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Abstract

The primary goal of this research was to develop a system capable of predicting a

given user’s imagined language in real time using their brainwave data. This research

analyzed both FPGA-based and software based approaches to real-time classification

of imagined language. The classification was binary between English and Japanese,

and a dataset containing imagined speech from both languages was also created. An-

other goal of this research was to consider the effects of quantization of the network

weights in order to examine the resulting utilization of the FPGA to allow for other

applications to run in conjunction with our proposed system. With test accuracies

over 95% but real-time accuracies only barely approaching 60%, it can be considered

partly successful. Real-time approaches to predicting imagined EEG words are rare,

and attempts at predicting imagined language are even rarer. Such a system could

be beneficial in helping multi-lingual environments that standard natural language

processing systems have difficulty in noticing changes in language, especially those

that occur in real time. Further iterations on this proposed system could also as-

sist those who have difficulty articulating speech and would benefit from having a

brainwave-based system that is portable and works in real-time. It is hopeful that

this work can lead to future iterations and advancements in the realm of real-time

imagined speech classification both through their own attempts or perhaps with the

help of the English/Japanese imagined speech dataset created through this research.
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Chapter 1

Introduction

1.1 Background

A common problem in the realm of neuroscience is with regards to patients who have

anarthria, or the loss of the ability to articulate speech. There are many ways to as-

sist those with anarthria in order to communicate, but properly classifying electroen-

cephalography (EEG) data obtained from the user’s brain wave signals was thought

to be an eventual possibility at best. However, as time and technology progress,

whole word and phrase decoding using EEG data has been done to varying degrees of

success by researchers in multiple studies [1] [2]. They discovered, through the use of

invasive measures implanted inside the user’s head to record their EEG signals, that

classification of imagined words was indeed possible. However, one issue encountered

was that post-hoc accuracy was higher than real time accuracy. Furthermore, an

invasive device used to perform these measurements incurs surgery and maintenance

costs that might not be easily attainable for the average person. Fortunately, non-

invasive EEG measuring technologies exist in the form of a headset the user can place

on their head. Were these to become cheaper and more commonplace, it stands to

reason that many people would consider it a more agreeable solution. However, the

major drawback with non-invasive methods is their generally lower accuracy rates

compared to that of intra-cranial options typically in the range of 20 to 100 times
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Chapter 1. Introduction

worse signal quality when using signal to noise ratio (SNR) as a metric [3].

When analyzing EEG data, a common problem encountered is its heavy depen-

dence on multiple time points scattered across multiple channels. This high level of

dimensionality results in standard linear regression systems lacking sufficient accu-

racy in properly classifying or predicting said data. Therefore, more advanced data

classification techniques such as an artificial neural network (ANN) or perhaps one

with multiple layers, a deep neural network (DNN), could be beneficial in this case.

An ANN’s ability to better classify a wide range of input data than that of standard

linear regression algorithms could be a suitable choice for this type of problem. An

important consideration regarding EEG data though is its time dependence, as data

from two nearby time points do have some level of correlation with each other. As

such, it is important to consider that a new input data point does have relation with

previous or future data points.

To somewhat rectify this issue, a windowed approached could be applied to better

represent multiple data points from the EEG signal over a given time frame. This

maintains the temporal properties of the data by acting over a span of time rather

than a single point, and it would reduce noise present at any given point that may

not be present at following or preceding points. However, EEG data has a low signal-

to-noise ratio, so taking data points as they are might not lead to any clear results.

Through the use of a moving window, the data can have multiple features extracted

from it in order to better represent the given EEG input.

3



Chapter 2

Related Work

2.1 Related Work

As a result of all of these reasons, analyzing and classifying EEG data is not necessarily

a simple task. Through this we propose a system wherein a neural network is loaded

onto and trained on an FPGA. This FPGA is also able to handle input data, save

it across a given window, perform feature extraction on said window, and utilize

the aforementioned neural network to classify the input data as either English or

Japanese. The target of this being English and Japanese is to have a dataset with

its two states having comparatively high variance between each other. Japanese and

English have very different syntax and sentence structures [4], potentially leading

to similarly different EEG signals due to the inherent temporal property sentences

have (with a beginning, middle, and end most of the time). Furthermore, there is

a measured difference in a native Japanese speaker’s ability to speak English [5],

and it might be the case that these difficulties also carry over into imagined speech.

Therefore, such a dataset should theoretically be a good fit for having two distinctly

differentiable classes to classify. However, the ability to classify these on their own

may not provide much tangible benefit. Instead, it might be beneficial to use this

EEG data to assist with speech recognition systems that have difficulty differentiating

between a change in language in real time. Some solutions to such issues are using
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Chapter 2. Related Work

video in conjunction with audio in busy environments, but the accuracies from such

pursuits were still below 30% [6]. Perhaps a low cost EEG-based system could assist

in environments, particularly learning environments, where multiple languages are

present but hard to differentiate through audio alone. Of course, this would incur

costs with regards to supplying headsets to users as long distance EEG is not known

to be feasible currently.

Decoding speech from EEG has been showing steady improvements in accuracy in

the past few years [7][2] both in terms of audible and imagined speech. One attempt

[8] with k-nearest neighbor approaches at classification resulted in 58% accuracy for

binary classification, with a big takeaway being that syllable classification is easier

than word-based classification. A similar approach [9] using Naive Bayes, Support

Vector Machines, and Random Forests tried to expand beyond binary and reached

accuracies marginally above random chance for Support Vector Machines (20-35%

for 5 classes) but over 40% accuracies when using Random Forests-based approach.

Echo state network (ESN) based methods have found success in extracting features

from EEG data even through unsupervised methods [10], so it might be useful to

incorporate similar feature extraction methods if the current setup is found to be

unsatisfactory in terms of accuracy. An ESN is a recurrent neural network that

specializes in recognizing relationships or extracting features from temporal data,

which while they could be done using functions like mean or median, they might not

provide enough of a difference between points to allow the network to successfully

converge on a solution. When it comes to bilingual classification, there is one previous

study that had attempted to do so [11]. They managed to have high accuracies (about

92%) for language classification, but their dataset only contained responses to yes or

no questions.

The primary takeaway from these previous studies and how this research can add

to them is as follows. First, imagined language classification seems to have only
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Chapter 2. Related Work

been performed on a single word pair scale [11], but this work hopes to expand that

to classification of language where whole phrases are involved in order to have a

more generalized model. Ideally, the phrases would, even within the same language,

feature a wide range of muscle/mouth movements if spoken aloud to allow for the most

variation in data. More varied input data should theoretically allow for more accurate

classification results on real, unscripted imagined speech data. Furthermore, the vast

majority of attempts at classification used post-hoc methods where the dataset is

static, and nothing is done or calculated in real time with a real user connected.

2.2 Goals

Though many attempts get results slightly above random chance, it stands to reason

that such a dataset should be theoretically differentiable. Not to mention studies [2]

wherein relatively high (about 90%) accuracies when classifying between consonants

and vowels were found or when determining the presence of specific sounds (such as

/uw/). It should be noted that [2] did include facial data from a Microsoft Kinect, so

a wholly EEG-based approach likely would not reach similar accuracies. However, a

particularly successful attempt [12] using a convolutional neural network with careful

consideration for headcap channel relevance found accuracies above 90% for binary

word classification using the dataset from [2]. Specifically the difference between

the two languages physically exists in sentence structure [4], but it is also argued to

exist generally speaking for bilingual persons [13] in terms of the process of mentally

representing the meaning of a word regardless of language. Based on this, it can be

hypothesized that bilingual EEG data would also be differentiable enough to classify

between either language.

Through this research, our goal was to find a means of bridging the many various

gaps involved. If imagined language is theoretically differentiable and even classifiable

on a word-to-word basis [2], we wanted to provide the first steps in doing so at a
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Chapter 2. Related Work

bilingual level. Furthermore, real-time approaches to doing so are hard to find, so

a generally low-cost, real-time solution could be beneficial as well. Finally, such

a system could aid in fields that have strengths in recognizing speech for a target

language but need assistance in recognizing changes in language happening in real-

time. The specific, tangible goals for this research were as follows.

1. Create a physical FPGA-based system capable of receiving incoming Bluetooth

data and generates an output based on features extracted from said data in real

time.

2. Based on accuracies obtained from similar work and assumed complexity of

the proposed dataset, a successful classification accuracy in real time can be

considered to be a minimum of 60%.

3. A thorough examination of the impact of quantization of the network (both

in terms of during training and the final network size itself) on the resulting

accuracies to show to what extent space on the FPGA can be conserved.

4. Creation of the imagined English/Japanese speech dataset wherein users are

instructed to formulate imagined speech in the specified language while reading

specific prompts given to them in order to obtain their EEG signals.

7



Chapter 3

Early Network Tuning and Kara One Dataset Findings

The neural network was primarily trained and tested in Tensorflow for the Japanese

and English dataset due to its relative ease of use and ability to quickly change param-

eters of the data/network/etc as well as ability to train with quantization awareness,

but the initial findings regarding the use of the Kara One dataset [2] were done

using MATLAB’s DeepNetworkDesigner. The Kara One dataset is cleanly marked

to delineate changes in the user’s state (speaking, resting, stimulus, preparing to

speak). This makes the set useful for training purposes and checking the viability

of neural networks for a similar approach. However, an important distinction to be

made between this dataset and that of the goals for this project is that this dataset

was designed with one language in mind. A dataset needed to do training for this

project was not known to be publicly available. Thus, this dataset was created in

conjunction with Kanazawa Institute of Technology’s students because of the number

of bilingual students present and the professors specialized in EEG-related fields and

will be discussed heavily in Chapter 5. Despite this temporary shortcoming, the Kara

One dataset follows a similarly desired structure and served for a decent introduc-

tion into working with and analyzing EEG data. It uses a headset with 62 channels

instead of 32, so it can be assumed that a 32-channel headset may result in a loss of

accuracy due to a loss of the input dimensionality. For the purposes of aligning with

the target of this research, all training methods mentioned moving forward will ref-

8



Chapter 3. Early Network Tuning and Kara One Dataset Findings

erence classification between the ”resting” and ”speaking” mental states marked by

[2]. Speaking states are states where the user is physically speaking a given prompt,

and resting states are states where the user was instructed to clear their mind. Both

states use the same timing, window sizes, EEG sampling rate (1000 Hz), and fea-

tures. An example of the raw EEG data can be visualized in Figure 3.1 over a range

of 30 seconds, but timing labels for each state could not be overlaid on EEGLAB’s

plotting function. The user begins in a resting state, is introduced to visual stimuli

by receiving a prompt, then they prepare to say the prompt by readying the relevant

muscles and mouth positions before finally saying the prompt out loud and returning

to the resting state. There are approximately 160 individual word state cycles per

person. With binary classification, the input data will be pruned to represent two

states, bringing the total to approximately 320 data points per person, notwithstand-

ing the extra dimension added when incorporating channels and the features across

said channels. Ultimately, the input data becomes 930 (15 features per each of the

62 channels) by 320 per person. There are 12 people present in the study, so there

are approximately 3840 data points available for testing and training.
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Chapter 3. Early Network Tuning and Kara One Dataset Findings

Figure 3.1: Small sample of the raw EEG output data used for training and testing (1000
Hz, 30 seconds). Red denotes labels of the user’s mental state.

3.1 Pre-training

The first tests performed in MATLAB were designed to check whether or not a pre-

trained model was necessary in obtaining a more accurate output. If pre-training a

model on separate user data did in fact result in higher accuracy, it stands to reason

that the FPGA need also accommodate initializing itself with a pre-trained model

rather than a default or uninitialized one. Figures 3.2 and 3.3 show the results of

testing the output of two different types of training methods on a single layer neural

network with 62x15 (930) inputs. The first method involved a randomly initialized

model without any transfer learning used, and the second method involved using a

pre-trained model with transfer learning. Both methods performed multiple training

runs, and the results shown are the average accuracy across 50 different training runs

as well as the total number of class predictions as seen in the confusion matrices. The

difference between the plots within each figure is solely the quantization levels of the

10



Chapter 3. Early Network Tuning and Kara One Dataset Findings

weights of each plot. Quantization in these cases was done by manually changing the

value of each weight using MATLAB’s fi function. The weights are then saved into a

new network with the same structure as the original and used to compute the output.

Figure 3.2: Testing results when using a freshly trained model.

When at high quantization levels, the network certainly shows some promise.

However, a 71% accuracy for binary classification could be improved upon in this

case. The confusion matrices further reinforce this, as the model has about 85%

accuracy when guessing 0 (resting state) correctly but 58% accuracy for correctly

guessing 1 (thinking state) despite the data set having a balanced set of labels. This

in particular will be touched upon later, but it starts to set up the notion that stimuli

heavily affect a user’s variance in EEG output as opposed to less stimuli-based states

like resting. Fortunately, this can be rectified through the use of the aforementioned

transfer learning operations.

11



Chapter 3. Early Network Tuning and Kara One Dataset Findings

Figure 3.3: Testing results when using a pre-trained model re-trained via transfer learning.

Both examples used the same training and testing data to create these confusion

matrices with the notable exception that Figure 3.3 used a model pre-trained on

separate data. In this case, even with only a single layer neural network, the accuracy

improves by over 30% to see results in the 98% range. However, as seen previously,

the presence of stimuli-based data (class 1) incurs a higher level of misclassification.

It should be noted that the testing and (re)training data for both of these examples

belonged to specific people P10-P14 (of course with no overlap of the specific training

and testing data points). The model that was pre-trained was trained on people P1-

P9. The point of this is to show that both a pre-trained model and a model tailored

to new users work in conjunction to improve the overall accuracy.

3.2 Inter-Personal Uniqueness

As found in [14] [8], there is a noticeable difference in EEG signals between users

who are receiving the same stimuli. Based on this, it can be assumed that EEG

12



Chapter 3. Early Network Tuning and Kara One Dataset Findings

is inherently unique to different individuals but still acts in somewhat predictable

manners depending on the action performed as seen in Figure 3.3. The reason for

using a pre-trained model is primarily to allow for the general aspects of EEG data

to be trained upon, but if a new person’s EEG data were to be introduced and used

directly as input data, the resulting accuracy would not be as high as it could be. As

such, a method wherein the FPGA can retrain on any new user is critical in reaching

accuracies closer to optimal. For better visualization, Figure 3.4 shows the results

of using the same testing data as the previous two examples without training on the

people said testing data belongs to.

Figure 3.4: Testing results when using a pre-trained model without re-training on a new
user.

This case appears to better demonstrate the high levels of personality or unique-

13



Chapter 3. Early Network Tuning and Kara One Dataset Findings

ness an individual user’s EEG data has. To give a crude ranking of the three types

of testing done here, transfer learning on new users with a pre-trained model has

the best accuracies. Training with a brand new model follows behind in second, and

testing on new users with a pre-trained model trained on separate users results in the

lowest accuracies. Moreover, similar results were found by [12] using the same dataset

[2] wherein a 10% drop in accuracy occurred when performing leave one subject out

cross validation rather than including all subjects as training candidates. They also

grouped specific channels together to help produce a more accurate output, as spe-

cific regions of the brain correlate to specific activities and as such specific, spatially

significant EEG signals [15].

It is also important to consider the models’ comparatively high accuracy at cor-

rectly classifying outputs as 0 (resting) rather than 1 (speaking) despite using a com-

pletely balanced training dataset. This further reinforces [14]’s point that stimuli-

based EEG has a higher level of variance between users. As such, an unbalanced

training set that more heavily weighs stimuli-based states could provide higher accu-

racies overall, but when considering the target dataset, English vs. Japanese imagined

speech, both states have stimuli present. Perhaps users imagining their native lan-

guage have less variance than those who are not. It would be prudent to consider

these potential differences in users when it comes to determining how long they should

train using the FPGA. Perhaps having users spend a longer time training with their

non-native language results in higher accuracies, or vice-versa.

3.3 Quantization Results

Another goal of this research is to examine the effects that quantization of the net-

work through multiple facets. The first of which would be converting the network’s

values to various quantized levels. Ideally, in order to conserve the most amount of

utilization of the FPGA, a network consisting of single bit weights would be ideal.
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Chapter 3. Early Network Tuning and Kara One Dataset Findings

However, in practice this could lead to lower accuracies due to the comparatively

lower precision. Figures 3.2, 3.3, and 3.4 already show examples of the effects of

using a ”finalized” network and simply changing their quantization levels through

post-training rounding. Another example with this framework can be seen in Figure

3.5 which uses the same training parameters as the previous examples but with a

3-layer neural network, with each layer fully connected.

Figure 3.5: Testing results when using a pre-trained 3-layer model re-trained via transfer
learning.

Based on these results, it might be assumed that 16 bit fixed-point weights (8 bits

for the integer portion and 8 bits for the fraction) are ”optimal” for this specific model

if solely aiming for the highest accuracy without adding unnecessary utilization. To

better test what levels were optimal, a sweeping run of all possible combinations of

integer and fractional fixed point sizes from 1 to 32 was performed on a 1-layer neural

network. These tests used the same training and testing parameters as those in Figure

15



Chapter 3. Early Network Tuning and Kara One Dataset Findings

3.3 and can be visualized in Figure 3.6.

Figure 3.6: 3D scatter Plot of accuracies as a function of quantization for a 1-layer network.

Since the weights are all between 0 and 1, the integer portion of the weight becomes

irrelevant when it comes to quantization. Despite that, it is also clear that fractional

sizes exponentially drop off in improvements in accuracy as soon as 5 bits or more are

used. This behavior becomes even more profound when using more complex networks,

such as the 3-layer network shown in Figure 3.7.
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Figure 3.7: 2D scatter plot of accuracies as a function of quantization for a 3-layer network.

This plot follows a very similar pattern to that of Figure 3.6 with the main dif-

ference being the scale of the accuracies involved. The 1-layer network appeared to

have peak accuracies around 93%, whereas this one sees accuracies in the 97% range.

It can be assumed a more complex model would have even higher accuracies. Since

the difference in accuracy per plot changes quickly in a short span of bits, it is inter-

esting to note that a 3-layer network sees greater than 90% accuracies at only 3-bit

precision, whereas the 1-layer model needs 4 bits to do so.

3.4 Quantization-Aware Training

When it came to designing the network itself, the decision was made to switch from

MATLAB’s Deep Learning Toolbox to Tensorflow with Python for ease of use with

quantization-aware training. However, MATLAB was still used to prepare any train-

ing data for its ease of use for quickly adjusting various features, window sizes, and

other general meta-level components of the training data. This would then be saved to

a MATLAB .mat file for the Python program to import. Many tests were performed

in Python to determine the optimal fixed point size with regards to assumed utiliza-
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Chapter 3. Early Network Tuning and Kara One Dataset Findings

tion. There were three methodologies performed, standard model quantization, i-bit

quantization, and 1-bit quantization. Standard model quantization means using Ten-

sorflow’s standard training methods and then quantizing the network’s weights after

training is complete. The other two, named i-bit and 1-bit quantization, use Tensor-

flow’s quantization-aware training functionality to train the network. Quantization-

aware training is the practice of training a model to be able to better handle incoming

data that might not be a standard floating point number. For example, 8-bit quan-

tization aware training trains the model to handle incoming data that is 8 bits in

precision. i-bit training, in this case, would be training the model to handle data of

any given i-bit resolution and comparing it against the 1-bit quantization aware and

standard training methods. Figure 3.8 shows the results of training on prompt-based

speech confined to an approximate network size at various fixed point sizes. The

accuracy values shown are also the average of multiple runs.

Figure 3.8: Results of the 3 training methodologies per post-training bit rounding.
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The x axis refers to the resolution of the weights after training by manually chang-

ing them to their respective quantized values. This is true for all three methodolo-

gies, where the only difference between them is the level of awareness of quantization.

The base model takes no quantization awareness into account when training, the 1-

bit model always trains under the awareness it will function with 1-bit resolutions

regardless of the final rounding resolution, and i-bit quantization trains under the

awareness that it is training on bit resolutions equal to the resolution that its weights

will also be rounded to after training. From Figure 3.8, it can be seen that there

are few differences between 1-bit and i-bit quantization aware training. They tend

to have the same average accuracy regardless of post-training rounding, and this also

holds true for a network of half the size as seen in Figure 3.9.

Figure 3.9: Results of the 3 training methodologies per post-training bit rounding.

Another takeaway from these tests is that resolution does not necessarily have a

noticeable effect on the accuracy of the network after a certain point. Moreover, a
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sufficiently large network can have relatively low numbers of hidden neurons without

compromising accuracy. As per Tables 5.5 and 5.7, network sizes above 100 do not

necessarily result in noticeably large increases in accuracy, and small networks with

only 20 neurons are capable of adapting to training data belonging to a single user.

With regards to quantization, it depends on the network with regards to what

training methodology and bit resolution should be used. For a full 32 bit fixed point

implementation, using Tensorflow’s standard training procedure is recommended. For

models that need to use smaller number sizes, such as those below 6 bits, using either

single bit or i-bit training would be recommended. For the purposes of this research,

speed is important, and as such minimizing the number of weights is also important.

i-bit and 1-bit trained models use higher numbers of weights to achieve the same

results as a normal model. With more weights present, the network has to spend

more time computing the addition of each weight and input combination. Thus,

Tensorflow’s standard training was used.
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FPGA and Utilization Results

4.1 FPGA Design

By using a field-programmable gate array (FPGA), the final design would be able to

perform multiple different tasks simultaneously in real time. An FPGA was chosen

due to the ability to easily adjust specific parameters of the design in order to accom-

modate various rapid prototyping configurations. For example, the neural network

would likely go through various iterations, so it would be beneficial to have a gener-

ically scalable design to assist with rapid prototyping. The FPGA initially used a

three-stage approach to handling the input data as seen in Figure 4.1.
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Figure 4.1: RTL diagram of the proposed FPGA layout.

Since one of the goals of this research was to examine the trade-offs between

accuracy, number quantization, and FPGA utilization, relatively small-size FPGAs

are the target for this. Specifically, the Zybo Z7 Zynq-7020 SoC board was used

[16]. This board was chosen for its relatively lower price in conjunction with the

Pmod capability to allow Bluetooth connections. Bluetooth was going to be the

communication medium between the EEG headset, the Emotiv EPOC Flex, and the

FPGA itself. However, many portions of this design had to be changed to allow for a

more software-based approach. The Emotiv series of devices require the use of their

proprietary software in order to obtain raw EEG data from a network data stream,

so the data can not start as being directly sent to the FPGA itself. Figure 4.2 shows

the updated design for the FPGA with these changes in mind.
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Figure 4.2: Updated RTL Diagram of the final FPGA design.

The FPGA design was ultimately performed using RTL simulations to estimate

and observe the effects of changing the network size and quantization levels and the

resulting utilizations of the device. Due to only using the mean as input as well as

using the UART serial port for communication with the Emotiv EPOC Flex (with

a Python program acting as an intermediary), much of the design was moved off of

the digital logic. It was initially hoped to be the case that the Emotiv EPOC X or

Flex could connect to any Bluetooth compatible device, but they have to go between

their proprietary software, the Emotiv Launcher and EmotivPRO. Fortunately, Emo-

tivPRO has a Lab Streaming Layer wherein the raw EEG data can be obtained from

the headset and accessed from multiple devices (as well as other data such as motion

though not used in this research). A Python program is used to communicate with

and interact with this data stream, and it saves the data to a single 1x32 array. For

training, each newly obtained array (at a rate of 128 Hz) is saved as a new line in a

text file including the current language’s corresponding label, 0 for English and 1 for
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Japanese. The labels are determined by the Python program itself when it displays

the language to the user over command prompt. For real-time purposes, the data is

not saved to a file but instead sent over the serial port to the FPGA itself. First, the

Python program must convert each number to a two’s complement string of binary

and then separate the string into separate bytes and send as a packet. This alone cur-

rently takes more than 1/128 of a second to process, meaning the input is delayed and

the Python program must clear the queue from the data stream to get the next real

value, taking even more time. For this reason, the RTL simulation-based approach

will be discussed instead with the hardware approach saved for future work.

4.2 Input Handling

The first stage of the FPGA handles receiving the input from the Emotiv EPOC Flex

device. The device can transmit the EEG data over Bluetooth using 14-bit ADC

signals per channel of a total of 14 channels. Each bit of the ADC corresponds to

0.51µV, so the resolution is limited to steps of 0.51µV. All outputs from the ADC

are unsigned, and the designers report an average DC offset of 4200µV [17], meaning

negative values can be obtained by subtracting the DC offset from the output values.

This can be visualized in Figure 4.3 which shows a theoretical output from the device

as if it were a sine wave.
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Figure 4.3: Fake sine output of the Emotiv EPOC to show the DC offset.

In order to preserve some of the temporal features of the input data, a windowing

system was used. This system allows the FPGA to save data points up to a specified

number of time points. For example, if the Emotiv EPOC Flex outputs data at a

rate of 128 samples per second, this windower segment could use 128 groups of shift

registers all in a row to store a second’s worth of data. However, due to the reliance

on a Python program first, only the theoretical properties of the windower will be

discussed as it was not used in the final design, thought it is still recommended for

designs that are able to directly connect to the EEG-recording device of choice.

By taking the output of each register all at once, this windowed segment of the

data could then be used to compute the various features. For example, a window

of size 128 would allow for 128 different data points, and by taking the average of

those 128 signals, you would essentially have a moving average where the signal at
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the 128th register gets overwritten by the 127th when a new signal reaches the first

register. The FPGA can essentially assume the given window is full of valid signals

at any time. Furthermore, at startup, the values would be initialized to 0, so the

output would almost certainly be incorrect until the window fills. While window size

is one component, another component is what speed the window fills at. A window

that shifts values in every second would likely not produce any meaningful output,

but one that works in smaller ranges should work better. The estimated time spent

for processing in this region is technically just the delay for a single clock period when

accessing the output of the registers, but the accuracy of adding one data point to

any given window of time is likely low. Therefore, a small amount of time for the

window to be filled at startup is necessary. For our method, the FPGA’s CPU needs

to receive 32 inputs times the window size in order to begin sending the averages of

said values. Assuming a 128 Hz sample rate from the headcap, a window of 50 would

fill in (1/128) * 50 seconds, or 0.39 seconds.

4.3 Pre-processing Region

Since the data can be considered to be always available from the previous windower

region, the pre-processing region could operate on its own, getting the output from the

previous stage automatically and assuming it is valid to use to compute the features.

Based on the success found in [2] with their choice of features, a similar feature set

was used in this case. Those features were computed over the given window and

then treated as one data point per feature per channel. Specifically, the features are:

sum, mean, absolute mean, median, sixth power mean, standard deviation, variance,

maximum, absolute maximum, minimum, absolute minimum, delta of maximum and

minimum, sum of maximum and minimum, skewness, and kurtosis seen in Table 4.1.

N is the length of the window, and x is the input signal.

While these features were considered for implementation in the FPGA, software
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Table 4.1: Table of features computed across the window

Feature Equation

sum
∑N

n=1 xn

mean (µ) 1
N

∑N
n=1 xn

sixth power mean µ6

standard deviation (σ)

√∑N
n=1(xn−µ)2

n−1

variance (σ2)
∑N

n=1(xn−µ)2

n−1

skewness E(x−µ3)
σ3

kurtosis E(x−µ4)
σ4

attempts at training on the data found that the presence of more features resulted in

decreases in accuracy as can be seen in Table 5.2 similar to the findings in [2] when

using simpler SVM methods with variable numbers of features present.

4.4 Neural Network Design

The neural network region works in conjunction with the FPGA’s ROM instantiation.

There were two main states that affect the neural network region. The first state is

a simple output compute state. The network takes input from the previous feature

extraction region and computes the output as is. In this case, upon boot, the FPGA

just receives the neural network weights from ROM and computes the output by

summing the products of the inputs and the weights as a standard neural network

would. The estimated delay for this region will be a direct function of the total

amount of weights used. For example, if the network takes all 32 inputs to directly

compute two separate output nodes, the FPGA requires what can be considered to

be 32t, where t is the time taken to calculate the product of an input and weight

added to the running sum of products. Equation 4.1 shows this relationship for a

neural network with L layers and W weights per layer (including the bias weight),

and Figure 4.4 shows an RTL mock up of how a single layer network functions.
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T =
L∑
l

Wl∑
ω

t (4.1)

Figure 4.4: RTL mock up of a single layer neural network.

The weight signals correspond to the weights saved in memory ahead of time.

They will be preloaded and not influenced or driven by anything during runtime. The

input signals are retrieved from the output of the AXI region that gets the values

from the processing unit that communicate with the Python script over UART. Since
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the summation needs to be done sequentially, the estimated time to get an output

is the total time taken for each of an output’s summation to complete. The output

signals would use a thresholded softmax activation function (Equation 4.2) wherein

the signal with the higher value of the two will be chosen as the output.

Output =


output 0, if output 0 ≥ output 1

output 1, otherwise

(4.2)

4.5 Utilization

Assuming the data coming from Python is raw EEG data, the processing unit on

the FPGA uses a C program to compute the moving mean. It uses two arrays

to do so. The first array (1x32) contains the sums of the incoming raw data per

channel while the second array is a 2D array (Nx32) containing the raw EEG values

to subtract from the corresponding channel sum with N being the desired window

size. The subtractions do not occur until the first N number of values come in. At

this point, the program adds the next incoming values to their corresponding sums

while subtracting the first values in the subtraction 2D array. The memory usage of

this program can be estimated to be approximately the size of an integer (4 bytes)

multiplied by 32 and then by N, the size of the desired window. Those values are then

replaced with the newly received values and the pointer moves to the second values

to subtract up until N where they loop back to the first values (time points with a

multiple of N). At this point the program also sends a start signal to the FPGA to

begin accepting incoming data over AXILite. The FPGA then uses a simple state

machine to accept the next 32 signals as input to the neural network portion. The

neural network region generates a generic number of neurons for the input layer and

2 for the output layer. Weights for the network are created ahead of time using

the Tensorflow model’s weights, converting them to the desired fixed point value,
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Table 4.2: Utilizations of the FPGA with respect to the hidden layer size and fixed point
size

Neurons Bits LUTs (%) Registers (%) Muxes (%) Slices (%)

10 32 7774 (14%) 13914 (13%) 1280 (5%) 3849 (33%)
20 32 14618 (27%) 26159 (25%) 2624 (10%) 6984 (60%)
40 32 FAILURE FAILURE FAILURE 12673 (110%)
10 16 3868 (7%) 7124 (7%) 658 (2%) 2592 (22%)
20 16 7393 (14%) 13656 (13%) 1312 (5%) 4646 (40%)
40 16 14141 (27%) 26236 (25%) 2616 (10%) 8404 (73%)
20 4 3124 (6%) 4280 (4%) 184 (1%) 1423 (12%)
40 4 5793 (11%) 7940 (7%) 256 (1%) 2539 (22%)
100 4 13228 (25%) 18919 (18%) 1324 (5%) 7021 (61%)

and writing them out as special arrays of sfixed bus array (named WeightsL1 and

WeightsL2). The general size in bits of this synthesizable ROM is given by Equation

4.3 where L is the size of the hidden layer, I is the number of inputs to the network, X

is the length of the integer portion of the fixed point number, and Y is the fractional

length of the fixed point number. The additions of 1 are to account for the bias

weight.

S = ((X + Y ) ∗ (I + 1) ∗ L) + ((X + Y ) ∗ (L+ 1) ∗ 2) (4.3)

It should be noted, however, that the FPGA may not necessarily synthesize this as

ROM with an S amount of bits. When using Xilinx Vivado, the utilization is reported

as LUTs, registers, multiplexers, and logic slices. Table 4.2 shows the utilization

reported by Xilinx Vivado for different network hidden layer sizes and fixed point

shapes, with Figure 4.5 showing a 3D bar graph of the utilization percentages.
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Figure 4.5: Percentage of utilization for each component type with the X-axis showing
total bit usage per number above and total number of neurons below.

Interestingly, the utilization appears to follow a linear trend with regards to the

size of the network, with only a variation of 1-3%, likely due to larger networks using

the same amount of control lines as a previous size with the only difference then being

more components used to handle the extra weights present. Utilization appears to be

consistent with total number of bits in the system, as the utilizations are very similar

for a 20 neuron network with 32 bit weights compared to a 40 neuron network with

16 bit weights. However, as bit sizes become low, it seems to be the case that the

utilization increases at a larger rate. In this case, there may be too many weights

present to properly partition the logic slices, the consistently largest part of all of

the configurations. Though it is likely to differ to some extent between FPGAs and

synthesization software, we believe this methodology to be effective in predicting the

utilization of any desired network size due to its comparatively linearly comparable

nature.
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Dataset Creation and Results

5.1 Prompt-Based Imagined Speech

The dataset contains 5 subjects, ages 20-25, with 4 male subjects and 1 female subject.

4 of the subjects are native Japanese speakers while one of the male subjects is a

native English speaker. Each user was instructed to read random combinations of

phrases for a total of approximately 8 seconds per combination. The prompts were

displayed via Windows command prompt without any other words presented on the

screen. The prompts presented would be given by switching between English and

Japanese and having the user read one language at a time. For example, a prompt

could be ”Today is very hot, but it seems that it will rain next week.” combined

with ”The supermarket sells bananas, but they do not have blueberries.” with the

Japanese version being a similarly translated version: ”kyou ha totemo atsui kedo,

raishuu ha ame ga furisou” and ”suupaa ha banana wo utteiru kedo, buruuberii ga

nai”. Prompts contained an array of topics in order to more closely mimic natural

speech. By using random combinations of prompts, the user would be more likely

to focus if the given prompts were somewhat randomized. Each user would be given

60 combinations in total, split up as 30 English and 30 Japanese. With a 128 Hz

sampling rate from the Emotiv Flex, this results in approximately 61,440 data points

per user. The decision was made to keep the dataset balanced between English and
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Japanese as they are both considered to be stimuli-based and inherently do not have

balance-related differences between them in the way that the previous dataset did

with regards to the resting and speaking states, with speaking being more varied

between users than resting. The raw EEG data obtained from the each of the 32

channels from all of the 5 subjects can be seen in the MATLAB plot in Figure 5.1.

The vertical lines demarcate changes in subject, and these transitions did not happen

in real time; the plot was created after the experiments were complete. Furthermore,

the downward trend in amplitude is just coincidence, as the 5th subject, the English

native subject, was actually recorded first. Due to them being a potential outlier due

to the language difference, they were chosen to be number 5.

Figure 5.1: EEG Data of all users using the 32 channel Emotiv Flex.

Initially the Emotiv EPOC X was used on the native English speaker subject

for its lightweight practicality and comparatively low setup time. However, when
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Table 5.1: Table comparing the average test accuracies of imagined speech between EPOC
X (15 features) and EPOC Flex (1 feature) for user 5.

EPOC X EPOC Flex

random + no regularization 0.7094 ±0.033 0.9538 ±0.021
random + L1 & L2 regularization of 0.0001 0.7583 ±0.054 0.9962±0.001
prompts + L1 & L2 regularization of 0.0001 0.5940 ±0.051 0.8750±0.043

attempting on the same user with the Emotiv Flex, a 32 channel head cap, the

increase in accuracy ranges from 10-25% depending on methodology over that of the

EPOC X. No other parameters of the training, pre-processing, or data collection

methods were changed, just the device used. Taking this into consideration, it was

decided that the sacrifice in ease of use with the EPOC X was worth it in exchange for

the large increase in accuracy provided by the EPOC Flex. Use of the EPOC Flex

requires more time calibrating and adjusting saline levels of the individual sensors

as well as a higher price for purchasing. Despite this, the increased accuracy was

ultimately considered to be worth more, so subsequent tests were done using the

EPOC Flex. Table 5.1 shows the preliminary results when comparing the two for a

single user.

Random refers to data obtained from having the user imagined completely random

speech whereas prompts refer to speech generated by reading prompts. Based on the

results in Table 5.1, the remaining users would have their data taken using the Flex

for the markedly higher accuracy. Another important result from these early findings

was the feature usage. In both cases, it appears that reducing the amount of features

available generally increases the accuracy incrementally. This is likely due to the other

features introducing or amplifying any noise present in the data whereas the mean

should work to better neutralize it by nature of acting as a low pass filter. A various

assortment of feature combinations and their resulting accuracies for the EPOC X

and EPOC Flex can be seen in Table 5.2 for random sentences for one subject.

The results of Table 5.2 further reinforce the decision to use the EPOC Flex for
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Table 5.2: Table showing the resulting accuracies of various feature combinations.

EPOC X EPOC Flex

Mean Only 0.7137 ±0.039 0.9846 ±0.010
Above + Max + Min + Max/Min Related 0.6368 ±0.020 0.9538 ±0.018
Above + Standard Deviation + Variance 0.5897 ±0.022 0.9077 ±0.014

Skewness & Kurtosis 0.5214 ±0.027 0.3692 ±0.076
All 14 0.5940 ±0.019 0.8923 ±0.034

Raw EEG 0.5024 ±0.041 0.9940 ±0.003

the real-time calculations. Interestingly raw EEG data does not work for the EPOC

X, but it does work considerably well for the EPOC Flex. Fewer features naturally

results in a lower input size and less time spent calculating the pre-processing of the

data. This becomes particularly important when considering the sample rate of the

Epoc Flex, 128 Hz. This only leaves about 7ms to process the input for the network

before the next one is received. With only the mean giving the highest accuracy,

there would be less of a delay going from raw EEG data to a full feature set for the

neural network input. With this information and the decision to use the EPOC Flex,

the dataset was then constructed using the remaining 4 subjects. Henceforth, unless

stated otherwise, neural network training and testing results will be discussed with

regards to the data of all 5 users as opposed to the single user 5 up until now.

Since the mean becomes such an integral part in having an effect on the classi-

fication compared to any other single feature, some further analysis was performed.

Figure 5.2 shows the moving averages for each channel over time for three users, and

Figure 5.3 shows the same time frame but using the combined average of all chan-

nels instead of per channel with the black vertical lines representing changes from

one subject to another. Do note that the English and Japanese plots do no occur

simultaneously, but they were recorded separately from each other and comprise the

same amount of time as each other, so it would be reasonable to show them as if they

occurred simultaneously for the sake of visual comparison.
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Figure 5.2: Comparison of moving average per channel.
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Table 5.3: Table showing the variance per user for the duration of their experiment.

User 1 User 2 User 3 User 4 User 5

1.0426e5 1.3016e4 1.8492e3 3.3944e3 1.9413e4

Figure 5.3: Combined average of moving average for all channels.

The first visually distinct part of the plots is the large variation in structure for

each subject. Despite each subject having wildly different patterns, their average

value is still as expected, 0. Furthermore, this unique variation per subject is also

expected based on the initial findings from Section 3.2 that found that different users

have different reactions to the same stimuli. While the same exact combinations

of prompts were not given to each user, the experiments were done under the same

conditions with combinations from a small set of prompts. Essentially, this further re-

inforces the notion that giving users similar stimuli incurs different reactions between

them. Table 5.3 shows the variance per user.
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Despite the differing variances between users, the model can successfully converge

towards ”successful” accuracies (those over 60%) with multiple numbers of users

present in the training data and variable sizes for the neural network. However, with

higher numbers of users, the training accuracy does not converge towards 100% in

the way that it does for training sets containing a single or two users. This may just

speak to the comparatively large number of training data samples available when

taking a moving average across 60 different 8 second 128Hz samples per person (close

to 300,000 per channel in total). It is possible that such a large number of points

incurs a level of noise too large for the network to adequately adapt to.

When only using the moving mean as a feature, the input to the network then

becomes simply just a moving average over a desired window size per each channel.

Table 5.4 shows the test accuracies across various window sizes and their results. The

EPOC Flex uses a 128 Hz sampling rate, and the EPOC X uses a 256 Hz sampling

rate. The moving average is computed via two different methodologies, named normal

moving mean and stepwise moving mean. The difference and rationale for them is as

follows. Normal moving mean uses MATLAB’s built in movmean() function which

truncates the window at edges and returns the same sized matrix used as the input

to the function. Stepwise moving mean is calculating the mean over a given window

size, but then incrementing the sampling indexes by the window size, rather than by

1. The latter method was considered to encourage more unique data points for the

training data. While normal moving mean technically generates a full set of unique,

discrete data points, two individual points close to each other become very similar.

This could potentially cause the network to train on data too similar to the test data

even after being shuffled around for training purposes and may lead to overfitting.

The test data is typically taken as a random splice of individual indices for the

whole dataset, but the test data used for the moving mean was taken as contiguous

chunks of the dataset to potentially offset issues with test samples being temporally
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Table 5.4: Table showing the effects of various moving window sizes for the Emotiv EPOC
X and Emotiv EPOC Flex for prompt-based speech from user 5.

Window Size Moving Mean Stepwise

10 0.9942 ±0.005 0.8995 ±0.026
20 0.9978 ±0.002 0.8454 ±0.030
50 0.9957 ±0.003 0.6538 ±0.059
100 0.9964 ±0.002 0.6410 ±0.124
200 0.9982 ±0.001 0.4500 ±0.265

Table 5.5: Combinations of subjects and the resulting accuracies amongst themselves and
compared to a new subject.

100 Hidden Neuron Network Test Accuracy Accuracy for a New Subject

Subjects 1-4 0.7842 ±0.010 0.5111 ±0.047
Subjects 1-3 0.7984 ±0.011 0.5130 ±0.032
Subjects 1-2 0.8570 ±0.017 0.4983 ±0.045
Subjects 2-3 0.8443 ±0.013 0.5083 ±0.032
Subject 2 0.8646 ±0.013 0.5101 ±0.039

Subject 2 (20 hidden neurons) 0.7467 ±0.006 0.5264 ±0.028
Subject 2 (1000 hidden neurons) 0.8919 ±0.005 0.4969 ±0.030

close to training samples. Despite this, it appears to be the case that the moving

mean methodology works for any window size below 200 with minimal changes in

test accuracy. On the other hand, very small window sizes work best for the stepwise

method. With sizes this low, it could be possible that using only the raw EEG data

is more effective for training.

5.2 Inter-Personal Uniqueness

As discussed in Section 3.2, the variance between subjects adds a considerably large

hindrance towards reaching successful classification accuracies. In fact, this variance

appears to be so large that the network is unable to properly classify any data from

a user not included in the training set. Table 5.5 shows the differences between

various user combinations and the resulting test accuracies among said users and the

accuracies of the same model tried on a completely separate user.
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Based on these results, it appears to be the case that an individual user presents a

new level of variance that the network is not capable of classifying in any reasonable

manner given that the accuracies all stay very close to random guessing, 0.5. Though

this does not align with the goal of this research, that is not to say it is an entirely

unexpected outcome. As the number of users present in the training set increases, the

accuracy seems to decrease, but it decreases at a rate that also declines with respect

to the number of users present. Perhaps the way to rectify this issue is the addition

of more subjects to the dataset as a whole in order to potentially smooth out the

overall variance through the introduction of more data points. In Table 5.5, the most

potentially promising combinations were those of subjects 2 and 3 tested on subject 4.

They reached a reasonably high test (and train) accuracy of 0.8443, but the accuracy

when testing on subject 4 resulted in 0.5083. The subject 1 and 2 combination

was done to see if combining two separate subjects with highly contrasting levels of

variance from Table 5.3 would be more effective when introducing a new subject, but

that was not the case as the final accuracy for said subject was 0.4983. Based on these

results alone, especially with how low the accuracies are for a new subject, the current

methodology and dataset are not sufficient in creating a system capable of working

immediately for new users. It should also be noted that the test accuracies for all of

these tests were very close to the training accuracies. This could potentially mean the

data itself can not effectively be classified by any manner, and accuracies above 90%

for prompt-based methodologies are out of reach currently. Despite this, accuracies

above 60% are certainly possible when using training and testing data belonging to

all users. In this regard, the dataset can be considered successful, as the introduction

of new subjects to the training set does not necessarily preclude the network from

accurately classifying the output from any of the members in the dataset, regardless

of native language.
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5.3 Random Imagined Speech

Prompts were used in order to demonstrate the potential to reproduce the findings.

However, interesting results were also obtained with regards to having the user ran-

domly create their own imagined sentences. They were instructed to imagine anything

as long as it was done using the language instructed to them. For this case, the users

were instructed to only imagine sentences 10 times for each language. As a result,

these experiments can never be closely replicated, but they can act as a relatively

closer comparison to real-time unscripted usage of the system. The first and poten-

tially most surprising result from these experiments is that random imagined speech

results in generally higher test accuracies than that of prompt-based imagined speech.

Figure 5.4 shows the moving average EEG data for each channel over time.

Figure 5.4: Moving average per channel for random imagined speech over time.

As observed previously, the difference in variance between users continues to be

high, but these variance levels also appear to be relatively consistent to each user

despite being part of a new experiment as shown in Table 5.6.
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Table 5.6: Table showing the variance per user for the duration of their experiment for
random imagined speech.

User 1 User 2 User 3 User 4 User 5

6.3909e3 3.9151e3 2.4194e3 2.2040e3 4.9002e4

Table 5.7: Combinations of subjects and the resulting accuracies amongst themselves and
compared to a new subject for random imagined speech.

Combination (Neurons) Test Accuracy on Set Accuracy for New Subject (% Included)

Subjects 1-5 (1000) 0.8204 ±0.005 N/A
Subjects 1-5 (5000) 0.8141 ±0.003 N/A
Subjects 1-4 (1000) 0.7834 ±0.012 0.6073 ±0.028 (50%)
Subjects 1-4 (1000) 0.7905 ±0.006 0.4463 ±0.032 (25%)
Subjects 1-4 (100) 0.7849 ±0.014 0.5331 ±0.021 (50%)
Subjects 1-4 (100) 0.8167 ±0.008 0.4888 ±0.044 (25%)
Subjects 1-4 (20) 0.6816 ±0.011 0.5331 ±0.051 (50%)
Subjects 1-4 (20) 0.6860 ±0.011 0.4003 ±0.045 (25%)

Subjects 1-3 0.8288 ±0.005 0.4972 ±0.039
Subject 3 0.8714 ±0.010 0.5307 ±0.048

Except for Subject 5, the variances fall within values proportional to those from

Table 5.3, but they are lower for subjects 1, 2, and 4. A few tests were performed to

examine random imagined speech’s ability to classify a brand new subject, similar to

the previous experiment. The results of which can be seen in Table 5.7. A separate

methodology of including some of the new user’s data as part of the training data

via transfer learning after the initial test was performed was also attempted and is

included. However, this does not reach successful accuracies on the target user either.

These were performed using the normal moving mean methodology to prepare

the training data. The first column represents the combinations of subjects used in

the training data as well as the number of neurons in the hidden layer; the second

column represents the accuracy on the test data taken from column 1’s users; and the

third column represents the accuracy on a new user if applicable with the percentage

of said user’s data used in the training data. It can be observed that the accuracy

for a new user can only barely reach above 60% only when taking into account the
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fact that their data is already included in the training set. Of course, the test data

for said user is never included in the training data set. The primary result from this

collection of experiments is that both prompt-based and random speech are inherently

differentiable and able to be properly classified theoretically. However, when trying

to rectify the amount of variance present between users through the use of a general

purpose network, this currently seems to be not feasible.

5.4 Real-Time Results

Ultimately, the current setup does not adequately allow for a real-time implementa-

tion in hardware nor software. For hardware, the Python program spends too much

time to prepare the packets to send over the serial port (which would be 32*4 byte-

sized packets every 7 milliseconds). When taking the headcap output directly from

the Python program and feeding it into the network using Tensorflow’s predict() func-

tion for each sample from the headset, the average time spent per function is 14ms,

unfortunately above the time needed to get the next output from the headcap, which

is approximately 8ms (1/128s). In order to best replicate real-time performance, a

file containing raw EEG data taken at a time separately from when the training data

was used and given to the network along with its corresponding labels through the

Tensorflow evaluate() function.

Test Accuracy refers to the accuracy obtained from data removed from the training

data but still part of the same experiments. Target refers to the number of the user

whose data will be used as the evaluation data. The ”Real-Time” column refers

to accuracies obtained from said user’s data. For each iteration, the training data

contained data from two separate recording sets, with the third recording set (20

prompts per set) used as the ”real-time” evaluation data. Despite being able to

successfully adapt to the two sets for training and testing purposes, the model does

not currently meet successfully accuracy levels for a third set except for barely passing
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Table 5.8: Various results of the ”real-time” approach to evaluating the model.

Users Target Test Accuracy ”Real-Time” Accuracy Notes

1-5 1 0.9095 ±0.029 0.5540 ±0.034 Raw EEG
1-5 2 0.8817 ±0.036 0.5502 ±0.019 Raw EEG
1-5 3 0.8792 ±0.031 0.5347 ±0.013 Raw EEG
1-5 4 0.9063 ±0.030 0.5477 ±0.022 Raw EEG
1-5 5 0.9418 ±0.038 0.5049 ±0.027 Raw EEG
1-5 1 0.9136 ±0.024 0.4915 ±0.036 Moving Mean
1-5 2 0.9546 ±0.024 0.5071 ±0.038 Moving Mean
1-5 3 0.9008 ±0.026 0.4998 ±0.048 Moving Mean
1-5 4 0.9126 ±0.028 0.5447 ±0.017 Moving Mean
1-5 5 0.9465 ±0.021 0.4958 ±0.066 Moving Mean
1 1 0.9520 ±0.009 0.5118 ±0.034 Raw EEG
2 2 0.8279 ±0.020 0.5241 ±0.047 Raw EEG
3 3 0.8549 ±0.008 0.5256 ±0.033 Raw EEG
4 4 0.8516 ±0.009 0.5379 ±0.023 Raw EEG
5 5 0.9316 ±0.018 0.4615 ±0.038 Raw EEG
1 1 0.9411 ±0.019 0.4861 ±0.027 Moving Mean
2 2 0.9896 ±0.003 0.6042 ±0.025 Moving Mean
3 3 0.9893 ±0.006 0.5421 ±0.044 Moving Mean
4 4 0.8970 ±0.011 0.5122 ±0.033 Moving Mean
5 5 0.9980 ±0.002 0.4648 ±0.032 Moving Mean
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in one case for user 2 by reaching above 60% accuracy. There are multiple reasons as

to why this may happen. Perhaps EEG data is truly so unique that it is very difficult

to generalize it for a large sized amount of entirely new data, even if similar stimuli are

being presented to the user. Furthermore, when conducting the experiments, there

is also potential that the users’ moods or level of focus fluctuated throughout. For

training points close to each other temporally, this may not be an issue, but when

considering points temporally far from each other, this evidently becomes a much

larger issue. While training used L1 and L2 regularization values of 0.001, it still

does not seem to be the case that regularization could assist in this case. Visually

looking at Figures 5.2, 5.3, and 5.4 further shows that even when constrained to a

single user, there tends to be a large fluctuation in the values as time progresses,

especially for User 1.
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Conclusion and Future Work

While the desired real-time classification results were not as hoped, there is still much

that can be learned from this research. The first is that EEG data is inherently dif-

ferentiable and classifiable, but it is not a simple task. Despite having very successful

accuracies when training and testing the network on a given dataset, the network

is unable to adapt to any new user or data obtained with from an existing user at

a different time period (even if only approximately 30 seconds separated between

recording sessions). The best way to rectify such an issue would be to record and

include more EEG data as part of the training data. While a network has more suc-

cess in classifying data belonging to the same user used in training data compared

to a training dataset containing all users, theoretically a large enough set of users

balances out this issue to allow for potentially completely generalized models that

do not need to train on a new user. However, unfortunately, this is not yet the case

with this research and this dataset. The dataset does include the specific prompts

given to each user, so those interested may also attempt discrete imagined sentence

classification if desired.

With regards to handling the data in real time, a large change with the device used

may be in order as well. The Emotiv series of devices were initially chosen due to their

ease of use physically for the user, but the proprietary software and data streaming

involved adds extra time needed to either calculate the output in software or prepare
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said output to be sent to an FPGA. Perhaps future work could use a different EEG

measurement device that allows for direct access to the electrodes for the FPGA

to skip the current Python middleman program. Though since a moving mean can

function satisfactorily in predicting the imagined language, perhaps a software-based

approach that calculates a moving mean but does not give the input to the network

every time a new input is received could work as well to potentially mitigate the issue

of adding unnecessary delay in computing the output.

We believe this data to be valuable in creating a model capable of guessing a user’s

imagined language in the future, but there needs to be more data added to it in order

to successfully do so. Since temporality appears to be a big component of the dataset,

perhaps a completely different type of deep learning model aimed more towards tem-

poral data such as an echo state network or long short-term memory network would

be more successful. If the raw values are less important than the trend of the data it-

self, it would stand to reason that a network capable of learning these patterns would

perform better. The current implementation only handles temporality with the use

of a moving average to incorporate values outside of the current time period, but it

might be the case that these values do not hold enough of the information needed to

properly classify said data. Despite this, human imagined language is differentiable

and could certainly some day be used with a sophisticated enough setup to classify

language or potentially even individual words with enough time.
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