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Abstract

Innovations in communication systems, compute hardware, and deep learning algo-

rithms have led to the advancement of smart industry automation. Smart automation

includes industrial sectors such as intelligent warehouse management, smart infras-

tructure for first responders, and smart monitoring systems. Automation aims to

maximize efficiency, safety, and reliability. Autonomous forklifts can significantly in-

crease productivity, reduce safety-related accidents, and improve operation speed to

enhance the efficiency of a warehouse. Forklifts or robotic agents are required to per-

form different tasks such as position estimation, mapping, and dispatching. Each of

the tasks involves different requirements and design constraints. Smart infrastructure

for first responder applications requires robotic agents like Unmanned Aerial Vehicles

(UAVs) to provide situation awareness surrounding an emergency. An immediate and

efficient response to a safety-critical situation is crucial, as a better first response sig-

nificantly impacts the safety and recovery of parties involved. But these UAVs lack

the computational power required to run Deep Neural Networks (DNNs) that are

used to provide the necessary intelligence.

In this dissertation, we focus on two applications in smart industry automation. In

the first part, we target smart warehouse automation for Intelligent Material Handling

(IMH), where we design an accurate and robust Machine Learning (ML) based indoor

localization system for robotic agents working in a warehouse. The localization system

utilizes millimeter-wave (mmWave) wireless sensors to provide feature information

in the form of a radio map which the ML model uses to learn indoor positioning.

In the second part, we target smart infrastructure for first responders, where we

present a computationally efficient adaptive exit strategy in multi-exit Deep Neural

Networks using Deep Reinforcement Learning (DRL). The proposed adaptive exit

strategy provides faster inference time and significantly reduces computations.
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Chapter 1
Introduction

1.1 Smart Industry Automation

With the advent of industry 4.0, many industrial sectors are developing and deploy-

ing new intelligent and smart technologies [6–8]. Studies have shown a significant

increase in investment to further advance the progress in smart automation. A report

published by Statista [9] projected smart industries to have a market size of over

$1.5 trillion by 2025. Companies are investing significantly in smart warehouse man-

agement, smart manufacturing, autonomous vehicles, and smart power grids. With

such technological innovations, sectors such as warehouse management benefit from

an increase in worker productivity and a significant increase in worker safety. Occu-

pational Safety and Health Administration (OSHA) reported approximately 35,000

severe injuries due to forklift accidents each year [10].

Smart automation combines various technologies, including intelligent software

systems, communication infrastructures, and high-performance computation hard-

ware. Smart automation comprises of many different application space including

Internet of Things (IoT) [11,12], Cyber Physical Systems (CPS) [13,14], smart man-

ufacturing [15], intelligent warehouse management [16, 17], and smart cities [6, 18].

Each of them requires different technological innovations based on the requirement

and constraints. Performing various tasks involved in smart automation requires

15



Chapter 1. Introduction

Figure 1.1: Different domains and enabling technologies in Smart Industry automation

information such as scene classification for drone-based applications [19–21], object

recognition and localization in autonomous agents [22–25], and intelligent dispatch

and scheduling in smart warehouse management [26,27]. While the specific informa-

tion may change based on the application, the technological innovations enabling the

growth of industrial automation remain common across many of these industrial sec-

tors. Figure 1.1 illustrates different domains and the technologies required to enable

such innovations.

In particular, technologies that have played dominant role in widespread adoption

of industry automation are robotics [8], deep learning [28], and high speed wireless

systems [29]. Deep neural networks (DNNs) are state-of-the-art for applications that

require extracting information such as object detection, position estimation, and scene

classification. Advancements in robotics have enabled the development of various

critical components that provide autonomy in sectors like intelligent material handling

(IMH) and smart manufacturing [15]. The communication system forms the backbone

for sharing and collaborating information and data among multiple agents working

in an autonomous environment. Sharing of high-fidelity of information can quickly

saturate the communication links. With recent advancements in millimeter-wave

technology, the wireless links can now provide multi-gigabits of data bandwidth [30].

16



Chapter 1. Introduction

In this work, we have considered two major application domains in smart indus-

try automation, warehouse management for intelligent material handling (IMH) and

smart infrastructure for first responders. We consider smart warehouse management

as our application domain in the first part. Smart and automated warehouses have

been a critical focus in industrial automation. Automation in warehouses consists of

advanced communication systems, autonomous navigation, and automation of ma-

chines [31–33]. Precise and robust localization is one of the critical requirements as

it forms the basis for navigating autonomous agents. For indoor localization, wireless

sensor-based approaches are vastly investigated [34] and have been the preferred po-

sitioning approach for indoor environments due to the low cost, easy deployment, and

power efficiency. Here, we address the challenge of providing a robust and highly accu-

rate positioning system for autonomous agents in an indoor environment by designing

a machine learning-based (ML) localization system. The proposed ML localization

system uses wireless features from 60 GHz millimeter-wave communication routers.

In the second part, we consider smart infrastructure for public safety applications.

Applications such as public safety, inspection, and monitoring require using sensor

networks working on mobile or edge devices to provide the relevant information to the

agency. Low compute mobile or local edge devices are often used in such applications.

These applications use UAV-based mobile devices for performing various tasks, in-

cluding situation awareness for first responders [20] and monitoring infrastructure for

buildings [21] and agricultural crops [19]. The challenges and the constraints associ-

ated with these applications are the low compute capability on mobile devices that run

computationally heavy DNNs. To address the challenges and provide the required

intelligence on low compute devices, we present the design and implementation of

multi-exit DNNs with a Deep Q Network-based adaptive exit strategy. The proposed

adaptive exit strategy provides faster inference speed and low energy consumption.

17



Chapter 1. Introduction

1.2 Thesis Contribution

The major contributions of this dissertation are summarized below:

• Machine learning and kalman filter integrated wireless localization:

– We present design of an indoor warehouse localization system using con-

sumer grade off-the-shelf 60 GHz wireless routers. For this, we use Signal-

to-Noise-Ratio (SNR) as a feature from consumer-grade wireless Access

Points (APs) in Machine Learning based localization algorithm.

– We present an approach to deal with the missing wireless feature informa-

tion from the APs during the training and inference of the ML models. The

consumer-grade APs can lose connectivity intermittently, which can cause

severe performance degradation. This approach to imputation is made by

modeling the SNR characteristics using the collected dataset and further

augmenting it with synthetic data.

• DQN based adaptive exit selection in multi-exit DNNs:

– We propose a DQN based adaptive exit selection in multi-exit DNNs to op-

timize exit selection in multi-exit DNNs. The DQN network is first trained

to learn an exit policy utilizing history of state information. The state in-

formation includes accuracy, inference latency, previous exit decision, and

image complexity. History of recent frames is used to exploit the temporal

and spatial correlation in input images, resulting in a more accurate and

robust exit selection.

– We implement an image complexity approach to quantify the complexity

associated with an input image. The complexity is computed based on the

minimum number of points required to represent all contours present in

18



Chapter 1. Introduction

an input image. Utilizing complexity the DQN provides a more adaptive

exit strategy for sequentially time and space dependent frames.

1.3 Dissertation Organization

This Dissertation is organized into five chapters. Brief information about each chapter

is mentioned below:

• Introduction Here, we introduce the motivation behind the work that has

been performed toward completing this thesis. Then, it states the contribution

of this dissertation and dissertation organization.

• Background and Related Work In this chapter, we explain the background

and review the related work for wireless localization, multi-exit DNNs, and deep

reinforcement learning.

• Millimeter-wave Indoor Localization using Machine Learning In this

chapter, we describe the different components involved in the proposed local-

ization model along with the detailed experimental evaluation in a warehouse

environment.

• Adaptive Exit Selection using DQN in Multi-Exit Networks In this

chapter, we discuss the design and architecture of proposed adaptive exit strat-

egy in multi-exit DNNs. Then we provide a detailed experimental evaluation of

the proposed system using three different classes of multi-exit DNNs.

• Future Work : Here we describe the future directions the work can be ex-

tended.

19



Chapter 2
Background and Related Work

In this chapter, we discuss the background and review the related work in indoor

wireless localization, multi-exit deep neural networks, and deep reinforcement learn-

ing.

2.1 Wireless Localization

Different wireless sensors such as Wi-Fi [35], Bluetooth [36], and RFID [37] have been

investigated for indoor localization. But, due to higher coverage, ease of deployment,

and ability to provide communication and localization simultaneously, Wi-Fi-based

approaches are more popular. Millimeter-wave frequencies ranging between 30 GHz to

300 GHz, particularly in the unlicensed 60 GHz spectrum, allow higher data rates of

multi-gigabit-per-second, making them suitable for many applications requiring high-

speed wireless data rates such as robot navigation [8], smart cities [6], and medical

applications [38]. Hence, for such applications, it is suitable to utilize the mmWave

technology for providing the communication infrastructure.

For localization in indoor environments such as warehouses, wireless approaches

are vastly investigated [34,35,39,40] and have been the preferred positioning approach

for the indoor environments due to the low cost, easy deployment, and power effi-

ciency. Wireless sensor-based localization techniques can be broadly classified into

two technologies. The first technique uses the channel propagation model to esti-
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Chapter 2. Background and Related Work

Table 2.1: Performance comparison with different sensor based localization techniques

Sensor Accuracy Advantages Disadvantages

GPS Around 10m Low cost sensor Poor performance in indoor environment
Camera [43] Mean error of 0.75m Low cost sensor Needs well illuminated environment

LiDAR SLAM [44] 0.07m to 0.03m RMSE High Accuracy High computation cost

mate the distance to the receiver, also known as the Client, using the wireless signal

strength information. Then using the known locations of the Access Points (APs),

trilateration is used to predict the Client’s location.

In channel model based localization approaches [41], the known wireless channel

model is used to estimate the distance between the sender and the receiver node. The

sender transmits the signal and suffers from signal degradation. Using the known

channel model, we can estimate the distance based on the strength of the signal

received at the receiver. The farther the receiver is from the sender, the more degra-

dation will occur, and the lower the received signal strength at the receiver. Wireless

channels are vulnerable to shadowing, atmospheric effects, and attenuation due to ma-

terials [42]. So, such effects must be considered while estimating the channel model,

making channel estimation a non-trivial task.

The second technique estimates the Client’s position by matching the known wire-

less signal strength from the APs. This is done by collecting the signal strength in-

formation at many locations within the environment and then using it as a matching

database. This technique is known as wireless fingerprinting. In [45], the authors

present a moving average based k-Nearest neighbor approach for fingerprint-based

wireless localization. The accuracy achieved by their system is low.

Authors in [46, 47] designed support vector regression for localization using the

received signal strength indicator (RSSI) fingerprinting as input features. Authors

in [48] utilize a Deep Reinforcement Learning (DRL) framework for indoor localiza-

tion using Bluetooth devices. The idea is to mitigate the data collection step for
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Chapter 2. Background and Related Work

training the ML model and use reinforcement learning algorithms to learn the loca-

tion predictions. Their approach results in low accuracy with a Root Mean Square

Error (RMSE) of 12.2m. In [49] authors used mmWave routers in an indoor office

environment and have shown a high accuracy of 98.8%. But their approach was eval-

uated in a small-scale environment with seven locations used for the training and

testing.

Table 2.1 summarizes the localization techniques using different sensor modali-

ties: Global Positioning System (GPS), Light Detection and Ranging (LiDAR), and

vision. Using these sensors, SLAM-based localization approach is applied. LiDAR

and vision-based approaches are computationally expensive as the data generated

is either a point cloud of all the distances or video streams from hi-fidelity cameras.

SLAM approaches typically use a particle filter and an algorithm like Adaptive Monte

Carlo Localization AMCL [50] to estimate the robot’s position. So, high-performance

devices such as Graphics Processing Units (GPUs) are needed on the agent to sup-

port localization. Also, adding high-performance hardware becomes a constraint if

the agent has a small form factor like UAVs.

2.2 Multi-Exit Deep Neural Networks

DNNs are getting deeper to improve network performance [51–53]. With deeper

network architectures, the total number of computations increases, which results in

higher inference time. Multi-exit DNNs modify the traditional end-to-end DNNs by

introducing additional intermediate classification output layers [2, 3, 54, 55]. Inter-

mediate exits allow the input samples to utilize these exits and reduce the inference

time latency and computation cost. The multi-exit approach estimates if the learned

feature representation in earlier layers provides sufficient information for the network

to make high-accuracy predictions for an input.

Figure 2.1 shows an architecture of multi-exit DNN with multiple intermediate
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Figure 2.1: Multi-exit DNN with threshold based exit strategy during inference

exits using a threshold-based exit selection. An exit layer can also include additional

convolutional and fully connected layers. Whether an exit is selected depends on

the exit selection strategy employed. The exit strategy affects the performance that

multi-exit DNNs can achieve. The intermediate exits, in a way, represent the decision

boundary learned. With earlier exits, the exits learn decision boundaries capable

of classifying easier samples correctly but will miss-classify the complex samples,

as shown in Fig. 2.2. But with later exits in the network, a more complex decision

boundary is learned and capable of correctly classifying hard samples. BranchyNet [2],

EENet [54], Early-Bert [3], and SkipNet [55] are current state-of-the-art multi-exit

DNN approaches that are discussed next.

BranchyNet: BranchyNet [2] utilizes a entropy-based threshold for exit selec-

tion. During training, the loss from all the exits is computed and the final loss is a

weighted sum of all the losses. The loss formulation is shown in (2.1).

LBranchyNet =
∑
j=N

wjLj (2.1)
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Figure 2.2: Classification of samples with multiple exits in multi-exit DNNs [1]

Where LBranchyNet is the net loss considering all the exit branches in multi-exit

DNN. Lj is the loss from input to exit branch j. Further, wj is the weight associated

with different exit branches.

During inference, the network computes the entropy at each exit and compares it

with a user-defined threshold. The input sample classifies using the selected exit if

the threshold is met. The threshold comparison for each exit happens sequentially,

starting from the first exit location to the last classification output layer. Figure 2.3

illustrates the entropy computation at an exit in BranchyNet. The softmax output is

used to compute the entropy. The computed entropy value is compared against the

selected threshold for exit selection.

EENet: EENet [54] also follows the threshold-based exit selection, where the

threshold confidence is measured using a sigmoid function. At each exit, confidence

is computed by taking the last fully-connected layer at the output and using another

fully-connected layer with a single output node. The output is then passed through

a sigmoid function to get the exit confidence. Threshold values are then selected for
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Figure 2.3: Entropy based threshold presented in BranchyNet [2]

exit selection during testing. The approach is similar to BranchyNet, where entropy

is used for the exit confidence.

Early Exit Bert: Authors in [3] introduce the idea of a patience-based adaptive

early exit in the Bidirectional Encoder Representations from Transformers (BERT)

language model. BERT model contains several deep layers and billions of network pa-

rameters, making them computationally expensive for many hardware devices. Their

approach uses an entropy-based threshold at exits as presented in BranchyNet [2]

along with a patience window, where an exit is selected if the prediction at exits

is unchanged during the patience window. Figure 2.4 shows the design of such an

approach, where an exit is selected if the prediction is unchanged for two successive

exits. This work’s main contribution is improving network accuracy by reducing the

likelihood of miss-predictions at exits. In early exit BERT, the loss function used

during the training is the weighted of loss over number of exits, as shown in (2.2) [3].

Lexit−bert =

∑
j=N Lj∑
j=N j

(2.2)
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Figure 2.4: Patience based adaptive exit selection in BERT [3]. The exit is only selected
if the prediction remain unchanged during the patience window.

SkipNet: SkipNet [55] modifies the residual networks and uses gating layers

between the sequential layers. The addition of gating layers makes the skipping deci-

sion for the network. The skipping problem is a sequential decision-making process

that combines supervised learning and reinforcement learning. The SkipNet [55] uses

a gating function to decide if the network should skip or execute the gate. They use

the RL approach to learn the task of gate skipping, where the reward is given based

on the cost associated with executing the layer, including the gate. The approach is

limited to only resent-based architectures, and authors do not show the application

to other DNN architectures such as CNNs [51], and MobileNet [52].

Other commonly employed network optimization techniques include weight quan-

tization [56, 57]. While our work focuses on multi-exit DNNs without network quan-
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tization, we can utilize quantization techniques as presented in [56, 57] to design the

multi-exit DNNs along with adaptive exit selection to further improve the energy

efficiency.

2.3 Deep Reinforcement Learning

Supervised machine learning and deep learning algorithms use static dataset and

corresponding output labels during the training process. The data provided is in-

dependent of each other in time and also referred as independent and identically

distributed (iid). Reinforcement learning (RL) is a form of unsupervised learning

approach, where the learning algorithm, commonly called as an agent, interacts with

the environment, with which it receives the input observations or state (St) and per-

forms an action (At) and receives a scalar reward value (Rt). Based on the action,

the environment produces a new set of state for the agent. The idea being, the agent

learns by interacting with the environment and receiving reward values based on the

predicted actions, this introduces the notion of a feedback loop in the learning pro-

cess. The goal of the RL algorithm is to maximize the cumulative received reward

during the training process. This is also known as reward hypothesis in reinforcement

learning.

The data used during the training is non-iid as the data input in the next time-step

will be dependent on the agent’s action to the previous time-step input. In traditional

Q-table based RL, the learning algorithm uses a table, known as Q-table, to record

the mapping between the state and action. Once the algorithm is trained, then the

learned Q-table can be used as a look up table to output the desired action based on

the state, we use the action and state pair to index the table and select the action for

which we expect the maximum Q-value. Where the Q-value represents the expected

future reward for the action given the state, mathematically can be written as (2.3).

Where, γ is called the discount rate, and the value is less than one. It gives more
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weight to the rewards which are closer to current time step and diminishing reward

value to distant future rewards. It also helps to bound the infinite series sum of to

be finite. We use Bellman equation for updating the Q(st, at) during the learning

process as described in (2.4).

Q(st, at) = E[Rt+1 + γRt+2 + γ2Rt+3...|st, at] (2.3)

Q̂(st, at) = α[R(s, a) + γmaxQ(ŝ, â)−Q(s, a)] (2.4)

The Q-table based RL algorithm is non-scalable to higher dimensional input space

and further suffers if the learning problem is complex in nature. So, instead of using

a look-up table, Deep Reinforcement Learning (DRL) utilizes neural networks to

approximate the mapping between the states and actions to overcome the issues and

challenges of increasing state space that is seen in RL.

DRL has been used in wide variety of research and tasks in the past few years [58]

as they not only improve the scalability but have also been proven to be more robust

in learning complex behaviors [58–60]. Deep Q Networks (DQNs) are type of DRL

where, instead of using a lookup based Q-table, we use a deep neural network (DNN).

Then for a given input state, the DNN will approximate the different Q-values for

each action. Here, the input is the state and the outputs are the Q-values for different

actions.

In DQN, we formulate a loss function and use gradient descent algorithm to update

the neural network parameters, as shown in (2.5). We use Temporal Difference (TD)

loss in DQN that uses the Q estimates and the Q-Target. Q-Target is estimated using

the Bellman equation. The Q-Target is computed as the sum of immediate reward

and the discounted maximum Q-value for the next state, this is shown in (2.6). The

future rewards computed are considered to be discounted by using a discount factor,
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γ.

L(θ) = 1/N
∑
i=N

(Q(st, at, θ)− Q̂(st, at, θ))
2 (2.5)

Q̂ = R(st, at) + γmaxatQ(ŝt, ât, θ) (2.6)

Additionally, during the training, a replay memory is also used to learn from the

previous experience. This helps in reducing the dependence on the current sequential

state. With experience replay we store the previously seen information and use it in

the agent’s learning multiple times. During the training, the DQN agent model learns

to select actions that maximizes the cumulative discounted reward by interacting with

the environment. The future rewards computed are considered to be discounted by

using a discount factor, γ.

Deep reinforcement learning techniques have shown that complex problems can

use the experience-based learning and produce state-of-the-art results in wide variety

of fields. Authors in [58] designed a DQN algorithm for playing atari games by using a

DQN agent with three convolutional layer blocks. The results showed state-of-the-art

performance on seven different atari games. Authors in [59] uses the approach of DQN

network for Cloud Service Providers (CSP) resource management and achieved high

energy efficiency and low runtime with faster convergence. Work in [61] presented a

DRL approach for robot motion for autonomous navigation with the ability to move

within crowded space with human like speed and performing motions like crossing,

passing and overtaking.
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3.1 Introduction

An accurate and cost-effective indoor positioning system is one of the major require-

ments for automation in the next generation industrial revolution, Industry 4.0, and

beyond. Smart and automated warehouses have been a key focus in industrial devel-

opment, which includes advanced communication systems, autonomous navigation,

and automation of machines [31–33]. One of the preliminary requirements for the

agent is to localize itself within the environment with high accuracy for coordina-

tion and carrying out tasks. Localization requires information from various kinds

of sensors. Sensors such as LiDAR, vision and wireless are most commonly used

for localization [43, 44, 62, 63]. Precise and robust localization is one of the critical

requirements in such tasks as it forms the basis of robot navigation.

Many wireless-based localization techniques use trilateration and triangulation

[41] for position estimation. Line-of-Sight (LoS) between the client and the Access

Points (APs) is a requirement for these techniques. Due to LoS requirements, such

techniques are not efficient for providing accurate indoor positioning as they lack LoS

due to obstacles, moving components, and shelf partitions. Indoor wireless channels

at high frequencies are more vulnerable to shadowing, atmospheric effects, and high

attenuation due to materials [42]. So, such effects need to be considered while estimat-
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ing the channel model, making radio channel estimation a non-trivial task. Further,

high reflectivity and scattering from obstacles and the poor diffraction and penetra-

tion of mmWaves are the main factors preventing the reuse of known log-normal path

loss models typically used for existing sub-6 GHz for high frequencies like 60GHz [64].

Additionally, the movement of workers, robots, and machinery inside the industrial

building can affect the signal strength of wireless sensors significantly [65]. As a result,

the wireless channel can become time-variant, which introduces more challenges in

channel modeling [66,67]. Based on these challenges, fingerprinting-based approaches

for wireless localization [34,68] are more suited for indoor environments.

Millimeter-wave channel in an indoor environment suffers from multi-path propa-

gation [69]. To model the wireless channel, detailed knowledge of the electromagnetic

characteristics from all scatters is required. Such modeling of indoor wave propa-

gation at 60 GHz is non-trivial and involves custom hardware design. For this, the

mmWave equipment used in our approach are the consumer-grade routers capable of

communicating at 60 GHz frequency. Such consumer hardware is designed to com-

municate and provide coarse-grained channel state information due to cost-effective

antenna array design [70].

In this work, we propose to use mmWave based wireless technology for wireless

fingerprinting using Machine Learning (ML). We further enhance the localization

performance of the mmWave system by integrating the ML prediction with a Kalman

Filter (KF), KF-Loc. The ML model estimates static 2D position of the robot using

the wireless features from 60 GHz mmWave routers. The sensor features within the

complex indoor warehouse environment are susceptible to loss of connection due to

shadowing effects and obstruction due to objects and shelves. This can result in the

loss of position information of the robot, especially when the robot is in motion. ML

models are trained using static data and alone cannot learn the robot’s dynamics

during motion. Further, the ML output is susceptible to misprediction due to the
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agent’s motion. KF is designed and integrated with the ML model to overcome these

challenges. The KF learns the motion of the agent and combines it with the ML

output to provide highly accurate and smooth run-time tracking of the agent.

3.2 Contribution

The contributions of the proposed work are summarized as follows:

• Machine learning based wireless localization: We design an indoor

warehouse localization system using consumer-grade off-the-shelf 60 GHz wire-

less routers. For this, we use Signal-to-Noise-Ratio (SNR) as a feature from

consumer-grade wireless Access Points (APs) to create a radio map of the ware-

house. The features from the radio map are used to train the ML model to

learn the location estimation of an agent.

• Date imputation and synthetic data augmentation: We introduce a

method to deal with the missing feature information from the APs during the

training and inference of the ML models, as consumer-grade APs can lose con-

nectivity intermittently, which can cause severe performance degradation. This

approach to imputation is made by modeling the SNR characteristics using the

collected dataset and further augmenting it with synthetic data.

• Kalman filter design for run-time tracking: ML models are trained using

static data and cannot learn the robot dynamics during motion. Due to the

robot’s motion, the ML output is susceptible to run-time mispredictions. KF is

designed and integrated with the ML model to overcome these challenges. KF

learns the motion behavior of the robot and combines it with the ML position

output to provide highly accurate and smooth run-time tracking of the robot.
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3.3 Proposed mmWave Localization Architecture

We present our mmWave-based localization system, KF-Loc, for an indoor warehouse

environment. Our localization approach uses multi-level ML models to estimate the

location of the agent in the warehouse environment accurately. Figure 3.1 depicts the

warehouse layout with the two aisles used in designing and evaluating the localization

system. Within the two aisles, we have 68 distinct locations where we collect the

SNR features. In our framework, we design a two-level ML approach for the location

estimation where the first ML model performs the aisle level classification and the

second ML model takes the signal information to regress the agent’s position within

the classified aisle.

The output from both the ML models are combined to estimate the position in

the 2-dimension (2D) space. In our work, the agent moves in a single dimension,

going down the aisle. This is realistic in many practical warehouses for autonomous

forklifts where only one forklift is allowed to move in a single aisle at any given time in

a unidirectional motion [33]. This is preferred as many tasks, including dispatching

and path planning within the warehouse, aim to minimize the traffic and reduce

collision for enhanced safety.

Wireless features used for location estimation are Signal-to-Noise Ratio (SNR)

values from APs as captured by the client. The client, for communication purposes,

only selects the AP with the highest signal strength. We enable the client to capture

all available SNR signals by writing in-house firmware modification scripts. To build

the dataset, we collect SNR features within the two aisles of the warehouse. The

ML model uses the dataset to train network parameters during training stage. The

wireless features are susceptible to obstacles and suffer from multipath reflections

which can cause loss of connectivity with the receiver, which adds to the feature

unreliability [69]. To overcome the before-mentioned negative impact on performance,
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Figure 3.1: Warehouse layout with two aisles used as the testbed for system evaluation.
The blue dots indicates the ground truth locations.

we introduce mean imputation and synthetic data generation technique as a pre-

processing step. The details on data augmentation is presented in Section 3.3.3.

The localization system is divided into two different phases: an offline learning

phase and an online inference phase. The framework is shown in Fig. 3.2. In the

offline phase, first, the radio map of the warehouse is generated, then data imputation

is performed to address the missing signal information in the radio map. The pre-

processed radio map is then augmented with synthetic data to enhance the training

and the robustness of the ML models. The training of ML models is performed in

this phase. The trained ML models are deployed on the robotic agent during the
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Figure 3.2: Implemented localization framework shows the two phases, the offline and the
online phase. The offline phase is used during the training and the online phase for the
run-time inference.

inference phase. The ML models are combined in a multi-level structure to provide

the location estimate of the robot. In the following sections, we will discuss the design

and working of each component in detail.

3.3.1 Access Points Deployment in the Warehouse

The APs used in our system are the 60 GHz TP-Link AD7200 wireless routers [71]. We

selected these routers as they were the only available 60 GHz consumer-grade routers

at the time of our experimentation. Figure 3.1 shows the placement of the APs on the

warehouse’s ceiling as the top view. The APs are mounted on the warehouse ceiling

along the edges of the aisle in a zig-zag arrangement. This particular placement of

APs is used to maximize wireless signal coverage within the aisle. Figure 3.3 shows

the robotic agent with a 60 GHz router configured in the client mode. The routers
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Figure 3.3: 60 GHz router configured as client on an robotic agent used in our work.

are configured in AP mode by default. Configuring the routers in client mode is done

by flashing the router by the firmware provided by [70]. Also, as shown in Fig. 3.1,

the total length of an aisle used in our experimental setup is 20.11 meters (66 feet),

and we have placed five APs within the aisle.

3.3.2 Data Collection Process

To build the fingerprinting dataset, we collect the radio features within the two aisles

in a functioning warehouse. Our training dataset is collected across different days

and working hours in the warehouse. At each location, the client is programmed to

scan for the SNR features from all available APs. This is done by interfacing the 60

GHz router in the client mode and then interfacing it with a computation unit that

is present on the robotic agent. This additional step was required as, at the time of

development, the laptop used for computation did not have a 60 GHz network card.

Next, the scan of the APs is done multiple times for each location within the aisles.
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The rationale behind collecting data across multiple days and scans is to capture the

random variations in the wireless signals across time and space. This routine makes

the training data more feature-rich and significantly helps the ML models generalize

with high accuracy to unseen data during the test time. During the offline phase,

we pre-process the collected data to significantly improve the performance of the ML

models and details of which are discussed next.

3.3.3 Wireless Data Augmentation

Many image-based data augmentation techniques are widely employed for ML appli-

cations such as image classification, object detection, and object recognition. These

data augmentation techniques include image rotation, random cropping, and image

color channel variations. The augmentation is performed for two primary reasons:

first, to increase the size of the training dataset without physically collecting more

data, which can save a significant amount of data collection time. Second, to increase

the robustness of the ML models on unseen test data as it has been shown to dras-

tically improve the learning capabilities of neural networks. But most of the data

augmentation techniques used are for image-based datasets [72]. In our design, the

features are the wireless SNR information and not image pixels, so the data augmen-

tation techniques designed for images cannot be used on the wireless features.

In our approach, during the data collection, the client may be unable to capture

the SNR information from all available APs. This is due to the interference and the

shadowing effect that can occur with the high-frequency radio signals. Further, there

can be situations when the SNR information from the sectors are missing, which we

also observe while analyzing the collected dataset. The missing sector information and

APs are inconsistent, and this can cause our model to not generalize for unseen test

data. To overcome the missing SNR information, which can significantly impact the

performance, we perform a mean imputation for each missing feature in the training
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Figure 3.4: Detailed system architecture used during the offline training of the ML models.

dataset as a pre-processing step before we train the ML model.

For data augmentation, we present an approach to generate a synthetic SNR

dataset by utilizing the SNR values from the APs. SNR estimation in communication

systems with Additive White Gaussian Noise (AWGN) channel has been well studied

in literature [73,74]. In our mmWave hardware, the SNR measurements are extracted

using the software patch provided by [70]. In our collected dataset, we observe the

SNR density distribution as shown in Fig. 3.5, where we plot the density of sector SNR

from an AP. To validate the Gaussian distribution of SNR measurements we perform

the Anderson-Darling Test (ADT) [75–77]. The Anderson-Darling normality test is

widely used to check if the input data samples follow the normal density distribution.

In ADT [78], the hypothesis that the data belong to Gaussian distribution is rejected
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Figure 3.5: SNR feature density distribution using the collected dataset inside the ware-
house

if the computed test statistics is greater than the critical value at 5% significance

level. Based on the experiment, for the SNR density as shown in Fig. 3.5, the test

statistics is found to be 0.47, which is below the critical value of 0.70 at 5% significance

level. As the test statistics value is lower, we conclude that it fails to reject the null

hypothesis. Using this we assume the Gaussian distribution for the SNR features. A

similar approach is also used for synthetic augmentation work using angle-of arrival

data for mmWave [77]. Where wireless features used in the localization system are

augmented with synthetic data after performing the ADT normality test.

We model the mean of SNR value from an AP j for sector i, µj
i,k, and standard

deviation σj
i,k from the collected dataset at location k. In this way we artificially

create a new synthetic dataset which help reduce the data collection time that can

be fairly significant for large warehouses. Next, after performing the imputation and

synthetic data generation, we augment the on-site imputed data with the synthetic

data. This enables us to improve the learning capability of the ML models and
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Figure 3.6: Output data from Imputation Unit that is used for mean substitution for the
missing SNR features in the collected dataset

the robustness of the trained models when performing the test-time inference. The

process is also illustrated in Figure 3.4, where the Imputation Unit (IU) extracts the

mean and performs the imputation for the missing sector information on the collected

dataset. Figure 3.6 shows the output data from the IU. Here, the missing SNR values

are imputed based on the mean value of individual features at each location. The

Synthetic Data Unit (SDU) extracts the features’ mean and standard deviation from

the raw dataset and creates another set of synthetic datasets. The Aggregation Unit

(AU) combines the raw and synthetic datasets to create the final training dataset,

which is used for training the ML localization models. Next, we will discuss the design

of the different ML models used in our localization system.
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Figure 3.7: Test time inference framework for localization that is used during the online
phase.

3.4 Multi-level Machine Learning for Localization

The task of the localization algorithm is to learn the complex wireless features from

the 60 GHz APs as a function of distance with the mobile client with high accu-

racy and robustness. We implement a multi-level ML-based localization system to

achieve high localization accuracy within the aisles and a robust learning algorithm.

In the first level, we perform the aisle level classification within the warehouse, which

makes our implemented system scalable to many aisles. Within the aisles, we ob-

tain coarse-level information regarding the agent’s position, and we can easily learn

the relationship of the features as a function of aisles with high accuracy. The next

level of ML learning is the regression-based approach, where the ML model learns

the position in a 2D space. The regression model outputs a continuous valued posi-
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tion coordinates of the agent within the aisle. The models are trained independently

during the offline training phase.

During the inference phase, the predictions from ML classification and the ML

regression are combined together as a post-processing stage, then based on the aisle

level information from the ML classifier the X-position of the agent is adjusted. The

Y-position information from the ML regression remains unchanged. The inference

setup is illustrated in Fig. 3.7 where at the run-time the instantaneous SNR signal

values from the APs are observed at the client at every time step the agent is in

motion, then the SNR data is pre-processed by the IU, this is done at the inference

time as the models are trained on the augmented data, so ML models expects the

consistent and same data structure during the inference phase. The IU is very light

in terms of the computational complexity as it only receives the instantaneous SNR

values and impute them with the saved mean information.

For both ML models, the input dimension is a vector of 360 features denoted by

Xfet, where Xfet = { x0, ... , x359}. Where, xn represents the SNR value from APs.

The output for the classification is an integer value for all the locations the data was

collected during the data collection routine. In our setup we have 68 distinct locations

and each row in the dataset will have one of the location as the output. In case of the

regression, the output is a 2D vector representing the X and Y-position of the agent.

Next, we discuss the design of the ML classification and the ML regression models

used for localization.

3.4.1 ML Classification

The first level in our localization system is the aisle-level location estimation of the

agent within the warehouse. In this level, the ML classification model is trained on

the collected radio dataset as described in Section 3.3.2. We define different aisles as

distinct class labels to train the ML classification model. With this, we aim to achieve
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the aisle-level position estimation of the agent, providing us with the agent’s coarse-

level location. The ML regression model then uses the aisle level position information

to predict the agent’s location in 2-D space more accurately. The output depends

on the number of aisles in the warehouse. Next, we will discuss the ML regression

approach toward multi-level learning.

3.4.2 ML Regression

After the design of the ML classification for estimating the aisle level positioning,

we design the ML regression model for providing the continuous position estimates

within the aisle. The regression approach uses the outputs as the 2D coordinates of

the agent within the warehouse. Here the outputs are the continuous values with two

output heads as shown in Fig. 3.4. Similar to the ML classification model, we train

the model with the same input data after augmentation. The ML regression performs

the fine-tuning of the agent position within an aisle. In the final localization system,

we use the aisle level information from the ML classification model to locate the aisle

where the agent is in and then use the Y-position information from the ML regression

model to narrow down the agent’s position within the aisle.

3.5 Kalman Filter Design

Kalman filter estimates the state of a robot based on the prediction-update cycle. KF

is a linear recursive estimator that minimizes the mean square error of the estimated

parameters. In our design, we use KF to track the agent’s position in a 2D space

within a warehouse. The input to the KF is the noisy position output from the ML

localization system, i.e., (x,y) coordinates of the robot. The KF filters the noisy

coordinates to generate a more accurate 2D tracking. First, the KF is initialized by

setting up the various parameters. This includes the setup of the 60 GHz sensor’s

noise covariance matrix (R) and measurement matrix (H), along with the initialization
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of the robot’s state vector (x), state transition matrix (F), and covariance matrix (P).

We assume the process covariance (Q) to be zero as we perform a constant velocity-

based linear tracking of the robot.

In the first step, the KF performs the prediction of the robot’s state and error

covariance for the next time step, and this is represented using (1), (2). Where

B and u represent the control input matrix and control vector due to the external

and internal forces. In the next step, KF performs the update process where it

updates the previously predicted state and covariance estimate based on the received

measurements. This is shown mathematically by (6), and (7). During the prediction

stage, the position uncertainty of the robot increases, as no information is gained

during this stage. While during the update step, we gain information through the

sensor measurements and we become more certain regarding the robot position.

x̂k = Fxk−1 +Buk−1 (3.1)

P̂k = FPk−1F
T +Q (3.2)

y = zk −Hx̂k (3.3)

S = HP̂kH
T +R (3.4)

K = P̂kH
TS−1 (3.5)

xk = x̂k +Ky (3.6)

Pk = (1−KH)P̂k (3.7)

KF considers the position probability of the robot to be a Gaussian probability

density function (PDF) which can be characterized by the mean and the standard

deviation. The process starts by initializing the belief of the robot at the start time.

For this, we take in our initial estimation output from the ML model. Next, using

a motion model for the system, which is a constant velocity model in our design, we
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estimate the location of the robot in the next time step. During the update cycle of

KF, after the time step has elapsed, we obtain the measurement reading from the ML

model and update our previously predicted belief of the robot state. It is to note that

the belief of the robot position, i.e., the state and the measurements, are modeled as

Gaussian PDF.

Multiple estimates from various localization sources can be fused together to fur-

ther improve the localization performance with the Kalman Filter. Fusion of different

localization systems is also referred to as sensor fusion [79,80]. In this work, we only

utilize mmWave router as a localization sensor without sensor fusion.

3.6 Experimental Analysis

In this section, we will discuss the performance of our implemented ML-based local-

ization system. For our testbed, we have used a working warehouse [81]. Inside the

warehouse, we have selected two different aisles where we deploy 10 APs on the ceil-

ing, as shown in Fig. 3.1, in a zig-zag placement. For APs and clients, we have used

60 GHz TP-Link AD7200 routers. During the data collection, we collected the train-

ing data within the two aisles by moving the agent 0.609m (2 feet) in the y-dimension

of the aisle and keeping the x-dimension fixed. We have 68 distinct positions where

we collect the data for the two aisles. We perform the wireless scan at each location

10 times at the client. For both the aisles, we collect two different training datasets.

The datasets are collected within multiple days to capture the temporal variation of

the wireless communication links.

The training dataset used by ML localization models consists of 1340 samples

corresponding to 68 GT locations. For testing, we use a separate dataset consisting

of 680 samples. For Kalman Filter evaluation, we consider one data point at each

of the GT location from the test dataset within the two aisles. Where, assuming

constant velocity model for the agent each of the data point is considered one time

45



Chapter 3. Millimeter-wave Indoor Localization using Machine Learning

Figure 3.8: Color coded SNR radio map of a single warehouse aisle recorded at different
locations

step unit apart. Further, in our evaluation, we have considered different kinds of

ML models for both classification and regression. For classification, we have selected

K-Nearest Neighbor (KNN), Support Vector Machine (SVM) and Multi-Layer Per-

ceptron (MLP). For ML regression, we have used Support Vector regression (SVR),

Linear regression (LR) and MLP.

3.6.1 Performance With Imputation and Augmentation

In our KF-Loc system, we perform imputation and synthetic data augmentation

during the offline training phase as discussed in Section 3.3.3. Here, we compare the

performance between the different ML models trained with and without synthetic data

augmentation. Figure 3.8 illustrates the SNR radio map recorded at the warehouse

during the data collection process. The figure shows the raw data collected without

mean imputation. The color coding indicates the varying SNR intensity at different

locations as seen on the client from all APs. The red color indicated that no data

was recorded at the client and we term them as missing SNR values.

We see significant performance improvement after performing data augmentation
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Table 3.1: ML regression model performance with data augmentation

ML Model Configuration Augmentation
With Without

LR Linear (0.51m, 2.60m) (0.58m, 2.84m)
SVR Polynomial Kernel (0.71m, 2.17m) (0.48m, 2.33m)
MLP 200, 200, 200 (0.19m, 0.92m) (0.27m, 1.54m)

and imputation processing on training dataset. For ML regression models, Table 3.1

shows the performance comparison between different regression models trained with

and without data augmentation. MLP regression model achieves significant perfor-

mance improvement, with RMSE of 0.19m and 0.92m in X-and Y position respec-

tively. This shows 29.3% and 40.25% improvement when compared with the RMSE

performance without data augmentation based training. For the other two regression

models, LR and SVR, performance improvement of 8.4% and 6.8% is achieved in Y-

position respectively. This improvement in performance is seen due to robust training

of the ML models with the synthetic data augmentation and mean imputation.

Table 3.2, represents performance comparison between different ML classification

models trained with and without data augmentation. Performance improvement is

seen for the MLP and SVM classification models. For our optimized SVM classifica-

tion model performance improved from 95.70% to 99.55% which shows the significance

of the data augmentation based training process. Overall, the data augmentation ap-

proach that is introduced in our localization system benefits both regression and

classification based ML models.

3.6.2 Multi-Level Localization System

Here, we analyze the ML classification and regression models used in the presented

localization system. For both classification and regression models, we evaluate and

compare performance of different types of ML models. Next, we integrate the KF

47



Chapter 3. Millimeter-wave Indoor Localization using Machine Learning

with the multi ML localization model, where the static estimates are used to perform

dynamic run-time tracking.

3.6.2.1 ML classification analysis

We design an ML classification model to predict the aisle level position estimate.

For this, we train and test different classification-based ML models. We evaluate the

performance of three different ML classification models, KNN , SVM, and MLP. These

three are selected as they represent varying complexity and network architectures.

KNN estimates the position by considering the K closest input features. SVM works

by selecting a hyperplane such that the margin around the plane is maximized to

separate the data points for different classes. Kernels are used to map input features

into higher dimensional space. The MLP model consists of fully connected layers.

MLP is more complex than SVMs as they can learn a large number of parameters for

input with very high dimensions.

Table 3.3 represent the performance evaluation of the three ML classification mod-

els on the test dataset. We see all three models achieve high classification accuracy.

The high classification accuracy is achieved as the position information at the aisle

level is the coarse-level localization problem, and the features learned by the ML

models are able to provide high confidence mapping between the aisle position and

the wireless features.

Table 3.2: ML classification model performance with data augmentation

ML Model Augmentation
With Without

KNN 98.37% 98.37%
SVM 99.55% 95.70%
MLP 99.25% 97.47%
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Table 3.3: Performance comparison with different ML classification models

Model Configuration Accuracy Precision Recall F1 score

SVM RBF, C=20 99.55% 1.0 1.0 1.0
KNN K=3 98.37% 0.98 0.98 0.98
MLP 50 99.25% 0.99 0.99 0.99
MLP 100,100 98.10% 0.98 0.98 0.98

KNN, a simple complexity ML model, can achieve 98.37% classification accuracy,

and the MLP achieves an accuracy of 99.27%. Compared to MLP and KNN, SVM

achieves the highest classification accuracy of 99.55% and achieves better precision,

recall, and F1-score than the other two models. Due to the high performance achieved

by the SVM for providing aisle-level position estimates, we use SVM as our ML

classification model in localization architecture. Next, we discuss the design of the

ML regression model that estimates the 2D position of the agent within the aisle.

3.6.2.2 ML regression analysis

Here, we present the analysis of the ML regression model used in our localization

architecture. The regression-based learning estimates the real-valued continuous out-

put in 2D space, compared to discrete class labels in the classification. Here, we train

and evaluate different regression models to select the best performing ML regression

model. For this, we trained and evaluated three types of ML regression models.

Table 3.4 illustrates the performance of the three ML regression models. The LR

model has poor performance with a Y-position Root Mean Square Error (RMSE) of

2.6m. It shows that using LR, a simple and less complex learning model, the complex

behavior of the 60 GHz wireless features cannot be learned with high confidence and

requires more complex learning models. In comparison, SVR and MLP both perform

with high accuracy. An MLP-based regression model with three hidden layers of 200

neurons each achieves the highest accuracy of 0.92m in Y-position and 0.19m in X-
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Table 3.4: Performance comparison with different ML regression models

Model Configuration RMSE-X RMSE-Y

LR Linear Model 0.51m 2.60m
SVR Polynomial kernel 0.71m 2.17m
MLP 200, 200, 200 0.19m 0.92m

position. The MLP also achieves the lowest median error of 0.26m compared to the

SVR and LR regression models. Figure 3.9 shows the localization error performance

using the Cumulative Distribution Function (CDF) plot, where the three different

regression models are compared. From the plot we obtain lowest median error of

0.26m for MLP.

Table 3.5, shows the optimization process used to obtain the best performing

ML regression model. Here, we have changed the MLP configuration by varying the

number of hidden layers, the number of neurons in each hidden layer, and the learning

rate. The parameters and hyperparameters tuning is required during the optimization

of ML models. The performance of the optimized model achieves test RMSE of

0.19m and 0.925m in X-and Y-position, respectively. The model also achieves a Mean

Absolute Error (MAE) of 0.47m, hence achieving the centimeter-level localization

accuracy within the warehouse aisles.

We also consider the fourth metric that shows the performance for achieving less

than meter level accuracy. The optimized model outperforms all other configurations

by achieving 97.03% estimation with error less than 1m. We have considered a total

of 674 test cases to evaluate this percentage. Based on these performance metrics,

we have selected the three hidden layer MLP model with 200 neurons each as our

ML regression model for the localization system. From Table 3.5, we also observe

that when we go for deeper models with more than three hidden layers, the model’s

accuracy decreases compared to our optimized model. This is expected as the number

of learning parameters increases significantly when we go towards deeper ML models.
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Figure 3.9: Localization performance for different ML regression models using cumulative
density function. The optimized MLP achieves median error of 0.26m

The model shows overfitting for the deeper models and underfitting for the shallow

models. Figure 3.10 shows the position output of ML regression model in the two test

aisles. It can be seen that the estimated locations are very close to the actual location.

The estimation in X-position shows scattering between the two aisles. This is expected

as here we are predicting continuous valued output with very low resolution along the

X dimension. Further, in the final system we use the ML classification output to

represent the X-position of the agent and use the Y-position from the output of ML

regression model.
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Table 3.5: MLP regression optimization

Configuration Activation RMSE-X (m) RMSE-Y (m) MAE-Y (m) Error-Y < 1m

50 ReLu 0.43 1.77 1.29 59.94%
200 ReLu 0.36 1.57 1.13 86.20%

100, 100 ReLu 0.21 1.03 0.60 93.32%
200, 200 ReLu 0.23 1.27 0.69 90.36%

100, 100, 100 ReLu 0.22 1.02 0.56 94.36%
200, 200, 200 ReLu 0.19 0.92 0.47 97.03%

100, 100, 100, 100 ReLu 0.19 1.05 0.50 95.25%
200, 200, 200, 200 ReLu 0.20 1.21 0.56 94.21%

Figure 3.10: Scatter plot between actual and predicted position by optimized MLP re-
gression in two aisle
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Figure 3.11: Comparison of y-position between KF-Loc and ML model in aisle-1

Figure 3.12: Comparison of y-position between KF-Loc and ML model in aisle-2
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Figure 3.13: Comparison of x-position between KF-Loc and ML model in aisle-1

Figure 3.14: Comparison of x-position between KF-Loc and ML model in aisle-2
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3.6.3 Kalman Filter Integrated Tracking

Here, we integrate the KF system with the ML localization models. We define the

robot state as a three-dimension vector defining the position in the 2D Cartesian co-

ordinate frame and its velocity in the y-dimension. The covariance matrix, P, is a 3x3

matrix initialized with very high uncertainty for velocity. The measurement matrix,

H, is a 2x3 matrix, initialized with 1 for the position, and the measurement covari-

ance, R, is a 2x2 matrix initialized with values 0.01. The ML output is integrated

with the KF to provide the 2D tracking.

Figures 3.11 and 3.12 show the performance comparison between the KF-Loc, in

green, and ML model, in red, tracking in y-position for aisle-1 and aisle-2 respectively.

The GT position is shown in blue for both figures. It can be seen that the ML model

produces fluctuations in the position estimates as the robot moves along the aisles.

The fluctuations are due to the mispredictions by the ML model. These mispredictions

are caused by the signal fluctuations at the client due to the robot’s motion, resulting

from shadowing effects, and obstructions between the client and the APs [69].

Similarly, Figs. 3.13 and 3.14 shows the position estimates of the robot along the

X-position within the aisle. Similar fluctuations are seen due to the dynamic motion

of the robot, causing mispredictions in the position estimation by the ML model. For

location estimation in both dimensions, the KF-Loc system provides much smoother

localization and tracking performance. This is seen as the KF can filter and smooth

out the raw position estimation from the ML model and capture the robot’s dynamic

motion by estimating its velocity. This is where the KF provides powerful integration

with the ML model by estimating the robot’s dynamic state variable, in our case,

the velocity, without explicitly being provided with velocity output from the robot.

Thereby providing a more robust and reliable run-time motion tracking.

The performance of KF-Loc is compared with the ML model-based localization

system by measuring the robot’s Root Mean Square Error (RMSE) in both the aisles.
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Figure 3.15: Error comparison between KF-Loc and ML model in both the aisles

Figure 3.15 plots the robot’s RMSE in Y-position for aisle-1 and aisle-2. With KF

integration, a 28.5% and 54.3% reduction in RMSE is achieved compared to ML-based

localization systems in aisle-1 and aisle-2, respectively. Also, for both the aisles, KF-

Loc achieves centimeter-level localization accuracy with RMSE of 0.35m and 0.37m,

respectively.

3.7 Comparison with Different Localization Approaches

For detailed evaluation, we compare the performance of our proposed KF-Loc with

different wireless-based localization approaches. Table 3.6 compares our work with

many different state-of-the-art approaches to wireless localization systems using mil-

limeter wave and sub 5GHz features. Work presented in [82–84] uses lower 2.4GHz

frequency and provides localization using K-nearest neighbor [82], artificial neural

network (ANN) [83], and fingerprinting matching [84] based approaches. The per-

formance achieved with these approaches shows sub-meter level accuracy. Further,

work presented in [24, 70, 85, 86] utilized mmWave frequencies varying from 28GHz

to 60GHz. They achieve meter-level positioning accuracy, and all the approaches are

static estimations and are susceptible to high errors during run-time tracking in the
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Table 3.6: Performance comparison with different wireless based localization techniques

Work Wireless Frequency Environment Methodology Performance

Bahl [82] RF-based 2.4 GHz Indoor KNN 2m-3m
Laoudias [83] WiFi 2.4 GHz Indoor ANN Mean error of 3.4m
Yang [84] WiFi 2.4 GHz Indoor WiFi Fingerprinting Mean error of 5.88m
Kanhere [85] mmWave 28 GHz Indoor Fusion of AoA and received power Mean error of 1.86m
Kanhere [85] mmWave 28 GHz Outdoor Fusion of AoA and received power Mean error of 34m
Bielsa [70] mmWave 60 GHz Indoor Particle filter Median error of 1.1m to 1.4m
Wei [86] mmWave 60 GHz Outdoor DoA based WKNN fingerprint Mean error 1.32m
Walaa [87] mmWave 28 GHz Outdoor Different ML models MAE of 3m-33m
Li [88] WiFi 5 GHz Indoor Particle Swarm Optimization Median error 1.5m
Vashist [24] mmWave 60 GHz Indoor MLP fingerprint RMSE 0.84m
Our work mmWave 60 GHz Indoor KF and ML integrated RMSE of 0.35m and 0.37m

MAE of 0.47m
Median error of 0.26m

event of mispredictions. These mispredictions occur due to the multipath effects in

higher frequencies.

Authors in [87] experiment with a simulation-based environment using a 28 GHz

based fingerprinting approach and evaluated the performance using 13 different ML

models. They achieve meter-level accuracy for different ML models in an outdoor

simulation environment. Further, the results are simulation based and not evaluated

on a real testbed. Li [88] uses 5GHz WiFi based location estimation using Particle

Swarm Optimization (PSO) approach. They report a median positioning error of

1.5m. Work done by authors in [88] utilizes an office space as their experiment

testbed. The work lacked discussions regarding how their system will perform in a

more complex dynamic environment like a warehouse. Our approach utilizes dynamic

learning by integrating KF with the ML position estimation. As a result, we achieve

significant improvement in performance with 0.35m and 0.37m RMSE compared to

all mentioned approaches using sub-5GHz or millimeter-wave frequencies as shown

in Fig. 3.15. The figure further illustrates the error accumulation that can occur in

location estimation models that only produce static estimates and how our KF-Loc

can significantly reduce the negative impact of miss-predictions caused by the ML

models.
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Figure 3.16: Robustness performance of KF-Loc system with baseline ML model for re-
gression

3.8 Robustness with Data Augmentation

Here we compare the performance of the KF-Loc system with the ML localization

model trained without data augmentation and KF integration. The ML model is the

same MLP that we use in the KF-Loc. To evaluate the robustness performance, we

randomly switch off data corresponding to APs, introducing missing or corrupt wire-

less signals in the test dataset, capturing the scenario where APs can lose connection

with the client. Figure 3.16 illustrates the performance where the x-axis represents

the number of missing APs, and the y-axis shows the corresponding RMSE in the

y-dimension.

We see the KF-Loc system maintains a lower positioning error compared to the

ML-based system, with RMSE of 1.98m and 2.93m, respectively. The significant

decrease in performance for ML-based systems is due to the low robustness of the

trained model. In comparison, KF-Loc maintains high tolerance to signal fluctuations

due to the augmentation-based training. Data augmentation makes the localization
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Figure 3.17: Robustness performance of KF-Loc system with baseline ML model for clas-
sification

system highly robust against random fluctuations and loss of connectivity with the

wireless signals. Such scenarios are common in real-world deployment using ML-based

localization systems, and the ability to generalize with high robustness is a critical

requirement. Figure 3.17 shows the robustness with the ML classification model

used in the KF-Loc. We again observe the high robustness compared to the ML

classification model trained without the data augmentation. The KF-Loc maintains

the high classification accuracy of 97% with four AP dropouts, while the accuracy of

the ML model decreases to 50%. Such robustness performance analysis is missing in

related state-of-the-art localization models presented in Table 3.6.
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3.9 Conclusion

We present the design and implementation of a robust localization system, KF-Loc,

for indoor warehouses using 60 GHz routers. We introduce the use of the consumer-

grade 60 GHz wireless routers for providing high accuracy localization performance

using off-the-shelf mmWave routers. In our system, complex mmWave features are

learned by a multi-level ML models, providing static position estimations of the robot.

The aisle level position is provided by a ML classification model and the position of

the agent within the aisle is provided by the ML regression model. Kalman filter is

designed to improve the ML estimation error during the robot motion. KF improves

the motion tracking of the robot by removing the fluctuations due to mispredictions

in ML output. ML models are susceptible to fluctuations in input features causing

severe performance degradation. To address robustness, we present a data imputation

and augmentation for wireless features. Our results show for the worst case AP

dropout, KF-Loc achieves 1.4X less degradation in localization performance. To test

the practicality of our system, we deploy and test our system within two aisles in a

functional warehouse. KF-Loc achieves centimeter-level accuracy in our test setup of

two aisles with RMSE of 0.35m and 0.37m, respectively. Further, when compared with

the static ML localization system, our proposed system shows significant performance

improvement by achieving 28.5% and 54.3% improvement in RMSE error for the two

test aisles.

3.10 Chapter Summary

Increasing demand of industrial automation has led towards the next generation of in-

dustrial revolution, Industry 4.0. For warehouse management, intelligent automation

robots are required to perform various tasks like monitoring, scheduling and dispatch-

ing. One of the most fundamental and critical challenge for such autonomous robots
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is the task of location estimation within the warehouse. In this work, millimeter-wave

based indoor localization system is designed that can provide the position estimates

at centimeter-level accuracy and with low cost. The localization system uses multi-

layer perceptron based neural network to learn the complex wireless features in an

indoor environment. The localization system is further integrated with a kalman filter

to provide dynamic run-time location estimations. Our proposed localization system

achieves median error of 0.26m and compared to state-of-the-art wireless localization

systems, achieves significant performance improvement.
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Adaptive Exit selection using DQN in Multi-Exit Networks

4.1 Introduction

An immediate and efficient response to a critical safety incident is crucial, as a better

first response significantly impacts the safety and recovery of parties involved in the

emergency. These include Emergency Medical Services (EMS), firefighters, and other

law enforcement agencies. Such smart infrastructure requires technology that can

provide intelligent and meaningful information regarding the situation [89]. With

the recent advances in Artificial Intelligence (AI) targeting Deep Neural Networks

(DNNs) for recognition, detection, and classification [52, 90–92], situation awareness

systems can utilize such algorithms for their application. However, these networks

consist of millions of parameters, as it has been seen that increasing the depth and

complexity of DNNs has resulted in state-of-the-art performances. Table 4.1 shows

the computation cost associated with commonly used DNNs. We see that the number

of computations for a simpler CNN-based classification network like AlexNet is around

727M for each input image.

For the applications targeting first responder intelligence, drones or Unmanned

Aerial Vehicles (UAVs) are commonly deployed to the scene of an incident and relay

the critical data via different onboard sensors back to the desired agencies [18,89,95].

These UAVs lack the computation capability of running DNNs that are computa-
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Table 4.1: computation cost (FLOPs) in commonly used DNNs

Network Task Input size Computations (FLOPs)

AlexNet [51] Classification 227x227 727M

ResNet-18 [52] Classification 224x224 2G

SSD [93] Detection 300 x 300 1G

Faster-RCNN [94] Detection 600 x 850 172G

tionally expensive. Such DNNs are not practical for the internet of things (IoT)

applications, and there is a need to develop DNNs that can be executed on compu-

tation and battery-constrained devices. Different techniques have been proposed and

investigated in recent years.

Many approaches have been proposed in the literature to overcome the computa-

tion and energy challenges by targeting reduction in DNN parameters [2,3,96]. Work

in [96] selects different DNNs based on the bandwidth requirements and minimizes

the computation by selecting a network with fewer parameters when necessary. The

approach is not scalable as all network models need to be stored on the hardware,

increasing memory utilization. More efficient approaches proposed network parti-

tioning, where an earlier part of the network is used to make a prediction based on

the difficulty of the input image. Such networks are broadly classified as multi-exit

DNNs [2,3,54,97], where intermediate classification nodes are introduced along with

a final output layer. Works in [2, 54] propose a threshold-based exit selection where

a hand-crafted threshold is used to determine an exit. The reduction in the num-

ber of parameters and computation is achieved if the input sample takes an earlier

exit, resulting in faster predictions and energy-efficient computations. While these ap-

proaches benefit the computationally constrained devices, the threshold-based exit se-

lection strategy employed in these networks performs sub-optimally. The sub-optimal

behavior is due to the hand-crafted thresholds.

Other solutions to network optimizations include network pruning, and quantiza-
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tion [98–100]. Approaches explored in [101] use Network Architecture Search (NAS)

to optimize the DNN for the specific hardware platform. In contrast, multi-exit opti-

mization provides several benefits as it does not focus on specific hardware platforms

and can be easily generalized for any platform. In multi-exit DNN, intermediate clas-

sification exit locations are introduced, allowing the input to exit early during the

inference. In our work, we design an adaptive exit strategy for multi-exit DNNs that

results in faster inference time and reductions in computations.

4.2 Contribution

The main contributions of the proposed work are summarized as follows:

• Lightweight threshold-based exit strategy: We present a lightweight thresh-

old based exit strategy for multi-exit DNNs utilizing the maximum probability

output at exits. During inference, thresholds at each exit are compared against

the probability confidence to perform the exit selection.

• Adaptive exit strategy for optimal exit selection in multi-exit DNNs:

We propose a DQN-based adaptive exit selection in multi-exit DNNs to optimize

exit selection in multi-exit DNNs. The DQN agent is first trained to learn an exit

policy utilizing the history of state information. The state information is a tuple

that includes accuracy, inference latency, exit decision, and image complexity.

History of recent frames is used to exploit the temporal and spatial correlation

in input images, resulting in a more accurate and robust exit selection.

• Image complexity aware DQN-Agent: We propose and implement an im-

age complexity approach to quantify the complexity associated with input im-

ages. The complexity is computed based on the minimum number of points

required to represent all contours present in an input image.
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• Evaluation on wide classes of DNNs: The proposed adaptive exit selection

network is extensively evaluated using three classes of DNNs, namely, AlexNet

[51], MobileNet [53], and ResNet34 [52] representing varying complexity and

different CNN architectures. For evaluation, we have used a widely employed

CIFAR-10 [5] image classification dataset.
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4.3 Probability Based Exit Selection in Multi-Exit DNNs

In threshold-based multi-exit DNNs, exit selection is performed by sequentially com-

paring threshold values at each exit. BranchyNet [2] uses the entropy of the softmax

distribution as a measure of exit confidence. While EENet [54] utilizes sigmoid-based

confidence at exits. In both the approaches, the computed confidence is compared

against user defined threshold for performing exit selection. Our approach presents

a new threshold-based exit strategy, which utilizes the maximum probability value

produced at the exit as exit confidence. The final layer at each exit in multi-exit

DNN uses a softmax function that outputs a vector representing the likelihood of

each class and can also be interpreted as a probability distribution corresponding to

all possible output classes. We formulate the confidence as the value corresponding to

the maximum probability value in the distribution, which is then compared against

the threshold for exit selection.

Figure 4.1a shows the network during training. We follow the training process as

used in previous multi-exit DNNs [2,54]. The exit selection does not take part during

the training. After the network is trained, using the test data, the thresholds are set

at each of the exits. The testing process is shown in Fig. 4.1b. We sequentially iterate

through all the exits, then for the exit we extract the maximum probability value.

The threshold is then used to check if confidence satisfies the threshold criteria, if not,

then we move to the next exit. Compared to BranchyNet [2], our approach is more

lightweight as we don’t perform any additional entropy computation to compute the

confidence measure and directly extract the maximum confidence from the output

information as provided by the multi-exit DNNs.
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(a) Multi-exit DNN during the training process, the thresholds are not used at exits for exit selection.

(b) Multi-exit DNN during the testing (inference) process. The thresholds for exit selection are
used at exits for exit selection using maximum probability as the confidence.

Figure 4.1: Threshold-based exit strategy in multi-exit DNN with probability based con-
fidence
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4.4 Drawbacks of Threshold-based Exit Selection

Threshold-based exit strategies suffer from three main drawbacks. Variations in

threshold values affect the performance achieved by multi-exit DNNs. As the thresh-

olds are not learned during the training, variations in threshold values significantly

impact the performance of multi-exit DNNs. With hand-crafted thresholds, it be-

comes a difficult task to determine thresholds for each exit. For a higher selected

threshold, we allow more samples to take the exit resulting in faster inference. But

this can also result in degradation of classification accuracy as more samples with less

confidence also take the exit.

The second drawback is the process used for selection of the threshold values.

In threshold-based approaches, the test dataset is used after the training, and the

thresholds at each exit are individually adjusted experimentally until the desired

performance is achieved. This introduces a high bias towards the test dataset, which

is not a preferred approach in machine learning.

Finally, the confidence used at an exit is another design choice that multi-exit

DNNs need to make. BranchyNet [2] presented the use of entropy for the confidence

measure. Work in EENet [54] proposed a sigmoid-based confidence approach, where a

sigmoid function is used to compute the confidence. Early-exit BERT [3] utilized the

entropy confidence similar to BranchyNet. Our threshold-based approach considers

the maximum probability value in the softmax output vector as the confidence criteria.

Based on our evaluation, we have seen, given the test dataset, changing the thresholds

at exits results in achieving similar performance for different confidence measures.

To address the above shortcomings and drawbacks in threshold-based multi-exit

DNNs, we propose designing a novel adaptive exit strategy for multi-exit DNNs using

reward-based reinforcement learning. In this approach, the exit selection is considered

a separate learning task, and we use a Deep Q Network to learn an optimal exit policy.
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After an exit policy is learned, then during testing, the DQN agent provides the exit

decision, and the multi-exit DNN takes the provided exit for the given input image.

With this, we eliminate the need to use hand-crafted thresholds. In the next section,

we present the design and work of a novel adaptive exit strategy in detail.

4.5 DQN-based Adaptive Exit Selection

In this section, we present our proposed adaptive exit selection strategy. Figure 4.2

illustrates the architecture for adaptive exit selection. Here, the system consists of

two main components: the DQN network, DQN-Exit, which is used to learn an exit

policy, and the environment, which includes a pre-trained multi-exit DNN. In our

approach, the DQN is first trained to learn the adaptive exit policy by interacting

with the environment in a reward-based learning manner. During training, the DQN

makes an exit decision which the multi-exit DNN uses to produce an output prediction

by taking the exit provided by DQN. The environment produces an output prediction,

an input state, and a reward value. The DQN uses the state and the reward value to

learn the exit policy. During testing, the trained DQN model provides run-time exit

selection in multi-exit DNN.

Designing a DQN-based system requires several design considerations, including

DQN architecture, training environment, and reward formulation. In the following

sections, we will discuss each component associated with our network architecture in

detail.

4.5.1 Design of Multi-Exit DNN

Our approach utilizes BranchyNet [2] to implement the baseline multi-exit DNNs.

This is done as BranchyNet is one of the state-of-the-art threshold-based multi-exit

approaches. An implementation using such an approach is shown in Fig. 4.3, where a

multi-exit DNN consists of multiple convolution blocks with intermediate exit nodes.
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Figure 4.2: DQN based adaptive exit selection in multi-exit DNN. The thresholds are
eliminated and DQN is used to learn the exit strategy

The exits have a linear layer with output neurons equal to the number of classes in

the dataset and a softmax function to calculate the likelihood of each class. They can

also be interpreted as a probability distribution, pk, as shown in (4.1).

pk =
efk∑
j e

fj
(4.1)

Where, fk represents the output of kth exit layer. During inference, at each exit

after softmax layer, entropy is computed as a measure of exit confidence and compared

against selected threshold to perform exit selection. The entropy computation is

performed as shown in (4.2).

entropy(y) = −
∑
C

yclog yc (4.2)

Where, yc represent the probability corresponding to class c. The trained multi-

exit DNN is used as part of the DQN environment providing the required state and

reward information to the DQN-Exit Agent as shown in Fig 4.2. Next, we present

the computation of the image complexity that is used to enhance the adaptive exit
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Figure 4.3: Threshold-based multi-exit DNN with threshold based exit strategy

selection strategy.

4.5.2 Image Complexity Model

Deep neural networks utilize multiple intermediate layers to learn different abstrac-

tions of image features. The initial layers learn the basic structures in an image,

including simple lines and basic shapes. The middle and last layers learn more high-

level semantics present in images [102]. In our approach, we learn an exit selection

strategy that, based on feature complexity, selects if earlier layers are enough to pro-

vide high accuracy classification or if we need later layers to classify the image accu-

rately. We present a contour detection-based feature extraction technique to capture

the information representing complexity associated with an input image. The DQN

utilizes complexity as part of its input state.

Contour extraction is performed using the contour chain approximation tech-

nique [103]. The approach is widely used in image segmentation, background ex-

traction, and object detection applications. A contour with more unpredictability

requires significantly more points than a contour with less unpredictability. The com-
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Figure 4.4: Comparing various images using complexity analysis

plexity information is extracted by first detecting all the contours present in an image

and then performing the cumulative sum of the total number of points required to

represent the detected contours. The extracted value is then used by the DQN-Exit,

representing the complexity associated with an image. We compute the complexity

as sum the all the points captured during the process and the computation can be

represented as (4.3).

complexity =
nC∑
i=1

getPoints(Contouri) (4.3)

Where, nC represents total number of contours found in the image, and getPoints

computes the number of points required to represent a contour.

In Fig. 4.4 we perform the complexity computation on three different images rep-

resenting same object class. Visually we can observe the silhouette (leftmost image)

fish image will represent the least complex image compared to the other two fish im-

ages. We observe the same behavior using the complexity approach where we obtain

complexity values of 310, 482, and 1016 going from leftmost image to the rightmost

image. We utilize the complexity information in the form of state for the DQN-Exit

agent. The objective of the agent is to learn an optimal policy resulting in reduction
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of computation cost by selecting an earlier exist for images that can be classified

using intermediate exits. Further, to exploit the spatial and temporal correlation

between sequential images, as similar images will have complexity value with fewer

variations, it provides the necessary information to the DQN-Exit while learning the

exit strategy.

4.5.3 DQN for Adaptive Exit Selection

We implement the exit selection using a DQN network and keep the multi-exit DNN

only for image classification. Threshold approaches use multi-exit DNN to perform

both image classification and exit selection. At the same time, these approaches do not

provide additional features to learn an exit selection strategy effectively. This results

in an inefficient exit selection in multi-exit DNNs. To overcome these shortcomings,

we design a DRL-based DQN network that uses additional feature information and

learns an optimal exit selection policy. With the separation of exit selection and clas-

sification networks, we maintain the high classification accuracy by only performing

the classification tasks using multi-exit DNN and exit selection using the DQN agent.

Figure 4.2 illustrates the proposed system architecture for adaptive exit selection

in multi-exit DNNs. The system consists of an environment model and an agent

network. In our implementation, the DQN network consists of two fully connected

hidden layers. The output dimension equals the total number of exits present in

the multi-exit DNN. The environment is responsible for providing input state and

feedback as a reward to the DQN-Exit.

DQN-Agent: The DQN network consists of two fully connected hidden layers.

This architecture is considered based on the characteristics of the input features used

for the DQN network. We don’t use a CNN-based neural network as the DQN in our

system uses a small vector of input features compared to the high feature dimension

of images. In our design, the DQN agent is referred to as DQN-Exit. One of the input
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to the DQN-Exit during the training is the state that comprises of accuracy, inference

latency, and image complexity. The DQN-Exit learns a value function approximation

between the different Q-values, Q(st, at, θ), where st represents the state at time t, at

is the action output, and θ represents the network parameters. The Q-function is a

state-action value pair that estimates the expected sum of rewards when taking action

at from a state st. In DQN-Exit, the dimension of the output layer will correspond

to the action space at, which in our design represents the number of exits within the

multi-exit DNN. The loss, as shown in (4.4), is a mean squared error function between

the current Q values and the expected Q values (Q̂). Where L(θ) represents the loss

function, and N represents the batch size of image samples used during training.

L(θ) = 1/N
∑
i=N

(Q(st, at, θ)− Q̂(st, at, θ))
2 (4.4)

Expected Q values are computed using the Temporal Difference (TD) method, as

shown in (4.5). Finally, to minimize the loss, parameter update is performed using

the Gradient Descent.

Q̂ = R(st, at) + γmaxatQ(ŝt, ât, θ) (4.5)

The state information used in our design is a history of the previous three states

represented as st = [st−1, st−2, st−3], where each state at a given time consists of ac-

curacy, inference latency, exit-decision, and complexity. The output of DQN-Exit is

vector with dimension equal to number of exits in multi-exit DNN and is represented

as at = [exit1, exit2, ..., exitn], where, exitn represents nth exit in the multi-exit DNN.

Using the history-based state information for learning an adaptive exit selection strat-

egy exploits the temporal and spatial relationship between the time-dependent input

image frames making the DQN-Exit learn the relative complexity in a time-aware

manner. This further optimizes the exit-selection decision-making and significantly
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impacts the robustness and performance of the multi-exit DNN. The idea is that im-

ages’ difficulty does not vary significantly for successive input images. The exit that

provides optimal performance on one of these frames should not change in closely

related images. Our adaptive exit strategy learns this behavior during training, re-

sulting in an improved system performance. Next, we discuss the formulation of

reward function used to train the DQN-Exit agent.

Reward Function: The reward function is responsible for providing feedback to

the DQN-Exit during the training. The reward value quantifies the action output by

assigning a numerical value based on the results observed by executing the DQN-Exit

action. The approach is to provide a high reward for actions resulting in improving

the desired performance of the system and a lower or negative reward if the action

results in performance degradation. The designed reward function focuses on three

crucial aspects: 1) minimizing inference time latency, 2) achieving high classification

accuracy, and 3) reducing the number of MAC operations to reduce energy. The

reward computation is shown in (4.6).

Reward =


Rt, acc ≥ accmin

Rpenalty0, acc < accmin

(4.6)

Where, accmin, which captures the minimum desired accuracy the agent’s action

should achieve; this is a common approach utilized in training DQN-Exit [58,61]. The

penalty offset is the difference between the accuracy threshold and accuracy obtained

from the environment. In our design, we consider the maximum accuracy achieved

by the threshold-based multi-exit DNN as accmin. The computed reward is given by

the product of accuracy and inverse of inference time as shown in (4.7).

Rt = acc · (1/tInf ) (4.7)
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Figure 4.5: Individual reward for three exits with variation in accuracy.

Here, acc and tInf represent the accuracy and inference latency for the previous

action output. In our approach, Rpenalty0 is the negative reward given when accuracy

produced using the DQN-Exit action falls below the minimum accuracy requirement

as shown in (4.8).

Rpenalty0 = Rt − [(accmin − acc)][(1/tInf )] (4.8)

In the reward formulation, the inverse of inference time is considered to give a

relatively higher reward for the actions resulting in inference time savings. The reward

penalty ensures that reward parameters do not prioritize each other, particularly as we

award a higher reward for the inference latency reduction should not overshadow the

contribution of accuracy. The variations of reward function based on (4.7) is shown

in Fig. 4.5 where, we define three exits with different tInf and vary the accuracy.

We plot a separate reward obtained for each exit with a variation in accuracy. We

observe that the reward is highest for the earlier exit given a fixed accuracy as they

correspond to the lower inference time.

Further, as accuracy increases, the reward difference between the exits also in-
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creases. This is desirable, as during the training process, the DQN-Exit will select

the exit that maximizes the reward, i.e., for a given input sample, if an earlier exit

provides the same accuracy as later exits, the DQN-Exit will learn to select the earlier

exit. Based on the formulated reward function, the DQN-Exit will learn an optimal

policy that will maximize the reduction in inference time while maintaining high

classification accuracy.

Environment : The environment is a model or a system with which our DQN-

Exit agent interacts. In our application, the environment is multi-exit DNN pre-

trained for image classification. The multi-exit DNN takes two inputs, an image

sample, and an exit decision provided by the DQN-Exit. As shown in Fig 4.2, the

DQN-Exit provides the exit decision for the current image sample. The environment

responds with a reward value and a state vector during the training. The environ-

ment model implements functionality to compute state, reward, and complexity as

described in Algorithm 1. The environment supplies the state vector to DQN-Exit

during training and testing. The environment is also responsible for computing the

reward as described in (4.7). The environment also computes images’ complexity as

part of input state information.

4.5.4 Training and Testing Process for DQN

The DQN-Exit agent interacts with the environment during the training phase and

learns the required adaptive exit selection policy. The training routine as shown

in Algorithm 1 follows the following steps. First, using Xavier initialization, we

initialize the parameters (or weights) of the DQN-Exit and the replay memory with

the known capacity and set the required training episodes represented by maxEp. We

iterate through the training dataset for each training episode, denoted by maxIter,

generating the rewards and the next state input for the agent’s network. The agent

outputs an action in the form of an exit decision using the provided state and reward.
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Algorithm 1 Adaptive exit selection training process
0: procedure Train-DQN-ExitNN(st, rt, at)
1: Initialize replay memory buffer M with capacity C
2: Initialize DNN weights, θ
3: for episode = 1,maxEp do
4: env.Reset()
5: reward.Reset()
6: for iteration = 1,maxIter do
7: Using ϵ either select random action or action output from DQN-Exit
8: Execute multi-exit DNN using at and input image
9: Compute the reward, rt, based on (4.7)

10: Capture the complexity of image sample using (4.3)
11: Formulate the next state vector, nst+1

12: Store transition st, rt, done, nst+1 in replay memory
13: if done then
14: break
15: else
16: Calculate the TD loss and update the agent’s parameters
17: end if
18: end for
19: end for

The output is either a random action by the DQN-Exit or a Q-value estimate. This

is done to introduce the idea of exploration and exploitation in DRL using an ϵ

probability value.

The ϵ is a decaying probability function and is initially set to one. The decay

happens with increasing iterations. During training, we employ a buffered memory

called replay memory to store the current state, action, reward, termination flag,

and next state during each time step. The DQN-Exit uses randomly sampled data

from the replay buffer during the training. This is done to avoid correlation between

consecutive samples from the environment. During the training, the objective of the

DQN-Exit model is to maximize the cumulative discounted reward. After training,

the trained DQN is used to make exit decisions using the held-out test samples.

During testing, the pre-trained DQN-Exit agent outputs an exit decision which

the multi-exit DNN utilizes in the environment. Based on the accuracy, inference
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Figure 4.6: DQN Training is a three-step process. In Step 1, the DQN provides an exit
number for the pre-trained multi-exit DNN. In Step 2, the multi-exit DNN utilizes the exit
number for the input image. In Step 3, the multi-exit DNN outputs a prediction along with
the state and reward for the DQN. The whole process is repeated over a defined number of
episodes for the DQN to learn the exit strategy. During the testing, all steps are performed
except for the reward, as the DQN is not updating its parameters so we don’t need a reward
during the testing or inference process.

time, previous exit, and image complexity next state is generated, which is sent to

the DQN-Exit for the next exit decision. It is to note that during testing, DQN

parameters are not updated, and parameters are only learned during training. Figure

4.6 also depicts the interaction of the DQN-Exit with the multi-exit DNN.

4.6 Performance Benefits with Adaptive Exit Strategy

This section compares the performance benefits achieved using the proposed DQN-

based adaptive exit selection over threshold-based approaches. For this, we evaluate

the cost for multi-exit DNNs in terms of Multiply and Accumulate (MAC) compu-

tations and inference time latency. Figure 4.7 illustrates the operations using the

threshold-based and DQN-based exit strategy using a multi-exit DNN with two in-

termediate exits. With the threshold exit strategy taking an exit also results in an

additional cost if there are any previous not taken exits. Whereas in the adaptive ap-
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Figure 4.7: Computation and inference time cost behavior in multi-exit DNNs. a) shows
the threshold-based exit strategy [2] in multi-exit DNN with three exits. For each later
exit, we incur costs associated with all previous exits. b) shows the proposed DQN-based
adaptive exit strategy. For each later exit, the previous exit paths are inactive achieving a
reduction in computations and inference cost.

proach, the exit is provided for the multi-exit DNN. As a result, the multi-exit DNN

takes the provided exit without incurring additional costs for any previous exits. In

Fig 4.8 we show an example where Exit-2 is selected for both threshold and adaptive

approaches. We see with the threshold-based strategy, the cost associated with the

Exit-1 will also be included. But with the adaptive strategy, input directly takes the

path from the input layer to the Exit-2 and keeps the Exit-1 path inactive. From this,

we observe that if the same exit is taken using the threshold-based and the adaptive

exit strategy, the total cost associated with the adaptive multi-exit DNN will be lower

compared to the threshold-based strategy.

Based on the above observation, we formulate the cost associated with threshold

based and DQN-based adaptive exit selection as shown in (4.9), and (4.10).

CostExitN
Threshold = Cost

{1:N}
Conv + Cost

{1:N}
Exit (4.9)
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Figure 4.8: Inference comparison between adaptive exit selection and threshold-based exit
selection for the for same taken exit in a multi-exit DNN

CostExitN
adaptive = Cost

{1:N}
Conv + Cost

{N}
Exit + CostDQN (4.10)

Where Cost
{1:N}
Conv represents the cost associated with the conv-blocks up to the

selected exit, Exit-N, and Cost
{1:N}
Exit represents the cumulative cost associated with

the exits starting from the first to the selected exit in the multi-exit DNN. DQN-Exit

cost is represented by CostDQN in (4.10).

The adaptive exit strategy formulates the exit selection as a learning task by

utilizing a DQN-Exit to learn the optimal exit selection policy. The introduction of

DQN-Exit adds additional cost overhead to our adaptive exit strategy. But from our

analysis and the design of the DQN-Exit agent, we observe that the total MAC cost

of the DQN-Exit agent is less than the MAC cost associated with an individual exit

node. As a result of which, for every exit, except for the first, CostExitN
adaptive will be less

than CostExitN
Threshold.

For the first exit, the total cost overhead using the adaptive exit strategy will be
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Figure 4.9: CIFAR10 image classification dataset [4]

higher than the threshold-based exit strategy due to the DQN-Exit cost overhead.

The corner case, where most samples take the first exit in both threshold-based

and adaptive approaches, will result in a higher cost overhead using adaptive exit

selection. But from our evaluation in Section 4.7.6, we observe that the adaptive exit

strategy results in a higher percentage of samples taking an earlier exit compared to

threshold-based approaches. As a result, the overall cost overhead using the DQN-

based adaptive exit selection is lower than threshold-based exit selection.

4.7 Experimental Analysis

In our evaluation, we have considered three different DNNs, namely, AlexNet [51],

MobileNet [53], and ResNet34 [52]. These selected DNNs represent varying complex-

ity and different architectures, providing an accurate and realistic system evaluation.

We introduce additional convolutional layers in a CNN based AlexNet [51]. The Mo-

bileNet uses depth-wise and point-wise convolutions, and ResNet is based on residual

layers. This shows a wide applicability of our adaptive exit strategy. Using the

three DNNs, we implement the baseline multi-exit DNN by introducing intermediate

exit locations. The three baseline multi-exit DNNs are referred to as Exit-AlexNet,

82



Chapter 4. Adaptive Exit selection using DQN in Multi-Exit Networks

Table 4.2: Total computations (MAC) for different exit positions

Network Exit-1 Exit-2 Exit-3 Exit-4

Exit-AlexNet 43.5M 60.5M 62.7M -

Exit-MobileNet 2.5M 10M 11.6M -

Exit-ResNet 7.2M 11.9M 16.7M 75M

Exit-MobileNet, and Exit-ResNet. We refer to our DQN based adaptive multi-exit

DNN networks as DQN-ExitAlexNet, DQN-ExitMobileNet, and DQN-ExitResNet,

respectively. Our design of AlexNet consists of five convolutional (Conv) blocks and

two fully connected (FC) layers at the output. We augment the AlexNet with two

exits, after the first and third Conv blocks. In Exit-ResNet, we introduce three in-

termediate exits after the first, third, and fifth Conv block. Exit-MobileNet consists

of three Conv blocks with multiple depth-wise and point-wise convolutions. We add

two exits, one after the first block and the second exit after the second block. The

threshold-based multi-exit DNNs are trained using the approach presented in [2]. We

modify the framework presented in [54] for designing multi-exit DNNs using Pytorch.

The total computation cost for all multi-exit DNNs is shown in Table 4.2. We also

utilize a CPU and a GPU-based two different computation hardware to perform the

testing. For evaluation, we compare our adaptive selection networks with threshold-

based multi-exit DNNs along with traditional end-to-end DNNs. We use Pytorch

to model multi-exit DNNs and DQN agent networks. We use CIFAR-10 [5] dataset

in our evaluation. CIFAR-10 consists of 60,000 32x32 RGB images of 10 different

classes. There are 50,000 training images and 10,000 test images. From the 10,000

test images, we divide it into two splits of 5000 each. The first split is used to train

the DQN network, and the second is used to evaluate the proposed adaptive exit

system.
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Figure 4.10: Reward received during the training of DQN-ExitAlexNet

4.7.1 Training Exit Selection Policy using DQN

We follow the training process as described in Section 4.5.4 to train the DQN-Exit

agent. The training progress in DRL is monitored by observing the reward received

by the DQN-Exit agent over the defined training episodes. For Exit-AlexNet as an

environment model with three exits, we set the number of training episodes to 5000.

For each episode, the multi-exit DNN uses the training dataset to output the next

state, reward, and output prediction for the images. For exploration and exploitation

during the training, epsilon decay was set to a value of 2000 and we record the loss

and the reward obtained for each episode in a separate variable. The epsilon value is

initialized to one at the start of the training. A higher value of epsilon indicates we will

take more random actions instead of the action output provided by the DQN agent.

This means we explore by doing random action selection. The epsilon decreases with

the number of training steps and with lower epsilon values we utilize action output
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Figure 4.11: Using maximum probability as threshold criteria for multi-exit DNN

from the DQN. From Fig. 4.10 we see the reward obtained during the training

of DQN-ExitAlexNet. The reward shows an increasing cumulative value with the

number of training iterations and converges towards the end.

4.7.2 Threshold-based Exit Strategy in Multi-Exit DNN

Here, we implement the proposed probability-based exit strategy using three multi-

exit DNNs. We compare the performance with two state-of-the-art threshold-based

exit approaches, BranchyNet [2], and EENet [54]. BranchyNet uses entropy as thresh-

old and EENet uses sigmoid as threshold for exit selection. In Table 4.3, we compare

the proposed threshold-based exit strategy with an entropy-based exit strategy [2] and

a sigmoid-based exit strategy [54]. In our evaluation, we have used three multi-exit

DNNs, namely, Exit-AlexNet, Exit-MobileNet, and Exit-ResNet. We observe with the

proposed probability-based exit strategy, all the three multi-exit DNNs achieve the

highest classification accuracy with 81.03% for Exit-AlexNet, 91% for Exit-MobileNet,
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Table 4.3: Performance comparison with different threshold-based exit strategies

Network Threshold Accuracy Inf. Time Exit

(%) CPU (ms) (%)

Entropy [2] 80.06 3.54 [69, 31, 0]

Exit-AlexNet Sigmoid [54] 80.00 3.66 [73, 12, 15]

Probability 81.03 3.59 [68, 28, 4]

Entropy [2] 90.10 3.80 [0, 96, 4]

Exit-MobileNet Sigmoid [54] 89.00 3.70 [0, 100, 0]

Probability 91.00 3.76 [0, 97, 3]

Entropy [2] 88.00 2.32 [0, 0, 100, 0]

Exit-ResNet Sigmoid [54] 88.00 2.32 [0, 0, 100, 0]

Probability 89.05 2.63 [0, 0, 95, 5]

and 89.05% for Exit-ResNet.

In Exit-AlexNet, with probability as a threshold, we see a 1.9% reduction in in-

ference latency compared to the sigmoid-based approach. This is seen due to the

higher percentage of samples taking earlier exits with a probability-based exit strat-

egy. We make a similar observation in Exit-MobileNet, where we achieve a faster

inference time with probability than the entropy-based exit strategy due to a higher

percentage of samples taking earlier exits. While in Exit-ResNet, with our approach,

we have a higher number of samples taking the later exit, which results in a higher

inference time. With all the three threshold-based exit approaches, the performance

depends on the thresholds selected at each of the exit output. Changing the threshold

value will result in changing the exit distribution. Intuitively, when we decrease the

threshold at an exit, we allow for more samples to take the exit, and if we increase the

threshold value, fewer samples will take the exit. Figure 4.12 illustrates this variation,

where we change the threshold for Exit-1 in Exit-AlexNet and observe the impact on

network accuracy. From Fig. 4.12 we can see that with an increasing threshold value,

the input is required to have high classification confidence to take the exit. With

a higher confidence requirement, fewer samples will take the exit and move towards

86



Chapter 4. Adaptive Exit selection using DQN in Multi-Exit Networks

Exit-1 Threshold

A
cc

ur
ac

y 
(%

)

E
xi

t-1
 D

is
tri

bu
tio

n 
(%

)

50.00

60.00

70.00

80.00

90.00

30

50

70

90

0.2 0.3 0.4 0.5 0.6 0.7

Accuracy Exit-1

Figure 4.12: Exit-AlexNet accuracy with variation in Exit-1 threshold using probability
based threshold-based exit strategy

the next later exit in the network, which results in increased accuracy. With a lower

threshold value, more samples with low confidence will take the exit. With a higher

number of samples with low confidence taking the exit, the probability of incorrectly

classifying an object increases, resulting in lower classification accuracy.

Based on this observation, we also note that by changing the threshold values,

similar performance benefits can be achieved using any of the mentioned threshold-

based exit strategies. This is due to the non-optimal threshold selection process where

the thresholds are set manually to fit the test dataset introducing a high dataset bias

in all threshold-based exit approaches.

4.7.3 Classification Accuracy with DQN based Adaptive Exit Strategy

We compare the performance of DQN based adaptive exit selection with baseline

threshold exit criterion and traditional end-to-end DNNs. The performance is mea-

sured by evaluating inference time, classification accuracy, and total MAC operations.

The threshold-based multi-exit DNNs considered in our evaluation are trained using

the training approach described in Section 4.5.4. From Table 4.4 we see that end-to-
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Table 4.4: Performance comparison of different DNNs with DQN-based exit selection and
threshold-based exit-selection on CIFAR-10 dataset

Network Accuracy Inf. Time Inf. Time Exit

(%) GPU (ms) CPU (ms) (%)

AlexNet 82.50 0.050 5.00 [0, 0, 100]

Exit-AlexNet [2] 80.06 0.035 3.54 [69, 31, 0]

DQN-ExitAlexNet 81.30 0.034 3.30 [80, 17.90, 2.10]

MobileNet 92.00 0.173 5.70 [0, 0, 100]

Exit-MobileNet [2] 90.10 0.120 3.80 [0, 96, 4]

DQN-ExitMobileNet 90.78 0.100 3.60 [3, 97, 0]

ResNet34 90.80 0.200 9.04 [0, 0, 0, 100]

Exit-ResNet [2] 88.00 0.070 2.32 [0, 0, 100, 0]

DQN-ExitResNet 89.20 0.063 1.76 [0, 70, 30, 0]

end DNNs obtain the highest classification accuracy for all the three classes of DNNs.

As all the features present in the deep layers are used for the output prediction, the

probability of samples getting classified correctly increases. But this also results in a

high computation cost and inference time for the input samples.

In multi-exit DNNs, inputs can use earlier exits to significantly improve the infer-

ence time and computations based on exit strategy. In DQN-based adaptive multi-exit

DNNs, DQN-ExitAlexNet, DQN-ExitMobileNet, and DQN-ExitResNet, we achieve

a high classification accuracy of 81.3%, 90.78%, and 89.2% respectively. Although

in adaptive multi-exit DNNs, we observe a slight reduction in accuracy compared to

end-to-end DNNs. Compared to threshold-based multi-exit DNNs, all three adaptive

multi-exit DNNs show improvement in classification accuracy. In particular, we see

from Table 4.4 a 1.5% increase in accuracy with DQN-ExitAlexNet, a 0.75% with

DQN-ExitMobileNet, and a 1.36% increase with DQN-ExitResNet. While this is a

slight improvement in accuracy, it shows that adaptive multi-exit DNNs are more

capable of achieving accuracy closer to end-to-end DNNs than threshold-based exit

selection for a significant reduction in inference time which is discussed next.
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Figure 4.13: Normalized latency reductions achieved in DQN multi-exit DNNs compared
to threshold-based multi-exit DNNs and traditional DNNs.

4.7.4 Exit Distribution and Inference Time Analysis

Inference time latency is a critical performance metric that we analyze. Inference

latency is measured as the total time required to output a prediction after input is

fed to the multi-exit DNNs. The inference time also governs the rate of real-time

operation, and achieving a reduction in this will significantly impact the network’s

performance. In our analysis, the inference is normalized with-respect-to traditional

end-to-end DNNs and we have considered the CPU based system for the analysis.

The inference time represents the total time including the execution time of DQN-

Exit agent, multi-exit DNN and the complexity computation. For complexity the

time required on CPU system is recorded to be 0.36ms. From Fig. 4.13 we see that

DQN-ExitAlexNet, DQN-ExitMobileNet, and DQN-ExitResNet, all the three adap-

tive exit DNNs achieve 32%, 37%, and 70% reduction in inference latency compared

to AlexNet, MobileNet, and ResNet, respectively. Similarly, compared to traditional

DNNs, all threshold-based exit selection networks Exit-AlexNet, Exit-MobileNet, and

Exit-ResNet also achieve 30%, 29%, and 65% reduction in inference latency. From

this, we observe that we achieve a significant reduction in total inference time latency

for both threshold-based and adaptive exit selection approaches. This observation,
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Figure 4.14: Exit distribution in threshold-based and adaptive exit selection

coupled with our previous analysis of classification accuracy, clearly justifies the sig-

nificant benefits achieved by introducing intermediate exits in DNNs.

Comparing the threshold-based exit strategy with our adaptive DQN based exit

strategy, DQN-ExitAlexNet, DQN-ExitMobileNet, and DQN-ExitResNet achieve 2.8%,

11.2%, and 14.2% lower inference latency compared to Exit-AlexNet, Exit-MobileNet,

and Exit-ResNet respectively. This reduction in inference time can be seen due to

the difference in exit distribution between the threshold-based and the adaptive exit

strategy. The adaptive exit selection optimizes the exit based on a history of state

information, including accuracy, inference time, previous exits, and image complex-

ity. The state provides a deeper understanding of exit behavior to the DQN network,

resulting in a more optimal exit strategy that achieves high classification accuracy

and reduces inference latency. Figure 4.14 illustrates the exit distribution for the

three multi-exit DNNs with threshold-based and the proposed adaptive exit strategy.

Compared to the threshold-based exit selection, we observe that with the adaptive

approach, all the three networks result in higher distribution input samples taking an

earlier exit.
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In DQN-ExitAlexNet, 80% of samples take the first exit and only 17.9%, and

2.1% take second and third exit. Whereas, in Exit-AlexNet, 31% samples take the

second exit, increasing the inference time and computations. The exit selection in

Exit-AlexNet happens sequentially, and each exit is checked for threshold until the

threshold requirement is met, introducing extra timing overhead. While in the adap-

tive selection, the DQN-Exit outputs an exit decision for the incoming input image.

The multi-exit DNN takes the provided exit without going to each exit sequentially

and helps in reducing the additional sequential timing overhead even if the same exit

decision is made in both networks. Similarly, we see in Exit-ResNet all the samples

take Exit-3 whereas, in DQN-ExitResNet, the exits are distributed to maintain higher

classification accuracy and faster inference. In DQN-ExitMobileNet, 1.4% more sam-

ples take Exit-2, compared to Exit-MobileNet and last exit is not taken for any of the

input samples. The analysis shows that all three adaptive multi-exit DNNs reduce

inference latency due to the intelligent exit selection strategy resulting in an optimal

exit distribution for achieving faster inference rate while achieving higher accuracy

compared to threshold-based exit selection.

We also evaluate the inference time for the multi-exit DNNs using a GPU based

hardware. Table 4.4 shows the inference time for a GPU based system. Compared to

CPU, we see considerable decrease in inference time due parallel acceleration provided

by GPU architecture for large matrix multiplications. We observe with the change

in hardware the relative inference performance between the multi-exit DNNs remains

same as previously discussed for CPU based system.

4.7.5 Study of Complexity with Exit Selection

Image complexity is computed as described in Section 4.5.2, where for an image we

extract total number of points required to construct all the contours. Figure 4.15 and

4.16 shows the complexity values on CIFAR-10 images. We observe the complexity
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Figure 4.15: Comparing various CIFAR-10 classes using complexity analysis [5]

Figure 4.16: Complexity values for same class objects in CIFAR-10

varies between objects of different classes as shown in Fig. 4.15. Images corresponding

to same class also show variation in computed complexity as shown in Fig. 4.16.

Samples with more complex number of contours will result in a higher complexity

compared to image samples with fewer number of contours. We use the complexity

information to represent the difficulty associated with an image and provide that as

an input feature to the DQN-Exit while learning the exit strategy. While complexity

is only providing an approximation of image feature information to the DQN-Exit

agent, but it helps the DQN to learn a distribution that can relate the complexity
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Figure 4.17: Average complexity value associated with different exits in DQN-ExitAlexNet

Figure 4.18: Average complexity value associated with different exits in
DQN-ExitMobileNet

associated with images with exit selection.

Figure 4.17 illustrates the plot with the average complexity values and minimum

and maximum variation of complexity from the mean in DQN-ExitAlexNet. We

observe the higher average complexity for the last exit, Exit-3, and the low variation

from the average value. For the first exit, Exit-1, we obtain a higher variation in the

minimum value. For Exit-2, we observe higher variations in both maximum and the

minimum values along with overlap of variations with Exit-3. The high variation and

overlap in the complexity are observed due to images with similar complexity values

taking different exits. As the computed complexity is an approximation provided
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Figure 4.19: Average complexity value associated with different exits in DQN-ExitResNet

to the DQN agent, there can be instances where a lower complexity image may

require a later exit for correct classification. We make similar observation in DQN-

ExitMobileNet, as shown in In Fig. 4.18, we see a lower average complexity and low

variation for the maximum value for Exit-1. For Exit-2, we get a higher variation

in the minimum and the maximum values. This is due to the more variations in

complexity values for samples taking Exit-2 compared to Exit-1.

In DQN-ExitResNet, Exit-1 again shows high minimum value variation and Exit-2

shows high variation in the maximum value, as shown in Fig. 4.19. From these results,

we see the mean complexity value follows an increasing behavior with the later exits

for all the three networks, which indicates high complexity images use later exits.

But we also observe variations from the mean value among the exits, which shows

that images with high complexity also benefit by taking an earlier exit. Similarly,

less complex images can also benefit more by taking a later exit. The analysis shows

while the DQN uses complexity to learn an optimal exit strategy, exits are not strongly

correlated to the complexity values. Therefore we cannot use complexity directly as

a threshold to perform the exit selection and need a more optimal approach to learn

exit selection in multi-exit DNNs.
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Figure 4.20: Variation of complexity with image scaling on CIFAR-10 [4] test dataset

4.7.5.1 Impact of image scaling on complexity

Here we study the impact of image scaling on computed complexity. It is to note that

image scaling is not part of the adaptive exit selection system as the input dimension

of multi-exit DNN will be fixed. Here we want to study how complexity may vary if

the dimension of the given image dataset is scaled. Figure 4.20 illustrates the average

complexity of the CIFAR-10 test dataset when the images are scaled down. We see

the computed complexity decreases non-linearly as we scale down the images. When

we reach the dimension of 8x8 and below, we observe a significant drop in complexity.

This is seen as with image scaling, we lose a lot of pixel-based spatial information

present in the images, which results in a reduction of the number of detected contours

that segments multiple objects. Authors in [104] presented a similar study where they

analyzed the impact of variations in the image resolution on object segmentation

performance. Images with higher resolution were found to detect more contours than

images with lower resolution due to more pixel-based information at higher resolution.

Work in [105] studied the effect on contour boundaries as variation in segmentation
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scale. The results presented showed the number of detected objects in the image

decreases non-linearly with increasing scale. The observations in [104,105] follow our

analysis where the computed complexity decreases with scaling due to a reduction in

the number of contours detected.

4.7.6 Computation Cost Analysis

DQN introduces additional computational overhead for each exit decision. The im-

plemented DQN utilizes 100 MAC computations for DQN-ExitAlexNet and DQN-

ExitMobileNet and 115 MAC operations in DQN-ExitResNet. However, even with

added complexity with DQN, our approach saves significant MAC operations in multi-

exit DNNs. In DQN-ExitAlexNet, each intermediate exit consumes 960 MAC oper-

ations. We have 43M MAC operations before the first exit, 17M MAC between

the first and second exit, and 2M MAC for the final exit. Table 4.5 shows the

test image distribution between DQN-ExitAlexNet and Exit-AlexNet. The computa-

tions represent the difference in total MAC computations between DQN-ExitAlexNet

and Exit-AlexNet corresponding to an exit. The positive values indicate that DQN-

ExitAlexNet requires higher computations, and the negative value indicates the com-

putations saved by DQN-ExitAlexNet. After all test images, we see that the DQN-

ExitAlexNet achieves a 3.4% reduction in MAC computations compared to Exit-

AlexNet.

Further, compared to the traditional AlexNet, DQN-ExitAlexNet achieves a sig-

nificant 25% reduction in computations. The computation savings will be higher for

deeper DQN-ExitResNet, as the number of computations increases between the ex-

its. The reduction in computations for DQN-based adaptive exit selection is due to a

higher percentage of samples taking earlier exits relative to the threshold-based exit

selection, which is shown in Table 4.4. Further, using Table 4.2 in DQN-ExitResNet

we achieve 20.1% reduction in MAC operations compared to threshold-based Exit-
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Table 4.5: Computation cost benefits in adaptive DQN-ExitAlexNet with respect to
threshold-based Exit-AlexNet

#Exit Image Samples per exit Computations a

Exit-AlexNet DQN-ExitAlexNet (MAC)

Exit-1 3,500 4,000 +21,750M

Exit-2 1,500 900 -36,300M

Exit-3 - 100 +6,270M

Savings -8,280M

aComputation overhead for DQN-ExitAlexNet relative to Exit-AlexNet

ResNet and 82% compared to ResNet34.

4.7.7 Adaptive Exit Selection with Sequential Input Images

The DQN based adaptive exit selection exploits the spatial and temporal dependence

in input frames resulting in more adaptive exit selection. To create frames represent-

ing a video data, we pass the images through an image augmentation pipeline. The

pipeline includes random image rotation, and pixel cropping operation on each of the

selected image frames to represent the effects of random sensor rotation or zooming.

Multiple such clips generated from individual images are appended together in time

to represent video data with a scene change. We adopt this approach for synthetic

video frame generation instead of using a video dataset to avoid the added effort of

data labeling and re-training of multi-exit DNN and the DQN. However, our adaptive

exit selection approach is readily applicable to any video classification dataset. We

use the synthetic video clip obtained using the process described above to test the

adaptive exit selection in our adaptive exit approach. In Fig. 4.21, the complexity

plot shows the complexity values on the synthetic frames. The complexity values

remain in the same range as the original image after we perform the augmentation.

With this, we introduce the variation in the scene by using the frame of different

complexity in a single video.
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Figure 4.21: Adaptive exit selection with variations in sequential images in DQN-
ExitAlexNet. Two different images of same class label with different complexity are modified
as sequential frames.

From Fig. 4.21, we see that with threshold-based exit selection, multi-exit DNN

uses Exit-2 for the majority of samples and selects Exit-1 for a very few of them based

on the threshold checking. As the exit selection is based on checking the threshold

at each exit, the temporal relation between the frames is not considered as a part

of threshold-based exit strategy. This behavior is seen as the adaptive exit strategy

does not switch in immediate response to change in frames but switching happens

if change in the exit can provide high accuracy along with computation efficiency.

With the adaptive approach, the exit switching happens if there is a scene change in

our synthetic video and multiple frames of a new scene are seen by the DQN-Exit.

The exit selection is not solely based on the immediate past taken exit but rather

a combination of state history and complexity. We see from the Fig. 4.21, for the

first ten samples, The DQN prefers exit-2 as more frames of higher complexity are

observed. Between samples 10 and 20, lower complexity samples are more frequent,
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resulting in switching towards Exit-1. Finally, after sample 20, exit switches to Exit-2

as the scene with higher complexity becomes more common.

The analysis shows the importance of complexity as an input state provided to the

DQN-Exit network during the training, resulting in an exit policy capable of learning

the correlation among sequential inputs. Complexity provides an approximation if

two sequential images are similar in difficulty, which is then captured in the history

of state vector used by the DQN. This is useful and critical for applications such

as agricultural monitoring and building inspection using UAVs [19, 21]. As the scene

information does not change randomly the multi-exit DNNs will utilize the same exits

for multiple input frames resulting in high computation efficiency.

We utilize the two recent adaptive approaches presented in DynExit [106] and

SkipNet [55] to compare performance of our proposed DQN based adaptive exit strat-

egy. DynExit presented the adaptive exit approach for ResNet based DNNs where,

they shows 46.3% reduction computation comapred to the end-to-end ResNet archi-

tecture. Further, in [106] only single exit branch is used in all of their multi-exit DNNs.

In SkipNet [55] a computation cost reduction of 50% is obtained. We observe that

our adaptive approach outperforms previous adaptive approaches. Further, adaptive

approaches presented in [55, 106] can only be applied to ResNet-based architectures,

while our approach applies to different classes of convolutional neural networks, in-

cluding ResNet and MobileNet, hence, making our approach more widely applicable

for many applications and DNNs.

4.8 Distributed Multi-Exit DNN in Edge and Mobile Devices

Here, we consider a scenario where the mobile agents used in an application are

low-compute devices with limited processing and storage. These agents may not

be capable of storing parameter-heavy multi-exit DNNs. For such cases, network

splitting approaches are utilized, where part of the network is stored in the mobile
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Figure 4.22: 60 GHz based communication between the mobile agents and the local edge
server.

device, and the remaining is stored in a local edge server.

With multi-exit DNNs, the network splitting can be done across the exits. In this

way, part of the network up to a specific exit is stored in the mobile agent, and the

rest of the network is in the edge server. For inputs that require later exits that are

not part of exits stored in the mobile agent, we will need the edge server to perform

the execution. During this process, the last layer parameters are also sent to the edge

server as the network stored in the edge server will need the previous layer parameter

value to continue the execution. With network splitting, the additional cost incurred

is the data communication required to send the network parameters associated with

the part of the network stored in the mobile device to the edge server to perform the

output prediction. The communication infrastructure governs this delay between the

devices.

In our analysis, we utilize the high-speed millimeter-wave wireless technology that

provides multi-giga-bit data communication between the connected devices. For this,

we have considered a scenario where small form factor-based autonomous agents are

used. These agents are limited in on-board computation and we utilize multi-exit

DNNs for the object classification tasks. The agent store only part of the multi-exit
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Figure 4.23: Total inference delay in a distributed mobile and edge environment
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DNN consisting of earlier exits and the rest of the network on a local edge server

present inside the warehouse. Figure 4.22 depicts the communication environment

that exists between the agents and the server. The autonomous agents are connected

to the local edge server using 60 GHz wireless links. A remote cloud can also be used

in such architectures where the local edge server communicates with the cloud using

the 5G or backhaul connection. The cloud consists of multiple clusters of servers

and will offer the most computation resources. But they are remotely located, which

results in the highest communication cost. The local edge servers consist of high-

performing computation units and are locally connected with the mobile agents using

wireless links.

In our evaluation, we only consider the robotic agents and a local edge server in

a distributed system along with TP-Link 60 GHz routers as APs. The routers are

the same 60 GHz hardware that we used in the design of the millimeter-wave indoor

warehouse localization in the first part of the thesis. Authors in [107] performed

extensive analysis to study the delay and throughput characteristics using TP-Link 60

GHz routers with varying packet sizes ranging from 1MB to 32 MB. We use the round

trip time (RTT) delay associated with the Talon AD7200 routers to evaluate the total

delay associated when multi-exit DNNs are used in a distributed environment. We

use three scenarios with one, four, and eight agents in the environment and one local

edge server. The multi-exit DNNs use the proposed DQN-based exit selection, and

the network splitting is done along the exits. We also change the splitting points along

all the intermediate exits present in the three multi-exit DNNs, DQN-ExitAlexNet,

DQN-ExitMobileNet, and DQN-ExitResNet, to study the effect of the inference delay

with the splitting point.

Figure 4.23a, 4.23b, and 4.23c shows the total delay for DQN-ExitAlexNet, DQN-

ExitMobileNet, and DQN-ExitResNet with variation in number of mobile agents and

network splitting point. For DQN-ExitAlexNet, with splitting at Exit-1, we perform
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offloading for samples taking Exit-2 and Exit-3. As the number of agents increases,

the data transfer latency from agent to edge server increases, resulting in higher

inference time. Further, when the splitting is done at Exit-2, only samples taking the

Exit-3 need to be offloaded, and samples taking Exit-1 and Exit-2 get executed on

the mobile agent.

With DQN-ExitMobileNet, splitting at Exit-1 results in similar observations to

DQN-ExitAlexNet. But all the samples either take Exit-1 or Exit-2. No offloading

to the edge is required when Exit-2 is selected as the splitting point. Similarly, with

DQN-ExitResNet, no offloading is required when splitting is done at Exit-3, as no

samples take the last Exit-4. For splitting done at Exit-1 and Exit-2, with increasing

offloading, we see an increase in the total inference delay, and the delay is higher with

more agents.

4.9 Conclusion

Multi-exit DNNs introduce earlier exits in DNN for samples to exit early if a threshold

criterion is met. As the network does not learn the exit selection, it results in sub-

optimal exit selection. We proposed a DQN-based adaptive exit selection in multi-exit

DNNs. The DQN utilizes various network state information to learn the exit policy,

including accuracy, inference latency, previous exit, and image complexity. We im-

plement the DQN-based exit selection on three multi-exit DNNs, Exit-AlexNet, Exit-

MobileNet, and Exit-ResNet, representing different network complexities of DNN

architectures. Our adaptive exit strategy achieves higher classification accuracy for

all three multi-exit DNNs compared to threshold-based exit selection. The adaptive

exit selection results in faster inference time, achieving a 14.2% reduction compared to

threshold-based exit selection. We also achieve a maximum of 20.1% reduction in to-

tal computation cost compared to threshold-based exit selection. Further, compared

to traditional end-to-end DNN architectures, the DQN-based exit selection achieves
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a maximum of 82% reduction in computation cost and a 70% reduction in inference

latency. We also present the analysis of network splitting in a distributive edge com-

puting environment using 60 GHz wireless as communication infrastructure. Our

approach utilizing DQN-based adaptive exit selection can provide the energy-efficient

DNN intelligence required for time-sensitive and computationally constrained devices

based on the detailed evaluated performance.

4.10 Chapter Summary

Edge devices have potential to provide autonomy for various mission critical tasks

requiring low latency decision making. Such devices lacks the required computational

power to run deeper neural networks within the desired latency constraint. Our

approach targets at minimizing the computation latency of such DNNs for the tasks of

classification by implementing an adaptive exit selection strategy in multi-exit DNNs.

In our approach, the multi-exit DNN uses the experience based learning from a DQN

agent. This significantly reduces the timing overhead of decision making compared

to traditional state-of-the-art threshold-based threshold-based exit strategies. In our

approach, the DQN agent learns an intelligent exit policy considering different states

that results in reduction in energy consumption, inference time and still maintaining

the desired high classification accuracy. Through extensive experimental analysis

we have shown the DQN based multi-exit DNNs can achieves maximum of 14.2%

reduction in inference time and 20% reduction in computations while achieving higher

classification accuracy compared to threshold-based approaches.
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Future Work

Based on the work presented in this dissertation, this chapter discusses possible future

directions.

5.1 Hardware and Infrastructure based Information in Adap-

tive Exit Selection

Adaptive exit selection can utilize more input state information from the hardware

and the communication infrastructure to provide more intelligent offloading and exit

decisions. DQN can utilize input information to learn exit policy using hardware

states such as battery state of charge, computation load, and wireless signal strength.

Mobile devices like drones are energy-constrained devices, and an increase in com-

putation resources utilized by running DNNs can negatively affect the battery state

of the charge and flight time. Further, in a distributed environment, the offloading

decision can be learned based on the quality of the wireless signal strength to perform

more adaptive offloading to servers. Figure 5.1 represents the states and approach

for a more intelligent exit selection in multi-exit DNNs utilizing hardware and en-

vironment state information. Authors in [108] presented a DQN based intelligent

offloading of resources from multiple mobile nodes to an edge server. They present a

joint offloading decision along that minimizes the energy, delay and the computation

cost for offloading. Similar approaches can be investigated in multi-exit DNN based
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Figure 5.1: Exit selection utilizing more state information

distributed computing environment.

In our initial experiments, we used a simulated battery model to estimate the

battery state-of-the-charge (SOC). Modeling the battery-SOC depends on the type

of battery used, like lithium-ion and lead-acid. Recent works [109, 110] have in-

troduced battery-SOC models that accurately estimate the battery SOC at future

instances. Modeling the battery SOC requires actual measurement values from the

battery under various operating conditions and considering most of the physical and

chemical processes that occur within the battery. Our work considers the battery

model presented in [110] where the battery decay follows a non-linear discharge rate.

The modeling may not represent the exact and most accurate representation. We

used the reward described in (4.6) and added the battery-SOC as part of the reward.

BSOC = 1− [e−costexit ] (5.1)

The decay in the simulated battery-SOC is measured in terms of MAC operation

corresponding to the exit taken by the multi-exit DNN represented by costexit as

shown in (5.1). We observe that after including battery-SOC in the reward, the
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Table 5.1: Including battery-SOC as an input state

Network Accuracy Inf. Time Exit

(%) CPU (ms) (%)

DQN-ExitMobileNet (with battery-SOC) 87 3.1 [20, 80, 0]

DQN-ExitMobileNet 90.78 3.6 [3, 97, 0]

adaptive exit selection increases sample distribution in the earlier exits. This results

in a reduction of inference time but also decreases the accuracy achieved by the

network. Table 5.1 shows the increase in samples taking the first exit when the

battery-SOC is included.

5.2 Federated Learning in Distributed Computing Environ-

ment

The idea of federated learning [111] is to provide collaborative learning between dis-

tributed devices without sharing the data used to learn the trained ML models. The

approach addresses the concerns over privacy and security, as no personal data is

being shared for collaborative learning. Only the final trained encrypted model is

shared between the nodes and the server. FL is an iterative learning process; the

individual ML models at the edge nodes are shared with a central system during each

learning episode. The central server uses the local ML models from these individual

nodes and performs a unified model update. The model update utilizes the different

learning experiences from individual devices performing the same task and shares the

updated model with each contributing node. While doing the same ML tasks, each

node may see differently distributed data, non-IID, compared to other nodes. This

skewed and biased learning data is where FL systems show the enhanced performance

improvements.

In FL, there are different possible sources where an attack can be launched. Such

sources include edge nodes participating in the FL update process, the central server
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Figure 5.2: Federated learning in distributed environment

performing the model aggregation, and the communication link connecting the edge

nodes and the central server. Figure 5.2 illustrates the FL environment where the

edge node taking part in the FL update gets affected by the attacker’s poisoned data.

In such a scenario, the local model sent by the node to the server gets compromised.

As a result, the FL server aggregates a poisoned model and sends that as an update

to all edge nodes participating in the FL update cycle.

Authors in [112] presented a model poisoning approach showing how a backdoor

attack can be launched in FL. They present an attack model where the attacker has

access to the local training data at the edge device and creates a malicious model.

The work showed such an attack is not detected at the central server and can easily

compromise the system. Exploring the usage of federated learning in a distributed

environment is a great use case for smart infrastructure. Further, studying different

attack models and detection mechanisms in such a scenario is another dimension to

extend the current work.
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