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Abstract:

Coastal salt marshes sequester large quantities of “blue carbon” in plant biomass and

sediments, and provide numerous other valuable ecosystem functions and services. However,

these ecosystems are increasingly threatened by external stressors, including rising sea levels and

a changing climate, which have resulted in large losses of tidal marsh habitat. Measuring plant

biomass is critical for understanding how carbon storage may be affected as stressors continue to

cause marsh losses, and for improving conservation and management efforts. A number of

studies have quantified aboveground biomass (AGB) in salt marshes using remote sensing

techniques, and with the development of high resolution sensors there is excellent potential to

improve estimates over large scales. However, few studies have evaluated how variability in

spatial resolution and viewing angle across platforms impacts AGB estimates, despite the large

range of potential imaging systems available. Using 3 cm and 6 cm resolution nadir

hyperspectral drone imagery, and 0.5-3 cm oblique imagery collected from a ground-based

camera at three viewing angles from two different-aged barrier island salt marshes in Virginia,

USA, I evaluated the accuracy of regression models predicting S. alterniflora AGB from

vegetation indices across resolution and viewing angle. The overall best performing linear

regression models were obtained using the 3 cm nadir drone imagery. However, the best 6 cm

regression models demonstrated only minor losses in accuracy relative to 3 cm. AGB estimates

from obliquely angled imagery were less accurate than either nadir resolution. The most accurate

oblique models were obtained at the highest viewing angle, with performance decreasing as the

viewing angle became shallower. These results suggest that not all platforms perform similarly
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within salt marsh ecosystems, and that both spatial resolution and viewing angle must be

considered in choice of imaging systems.
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Introduction:

Salt marshes provide a number of valuable ecosystem functions and services to both

human society and to the environment (Costanza et al. 1997). Commonly found along shorelines

and barrier islands, these ecosystems protect coastal areas from storms and erosion, cycle

nutrients, and provide habitat for unique species, with some recent estimates valuing salt marshes

at almost $241,000 per hectare per year (Costanza et al. 1997, Costanza et al. 2014, Nelleman et

al. 2009). Current salt marsh extent is estimated to be approximately 5.5 M ha worldwide, much

of which can be found along the eastern and Gulf coasts of North America (Mcowen et al. 2017).

In addition to the ecosystem functions and services discussed above, salt marshes are

among the most productive ecosystems on Earth, sequestering significant quantities of “blue

carbon” in sediments and plant biomass, making them valuable for abating climate change

(Chastain et al. 2018, Duarte et al. 2005, McLeod et al. 2011, McTigue et al. 2020, Nelleman et

al. 2009). Along the Atlantic coast of North America, large quantities of plant biomass are

contained within dense monocultures of Spartina alterniflora (marsh cordgrass), which dominate

the intertidal zone. Importantly, S. alterniflora phenotypic expression is controlled by elevation:

tall-form grows at low elevations along creek banks and open water, while short-form S.

alterniflora grows at higher elevations at the interface with the high marsh (Valiela et al. 1978).

Due to the heterogeneity in elevation and other drivers present within these ecosystems, high

variability in above-ground biomass (AGB), and in turn, carbon storage, can be observed across

the intertidal zone (Richards et al. 2005). However, salt marsh ecosystems are threatened by

rising sea levels, climate change, die-off events, and other anthropogenic stressors, with
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significant habitat losses being observed both worldwide and within Virginia’s barrier islands

(Bertness et al. 2002, Bridgham et al. 2006, Donnelly & Bertness 2001, Deaton et al. 2017,

Gedan et al. 2009, Kearney & Grace 1988, Kirwan et al. 2009, Minchinton et al. 2002, Tiner et

al. 2002). Considering the quantity of carbon stored within salt marshes, increasing our

understanding of the spatial distribution of AGB within these ecosystems is necessary to inform

conservation efforts and understand the potential reduction in carbon storage potential.

Considering the heterogeneity present in most salt marshes, it can be challenging to

adequately capture this variation with field sampling alone. Remote sensing techniques have

been used extensively to scale from plot level studies to landscape level estimates of AGB in salt

marshes, freshwater wetlands, and seagrass meadows (Armstrong 1993, Doughty & Cavanaugh

2019, Miller et al. 2019, O’Donnell et al. 2016, Rendong et al. 2004, Schalles et al. 2013, Wang

et al. 2017). These studies and others have used regression modeling to correlate AGB

measurements taken from field sampling plots to the intensity of specific wavelengths or

vegetation indices (VI) at the pixel(s) intersecting with the plot. Typically, models produced

using this method are linear or multiple regression models using a single vegetation index or

combination of indices as predictors of AGB, with the resulting model then being extrapolated to

every pixel within the region of interest (Miller et al. 2019, O’Donnell et al. 2016, Rendong et al.

2004). Often generated using imagery collected at nadir, these models generally result in a good

fit between predicted and measured AGB values; using multiple regression, Wang et al. (2017)

found a combination of VIs resulting in a model predicting S. alterniflora AGB in coastal China

with an R2 of 0.704 using 0.78 m hyperspectral imagery. Similarly, O’Donnell et al. (2016) used
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single linear regression to create a model predicting S. alterniflora AGB in Georgian (US) salt

marshes with an R2 of 0.70  using 1 m hyperspectral imagery.

Often used in the past, the wide coverage and temporal consistency of coarse-resolution

platforms - such as airborne and satellite sensors - makes them valuable for observing

ecosystems on a large scale and monitoring changes over time. However, the heterogeneity

present within salt marshes often occurs on scales smaller than the pixel sizes of these sensors

(McLeod et al. 2011, Pennings et al. 2005). On a larger scale, ecological and edaphic

characteristics vary depending on marsh age (Goldsmith 2019, He et al. 2016, Morgan & Short

2002, Osgood & Zieman 1993, Tyler et al. 2003, Walsh 1998), while AGB and S. alterniflora

phenology vary widely over the course of the growing season (Ellison et al. 1986), making

widespread assessment over time important for fully understanding marsh productivity. The

development of UAS imaging allows for the collection of centimeter scale data that may capture

this heterogeneity more accurately, when compared to airborne and satellite platforms. While

less frequently used, the collection of off-nadir imagery may be more beneficial than nadir

imaging for remote sensing of S. alterniflora erectophile canopies, by capturing the broad sides

of the culm while reducing the amount of background sediment visible.

Given the variety of spatial resolutions and viewing angles achievable with current

platforms and sensors - and that have been previously used in the literature to generate these

large-scale estimates of AGB - it is important to understand if and how these different imaging

techniques affect remotely sensed estimates of AGB. In this regard, one past study noted

discrepancies in S. alterniflora AGB estimates when using data of varying spatial resolutions

within an inverted PROSAIL model, where average AGB retrieved from across a number of salt
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marsh scenes changed inconsistently as the imagery was increasingly downsampled (Eon et al.

2019). While Eon et al. (2019) used centimeter-scale hyperspectral imagery acquired at oblique

viewing geometries, this same effect was potentially observed by O’Donnell et al. (2016), where

resampling their 1 m resolution S. alterniflora AGB regression model for use with 30 m Landsat

imagery decreased model performance from an R2 of 0.70 to an R2 of 0.51. While a wide array of

imaging platforms providing various spatial resolutions and viewing angles have been used in

the literature independently for AGB modeling, no direct comparisons have been made to

evaluate any differences in their relative accuracies for the same scenes at a single point in time.

Using contemporaneously collected drone and obliquely angled mast-mounted imagery,

this study aims to (1) quantify differences in remotely sensed estimates of S. alterniflora AGB

among the varying spatial resolutions and viewing angles these platforms provide, (2) evaluate

differences among estimates generated using various VI regression models, and (3) examine

applicability of models across the growing season. Given the common use of regression

modeling in the literature to predict AGB using a variety of sensors and platforms, it is critical to

understand how performance varies under different imaging parameters. In doing so, this study

aims to understand which spatial resolutions and viewing angles yield the most accurate

regression models of AGB, to enable more informed decision making when choosing between

the various platforms and sensors used for contemporary remote sensing applications.
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Methods:

Site Selection:

Located approximately six miles off the eastern coast of the Delmarva Peninsula in

Virginia, Hog Island features back-barrier salt marshes, sandy beaches, dunes, and upland areas.

As part of the Virginia Coast Reserve Long-Term Ecological Research (VCR LTER) site, Hog

Island is an ideal environment to study salt marsh ecosystems given its undeveloped, isolated

nature and consistent data record. Additionally, the southern portion of the island features a salt

marsh chronosequence, where the age of the marsh varies over short spatial scales, depending on

the recency of the last major overwash event and S. alterniflora recolonization. This

chronosequence includes marshes ranging in age from over 150 yr old to five yr old at the time

of this study, allowing for the observation of a wide variety of conditions.

Two chronosequence sites were selected for study in 2019: the pre-1870 Mature Marsh

site (“Broadwater”), and the 1989/2011 Young Marsh site (Figure 1). Adjacent to a tidal creek,

the Mature Marsh site is populated entirely by S. alterniflora. This site features fine-grained

sediments rich in organic matter, with an approximately 50% silt fraction and a significantly

lower sand content than the other marshes in the chronosequence (Goldsmith 2020). The Young

Marsh consists of a mosaic of marshes that range in age from roughly 8 to approximately 33 yr.

These ages correspond to establishment dates between 2011 and 1989, based on the first

appearance in aerial imagery of S. alterniflora on the sediment platform. This site features

greater variability in elevation, resulting in the presence of both S. alterniflora monocultures and

high marsh species, including Salicornia virginica, Limonium carolinianum, and Distichlis

7



spicata. Since its establishment, this marsh

expanded both seaward and landward, and

additional overwash events have been observed.

Additionally, the Young Marsh features sediments

with a nearly 80% sand fraction, and significantly

lower OM (2-3%) than the Mature Marsh

(Goldsmith 2019). Both sites are tidally inundated,

with average elevations of a few centimeters below

mean sea level.

Figure 1 (right): Locations of the Mature Marsh

and Young Marsh sites imaged in 2019.

Establishment of Imaging Scenes and Ground-Truth Plots:

Nine scenes within the Mature Marsh and Young Marsh sites were selected for imaging

in 2019 using the mast-mounted hyperspectral system (Bachmann et al. 2019). Twelve

ground-truth plots were established within each scene, for a total of 48 plots at the Mature Marsh

site and 60 plots at the Young Marsh site (Figure 2). Plots were distributed approximately

randomly throughout each scene to capture spatial heterogeneity and to provide data at varying

distances from the oblique viewing geometry of the mast-mounted imaging system. Each 0.5 m

by 0.5 m plot was marked using PVC poles and brightly colored stake flags to mark the corners
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of each plot to ensure their visibility within the imagery. This plot size is small enough to provide

a focused view of ecological conditions at a point, but large enough to include >100 pixels at the

typical ground-sampling distances (GSD) of the mast-mounted and drone imaging platforms.

Coordinates and elevation at each corner of the ground-truth plots was collected using a Trimble

R10 RTK GNSS system, which provides sub-centimeter horizontal accuracy and 15 mm vertical

accuracy (Trimble Geospatial).

Figure 2: Imaging scenes and ground-truth plots established for 2019 data collection at the

Mature Marsh (left) and Young Marsh sites (right).
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Imaging of Marsh Sites:

Hyperspectral imagery of the Mature Marsh and Young Marsh study sites acquired at

oblique viewing geometries was collected on July 25 and 26, 2019, respectively, prior to

collection of validation and site characterization data, which occurred on the same days.

Additional imagery of the Young Marsh site was collected on October 7, 2019 from the same

camera positions, to allow for interseasonal comparisons of S. alterniflora AGB. Before imaging,

two calibrated, near-Lambertian Spectralon reflectance targets were placed within each scene and

marked with GPS. Imagery was collected using a Headwall VNIR Micro-Hyperspec High

Efficiency E-series system, a pushbroom sensor with 1600 across-track pixels, that took

measurements in 371 spectral bands between 400 nm and 1000 nm. The view orientation of this

system ranges from -34° to 34° in pitch, and -175° to 175° in yaw, since the system is mounted

within a General Dynamics Vector-20 maritime-rated pan-tilt unit (General Dynamics,

Bachmann et al. 2019). Using a BlueSky AL-3 Lift Series telescopic mast, five heights above the

sediment surface were imaged at each scene: 2, 4, and 6 meters (AL-3 2020). Imagery was

collected using a 4 ms exposure time, a viewing zenith angle from 0° to -34°, and five azimuth

angles (in the majority of cases) to encompass the approximately 60° wide scenes: -30°, -15°, 0°,

15°, and 30°. Although the mast positions and scenes imaged were not exactly the same as in

previous years, the 2019 imagery continued the yearly data record of the Mature Marsh and

Young Marsh sites established in 2017 (Eon et al. 2019). All imagery recorded from oblique

viewing geometries was converted from raw digital numbers to radiance using a calibration

performed with a Labsphere Helios 20 integrating sphere (Bachmann et al. 2019), before
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converting to reflectance using the Spectralon reference panels placed within each imaging

scene.

Hyperspectral drone imagery of both sites was also collected in July 2019 during the field

campaign. Imagery of the Mature Marsh and Young Marsh sites was collected at 50 m and 100

m altitudes using a Matrice 600 pro drone outfitted with the MX1 payload, including a Headwall

nano Hyperspec, a Tamarisk 640 LWIR, a Velodyne VLP-16 LiDAR, and Mako G-419 RGB

camera. At these elevations, the Headwall nano Hyperspec system was able to achieve

approximately 3 cm and 6 cm GSD, respectively. This payload collected visible-NIR

hyperspectral, LiDAR, broadband thermal, and high-resolution multispectral data, with SWIR

hyperspectral imagery being collected during separate flights. All drone imagery was then

orthorectified and converted to reflectance using the three-point empirical line method prior to

analysis.

Sediment Characterization:

At each ground-truth plot, 10 one cm deep sediment cores were collected in July 2019

using a 1.1 cm diameter syringe corer. Five cores were pooled together to create two samples,

both of which were analyzed for bulk density (BD) and moisture content (at time of sampling),

by taking the mass before and after drying at 60 °C for 24-48 hrs. One pooled sample from each

plot was analyzed for sediment organic matter (SOM) content using the mass loss on ignition

technique: after taking the wet mass, the sample was heated to 550 °C for four hr, after which the

mass was taken again. The other sample from each plot was homogenized using a mortar and
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pestle, and analyzed for carbon and nitrogen content using a Perkin Elmer 2400 Elemental

Analyzer.

Total phosphorus at 1 cm was analyzed by adding 0.5 ml of 50% w/v Mg(NO3)2 to 0.1 g

of dried, homogenized sediment, before heating each sample to 550 °C for 90 min. After, 10 ml

of 1N HCl was added to each sample and vortexed, before placing each sample on a roto-shaker

for 16 hr. Samples were diluted by a factor of 10 before allowing for color development, before

measuring their absorbance at 827 nm. Absorbance values were compared to those of standard

phosphate solutions (Aspila et al. 1976, Murphy & Riley 1962).

Additionally, one 10 cm deep sediment core was collected from each ground-truth plot in

July 2019, which was also analyzed for BD and moisture content. After, each sample was

homogenized and divided for further analysis, using the same methods as above for organic

matter, carbon, nitrogen, and phosphorus content.

Porewater salinity was measured by inserting a perforated sampling probe to a depth of

10 cm in the sediment at each ground-truth plot, withdrawing up to 5 ml of porewater (Berg &

McGlathery 2001) and measuring salinity using an automatic temperature compensating

refractometer.

Benthic Chlorophyll a Quantification:

Two 1 cm deep soil cores were collected with a 1.1 cm diameter syringe corer and placed

within 15 ml test tubes at each ground-truth plot sampled during the July and October field

campaigns. Each core was wrapped in foil and placed on ice, until it could be frozen at -80 °C.

Chlorophyll a and phaeopigment concentrations were then quantified according to the methods
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proposed by Jeffrey & Humphrey (1975). Six ml of cold 90% acetone was added to each soil

core, before shaking to resuspend the sediment. Each sample was then sonicated for one minute

three times, with one minute rest intervals in between. The samples were then placed in a -20 °C

freezer overnight to allow for chlorophyll extraction to occur. After extraction, samples were

resuspended and centrifuged for 5 min. at 2,500 rpm. Using a Shimadzu 1800 dual beam

spectrophotometer, absorbance at 665 and 750 nm was measured using a 90% acetone solution to

auto-zero the spectrophotometer. After, two drops of 1N HCl was added to each sample, again

measuring absorbance at 665 and 750 nm. Chlorophyll a and phaeopigment concentrations were

then calculated using the following equations (Jeffrey & Humphrey 1975), where v is equal to

the volume of the extract (6 ml) and A is equal to 10 divided by the area of the core:

Chlorophyll a = 26. 7 * (((665
0

− 750
0
) − (665

𝑎
− 750

𝑎
)) * 𝑣) * 𝐴 (3)

Phaeopigments = (26. 7 * ((1. 7 * (665
𝑎

− 750
𝑎
)) − (665

0
− 750

0
)) * 𝑣) * 𝐴 (4)

Vegetation Characterization:

In July and October 2019, a 0.25 m2 quadrat was placed at each ground-truth plot, and the

total number of S. alterniflora culms within the plot was recorded. The height of the first 10 S.

alterniflora culms along a diagonal transect between opposite corners of the quadrat were then

measured to the tip of the tallest leaf, noting the presence of an inflorescence if applicable. The

percent cover of each other species within the plot was evaluated to the nearest 5% interval; if

percent cover was less than 5%, it was recorded to the nearest whole number instead.

Additionally, three S. alterniflora culms were clipped from near each ground-truth plot

assessed in July and October 2019. These culms were dried at 60 °C for 24-48 hrs. and
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homogenized in an electric coffee mill, before being analyzed for carbon and nitrogen content

using a Perkin Elmer 2400 Elemental Analyzer.

To establish an empirical relationship between S. alterniflora height and AGB, 201 culms

were collected from throughout the marsh sites in July 2019, taking samples from near - but not

within - the imaging scenes. Culms were clipped at the sediment surface and bagged. Sediment,

detritus, and invertebrates on the plants were washed off in the laboratory. The height of each

culm was then measured before drying at 60 °C for 24-48 hr, depending on the size of the culm,

after which the mass of each culm was measured. A similar methodology was used to establish

an empirical relationship for October 2019 for the young marsh only, with slight differences.

Instead, 59 culms were collected from within the imaging scenes but outside of the ground-truth

plots following the completion of imaging, to ensure a representative sample.

Second order polynomial regression equations were created to model S. alterniflora AGB

as a function of culm height, using the height and respective dry AGB for the culms collected in

July and October 2019. The regression models relating culm dry AGB (y) and height (x) for July

and October 2019 were:

July 2019: (R2 = 0.87)𝑦 =  0. 0005𝑥2 + 0. 018𝑥 (1)

October 2019: (R2 = 0.86)𝑦 = 0. 0003𝑥2 + 0. 0205𝑥 (2)

Using S. alterniflora culm density and height data collected at each ground-truth plot,

AGB density was estimated for each ground-truth plot by applying these empirical models

(Figure 3). The average AGB per S. alterniflora culm within a plot was calculated using the 10

culm heights measured at each ground-truth plot in the field. After, AGB density was estimated
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by multiplying the average AGB per culm per plot by the number of culms per plot and by the

plot size.

Figure 3: Illustration of AGB estimation process at each ground-truth plot in 2019. Using a

representative sample of 10 S. alterniflora culm heights, an average height for the plot, and its

expected AGB was calculated from the established empirical relationships (Equations 1 & 2).

The expected AGB was then multiplied by the number of culms in the plot to estimate AGB.

Invertebrate Abundance Assessment:

Invertebrate surveys were performed at each ground-truth plot during the July 2019 field

campaign. The number of Littorina irrorata, Ilyanassa obsoleta, Crassostrea virginica, and

Geukensia demissa individuals were counted at each plot. The number of Uca pugnax, Uca

pugilator, Sesarma reticulatum, and Panopeus herbstii was determined based on the number of

burrows present, assuming one crab per burrow. The number of hooded and straight burrows

were used to determine the number of Sesarma reticulatum / Panopeus herbstii (combined) and

fiddler crabs, respectively. Additionally, the percent cover of Crassostrea virginica and

Geukensia demissa were estimated for each plot.
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Statistical Evaluation of Site Edaphic and Ecological Characteristics:

To evaluate similarities and differences between and within conditions observed at the

Mature Marsh and the Young Marsh, two-way ANOVA tests were used to analyze sediment bulk

density, SOM, C, N, P, and C:N at 1 cm and 10 cm depths. Afterwards, Tukey’s HSD post hoc

tests were used to perform pairwise comparisons. Two-sample t-tests were used to compare

chlorophyll a, phaeopigments, and salinity between the two sites, as these were only collected at

one depth. Additionally, two-sample t-tests were used to evaluate differences in S. alterniflora

AGB, culm height, density, C, N, and C:N between the two sites. Bonnett and Levene’s tests for

equality of variance were used to compare variation in S. alterniflora AGB, height, and density

between the sites.

Finally, Kruskal-Wallis tests were used to compare invertebrate abundance and percent

cover between the two sites. This test was chosen because invertebrate counts were heavily

skewed right for all distributions, due to the majority of plots containing few to no individuals,

requiring a nonparametric test for comparison.

Digitization of Drone and Mast Ground-Truth Plots:

Ground-truth plots within the 2019 drone and mast-mounted imagery were digitized

using ENVI software. For the drone imagery, the flags and PVC poles placed at the corners of

each ground-truth plot were used to identify their boundaries during digitization (Figure 4A, B).

However, if not all of the plot corners were clearly visible within the imagery, a simple linear

translation was used to overlay the GPS coordinates of the ground-truth plot edges with the

visible feature(s) (Figure 4C).
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Figure 4: Drone imagery (A) and example of a

digitized ground-truth plot (B). Here, three flags

and the base of the PVC pole marking the plot

were clearly visible, and were used to identify the

corners of the plot. Figure 4C illustrates the

process used to digitize ground-truth plots when

not all of the corners were visible within the drone

imagery. The solid red polygon represents the GPS

coordinates taken at the corners of the plot, while

the red dashed lines represent the translation

vector used to overlay it onto the visible feature(s).

Ground-truth plots in the mast imagery were digitized using the flags and PVC poles

visible in the imagery as a reference to form the boundaries of the ROIs, taking care to exclude

plants outside of the plot in the foreground and background (Figure 5). If only one flag or pole

was visible, a conservatively sized, representative sample of pixels was taken from around the

visible feature using a rectangular ROI.
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Figure 5: Example of the digitization process for

ground-truth plots within the mast-mounted,

obliquely angled hyperspectral imagery.

Only plots containing entirely S. alterniflora, or containing S. alterniflora and negligible

quantities of other species ( 1% cover) were considered for further analysis. After removing≤

these plots, and a single plot with a statistically significant high outlying value for S alterniflora

AGB (Grubb’s test, p<0.001), 47 plots at the Mature Marsh and 49 plots at the Young Marsh

sites remained for analysis.

Regression Modeling of S. alterniflora AGB:

We calculated a selection of the most commonly used vegetation indices (VI; Table 1)

from the mast-mounted (2 m and 6 m) and drone (50 m and 100 m) imagery collected in 2019,

using ENVI’s spectral indices tool. Spectral indices were also calculated for the 4 m

mast-mounted imagery at the Young Marsh; however, this was not possible at the Mature Marsh

because the camera angle for one imaging scene did not allow the ground-truth plots to be seen.

Following digitization of all ground-truth plots at both drone resolutions and all mast camera

heights considered, average VI values for each plot were extracted using ENVI ROI statistics.
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Additionally, average spectra across all pixels within each ground-truth plot were extracted for

all drone and mast elevations considered in July and October 2019.

For narrowband indices, the nearest wavelength present in the imagery, within an

allowable tolerance range, was used. For broadband indices, the wavelength nearest the center of

the spectral region indicated was used. To simulate and account for how splitting the data into

training and testing sets affects the resulting regression models, 1000 linear regression models

predicting AGB were created for each VI, using a random 75% of the data for creating the model

for each run. Afterwards, the average and standard deviation of the 1000 regression constants

and coefficients was calculated, along with average R2, p-values, RMSE, and NRMSE. To

identify a representative regression model to calculate plot level AGB, the model with NRMSE

nearest the median NRMSE of the 1000 runs was chosen, illustrating the typical performance for

each VI.
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Table 1: Vegetation indices used for regression modeling of S. alterniflora AGB.

Index Formula Citation

DVI 𝑁𝐼𝑅 −  𝑟𝑒𝑑 Foley et al. 1998

GDVI 𝑁𝐼𝑅 −  𝑔𝑟𝑒𝑒𝑛 Sripada et al. 2005

GNDVI 𝑁𝐼𝑅 − 𝑔𝑟𝑒𝑒𝑛
𝑁𝐼𝑅 + 𝑔𝑟𝑒𝑒𝑛

Gitelson &
Merzlyak 1998

GOSAVI 𝑁𝐼𝑅 − 𝑔𝑟𝑒𝑒𝑛
𝑁𝐼𝑅 + 𝑔𝑟𝑒𝑒𝑛 + 0.16 Sripada et al. 2005

GRVI 𝑁𝐼𝑅
𝑔𝑟𝑒𝑒𝑛 Sripada et al. 2006

GSAVI 1. 5 *  𝑁𝐼𝑅 − 𝑔𝑟𝑒𝑒𝑛
𝑁𝐼𝑅 + 𝑔𝑟𝑒𝑒𝑛 + 0.5 Sripada et al. 2005

IPVI 𝑁𝐼𝑅
𝑁𝐼𝑅 + 𝑟𝑒𝑑 Crippen 1990

MCARI2
1.5 * [ 2.5 (𝑅

800
 − 𝑅

670
) − 1.3(𝑅

800
 − 𝑅

550
)]

(2𝑅
800

+1) 2 − (6𝑅
800

−5𝑅
670

) − 0.5
Haboudane et al.

2004

MNLI 1.5 * (𝑁𝐼𝑅2 − 𝑟𝑒𝑑)

𝑁𝐼𝑅2 + 𝑟𝑒𝑑 + 0.5
Yang et al. 2008

MSR
( 𝑁𝐼𝑅

𝑟𝑒𝑑 )−1

𝑁𝐼𝑅
𝑟𝑒𝑑 +1

Chen 1996

MSAVI2 0. 5 * [(2𝑁𝐼𝑅 +  1) − (2𝑁𝐼𝑅 +  1) 2 − 8(𝑁𝐼𝑅 − 𝑟𝑒𝑑)] Qi et al. 1994

MTVI2
1.5 * [1.2(𝑅

800
 − 𝑅

550
) − 2.5(𝑅

670
 − 𝑅

550
)]

(2*𝑅
800

+1)2−(6*𝑅
800

−5* 𝑅
670

) − 0.5
Haboudane et al.

2004

NLI 𝑁𝐼𝑅2− 𝑟𝑒𝑑

𝑁𝐼𝑅2+ 𝑟𝑒𝑑
Goel & Qin 1994

NDVI (𝑁𝐼𝑅 − 𝑟𝑒𝑑)
(𝑁𝐼𝑅 + 𝑟𝑒𝑑)

Martynenko et al.
2014

OSAVI
(1 + 0.16) (𝑅

800
 − 𝑅

670
)

(𝑅
800

 + 𝑅
670

 + 0.61)
Rondeaux et al.

1996

RENDVI
𝑅

750
 − 𝑅

705

𝑅
750

 + 𝑅
705

Gitelson &
Merzlyak 1994,
Sims & Gamon

2002
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RDVI
𝑅

800
 − 𝑅

670

𝑅
800

 + 𝑅
670

Roujean & Breon
1995

SR 𝑁𝐼𝑅
𝑟𝑒𝑑 Jordan 1969

TDVI 0. 5 + (𝑁𝐼𝑅 − 𝑟𝑒𝑑)
(𝑁𝐼𝑅 + 𝑟𝑒𝑑)

Bannari et al.
2002

TGI (𝑟𝑒𝑑 − 𝑏𝑙𝑢𝑒)(𝑟𝑒𝑑 −𝑔𝑟𝑒𝑒𝑛) − (𝑟𝑒𝑑 − 𝑔𝑟𝑒𝑒𝑛)(𝑟𝑒𝑑 − 𝑏𝑙𝑢𝑒)
2 Hunt et al. 2011

TVI
120 * (𝑅

750
 − 𝑅

550
) − 200 * (𝑅

670
 − 𝑅

550
)

2
Broge & Leblanc

2000

VREI1
𝑅

740

𝑅
720

Vogelmann et al.
1993

VREI2
𝑅

734
 − 𝑅

747

𝑅
715

 + 𝑅
726

Vogelmann et al.
1993

WDRVI 0.2 * 𝑁𝐼𝑅 − 𝑟𝑒𝑑
0.2 * 𝑁𝐼𝑅 + 𝑟𝑒𝑑

Gitelson et al.
2004

Residual Analysis of S. alterniflora AGB Estimates:

Individual site regression model residuals were calculated from the difference between

the model predicted AGB and field observed AGB values. Using forward stepwise multiple

regression with a 95% confidence level to enter the model, plot-level physicochemical and

ecological factors, including elevation, benthic chlorophyll and phaeopigments, edaphic

properties, S. alterniflora tissue nutrients, culm density, and culm height were regressed against

model residuals for the five highest R2 models at the Mature and Young Marshes, to identify any

correlations to these variables. Additionally, residuals were calculated for the three highest

performing oblique AGB models at each site and were regressed against plot-level GSD, which

is dependent on the elevation of the mast’s hyperspectral sensor and distance to the plot.
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Evaluation of Interseasonal Model Applicability:

Interseasonal applicability of AGB regression models was investigated by applying the

five highest R2 models for the Young Marsh in July 2019 to the imagery collected in October

2019. The 6 m mast elevation was chosen for this analysis, as it produced the most accurate

regression models for the site in July 2019. Using the subset of plots resampled in the Young

Marsh in October 2019, regression model results were validated using ground-truth AGB data.

The accuracy of each model was evaluated by comparing RMSE and NRMSE values between

months, and by observing the adherence of observed vs. predicted AGB values to a 1:1 line.
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Results:

Characterization of Chronosequence Sites:

Significant differences were common among the edaphic characteristics measured at the

Mature Marsh and Young Marsh sites (Table 2, Table 3, Table 4). BD was higher within the

Young Marsh and increased with depth at both sites, but there was a significant interaction

because of the much greater change with depth at the Young Marsh (Table 3, p<0.001 site*depth

interaction). SOM, C, N, and P content were all significantly higher at the Mature Marsh site at

both depths relative to the Young Marsh (p<0.001 for all site differences). While SOM, N, and

total P all decreased with depth at both sites (p 0.001 for all for depth), sediment C decreased≤

significantly with depth at the Young Marsh site, but not at the Mature Marsh (ANOVA p=0.012

for site*depth interaction). Additionally, while sediment C:N increased with depth at both sites,

significant differences were only observed between sites at a 10 cm depth (ANOVA p<0.001 for

site*depth interaction). Although Chlorophyll a concentrations were not significantly different

between sites (p=0.72, Table 4), phaeopigment concentrations were significantly higher at the

Mature Marsh (p<0.001). Finally, porewater salinity was significantly higher at the Young Marsh

site (p<0.001).
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Table 2: Sediment, plant, and invertebrate community characteristics of the two salt marsh

chronosequence sites. An asterisk in the central column indicates a significant difference

between the two sites at a 95% confidence level. Superscript letters adjacent to means

represent grouping information for means tested with Tukey’s HSD at a 95% confidence

level; means that do not share a letter are significantly different from one another.

Mature Marsh Young Marsh
Sediment Characteristics Mean ± Std. Dev. Min - Max Mean ± Std. Dev. Min - Max
Bulk Density 0-1cm (g/m2) 0.46a ±  0.15 0.30 - 0.92 * 1.09c ±  0.22 0.43 - 1.48
Bulk Density 0-10cm (g/m2) 0.68b ±  0.14 0.43 - 1.18 * 1.66d ±  0.42 0.99 - 2.82
SOM 0-1cm (%) 8.54a ±  1.22 5.07 - 10.76 * 2.83b ±  1.77 0.70 - 10.69
SOM 0-10cm (%) 8.06a ±  1.32 3.29 - 10.97 * 2.04c ±  0.94 0.71 - 4.57
C 0-1cm (%) 2.72a ±  0.69 1.33 - 5.35 * 0.82b ±  0.66 0.17 - 3.28
C 0-10cm (%) 2.85a ±  0.54 0.95 - 4.30 * 0.57b ±  0.33 0.11 - 1.46
N 0-1cm (%) 0.255a ±  0.066 0.095 - 0.375 * 0.077c ±  0.058 0.020 - 0.300
N 0-10cm (%) 0.205b ±  0.044 0.055 - 0.290 * 0.048d ±  0.025 0.010 - 0.125
C:N 0-1cm 10.96ab ± 2.03 8.29:1 - 16.67 10.5a ± 1.64 7.83 - 16.40
C:N 0-10cm 14.16c ± 2.12 11.12:1 - 19.27 * 11.51b ± 1.92 6.2 - 16.67
P 0-1cm (µg/g) 710.7a ±  102.5 488.2 - 960.6 * 375.7c ±  143.2 176.6 - 929.7
P 0-10cm (µg/g) 643.0b ±  104.0 295.8 - 924.9 * 300.4d ±  69.4 176.9 - 471.5
Chlorophyll a 0-1cm (mg/m2) 112.4  ±  57.4 35.8 - 259.6 109.0  ±  38.6 43.9 - 210.3
Phaeopigments 0-1cm (mg/m2) 107.8  ±  30.0 59.3 - 175.2 * 76.8  ±  56.6 10.0 - 300.0
Salinity (ppt) 37  ±  2 34 - 41 * 41  ±  5 30 - 56

Plant Characteristics Mean ± Std. Dev. Min - Max Mean ± Std. Dev. Min - Max
S. alterniflora AGB (g/m2) 508  ±  342.4 6.7 - 1346.6 440.1  ±  264.6 0 - 1083.5
S. alterniflora culm height (cm) 60.6  ±  16.5 4.2 - 121 60.6  ±  27.5 4.5 - 140
S alterniflora density (culms/m2) 145  ±  63.5 4 - 288 144.2  ±  61.4 0 - 296
S. alterniflora C (%) 40.9  ±  1.9 37.8 - 43.9 40.9  ±  1.1 38.1 - 43.7
S. alterniflora N (%) 0.81  ±  0.11 0.610 - 1.10 * 0.86  ±  0.12 0.610 - 1.15
S. alterniflora C:N 51.46 ± 6.98 35.4:1 - 66.6 48.83 ± 7.48 34.88 - 67.1

Invertebrate Communities Mean ± Std. Dev. Min - Max Mean ± Std. Dev. Min - Max
Ilyanassa obsoleta (#) 18  ±  24 0 - 92 * 3  ±  9 0 - 49
Littoraria irrorata (#) 6  ±  6 0 - 28 * 12  ±  14 0 - 57
Hooded Crabs (#) 0.1  ±  0.4 0 - 2 0.2  ±  0.5 0 - 3
Fiddler Crabs (#) 4  ±  7 0 - 33 * 16  ±  21 0 - 101
Crassostrea virginica (#) 3  ±  5 0 - 27 2  ±  4 0 - 17
Oyster cover (%) 2  ±  3 0 - 10 1  ±  3 0 - 10
Geukensia demissa (#) 6  ±  21 0 - 105 2  ±  6 0 - 33
Geukensia demissa cover (%) 4  ±  12 0 - 65 1  ±  4 0 - 25
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Table 3: Two-way ANOVA results testing the effects of site (Mature Marsh, Young Marsh)

and depth (1 cm, 10 cm) on sediment characteristics. Bold p-values indicate significant effects

at a 95% confidence level. For all F-statistics, df1 = 3, and df2 = 212.

Site Depth Site * Depth

F p F p F p

Bulk Density 486.83 <0.001 117.6 <0.001 24.21 <0.001

SOM 1002.01 <0.001 11.79 0.001 0.68 0.412

%C 725.37 <0.001 0.64 0.424 6.36 0.012

%N 594.86 <0.001 32.56 <0.001 2.12 0.147

C:N 34.87 <0.001 64.11 <0.001 17.3 <0.001

P 520.3 <0.001 23.16 <0.001 0.06 0.800
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Table 4: Two-sample t-tests comparing sediment and S. alterniflora characteristics, and

Kruskal-Wallis tests comparing invertebrate community characteristics between sites. Bold

p-values indicate significant effects at a 95% confidence level. Equal variances were not

assumed for two-sample t-tests.

t df p

Chlorophyll a 0-1 cm (mg/m2) 3.45 78 0.722

Phaeopigments 0-1cm (mg/m2) 3.65 93 <0.001

Salinity (ppt) -4.73 73 <0.001

S. alterniflora AGB (g/m2) 1.08 86 0.284

S. alterniflora culm height (cm) -0.004 79 0.996

S alterniflora density (culms/m2) 0.06 93 0.952

S. alterniflora C (%) 0.01 73 0.991

S. alterniflora N (%) -2.11 105 0.037

S. alterniflora C:N 1.88 103 0.063

χ2 df p

Ilyanassa obsoleta (#) 20.448 1 <0.001

Littoraria irrorata (#) 0.955 1 0.329

Hooded Crabs (#) 0.334 1 0.563

Fiddler Crabs (#) 10.617 1 0.001

Crassostrea virginica (#) 6.978 1 0.008

Oyster cover (%) 7.470 1 0.006

Geukensia demissa (#) 0.0147 1 0.903

Geukensia demissa cover (%) 0.0433 1 0.835

26



Fewer significant differences were observed within the S. alterniflora communities

present at the Mature Marsh and the Young Marsh sites (Table 2). Between the two sites, there

were no significant differences in S. alterniflora AGB (p=0.28), culm height (p=0.99), culm

density (p=0.95), or C content (p=0.99). However, the standard deviation of S. alterniflora culm

heights was significantly higher at the Young Marsh (Bonnett test, p<0.001, Levene test

p<0.001), while the standard deviation of S. alterniflora AGB at the Mature Marsh was

significantly higher only at a 90% significance level (Bonnett test, p<0.086, Levene test

p<0.063), suggesting that variability is caused by differing plant morphologies. S. alterniflora N

content was significantly higher at the Young Marsh site (p=0.037), and C:N ratios were

significantly higher at the Mature Marsh at a 90% confidence level, while nearing significance at

95% (p=0.06). However, no significant differences were observed in S. alterniflora C content

(p=0.99) between the two sites. While not reflected in Table 2, it should be noted that the Young

Marsh site also contained Salicornia virginica, Limonium spp., and Spartina patens in the high

marsh plots, which were excluded from regression modeling.

Invertebrate communities were highly variable within and between sites (Table 2, Table

4). All abundance distributions were heavily right skewed, with the majority of plots surveyed

containing few to no individuals. Ilyanassa obsoleta abundance was significantly higher at the

Mature Marsh (Kruskal-Wallis p<0.001), while fiddler crab abundance (Kruskal-Wallis

p=0.001), Crassostrea virginica abundance (Kruskal-Wallis p=0.008) and oyster percent cover

(Kruskal-Wallis p=0.006) were significantly higher at the Young Marsh. No significant

differences were observed in Littoraria irrorata abundance (Kruskal-Wallis p=0.33), hooded
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crab abundance (Kruskal-Wallis p=0.56), Geukensia demissa abundance (Kruskal-Wallis

p=0.90), and Geukensia demissa percent cover (Kruskal-Wallis p=0.84) between the two sites.

Regression Modeling of S. alterniflora AGB:

Average reflectance spectra from the 2019 ground-truth plots resembled typical spectral

characteristics of vegetation (Figure 6, Figure 7). Plot-level reflectance spectra demonstrated a

relatively high level of similarity between the two resolutions collected from the Mature Marsh

(Figure 6). However, major differences were observed between plot-level spectra collected at the

Young Marsh, where the 50 m spectra typically demonstrated higher reflectance values across

the visible-NIR region, with steeper red-edge slopes compared to the 100 m spectra and much

greater variability among the different plots (Figure 6). Visible blue and red absorption features -

and high green reflectance - were more pronounced in the oblique spectra (Figure 7) than in the

nadir spectra (Figure 6). Additionally, red-edge slopes were steeper, and NIR reflectance higher

in the oblique imagery, when compared to nadir views.
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Figure 6: Average reflectance spectra collected from the ground-truth plots in the Mature (A, C)

and Young Marsh (B, D) in July 2019, using the MX-1 UAS system at two elevations: 100 m (A,

B), and 50 m (C, D).
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Figure 7: Average reflectance spectra collected from the ground-truth plots in the Mature (A, D) and Young

Marshes (B, C, E) in July 2019, using the Headwall VNIR Micro-Hyperspec High Efficiency E-series system

to collect obliquely angled imagery at 6 m (A, B), 4 m (C), and 2 m (D, E) camera elevations.
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All regression models for nadir imagery collected by UAS were significant at a 95%

confidence level (Table 5, Table 6). The highest performing models based on R2 and NRMSE

were obtained using 3 cm nadir imagery, however, average model performance across all indices

was comparable between 3 cm and 6 cm nadir imagery for both individual site and combined

models. Typically, combined site models performed worse than individual site models, with the

exception being that average performance was similar for combined and Young Marsh 6 cm

models. Across almost every index evaluated, nadir regression model performance was higher at

the Mature Marsh site, with R2 values averaging 0.27 and 0.30 higher at the Mature Marsh than

the model counterparts at the Young Marsh, for 6 cm and 3 cm imagery, respectively.
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Table 5: R2 values of the representative linear regression models obtained from the 1000

simulated subset models. Empty gray cells indicate instances where the representative model was

not a significant predictor at a 95% confidence level for that combination of VI and imagery.

Dashed outlines indicate the five highest R2 models for the combined and individual site models.
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Table 6: NRMSE values of the representative linear regression models obtained from the 1000

simulated subset models. Empty gray cells indicate instances where the representative model was

not a significant predictor at a 95% confidence level for that combination of VI and imagery.

Dashed outlines indicate the five lowest NRMSE models for the combined and individual site

models.

Obliquely angled imagery was typically outperformed by both nadir resolutions, for

individual sites and when combined. For oblique imagery captured at 6 m and 4 m elevations, all

but two regression models were significant (GRVI at the Mature Marsh and VREI2 at the Young

Marsh, respectively). However, a large number of the 2 m elevation oblique imagery regression

models were not significant for both sites individually, or for both sites combined. While some 6
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m oblique models were able to outperform lower performance nadir models (ex. Mature Marsh

TGI), the highest performing models overall were still obtained from nadir imagery. Models

derived from obliquely angled imagery decreased in performance as mast elevation and viewing

angle decreased, demonstrated by lower R2 values, higher NRMSE values, and a reduced number

of significant models at the 2 m elevation compared to the 6 m elevation. At the Young Marsh,

where an intermediate, 4 m mast elevation was available for analysis, average model

performance across all indices was typically between that of the 6 m and 2 m mast elevations, in

terms of R2 and NRMSE (Table 5, Table 6), implying that mast height and viewing angle are

critical factors for model performance.

For both 3 cm and 6 cm nadir imagery, a large number of indices provided AGB models

with high R2 and low NRMSE at the Mature Marsh site. Comparatively, relatively few VIs

provided high performance for the Young Marsh and combined site models. Across the

individual site nadir models, IPVI, MSR, VREI1, and WDRVI provided the highest performance

at the Mature Marsh, while IPVI, NDVI, RENDVI, VREI1, and VREI2 provided the highest

performance at the Young Marsh. Similarly, IPVI, RENDVI, and VREI1 yielded the strongest

combined site models, with TDVI also performing well (Table 7).
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Table 7: Highest R2 representative AGB regression models for the Mature Marsh, Young Marsh,

and both sites combined. For all categories, 3 cm nadir resolution provided the highest R2 model.

Mature Marsh Model R2 RMSE
3 cm, nadir AGB = VREI1* 2208.76 - 2165.49 0.86 143.75
3 cm, nadir AGB = WDRVI * 1585.73 - 1035.58 0.85 118.99
3 cm, nadir AGB = MSR * 697.55 - 41.37 0.84 144.58
3 cm, nadir AGB = IPVI * 3638.46 - 1987.25 0.82 154.61
6 cm, nadir AGB = WDRVI * 1557.88 - 973.49 0.82 158.91

Young Marsh Model R2 RMSE
3 cm, nadir AGB = RENDVI * 1929.18 - 46.61 0.64 169.99
3 cm, nadir AGB = VREI1 * 1412.45 - 1408.07 0.64 173.89
3 cm, nadir AGB = IPVI * 2710.85 - 1585.68 0.61 157.30
6 cm, nadir AGB = VREI2 * -6570.82 + 94.53 0.61 173.16
3 cm, nadir AGB = NDVI * 1479.60 - 259.89 0.58 180.19

Combined Model R2 RMSE
3 cm, nadir AGB = VREI1 * 1574.60 - 1512.85 0.65 191.70
3 cm, nadir AGB = RENDVI * 2041.46 + 4.59 0.61 193.61
6 cm, nadir AGB = IPVI * 2635.23 - 1453.5 0.59 210.78
3 cm, nadir AGB = TDVI * 2661.64 - 2067.61 0.57 209.29
6 cm, nadir AGB = TDVI * 2515.41 - 1998.8 0.57 214.14

Residual Analysis of S. alterniflora AGB Estimates:

Of the 10 highest performing AGB models from the Mature and Young Marsh sites, nine

had residuals positively correlated with S. alterniflora height, while seven had residuals

positively correlated with S. alterniflora density (Table 8). At the Mature Marsh, all model

residuals were negatively correlated with elevation. At the Young Marsh, residuals from four

models were positively correlated with 10 cm sediment C:N, and three models were negatively

correlated with bulk density at a 10 cm depth. Other ecological and edaphic characters were

occasionally significant predictors of model residuals as well, including S. alterniflora tissue

C:N, sediment C:N at a 1 cm depth, and benthic chlorophyll a concentrations. For oblique

models, there were no significant relationships between GSD and model residuals at either site.
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Table 8: Significant predictors of AGB model residuals and their regression coefficients, found

through forward stepwise regression. Empty cells indicate the predictor was not significant at a

95% confidence level.

Model
Constant S. alt.

height
(cm)

S. alt.
density
(#/m2)

S. alt.
C:N

Elev.
(m)

Sediment
C:N,
1cm

Sediment
C:N,
10cm

Benthic
Chl. a

(mg/m2)

BD 1cm
(g/m2)

Mature 3 cm, nadir IPVI -286.7 3.76 -497
Mature 3 cm, nadir MSR -46.9 5.34 -444 -28.14
Mature 3 cm, nadir VREI1 -388.7 4.24 -575 0.734
Mature 3 cm, nadir WDRVI -120.6 4.92 0.681 -498 -26.90
Mature 6 cm, nadir WDRVI -10.9 0.794 -748

Young 3 cm, nadir IPVI -547 3.07 1.51 32 -198.3
Young 3 cm, nadir NDVI -586 2.58 1.45 35 -187.2
Young 3 cm, nadir RENDVI -674 1.79 1.23 206 26.7 -154.2
Young 3 cm, nadir VREI1 -621 2.19 1.48 23.7
Young 6 cm, nadir VREI2 -701 2.05 1.31 291

Evaluation of Interseasonal Model Applicability:

Average reflectance spectra collected from ground-truth plots in the Young Marsh in July

and October 2019 demonstrated major differences consistent with phenological changes

occurring between seasons. For the subset of plots imaged in October, red reflectance in the

650-700 nm range increased compared to July, while NIR reflectance decreased somewhat,

resulting in shallower red-edge slopes (Figure 8). Additionally, while green reflectance remained

approximately the same between seasons, the slope of the spectra between the visible blue and

green became shallower, and when combined with the increased red reflectance seen in October,

results in less pronounced visible green reflectance.
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Figure 8: Reflectance spectra collected from the Young Marsh in July (A) and October 2019 (B),

using the Headwall VNIR Micro-Hyperspec High Efficiency E-series system to collect obliquely

angled imagery at a 6 m elevation.

Regression model predictions of S. alterniflora AGB were generally poor for the subset

of plots resampled from the Young Marsh in October 2019, demonstrating markedly increased

RMSE and NRMSE for four of the five models tested (Table 9), with October AGB estimates

deviating heavily from the 1:1 line for those models (Figure 9).

Table 9: RMSE and NRMSE values for select 6 m oblique models applied between months at

the Young Marsh.

Model RMSE July RMSE October NRMSE July NRMSE October
GRVI 190.03 154.88 0.236 0.187
MSR 186.16 270.74 0.270 0.632
RENDVI 193.77 325.08 0.280 1.544
TDVI 187.95 249.73 0.262 1.206
SR 189.96 269.90 0.274 1.948
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Figure 9: Observed vs. predicted S. alterniflora

AGB for October 2019, using the July 2019

GRVI (A), MSR (B), RENDVI (C), SR (D), and

TDVI (E) regression models. These models were

the five highest R2 models generated using the 6

m elevation, oblique imagery in July 2019.
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For the four models with increased RMSE and NRMSE from July to October 2019

(MSR, RENDVI, RDVI, SR), the majority of plot level AGB predictions were lower than the

AGB values measured in the field (Figure 9). However, October 2019 AGB estimates made

using the GRVI July 2019 regression model adhered to the 1:1 line, and featured lower RMSE

and NRMSE than the same plots in July 2019 (Figure 9).

Discussion:

Characterization of Chronosequence Sites:

With marsh age in this context being determined by when S. alterniflora recolonized an

area after an overwash event, where large amounts of sand are deposited over an existing marsh,

the differences in edaphic characteristics observed at the two chronosequence sites are expected

and consistent with previous work at these sites (Goldsmith 2019, Osgood & Zieman 1993, Tyler

& Zieman 1999, Walsh 1998). Marsh age, and the resulting differences it drives in SOM (He et

al. 2016, Morgan & Short 2002, Osgood & Zieman 1993, Tyler et al. 2003, Walsh 1998) is likely

the main factor in the differences observed between and within the two sites in terms of BD and

sediment CNP (He et al. 2016, Tyler & Zieman 1999, Walsh 1998). Due to the Young Marsh’s

age, there has been less time for plants to grow, die, and decompose at the site, resulting in lower

SOM at both depths than at the same depths measured at the Mature Marsh site. Additionally, the

deposition of decaying plant material and trapping of fine organic-rich sediments (Christiansen et

al. 2000, Stumpf 1983) brought in with the tide on the sediment surface explains the higher SOM

in the top centimeter of sediment, relative to the 10 cm depth for both sites. Because SOM is
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nutrient rich, this same trend is observed for sediment N and P: higher nutrient concentrations are

observed at the surface than at the 10 cm depth, and higher concentrations are observed at the

Mature Marsh than at the Young Marsh.

SOM and sand fraction also likely explain the difference in BD between and within these

two sites. With low BD SOM accumulating first at the sediment surface, lower BD values are

seen in the top cm than at the 10 cm depth for both sites. Additionally, the high BD of sand, with

less SOM to reduce BD, results in the Young Marsh having higher bulk densities at both depths

observed, relative to the Mature Marsh. Furthermore, sediment silt and clay content have been

observed increasing with marsh age (Goldsmith 2019, Tyler & Zieman 1999, Walsh 1998),

further contributing to the low BD seen at the mature marsh.

While Tyler et al. (2003) and Goldsmith (2019) both found significantly higher

chlorophyll a concentrations in younger salt marshes, chlorophyll a concentrations were not

significantly different between the two sites in this study. It may be that a combination of

(a)biotic factors supported an isolated algal bloom and/or high algal community productivity in

2019, resulting in the similar chlorophyll a values observed between sites here. However, the

Mature Marsh contained significantly higher concentrations of phaeopigments, a degradation

product of chlorophyll, at the sediment surface. Given the age of the Mature Marsh, this is likely

because there have been decades more time for algal communities to develop and die off at the

site, allowing the chlorophyll contained to degrade and accumulate over time within the

sediment.

While there were no significant differences in S. alterniflora AGB, culm height, or

density between the two sites, higher variance in culm height was observed at the Young Marsh.
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With the Young Marsh encompassing areas from -60 cm below to +41 cm above sea level, and

with greater variability in elevation compared to the Mature Marsh, the increased variance in

culm height at this site can likely be attributed to the varying phenotypic expression of S.

alterniflora at different elevations. Additionally, the higher average elevation and presence of

plots located closer to the high marsh and upland at the Young Marsh likely leads to the higher

salinity observed at this site, as these areas are less frequently and completely inundated,

resulting in greater salt build up (Nestler 1977).

Nadir Regression Modeling of S. alterniflora AGB:

Of the VIs used in this study, those that utilized red, NIR, and red-edge slope features

provided the highest performance for regression models at nadir. RENDVI (Gitelson & Merzlyak

1994, Sims & Gamon 2002) and VREI1 (Vogelmann et al. 1993) both leverage narrowband

red-edge reflectance features in the 720-750 nm range, and yielded the most accurate models at

the Mature and Young marsh sites, and for both sites combined (Table 7). With the presence of

water and sediment background resulting in typical vegetation features being less pronounced in

the visible region in the nadir reflectance spectra - while the red-edge remains apparent (Figure

6) - it is understandable that these red-edge indices would provide accurate estimates of AGB.

Additionally, NDVI, MSR, and a number of indices similar in form to NDVI, including

IPVI, WDRVI, and TDVI, also yielded strong results for both individual and combined site

models (Table 7). These indices all focus on mathematically transforming the sizable differences

in red and NIR reflectance typically seen in vegetation canopies, caused by chlorophyll’s strong

absorption features contrasting with high NIR scattering due to plant cell and canopy structure
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(Bannari et al. 1996). With all of these indices leveraging the same spectral features in slightly

different ways, their similarly strong performance is expected, with the large difference in red

and NIR reflectance being one of the most pronounced features in the nadir plot spectra (Figure

6).

Across the combined and individual site models, the 3 cm nadir imagery yielded the

highest performing AGB models in terms of R2 and NRMSE (Table 7). This was especially

evident at the Mature Marsh, where the most accurate 3 cm model had an R2 of 0.86. The

accuracy of models at this site exceeds those found by other studies using lower GSD

hyperspectral imagery to model S. alterniflora AGB: Wang et al. (2017) and O’Donnell et al.

(2016) both found models with R2 values of 0.70 using multiple and single linear regression,

respectively. However, the most accurate 3 cm AGB model for the Young Marsh had an R2 value

of 0.64, demonstrating a sizable decrease in model performance compared to the Mature Marsh

and these previous studies. Only small decreases in accuracy were observed between the best 3

cm and 6 cm regression models for individual and combined site models (Table 5, Table 6),

suggesting that despite the decrease in GSD, the majority of variability in S. alterniflora AGB is

still able to be captured and modeled effectively.

The relatively poor model performance at the Young Marsh may be in part due to the

greater variance observed in S. alterniflora culm heights observed at this site, relative to the

Mature Marsh. With S. alterniflora height strongly informing AGB (Equations 1 & 2), this

additional variability in culm height may be difficult to resolve in these nadir AGB models,

given that minimal surface area of these erectophiles are visible when viewed from above. This

is supported by the results of the residual analysis performed in this study, which found that nine
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of the ten models tested had residuals positively correlated with average S. alterniflora culm

height, indicating that these models were underestimating AGB at plots with short culms, and

overestimating AGB when average culm height was high. While the majority of models tested

also had residuals positively correlated with S. alterniflora culm density, variability in culm

density was not significantly different between the Mature and Young Marshes. Additionally,

model performance was dramatically higher at the Mature Marsh, despite variability in S.

alterniflora AGB being significantly higher at this site at a 90% confidence level. Considering

these together, regression models were able to accurately encompass a wider range of AGB

values at the Mature Marsh than at the Young Marsh, and with culm density averages and

variance being similar between sites, suggests that higher variability in culm height at the Young

Marsh results in lower accuracy models.

Additionally, for all of the Mature Marsh models, elevation was a significant, negatively

correlated predictor of model residuals. With most ground-truth plots at the Mature Marsh being

near or beneath mean sea level, this term in the multiple regression model would result in a

positive value for these plots, with the value decreasing nearing mean sea level. Since tall-form

S. alterniflora grows at lower elevations, this correlation is likely overlapping with and

amplifying the correlation seen between S. alterniflora culm height and model residuals.

Alternatively, this may reflect variability in model performance related to differing levels of

sediment saturation, which likely decreases as elevation increases. Finally, the 3 cm VREI1

model at the Mature Marsh had residuals positively correlated with benthic chlorophyll a

concentrations. While not consistently seen in this analysis, and only accounting for

approximately 2% of the variance observed in the model residuals, these results suggest that
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algae may have the potential to interfere with AGB estimates. The presence of algal communities

may be decreasing the red reflectance of the sediment surface, increasing the slope of the

red-edge that the VREI1 index utilizes, resulting in higher index values. Similarly, algal

chlorophyll may affect other VIs by increasing green reflectance and reducing red reflectance of

the sediment visible between S. alterniflora culms, two spectral features utilized by a large

number of VIs. In doing so, algal communities may alter VI values where present, resulting in an

overestimate of AGB when using indices sensitive to chlorophyll’s spectral features.

Oblique Regression Modeling of S. alterniflora AGB:

DVI, MTVI2, TGI, GRVI, MSR, and SR at the 6 m camera elevation yielded the

strongest models of AGB based on oblique imaging of the Mature and Young Marshes. DVI,

MSR, and SR all utilize the same red and NIR reflectance features that some of the best

performing indices at the nadir viewing angle used, however, only MSR was among the top

performers at both nadir and oblique viewing angles. Differing from the other indices that

performed well in this study, MTVI2 and GRVI incorporate green wavelengths in addition to

NIR and/or red wavelengths, while TGI only uses visible blue, green, and red wavelengths. The

relatively increased performance of models utilizing green and blue wavelengths at oblique

viewing angles may be due to the ability of these angles to better capture the spectral features of

S. alterniflora in the visible wavelengths (Figure 6, Figure 7). These findings are similar to those

of Goldsmith et al. (2020), where among other indices, the Green-Red Vegetation Index

(Motohka et al. 2010) was a significant predictor of foliar %N in obliquely angled imagery.

While many of the top performing indices at oblique angles leverage the difference between red
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and NIR reflectance, none of them used red-edge features - which were commonly used among

indices providing strong models at nadir views. It may be that red-edge slopes are exaggerated at

oblique views, given the difference observed in red-edge slopes between the nadir (Figure 6) and

oblique plot-level spectra (Figure 7).

With previous studies finding stronger relationships between canopy characteristics and

VIs at off-nadir angles (Chen et al. 2018, Stagakis et al. 2018), I expected that oblique viewing

geometries would provide more accurate S. alterniflora AGB regression models than nadir

views, as more surface area of their narrow, vertically oriented culms would be visible. However,

this was not observed, and except for a few cases, AGB models produced from oblique imagery

were outperformed by either or both nadir resolution models using the same VI, for all camera

elevations/viewing angles tested. Additionally, the exceptions where oblique AGB models

provided similar or better accuracy to nadir models represented cases where the VI used

performed poorly for the nadir imagery, for example, 6 m TGI at the Mature Marsh, or 6 m DVI

at the Young Marsh. In these cases, while the oblique models demonstrated higher R2 values than

their nadir counterparts for that specific VI, their performance comparatively was still far lower

than the highest performing nadir models at the site.

Clear trends were observed in the accuracy of oblique AGB models in relation to camera

elevation and viewing angle. Across both sites and the combined site models, the 6 m camera

elevation - providing the highest viewing angle - typically yielded the highest R2 and lowest

NRMSE models. For the combined site and Mature Marsh models, few regression models for the

2 m camera elevation - representing the shallowest viewing angle collected - were significant.

Those that were had extremely low R2 values (max = 0.15).

45



For oblique models at the Young Marsh, where an intermediate, 4 m camera elevation

was available for analysis, average model performance across all indices decreased consistently

going from high to low viewing angles, further supporting the trends seen in the Mature Marsh

and combined models. While a small number of indices at 4 m provided comparable or better

performance than the 6 m equivalent (GOSAVI, MCARI2, OSAVI), the 4 m models

outperformed the 2 m models in every case. Interestingly, the three indices that saw slight

improvements from 6 m to 4 m mast elevations all incorporate a soil adjustment factor into the

index equation. With these soil adjustment factors remaining constant between all oblique and

nadir views at the default values shown in Table 1, it may be that the amount of background

sediment visible was best represented by these adjustment factors at the viewing angle provided

by the 4 m oblique imagery.

These findings suggest that shallow viewing angles are not suitable for AGB regression

modeling using VIs in salt marsh ecosystems, and that the steeper viewing angles provided by

higher camera elevations provide more accurate regression models of S. alterniflora AGB.

However, assessing AGB using nadir views will most likely provide the strongest regression

models. Counterintuitively, this may be caused by more sediment background being visible in

between S. alterniflora culms from nadir/higher viewing angles, reducing VI values in plots with

low culm densities more than in plots with high densities - allowing for culm density to be

reflected in plot-level average VI values. However, oblique viewing geometries result in more

sediment background being obscured by culms, which can be seen by comparing the reflectance

spectra in Figure 6 and Figure 7. Typically, oblique views yielded plot-level reflectance spectra

with higher green and NIR reflectance, steeper red-edge slopes, and more prominent red
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absorption features than the same plots viewed from nadir. Additionally, these features became

increasingly pronounced at both sites as viewing angle decreased with lower camera elevations

(Figure 7). While these oblique views capture the reflectance features of S. alterniflora well, it

may also make it more challenging to estimate AGB using regression modeling methods. Finally,

oblique viewing angles present opportunities for culms closer to the sensor to occlude those

behind them, which may result in the loss of valuable spectral information, or introduce error

into models if culms in the foreground are overlapping with - or are indistinguishable from -

those within a plot.

S. alterniflora Regression Modeling Considerations:

These results find that while the most accurate models were obtained using 3 cm nadir

drone data, there is roughly comparable average performance between 3 cm and 6 cm nadir

drone resolutions. With minimal changes in reflectance and NDVI values being observed

between UAS flights within our operating elevations (Stow et al. 2019), this is not entirely

unexpected. Furthermore, Fawcett et al. (2020) found strong agreement in maize NDVI and CHL

indices for GSD values ranging from 4.15 cm to 20 m, demonstrating a level of consistency in

observations between scales for the remote sensing of vegetation.

This suggests that if a large extent of salt marsh requires evaluation, the 6 cm spatial

resolution would allow complete coverage in less time, while maintaining most of the accuracy.

However, if accurate AGB estimates are paramount, the study area small, or time not a

consideration, higher spatial resolutions will still provide the most accurate estimates of AGB.

How much the spatial resolution can be lowered while maintaining approximately equivalent

47



accuracy to higher resolutions is unknown and beyond the scope of this study, and there is likely

a limit where losses in accuracy become noticeable at GSD becomes larger. This can be seen in

the regression models found by O’Donnell et al. (2016), which found that while scaling from 1 m

hyperspectral to 30 m Landsat imagery, the best regression model at 1 m GSD had an R2 of 0.70,

compared to an R2 of 0.51 for the 30 m GSD landsat imagery.

Additionally, comparing between viewing angles suggests that regression modeling of S.

alterniflora AGB is unlikely to be successful using obliquely angled imagery, given the overall

poor accuracy seen across all indices and viewing angles tested at both marsh sites. However,

using oblique imagery in conjunction with an inversion of the PROSAIL radiative transfer model

has been shown to yield accurate retrievals of AGB across the same salt marsh chronosequence

sites used in this study (Eon et al. 2019). While the highest performing combined site oblique

regression model of AGB in this study had an R2 of 0.33, the PROSAIL inversion performed by

Eon et al. (2019) had an R2 of 0.73 for observed vs. predicted AGB values across the same

Mature and Young Marshes studied here - which additionally outperforms the highest R2 nadir

regression model found in this study (R2 - 0.65).

Finally, plot-level spectra collected as part of this study illustrate some of the challenges

of remote sensing within salt marsh ecosystems. While general consistency is observed between

3 cm and 6 cm nadir spectra at the Mature Marsh, sizable differences are apparent between the

two sets of spectra collected at the Young Marsh (Figure 6). The 3 cm flight at the Young Marsh

almost overlapped with low tide, while the 6 cm flight took place approximately an hour prior,

closer to the high tide occurring roughly six hours before. Despite this small difference in timing,

major differences are observed in the spectra collected between these two flights. The 6 cm
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spectra have reduced reflectance overall compared to the 3 cm spectra, which is especially

apparent in the NIR region - resulting in lower red-edge slopes in the 6 cm spectra. This is likely

due to the larger sand fraction (Goldsmith 2019) and lower SOM (Table 2) found at the Young

Marsh, leading to it being more well-drained than the Mature Marsh. Because less water is

retained in the sediment over time, and can likely infiltrate and percolate through the sediment

faster, spectra and VIs collected from the Young Marsh seem to be more sensitive to tidal

changes. This is supported by the results of the residual analysis, where models at the Young

Marsh often had residuals correlated with BD at a 1 cm depth - indicating model performance

was impacted by variation in surface sediment characteristics that not only affect the reflectance

of the sediment itself, but also its water retention. This contrasts with observations at the Mature

Marsh. While the amount of time between 3 cm and 6 cm flights was shorter at the Mature

Marsh, the consistency in spectral characteristics between flights may also be in part due to the

SOM (Table 2) and clay rich sediment (Goldsmith 2019) found at the site, which may retain

water and stay saturated more consistently, thus retaining the same spectral features despite

changing tides.

Evaluation of Interseasonal Model Applicability:

Of the five best performing models from the 6 m camera elevation and viewing angle,

providing the highest performance in July 2019, interseasonal model performance was typically

poor. For the MSR, RENDVI, TDVI, and SR models of AGB, RMSE and NRMSE between

observed and predicted AGB values were higher when applying the model to the same plots in

the October imagery, when compared to July 2019. For these four models, the AGB values
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predicted in October did not follow the expected 1:1 line, with the majority of these predictions

being underestimates of AGB (Figure 9). Given the senescence occurring by October, with plants

turning a yellow-brown hue due to increased red reflectance, and reduced NIR reflectance and

red-edge slopes being observed (Figure 8), it is understandable that model performance would

decrease between months. These models likely yield poor results because they cannot account

for these changes in phenology that have occurred between seasons, as the data used to train the

model was obtained from July only.

Interestingly, the GRVI model of AGB actually had lower RMSE and NRMSE when

applied to the October imagery than when applied in the original month, which demonstrates that

this model retains a level of accuracy when predicting AGB across months, despite changes in

plant phenology over time. Additionally, observed vs. predicted values followed the 1:1 line,

with no major deviations or trends being observed. This model may be more suited to

interseasonal application because it divides NIR reflectance by green reflectance. Since green

reflectance remained similar between July and October, and only small decreases in NIR

reflectance were observed (Figure 8), the resulting values from the GRVI index were similar

between months at the same plots (Figure 10).

Although low values of GRVI in July become higher

in October, and high values become lower, they still

roughly follow the 1:1 line.

Figure 10: Comparison of GRVI values in July and October

2019, for the subset of plots resampled in October 2019.
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Conclusions and Future Work:

When available or practical to collect, using the highest GSD nadir imagery possible will

likely maximize the accuracy of AGB regression models in S. alterniflora dominated salt

marshes. However, these results indicate that only minimal model accuracy is lost going from 3

cm to 6 cm GSD, indicating that slightly lower resolutions can still produce accurate AGB

estimates. This is an important consideration when selecting parameters for UAS data collection:

a slight decrease in model accuracy can allow for the evaluation of a larger area in the same

amount of time. Depending on the application, this trade-off may be worthwhile. Additionally,

nadir imagery vastly outperforms obliquely angled imagery for AGB assessment when using

regression modeling techniques. However, obliquely angled imaging is still powerful for

evaluating salt marsh health (Goldsmith et al. 2020), or for retrieving AGB using an inverted

radiative transfer model, such as PROSAIL (Eon et al. 2019).

Between the two marsh sites, various VIs leveraging NIR reflectance and red-edge slope

performed well. The two visible band indices used by this study (TGI & TVI) yielded poor AGB

estimates, suggesting that visible bands alone are not sufficient to provide accurate estimates of

AGB. For the best performing nadir models, residuals consistently positively correlated with S.

alterniflora height - AGB was often underestimated when culm height was short, and

overestimated when culms were taller. This may be due to the erectophile canopy structure of S.

alterniflora, where height is likely challenging to observe from nadir views. With this

understanding, augmenting hyperspectral analyses with LIDAR data may provide important

information regarding canopy height, which could further improve AGB models and estimates.
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Finally, interseasonal model applicability likely depends on the specific index used. While four

models using NIR, red, and red-edge wavelengths yielded poor results between seasons, the one

model using NIR and green wavelengths demonstrated similar accuracy from July to October,

indicating that interseasonal application of GRVI may yield acceptably accurate AGB estimates

despite seasonal differences in plant phenology.

This study is a first step towards understanding the differences in AGB estimates

produced across platforms with varying GSDs and viewing angles. Additional work should be

performed to identify if spectral smoothing techniques, such as Savistsky-Golay filters, can

improve VI model results compared to the original spectra. Additionally, future work should

perform sensitivity analysis on broadband vegetation indices to identify which combinations of

spectral bands yield the strongest AGB models and estimates, rather than using just the central

wavelength for the broadband region. By performing this analysis across a large number of

vegetation indices leveraging visible and NIR features, it should be possible to identify any

wavelengths that are consistently strong at predicting AGB within S. alterniflora communities.

Future work should also include testing the interseasonal application of a wider array of

VIs using nadir imagery, to evaluate model accuracy between seasons using the most accurate

viewing angle available, and should test the interseasonal performance of AGB retrievals from

inverted radiative transfer models, such as PROSAIL. Additionally, comparing AGB estimates

from regression models to AGB retrievals produced by inverted radiative transfer models may

also yield important insight into their respective accuracies at various viewing angles and GSDs.

Finally, future work should expand this analysis to include imagery collected from lower GSD
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airborne and satellite platforms, to evaluate how the accuracy of AGB estimates continue to

change with spatial resolution.

Taken together, these results demonstrate the ability for remote sensing to provide us with

valuable and accurate information regarding salt marsh AGB, and in turn, carbon storage.

However, these results also illustrate some of the challenges associated with evaluating the

heterogeneity present within these dynamic tidal ecosystems, and reveal differences in the

accuracy of regression models of S. alterniflora AGB between GSDs, viewing angles, seasons,

and across marshes of varying ages that highlight the need for careful selection and application

of remote sensing techniques to yield the strongest results. Future research and investigations

into salt marsh AGB using regression modeling should consider these findings when selecting

what GSD and viewing angle to collect imagery from, to maximize model accuracy and improve

evaluations of salt marsh carbon storage. In doing so, land managers can direct restoration efforts

towards areas affected by stressors, and conservation towards the most productive salt marshes.
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