both synthetic and experimental datasets, the last two action potentials in a series

of six were fitted to minimize transient behavior. After performing a series of initial

experiments with different numbers and selections of CLs, we chose to use three CLs

close to the bifurcation point, one at a long CL without alternans and two at shorter CLs

within the alternans regime. Although the datasets to be fit utilized only three CLs, for

comparisons of results at other CLs, voltage data were available at any CL of interest for

synthetic data and for a broad range of CLs from the experiment; see Fig. 3.3. When

generating bifurcation plots, CLs were decreased until block was reached, and action

potential durations (APDs) were measured using a fixed threshold of u = 0.1.
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Figure 3.3: Action potential duration as a function of cycle length for

the full zebrafish dataset. Insets show action potentials at CLs of 400

and 275 ms, with alternans present for the shorter CL. Horizontal lines

correspond to APDs.

3.4 Bayesian Inference

3.4.1 Hamiltonian Monte Carlo

Hamiltonian Monte Carlo (HMC) is a Metropolis method that uses gradient information

to explore the parameter space of a model more efficiently than conventional MCMC

methods [3]. For a closed system, the Hamiltonian usually represents the total energy of

a physical system: the sum of its kinetic and potential energies. The kinetic energy of an

object is related to its motion, and the potential energy is related to its relative position.

Hamilton’s equations define the evolution in time of the physical system.

The physical interpretation of Hamiltonian dynamics can be used to provide insight into

how the HMC algorithm works. In two dimensions, the dynamics can be thought of as

similar to a ball with no friction sliding over a surface whose height varies. The state of
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the system consists of the position of the ball given by a vector x 2 R2 and the momentum

of the ball, defined as the product of its mass and its velocity, given by p 2 R2. The

potential energy U(x) of the ball is proportional to the height of the surface at its current

position, and its kinetic energy is defined as K(p) = pTp/(2m), where m is the mass of

the ball. Depending on where the ball is (e.g., on a level part or a rising slope of the

surface), its potential and kinetic energy will compensate to keep the total energy of the

system constant.

In a non-physical MCMC application of Hamiltonian dynamics, the position corresponds

to the variables of interest: the parameters given the data. The potential energy is the

negative of the log of the probability density for the variables of interest, and for simplicity

we assume that the mass is one. Momentum variables, one for each position variable, are

introduced artificially to take advantage of the properties of a Hamiltonian system1 and

to work in the (x,p) space, which also makes it easy to recover the original variables x.

At a high level, Hamiltonian Monte Carlo works as follows. If the probability density

function P of a system can be written as

P (x) = exp(�E(x))/Z,

where E is a function of x (like the potential energy U(x) mentioned previously) and Z is

an integration constant, E(x) and rE(x) can be calculated to find the states with higher

probability. In physics, P is called a canonical distribution2 and E an energy function.

The Hamiltonian (and the potential energy as well) is an energy function and thus a

probability density function can be written using the Hamiltonian following the above

form. Conversely, a distribution with density function P (x) can be written as a canonical

distribution by setting E(x) = � log(P (x))� log(Z), where Z is a positive constant.

Using previous notation involving parameters ✓ and data y, the canonical distribution can
1
Hamiltonian dynamics have many properties that are crucial in constructing MCMC updates such

as reversibility, invariance and symplecticness [8]. The scope of this work does not allow us to explore

these concepts.
2
More generally, a canonical distribution considers the the exponential of the negative of an energy

function divided by the temperature; here we assume that the temperature is 1.
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be written as P (✓) = p(✓|y) (even though the target distribution, p(✓|y), is a conditional

probability, it is a function of ✓). In this way, taking ✓ as the state space and augmenting

it by a momentum variable q, the Hamiltonian function can be written as

H(✓, q) = E(✓) +K(q),

where K(q) is a kinetic energy like K(q) = qTq/2.

Because the Hamiltonian depends on two variables and HMC is a Metropolis algorithm

(therefore it needs a proposal distribution to generate a candidate), there will be an al-

ternation of two types of proposals, and, therefore, of two candidates. First, a sample is

taken from the first proposal to obtain the momentum q, leaving the parameter values

✓ unchanged; then, we use the second proposal to obtain a candidate for both the mo-

mentum and parameter variables using the Hamiltonian dynamics as defined by H(✓, q).

Using these two candidates, we obtain a sample from the joint density

PH(✓, q) = exp(�H(✓, q))/ZH

= exp(�E(✓))/ZE exp(�K(q))/ZK , where ZH = ZE · ZK ,

= P (✓)P (q);

here ZH , ZE and ZK are integration constants for the densities pH(✓), p(✓) and p(q),

respectively. Because the canonical distribution PH(✓, q) can be written as the product

of the canonical distributions P (✓) and P (q), it is straightforward to recover the marginal

density P (✓) and to obtain a sample for the parameters given the data.

The algorithm requires the following steps. A momentum is sampled from the normally

distributed density P (q) = exp(�K(q))/Zk with µ = 0 and ⌃ and the candidate is

always accepted. The covariance matrix is set as ⌃ = I because we consider the mass to

be 1. For the second proposal, the momentum variables determine where the state ✓ goes,

and rE(✓), which can be given explicitly or calculated using automatic differentiation,
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determines how the momentum q changes according to the system

✓̇i = qi, (3.1)

q̇i = � @

@✓i
E(✓), (3.2)

which represents the Hamiltonian dynamics. This system is usually solved using a finite-

difference method known as the the leapfrog integrator, a numerical algorithm specifically

designed to solve dynamical systems in classical mechanics. For each component of the

position and momnetum variables i, it is defined as follows:

qi

⇣
t+

✏

2

⌘
= qi(t)�

✏

2

@

@✓i
E(✓(t)),

✓i(t+ ✏) = ✓i(t) + ✏ qi

⇣
t+

✏

2

⌘
,

qi(t+ ✏) = qi

⇣
t+

✏

2

⌘
� ✏

2

@

@✓i
E(✓(t+ ✏)).

By applying l steps, a total of l✏ time units are simulated for the leapfrog method, with the

goal that this total time will be long enough to explore parameter space thoroughly but

not so long that regions already explored are reconsidered. After solving the Hamiltonian

dynamics system with the leapfrog method, we will have values for the candidate (✓⇤
, q⇤),

as is required for a Metropolis algorithm.

Because the leapfrog method, like any finite-difference approach to solving Eqs. 3.2, has

numerical error, an additional step beyond generating a momentum vector is required.

In particular, a Metropolis acceptance step is applied to take into account the numer-

ical errors during integration, where the probability of accepting the candidate (✓⇤
, q⇤)

generated by transitioning from (✓, q) is ↵ = min(1, exp(H(✓, q)�H(✓⇤
, q⇤))), which is

the rejection rule from the Metropolis algorithm, and exp(H(✓, q)�H(✓⇤
, q⇤)) is 1 when

there is no numerical error.

We note that a different kinetic energy can be used for HMC. The covariance matrix ⌃

of the normally distributed proposal for the momentum q acts as a Euclidean metric to

rotate and scale the target distribution [3]; this matrix may be set to the identity matrix
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or estimated from warmup draws [93] and optionally restricted to a diagonal matrix. The

inverse ⌃�1 is known as the mass matrix, and can be a diagonal matrix, a dense matrix if

⌃ is respectively a diagonal or a dense, or the identity matrix. Therefore, more generally,

the kinetic energy can be defined as K(q) = qT⌃�1q/2.

The steps of the full HMC method are given below.

Hamiltonian Monte Carlo: Given ✓ 2 Rn and the function E, calculate e = E(✓)

and g = rE(✓).

1. Sample q ⇠ N(0, In) and set H = e+ qTq/2.

2. Set ✓⇤ = ✓ and g⇤ = g.

3. Define ✏ and apply the leapfrog algorithm l times.

(a) q = q � ✏ g⇤
/2

(b) ✓⇤ = ✓⇤ + ✏ q

(c) g⇤ = rE(✓⇤)

(d) q = q � ✏ g⇤
/2

4. Set e
⇤ = E(✓⇤).

5. Set H
⇤ = e

⇤ + qTq/2.

6. Set dH = H
⇤ �H.

7. If dH < 0 or u < exp(�dH) where u ⇠ U(0, 1),

then set g = g⇤; ✓ = ✓⇤; e = e
⇤
.

3.4.2 Approximate Bayesian Computation (ABC)

When the likelihood p(y|✓) is difficult to evaluate or it is not available, approximate

Bayesian computation algorithms offer a useful solution. This method can also be used

if a full Bayesian approach is feasible but computationally inefficient. The most basic

approach is a simple rejection scheme that accepts only those candidates that produce
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output sufficiently close to the data. The entire sample {✓(1)
,✓(2)

, . . .✓(N)} is called a

population.
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ABC Rejection

Given a set of data y, a system x0 = f(x, t|✓), a distance function ⇢(x,y), a tolerance

✏ > 0, a desired population size N , and a chosen prior p(✓):

1. Set i = 1.

2. Sample ✓⇤ from p(✓) and solve x0 = f(x, t|✓⇤) to get x⇤.

If ⇢(x⇤
,y) � ✏, repeat this step.

3. ✓(i) = ✓⇤.

if i < N, i = i+ 1, go to step 2.

Approximate Bayesian Computation Sequential Monte Carlo

ABC rejection is computationally inefficient because its acceptance rate typically is very

low. However, it is possible to build a sample iteratively by taking into account infor-

mation from the previous population. One ABC method that does so is called ABC

Sequential Monte Carlo (ABC SMC) [95]. Sample points are weight-sampled from the

previous population and then perturbed using a random walk with a kernel Kt, which

may be uniform or Gaussian.

ABC SMC

Given a set of data y and a series of tolerances ✏1 > ✏2 > . . . ✏T � 0, and a chosen

prior p(✓):

1. Get a first population of size N with tolerance ✏1, {✓(i)
1 } and assign weights

w
(i)
1 = 1

N
.

2. Weight-sample members from the previous population and then perturb each

using a random walk with kernel K to obtain {✓(i)
2 } with tolerance ✏2. Calculate

weights as

w
(i)
t

=
p(✓(i)

t
)

P
j
w

(i)
t�1K(✓(j)

t�1,✓
(i)
t
)
.
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3. Normalize weights and repeat the process until {✓(i)
T
} is obtained with ✏T .

3.5 Implementation

As mentioned in section 3.4.1, HMC requires the two parameters l and ✏, introduced by

the use of the leapfrog integrator, to be tuned. Hoffman and Gelman [45] created the

No-U-Turn sampler (NUTS) to avoid the need of tuning the forementioned parameters

and it is implemented in Stan [12, 93], the statistical platform that we use for our study.

In NUTS, l is determined adaptively at each iteration and there is also a procedure for

adaptively setting both the mass matrix ⌃�1 and the step size ✏. HMC also requires

calculating the gradient of the target distribution, which is done in Stan through auto-

matic differentiation. Stan includes several useful tools to assess different characteristics

of the obtained samples, like the convergence of the chains through the R̂ statistic, or the

tail and bulk effective sample size (ESS), to mention a few. In Stan, it is also possible

to run more than one chain depending on the number of cores of the computer used to

run the programs. As alternatives, PyMC, Pyro and JAGS have NUTS implementa-

tions. Stan also has its own solvers for differential equations, but we reduced the required

computational time by writing our own solvers.
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Chapter 4

Inference in cardiac action potential

models using Hamiltonian Monte

Carlo

4.1 Introduction

Fitting cardiac action potential (AP) models to reproduce the dynamics of experiments is

a critical task for producing trustworthy model predictions. However, experimental data

are accompanied by uncertainty and variability both within and across individuals. In

general, models do not account for such uncertainty in parameter values and instead use

various parameter-fitting methods to obtain a single value for each parameter being fit.

Modern statistical methods approach the problem differently by seeking to obtain a multi-

variate distribution of the parameter values consistent with the available data. Typically,

Bayesian methods are used to iteratively evolve a population of parameterizations given

by a prior to obtain the target posterior distribution conditioned on the data. Markov

Chain Monte Carlo (MCMC) methods are a standard approach, but traditional MCMC

approaches, like Metropolis-Hastings or Gibbs sampling, become computationally infeasi-

ble as the number of parameters increases beyond a small number. One alternative is the
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use of approximate Bayesian computation (ABC) methods [21], where the computation-

ally expensive step of calculating the likelihood is not needed and the target distribution

obtained is an approximation of the true distribution being sought.

Although ABC approaches significantly reduce computation time compared to standard

MCMC methods, it would be useful to obtain the true distribution while retaining com-

putational efficiency. The Hamilton Monte Carlo (HMC) method [69] was developed for

this purpose and it has been recently used to fit cardiac electrophysiology data [71]. Here

we show that HMC can be used to produce a set of samples from the true distribution

of parameter values for cardiac AP models in a manner that remains computationally

efficient even with a moderate number of parameters.

4.2 Methods

As described in detail in section 3.3.1, we analyze synthetic and experimental data from

zebrafish hearts at different CLs: 350, 300 and 276 ms, where the shortest two exhibit

alternans. For the two sets of data, we chose a resolution that is sufficiently fine to cap-

ture the shape of the action potentials while keeping the computational time reasonable

(computational time will be addressed in more detail in the next chapter). We used the

MS and FK models to fit the data and verify how well the method along with the specific

model was able to capture the dynamics of the system.

4.3 Results

Figure 4.1A-C show results for the synthetic dataset using the MS model. APs using the

true values for the three CLs included in the dataset (350 ms, 300 ms, and 276 ms) are

shown along with superimposed AP traces of 100 randomly selected parameter samples

from the 500 samples generated using HMC. APs generated using those samples closely

match the true APs well, with very little variation in AP shape and repolarization timing.

A bifurcation plot using the true values for the MS model is shown in Figure 4.1D in black

along with 100 bifurcation plots obtained using the same parameter samples as in the AP
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Figure 4.1: A-C: MS model-derived synthetic action potentials (black)

and 100 action potentials obtained using MS model parameterization sam-

ples from the HMC population (red) for three CLs (vertical black lines).

D: Bifurcation plots showing APDs as a function of cycle length for the

synthetic data (black) and the same samples (red) as above.

plots (red); all cases considered a minimum CL of 150 ms. Little variability is observed

for CLs that were not made available to HMC, including long CLs and short CLs past

the bifurcation point.

The marginal distributions of the five MS parameters are shown in Figure 4.2. Each dis-

tribution is unimodal and tightly centered around values very close to the true parameter

values; the use of the same model for generating the data and for fitting, together with

the simple structure of the model, cause HMC to behave more like a parameter fitting-

algorithm. In addition, the standard deviation of the Gaussian noise in the observations,

as estimated through HMC, is quite small, with a mean of about 0.029. HMC is able to

recover the true parameters with a high level of accuracy; the mean posterior predictive
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Figure 4.2: Distributions obtained for all five MS model parameters

using HMC for the synthetic dataset along with the standard deviation �

of the noise. Vertical lines represent the true values used to generate the

synthetic data.

values lie between the 2.5 and 97.5 percentiles. Thus, HMC is capable of recovering pa-

rameters for a model-derived dataset with a high degree of accuracy, even with multiple

sources of noise included. The modes of the distributions displayed have a maximum

error of 9%.

HMC’s contributions beyond simple parameter fitting become more evident when con-

sidering experimental data, which may not be as well fit by the simple MS model. Fig-

ure 4.3A-C show zebrafish APs from three CLs (350 ms, 300 ms, and 276 ms) along with

APs generated from the MS model using 100 of the 500 parameter samples generated

using HMC. As in the synthetic data, alternans is present for CLs of 300 ms and 276 ms.

Here good agreement is obtained but with greater variations; for example, repolarization

times differ by as much as 30 ms. Figure 4.1D shows the bifurcation plot of the exper-

imental data together with bifurcation plots obtained using the same parameterization

samples (down to a minimum CL of 150 ms). Here again, greater variability can be seen

than was observed for the model-derived dataset, especially at the longest and shortest

CLs.
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Figure 4.3: A-C: Normalized zebrafish action potentials (black) and

100 action potentials obtained using MS model parameterization samples

from the HMC population (blue) for three CLs (vertical black lines). D:

Bifurcation plots showing APDs as a function of CL for the synthetic data

(black) and the same samples as above (blue).

Marginal distributions obtained using HMC for all five MS parameters are shown in

Figure 4.4. As with the synthetic dataset, each distribution is unimodal, but now the

values are spread across a broader range. In addition, the noise standard deviation � is

about an order of magnitude larger than it was estimated to be for the synthetic dataset.

We also considered use of the FK model within HMC for fitting an FK model-derived

dataset with APs from three CLs, 350, 300 and 276 ms that included alternans (Fig-

ure 4.5), as well as the same zebrafish dataset (Figure 4.7). Results were similar, with

errors in voltage traces obtained using the modes of the 13 parameter distributions less

than 0.6 percent. Fitting the experimental dataset in HMC with the FK model also re-

sulted in a low level of error of 3.4%. The distributions of the parameters can be seen in

Figure 4.6 for the synthetic data and in Figure 4.8 for the experimental data.



44 Chapter 4. Inference using HMC

0.00
0.25
0.50
0.75
1.00

1.00 1.25 1.50 1.75
τin

de
ns

ity

0.00
0.25
0.50
0.75
1.00

9 12 15 18
τout

de
ns

ity

0.00
0.25
0.50
0.75
1.00

100 200 300
τopen

de
ns

ity
0.00
0.25
0.50
0.75
1.00

150 200 250 300 350 400
τclose

de
ns

ity

0.00
0.25
0.50
0.75
1.00

0.150 0.225 0.300 0.375 0.450
vgate

de
ns

ity

0.00
0.25
0.50
0.75
1.00

0.28 0.30 0.32
σ

de
ns

ity

Experimental Data: MS Model

Figure 4.4: Distributions obtained for all five MS model parameters

using the zebrafish data along with the standard deviation � of the noise.

The main differences between using the MS and FK models can be seen when fitting

the experimental data. The FK model was not able to fit the upper part of the upstroke

compared to the MS model, especially for the CLs where alternans were present. However,

the FK model was able to better capture the dynamics, as can be seen on the bifurcation

plot in Figure 4.5.

4.4 Discussion

In this study, we have shown that HMC can produce probability distributions of model

parameters that can reproduce the shapes and dynamics of cardiac APs, including dur-

ing alternans, with good fidelity. When obtaining parameter distributions for a dataset

derived from the same model used by HMC, narrow distributions that include the true

values within the 2.5% and 97.5% quantiles were obtained, demonstrating the accuracy of

the approach. For the experimental dataset, HMC also recovered unimodal distributions,

but in this case they were much broader, reflecting a greater level of uncertainty. In ad-

dition, the dynamics obtained using the samples within the distribution showed greater

variability, especially for CLs well beyond those included in the dataset when using the
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Figure 4.5: A-C: FK model-derived synthetic action potentials (black)

and 100 action potentials obtained using FK model parameterization sam-

ples from the HMC population (red) for three CLs. D: Bifurcation plots

showing APDs as a function of cycle length for the synthetic data (black)

and the same samples (red) as above.

MS model. HMC also estimated the standard deviation of the noise in the datasets,

which agreed with the known value for the synthetic data and was estimated about ten

times larger for the experimental dataset when the MS model was used. We believe the

larger standard deviation for the experimental dataset, despite its smoother appearance

compared to the synthetic dataset, arises because the model is not a complete description

of zebrafish AP dynamics.

Although HMC via the NUTS version implemented in the Stan platform was able to find

populations of APs and BPs that in some cases were very close to the fitted profiles (so

much so that for the synthetic data the profiles were completely superimposed), HMC is

very sensitive to the priors used and the initial points specified for the algorithm. As will

be discussed in the next chapter, we made use of an Approximate Bayesian Computation
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Figure 4.6: Distributions obtained for all 13 FK model parameters using

HMC for the synthetic dataset along with the standard deviation � of the

noise. Vertical lines represent the true values used to generate the synthetic

data.
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Figure 4.7: A-C: A-C: Zebrafish action potentials (black) and 100 action

potentials obtained using FK model parameterization samples from the

HMC population (blue) for three CLs. D: Bifurcation plots showing APDs

as a function of CL for the synthetic data (black) and the same samples

as above (blue).

algorithm to select the support of the priors. We also tried different priors (folded normal,

gamma and uniform distributions), and tuning the algorithm for the chains to converge

was time-consuming. For the different sets of data and models used, the fittings obtained

using uniform priors were not satisfactory, because the chains did not converge or the

fittings were far from the data to fit. We also found that in certain cases, the algorithm

took longer to fit synthetic than experimental data. We will address this behavior in the

next chapter. We aimed to apply HMC to describe variability in the shape and duration

of synthetic and experimental APs among individuals and in space and time within a

single individual, and we will present results of the latter using synthetic data in Chapter

6.
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Figure 4.8: Distributions obtained for all five FK model parameters

using the zebrafish data along with the standard deviation � of the noise.
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Chapter 5

Comparative study of Bayesian

inference in cardiac action potential

models

5.1 Introduction

In this chapter, we seek to obtain distributions of parameter values for cardiac elec-

trophysiology models; these distributions can be used to represent variability and to

diagnose parameter unidentifiability in models. Here, we build on the work of Chap-

ter 4 by comparing the usefulness of the Hamiltonian Monte Carlo (HMC) algorithm and

the Approximate Bayesian Computation Sequential Monte Carlo (ABC SMC) algorithm,

which has been used to find distributions of a selection of parameter values for neural and

cardiac models [22, 21, 23]. Specifically, we use both methods to find probability distri-

butions for all parameters of two fairly low-dimensional cardiac action potential models:

the Mitchell-Schaeffer model [66], which has two variables and five parameters, and the

Fenton-Karma model [31], which has three variables and 13 parameters. We test these

two Bayesian methods using synthetic data and experimental recordings from zebrafish

hearts and compare their performance.
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5.2 Implementation

This comparative study builds on the work described in the previous chapter of the first

proof of concept for the application of HMC to cardiac model parameter estimation.

However, SMC was used both for the present study as well as the previous study to

obtain the appropriate support for the priors, as explained in the following sections.

5.2.1 HMC implementation

HMC was implemented in R through NUTS in Stan. A warm-up period of 1000 iterations

was chosen. We point out that each time that HMC was applied, the R̂ statistic in Stan

was used to verify that the chains were converging to the target distribution [35, 98, 93].

A sample size of 500 was used for the posterior distributions; only 100 randomly selected

members of the posterior sample were used to generate the population figures involving

action potentials and APDs to improve clarity.

Because we found HMC to be quite sensitive to the prior distributions chosen, it was

necessary to obtain somewhat informative priors in order to achieve reliable results. For

synthetic data using the MS and FK models, the priors used were folded normal dis-

tributions extending 20% around the true values. Initial values needed for HMC were

set as the modes of the priors. For experimental data, priors were obtained following a

process that involved using ABC SMC which is more accepting of less informative priors,

with wide uniform priors that contained but were not centered around the values used

to generate the synthetic data, then using the modes of the resulting marginal posterior

distributions as the values the HMC priors are centered around. The initial priors used

by ABC SMC were defined on the intervals given in the second column of Table 3.3. The

resulting priors used for HMC for the MS model with experimental data in the results to

be shown were folded normals extending 20% around the values given in the third column

of Table 3.3; these values also were used as the initial values for HMC, as indicated in

the last column.

For the FK model, the process of obtaining the priors was the same as for the MS model,
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with ABC SMC used with wide uniform priors to generate a more informative prior

subsequently used by HMC. The initial uniform priors used by ABC SMC were defined

on the intervals given in the second column of Table 3.4. The priors used for HMC with

the FK model were folded normals extending 20% around the values given in the third

column of Table 3.4, and the initial values were set to the values in the last column of

the table.

5.2.2 ABC SMC implementation

The ABC SMC implementation we used was custom written in R and utilized the mod-

ifications made to the ABC SMC algorithm introduced by [95] and also found in [21],

including adaptive tolerances and the use of the effective sample size for each population.

In addition, to improve convergence and the exploration of the parameter space, we used

a decreasing sequence of values for the scale factor for perturbing the populations. As

suggested in [21], we used a probability density function as the distance function to gener-

ate the first population. Later populations were constrained to produce output closer to

the target data using the sum of squared error by choosing a series of smaller tolerances.

The tolerance reduction could be modified adaptively if found to be too restrictive and

the algorithm stopped when the tolerance reduction was smaller than a specified value;

see Ref. [21] for more detailed information.

The probability density function used as a distance to obtain the first population was

⇢✏1(✓) = exp
⇣
�SE(✓)/2(✏1�)2

c✏1

⌘
, where SE(✓) represents the sum of squared error between

the data to fit and the model solution at each time point. Here ✏1 = 1 is the first tolerance

value, � is the standard deviation of the error or noise assumed in the data measurements,

and c✏1 is a normalizing constant set to 1000 for all cases. The use of a probability density

function can help in avoiding an overestimation of the variance in the first population that

can occur otherwise. For all subsequent populations, the distance function was simply

SE(✓). Once the first population was calculated, the value of the first tolerance was

updated to the sum of squared error between the data and the model solution obtained

using the modes of the distributions for each parameter, and the subsequent tolerance was
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set to be 3
4 of the updated first tolerance. The value by which the tolerance was reduced

for subsequent populations was decreased by a factor of 0.5 but could be modified if too

strict, following Ref. [21], and the minimum tolerance reduction serving as a stopping

criterion was set to 1.5625⇥ 10�3.

The population size chosen for ABC SMC was 500, ensuring a posterior distribution

the same size as for HMC. As for HMC, a random selection of only 100 population

members was used to generate the action potential and APD figures to improve clarity.

For synthetic data using the MS and FK models, the priors used were folded normals

extending 20% around the true values. As discussed in the previous section, it was

necessary to obtain more informative priors for use with HMC in conjunction with the

experimental data, and ABC SMC was used with an initial uniform prior to generate

these priors. However, for the results shown below, ABC SMC uses the same priors as

those generated for use by HMC to allow for a fair comparison.

5.2.3 Accuracy measurements

For the synthetic data, to show that the parameters could be recovered, we verified that

the mean values for the posterior parameter distributions were between quantiles 10 and

90. Although with HMC the noise parameter can be estimated, ABC SMC makes no

assumptions about the error; therefore, we also used the coefficient of determination

R
2 = 1 � SSres

SStot
, where SSres is the residual sum of squares (the same as SE(✓̂), where

the argument is the mean of the posterior distribution) and SStot is the total sum of

squares comparing the data points with their average. This measure shows how well

observed outcomes are replicated by the model, based on the proportion of total variation

of outcomes explained by the model [17] (note that R
2 here does not have the same

meaning it has for a linear regression problem).
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5.3 Results

5.3.1 Synthetic datasets

First we consider parameter distributions for the MS model. Fig. 5.1 shows the marginal

distributions of the five MS parameters and of R2 across the final population for HMC

(blue) and ABC SMC (red); the true values used to generate the original APs are shown

as black vertical lines for comparison. The distributions for all parameters are fairly

well centered around the true values for both methods, but the distributions obtained

using HMC are narrower than those from ABC SMC. Note also that the shapes of the

distributions can be quite different for the two methods; in particular, the distributions

from ABC SMC are less symmetric than those from HMC. The R
2 plots, which reflect

the distributions across the populations for each method, show consistently high values,

above 0.983 for ABC SMC and above 0.99 for HMC. In addition, the final population

for HMC has less variability in R
2 than that for ABC SMC. The insets correspond to

q-q plots of the distributions obtained using ABC SMC vs. HMC, where the ranges for

each axis are given by the corresponding x-axis limits. For most parameters, the q-q plots

suggest that the posteriors come from the same distribution, even though the ABC SMC

distributions in general are wider, indicating that ABC SMC likely explores more of the

parameter space.

The population members in each case produce action potentials that agree well with those

of the dataset for all three CLs used, as shown for a random selection of 100 of the 500

population members in the posterior samples for each method in Fig. 5.2A-C. Fig. 5.2D

shows that the populations obtained from both methods agree well with the data at CLs

not used during the fitting, including the location of the bifurcation to alternans. Some

parameterizations from the ABC SMC population can be paced slightly faster than the

true parameters before block occurs.

For the FK model, the results from the two methods show more variation. Although

the marginal distributions for the 13 model parameters largely are centered around the

true values, as shown in Fig. 5.3, the shapes of the distributions for each parameter
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Figure 5.1: Marginal distributions for the MS model parameters along

with the R
2

distribution when fitting to synthetic data (HMC, blue; ABC

SMC, red). Vertical lines represent the true values used to generate the

synthetic data. Insets show q-q plots for ABC SMC (vertical) vs. HMC

(horizontal); dashed lines have slope one.

frequently are visibly different. Most of the marginal distributions obtained using ABC

SMC are fairly broad, again suggesting greater exploration of parameter space. For some

parameters, including ⌧d, usic , and ⌧
�
w , the distributions from HMC are narrow compared

to ABC SMC, whereas for others the distributions are similarly broad. R
2 values also

vary much more across the population for HMC than for ABC SMC, although even for

ABC SMC the values are generally above 0.975. The q-q inset plots are still close to

linear, even though they do not always have a slope of one, especially for ⌧d, usic , and ⌧
�
w ,

which feature wider ranges of values from ABC SMC compared to HMC. In the case of

a few parameters like ⌧
+
w and ⌧0, the two methods produce distributions centered around

different values, with the true value located between the peaks.

The fitted action potentials reflect the apparent increase in variability when using the FK

model compared to the MS model. Fig. 5.4 shows a subsampling of the final populations

obtained using each method and reflect the greater variation with the samples from ABC

SMC. Nevertheless, good agreement is obtained across a wide range of CLs, even for

CLs not close to those used for fitting. In particular, the bifurcation to alternans is well
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Figure 5.2: A-C. 100 action potentials from populations of size 500 using

synthetic data for HMC (blue) and ABC SMC (red) compared with the

data points for the MS model. CLs of (A) 400, (B) 350 and (D) 310 ms

are included. D. 100 representative plots of APD as a function of CL for

synthetic data with the MS model. CLs from 600 ms down to where block

occurs are included, with HMC results in blue, ABC SMC results in red,

and the true data points in black.

characterized for both methods.

5.3.2 Experimental dataset

For the experimental data, the results for the MS model show some differences compared

to the synthetic data. As demonstrated in Fig. 5.5, the marginal distributions from HMC

and ABC SMC are nearly identical for ⌧open; for ⌧in and ⌧out, the distributions appear

slightly offset relative to each other. For the remaining parameters, ⌧close and ugate, the

distributions look similar to the results for the synthetic data, with a broader range of

values included for ABC SMC. The agreement in marginal distribution shapes compared

to the synthetic data case leads to linear q-q plots with slope values of nearly one in all

cases. The R
2 values are lower when the data are not derived from the model being fit;
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Synthetic Data: FK Model

Figure 5.3: Marginal distributions for the FK model parameters along

with the R
2

distribution when fitting to synthetic data (HMC, blue; ABC

SMC, red). Vertical lines represent the true values used to generate the

synthetic data. Insets show q � q plots for ABC SMC (vertical) vs. HMC

(horizontal); dashed lines have slope one.

however, R2 remains above 0.65 for ABC SMC and above 0.7 for HMC.

Fig. 5.6A-B shows the fitting to experimental data for 100 of the 500 population members

for two of the three CLs, 300 ms and 276 ms. Again, good agreement is seen overall,

but with more variability in AP shapes and durations across the population with ABC
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Figure 5.4: A-C. 100 action potentials from populations of size 500 using

synthetic data for HMC (blue) and ABC SMC (red) compared with the

data points for the FK model. CLs of (A) 400, (B) 350, and (C) 300 ms

are included. D. 100 representative plots of APD as a function of CL for

synthetic data with the FK model. CLs from 600ms down to where block

occurs are included, with HMC results in blue, ABC SMC results in red,

and the true data points in black.

SMC. Of particular note, the variability seen in the ABC SMC posterior sample includes

longer and shorter APs, but the HMC sample is biased toward longer APs for the MS

model. This trend can be observed across a broad range of CLs; HMC generally achieves

longer APDs than occurred in the experiment. In addition, neither method accurately

captures the dynamics associated with alternans, including the bifurcation point and the

magnitude of the alternans at the shortest CLs.

For the FK model, the marginal distributions of the parameters show even more vari-

ability, as shown in Fig. 5.7, with wider ranges of values in many cases obtained using

HMC. Although the distributions have similar peak values for some parameters, such as

⌧r and ⌧
�
w , they appear shifted for others, such as ⌧d, ⌧+w , and uv. The q-q plots for these

shifted cases look less than linear. Nevertheless, the R
2 values are somewhat higher than



58 Chapter 5. HMC–ABC SMC Comparison

0.00
0.25
0.50
0.75
1.00

0.50 0.75 1.00 1.25 1.50
τin

de
ns

ity

HMC

SM
C

0.00
0.25
0.50
0.75
1.00

10 15 20
τout

de
ns

ity

HMC

SM
C

0.00
0.25
0.50
0.75
1.00

100 150 200 250 300 350
τopen

de
ns

ity

HMC

SM
C

0.00
0.25
0.50
0.75
1.00

150 200 250 300
τclose

de
ns

ity

HMC

SM
C

0.00
0.25
0.50
0.75
1.00

0.2 0.3 0.4
vgate

de
ns

ity

HMC

SM
C

0.00
0.25
0.50
0.75
1.00

0.675 0.700 0.725
R2

de
ns

ity

Method
HMC

SMC

Experimental Data: MS Model

Figure 5.5: Marginal distributions for the MS model parameters along

with the R
2

distribution when fitting to experimental data (HMC, blue;

ABC SMC, red). Insets show q-q plots for ABC SMC (vertical) vs. HMC

(experimental); dashed lines have slope one.
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Figure 5.6: Fit action potentials and bifurcation plots for the MS model

(left) and the FK model (right) using HMC (blue) and ABC SMC (red)

for experimental data (shown in black). Top two rows show action poten-

tials for CLs of 300 and 290 ms from a sample of 100 randomly selected

population members. Bottom row shows APD as a function of CL for the

same sample.
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they were for the MS model for the same data. Despite this variability in the values of

parameters, the fitted action potentials for the FK model closely fit the data, as shown

in Fig. 5.6 (right column). Both methods show less variability across the sample for the

FK model than for the MS model. However, there is a tendency for the upstroke to be

fitted poorly for higher voltage values for CLs exhibiting alternans. Despite this fact, the

dynamics overall, especially during alternans, are much better captured by the FK model

than by the MS model.

5.3.3 Consistency and robustness

Both HMC and ABC SMC are dependent on randomization within their algorithms;

as a result, it is possible that results could be different every time either algorithm is

executed—for example, the algorithm could converge to a different posterior distribution.

To assess whether the results are robust to different randomizations, we ran each algo-

rithm ten times for each dataset and for each model. Fig. 5.8 summarizes the resulting

distributions for the MS model for both the synthetic (left) and experimental (right)

data. In both cases, the distributions obtained are fairly consistent for each method.

For the synthetic data, the marginal distributions are unimodal and centered near the

correct values. However, the marginal distributions for all time constants are wider for

ABC SMC than for HMC; for vgate, the distribution widths are similar for both methods.

For the experimental data, there is even greater consistency across the ten runs for each

method along with more similarity of the posterior distributions for the two methods.

The distributions generally are wider with ABC SMC, but the difference in widths is less

pronounced than with the synthetic data. Some differences in the locations of the peaks

for ⌧in and ⌧out are evident, as discussed earlier when using experimental data for the MS

model in Fig. 5.5.

For the FK model, more variation occurs for both datasets. As shown in Fig. 5.9, across

the ten runs, the posteriors from HMC when fit to synthetic data are fairly consistent,

but ABC SMC can yield distributions with more variation in shape and location. For

example, the the peak location for the distributions of ⌧r, ⌧si, and ⌧
+
w obtained using
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Figure 5.7: Marginal distributions for the FK model parameters along

with the R
2

distribution when fitting to experimental data (HMC, blue;

ABC SMC, red). Insets show q-q plots for ABC SMC (vertical) vs. HMC

(horizontal); dashed lines have slope one.

ABC SMC vary substantially. For other parameters, such as ⌧
�
w and u

si
c , the results for

HMC and ABC SMC have similar peak locations, but much broader distributions for

ABC SMC. With experimental data, even greater variability across the ten distributions
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Figure 5.8: Superimposed marginal distributions for the MS model

parameters when fitting to (left) synthetic and (right) experimental data

(HMC, blue; ABC SMC, red) from 10 runs of each algorithm (HMC, blue;

ABC SMC, red). Vertical lines represent the true values used to generate

the synthetic data.

obtained using ABC SMC is evident, with noticeable peak shifts for nearly all parameters.

HMC produces more consistent results, indicating that this method is less sensitive to

randomization effects.

As a final measure of robustness, Fig. 5.10 shows the distribution of R2 across the posterior

sample for each of the ten runs using each method for the two models and the two datasets.

In all scenarios, there is more variability in the R
2 value across the posterior sample for

ABC SMC than for HMC, which achieves consistent narrow distributions. In the case

of synthetic data and the ABC SMC algorithm, the distributions are wider for the FK

model fit than for the MS model; the FK model also has lower and more variable R
2

values. HMC achieves high R
2 values for both models. In comparison with the results for

synthetic data, the R
2 values for the experimental data are lower and the distributions

are wider for all cases, but with ABC SMC distributions wider than those of HMC for

both models. In contrast to the synthetic data case, however, the values of R2 are higher

for the FK model than for the MS model, a result that strongly suggests, consistent with
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Figure 5.9: Superimposed marginal distributions for the FK model pa-

rameters when fitting to (A) synthetic and (B) experimental data (HMC,

blue; ABC SMC, red) from 10 runs of each algorithm (HMC, blue; ABC

SMC, red). For synthetic data, the vertical lines represent the true values.

the results shown in Fig. 5.6, that the FK model is better able to fit the experimental

data than the MS model.
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Figure 5.10: Superimposed distributions of R
2

from 10 runs of each

algorithm (HMC, blue; ABC SMC, red) for the MS (upper) and FK (lower)

models and for synthetic (left) and experimental (right) data.

5.4 Discussion

In this section, we compare results obtained for the different models, datasets, and

Bayesian methods. We also describe some limitations of this study.

5.4.1 Influence of dataset and model choices

In all cases, the distributions found using HMC tended to be consistent, with more vari-

ability in the resulting distributions occurring with ABC SMC. For synthetic data, HMC

often, but not always, gave rise to narrower distributions than ABC SMC, whereas for

experimental data, HMC’s distributions sometimes were wider in such a way as to cover

more of the variability of the ABC SMC distributions.

With regard to models, we found clear differences in results for the two models consid-

ered. With synthetic data, for both methods, the peaks of the parameter distributions

for the MS model usually coincided, with minimal shifting between the methods (de-

spite variations in distribution widths). In contrast, for the FK model, greater variability

arose, especially for the experimental data. The reduced clustering of ABC SMC distri-

butions across runs for the FK model suggests the potential for identifiability issues, with

the datasets not providing enough information to reliably constrain all parameter values

for this model. Such behavior has been observed using approximate Bayesian methods

previously [22, 24].
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5.4.2 Bayesian method considerations

Overall, our results across the two methods were fairly consistent. In particular, the q-q

plots of the ABC SMC vs. HMC samples do not support the idea that the posteriors

obtained with the two algorithms come from different distributions other than the actual

posterior. Nevertheless, each of the two methods considered has advantages and disad-

vantages. HMC performs exact inference and explores parameter space more efficiently

than traditional methods like Metropolis-Hastings. Furthermore, HMC was consistent

when running the programs multiple times, giving posteriors centered around the same

value, for synthetic or experimental data. However, it can be difficult to use HMC because

of the need to choose initial points and a prior distribution. Inappropriate selections for

either initial points or the prior can affect convergence, but finding good choices can be

time-consuming.

In contrast, although we show results only for the same priors used for HMC, ABC SMC

could produce good results with a variety of different priors, including uniform, gamma

and folded normal distributions. Even with relatively non-informative priors such as wide

uniforms, ABC SMC was able to find a useful approximation to the posterior in all cases

we tried, for synthetic or experimental data.

However, the lower bound for the R
2 distribution when fitting experimental data was

smaller using wide uniform priors than folded normal distributions (MS: not lower than

0.48 vs. 0.65; FK: not lower than 0.67 vs. 0.79). While we expect that this result occurs

because the uniforms are less informative than the folded normal distributions, more

study would be needed to make a fair comparison. In addition to imposing less stringent

requirements for the priors, ABC SMC could find an approximate population fit even if

the population size was small (e.g., 100).

In terms of computational efficiency for the two methods, using experimental data with

ABC SMC generally took around 5 minutes and more than twice as long for synthetic

data when fitting the MS model. For the FK model, ABC SMC took only slightly longer

to fit experimental data, around 6 minutes, and about 1.5 times longer than that to fit
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synthetic data. For HMC, the experimental data could be fit to the MS model much more

quickly, in about 3.5 minutes, with the fitting to synthetic data requiring about eight times

longer. When fitting synthetic data, HMC took around 12 minutes to fit the MS model

but around 4 hours to fit the FK model. The time it took for ABC SMC to fit synthetic

data with the MS and FK models was respectively similar to the time it took fitting

experimental data. A possible explanation for the long times required for HMC to fit

synthetic data may be that the likelihood is very flat for some regions of parameter space,

limiting choices for acceptable candidate parameterizations. Another possible reason that

HMC is much faster for fitting experimental data may be the nature and extent of noise

and variability in the dataset. Indeed, HMC is unable to obtain appropriate fittings

for datasets with no or very low noise, which, along with the magnitude of noise in the

experimental data, influenced our selection of the noise level in creating the synthetic

datasets considered.

Overall, we found that ABC SMC was able to obtain good results under a broader range

of conditions, whereas HMC imposed more constraints for reasonable performance. How-

ever, even ABC SMC saw benefit from the use of an informative prior. Because ABC

SMC does not need initial points and accepts wide priors from several different types

of distributions, it can be used to find feasible priors for HMC, and the initial points

for HMC can be selected as the modes of the distributions obtained with the first ABC

SMC pass. This hybrid approach, which was used to obtain the results shown here, can

be useful to sidestep the difficulties of working with HMC while taking advantage of its

ability to generate a population that closely fits the data with limited variability and of

its performance of exact inference as a full Bayesian method.

5.4.3 Limitations

In this study we considered only a limited number of datasets. In particular, we chose

data from three CLs, with one at a longer CL and two at shorter CLs within the alternans

regime. We made a preliminary study to select a proper number of CLs that can be seen

in Appendix A. It may be possible to optimize the selection of CLs beyond what was
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chosen. In addition, it is possible that performance may change for noisier data or for

data with different dynamics that may not be well captured by the model being fit.

Similarly, we only considered two models, and it is possible that performance could differ

for a different selection of models. We also note that we have used a single approximate

Bayesian method and that a different choice may result in different findings.

Within the models, we used a simple square-pulse stimulus. Use of a biphasic stimulus [11]

could help prevent selection of large values for the excitability parameters (e.g., ⌧in for

the MS model and ⌧d for the FK model) that would not allow propagation in tissue and

thus may be unphysiological.

The tolerance reduction approach used for ABC SMC, while adaptive, nevertheless was

fixed in advance, following Ref. [21]. It would be interesting to try a more sophisticated

way to select the tolerances to improve efficiency and to facilitate working with different

datasets.

We also note that to make the comparison between ABC SMC and HMC fair, we chose

to use one chain for HMC in Stan, but we found the results were consistent when using

the default number of chains, which was four.

5.4.4 Conclusion

In this chapter, we have used two Bayesian methods, HMC and ABC SMC, to find

populations of cardiac action potential model parameters consistent with data used for

fitting. We have shown that the methods can work effectively with both synthetic data

derived from the models used as well as for an experimental dataset taken from a zebrafish

heart. In nearly all cases, both methods find well-shaped marginal distributions with clear

peaks for each model parameter for both the MS model, which has five parameters, and

the FK model, which has 13. We also have shown through the use of q-q plots that

the posterior distribution samples obtained by the two methods do not give any strong

indication of being from different distributions; in other words, both methods appear to

converge to the same distribution. In the case of synthetic data, where the true parameters
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used to generate the dataset are known, those true values in general are well contained

within the posterior distributions found, and across multiple runs of the algorithms the

true values coincide well with the distribution peaks.

Given that both methods achieve similar results with no clear computational advantage,

considerations other than accuracy may motivate the choice of method. ABC SMC is

generally easier to work with, as it accepts different kinds of prior distributions, and those

distributions may be broad. In addition, ABC SMC appears to explore the parameter

space more fully than HMC. While HMC requires more effort to find an acceptable prior

(and indeed we suggest that ABC SMC may be useful in this task), it tends to find

narrower distributions, which may be advantageous in some cases.
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Chapter 6

Gaussian process priors for studying

spatial variability

6.1 Introduction

Cardiac cells exhibit variability in the shape and duration of the electrical signals that

trigger muscle contraction in both space and time within a single individual. Some aspects

of natural variation can be represented in a model through the use of nonstationary

parameter sets that describe separate individuals. However, current models of cardiac

action potentials avoid parameter estimation for a spatially varying set of parameters

and are often employed using a single value for the entire spatial domain. It would be

useful to be able to describe variability more systematically, and additional assumptions

regarding the heterogeneity of model parameters in space or time may help provide a

more faithful and less restrictive representation of the system of interest. Toward this

end, in this chapter we aim to characterize admissible parameter sets that can represent

variability variability of cardiac action potentials in space for one individual.

6.2 Methods

Before introducing the probability hierarchical model mathematically, we present an

overview of the main concepts.
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• To generate the synthetic data used as input for fitting, we create a two-dimensional

grid of spatially correlated values for the MS model parameter ⌧in. For a subset

of grid locations chosen as training points, we generate a series of action potentials

using the corresponding values of ⌧in. The remaining parameters are based on

spatially invariant fixed values but with spatially varying Gaussian noise, such that

there are small variations in the values of the remaining parameters used to generate

the training data but, unlike for ⌧in, without spatial correlation. A small amount

of Gaussian noise is added to the voltage data to represent measurement error.

At the same time, to assess the performance of the technique, we also select a set

of prediction sites where the values of ⌧in are known from the initial setup and

the remaining parameter values are set to the baseline spatially invariant fixed

values used at the training locations, in this case without added noise. Action

potential series plus Gaussian noise are also generated at the prediction sites for later

comparison, and bifurcation plots of APD as a function of CL are also generated

for later evaluation.

• After generating the action potential time series for the chosen training points,

we fit the noisy voltage data and find the probability distributions for all of the

MS model parameters at the training sites. To do so, we treat ⌧in as a spatially

correlated parameter; for this proof-of-concept study, the remaining parameters are

treated as spatially varying but uncorrelated. The distributions are used to generate

populations of action potentials that can characterize variability and uncertainty at

the training sites.

• As a final step, we use the information obtained at the training sites to make predic-

tions at the prediction sites. We obtain values for ⌧in at each prediction site using

the (posterior) distributions of ⌧in at the training sites based on the assumption that

the parameter values are correlated in space along with the training and predicted

locations. For the remaining parameters, we use the spatially varying values at the

testing sites to generate a single tissue-level distribution for each parameter that is

then used for each prediction site. Because our statistical model allows us to use
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spatially varying distributions of a parameter to obtain a single tissue-level distri-

bution for that parameter, the model can be considered to include different “levels”

(e.g., cell level vs. tissue level) arranged hierarchically—hence the description as

a hierarchical model. Using the spatially varying distributions for ⌧in for each site

and the tissue-level distributions for the remaining parameters, populations of ac-

tion potentials are generated at each of the prediction sites. Accuracy is assessed

at each prediction site by comparing the predictions of ⌧in, the population of action

potentials, and the population of bifurcation plots with the corresponding reference

data.

In the sections below, we describe how the above concepts are realized.

6.2.1 Hierarchical probability model

Given the system defined by the MS model, which can be written as

x0 = f(x, t; ⌧in, ⌧out, ⌧open, ⌧close, ugate),

where x(t) 2 R
2 and t 2 R+, we consider

yij = u(tij ; ⌧
(i)
in

, ⌧out, ⌧open, ⌧close, ugate) + ✏ij

where i = 1, 2, . . . , N1 indexes the time series of voltage data to be fitted at each of

the N1 positions si, u = x1 is the solution to the MS model representing the voltage,

j = 1, . . . , T indexes the T time points available for each position, and the measurement

at each location at each time has measurement error represented by ✏ij ⇠ N (0,�i).

We define �(i) = (⌧ (i)
out

, ⌧
(i)
open, ⌧

(i)
close

, u
(i)
gate

) and ⌧i as the parameter ⌧in at each position si

in a spatial domain D ⇢ R2. As a small simplification, we assume that the measurement

error depends only on position and is independent of time (✏i ⇠ N (0,�i)). Let U be a



72 Chapter 6. Spatial variability

matrix of size N1 ⇥ T where row i is of the form

(u(ti1; ⌧i,�
(i)
,�i), . . . , u(tiT ; ⌧i,�

(i)
,�i))

We formulate the inference problem as a hierarchical Bayesian model for the spatiotem-

poral voltage measurement yij . Our strategy is to instantiate one separate instance of

the MS model at each location and use it to relate spatial variations in parameter val-

ues to resulting outputs in spatiotemporal voltage signals. For the parameter ⌧in of the

MS model, we use a Gaussian process prior to encode spatial autocorrelation among the

values of ⌧ = (⌧1, ..., ⌧N1) used to parameterize the individual AP models at locations

s1, ..., sN1 . The specifications for the model parameters are summarized as

✏i ⇠ N+(0, 0.5)

µk ⇠ N+(tv(�(i)
k
), 0.2 ⇤ tv(�(i)

k
)), k = 1, 2, 3, 4

�
(i)
k

⇠ N+(µk, 0.2 ⇤ tv(�(i)
k
)), k = 1, 2, 3, 4

⌧ ⇠ N (µ(1)
,K↵,⇢ + �GP IN1)

↵ ⇠ N+(0, 1)

⇢ ⇠ Uniform(1, b),

�GP ⇠ N+(0, 1),

where N+ represents a folded normal distribution, tv(·) is the value used to generate the

synthetic data (true value), IN1 is the N1 ⇥ N1 identity matrix, and b is the maximum

distance between any two positions on the grid (those in opposite corners of the grid). A

schematic of the hierarchical model can be seen in Fig. 6.1 in plate notation [10]. The

plate notation is used to represent the hierarchy of the parameters, meaning for instance,

that the higher level represents the parameters for the population of positions as a whole

(outside the bigger square) and the next level represents the parameters for each member
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Figure 6.1: Probability model in plate notation. Circles indicate random

variables while boxes (plates) indicate repetitions. We consider N spatial

points, each of which has T observations associated with it. Hollow circles

are unobserved or latent, while filled-in circles correspond to observational

data.

of the population (inside the square). If we were to consider more than one individual,

we could include a new level which would the the highest.

More specifically, the Gaussian process prior is

⌧(s) ⇠ GP(m(s), C(s, s0; ⇢,↵)), (6.1)

where m(s) : R2 ! R denotes a mean function and C : R2 ⇥ R2 ! R denotes a suitable

covariance kernel function parameterized by a spatial correlation distance parameter ⇢

and a scale parameter ↵. We specify the mean function as a constant with a value

of m(si) = 0 for all i = 1, 2, . . . , N1. Then, the covariance function gives rise to the

covariance matrix K via the construction

K↵,⇢ =

2

66664

C(s1, s1) C(s1, s2) . . .

... . . .

C(s1, sN1) C(sN1 , sN1)

3

77775
. (6.2)
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In this work, we use the squared exponential covariance function, defined as

C(s, s0; ⇢,↵) = ↵
2 exp

✓
||s� s0||22

2⇢2

◆
, (6.3)

where ||s�s0||2 denotes the Euclidean distance between two locations s and s0. The role

of the correlation distance parameter ⇢ is to decide roughly how far spatial correlations

should extend, while the parameter ↵ determines the relative scale of that variation. Al-

ternative choices of covariance kernels include the Mátern or rational quadratic kernels. If

additional spatial structure such as oscillations or trends in space are present, sinusoidal

and linear kernels could also be employed. We note that this is a standard presentation

of Gaussian process priors; we refer the reader to [81] for more detail. It is important

to note that calculating the prior density associated with log ⌧ requires inversion of the

pairwise covariance matrix K↵,⇢, which can be numerically unstable. To circumvent this

issue, we make use of the Cholesky decomposition K↵,⇢ = LLT within Stan.

In total, the vector of free parameters ✓ for the probability model for all N1 spatial

locations is

✓ = (⌧ ,�,�,↵, ⇢,�GP ),

where � = (�1, ...,�2
N1

) denotes a vector of measurement noise variance parameters con-

catenated together and � = (�(1)
, ...,�(N1)). Then, with the abbreviation [·] = p(·), the

prior distribution as described previously factorizes as

p(✓) = [⌧ |↵, ⇢,�GP ] [↵] [⇢] [�]| {z }
Spatial parameters

4Y

k=1

N1Y

i=1

h
�(i)

���µk

i 4Y

k=1

[µk]

| {z }
Nonspatial hierarchical prior

,

where the index k 2 1, ..., 4 runs over the non-spatially varying parameters. Finally, by as-

suming independent Gaussian measurement error variates that are identically distributed
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within spatial locations, the likelihood and its log-transformation are

p(Y |✓) =
N1Y

i=1

TY

j=1

1q
2⇡�2

i

exp


�(yij � Uij)2

2�2
i

�
, (6.4)

log p(Y |✓) = 1

2

NX

i=1

||yij �Ui||22
�
2
i

� log
�
2⇡�2

i

�
, (6.5)

where Y represents the voltage data to fit and the L
2 norm as || · ||2.

Table 6.1: Notation

s1, ..., sN Spatial coordinates of observational data
tij Temporal coordinates for observational data
N Number of observation sites indexed by spatial coordinates
N1 Number of training locations
N2 Number of predicted locations
T Number of time points for each voltage signal
U N⇥T matrix of voltage values observed over space and time
⌧ Vector of site-specific parameters of MS
�(i) Vector of non-site parameters of MS at position i

µk Hierarchical mean of Mitchell-Schaeffer parameters pooling
across locations

6.2.2 Parameter estimation

To estimate the parameters associated with the probability model of the previous section,

we make use of Markov chain Monte Carlo methods for drawing samples from the posterior

distribution with density p(✓|Y ) / p(Y |✓) p(✓). As is standard in the calculation of

Monte Carlo estimators for Bayesian inference, we construct a Markov chain ✓(1)
, ...,✓(j)

of J samples drawn from the posterior distribution, with the posterior mean
P

L

j=1 ✓
(j)

serving as our estimator of choice. In particular, we use a variant of Hamiltonian Monte

Carlo as described in section 3.4.1, a method that constructs a fictitious Hamiltonian

system for which the canonical coordinates are given by the probability model parameters,

and the energy is given by the negative log posterior.
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6.2.3 Synthetic data generation

We generate synthetic data using MS under the assumption that the parameter log ⌧ is

highly spatially correlated. In experiments, for an image obtained with optical mapping at

a fixed time, each location is represented by a pixel. In reality, the locations are correlated

because the electrical signals in the heart propagate by diffusion from one myocyte to the

next. We fit the MS model to the last two APs in a series of 6 at N1 locations that are

represented on the grid by the vector ⌧ . The rest of the parameters are not fixed but do

not vary in space.

We generate spatial grids of N = 25, 100 and 900 locations with coordinates residing in

the corresponding sets {1, ..., 5}2, {1, ..., 10}2, {1, ..., 30}2. Each coordinate is assigned a

raw independent standard normal noise variate; we then apply a Gaussian spatial filter

to smooth the locations in space and thereby induce spatial correlations in the values of

⌧ . We apply an affine transformation to the grid values in order to restrict them to be

in the interval (0,1). Schematics for these setups are shown in Figures 6.2, 6.4 and 6.6.

We then select N1 = 4, 6, and 14 training locations, respectively, and drew values for the

other model parameters by applying Gaussian noise, with � set to 10% of the values of

⌧out, ⌧open, ⌧close, ugate = (6, 150, 120, 0.13). These values, including those used to generate

the grid for ⌧in, are based on those of the original MS model paper [66] (where ⌧in=0.3).

Because of the alternans behavior, discussed in section 2.2.1, more than one CL is needed

when fitting cardiac models to AP data. Therefore, we simulate voltage time series

for CLs paced at 350, 300 and 276ms at the N1 training locations, then perturb them

with Gaussian noise with mean 0 and standard deviation 0.03. Our objective with this

synthetic data exercise is to determine whether or not the spatial parameter surface for

⌧ along with the system dynamics could be recovered given a limited number of voltage

time series. The last two APs are taken in a series of 6—after reaching steady state—and

the fitting is made using only the two shortest CLs from the alternans regime and the

shortest CL before reaching the bifurcation. The resolution of the points selected from

the APs to be fitted is 0.5 ms for the first 4 ms and 10 ms thereafter for each CL.
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To summarize, we use a latent Gaussian process as a prior for the spatially varying

parameter ⌧ and simulate data drawn from this prior. We then perform inference for a

subset of N1 = 4, 6 or 14 sampled locations—used as training points—and attempt to

respectively predict the values of ⌧in at the remaining N2 = 21, 94 or 886 non-sampled

locations employing Hamiltonian Monte Carlo to infer the model parameter distributions.

6.2.4 Spatial parameter recovery

To obtain the grid of predicted values for ⌧in, we take the mean of the N2 posterior

distributions for this parameter. Then, we calculate the Pearson correlation coefficient

between the true and predicted values at the N2 locations to assess whether there is a

linear relationship between them. The Pearson correlation coefficient is defined as

rxy =
⌃n

i=1(xi � x̄)(yi � ȳ)p
⌃n

i=1(xi � x̄)2
p
⌃n

i=1(yi � ȳ)2
.

To assess the validity and usefulness of our method, for each CL used for fitting, we

generate a population of action potentials at a desired location from the N2 total loca-

tions and compared them with the true APs at that specific location. To generate the

population, we use the voltage model solution at the sample values from the posterior

distribution of ⌧in at the desired location and the four posterior distributions for the rest

of the parameters. To generate the true APs, we select ⌧in from the grid of true values at

the desired location, and for the four other model parameters, we assign the values that

were used to generate the synthetic data. Since the desired locations are used as training

points, there is no need to do inference at every location of the grid, which is computa-

tionally expensive. Inspired by heterogeneity of the heart such as what can be observed

in optical mapping experiments, we take advantage of the correlated spatial structure on

one of the parameters: the APD varies at each location and that measurement is what is

represented in the mapping.
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6.2.5 Implementation

We implemented our model in Stan. We solved the MS model numerically using an

adaptive version of forward Euler with two step sizes for each CL. For the first 4 ms,

corresponding to the upstroke (the stimulus was applied for the first 1 ms), we used a

step size of 0.1 ms, and a step size of 0.25 ms was used otherwise. We implemented our

programs using one chain, the sample size for all cases was equal to 500 and the warm-

up period was equal to 1000. We used RStan in R and ran the programs in an Apple

MacBook Pro with M1 processor and 16 GB of unified RAM.

6.3 Results

Fig. 6.2 show the 5 ⇥ 5 grid of the true and predicted values the values of ⌧in at each

location. In this case, the four training points were selected at coordinates (2,1), (4,2),

(1,4) and (3,5) for equal spacing and are represented by black circles. For illustrative

purposes, we selected two of the N2 test (i.e., non-training) positions, (3,3) and (5,4), as

indicated by black squares in Fig. 6.2 to generate 100 posterior predictive distributions

of action potential and bifurcation plots for the cycle lengths of 350, 300, and 276 ms

used for fitting. We then compared these with the true APs, represented by the black

dots, which were not used during inference. Fig. 6.3 shows that the posterior predictive

distribution of APs exhibits substantial variation representing the posterior uncertainty

in the parameters of the MS model at the new locations. Unsurprisingly, this dispersion

is dampened for spatial locations that are closer to the coordinates used for training data.

For the data corresponding to position (3,3), the true bifurcation plot does not show a

pronounced bifurcation, while some samples from the posterior predictive distribution do

show a bifurcation. For position (5,4), the distribution displays more variation about true

APs, and specifically for the 276 ms CL, this predictive distribution of APs appears to

systematically underestimate the true AP.

Table 6.2 gives the mean posterior values for all the MS parameters (for each location

in the case of ⌧in) along with the true values. Some metrics to assess the convergence
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Figure 6.2: Grid of true (left) and predicted (right) values for ⌧1 = ⌧in

when the grid size was 5⇥5 and there were 4 training points (black circles).

The squares show the two test points for which we predicted the APs and

BPs in Fig. 6.3.

Parameter Position True Predictive mean R̂ Bulk ESS Tail ESS

⌧in (3,3) 0.421 0.338 1.001 476.726 505.271
(5,4) 0.304 0.246 1.004 491.023 467.781

⌧out N/A 6 6.082 0.998 478.265 483.113
⌧open N/A 150 153.891 1.002 467.087 496.537
⌧close N/A 120 115.319 1.005 450.483 459.604
ugate N/A 0.13 0.124 1 518.237 411.188

Table 6.2: True and posterior mean estimates values and MCMC diag-

nostic metrics for the 5⇥ 5 grid.

of the chains and to observe the bulk and tail effective sample size for this example are

also given. The predictive means were always between the 2.5% and 97.5% quantiles,

meaning that the prediction lay in a 95% approximated credible set, the R̂ value are very

close to 1, indicating convergence of the chains, and the bulk and tail effective sample size

approximations are respectively 450 and 411 in the worst case scenario, sizes not very far

from the actual sample size.

Fig. 6.4 shows the 10⇥ 10 grid of the true and predicted values for each of the ⌧in values

at each location. The training points in this case (N1 = 6) were (1,1), (8,2), (5,4), (2,6),

(9,7) and (6,9) and are represented by circles. We selected 3 out the N2 = 94 positions,

(3,8), (6,6) and (9,4), shown as squares, to generate the AP populations. As in the
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Figure 6.3: Comparison of true and predictive samples of action poten-

tial and bifurcation plots. Blue lines indicate samples from the noise-free

posterior predictive distribution of the AP / BP values at new points in

space. The black markers indicate the true values observed without noise

and the true bifurcation plots also appear in black. The size of the grid in

this case is 5⇥ 5 and the predicted locations are (3, 3) and (5, 4).
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Figure 6.4: Grid of true (left) and predicted values (right) for ⌧1 = ⌧in

when the grid size was 10⇥10 and five training points (black circles) were

used. The squares show the two test points for which the predicted APs

and BPs are shown in Figure 6.5.

previous example, we also plotted a population of bifurcation plots to compare it with

the true BP. The results are shown in Figure 6.5.

As in the previous case, the populations are able to capture the shapes and dynamics of

the three selected positions. The populations of both the APs and the BPs demonstrate

more variability for position (3,8), but the populations are again denser for the members

that are closer to the true plots. Position (9,4) shows the least population variability

of the three predicted positions. Table 6.3 lists the true and mean posterior predictive

values of the parameters along with selected Stan metrics. As before, the predictive

means were always in a 95% approximated credible set. The R̂ values, which are very

close to 1, indicate that the chains converged, and the bulk and tail effective sample size

approximations are around the same size as the posterior sample size.

For the larger 30 ⇥ 30 grid, Fig. 6.6 shows the true and predicted values of ⌧in at each

location. The training points (N1 = 14) were chosen in a regular pattern; they are

represented by circles. For the pattern, we start by selecting location (i1, j1) = (1, 1) and

recursively defining the coordinates of each next training point location (im+1, jm+1 based

on the previous location (im, jm) for m = 1, ..., N1�1 as follows: im+1 = mod(im+6, 30)
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Figure 6.5: Predicted populations of APs and BPs (blue) along with

the true APs to be predicted for the 3 CLs used for fitting. The size of

the grid is 10⇥ 10 and the predicted locations are (3,8), (6,6) and (9,4).
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Parameter Position True Predictive mean R̂ Bulk ESS Tail ESS

⌧in (3,8) 0.52 0.541 0.999 451.991 434.566
· (6,6) 0.493 0.507 0.998 400.749 514.387
· (9,4) 0.463 0.466 0.998 400.749 514.387

⌧out N/A 6.0 5.992 0.999 500.687 438.954
⌧open N/A 150.0 147.418 0.998 586.925 483.624
⌧close N/A 120.0 124.524 1.003 455.105 439.378
ugate 0.13 0.127 1.000 422.59 385.778

Table 6.3: Real and mean posterior parameter values and selected

MCMC diagnostics for the 10⇥ 10 grid.

and jm+1 = j+1+d((i+6)/30)e. We selected four of the N2 = 986 non-training positions,

(8,20), (10,8), (25,5) and (26,26), shown as squares, to generate the AP populations and

compared them with the true APs for each CL. Figure 6.7 shows populations of bifurcation

plots for the four test locations.

The predicted true parameter values, voltage values, and bifurcation plots in this case

show much greater variation and lower accuracy overall than the previous examples.

However, it is important to consider that in this case we used only 1.5% of all locations

as training points (compared to the first and second examples, where the training points

represented 16% and 6% of the total positions, respectively). Position (10,8) has the best

fitting for both APs and BPs, and its populations also show the least variability. For

position (25,5), the populations of APs are always below the true plots and consequently,

the populations of BPs are always below the true plot. Position (26,26) shows the opposite

behavior: the populations of APs are close but above the true APs, except for some cases

for 276 ms. The true BP seems to be more centered, but the bifurcation is less pronounced

compared to the population of predicted BPs. This behavior is consistent with the errors

in the predicted values of ⌧in. The locations where ⌧in is predicted to be lower than the

true value have longer APDs than the true values, and vice versa. This would be expected

because ⌧in governs the strength of the inward current; smaller ⌧in means larger inward

current and thus is expected to prolong APD.

Table 6.4 provides the mean posterior values for the MS model parameters, at each

location in the case of ⌧in, as well as the true values and selected Stan metrics. As before,
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Figure 6.6: Grid of true (left) and predicted values (right) for ⌧1 = ⌧in

for the 30 ⇥ 30 grid with 14 training points (black circles). The squares

indicate the four testing point for which the predicted APs and BPs are

shown in Figure 6.7.

Parameter Position True Predictive mean R̂ Bulk ESS Tail ESS

⌧in (8,20) 0.22 0.369 0.999 451.991 434.566
(10,8) 0.523 0.499 0.998 400.749 514.387
(25,5) 0.488 0.667 0.998 400.749 514.387
(26,26) 0.365 0.301 0.998 400.749 514.387

⌧out 6 5.992 0.999 500.687 438.954
⌧open 150 147.418 0.998 586.925 483.624
⌧close 120 124.524 1.003 455.105 439.378
ugate 0.13 0.127 1 422.59 385.778

Table 6.4: Real and mean posterior parameter values and selected Stan

metrics for the 30⇥ 30 grid.

the predictive means were always between the 2.5% and 97.5% quantiles, the R̂ indicate

convergence of the chains and the bulk and tail effective sample size approximations are

close to the size of the posterior sample.

The Pearson correlation coefficients (R) for the three grid sizes are given in Table 6.5,

along with the computational runtime for the corresponding examples. Runtime did not

increase linearly with the number of training points, since the time per location was

0.15, 0.45 and 2.9 hours for the 5x5, 10x10 and 30x30 cases. The Pearson correlation

coefficient was close to one for the two smaller grid sizes, but not as close for the 30x30
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Figure 6.7: Predicted populations of APs and BPs (blue) along with the

true AP for the 3 CLs used for fitting for the 30⇥ 30 grid. The predicted

locations are (8,20), (10,8), (25,5) and (26,26).
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grid size 5x5 10x10 30x30
N 25 100 900
N1 4 6 14
rxy 0.96 0.98 0.63

time(h) 0.6 1.8 11.5
divergences 396 0 0

Table 6.5: Computational time and Pearson correlation coefficients for

the three grid sizes.
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Figure 6.8: Correlation between predicted and true values for ⌧in. The

blue bars represent the standard deviation of the mean posterior predictive

values and reference lines with slope 1 are shown in black.

case. The smallest grid size had many divergences, whereas the larger grids had none.

The divergences point out numerical inaccuracies when solving the leapfrog algorithm,

which can make the results to be non reliable. Fig. 6.8 shows the predicted values of ⌧in

plotted against the true values as well as the standard deviations of the means of the

posterior distributions at each predicted location. For for the 5 ⇥ 5 and 10 ⇥ 10 grids,

the lines through the plotted points have slopes very close to 1, which indicates a strong

linear relationship between the true and the predicted values. For the 30 ⇥ 30 case, the

results are not as good, and the plot shows some artifacts from the function used to assign

training point locations. In particular, many of the true values above 0.4 are not well

predicted.

6.4 Discussion

We successfully performed inference and made predictions on grids of different sizes when

selecting a small number of training points (no more than 16% of the total positions).
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The correlation between the predicted and true values was closer to one when the grid

size was smaller, but note that the percentage of training points with respect to the grid

size also decreased with increasing grid size. Even for the 30 ⇥ 30 case, the populations

of action potentials were acceptable because at some of the positions shown, they were

always below the voltage profiles to be fit, even though there were close.

The results improved when the non-training points were given as input to calculate the

covariance matrix for the square exponential kernel when doing inference (results not

shown). We do not include the non-training points when building the covariance matrix

show those as examples in this work for two reasons. On the one hand, the number of

training points we used was close to being the worst-case scenario as the grid size was

gradually being incremented; on the other hand, we wanted to reduce the computational

time and still obtain acceptable results. For instance, the computation time for the grid

of size 100⇥ 100 decreased from 5.7 to 1.8 hr when not giving the non-training points as

input for the covariance matrix, where the number of training points represented 6% of

the total number of positions on the grid.

For the priors, we selected not only folded normals for ⌧out, ⌧open, ⌧close and ugate, but also

gamma distributions and obtained comparable results (not shown). Because we used a

hierarchical model, we selected folded normals so that the distributions of the parameters

at the higher level represented the mean (and variance) for all the positions, as the two

parameters of a gamma distribution represent shape and scale (or rate) but not directly

the mean and variance of the random variable in question. As for the distance parameter

⇢ of the kernel, we used uniform and inverse gamma priors, selecting the parameters of

the priors in such a way that the support included the minimum and maximum distance

of any two points on the grid; the results presented here used uniform priors for the 5x5

and 30x30 case and an inverse gamma prior for the 10x10 case; we actually used these

two kinds of priors for each grid size. In the 10x10 case, the inverse gamma gave a better

approximation of the predicted grid. The other two cases gave equivalent results. Finally,

even though we present results of the Gaussian process prior where the mean was taken as

constant, we also used folded normals as priors for the mean and obtained results similar
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to those shown in the examples. However, the time increased when using folded normal

priors.

Our application of a hierarchical model to study variability in space shows that it should

be possible to study variability of action potentials across different individuals or from the

same individual over time. In this way, the parameters of the model at the higher level

would represent the whole population; otherwise, they would represent each individual.
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Chapter 7

Conclusion

In this thesis we demonstrated the usefulness of the Hamiltonian Monte Carlo (HMC)

method as a tool for parameter inference in cardiac electrophysiology modeling through

three studies. We applied HMC to fit synthetic and experimental data from cardiac action

potentials to find the distributions of the parameters of the Mitchell-Schaeffer (MS) and

Fenton-Karma (FK) cardiac action potential models. Using similar datasets and the

same two models, we also compared the performance of HMC versus ABC SMC. Finally,

we described the intra-variability of cardiac action potentials in space using HMC in a

hierarchical model context to perform inference and prediction on voltage profiles by using

information from a small number of locations to predict a spatially varying parameter

value for the MS model and spatially invariant values for the remaining parameters at

other locations in the domain. We begin this final chapter with a summary of our main

findings for each study.

In chapter 4, we used HMC for the first time in the context of cardiac electrophysiology to

fit the MS and FK model to synthetic and experimental data. For these two phenomeno-

logical models, we found the parameter probability distributions, which can be used to

completely describe the different sources of uncertainty in a rigorous way. We also used

these distributions to build populations of action potentials and measured how accurate

they were with respect to the data to be fitted. We verified that the technique was able

to also describe the dynamics of the two systems in the sense that the alternans behavior

was captured for more than just the CLs used for the fitting. HMC also estimated the
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standard deviation of the noise in the datasets, which agreed with the known value for the

synthetic data and was estimated about ten times larger than that for the experimental

dataset. Because selecting the priors for HMC and their support is difficult, we used the

more flexible ABC SMC to generate distributions we then used to specify the support of

the HMC priors.

In chapter 5, we used HMC and ABC SMC to find populations of cardiac action potential

model parameters consistent with data used for fitting and compared the two methods.

We showed that the methods were effective for both synthetic data derived from the

models used as well as for an experimental dataset from a zebrafish hearts. In nearly all

cases, both methods found quasi-symmetric marginal distributions with clear modes for

the give parameters of the MS model and for the 13 parameters of the FK model. We

showed through the use of q-q plots that the posterior distribution samples obtained by

the two methods did not give any strong indication of being from different distribution

families. In the case of synthetic data, where the true parameters used to generate the

dataset were known, the true values in general were well contained within the posterior

distributions found, and across multiple runs of the algorithms the true values coincided

well with the distribution peaks. Given that both methods achieved similar results with

no clear computational advantage, considerations other than accuracy may motivate the

choice of method. ABC SMC generally was easier to work with, as it accepts different

kinds of prior distributions, and those distributions may be broad. ABC SMC appeared

to explore the parameter space more broadly than HMC, which may indicate that HMC

was able to find the area of parameter space corresponding to the true distribution more

efficiently. Although HMC required more effort to find an acceptable prior (and indeed

we suggest that SMC may be useful in this task), it tended to find narrower distributions

and is a full rather than approximate Bayesian method, which may be advantageous in

some cases.

In chapter 6, we used HMC to describe the variability of action potentials in space within

a single individual. By pairing HMC with a latent Gaussian process prior for one of the

MS model parameters that varied spatially over a two-dimensional grid, along with a
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hierarchical model for the rest of the parameters not considered correlated in space, we

successfully applied HMC to do inference and prediction. Toward this end, we selected a

very small percentage of training points from the whole two-dimensional space. Using a

series of voltage traces at different pacing periods from those training points for different

grid sizes, we found the distributions of the MS model parameters, and then we predicted

the distributions of all the parameters at desired locations not considered for training.

We also verified that the methodology was able capture the dynamics associated with

alternans. Despite the small number of training points selected, the population of bifur-

cation plots predicted a bifurcation when it existed. This novel technique utilized spatial

correlations in voltage that could arise through cell coupling, although the data were not

generated from a partial differential equation. Using only ODEs reduced computational

time, because less than 16 percent of the total number of grid points were used to do in-

ference and to predict the distributions of the model parameters. In this way, populations

of action potentials could be produced for any desired location not used for training.

7.1 Limitations

The results of our studies are accompanied by a number of limitations. In this thesis we

considered only a limited number of datasets. In particular, we chose data from three

CLs, with one at a longer CL and two at shorter CLs within the alternans regime. It may

be possible to optimize the selection of CLs beyond what was chosen. In addition, it is

possible that performance may change for noisier data or for data with different dynamics

that may not be well captured by the model being fit.

Similarly, we only considered two models, and it is possible that performance could differ

for a different selection of models. We also note that we have used a single approximate

Bayesian method and that a different choice may result in different findings. Within the

models, we used a simple square-pulse stimulus. Use of a biphasic stimulus [11] could

help prevent selection of large values for the excitability parameters (e.g., ⌧in for the MS

model and ⌧d for the FK model) that would not allow propagation in tissue and thus may

be unphysiological.
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In the use of HMC, first as a proof of concept and then for comparison with an approximate

method, we found that HMC was sensitive not only to the distribution family of the prior

chosen, but also to its support. The NUTS implementation in Stan also needs good initial

points for the chains to converge properly. One potential way to overcome this difficulty

is to use the modes or the means of the given priors as initial points.

In the case of ABC SMC, we only used one kind of function for the parameter statistic:

the distance function between the candidate parameter model and the synthetic data,

which is related to the error between the two sets of data. Many other statistics can be

used and choosing what kind of statistic might depend on the problem. We also measured

the fitting error using the coefficient of determination; in the case of ABC SMC, this was

an indirect way of verifying that the chains converged, as parameters with small error are

more likely to be chosen as part of the posterior sample. Also, the tolerance reduction

approach used for ABC SMC, while adaptive, nevertheless was fixed in advance, following

Ref. [21].

The probability model presented in chapter 6 includes major structural and distributional

assumptions encoded within the model. The assumption of independent noise variates

may be quite poor if there is substantial unmodeled signal variance not captured by

the MS model. In this case, the stochastic error is likely to be highly correlated, and

the independent Gaussian noise model would be a poor fit. A potential remedy in such

a situation would be to include autocorrelated noise via an error model, as commonly

studied in time series analysis such as the AR(p) family of probability models. It is also

possible that the model errors may be correlated across space and time; if so, usage of a

Gaussian process observational model would be appropriate. We note that this approach

differs from the proposed GP prior usage in this work by employing a Gaussian process

for part of the likelihood, rather than as a prior over model parameters.

Another major assumption in this work is that a spatial prior is used for only one pa-

rameter out of the five MS model parameters; this choice was made primarily for compu-

tational tractability but also to highlight the differences in posterior inferences resulting
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from a spatially correlated versus uncorrelated prior distributional assumption. A more

comprehensive analysis would be to use a five-dimensional multivariate Gaussian process

to model correlations between different parameters of the MS model as well as between

instantiations of the same parameter at different locations in space.

For Bayesian predictive inference for Gaussian processes performed using the hierarchical

probability model, we assumed Gaussian observations because we created the synthetic

data, but that assumption may not be true for a different problem or application. In

such a case, inference could still be done but the calculation time would increase because

the posterior could not be derived analytically. Another limitation comes from the fact

that to speed up the calculations, the training locations were not used to calculate the

covariance matrix of the Gaussian process; however, this can be done.

7.2 Future work

The work presented in this thesis offers many opportunities for extensions in terms of

the methodological framework, computational implementation, additional related studies,

and other applications to cardiac electrophysiology.

7.2.1 Methodological improvements

It may be useful to optimize the data used for fitting to better constrain certain parameter

values, just as we did using a different resolution for the upstroke and the rest of the

action potential, per CL. For example, in the FK model, the parameter ⌧
�
v1 helps to set

the minimum diastolic interval; datasets that do not represent that information may have

difficulty adequately constraining that parameter and related parameters like uv.

Approximate Bayesian computation methods, which approximate the likelihood such that

the posterior distributions obtained are an approximation of the true distributions, are

not the only methods that are not fully Bayesian. Variational methods [36, 37] can

also be used to perform Bayesian variational inference to approximate the posteriors. A

comparison between the performance of these two kinds of approximate methods would
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be useful, and a variational method could also be compared to a full Bayesian method

such as HMC [83] to assess the trade-offs in terms of computational effort and accuracy.

7.2.2 Computational improvements

ABC SMC might benefit from a more sophisticated way of choosing tolerances, although

other limitations of this method arise because the method is approximate. More sophisti-

cated statistical tools could be used to ensure that the chains are converging. Also, ABC

SMC is one of many ABC methods available; some comparisons between ABC sequential

methods have already been performed. For instance, in Ref. [21], an adaptive ABC SMC

method was compared to the existing ABC SMC. Therefore, it would be useful to know

whether using a different ABC method would give more consistent results. Given ABC

SMC’s flexibility and ease of implementation compared with HMC,the variability study

could be performed using ABC SMC instead of HMC to compare the performance of

these two methods in this context.

In terms of the computational time and resources needed for these kinds of problems,

especially when the number of operations can increase exponentially, taking advantage of

the tools that Stan provides for parallel computing would be useful, particularly in the

case of spatial variability. The largest grid size we used for inference and prediction in

this work was 30x30, but the size of optical mapping recordings is 128x128, motivating

the need for approaches with good scalability. In addition, even for smaller grid sizes,

depending on the problem at questions, more training points may be required. Finally,

using more chains may help to improve the robustness of results.

7.2.3 Additional related studies

Because finding appropriate priors in Stan through NUTS can be time-consuming, it

would be useful to see if ABC SMC consistently helps in finding a good candidate for

the HMC prior support. If so, then a hybrid algorithm that uses ABC SMC to select

good priors could be used when doing inference with HMC. More research is needed to

understand why certain families of priors did not work for HMC.
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With respect to the variability study, possible future implementations of the proposed

approach could be used with cardiac voltage data obtained from optical-mapping record-

ings. In such a scenario, it may be advantageous to extend the spatial GP formulation

to include space-time correlations; the intricacies of this approach are reviewed in [40].

Another potential avenue is to employ a more complex electrophysiology model such as

the Fenton-Karma model [31].

Some phenomenological models like the ones presented in this work are useful to capture

the presence of alternans. However, other characteristics of cardiac electrophysiology, such

as calcium transients, may be of interest. In those cases, other cardiac electrophysiology

models, such as more biophysically detailed models or models with more parameters,

could be used to fit datasets like those shown here.

7.2.4 Other applications

We expect that Bayesian methods like HMC will be useful for ongoing efforts, includ-

ing efficient creation of model populations [7] and virtual patient cohorts [70] as well

as addressing nonidentifiability of model parameters [20, 22, 89, 23] and uncertainty

quantification [78, 14]. For instance, verifying that the mean of the parameters appears

between specific quantiles backs up the idea that the technique can be used successfully

with experimental data, as in the examples shown. The Bayesian approach also allows

for quantifying an approximation of a credible set for the parameters given the particular

priors selected.
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Appendix A

Previous studies using ABC SMC

A.1 Preliminary Results

Below we briefly describe some preliminary results related to the topics of this thesis.

First, we present a selection of results from a more comprehensive study of the use of

ABC SMC to obtain parameters for the Fenton-Karma model using both synthetic and

experimental data. Second, we show proof-of-concept results using HMC to obtain pa-

rameter values for the FHN model.

A.1.1 ABC SMC Using the Fenton-Karma Model

We conducted a series of studies to obtain values for model parameters using an approx-

imate Bayesian method. Specifically, we used ABC SMC to parameterize the Fenton-

Karma model for two scenarios: (1) using synthetic data, to assess the accuracy and

overall performance of the algorithm, and (2) using microelectrode recordings of zebrafish

action potentials, toward the goal of developing a mathematical model of this system. For

the synthetic data scenario, we studied the accuracy, robustness and computational effi-

ciency of the ABC SMC algorithm. In this case, the true values of the parameters were

known, thereby allowing accuracy to be quantified. For the numerical solution of the

Fenton-Karma model, we used an explicit Euler method with an adaptive timestep.
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Algorithm and Model Settings

Data points used for fitting consisted of N voltage data points, either generated from

simulations without added noise or obtained from experiments, for a specific set of M

CLs:

N = ⌃M

i (ni),

where ni is the number of data points to be fitted per CL. Only the last two beats of ten

at each CL were used for fitting to allow the model to reach the steady state specific to

each CL. The ABC SMC algorithm also requires a distance function, a tolerance schedule

and a kernel function to be specified in advance. The distance function used was

⇢(yij , y
0
ij) =

1

MN
⌃M

j ⌃
nj

i

�
|yij � y

0
ij |
�
,

where yij are the target synthetic voltage data and y
0
ij

the solution of the voltage variable

using the candidate parameters. The initial values for the model variables were u0 = 1,

v0 = 0 and w0 = 0. We used uniform distributions for all the parameters; for the synthetic

data case, we used U(0.8⇤✓truth, 1.2⇤✓truth), where ✓truth were the values used to generate

the synthetic data. The specific settings for the zebrafish data are given in section A.1.1.

For the kernel function, we used a uniform distribution U(�1, 1) scaled by a parameter

� set to 0.1.

The algorithm proved to be sensitive to the initial tolerance for acceptance. Therefore,

we developed a data-driven approach to set this parameter as the minimum average

relative error from five random populations. Specifically, five random samples of size N

were generated without rejection, and the average distance between the action potential

profiles using each sample point and the profiles to be fitted was calculated. The minimum

of those five averages was taken as the initial tolerance. The tolerance reductions followed

init_tol ⇤ (0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, 0.05, 0.025, 0.125),
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and the algorithm was terminated when the acceptance rate (the percentage of accepted

sample points) for a population was below 0.03 or after 12 iterations.

The different algorithm settings studied were the parameters to fit, the cycle lengths used

in the fitting, the population size, and the tolerance schedule. Unless specified otherwise,

all other settings used the default values as follows. The parameters to be fit in the

synthetic-data scenario were ⌧r, ⌧si, ⌧d, and ⌧
+
w , with their true values set to 33.33, 29,

0.25 and 870 ms, respectively. The CLs used in the data to be fit were 330, 340 and 360

ms, and the default population size was 100.

We wrote our own custom programs to solve the system of equations and to implement

the Bayesian algorithm in R. The system used to obtain the timing results given here was

a 2.6 GHz Dual-Core Intel Core i5 MacBook Pro with 8 GB of memory.

Performance Assessment Metrics

To quantify the accuracy, robustness, and computational efficiency of the ABC SMC

method, we used several metrics. For accuracy, we used the following four types of error

measurements.

1. Error in fit CLs: Average (in time) relative error in the voltage averaged across

all fit CLs with each parameter assigned its mode in the last population.

2. Error in unfit CLs: Average (in time) relative error in the voltage for CLs of 1000

ms and 300 ms with each parameter assigned its mode in the last population.

3. APD error: Average of absolute error in the last two APDs for all CLs.

4. Relative error of the mode: Error in the mode for each parameter compared to

its true value, normalized to the true value.

In the present study, we emphasize accuracy; however, we include some preliminary dis-

cussion regarding robustness and efficiency. To assess robustness, we calculated the stan-

dard deviation of the relative error of the average mode for each parameter across ten

runs and the standard deviation of the fit and unfit CLs errors and APD errors across
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ten runs; analysis and interpretation of these results is ongoing. To quantify computa-

tional efficiency, we used the runtime, but because these results were not obtained in a

controlled setting, further investigation of algorithm performance is needed.

Example of Parameter Estimation

We now show an example of the estimation of parameters where we used the default

settings: four parameters, three CLs and a population size of 100. Fig. A.1 shows the

action potential profiles obtained using all 100 candidate parameter sets superimposed

for several generations. As can be seen, the dispersion of the profiles is reduced in later

populations. Fig. A.2 shows how the parameter distributions change as the algorithm

progresses. Over time, the distributions in general become narrower.

The action potential profiles for fit CLs using the parameter modes along with the data

used for fitting and the mean of the posterior predictive distribution, which can be thought

of as the mean action potential profile of the last generation, can be seen in Fig. A.3.

The profiles obtained using the final population’s parameter modes, given in Table A.1,

show good agreement with the experimental data, and the parameter values themselves

also agree well with the true values (relative error between 1 and 6%). Fig. A.4 shows

the distributions of the final population for each parameter. The posteriors for ⌧r , ⌧si,

and ⌧
+
w are narrow compared to the priors, indicating a reduction in the variance. In the

case of ⌧d, although the posterior is not narrow, the mode of the distribution is close to

the true value. The distributions for ⌧si and ⌧d contain the true values.

The action potential profiles from the entire last population for each parameter are shown

superimposed in Fig. A.5. The voltage profiles show little variability, which indicates that

the algorithm is able to constrain the action potential profiles. Table A.2 shows the num-

ber of populations generated, the acceptance criterion (acceptance rate less than 0.03),

the fit CLs error, and the runtime. Action potential profiles for the whole last population

are superimposed for unfit CLs in Fig. A.6, which also shows the fitted bifurcation plot.

Table A.3 shows the errors in fit CLs, unfit CLS, and APDs. There is good accuracy in

the voltage and bifurcation plots even though the parameter values still have error. For
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Figure A.1: Voltage profiles for populations 1, 4 and 7 (red) correspond-

ing to the three CLs used for fitting along with the synthetic data (black).

all plots (voltage profiles and bifurcation plot), the errors are low enough to be visually

consistent with the data.

Algorithm Performance

In this section, we summarize results obtained by varying fitting settings, including the

number of CLs used in the fitting, the number of parameters fit, and the population size

in the SMC ABC algorithm. To study the effect of changing the number of CLs, we used

the CL sets {360, 340}, {360, 340, 330}, and {360, 350, 340, 330} ms; the bifurcation point

was at 350 ms. To assess the effect of the randomness of the algorithm on the outcome,

we ran the program ten times and examined the extent to which the fitting results varied.

The effect of changing the number of CLs used for fitting produced an average relative

error in each parameter mode less than 9 percent when compared to the true values, with
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7

⌧r ⌧si ⌧d ⌧w+

Figure A.2: Parameter distributions for populations 1, 4 and 7 for the

different cycle lengths along with the true parameter values (red).

360 ms 340 ms 330 ms

Figure A.3: Action potential profiles for fit CLs using the parameter

modes (red), synthetic data (black) and posterior predictive (blue).
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✓ truth mode(✓) relative error
⌧r 33.33 33.585 0.008
⌧si 29 29.125 0.004
⌧d 0.25 0.234 0.064
tw+ 870 849.364 0.024

Table A.1: Parameter modes from the final distribution along with their

relative errors.

⌧r ⌧si

⌧d ⌧w+

Figure A.4: Distribution for each parameter for the last population. Red

vertical lines indicate the true values.

metric value
fit CLs error 0.003

acceptance rate 0.029
population 12
time (s) 316.512

Table A.2: Error for the fit CLs, acceptance rate of the last population

and runtime for the example.
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360 ms 340 ms 330 ms

Figure A.5: Action potential profiles for fit CLs using the last population

superimposed (red) and the synthetic data (black).

1000 ms 300 ms bifurcation plot

Figure A.6: Action potential profiles for unfit CLs and bifurcation plot

obtained using the parameter values of the last population superimposed

(red) compared with the corresponding profiles and bifurcation plot using

the true parameter values (black).

metric value
fit CLs error 0.003

unfit CLs error (300 ms) 0.001
unfit CLs error (1000 ms) 0.0

APD error (ms) 6.008

Table A.3: Fit and unfit CLs error along with APD error.



A.1. Preliminary Results 105

the largest error observed when two CLs were used for fitting. The standard deviation

of the parameter modes, which was between 0.008 and 37.216, was the smallest for the

two CLs case, as well as the standard deviation of the APD error, the fit CLs error and

the unfit 300 ms CL error, which were between 0.001 and 6.6693 ms. To evaluate the

robustness of our results more thoroughly, we would need to confirm that the populations

obtained in the 10 runs have a high likelihood of having been drawn from the same

distribution.

Increasing the number of parameters fit from four to six led to a decrease in accuracy, but

did not change runtime; in this case, we just ran the program once. The relative error

in the parameter modes when considering 4 parameters was between 0.4 and 6.4%; for

6 parameters, it was between 0.8 and 5.9%. Using the same stopping criterion as before

(the acceptance rate), the algorithm terminated earlier (population 10 vs. 12). Greater

accuracy could be obtained by fixing the number of populations, but the runtime would

increase because of the additional populations, particularly because the last population

typically is the slowest to compute.

Finally, by changing the size of the population from 100 to 200, the results improved

overall. Although the relative error of the mode improved for only one parameter, the fit

and unfit CL errors along with the APD error decreased when the size of the population

increased. In particular, the accuracy in the unfit CLs cases was reduced by a factor of 8

and the APD error decreased by a factor of 80.

Zebrafish Action Potentials

In the second scenario considered, we fit action potential profiles obtained from zebrafish

hearts (data courtesy of Conner Herndon and Flavio Fenton). We configured ABC SMC

to use CLs of 400, 350, 300, 276, 272, and 267 ms with a population of size 100 and

the same tolerance schedule given above. The priors for all the parameters were uniform

distributions with the maximum and minimum values given in Table A.4.

Superimposed action potential profiles obtained using the parameters from the whole last
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⌧r ⌧si ⌧d t
+
w k u

si
c ⌧

�
w uv ⌧0 uc ⌧

+
v ⌧

�
v1 ⌧

�
v2

11 28 0.03 20 0.5 0.045 20 0.001 2 0.02 2.7 8 35
209 532 0.57 380 9.5 0.855 380 0.019 38 0.38 51.3 152 665

Table A.4: Values used for the uniform priors for the 13 parameters of

the Fenton-Karma model.

population are shown in Fig. A.7 along with the experimental data. As can be seen, the

voltage profiles for the whole population do not show much variability (although there is

more variability than for the synthetic data case), indicating that the algorithm is able

to constrain the action potential profiles.

400 350 300

276 272 267

Figure A.7: Action potential profiles from the last population for the six

CLs used for fitting.

ABC Summary

Overall, the ABC SMC algorithm consistently obtains parameter values that generate

action potentials that match the target profiles, as quantified through error metrics and
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low variability across the final population. For additional improvement, we could consider

using informative priors for faster convergence to the target distributions.
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