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Abstract

Counting problems aim to count the number of solutions for a given input, for example, counting the

number of variable assignments that satisfy a Boolean formula. Sampling problems aim to produce

a random object from a desired distribution, for example, producing a variable assignment drawn

uniformly at random from all assignments that satisfy a Boolean formula. The problems of counting

and sampling of graph structures on different types of graphs have been studied for decades for their

great importance in areas like complexity theory and statistical physics. For many graph structures

such as independent sets and acyclic orientations, it is widely believed that no exact or approximate

(with an arbitrarily small error) polynomial-time algorithms on general graphs exist. Therefore,

the research community studies various types of graphs, aiming either to design a polynomial-time

counting or sampling algorithm for such inputs, or to prove a corresponding inapproximability

result. Chordal graphs have been studied widely in both AI and theoretical computer science, but

their study from the counting perspective has been relatively limited. Previous works showed that

some graph structures can be counted in polynomial time on chordal graphs, when their counting

on general graphs is provably computationally hard. The main objective of this thesis is to design

and analyze counting and sampling algorithms for several well-known graph structures, including

independent sets and different types of graph orientations, on chordal graphs. Our contributions

can be described from two perspectives: evaluating the performances of some well-known sampling

techniques, such as Markov chain Monte Carlo, on chordal graphs; and showing that the chordality

does make those counting problems polynomial-time solvable.
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Chapter 1

Introduction

In computational complexity theory, a decision problem is a problem that can be viewed as a yes-

or-no property of the input. For instance, deciding whether an integer x is divisible by an integer

y is a decision problem. Class P is a complexity class of decision problems that can be solved

by a deterministic Turing machine in polynomial time, and NP is a complexity class of decision

problems where for each yes-input there is a “proof” attesting that the answer is “yes,” which can

be verified by a deterministic Turing machine in polynomial time. It follows that P is a subset of

NP. The hardest problems in NP are classified as NP-complete problems which are widely believed

to be unlikely to be solvable in polynomial time—this relates to the famous “P=NP?” problem

in computer science. A classical NP-complete problem is the independent set problem [39]: for a

given graph G and a positive integer k, decide whether there is an independent set of size k in G

(an independent set of a graph is a set of vertices with no edges between them). For the formal

definitions of classes P, NP, and NP-complete, see, for example [65].

The complexity class #P (pronounced “sharp P” or “number P”) [74] is a class of the counting

problems associated with the decision problems in NP. For instance, the problem of counting

independent sets of a given size in a graph is in #P. We will refer to the counting version of a problem

by adding a “#” in front of it, such as #independent-sets. Analogously to NP-completeness, the

hardest problems in #P are #P-complete. It is generally believed that the counting version of every

NP-complete problem is #P-complete (at least, to the best of our knowledge, there are no known

counterexamples to this statement). Interestingly, the counting version of a problem in P could still

be #P-complete [74]. #P problems that can be solved exactly in polynomial time are relatively

rare, two classical and perhaps surprising ones are counting spanning trees in general graphs [42]

1



CHAPTER 1. INTRODUCTION 2

and counting perfect matchings in planar graphs [40]. Even if solving a counting problem exactly

in polynomial time is infeasible, it might still be possible to solve it approximately in polynomial

time, i.e., get an approximate count which is arbitrarily close to the correct count in time that

is polynomial in the size of the input and the closeness of the approximation. A polynomial-time

approximate counter is called a fully polynomial time approximation scheme (FPTAS) or a fully

polynomial time randomized approximation scheme (FPRAS), depending on whether the algorithm

is randomized or not. For instance, Jerrum and Sinclair [34, 36] designed an FPRAS to count all

matchings in general graphs (a matching is a set of edges with no shared end-points), and, in

a joint work with Vigoda, they also obtained an FPRAS to count perfect matchings in bipartite

graphs [37]. For a counting problem, the research community is interested in either finding an

FPTAS (FPRAS) or proving its inapproximability.

Different methods have been used for approximate counting, and, for so-called self-reducible prob-

lems [38], approximate counting can be achieved by (almost) uniform sampling [38]. In fact, (al-

most) uniform sampling and approximate counting are polynomially-equivalent (that is, one can

be converted to the other in polynomial time) when the problem is self-reducible. Therefore, we

can focus on designing (almost) uniform sampling algorithms for self-reducible problems. Markov

chain Monte Carlo techniques have been successfully used to sample graph structures like matchings

or independent sets according to the so-called Gibbs distribution (which, roughly, gives sampling

preference according to the object’s energy—for graph structures, this is typically the size of the

object), see, for example, [4,16,19,36,47]. There are also other sampling techniques like correlation

decay and partial rejection sampling [27,80].

One important application of approximate counting is estimating the Tutte polynomial of a graph.

The Tutte polynomial TG(x, y) of an undirected graph G is a graph polynomial, whose definition

depends on G and will be introduced formally later with two variables x and y. It has been

widely studied in graph theory for its close relationship to many important graph quantities, such

as #colorings or the chromatic polynomial (TG(x, 0) [73]), #acyclic-orientations (TG(2, 0) [82]),

and #strong-orientations (TG(0, 2) [44]). It is also a research topic in statistical physics because

it generalizes famous models like the Ising model, the Potts model, and the hard-core model (also

known as weighted counting or sampling of independent sets in a graph [82]). Unfortunately,

calculating the Tutte polynomial is generally #P-complete. So, many researches focus on finding

parameters x, y that make the calculation feasible. For instance, when x and y lie on the hyperbola

(x − 1)(y − 1) = 2 in the plane, the Tutte polynomial becomes the partition function of the Ising

model, for which an FPRAS exists under some mild conditions [35]. Besides, calculation of the

Tutte polynomial on different types of graphs, such as bipartite graphs [78] and planar graphs [77],
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Figure 1.1: A chordal graph G. Cycle ABCD has a chord BC, cycle BEHG has a chord EG, and

cycle BCDE has a chord CE.

has also attracted lots of attention.

A graph is chordal if all its cycles of length at least four have an edge (a chord) that connects two

non-adjacent vertices on the cycle (see Figure 1.1).

Chordal graphs have attracted great attention in computer science theory as a natural graph

class with real-world applications (for example, some inference techniques in probabilistic graphical

models rely on sampling and counting of certain types of orientations on chordal graphs [43, 83]).

Some problems that are NP-complete or #P-complete on general graphs can be solved in polynomial

time on chordal graphs. For example, colorings and independent sets can be counted on chordal

graphs in polynomial time [54,57]. Also , generating chordal graphs with a given number of vertices

from the uniform distribution in polynomial time has been open for a long time, and it is crucial for

testing the performances of some Bayesian network structural learning algorithms [25,29,30,71].

1.1 Studied Graph Structures and Motivations

In this thesis, we studied counting and sampling of the following graph structures on chordal

graphs. All these structures are widely studied by the theoretical community, and some of them

are also important research topics in areas like statistical physics and probabilistic graphical models.

Following prior lines of work, aiming to understand whether these structures can be counted and/or

sampled in polynomial time on specific graph classes, we focus on chordal graphs, where some prior

success has been demonstrated. It has been proved that the two classical #P-complete problems,

counting of acyclic orientations and counting of independent sets, can be solved on chordal graphs
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in polynomial time, obtaining an exact count. Our research focuses on counting and sampling

of additional well-known graph structures on chordal graphs, and furthermore, on the efficient

calculation of the Tutte polynomial for certain inputs on chordal graphs. The following are the

graph structures studied in this thesis:

• Independent sets. Recall that an independent set of a graph is a subset of its vertices such

that no two of them are connected by an edge. Sampling of weighted independent sets for a

given graph G and a so called fugacity parameter λ ∈ R+ aims to produce an independent set

S of G with probability proportional to λ|S|, where |S| is the number of vertices in S (when

λ = 1, the goal is to sample independent sets uniformly at random). This problem is known as

the hard-core model in statistical physics. For general graphs and arbitrary λ, the counting

version of the problem is #P-complete. However, after a long line of research, some FPRASs

were designed for graph classes with certain upper bounds on the vertex degrees and a range

of λs dependent on the maximum degree [4,16,19,47,80]. The community has also studied this

problem on different underlying graphs, and similar results about polynomial sampling have

been shown on graphs with bounded bipartite pathwidth [12], bounded treewidth [11], and

bounded connective constant [64]. Study of counting and sampling of independent sets is also

crucial for the classification of the class #P from the approximate counting perspective [18].

For instance, counting of independent sets on bipartite graphs is believed to not have an

FPRAS, but is not as hard as #SAT, the problem of counting assignments to variables that

satisfy a given formula.

We note that the problem of counting all independent sets is self-reducible, that is, roughly

speaking, the problem can be solved using smaller instance of the same problem. 1 Recall

that self-reducibility is a property that can be used to derive (almost) uniform samplers

from counting algorithms (and vice versa, approximate counting algorithms from sampling

algorithms).) Therefore, there are also corresponding sampling algorithms for independent

sets for all the graph classes for which an FPRAS exists.

• Acyclic orientations. An acyclic orientation of an undirected graph is an assignment of edge

directions that makes the graph directed and acyclic. Counting of acyclic orientations is a

special case of the Tutte polynomial, and it has been proved to be #P-complete on general

graphs [46]. Interestingly, the counting of acyclic orientations on chordal graphs can be done

in polynomial time because it is closely related to the chromatic polynomial, which can be

1In particular, the set of all independent sets of G can be split into two subsets: those that do not include a vertex

v (and are therefore an instance of the same problem for G− v), and those that do, where the remaining part of the

independent set is in G′ defined as G except v and its neighbors (an instance of the same problem in G′).
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computed in polynomial time on chordal graphs [1,67]. But, to the best of our knowledge, the

problem of counting acyclic orientations is not known to be self-reducible, and no polynomial-

time uniform sampler was known before the work presented in the thesis.

• Bipolar orientations . A bipolar orientation of an undirected graph is an assignment of a

direction to each edge that makes the graph directed, acyclic, and with a single source s

and a single sink t. Bipolar (s, t)-orientations, also known as st-numberings, are a natural

restriction of acyclic orientations with applications in, for example, planarity testing [45].

While finding a bipolar orientation can be done in linear time by depth-first search [72], to the

best of our knowledge no efficient algorithm for counting or sampling of bipolar orientations

is known, even for restricted graph classes. The exact counting problem is #P-complete on

general graphs due to a simple reduction from counting acyclic orientations.

• Sink-free orientations. An orientation is sink-free if it does not have any vertex with out-degree

zero. Bubley and Dyer [15] proved that counting of sink-free orientations is #P-complete,

and researchers have designed polynomial-times samplers for sink-free orientations based on

different techniques [15,17,31].

• Source-sink-free orientations. We introduce a source-sink-free orientation as a natural restric-

tion of a sink-free orientation, where the directed graph has neither vertex with indegree zero

nor vertex with outdegree zero. A source-sink-free orientation is also a “weaker” version of a

strong orientation (which corresponds to TG(0, 2) [44]), which is an assignment of edge direc-

tions that makes the underlying graph strongly connected (each vertex can be reached from

any other vertex). It is straightforward that every strong orientation is source-sink-free, but

every source-sink-free orientation is not necessarily strongly connected. Counting of strong

orientations of a graph is #P-complete, even when the graph is planar and bipartite [78,81].

• Partial acyclic orientations. For an undirected graph, a partial acyclic orientation is an as-

signment of directions to a subset of its edges such that the directed edges do not form a

directed cycle. Studying these types of orientations could shed light on the problem of sam-

pling acyclic orientations (possibly also in general graphs), by assigning partial orientations

with undirected edges a significantly smaller proportion in the overall distribution.

• Random chordal graphs. For a positive integer n, consider the set of all chordal graphs with n

vertices (possibly also satisfying other desired properties like connectivity or an upper-bound

on the treewidth). Our goal is to generate a uniformly random chordal graph from this

set, which is necessary for testing the performance of some structural learning algorithms of

Bayesian networks [22, 55, 60]. To the best of our knowledge, existing algorithms generating
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chordal graphs sample chordal graph instances which do not have guaranteed distributions

[49, 61, 62]. This means that testing an algorithm’s performance on such samples might give

a false sense of security since it is performed only on graph instances that are likely to be

generated.

1.2 Contributions and Organization of the Thesis

In Chapter 3, we prove that a well-known Dyer&Greenhill Markov chain [19] can sample weighted

independent sets for arbitrary λ in polynomial time on chordal graphs with a bound on minimal

separator size. Our Markov chain result was published at COCOON ’20 [8].

In Section 4.2, we present the first known uniform sampler of acyclic orientations in chordal graphs,

which can provide a sample in time linear in the number of edges without any preprocessing. This

work was published in AAAI ’22 [68] and WALCOM ’22 [9].

In Section 4.3, we introduce an efficient polynomial-time counter and sampler for bipolar orienta-

tions in chordal graphs. This work was published in WALCOM ’22 [9].

In Section 4.4, we present a polynomial-time exact counter for sink-free orientations in chordal

graphs. Our approach significantly improves the running time over the FPRAS for chordal graphs.

This work was published in WALCOM ’22 [9].

In Section 4.5, we present our initiation of research in counting the novel source-sink-free orien-

tations. Interestingly, previous techniques that apply to sink-free orientations on general graphs

do not appear to be applicable to the problem of source-sink-free orientations, which is our main

motivation for studying them on chordal graphs. We extended our counting algorithm for sink-free

orientations, using a more complex inclusion-exclusion principle (essentially, a sequence of additions

and subtractions that account for over/under-counting) that adds a linear factor to the running

time, to obtain a still reasonably efficient counting algorithm for source-sink-free orientations on

chordal graphs. This work was published in WALCOM ’22 [9]. .

In Section 4.6, we investigate the applicability of the partial rejection sampling framework [27] on

the problem of sampling partial acyclic orientations from a clearly specified and natural (Gibbs-like)

underlying distribution. This work was published in AAAI ’21 [70].

In Chapter 5 we present a Markov chain to sample connected chordal graphs with a given number
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of vertices and a bound on the treewidth. We prove that this chain, when restricted to chordal

graphs of treewidth one and a given number of so-called simplicial vertices, can generate a sample

in polynomial time. In other words, the produced chordal graph is a random tree with a prescribed

number of leaves. This work was published in AAAI ’20 [69].



Chapter 2

Preliminaries

In this chapter, we first introduce some basics of graph theory that are essential for understanding

the thesis. Then we present the concept of approximate counting, almost uniform sampling, and

how to convert them to each other when the underlying problem satisfies the self-reducible property.

Next, we briefly talk about the Tutte polynomial, which is an important research topic from the

counting perspective and is also related to multiple graph structures we studied in this thesis.

Finally, we provide a brief introduction to the Markov chain Monte Carlo methods, a technique

that has been widely used for statistical inference and sampling of graph structures.

2.1 Basics of Graph Theory

2.1.1 Graph structures

In this section, we will introduce some basic concepts in graph theory and graph structures that

we studied, which include chordal graphs, independent sets, and graph orientations.

A graph G is an ordered pair G = (V (G), E(G)), where V (G) is the set of vertices in G and

E(G) ⊆
{
(x, y) | (x, y) ∈ V (G)2 and x ̸= y} is the set of edges in G. When clear from the context,

we use V and E in place of V (G) and E(G). A graph is undirected if all its edges are unordered

pairs, and it is directed if all its edges are ordered pairs. An undirected graph G is connected

if any two vertices (x, y) in the graph are connected by a path (x = v1, . . . , vl = y) such that

(vi, vi+1) ∈ E(G) for i = 1, . . . , l − 1. In the rest of the thesis, underlying graphs are always

8
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undirected and connected. For a graph G, we denote by G[U ] the induced subgraph in G on the

vertex set U ⊆ V (G), where the edge set E(G[U ]) contains all edges in E(G) that have both

endpoints in U . A connected component of a graph is a subgraph that is connected and is not part

of any larger connected subgraphs. An independent set is a set of vertices in a graph where no two

of these vertices are connected by an edge. An independent set is said to be maximal if it is not a

proper subset of any other independent set. A clique in a graph is a subset of vertices such that

every pair of vertices is connected by an edge. And a clique is maximal if it is not a subset of any

clique of a larger size. In an undirected graph G, a separator is a vertex subset S ⊆ V (G) whose

removal from G disconnects some pair of vertices that were previously connected in G (i.e., there

was a path between them in G). A separator is minimal if no proper subset of it is a separator.

A tree T is a connected undirected graph that has a vertex set V (T ) and an edge set E(T ) of size

|V (T )| − 1. Similar to trees, a forest is a set of disjoint trees, i.e., no two trees share common

vertices.

An orientation of an undirected graph G is an assignment of a direction to each edge in G: an

undirected edge e = (u, v) becomes either the directed edge (u, v) or the directed edge (v, u). A

cycle in a directed graph is a path (v1, . . . , vl) such that l ≤ 2 and v1 = vl. For undirected graphs,

we define a (simple) cycle as a path (v1, . . . , vl) such that l > 2, v1 = vl, and only vertex v1 is

repeated on the path. Let G⃗ be the directed graph corresponding to an orientation of G. This

orientation is (1) acyclic if G⃗ is acyclic, (2) bipolar if G⃗ is acyclic and it contains a unique vertex

of indegree 0 (a source) and a unique vertex of outdegree 0 (a sink), (3) sink-free if G⃗ contains no

sinks, and (4) source-sink-free if G⃗ contains no sources and no sinks.

2.1.2 Chordal graphs and clique tree

An undirected graph is chordal if for every cycle of more than three vertices there exists an edge,

called a chord, not on this cycle connecting two vertices on the cycle. In a given graph, a vertex is

simplicial if all its neighbors form a clique (vertex A in Figure 2.1 is simplicial because its neighbors

B and C form a clique). After removing a simplicial vertex from a chordal graph, the resulting

graph is still chordal. A perfect elimination order is an ordering of the vertices such that each

vertex in the ordering is simplicial with regard to the neighbors after it. For the chordal graph in

Figure 2.1, ADCHEFGB is a perfect elimination order. To see this, we first remove vertex A and

its incident edges, the resulting graph is chordal. Then we remove vertex D and its incident edges,

which still gives us a chordal graph. We can keep removing the remaining vertices until we get an

empty graph without breaking the chordality during this process. Rose, Leuker and Tarjan [59]



CHAPTER 2. PRELIMINARIES 10

showed that a graph has a perfect elimination order if and only if it is chordal. They also provided

a linear-time algorithm to find a perfect elimination order on chordal graphs.

Every chordal graph G can be represented by a tree TG where V (TG) is the set of maximal cliques

of G, and the tree satisfies the induced subtree property : For every vertex v ∈ V (G), the induced

subgraph TG[Av] is connected, where Av is the set of maximal cliques of G containing v. Such a

tree TG is called a clique tree of G (an example is shown in Figure 2.1), see, for example, [75] .

The treewidth of a chordal graph equals to the size of its largest maximal clique minus one (The

treewidth is defined for general graphs as well, but we do not need the definition in this work.).

Treewidth is usually used as a parameter in parameterized complexity analysis of algorithms, e.g.,

design and analysis of algorithms on graphs with constant treewidth. Let TG,Cr be the clique tree

TG rooted at a maximal clique Cr. If G is clear from the context, we will simply write TCr , or simply

T if Cr is also clear. We denote by TCr,C the subtree of TCr containing C and its descendants; we

write TC if Cr is clear from the context. Each clique C in TCr can be partitioned into a separator

set Sep(C) = C ∩ Parent(C) and a residual set Res(C) = C\Sep(C), where Parent(C) is the

parent clique of C in TCr (if C = Cr, then Parent(C) = ∅). The following properties hold, see, for

example, [10, 75] (see Figure 2.1):

Figure 2.1: A chordal graph G and one of its rooted clique trees TABC . Vertices in separator sets

are in blue, and vertices in residual sets are in red.

• For each vertex v in G, there is a unique clique Cv that contains v in its residual set. This

implies that |V (TG)| ≤ |V (G)| and that Cv is the root of TCr [Av]; we denote this rooted

subtree by TCv . All other cliques in TCv that contain v have it in their separator set.

• For a clique C let D(C) be the set of vertices in the descendant cliques of C in TCr except

Sep(C), i.e., D(C) :=
⋃

C′∈V (TC)C
′ − Sep(C). Let A(C) be the vertices in the cliques not
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in TC except Sep(C), i.e., A(C) :=
⋃

C′∈V (TCr )−V (TC)C
′ − Sep(C). The separator Sep(C)

separates A(C) and D(C) in G: there is no edge with one endpoint in A(C) and the other

endpoint in D(C).

• Construction of a clique tree for a connected chordal graph can be done in time O(|E(G)|).

2.2 Counting and Sampling

2.2.1 Relationship between counting and sampling

Given a set Ω and a weight function w : Ω → R+, the goal of weighted counting is to calculate

the sum of the weights of members in Ω, i.e.,
∑

x∈Ωw(x), which we call the partition function

with respect to Ω and w, typically denoted by ZΩ,w, or just Z when Ω and w are clear from the

context. Given an error parameter 0 < ϵ < 1 and a probability of failure pfail (pfail < 1/2), a

fully polynomial-time randomized approximation scheme (FPRAS) is a randomized algorithm that

outputs a number Z̃ such that

P
(
(1− ϵ)Z ≤ Z̃ ≤ (1 + ϵ)Z

)
≥ 1− pfail,

and the running time of the algorithm is polynomial in the input size (for graph problems, the input

size can be viewed as the number of vertices and edges in the input graph), log p−1
fail and ϵ−1. For a

given set Ω, a weight function w, and an error parameter δ, a fully polynomial time almost uniform

sampler (FPAUS) is an algorithm that outputs elements from Ω according to a distribution µ such

that ∑
x∈Ω

∣∣∣∣µ(x)− w(x)

Z

∣∣∣∣ ≤ δ,

and its running time is polynomial in the input size and log δ−1. For self-reducible problems, FPAUS

and FPRAS are equivalent, i.e., we can use one to construct the other. A counting problem is self-

reducible if the set of solutions can be partitioned into polynomially many sets, and the solutions

in each of these sets have a one-to-one correspondence with the solutions of a smaller instance of

the problem.

1

1AFTER SHOWING SELF-REDUCIBLITY OF MATCHINGS, SHOW HOW TO GET AN FPAUS FROM AN

FPRAS - OR FROM AN EXACT COUNTING ALGORITHM. THEN FOLLOW WITH THE FPRAS USING

FPAUS.
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Here we use an example of matchings to show how to construct an FPRAS using an FPAUS and

vice versa . Given a graph G = (V,E), a matching M is a subset of the edge set E such that no

two edges in M have common vertices. We first label edges of G by e1, . . . , em, then we define a

graph sequence of subgraphs of G: G0, . . . , Gm where G0 = G and Gi = Gi−1 − ei for 1 ≤ i ≤ m.

Let Ω(Gi) be the set of matchings in Gi, then the number of matchings in Ω(G) is |Ω(G)| and it

can be expressed by

|Ω(G)| =
(
|Ω(G1)|
|Ω(G0)|

· |Ω(G2)|
|Ω(G1)|

· · · |Ω(Gm)|
|Ω(Gm−1)|

)−1

=
|Ω(G0)|
|Ω(Gm)|

= |Ω(G)|,

where the last equality holds because |Ω(Gm)| = 1 since Gm contains no edges. Let pi denote

the ratio |Ω(Gi)|/|Ω(Gi−1)|, then estimating each pi with sufficiently small error will give us an

estimate of |Ω(G)|. Also, we need to notice that the error upper bound of pi depends on the given

error upper bound of |Ω(G)| (δ depends on ϵ). Then we need to build a sampler over each Ω(Gi−1)

such that it can get a sample that is in Ω(Gi) with a probability that is close enough to pi. To get

an FPRAS, the sampling procedure needs to satisfy the following requirements:

1. The number of subproblems should be polynomially bounded. For counting matchings, we

have m subproblems, i.e., estimating the m ratios.

2. The ratio pi =
|Ω(Gi)|

|Ω(Gi−1)| should be polynomially small in the input size, otherwise we might

need superpolynomially (possibly exponentially) many samples to get one sample that falls

into Ω(Gi). To bound pi for the matching problem, we can divide matchings in Ω(Gi−1) into

two sets S1 and S2, where S1 contains matchings that have ei and S2 contains matchings that

do not have ei. Obviously, S2 ⊆ Ω(Gi), and for each matching M in S1, M − ei also belongs

to Ω(Gi). Therefore, pi ≥ 1/2.

3. There is an FPAUS for sampling for each subproblem. For the matching problem, we need

to be able to sample matchings almost uniformly at random on an input graph in polynomial

time.

For the matching problem, to convert an FPAUS to an FPRAS, we need sufficiently many samples

to estimate each ratio pi, from which we can get an estimate of |Ω(G)|. A lower-bound on pi

provides a bound on the number of samples needed to estimate the expected value.

To convert an FPRAS to an FPAUS, for the current graph G = (V,E), we can choose an edge

e = (u, v) ∈ E uniformly at random and use it to split Ω(G) into two exclusive sets Ω(G1) and

Ω(G2) where G1 = (V,E\e) and G2 = G[V \{u, v}]. The probability that e should be included in
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the matching that is currently being generated can be computed from |Ω(G1)| and |Ω(G2)|: namely,

include edge e in the current matching with probability |Ω(G2)|/|Ω(G)| = |Ω(G1)|/(|Ω(G1)+Ω(G2)|,
otherwise, omit it. If e is included, proceed to generate other edges in the matching using the graph

G2, otherwise, use G1. This recursive process gives us a uniformly random matching if we have

access to an exact counting algorithm, and an almost uniformly random matching if we use an

FPRAS.

This high-level exposition is sufficient for the purposes of this thesis, for more details, for example

the calculation of the required number of samples, we refer the reader to [33].

2.2.2 Tutte polynomial

The Tutte polynomial relates to the counts of several graph structures that we studied in this

thesis, such as acyclic orientations and independent sets. In this section, we briefly introduce the

basics of the Tutte polynomial.

The Tutte polynomial TG(x, y) of an undirected graph G = (V,E) with two parameters x, y is

defined as

TG(x, y) =
∑
A⊆E

(x− 1)k(A)−k(E)(y − 1)k(A)+|A|−|V |, (2.1)

where k(A) is the number of connected components in the subgraph (V,A). Let us see an example,

suppose the G = K3 (the complete graph with three vertices):

TK3(x, y) =
∑
A⊆E

(x− 1)k(A)−k(E)(y − 1)k(A)+|A|−|V |

=(x− 1)1−1(y − 1)1+3−3︸ ︷︷ ︸
{e1,e2,e3}

+3 (x− 1)1−1(y − 1)1+2−3︸ ︷︷ ︸
{e1,e2},{e1,e3},{e2,e3}

+ 3 (x− 1)2−1(y − 1)2+1−3︸ ︷︷ ︸
{e1},{e2},{e3}

+(x− 1)3−1(y − 1)3+0−3︸ ︷︷ ︸
∅

=x2 + x+ y.

Lots of important graph quantities are special cases of the Tutte polynomial. For example, the

chromatic polynomial P (G, k) counts the number of proper k-colorings in a graph G, where a

proper k-coloring is an assignment of one of k colors to each vertex in G such that no two adjacent

vertices share the same color. The number of acyclic orientations on a graph G, the TG(2, 0) [82],

is related to the chromatic polynomial of G evaluated, quite surprisingly, at −1 [67]: in particular,

it is P (G,−1) · (−1)|V (G)|.
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Calculating TG(x, y) is generally hard. For example, Linial [46] showed that counting acyclic

orientations is #P-complete (and, then, so is the chromatic polynomial). Jaeger, Vertigan, and

Welsh [32] proved that calculating TG(x, y) is #P-hard, except along the hyperbola H1 = (x −
1)(y − 1) = 1 and at the four special points {(1, 1), (0,−1), (−1, 0), (−1,−1)}. For convenience, we
let Hq denote the hyperbola (x− 1)(y − 1) = q.

The Tutte polynomial is not only hard to calculate exactly, but it is also hard to calculate ap-

proximately. Goldberg and Jerrum [26] proved that FPRASs do not exist for most of the (x, y)

pairs except for some special cases. Their results are shown in Figure 2.2 (the Figure 1 in [26]).

From [26], we know that for a general graph G, there is no FPRAS for P (G, x) for any x > 2, unless

NP = RP. Here, RP is , roughly, a complexity class for problems with polynomial-time randomized

algorithms; the exact definition is not needed for the purposes of this thesis. It should be noted

that, similarly to the P vs. NP problem, where the general belief is that P is not equal NP, NP is

likewise widely believed to not equal RP.
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Figure 2.2: Illustrating approximability of the Tutte polynomial for general graphs: The four

isolated green points and points on the green parts of the hyperbolas H1 and H2 are FPRASable.

Red points are on H2 with y < −1, and they are equivalent to counting of perfect matchings. A

point is grey if its x < −1 or y < −1 and is not on any specific hyperbola, or it is in the area

bounded by |x| < 1, |y| < 1, and the two dashed blue lines (y < −1 − 2x and x < −1 − 2y) and

the dashed blue curve ((x− 1)(y− 1) > 1.5). Grey points are not FPRASable unless RP=NP. The

hardness of the white points (the white areas and the half-line x < −1 and y = 1) is unknown. The

black points are on H4 with y ∈ (−1, 0), and they are at least as hard as grey points.

The two structures we studied in this thesis, independent sets and acyclic orientations, are special

cases of the Tutte polynomial. Also, the source-sink-free orientations has a close relationship with

another special case, strong orientations of a graph.
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2.3 Markov chain Monte Carlo

The Markov chain Monte Carlo (MCMC) comprises a class of algorithms for sampling from a

distribution over a state space. In this thesis, all state spaces are discrete and finite. This sampling

approach is done by first constructing a Markov chain that has the desired target distribution (such

as the uniform distribution) as its stationary distribution over the state space, then running this

chain for “sufficiently many” steps to get a sample. Compared to constructing a Markov chain with

the desired distribution, bounding the number of steps needed to get to the stationary distribution

is usually much harder. In this section, we introduce the basics of Markov chains. For more details

of MCMC, see for example [52].

2.3.1 Basics of Markov chains

A sequence (Xt ∈ Ω)∞t=0 of random variables is a Markov chain (MC) with state space Ω if

Pr [Xt+1 = y | Xt = x, . . . ,X0 = x0] = Pr [Xt+1 = y | Xt = xt] = P (x, y) (2.2)

for all t ∈ N and all xi ∈ Ω for 0 ≤ i ≤ t, where P is the transition matrix of the MC (an example

of a Markov chain transition is shown in Figure 2.3). A Markov chain is usually represented by

its state space Ω and the |Ω| × |Ω| transition matrix P , and the MC can also be represented by P

alone. The transition matrix can be described explicitly, but often it is very sparse and is described

by an algorithm. For an initial distribution µ over Ω (viewed as a row-vector with |Ω| entries), the
distribution after t transitions is µP t. A distribution π over Ω is a stationary distribution of the

Markov chain P if πP = π; in other words, π is the long-term limiting distribution of the chain.

A Markov chain P is reversible with regard to distribution π if π(x)P (x, y) = π(y)P (y, x). If this

condition is satisfied, then π is a stationary distribution of the chain P , which follows from∑
x

π(x)P (x, y) =
∑
x

π(y)P (y, x) = π(y)
∑
x

P (y, x) = π(y).

A chain is irreducible if for any two states x, y ∈ Ω, there exists an integer t such that P t(x, y) >

0, which means any state can get to any other state in finite number of steps. Let T (x) :={
t ≥ 1 : P t(x, x) > 0

}
be the set of times when it is possible for the chain to return to the starting

state x; a chain is aperiodic if gcd T (x) = 1 for all x ∈ Ω. If a chain is both irreducible and

aperiodic, we call it ergodic.

Theorem 1. An ergodic Markov chain P has a unique stationary distribution π such that

lim
t→∞

µP t = π
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Figure 2.3: Illustrating a Markov chain for sampling independent sets of a given graph. The state

space Ω is the set of all independent sets. A transition consists of choosing a uniformly random

vertex: If it is in the current independent set, remove it. If not, and if it can be added, add it

to the current independent set. The figure shows two transition steps of this Markov chain. The

current independent set is shown in black. The Markov chain first picks vertex A and deletes it

from the current independent set, then it picks vertex B, and adds it to the independent set. Each

transition depends only on the current state.

for arbitrary initial distribution µ.

Given a state space Ω and a strictly positive weight function w : Ω 7→ R+, MCMC aims to

construct a reversible, irreducible, and aperiodic Markov chain over Ω whose stationary distribution

is π(x) = w(x)
Z for x ∈ Ω, where Z =

∑
x∈Ωw(x). Achieving a desired distribution over Ω is typically

done by the Metropolis-Hasting algorithm [51], which has two components:

• Neighborhood structure: for two different elements x, y ∈ Ω, they are neighbors if they can be

converted to each other by some local changes. For instance, x and y can be two neighboring

independent sets if they differ at one vertex. The neighborhood structure should ensure

irreducibility.

• Proposal distribution: for each state x we have a transition distribution p(x, ·) over Ω which

satisfies the following properties:

– p(x, y) > 0 if y is a neighbor of x.

– p(x, y) = p(y, x) for all y ∈ Ω.

–
∑

y∈Ω p(x, y) = 1.
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Once we have the above two components, to do a one-step transition of the Markov chain, we

1. For the current state x, pick a neighbor y with probability p(x, y).

2. Move from x to y with probability min
{

π(y)
π(x) , 1

}
.

Suppose π(x) ≤ π(y), the transition probability between x and y would be

P (x, y) = p(x, y) ·min

{
π(y)

π(x)
, 1

}
= p(x, y)

P (y, x) = p(y, x) ·min

{
π(x)

π(y)
, 1

}
= p(y, x) · π(x)

π(y)
.

Then, π is exactly the stationary distribution because π(x)P (x, y) = π(y)P (y, x). To ensure the

aperiodicity of the Markov chain P , we replace P with a new “lazy” chain P̃ := (P + I)/2, where I

is an identity matrix of the same size as P . It means that for any current state, P̃ has a non-zero

probability to stay at that state.

2.3.2 Mixing time of Markov chains

The total variation distance (tvd) between two probability distributions µ and η on Ω is defined by

∥µ− η∥TV =
1

2

∑
x∈Ω
|µ(x)− η(x)| = max

A⊆Ω
|µ(A)− η(A)|

For an ergodic Markov chain P and its stationary distribution π, let µx be the initial distribution

at state x (that is, µx(z) = 0 for all z ∈ Ω such that z ̸= x and µx(x) = 1), the total variation

distance between the t-step distribution and the stationary distribution is defined as

dx(t) := max
x∈Ω

∥∥µxP
t − π

∥∥
TV

Given 0 < ϵ < 1, the mixing time τx(ϵ) measures the time required by a Markov chain, when

started from state x, to achieve the distance to stationarity smaller than ϵ:

τx(ϵ) := min{t : dx(t) ≤ ϵ}

We define the mixing time τ(ϵ) as τ(ϵ) := maxx τx(ϵ), in other words, the mixing time is the time

needed to get ϵ-close to stationarity from the “worst” possible start state.

Mixing time can be viewed as the number of steps a Markov chain needs to take to get one sample.

Therefore, bounding the mixing time is the core part of MCMC algorithms.
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2.3.3 Techniques for bounding the mixing time

In this section we will introduce a couple of techniques for bounding the mixing time of a Markov

chain.

Coupling is a technique to bound the mixing time. A Markovian coupling of a Markov chain P is

a Markov chain (Xt, Yt) with state space Ω× Ω which satisfies for all x, y, x′, y′ ∈ Ω:

P
{
Xt+1 = x′ | Xt = x, Yt = y

}
= P

(
x, x′

)
P
{
Yt+1 = y′ | Xt = x, Yt = y

}
= P

(
y, y′

)
By the coupling lemma [2], given a total variation distance ϵ, if we can find a number t(ϵ), such

that

Pr
[
Xt(ϵ) ̸= Yt(ϵ) | X0 = x, Y0 = y

]
≤ ϵ

then the mixing time is bounded by t(ϵ). This inequality is usually shown by first defining a distance

metric d over Ω× Ω and showing the geometric decreasing of distance:

E [d (Xt+1, Yt+1) | Xt, Yt] ≤ (1− α)d (Xt, Yt)

Since it is not easy to define a distance metric d for arbitrary pairs of instances in Ω, Bubley and

Dyer [15] introduced the path coupling technique. A pre-metric on Ω is a weighted connected graph

on the vertex set Ω with positive edge weights with the property that every edge (u, v) is also the

shortest path from u to v. We say that two elements in Ω are adjacent if there is an edge in the

pre-metric. Once we have a pre-metric, it is sufficient to show the decrease of expected distance

between adjacent pairs of states after taking one step of the coupled Markov chain. Concretely, the

mixing time can be bounded by

τ(ε) ≤
[
1

α
[log(diam(Ω)) + log(1/ε)]

]
, (2.3)

where diam(Ω) is the diameter of Ω, which is defined to be diam(Ω) := maxx,y∈Ω d(x, y).

Although path coupling is very powerful, it is not always applicable for proving rapid mixing [6].

Canonical paths [34, 63] (see also [33] for a nice exposition) is another technique for bounding
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the mixing time. The idea is to define , for every pair of states x, y ∈ Ω, a canonical path

γx,y = (x = z0, . . . , zℓ = y) such that (zi, zi+1) are adjacent states in the Markov chain, that is,

P (zi, zi+1) > 0. Let Γ := {γxy | x, y ∈ Ω} be the set of all canonical paths. The congestion through

a transition t = (u, v), where P (u, v) > 0, is

ϱ(Γ, t) :=
1

π(u)P (u, v)

∑
x,y:γxy uses t

π(x)π(y) |γxy| (2.4)

where |γxy| is the length of the path γxy. Intuitively, a Markov chain mixes fast when none of its

transitions is overloaded. This can be seen from two perspectives:

• First is that π(u)P (u, v) should not be too small. This quantity is the capacity of t, which

can be viewed as the narrowness of a highway between two cities.

• Second is
∑

x,y:γxy uses t π(x)π(y) |γxy|, which is the total probability flow through t. This can

be viewed as the rate of traffic flow over a highway between two cities.

The overall congestion of the paths Γ is defined as

ϱ(Γ) := max
t=(u,v):P (u,v)>0

ϱ(Γ, t). (2.5)

The mixing time of the lazy chain is bounded by

τx(ϵ) ≤ 2ϱ(Γ)
(
ln(π(x)−1) + 2 ln(ϵ−1)

)
. (2.6)

Typically, lnπ(x)−1 is in poly(n), where n is the input size 2, so our target is to bound the

congestion. This can be achieved by the “flow encoding” technique.

Definition 1. Let t = (u, v) be a transition and let Γ̃t be the set of pairs (x, y) for which the

canonical path γxy uses t. A flow encoding of Γ̃t is a mapping ηt : Γ̃t → Ω × B for some set B,

such that

• ηt is injective. This assures that from ηt(x, y) we can uniquely recover (x, y).

• π(x)π(y) ≤ βπ(u)π(ηt(x, y)1) for some β, where ηt(x, y)1 is the first component (the one in

Ω) of ηt(x, y).

2more explanation?
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Once we have an encoding, the congestion in Equation (2.4) can be bounded by

ϱ(Γ, t) =
1

π(u)P (u, v)

∑
x,y:γxy uses t

π(x)π(y) |γxy|

≤ 1

π(u)P (u, v)

∑
x,y:γxy uses t

βπ(u)π(ηt(x, y)1) |γxy|

≤ max(|γxy|)
π(u)P (u, v)

∑
x,y:γxy uses t

βπ(u)π(ηt(x, y)1)

=
max(|γxy|)
π(u)P (u, v)

∑
(z,b)∈Ω×B: ∃(x,y)∈Γ̃t: ηt(x,y)=(z,b)

βπ(u)π(z)

≤ βmax(|γxy|)
P (u, v)

∑
(z,b)∈Ω×B

π(z)

=
βmax(|γxy|)

P (u, v)

∑
b∈B

∑
z∈Ω

π(z)

=
β|B|max(|γxy|)

P (u, v)
.

If max(|γxy|), P (u, v)−1, |B|, and β are polynomial in the input size, we get a polynomial bound

on the congestion. An example of using this technique to bound the mixing time will be shown in

the following chapter.



Chapter 3

Sampling Independent Sets

In this chapter we present the first result of this thesis, showing that a well-known Dyer&Greenhill

Markov chain [19] can sample weighted independent sets in polynomial time on chordal graphs with

a bound on minimal separator size. This result was published at COCOON ’20 [8].

Independent sets are heavily studied in computer science and other fields. Among their many appli-

cations is the hardcore model of gas in statistical physics, where the goal is to sample independent

sets of a given graph according to a specific probability distribution [82] . In particular, for a given

parameter (also known as fugacity) λ ∈ R+, the goal is to generate an independent set S with

probability proportional to λ|S|, where |S| is the number of vertices in S. Thus, the probability

of a set S is λ|S|/ZG(λ), where the normalization term (also referred to as the partition function)

ZG(λ) is defined as the sum of λ|S| across all independent sets S of G. The distribution favors small

independent sets for λ < 0, large independent sets for λ > 1, and it samples uniformly at random

for λ = 1.

In this chapter, we assume that for a given chordal graph G, there exists a constant b ∈ N+, which

we refer to as the separator bound, that upper-bounds the size of every minimal separator of G. We

study a well-known Markov chain, the mixing time of which is unknown for general graphs. The

assumption on the separator size allows us to make progress with the understanding of the mixing

time of this Markov chain on a class of graphs for which polynomial mixing time was unknown prior

to our work. As a side remark, we note that for a given graph G and a constant b, one can check,

in linear time, whether G is chordal and has a separator bound b (any two maximal cliques share

at most b vertices). We obtain a mixing time of O(nO(log b)) for the well-known Dyer&Greenhill

Markov chain [19] for arbitrary λ and chordal graphs with minimal separators of size at most b (or,

22
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equivalently, bound b on the intersection size of any pair of maximal cliques).

3.1 Related Work

Markov chains have attracted attention as a sampling technique for the hardcore distribution since

the late 1990s. The mixing time of a Markov chain is the time it takes to converge to its stationary

distribution, and a Markov chain is said to be rapidly mixing if its mixing time is polynomial in

the size of the input. Luby and Vigoda [47] showed rapid mixing of a natural insert/delete chain

(a single-site Glauber dynamics) for independent sets of triangle-free graphs with degree bound ∆

and λ < 2/(∆ − 2), which is soon extended by Vigoda [79] to general graphs with degree bound

∆. Independently, Dyer and Greenhill [19] analyzed an insert/delete chain with an added drag

transition, showing rapid mixing for the same graph class and range of λs. All these works used

the coupling technique to obtain their mixing results.

Weitz [80] proposed a correlation decay method that can estimate the partition function in polynomial-

time when λ < λc(∆) := (∆−1)∆−1/(∆−2)∆ , where λc(∆) is called the uniqueness threshold on

the ∆-regular tree. This method can generate an independent set uniformly at random in polynoial

when ∆ ≤ 5. A hardness result of Dyer, Frieze, and Jerrum [21] followed, showing that even for

λ = 1, no Markov chain for sampling independent sets that changes only a “small” number (that

is, a linear fraction) of vertices per step mixes rapidly for general graphs, even if the maximum

degree is upper-bounded by six. Later on, Sly [66] proved that for any ∆ ≥ 3, there exists a

positive constant ϵ(∆) such that when λc(∆) < λ < λc(∆) + ϵ(∆) , there is no polynomial-time

approximation algorithm for estimating the partition function ZG(λ), unless NP=RP. This implies

that unless RP=NP, no fully polynomial approximation scheme exists for counting independent

sets on graphs of maximum degree at most ∆. As a further step, Galanis, Ge, Štefankovič, Vigoda,

and Yang [23] removed the constraint of ϵ(∆) and improved Sly’s bound to λ < λc(∆). Anari,

Liu, and Gharan [4] provided a similar result to [23] which shows that for every 0 < δ < 1 and

λ < (1− δ)λc(∆), the single-site Glauber dynamics for the hard-core model mixes rapidly on any

graphs with maximum degree less than or equal to ∆, and, therefore, there exists an FPRAS for

estimating the partition function of the hard-core model in this domain. This result was recently

further improved to O(n log n) mixing time by Chen, Liu, and Vigoda [16].

The research community (both theoretical computer science and statistical physics) is also inter-

ested in sampling and counting independent sets on special types of graphs. Theoretical computer

science is interested in learning the boundaries (graph classes, parameter settings) for which prob-
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lems can be solved in polynomial time, while statistical physics encounters special graph classes

in their applications. The connective constant is, roughly, a measure of the average degree of a

graph, so it can be bounded by a constant even when the underlying graph has no maximum degree

bound. Sinclair, Srivastava, Štefankovič, an Yin [64] designed an FPTAS (and FPTAS is defined

analogously to an FPRAS, but it is deterministic, with no associated error probability) for graphs

of connective constant ∆ whenever the vertex activity λ < λc(∆), where λc(∆) := ∆∆

(∆−1)∆+1 .

Bordewich and Kang [12] studied an insert/delete Markov chain (a multi-site Glauber dynamics)

to sample vertex subsets, a generalization of the hardcore model, and proved that its mixing time

is nO(tw) for an arbitrary λ and n-vertex graphs of treewidth tw. Very recently, generalizing work

of Matthews [50] on claw-free graphs, Dyer, Greenhill, and Müller [20] introduced a new graph

parameter, the bipartite pathwidth, obtaining a mixing time of nO(p) for the insert/delete chain for

an arbitrary λ and graphs with bipartite pathwidth bounded by p. These works used the canonical

paths technique [34] to prove rapid mixing. Interestingly, Okamoto, Uno, and Uehara [56] designed

polynomial-time dynamic programming algorithms to count independent sets, maximum indepen-

dent sets, and independent sets of fixed size on chordal graphs without any restrictions, which can

then be used to sample independent sets from the hardcore distribution.

3.1.1 Dyer&Greenhill chain

Recall that we are given a graph G and a parameter λ ∈ R+. The most commonly used Markov

chain for sampling independent sets is the Glauber dynamics (also known as the Luby-Vigoda

chain or the insert/delete chain): Let S be the current independent set. Pick a random vertex

u ∈ V (G). If u ∈ S, remove it from S with a probability dependent on λ to maintain the desired

target distribution. Namely, in the target distribution the probability of the set S is λ|S|/ZG(λ),

which can be achieved by doing the “remove transition” with probability 1
1+λ . If u ̸∈ S and if none

of its neighbors are in S, add it to S with probability λ
1+λ . Our polynomial mixing time results

hold for the Glauber dynamics but in this work, we prove mixing time bounds for a closely related

Markov chain by Dyer and Greenhill [19].

The Dyer&Greenhill chain: Let S ∈ ΩG be the current independent set. Pick a vertex u

uniformly at random from V (G). Then:

[Delete ↓:] If u ∈ S, remove it with probability 1/(1 + λ).

[Insert ↑:] If u /∈ S and none of the neighbors of u are in S, add u with probability λ/(1 + λ).
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[Drag ↔:] if u /∈ S and it has a unique neighbor v ∈ S, add u and remove v with probability

λ/(4(1 + λ)).

Otherwise, do nothing.

Let S′ be the resulting independent set (if none of the above holds for u, let S′ = S), which is the

next state of the Markov chain. This chain is a variant of the Metropolis filter. It is ergodic with

the desired stationary distribution π(S) = λ|S|

ZG(λ) [19].

3.2 Our Contribution

We use the canonical paths technique but we need to overcome the “non-linearity” of our data.

The technique relies on finding a Markov chain path (a canonical path) between every pair of states

in such a way that no transition gets overloaded (congested). This is typically done by considering

the symmetric difference of the two states (a pair of independent sets), gradually removing one

vertex from the initial independent set while adding a vertex from the final independent set. If

the symmetric difference induces a collection of paths in the original graph, we can “switch” each

path from initial to final starting at one end-point of the path and gradually going to the other

end-point, never violating the independent set property. Bounded bipartite pathwidth guarantees

that the symmetric difference can be viewed as “wider” paths, as does bounded treewidth due to

its relation to the (non-bipartite) pathwidth. However, for our graphs, the symmetric difference is

tree-like, which leads to the need to recursively “switch” entire subtrees from initial to final before

being able to process the root vertex from the final independent set. Due to this “tree-like” process,

we also need to overcome corresponding complications in the analysis of the congestion.

3.2.1 Canonical paths for chordal graphs

From now on we assume that G is a connected chordal graph with n vertices. We will define a

canonical path between every pair of independent sets I (“initial”) and F (“final”) in G. As is

often done in canonical paths construction, we will work only with vertices of I⊕F , the symmetric

difference of I and F : we will gradually remove vertices from I \ F while adding vertices in F \ I.
(Notice that vertices in I ∩ F do not neighbor I ⊕ F , and hence we do not need to touch them.)

We first observe that the symmetric difference of two independent sets in a chordal graph forms an

induced forest (see Figure 3.1).
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Figure 3.1: The black vertices in the left graph form an independent set I. The grey vertices in

the middle graph form an independent set F . The induced subtree on the right is their symmetric

difference (dashed vertices and edges are not in the symmetric difference).

Lemma 2. Let G be a chordal graph and let I and F be its two independent sets. Then, the

subgraph of G induced by I ⊕ F is a forest.

Proof. Let H be the subgraph induced by I⊕F . By contradiction, assume that H contains a cycle

D. Since G is chordal and H is induced, D must have a chord in H, obtaining a shorter cycle.

Applying this argument inductively, we get that H contains a triangle T . But then T must either

contain two I-vertices or two F -vertices, which is impossible because both I and F are independent

sets. Therefore, H is a forest.

We assume that the vertices of G are labeled 1, . . . , n. Before defining our canonical paths, we fix

a clique tree T corresponding to G and we root it at a vertex R (for example, let R be the clique

that has vertex 1 in its residual set), obtaining TR. For a vertex u in V (G), let Cu be the clique

of TR that contains u in its residual set. We define the depth of u in TR as d(u) := d(Cu), where

d(Cu) is the depth of Cu in TR (that is, d(Cu) is the distance of Cu from the root R).

For a pair I, F ∈ ΩG, we define the canonical path from I to F as follows. By Lemma 2, each

connected component of G[I⊕F ], the subgraph of G induced by I⊕F , is a tree. Since the connected

components of G[I ⊕ F ] form a partition of I ⊕ F , we refer to the vertex sets of the connected

components as components of I ⊕ F . We process components in I ⊕ F in the ascending order of

their smallest vertex. We first define a start vertex for each component: For a current component

D, its start vertex uD ∈ I ⊕ F is the vertex with the smallest depth. If there are multiple such

vertices, we pick the smallest one.

We define the canonical way to convert the current component D from I to F as follows: We process
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Figure 3.2: A canonical path from independent set I to F (I and F are mentioned in Figure 3.1).

Notice that the doubled circles denote the current independent set. At the beginning, the current

independent set consist of A,G. We first apply ↓ on A, which gives us the left independent set.

Then we apply ↔ to G and its parent B, which leads to the middle independent set. Finally, we

apply ↑ to H to get the final independent set.

D by doing depth-first search of G[D] from its start vertex uD, processing the child vertices of the

current vertex in increasing order of the sizes of the subtrees associated with the child vertices. We

break ties by processing smaller children first. Let u be the current vertex in the depth-first search.

Then:

• If u ∈ I: If its parent has no other neighbors in the current independent set, we apply the

drag transition ↔ on u and its parent. Otherwise, we apply the delete transition ↓ on u.

• If u ∈ F : If u has no children, we apply the insert transition ↑ on u. Otherwise, we proceed

to process the children of u.

In other words, we always remove an I-vertex before visiting its children, and we add an F -

vertex (either by the insertion ↑ or by dragging ↔) to the independent set after we process all its

descendants. Clearly, the transitions for u ∈ I maintain the current state as an independent set.

Notice that an F -vertex is added after its I-children have been removed, and we have removed its

I-parent prior to visiting this vertex; therefore, these transitions are also legal and maintain the

current state as an independent set throughout the process. Figure 3.2 shows an example of the

canonical paths.



CHAPTER 3. SAMPLING INDEPENDENT SETS 28

3

1

6

2 4

5

8

12

15

16

18 19

9

7

10 11

13 14

17

1 2 3

2 3
4 5

2 5
6

6
9

5
7

7
10

7
11

11
13

11
14

4 5
8

4 8
12

4 12
15

15
16

15
17

16
18 19

Figure 3.3: On the canonical path from I to F : On the left is a chordal graph with 19 vertices.

An initial and a final independent set I and F are shown in black and grey, respectively. Solid

lines indicate the edges of the induced subgraph G[I ⊕ F ], the other edges are dotted. G[I ⊕ F ] is

processed from vertex 1, the current transition t is adding u = 13, and the current independent set

is shown in double circles. Path pu is shown using arrows, Qpu = {5, 11}. Vertices in η̂t(I, F ) are

squared. A corresponding clique tree is on the right, each clique represented by a rectangle with

the separator set and the residual set at the top and bottom, respectively.

3.2.2 Bounding the congestion

Let t = (S, S′) be a transition for which we want to bound the congestion ρ(Γ, t), see (2.4), the

definition of which involves a sum through all canonical paths that use t. To bound this sum, one

typically defines an encoding for each canonical path γI,F through t. The goal for the encoding is

to comprise of a state of ΩG (the set of all independent sets on G) and possibly some additional

information chosen from a set of polynomial size.

Suppose I, F ∈ ΩG are such that γI,F uses t. Our encoding ηI,F of γI,F will consist of multiple

parts. We start by defining its first part η̂t(I, F ), see Figure 3.3:
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• Let D be the component of I ⊕ F on which t is applied (that is, t inserts, deletes, or drags a

vertex u ∈ D).

• Let pu = (uD, . . . , u) be the path from the start vertex uD to u in G[D].

• Let Qpu be the set of vertices in pu \ {u} that (a) have more than one child in the tree G[D]

rooted at uD, and (b) their successor vertex on pu is not their last child.

• Then, let

η̂t(I, F ) = (I ⊕ F ⊕ (S ∪ S′)) \Qpu . (3.1)

Denote by

cp(t) := {(I, F ) | t ∈ γI,F }

the set of pairs (I, F ) ∈ Ω2
G whose canonical path γI,F uses transition t. Then we have the following

lemma.

Lemma 3. For a transition t and an independent set pair (I, F ) such that (I, F ) ∈ cp(t), η̂t(I, F )

is an independent set.

Proof. Let S, S′, u, and D be defined as above. Let A = I ⊕ F ⊕ (S ∪ S′). Then by the definition

of the canonical paths, components of I ⊕ F prior to D have been already processed, that is, for

every such component D′, the current state S (and S′) contains vertices in D′ ∩F . Likewise, every

component D′ after D is untouched, that is S (and S′) contains vertices in D′ ∩ I. Thus, A, and

therefore also η̂t(I, F ), contains the I-vertices in the processed components and the F -vertices in

the untouched components. These I-vertices in A (and η̂t(I, F )) form an independent set since

I ∈ ΩG, the same is true for the F -vertices. Moreover, if D′ and D′′ are two different components

of I ⊕ F (that correspond to two different connected components of G[I ⊕ F ]), there is no edge in

G[I ⊕ F ] connecting D′ and D′′. Thus, so far, A \D forms an independent set, whose vertices do

not neighbor D.

It remains to analyze D itself. The path pu splits the tree G[D] into processed parts and untouched

parts. Then A agrees with I on the processed parts and it agrees with F on the untouched parts.

If v, v′ ∈ D are adjacent and neither is on pu, then v and v′ cannot be both in A because these two

vertices are either both in the processed or both in the untouched part of the tree. Therefore, for

any two adjacent vertices in D that are both in A, at least one of them is on pu. We will prove

that it is sufficient to remove Qpu from A to make it an independent set.
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Let v be a vertex in A and v ∈ pu \ Qpu (that is, v’s last child in D is on pu). Then, v must be

in I because if v were in F , it would have been added to S (and therefore not be in A) by the

drag transition ↔ when processing v’s last child. We will show that there is no neighbor v′ of v

in A \ Qpu , which will conclude our proof of η̂t(I, F ) = A \ Qpu being an independent set. Since

v ∈ I, every neighbor of v in D is in F . We first consider v’s neighbors on pu: Let vparent be the

parent of v (if available) and vchild be the last child of v. Notice that u ̸= v because u ∈ S ∪S′ and,

therefore, it is not in A. Thus, vchild exists.

We claim that a vertex v′ is in A∩F ∩pu if and only if it is in Qpu∩F . This is because v′ ∈ A∩F ∩pu
if and only if v′ ∈ F ∩ pu has not yet been added to S, which means that when we were processing

the child v′′ of v′ on pu, the transition over v′′ was remove ↓ and thus v′′ was not the last child of

v′, which is equivalent to v′ ∈ Qpu ∩ F . Therefore, for neighbor v′ ∈ {vparent, vchild} of v we have

v′ ∈ F and v′ /∈ A \Qpu .

Finally, consider a neighbor v′ of v in A \ pu. Since vchild} is the last child of v, we have that v′

has been already processed. Since v′ ∈ F , it has been already added to S. Therefore, v′ /∈ A,

concluding the proof that η̂t(I, F ) = A \Qpu is an independent set.

Next we observe the following bound on the size of Qpu . A similar argument was made by Ge and

Štefankovič [24].

Lemma 4. Let t = (S, S′) be a transition, (I, F ) ∈ cp(t), and u, D, uD, and Qpu be defined as

above. Then, |Qpu | ≤ log2 n.

Proof. Let Qpu = {v1, v2, . . . , vℓ}, where the vertices are ordered by increasing distance from uD on

the path pu. For a vertex v ∈ D, let Tv be the v-rooted subtree of G[D] and |Tv| be the number of

vertices in Tv. Because for each vertex vi in Qpu its successor vertex v′ on pu is not its last child,

and we always process the children in increasing order of the sizes of their subtrees, we have that

|Tvi | ≥ 2|Tv′ | ≥ 2|Tvi+1 |. Therefore, n ≥ |Tv1 | ≥ 2ℓ, which implies ℓ ≤ log2 n. □

In our congestion bounds, we will view I ⊕ F through the lens of the clique tree T . The following

observation follows directly from I and F being independent sets.

Observation 1. Every clique in T can contain at most two vertices of I∪F . If it contains a vertex

in I ∩ F , then it does not contain any other vertex of I ∪ F . If it contains two vertices in I ∪ F ,

then one must be in I and one in F .
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Next, we relate components of I ⊕F to subtrees of the rooted clique tree TR. Recall that Cu refers

to the clique in V (TR) that contains u ∈ V (G) in its residual set, that is u ∈ Res(Cu).

Lemma 5. Let D be a component of I ⊕ F and let X be the subtree of T spanned by clique set

{Cu | u ∈ D}. Let XR be the corresponding rooted tree of X, with edge directions consistent with

TR. Then the following holds:

(i) CuD is the root of XR.

(ii) Let v ∈ D and let p = (uD = u0, . . . , uℓ = v) be the path from uD to v in G[D]. Then

the directed path pC in XR from CuD to Cv passes through Cu0 , Cu1 , . . . , Cuℓ
in this order.

Moreover, Cui’s are all distinct, with a possible exception of Cu0 = Cu1.

Proof. We begin by proving (i). By contradiction, assume that a clique vertex R′ ̸= CuD is the

root of XR. Then there is a directed path p′ from R′ to CuD in XR. Since uD ∈ D is the vertex of

the smallest depth, none of the cliques on the path p′ contain a vertex in D in their residual set.

Therefore, the only reason why R′ would be included in XR is that there is another vertex w ∈ D

such that the path from CuD to Cw in X goes through R′. Let p′′ be the path from R′ to Cw in

XR. Notice that p′′ intersects p′ only at R′. If uD were of depth 0, we would have CuD = R = R′.

Therefore, the depth of uD, and thus also of w, is at least 1. Since both uD, w ∈ D, there is a path

from uD to w in G[D]. Then, this path needs to pass through the separator set Sep(CuD), which

means that Sep(CuD) contains a vertex u′ ∈ D. But then u′ is in the parent clique of CuD , which

would mean that u′ has a smaller depth than uD. This is a contradiction and, therefore, R′ must

be equal to CuD .

To prove (ii), we will use induction on the depth of v (which we defined as the depth of Cv in

TR). For the base case, when v is of the same depth as uD, we have two possibilities. If v = uD,

then p = (uD) and pC = (CuD) and the statement holds. If v ̸= uD, since v and uD are of the

same depth and, by (i), CuD is the root of XR, it follows that Cv = CuD . Then p = (uD, v) and

pC = (CuD) and the statement holds.

For the inductive claim, let v be of depth larger than uD. If Sep(Cv) contains uD, then p = (uD, v)

and pC starts at CuD and ends at Cv, so the statement holds. Otherwise, Sep(Cv) separates uD

from v. Therefore, there must be uk, where k ∈ {1, . . . , ℓ − 1}, such that uk ∈ Sep(Cv). We will

show that k = ℓ − 1, that is, uℓ−1 ∈ Sep(Cv). By contradiction, suppose that k < ℓ − 1. By the

observation 1, there are at most two vertices of D in Cv. Therefore, Cv contains uk and v, and

not vℓ−1. But since uk and v are in the same clique Cv, there is an edge between them. Therefore,
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uk, uk+1, . . . , uℓ−1, uℓ = v is a cycle, contradicting Lemma 2 which states that G[D] is a tree. Thus,

k = ℓ− 1.

The subtree of X of cliques containing uℓ−1 has its root Cuℓ−1
at smaller depth than Cv, since

this subtree contains Cv. Therefore, the path pC needs to pass through Cuℓ−1
. Since the depth of

uℓ−1 is smaller than the depth of v, we may use the inductive hypothesis for v′ := uℓ−1. We get

that the directed path p′C in XR from CuD to Cv′ passes through Cu0 , Cu1 , . . . , Cuℓ−1
in this order.

Since pC passes through Cv′ , it is formed by extending p′C to Cv. Therefore, pC passes through

Cu0 , Cu1 , . . . , Cuℓ
in this order. Moreover, Cuℓ−1

̸= Cuℓ
, finishing the proof.

Corollary 5.1. Let D be a component of I ⊕ F , let v ∈ D, and let p = (uD = u0, . . . , uℓ = v)

be the path from uD to v in G[D]. Then the following holds for the directed path pC = (CuD =

C0, . . . , Cℓ′ = Cv) in TR from CuD to Cv:

(i) For every i ∈ {0, . . . , ℓ}, there exist ji, ki, 0 ≤ ji ≤ ki ≤ ℓ′ such that the cliques on the path

pC that contain ui are exactly cliques Cji , Cji+1, . . . , Cki. Moreover, ui ∈ Res(Cji).

(ii) For every i ∈ {1, . . . , ℓ}, ui−1 ∈ Sep(Cji).

Proof. We first prove (i). From the lemma we know that pC passes through cliques Cu0 , Cu1 , . . . , Cuℓ

in this order. Therefore, for every i ∈ {0, . . . , ℓ}, there is ji such that Cui = Cji . Also, by the

definition of Cui , we have that ui ∈ Res(Cui) = Res(Cji), which also implies that clique Cji−1

(if it exists) does not contain ui. Let ki ≥ ji be the largest index such that each of the cliques

Cji , Cji+1, . . . , Cki contains ui. It remains to show that there is no j′ ∈ {0, . . . , ji−2}∪{ki+2, . . . , ℓ′}
such that ui ∈ Cj′ . By contradiction, suppose such j′ exists. Then there is a unique path in T

from Cj′ to Cji—this path is a subpath of pC . By the induced subtree property, every clique on

this path needs to contain ui, contradicting the fact that Cj1−1 and Cki+1 do not contain ui. Thus,

(i) holds.

For part (ii), since by the lemma Cui−1 precedes Cui on pC , we have that ji−1 < ji. Therefore,

it suffices to show that ki−1 ≥ ji, which then, by definition, implies ui−1 ∈ Sep(Cji). Suppose,

by contradiction, that ki−1 < ji. Since there is an edge (ui−1, ui), there must exist a clique C ′

containing both ui−1 and ui. Since ui ∈ C ′, by Property 2.1.2 in Section 2.1.2, clique C ′ must be

in the rooted subtree TCui
. But then the unique path from Cki−1

to C ′ in TR passes through Cui ,

which, by the induced subtree property, implies that Cki−1+1 contains ui−1 (since C ′ contains it),

contradicting the definition of ki−1 as the largest index with the property described in part (i).

Therefore, ki−1 ≥ ji and (ii) also holds.
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We are ready to define the encoding of the canonical path from I to F , passing through a transition

t = (S, S′). Let Nb := {1, . . . , b}, where b is the separator bound ofG. The encoding ηt(I, F ) consists

of an independent set, a vertex, and a vector from N⌊logn⌋
b :

ηt(I, F ) := (η̂t(I, F ), uD, s1, s2, . . . , s⌊logn⌋),

where the vectors’s role is to indicate the vertices of Qpu that were removed from I ⊕ F ⊕ (S ∪ S′)

during the construction of η̂t(I, F ), see (3.1). We define each sx, x ∈ {1, . . . , ⌊log n⌋}, as follows.

We apply Corollary 5.1 to the path p = pu = (uD = u0, . . . , uℓ = u). For each vertex ui ∈ Qpu ,

we have that ui ∈ Sep(Cji+1) (notice that u /∈ Qpu , thus ji+1 is always well-defined). Suppose we

ordered Qpu in increasing order of distance from u. Let x be the position of ui in this ordering, thus

sx will encode ui. Since |Sep(Cji+1)| ≤ b, we can specify ui by its position in Sep(Cji+1). Thus, sx

is such that ui is the sx-th smallest vertex in Sep(Cji+1). Notice that we will need as many sx’s as

is the size of Qpu , which is bounded by ⌊log n⌋ by Lemma 4. For x > |Qpu |, we let sx = 1. Notice

that V × N⌊logn⌋
b is the set B from the description of canonical paths in the preliminaries.

Lemma 6. Let t be a transition of the Markov chain. The above-described function ηt : cp(t) →
ΩG × V × N⌊logn⌋

b is injective.

Proof. To prove the injectivity, we need to show that given a state η̂t(I, F ), a vertex uD, a vector

(s1, s2, . . . , s⌊logn⌋), and the current transition t = (S, S′), we can uniquely recover the initial and

final independent sets I and F .

Suppose we know I ⊕ F . We show that then we can uniquely recover I and F . By Lemma 2, each

of the components of I⊕F forms a tree. The canonical path processes the components in a specific

canonical order that we can recover from I ⊕ F . Let u be the vertex involved in t and let D be

the component of I ⊕ F containing u. At the time of transition t, components prior to D have

F -vertices in S (and S′) and components after D have I-vertices in S (and S′). Similarly, η̂t(I, F )

includes the I-vertices from the prior components and the F -vertices from the latter components.

Therefore, it remains to determine which vertices of D are in I and which are in F . Based on the

transition t we determine whether u ∈ I or u ∈ F (u is in I if it is being removed and u is in F if

it is being added in t). Since G[D] is a tree, we know that vertices at even distance from u in G[D]

are in the same set as u, and the other vertices are in the other set, determining the partition of D

into I- and F -vertices. Finally, I ∩ F can be derived from S\(I ⊕ F ).

It remains to recover I ⊕ F . Notice that I ⊕ F = (η̂t(I, F )⊕ (S ∪ S′)) ∪Qpu . Therefore, the only

missing part in order to determine I ⊕ F is Qpu . Let B = η̂t(I, F ) ⊕ (S ∪ S′). Since uD is given

and u is known from t, we can construct the path pC from Corollary 5.1 applied to p := pu. Notice
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that we do not yet have the path pu constructed—if we did, we would get I ⊕ F as B ∪ pu and we

would not need to reconstruct Qpu—but, despite not having pu, we can construct pC uniquely just

from u and uD. Our next step will be to construct pu.

Let pC = (CuD = C0, . . . , Cℓ′ = Cu). We want to reconstruct pu = (uD = u0, u1, . . . , uℓ = u).

We know all the vertices in B and we have that u ∈ Cu. We will work our way backwards,

reconstructing ui for i = ℓ− 1, ℓ− 2, . . . , 1. Suppose we know ui+1 and so far x− 1 vertices of Qpu

have been reconstructed. We consider Cui+1 . By Corollary 5.1(ii), we have that ui ∈ Sep(Cui+1).

By observation 1 we know that ui and ui+1 are the only two vertices of I⊕F in Cui+1 . Therefore we

start by checking if clique Cui+1 contains a vertex from B in its separator set. If yes, it must be ui.

If not, we will use sx to define ui as the sx-th smallest vertex in Sep(Cui+1). This process uniquely

determines pu, and hence also I ⊕ F , from which we obtain I and F , completing the proof.

Lemma 7. For every transition t = (S, S′) and every pair (I, F ) ∈ cp(t),

π(I)π(F ) ≤ nλ̄|Qpu |+1π(S)P (S, S′)π(η̂t(I, F ))

where λ̄ := max{1, λ}, and Qpu and η̂t(I, F ) are defined at the start of Section 3.2.2.

Proof. Consider the expressions

λ|I|λ|F | and λ|S∪S′|λ|η̂t(I,F )|.

Each vertex v ∈ V contributes a factor of 1, λ or λ2 to λ|I|λ|F |, according to whether v is in neither,

exactly one, or both of I and F . If v /∈ I and v /∈ F , then v /∈ S ∪ S′ and v /∈ η̂t(I, F ), so the

contribution to both expressions is 1. If v ∈ I and v ∈ F , then v ∈ S ∪ S′ and v ∈ η̂t(I, F ), so the

contribution to both expressions is λ2.

If v ∈ I⊕F , then we have two possibilities: v can be either in (S∪S′)⊕ η̂t(I, F ), or not. In the first

case v contributes λ to both expressions. In the second case, since I⊕F = ((S∪S′)⊕η̂t(I, F ))∪Qpu ,

we get

λ|I|λ|F | ≤ λ|S∪S′|λ|η̂t(I,F )|λ̄|Qpu |.

Dividing by ZG(λ)
2, the square of the partition function, and combining with the fact that |S|, |S′| ≥

|S ∪ S′| − 1, we have

π(I)π(F ) ≤ λ̄λ̄|Qpu |min{π(S), π(S′)}π(η̂t(I, F ))

= nλ̄λ̄|Qpu |π(S)P (S, S′)π(η̂t(I, F )),
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where the last equality comes from π(S)P (S, S′) = π(S′)P (S′, S) (the so-called detailed balance

condition) and from observing that if π(S) ≤ π(S′) then P (S, S′) = 1/n. □

Theorem 8. The congestion of the above-defined canonical paths is bounded by n(3+log2 bλ̄)λ̄, where

b is the separator bound of G and λ̄ := max{1, λ}.

Proof.

ϱ(Γ) = max
t=(S,S′)

 1

π(S)P (S, S′)

∑
I,F∈cp(t)

π(I)π(F ) |γIF |


≤ nλ̄

∑
I,F∈cp(t)

π(η̂t(I, F ))λ̄|Qpu | |γIF | by Lemma 7

≤ n2λ̄
∑

I,F∈cp(t)

π(η̂t(I, F ))λ̄|Qpu | since |γIF | ≤ n

≤ n2λ̄log2 n+1
∑

I,F∈cp(t)

π(η̂t(I, F )) by Lemma 4

≤ n2λ̄log2 n+1
∑
ω∈ΩG

π(ω)nblog2 n by Lemma 6

≤ n3λ̄(bλ̄)log2 n since π is a distribution

≤ n(3+log2 bλ̄)λ̄.

This allows us to bound the mixing time:

Theorem 9. Let G be a connected chordal graph with separator bound b ∈ N+, and let λ ∈ R+.

If λ < 1, let x = ∅, otherwise, let x be a maximum independent set. The mixing time of the

Dyer&Greenhill Markov chain from the start state x is O(n(4+log2 bλ̄)).

Proof. Notice that since the number of independent sets is bounded by 2n and x is one of the

most likely states (has the largest stationary probability), we get that π(x) ≥ 1/2n. Therefore,

1/π(x) ≤ 2n and the mixing time can be bounded as follows:

τx(ϵ) ≤ ϱ(Γ)

(
ln

1

π(x)
+ ln

1

ϵ

)
≤ n(3+log2 bλ̄)λ̄

(
n ln 2 + ln

1

ϵ

)
.
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We remark that obtaining the start state x, a maximum independent set, is computable in polyno-

mial time for chordal graphs. We conclude with a natural open problem, in addition to extending

rapid mixing results to other graph classes: extending our results to arbitrary chordal graphs.



Chapter 4

Sampling and Counting Graph

Orientations

In Chapter 2, we mentioned that counting of acyclic orientations, bipolar orientations, and sink-

free orientations are all #P-complete for general graphs, which motivates our study on chordal

graphs, a restricted and well-studied graphs class. In this chapter, we present polynomial-time

counting and sampling algorithms for acyclic orientations and bipolar orientations. We then provide

polynomial-time counters for sink-free orientations and source-sink-free orientations. The sampling

and counting of the four types of orientations are all based on dynamic programming over the clique

tree structure. Finally, we introduce the work of sampling partial acyclic orientations on chordal

graphs by the so-called partial rejection sampling technique.

4.1 Notation and Useful Properties

Recall that for a chordal graph G, its clique tree TG, and one of its maximum cliques Cr, we use

TG,Cr to represent the clique tree that has Cr as its root. We simplify the notation to be TCr if G

is clear from the context. Then for a clique C, we let TCr,C denote the subtree of TCr containing C

and its descendants. And we write it as TC if Cr is clear from the context. We use G[TC ] for the

subgraph induced by the vertices that belong to cliques in TC , i.e., G[TC ] := G
[⋃

C′∈V (TC)C
′
]
. We

will often work with the following subgraph of G[TC ]: Let Ĝ[TC ] be G[TC ] with the edges within the

separator set Sep(C) removed, i.e., Ĝ[TC ] := G[TC ]−E(G[Sep(C)]). Figure 4.1 shows an example

of G[TC ] and Ĝ[TC ]. The following lemma will be essential for our calculations.

37
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Figure 4.1: Illustrating TC , G[TC ], and Ĝ[TC ]: Graph G is shown in the right two figures, and one

of its clique trees, TG is shown on the left. The bold part of the clique tree TABC is the sub clique

tree TBCE ; the red subgraph in the middle is G [TBCE ]; the red subgraph on the right is Ĝ[TBCE ]

because E(G[Sep(BCE)] contains the edge BC.

Lemma 10. Let C be a clique in the rooted clique tree TCr and let C1, C2, . . . , Cd be its children

cliques. The edge sets of the graphs Ĝ[TCi ], i = 1, . . . , d, are mutually disjoint.

Proof. By contradiction, suppose that there are i ̸= j ∈ {1, . . . , d} such that Ĝ[TCi ] and Ĝ[TCj ] share

an edge e = (u, v). Since Sep(Ci) is a separator in G, separating vertices in V (G[TCi ]) − Sep(Ci)

from V (G)−V (G[TCi ]), and since V (G[TCj ]) ⊆ V (G)−V (G[TCi ]), it follows that u and v must be

in Sep(Ci). But then e is not in Ĝ[TCi ], a contradiction.

In order to make the running times of our algorithms more readable, we assume that each arithmetic

operation takes a constant time. This is, of course, a bit optimistic, since the ultimate number of

orientations can be as high as 2m for a graph with m edges, and, therefore, the true running time

of each arithmetic operation adds a factor of about m polylog(m). We use Õ() notation to indicate

that this factor is omitted from our running time estimate.

Our sampling algorithms produce orientations uniformly at random: Each orientation is chosen

with equal probability from the set of all desired orientations. We use [d] to denote {1, 2, . . . , d}.

4.2 Sampling and Counting Acyclic Orientations

In this section, we present an exact counter of acyclic orientations, which also leads to an efficient

uniform sampler. The sampler runs in linear time per sample which is, in fact, faster running time
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than the counting algorithm itself.

4.2.1 Related work

The problems of counting acyclic orientations and counting and sampling sink-free orientations on

a given graph have attracted a lot of attention. Linial [46] showed that counting acyclic orienta-

tions is a #P-complete problem on general graphs. The problem of counting acyclic orientations

corresponds to a specific input of the well-studied Tutte polynomial TG(x, y) [14], in particular to

TG(2, 0) [82]; see also Section 2.2.2 for additional discussion of the Tutte polynomial. The number

of acyclic orientations on a graph G is also related to the chromatic polynomial of G evaluated

at −1 colors [67]: in particular, it is PG(x) · (−1)|V (G)|, where PG(x) is the chromatic polyno-

mial of G. Since the chromatic polynomial of a chordal graph can be efficiently computed, see

e.g., Agnarsson [1], this yields an efficient counter for acyclic orientations. However, due to the

inclusion-exclusion effect of evaluating the polynomial at x = −1, it appears that this counting

algorithm does not yield a corresponding uniform sampler. Moreover, to the best of our knowl-

edge, the problem is not known to be self-reducible, a property that can be used to derive (almost)

uniform samplers from counting algorithms (and vice versa, approximate counting algorithms from

sampling algorithms).

4.2.2 Our contributions

We first describe an alternative algorithm for counting acyclic orientations of a given chordal graph,

one that does not rely on the chromatic polynomial and avoids an inclusion-exclusion type of

calculation. This allows us to efficiently sample acyclic orientations uniformly at random. In

particular, we prove the following two theorems:

Theorem 11. Let G be a connected chordal graph. The number of its acyclic orientations can be

calculated in Õ(|V (G)|) +O(|E(G)|) time.

Theorem 12. A uniformly random acyclic orientation can be produced in time O(|E(G)|).

One interesting feature of our sampling algorithm is that it is a stand-alone algorithm (which does

not need to determine the corresponding counts), and hence its running time is more efficient than

that of the counting algorithm. The theorem relies on the following lemma which explores the

structure of acyclic orientations and their relation to a clique tree of the given graph.
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Lemma 13. Let G be a connected chordal graph and let T be a rooted clique tree of G. For a clique

C in T and an acyclic orientation σ over C, let AO(TC , σ) be the set of acyclic orientations on

G[TC ] that are consistent with σ. For any C and any two acyclic orientations σ1 and σ2 over C,

we have

|AO(TC , σ1)| = |AO(TC , σ2)| .

Proof. We will construct a bijective mapping between AO(TC , σ1) and AO(TC , σ2) for arbitrary σ1

and σ2. The construction will proceed by induction on the height of C in the rooted clique tree T .

When C is a leaf, then AO(TC , σ1) contains a single orientation, σ1 itself. Therefore, we map σ1

to σ2 to get the bijection.

When C is not a leaf, let C1, . . . , Cd be its children in the clique tree. For each Ci, let σi
j be the

orientation of Sep(Ci) consistent with σj for j = 1, 2. Let α be an orientation in AO(TC , σ1). By

induction, we have a bijection between AO(TCi , σ
i
1) and AO(TCi , σ

i
2). Let αi be the orientation

of G[TCi ] consistent with α, and let βi be its corresponding orientation (from the bijection) in

AO(TCi , σ
i
2). We map α to the orientation β defined as the union of β1, . . . , βd, and σ2. We claim

that:

• The union of β1, . . . , βd is an orientation, that is, there are no i1, i2 and an edge e = (u, v) such

that e is oriented in opposite ways in βi1 and βi2 . Suppose, by contradiction, there are such

i1, i2 and e. Therefore, the edge e is in G[TCi1
]∩G[TCi2

], and as such u, v ∈ Sep(C1)∩Sep(C2).

Then, since both σi1
2 and σi2

2 are consistent with σ, the orientation of e is identical in both

βi1 and βi2 , a contradiction.

• β is an orientation. This follows since each βi is consistent σ
i
2; the additional edges oriented

by σ2 do not interfere with the edges oriented by the union.

• β ∈ AO(TC , σ2). We need to show that β is acyclic. Suppose, by contradiction, that β

contains a cycle. Let u1, . . . , uq be a shortest cycle in β. By the inductive hypothesis, each

βi is acyclic. Therefore, the cycle needs to pass through C. But since σ2 is acyclic, the cycle

also needs to contain vertices outside of C. If the cycle contained exactly one vertex of C,

it would be entirely within some TCi , a contradiction with βi being acyclic. Since the cycle

is shortest, it contains at most two vertices of C (if it contained more, the cycle could have

been shortened by skipping over one of these vertices, since C is a clique). Therefore, the

cycle contains exactly two vertices of C, which have to be consecutive on C (otherwise the

cycle could have been shortened). Without loss of generality, let these vertices be u1 and u2.

Then, let i be such that u3 is in G[TCi ]. Notice that there is a unique such i, since u3 ̸∈ C.
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Therefore, u2 ∈ Sep(Ci). Let up be the last vertex on the cycle in G[TCi ] − Sep(Ci). Then,

p = q since the cycle needs to pass through Sep(Ci) again but there is only one other vertex

in C on the cycle: u1. But then u1 ∈ Sep(Ci) and the cycle is entirely included in G[TCi ], a

contradiction with βi being acyclic.

• The mapping is injective. Suppose there is a β mapped to by two different orientations in

AO(TC , σ1), let us call them α and α′. Since β is the union of β1, . . . , βd and σ2, there must

be a βi that both αi and α′
i map to, a contradiction with the inductive hypothesis.

• The mapping is surjective. This follows since for a given β ∈ AO(TC , σ2), we can reverse the

process and construct a corresponding α ∈ AO(TC , σ1) that maps to β.

Therefore, the mapping is a bijection, completing the proof.

Proof of Theorem 11. Let T be a clique tree of G rooted at a clique Cr. For a clique C in T ,

we define AO(TC) as the number of acyclic orientations of G[TC ] under the assumption that the

orientation of the edges of G[Sep(C)] has been fixed. Then, AO(TCr) computes the overall number

of acyclic orientations of G, since Sep(Cr) = ∅. We show how to compute AO(TC) by dynamic

programming over the clique tree:

AO(TC) =
|C|!

|Sep(C)|!

d∏
i=1

AO(TCi), (4.1)

where C1, . . . , Cd are the children cliques of C in T (and d = 0 if C is a leaf of T ). To prove the

correctness of this expression, let σSep(C) be the given orientation of G[Sep(C)]. We first extend

it to an acyclic orientation σC over C: Since an acyclic orientation of a clique corresponds to an

ordering of its vertices, we have |C|! such orderings but we are overcounting by allowing different

orderings within Sep(C). Hence, the number of σC ’s consistent with σSep(C) is
|C|!

| Sep(C)|! . Therefore,

the calculation is correct if C is a leaf of T .

For a non-leaf C, let us fix an arbitrary σC and let σSep(Ci) be the orientation restricted to

G[Sep(Ci)]. Let Ai be the set of acyclic orientations of G[TCi ] consistent with σSep(Ci). We show

that there is a bijection between AO(TC , σC) and A1×· · ·×Ad. For an orientation σ ∈ AO(TC , σC),

let σi be the orientation restricted to G[TCi ]. This mapping is clearly an injection since a subset of

an acyclic orientation is still acyclic and we can reconstruct the original orientation from the σi’s.

To prove its surjectivity, let σi ∈ Ai for i ∈ [d]. We construct σ by taking the union of the σi’s and

σC . It follows from Lemma 10 that every edge is oriented consistently (no edge is oriented in two

opposite directions), σ is consistent with σC by construction. It remains to show that σ is acyclic.
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By contradiction, suppose it contains a cycle; we will consider a shortest cycle in σ. Since the σi’s

and σC are acyclic, the cycle must pass through multiple G[TCi ]’s, visiting C at least twice. Let

u1, u2 ∈ C be two vertices on this cycle. There is an edge in C between u1 and u2, hence the cycle

can be shorten in σ by taking a shortcut through this oriented edge, a contradiction. Therefore

σ ∈ AO(TC , σC). By construction this σ maps to the σi’s, proving the surjectivity, and hence the

bijection, of the mapping.

Notice that AO(TCi) = |Ai|. Since, by the inductive hypothesis, the calculation of AO(TCi) is

correct, it follows that
∏d

i=1AO(TCi) computes |AO(TC , σC)|. By Lemma 13, |AO(TC , σC)| does
not depend on the specific orientation of σC , and there are |C|!

| Sep(C)|! possible σC ’s, yielding the

expression (4.1).

After constructing the clique tree T (which is of size O(|V (G)|)), the algorithm performs a tree

traversal of T , and at each clique C of T it performs O(degT (C)+1) arithmetic operations.1 Hence

the running time is Õ(|V (G)|) +O(|E(G)|).

An example of calculation of Equation 4.1 is shown in Figure 4.2.

Figure 4.2: Counting of acyclic orientations in a graph G. When the current clique C is among

{{B,G, F}, {G,E,H}, {C,E,D}}, since it does not have any children, then AO(TC) =
|C|!

| Sep(C)|! =
3!
2! = 3. When C = {B,E,G}, AO(TC) = 3!

2! · AO
(
T{B,G,F}

)
· AO

(
T{G,E,H}

)
= 27. Calculating

each quantity by this manner will finally give us the number of acyclic orientations in G, i.e.,

AO
(
T{A,B,C}

)
= 1458.

1Computation of the factorial of an n-bit number takes O(npolylogn) [13], which will be subsumed by our Õ()

notation.
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Figure 4.3: Sampling acyclic orientations on graphG. We first assign clique {A,B,C} an orientation

uniformly at random (in this example we pick A → B, A → C, and B → C). Then we pick an

acyclic orientation that is consistent with B → C over {B,C,E} uniformly at random, which is

B → C,B → E,C → E. Keep doing it for all cliques in a depth-first search manner gives us an

acyclic orientation on G.

Proof of Theorem 12. To sample an acyclic orientation uniformly at random, we first construct a

clique tree of the input graph and randomly pick a clique Cr as the root. We pick a uniformly

random ordering of Cr. Then we process the remaining cliques in a depth-first search manner. Let C

be the current clique we are processing, we always pick an orientation onG[C] that is consistent with

G[Sep(C)] (see Figure 4.3). This can be done by choosing a random ordering π of C and replacing

the relative order of Sep(C) in π by the given ordering. Hence the running time is O(
∑

C∈T |C|).
Observe that

∑
C∈T |C| =

∑
v∈V (G) |Sv|, where Sv is the set of cliques of T that contain v. Suppose

the cliques in Sv are C1, . . . , Ck. Then there are vertices v1, . . . , vk such that Cvi = Ci. Since

vi ∈ Res(Ci) by definition, and since each vertex is in a unique residual set, it follows that v1, . . . , vk

are all distinct (one of which could be v). Also, they are each a neighbor of v (or v itself). Therefore,

|Sv| = k ≤ degG(v) + 1. Then,
∑

v∈V (G) |Sv| ≤
∑

v∈V (G) degG+1 = O(|E(G)|).

4.3 Sampling and Counting Bipolar Orientations

In this section, we present efficient (exact) counting and sampling algorithms for bipolar orientations

on chordal graphs, extending our approach for acyclic orientations to maintain the desired source

and sink. Recall that a bipolar orientation of an undirected graph is an assignment of a direction

to each edge that makes the graph directed, acyclic, and with a single source and a single sink.

4.3.1 Related works

Bipolar orientations are also known as st-numberings and are a natural restriction of acyclic orien-

tations with applications in, for example, planarity testing [45]. While finding a bipolar orientation
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can be done in linear time by depth first search [72], to the best of our knowledge no efficient algo-

rithm for counting or sampling of bipolar orientations is known, even for restricted graph classes.

The exact counting problem is #P-complete on general graphs due to a simple reduction from

counting acyclic orientations: for a graph G, add two new vertices, make them the source and the

sink, and connect them to each vertex in G.

4.3.2 Our result

In this section we prove the following theorem:

Theorem 14. Let G be a chordal graph and s ̸= t be two of its vertices. The number of bipolar

(s, t)-orientations of G can be computed in Õ(|V (G)|) + O(|E(G)|)) time. A uniformly random

bipolar (s, t)-orientation of G can be produced in time O(|E(G)|).

We first prove a couple of lemmas that characterize bipolar orientations in chordal graphs. Recall

that for a vertex v ∈ V (G) we use Cv to denote the unique clique in T with v ∈ Res(Cv).

Lemma 15. Let G be a connected chordal graph and let s, t ∈ V (G), s ̸= t. Let T be a clique

tree of G rooted at a clique that contains s and let C be a maximal clique of G. Let σ be a bipolar

(s, t)-orientation of G, and let σ′ be the orientation σ restricted to G[TC ]. Then the following holds:

(i) If C is not a descendant of Ct, and is not on the Cs-Ct path in T , then σ′ is bipolar with both

its source and its sink in Sep(C).

(ii) If C is on the Cs-Ct path in T and C ̸= Cs, then σ′ is bipolar where its source is in Sep(C)

and its sink is t. On the other hand, if C ̸= Ct, then σ′ restricted to G[C] has its sink in

C ∩ Sep(C ′), where C ′ is the child of C on the Cs-Ct path.

(iii) If C is a descendant of Ct in T and C ̸= Ct, then σ′ is bipolar with both its source and its

sink in Sep(C).

Proof. Clearly, σ′ is acyclic, so we only focus on proving bipolarity and the locations of the source

and the sink. Whichever case applies, C ̸= Cs. We first prove that there is no source s′ ̸∈ Sep(C)

in σ′. Suppose such s′ exists. Since G is connected, there is a path between s and s′, and every

such path goes through the separator Sep(C). Since s is the only source in σ, there is a directed

path in σ from s to every vertex in G. Therefore, there has to be a directed path from s to s′

consistent with σ, and the path passed through Sep(C). Thus, there is an incoming edge to s′ in
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G[TC ], a contradiction with s′ being a source in σ′. We proved that all sources in σ′ are in Sep(C).

Moreover, since Sep(C) is a clique, there can be at most one source (and at most one sink) in

Sep(C).

For the number and location of the sinks, we distinguish the individual cases. We first prove (i).

The assumption implies that t ̸∈ V (G[TC ]). Suppose, by contradiction, that σ′ contains a sink

t′ ̸∈ Sep(C). Since σ is bipolar, for every vertex v ∈ V (G) there has to be a directed path in G

consistent with σ from v to t. Consider v = t′. Every path from t′ to t in G has to go through

Sep(C), which means that t′ has to have an outgoing edge in σ and therefore cannot be a sink in

σ′, a contradiction. Therefore, in case (i) σ′ is bipolar with both its source and its sink in Sep(C).

For part (ii), we have that t ∈ V (G[TC ]). Therefore, t must be a sink in σ′. Suppose, by contra-

diction, that there is another sink t′ in σ′. Since G[TC ] is connected, there is a path from t′ to t in

G[TC ], and therefore also in G. Since t is the only sink in σ, this path has to be oriented from t′ to

t, and hence t′ cannot be a sink in σ, not in σ′. Thus, t is the only sink in σ′. If C ̸= Ct, let σ
′′ be

the restriction of σ′ to G[C] and let s′′ and t′′ be the source and the sink of σ′′. Since σ′ is bipolar,

there must be a directed path from t′′ to t in σ′. Then, prepending this path by the edge (s′′, t′′),

we get a path from s′′ to t′′ in G. This path must pass through Sep(C ′). Since t′′ is a sink in σ′′,

the only vertices of C on this path are s′′ and t′′. Therefore, t′′ ∈ C ∩ Sep(C ′).

For part (iii), t may but does not have to be in V (G[TC ]). If t ∈ V (G[TC ]), then it must be the

only sink in σ′ for the same reasons as in the previous case, and we also have t ∈ Sep(C) since

C ̸= Ct. If t ̸∈ V (G[TC ]), then the same argument as in the first case applies, and it follows that

there is a single sink, which must be in Sep(C).

Lemma 16. Let G be a connected chordal graph and let s, t ∈ V (G), s ̸= t. Let T be a clique tree

of G rooted at a clique that contains s and let C be a maximal clique of G that is not a leaf in T .

Let C1, . . . , Cd be the children cliques of C in T . Then the following holds:

(i) Suppose C is not a descendant of Ct, and is not on the Cs-Ct path in T ; or C ̸= Ct is a

descendant of Ct in T . Let σC be an orientation of G[C] and let σi be a bipolar orientation

of G[TCi ] consistent with σC that has both its sink and its source in Sep(Ci), for every i ∈ [d].

Then, the orientation σ defined as taking the union of σC and all the σi’s is bipolar with both

its source and its sink in C (identical to the source and sink in σC).

(ii) Suppose C is on the Cs-Ct path in T and C ̸= Cs. If C = Ct, let t
′ = t, otherwise, let C ′ be

the next clique after C on the Cs-Ct path and let t′ be any vertex in Sep(C ′). Let σC be an

orientation of G[C] with its source in Sep(C) and its sink at t′. Let σi be a bipolar orientation



CHAPTER 4. SAMPLING AND COUNTING GRAPH ORIENTATIONS 46

of G[TCi ] consistent with σC that has both its sink and its source in Sep(Ci), for every i ∈ [d]

such that Ci ̸= C ′. Finally, let σ′ be a bipolar orientation G[TC′ consistent with σC that has

its source in Sep(Ci) and its sink at t. Then, the orientation σ defined as taking the union of

σC , all the σi’s, and σ′ is bipolar with its source identical to that of σC and its sink at t.

Proof. We first prove part (i). First, notice that σ is indeed well-defined: There is no edge ori-

ented in opposite directions by some of the orientations that are being combined. (This is due to

Lemma 10 and the σi’s being consistent with σC .) We need to show that σ is acyclic. Suppose, by

contradiction, that it contains a cycle. Consider a shortest cycle in σ. It must go through multiple

subtrees TCi since each σi is acyclic. Therefore, the cycle passes through C at least twice, let us

call these vertices u1 and u2. There is a directed edge between u1 and u2, allowing us to shorten

the cycle, a contradiction. Since all sources and sinks are in C, the sources and sinks of σ must be

in C as well and since C is a clique, the only source and sink of σ are the source and sink of σC .

The acyclicity argument for part (ii) is analogous, as is the location of the single source of σ. As

for the sink, each σi has a single sink which is in C, where there is an edge from this sink to t′

(unless the sink itself is t′). But since t′ is in C ′, there is a path from t′ to t in σ′, showing that t

is a sink of σ, and it is the only sink since σ′ is bipolar.

Proof of Theorem 14. We first fix a clique tree T of G and root it at a clique that contains s.

Therefore, the root clique is Cs, the unique clique that contains s in its residual set. For each

maximal clique C ̸= Cs of G we define the following quantities:

• BPO(TC , w), where C ̸= Cs is on the Cs-Ct path in T , and w ∈ Sep(C): Assuming G[Sep(C)]

has been already oriented with w as the sink of this orientation, BPO(TC , w) counts the

bipolar orientations of the graph G[TC ] consistent with the orientation of G[Sep(C)] that

have their source in Sep(C) and their sink is t.

• SBPO(TC), where C is not on the Cs-Ct path in T : Assuming G[Sep(C)] has been already

oriented, SBPO(TC) counts the bipolar orientations of the graph G[TC ] consistent with the

orientation of G[Sep(C)] that have both their source and their sink in Sep(C).

We show how to compute these quantities by dynamic programming on the tree T , and how to use

them to compute the number of bipolar (s, t)-orientations of G.
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Base case. C is a leaf of T . If C is on the Cs-Ct path, then C = Ct. In this case,

BPO(TC , w) =
(|C| − 2)!

(|Sep(C)| − 1)!
.

This is because the source of the orientation of G[Sep(C)] must remain a source (and hence is first

in the ordering) and t ̸∈ Sep(C) must be the sink (the last in the ordering). Thus we have (|C|−2)!

orderings, which are overcounting the possibilities by a factor of (|Sep(C)| − 1)!, since there are

|Sep(C)| − 1 vertices we are reordering, but should have, in the ordering of the |C| − 2 vertices.

If C is not on the Cs-Ct path, we get

SBPO(TC) =
(|C| − 2)!

(|Sep(C)| − 2)!
,

since both the source and the sink are given by the ordering of G[Sep(C)].

Inductive case. C is not a leaf of T ; let C1, . . . , Cd be its children cliques in T .

If C is on the Cs-Ct path, we are computing BPO(TC , w). We will distinguish two cases:

1. C ̸= Ct. Without loss of generality, assume that Cd is the clique that contains Ct in its subtree;

i.e., Ct ∈ V (TCd
). Then, we need to orient the remaining edges in the clique C in such a way so

that, by Lemma 15, the sink is in Sep(Cd). We will consider two further subcases:

a) If w ̸∈ Sep(Cd), we need to choose a new sink w′ in Sep(Cd), effectively extending the

orientation of Sep(C) by appending w′ to its end. We consider the corresponding orientations

of C. We need to orient each G[TCi ], i < d, consistently with the source and the sink given

by the orientation of G[C]. Finally, for G[TCd
], we need to be consistent with w′ being the

sink given by the orientation of G[C]. Therefore,

BPO(TC , w) =
∑

w′∈Sep(Cd)

(|C| − 2)!

(|Sep(C)| − 1)!
BPO(TCd

, w′)
d−1∏
i=1

SBPO(TCi).

b) If w ∈ Sep(Cd), then we have the option of choosing a new sink w′ ∈ Sep(Cd) or keeping w:

BPO(TC , w) =
(|C| − 2)!

(| Sep(C)| − 2)!
BPO(TCd

, w)

d−1∏
i=1

SBPO(TCi)+

∑
w′∈Sep(Cd),w′ ̸=w

(|C| − 2)!

(|Sep(C)| − 1)!
BPO(TCd

, w′)

d−1∏
i=1

SBPO(TCi).
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We argue that this calculation accounts for each orientation that should have been counted

in BPO(TC , w) exactly once. By Lemma 15, for every orientation σ of G[TC ] correspond-

ing to BPO(TC , w), we have a corresponding restriction σi of σ to G[TCi ], which has been

counted in the corresponding BPO or SBPO by the inductive hypothesis. Therefore, σ is

accounted for by BPO(TC , w). Lemma 16, part (ii), states that each orientation arising by

combining individual orientations corresponding to the expressions on the right hand side, is

an orientation corresponding to BPO(TC , w). This argument provides to a bijection between

the respective sets and, therefore, the calculation is correct. Similar argument holds in the

other cases in this proof but we will not spell it out each time for brevity reasons.

2. C = Ct. This is similar to the previous case, but we have to take w′ = t as the new sink. Notice

that t ̸∈ Sep(C) (by the definition of Ct) but that for each Ci, either t ∈ Sep(Ci) or t ̸∈ Ci. In

either case, by Lemma 15, G[TCi ] gets an orientation of G[Sep(Ci)] given and needs to orient

the edges so that the source and the sink remain in Sep(Ci). Therefore, we get:

BPO(TC , w) =
(|C| − 2)!

(| Sep(C)| − 1)!

d∏
i=1

SBPO(TCi).

If Ct is not on the Cs-Ct path in T , we need to compute SBPO(TC). Then, the graphs induced

by the subtrees need to be oriented consistently with the orientation of their separators, and they

have to maintain the given source and the sink. Hence,

SBPO(TC) =
(|C| − 2)!

(|Sep(C)| − 2)!

d∏
i=1

SBPO(TCi).

Finally, to output the number of bipolar (s, t)-orientations of G, we employ a similar logic as in the

case when C is on the Cs-Ct path. Let C1, . . . , Cd be the children cliques of Cs in T (d = 0 if Cs is

a leaf).

1. If Cs ̸= Ct. Then d > 0. Without loss of generality, assume that Ct ∈ V (TCd
); then the sink

needs to be in Sep(Cd) and s needs to be the source.

BPO(G) =
∑

w′∈Sep(Cd)

(|C| − 2)! BPO(TCd
, w′)

d−1∏
i=1

SBPO(TCi).

2. If Cs = Ct, we follow the argument of case 2 where the separator set is empty and s needs to be

the source:

BPO(G) = (|C| − 2)!
d∏

i=1

SBPO(TCi).
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As for the running time, notice that the calculations of BPO(TC , w) do not depend on w itself (this

follows by induction on the tree) and therefore it suffices to store just one quantity BPO(TC) for

each C. Then, we are computing two quantities, BPO(TC) and SBPO(TC) per C. Furthermore, in

the quantities that involve a summation, the summation can be replaced by a factor of |Sep(Cd)|, or
|Sep(Cd)|−1, respectively. Therefore the running time, analogously to Theorem 11, is Õ(|V (G)|)+
O(|E(G)|). As for the sampling, we can employ the same strategy as before, creating the orientation

top-down from the clique Cs: For the current C, choose a random ordering of its vertices consistent

with the current constraints (the given orientation within its separator set, and the required location

of its source and sink). Notice that in cases 1a and 1b, the summations are equivalent, and

therefore, each w′ ∈ Sep(Cd) has an equal chance of being the sink within the orientation restricted

to G[Sep(Cd)]. Therefore, the orientation within Sep(Cd) can be chosen uniformly at random, as

long as it is consistent with the orientation of G[Sep(C)]. Thus, the running time of the sampling

algorithm is O(|E(G)|).

4.4 Counting Sink-free Orientations

In this section, we present a polynomial-time exact counter for sink-free orientations via dynamic

programming over the clique tree of the given chordal graph. Our algorithm significantly improves

the running time over the existing FPRAS for this graph class. We note that there is an efficient

uniform sampler for sink-free orientations in any graph. So, we are only focusing on the counting.

4.4.1 Related works

Bubley and Dyer [15] proved that counting of sink-free orientations is #P-complete on general

graphs. They also proposed a Markov Chain that samples sink-free orientations of an arbitrary

input graph G approximately from the uniform distribution in time O(|E(G)|3 log ϵ−1), where ϵ

is the degree of approximation. Additionally, they showed that the problem of counting sink-

free orientations is self-reducible, yielding a fully polynomial randomized approximation scheme

(FPRAS) for the counting problem, the running time of which is roughly |E(G)| times the sampling

running time. Huber [31] used the “coupling from the past” technique to obtain an exact sample

in time O(|E(G)|4). Cohn, Pemantle, and Propp [17] proposed a “sink-popping” algorithm which

can generate a sink-free orientation uniformly at random in O(|V (G)||E(G)|) time. This algorithm

fits the “partial rejection sampling through the Lovász Local Lemma” framework of Guo, Jerrum

and Liu [27], yielding a uniformly random sink-free orientation in time O(|V (G)|2) time.
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4.4.2 Our contribution

In this section, we prove the following theorem:

Theorem 17. Let G be a connected chordal graph. The number of sink-free orientations of G can

be counted in Õ(|V (G)|) +O(|E(G)|) time.

We note that while our proof of the theorem employs dynamic programming over a clique tree,

unlike before, here we need to use parts of an inclusion-exclusion principle to derive our quantities.

Counting algorithms based on dynamic programming can often be used to sample: If the algorithm

is based on summing counts corresponding to disjoint subproblems, one first runs the counting

algorithm, followed by the sampling which proceeds top-down, always choosing which subproblem

to go into proportionally to its count. However, here we are subtracting quantities as part of

our computations and, as such, a sampling algorithm does not seem to follow from the counting

algorithm.

Theorem 17 does yield an exact sampler via the problem’s established self-reducibility property [15].

However, recall that there are more efficient exact samplers already known [17], so we do not discuss

the sampling aspect here. Our main contribution related to sink-free orientations is an efficient

counting algorithm for chordal graphs.

Proof of Theorem 17. Let T be a clique tree of G, rooted at an arbitrary clique Cr. We show how

to compute the following quantities for each clique C in T :

• SFO(TC): The number of orientations of the graph Ĝ[TC ] that have no sinks in V (Ĝ[TC ])−
Sep(C) (only sinks in Sep(C) are allowed).

• ASFO(TC , v): The number of orientations of the graph Ĝ[TC ], where v ∈ Sep(C) is a sink

and there are no sinks in V (Ĝ[TC ])− Sep(C).

Then, the number of sink-free orientations of G is exactly SFO(TCr), since Sep(Cr) = ∅.

Before we proceed with the computation, in order to simplify our expressions we define these

additional quantities. For a clique C:

(i) Let oa(C) be the number of all orientations of the clique C, i.e., oa(C) = 2(
|C|
2 ).
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(ii) Let os(C, v) be the number of orientations of the clique C where the vertex v ∈ C is a sink.

All edges have to be oriented towards v, hence os(C, v) = 2(
|C|−1

2 ). It also follows that v is

the only sink in C. Moreover, since the quantity os(C, v) does not depend on the vertex v,

we may simplify the notation to just os(C).

(iii) Let ox(C) be the number of orientations of C where no vertex is a sink. Since each orientation

with a sink has a unique sink, see (ii), we get that ox(C) = oa(C)− |C| os(C).

We will compute the quantities SFO(TC) and ASFO(TC) by dynamic programming on the clique

tree TCr .

Base case. Let C be a leaf of T . Recall that SFO(TC) and ASFO(TC , v) consider only the edges

within Res(C) and those between Res(C) and Sep(C). Therefore,

ASFO(TC , v) = oa(Res(C))2|Res(C)|(|Sep(C)|−1),

since all edges from Res(C) have to be oriented towards v, which prevents any vertex in Res(C)

from being a sink; this means that edges within Res(C), as well as between Res(C) and Sep(C)−{v}
can be oriented arbitrarily.

For SFO(TC), we have several mutually exclusive possibilities:

1. The orientation within Res(C) contains no sinks. Then, the edges between Res(C) and Sep(C)

can be oriented arbitrarily, getting overall ox(Res(C))2|Res(C)|| Sep(C)| of such orientations.

2. The orientation within Res(C) contains a (single) sink u ∈ Res(C). Then, at least one of the

edges from Sep(C) needs to be oriented away from u (thus preventing u from remaining as

a sink), the other edges between Sep(C) and Res(C) − {u} can be oriented arbitrarily. This

corresponds to os(Res(C), u)(2| Sep(C)| − 1)2| Sep(C)|(|Res(C)|−1) of such orientations. (The second

factor comes from subtracting the one orientation where all edges from Sep(C) are oriented

towards u.)

Therefore, summing across possible u ∈ Res(C), we get

SFO(TC) = ox(Res(C))2|Res(C)|| Sep(C)| +

|Res(C)| os(Res(C))(2| Sep(C)| − 1)2| Sep(C)|(|Res(C)|−1).

Inductive case. Let C be a non-leaf of T , and let C1, C2, . . . , Cd be its children cliques in T . We

first describe how to compute ASFO(TC , v). The same logic for orienting the edges between Sep(C)
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and Res(C) as in the base case applies here: edges towards v are forced, the others are arbitrary.

Moreover, just like in the base case, if the edges within Res(C) are oriented arbitrarily, they will not

create a sink in Res(C) since there is always an edge towards v. We still need to orient the edges

in the graphs induced by the subtrees rooted at C1, . . . , Cd. In particular, we need to orient the

graphs Ĝ[TCi ] for i = 1, . . . , d. We already have the guarantee that when adding the orientation of

the edges within C, there will be no sinks in Res(C). Therefore, we simply need to orient Ĝ[TCi ] so

that there are no sinks outside Sep(Ci). By Lemma 10, each Ĝ[TCi ] can be oriented independently.

Therefore,

ASFO(TC , v) = oa(Res(C))2|Res(C)|(| Sep(C)|−1)
d∏

i=1

SFO(TCi).

It remains to compute SFO(TC). The possible orientations can be partitioned into the following

mutually exclusive possibilities:

1. The orientation within Res(C) contains no sinks. Then, the edges between Res(C) and Sep(C)

can be oriented arbitrarily, and by Lemma 10, the orientations of each Ĝ[TCi ] are independent

and need to contain no sinks outside Sep(Ci). There are ox(Res(C))2|Res(C)|| Sep(C)|∏d
i=1 SFO(TCi)

of such orientations.

2. The orientation within Res(C) contains a (single) sink u ∈ Res(C). We have two subcases:

a) There exists an edge from u to Sep(C) oriented away from u (and, therefore, u cannot be a

sink). In this case, the orientations of Ĝ[TCi ] can be arbitrary as long as there are no sinks

outside Sep(Ci). There are os(Res(C), u)(2| Sep(C)| − 1)2|Sep(C)|(|Res(C)|−1)
∏d

i=1 SFO(TCi) of

such orientations.

b) All edges from u to Sep(C) are oriented towards u. Since SFO(TC) counts orientations with

no sinks outside Sep(C), these partial orientations need to be completed within the Ĝ[TCi ]

graphs in a way that ensures that u is not a sink. The vertex u remains a sink if all edges

within each Ĝ[TCi ] point towards u. In other words, these are exactly the orientations counted

in ASFO(Ci, u). We can subtract these orientations from the total number. In particular,

let Iu ⊆ {1, . . . , d} be the indices for which u ∈ Sep(Ci). Then, the number of orientations

of Ĝ[TC ] in this subcase is

os(Res(C), u)2| Sep(C)|(|Res(C)|−1)
∏

i∈[d]−Iu

SFO(TCi)

(∏
i∈Iu

SFO(TCi)−
∏
i∈Iu

ASFO(TCi , u)

)
.

Putting it all together we get
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SFO(TC) = ox(Res(C))2|Res(C)|| Sep(C)|
d∏

i=1

SFO(TCi) +

∑
u∈Res(C)

os(Res(C), u)(2|Sep(C)| − 1)2|Sep(C)|(|Res(C)|−1)
d∏

i=1

SFO(TCi) +∑
u∈Res(C)

os(Res(C), u)2| Sep(C)|(|Res(C)|−1)
∏

i∈[d]−Iu

SFO(TCi)×(∏
i∈Iu

SFO(TCi)−
∏
i∈Iu

ASFO(TCi , u)

)
.

Finally, we need to estimate the running time of the algorithm. Notice that the size of the set Iu

corresponding to the children cliques of Cu that contain u, is upper-bounded by degG(u). This is

because for each child clique Ci for i ∈ Iu we have a wi ∈ Res(Ci). All the wi’s are distinct since

Sep(C) separates them, yielding |Iu| ≤ degG(u).

Next notice that we do not need to store the quantities ASFO(TC , v) for each v ∈ Sep(C). This is

because the calculation of ASFO(TC , v) is independent of v and therefore we really need only one

quantity ASFO(TC) for each clique.

The base case of the algorithm takes O(1) arithmetic operations per leaf clique. For the inductive

case, the computation of the ASFO(TC) takes O(d) arithmetic operations, assuming SFO(TCi) has

been computed. Noticing that d = outdegT (C), the computation of all ASFO’s across the entire

tree T takes O(
∑

C∈T outdegT (C)) = O(|T |) = O(|V (G)|) arithmetic operations, if the SFO’s of

the children are available. We can rewrite the computation of the SFO(TC) as follows:

SFO(TC) =
d∏

i=1

SFO(TCi)[ox(Res(C))2|Res(C)|| Sep(C)| +

|Res(C)| os(Res(C))(2| Sep(C)| − 1)2| Sep(C)|(|Res(C)|−1) +∑
u∈Res(C)

(
1−

∏
i∈Iu

ASFO(TCi , u)

SFO(TCi)

)
]

The computation of
∏d

i=1 SFO(TCi) has already been accounted for during the computation of

ASFO. Therefore, we only focus on the terms in the square brackets. The first two terms take O(1)

arithmetic operations. The last term takes O(
∑

u∈Res(C) |Iu|) operations. Since |Iu| ≤ degG(u),
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across the entire tree T we get O(
∑

C∈T
∑

u∈Res(C) degG(u)) = O(
∑

u∈V (G) degG(u)) = O(|E(G)|)
operations. This concludes the proof of the theorem.

4.5 Counting Source-Sink-free Orientations

A source-sink-free orientation does not have any sources nor sinks. A strong orientation is a

source-sink-free orientation that has only one strongly connected component. Counting strong

orientations of a given graph G is #P-complete [81], and it is also #P-complete when G is planar

and bipartite [78]. Alon [3] gave an FPRAS for strong orientations in a dense graph if its minimum

degree is linear in the number of vertices. To the best of our knowledge, the hardness of #strong-

orientations over chordal graphs is unknown. In this section, we present a polynomial-time exact

counter for the more general source-sink-free orientations on chordal graphs. Our main motivation

for studying these orientations is that, despite their similarity to the sink-free orientations, where

there are several successful sampling approaches that yield the corresponding FPRASs for counting,

these sampling approaches do not seem to extend to source-sink-free orientations. Consequently,

prior to our work, there were no known results related to the counting of these orientations.

4.5.1 Our contributions

Our counting approach for source-sink-free orientations follows a similar outline to the approach for

sink-free orientations; however, there is a complication involving a more complex inclusion-exclusion

principle, which was not present in the earlier problem. We define the following quantities for each

clique C in a rooted clique tree T of the given chordal graph G:

• SSFO(TC): The number of orientations of the graph Ĝ[TC ] where every sink and every source

is in Sep(C). Let S(TC) be the set of all these orientations.

• SoO(TC , v1): The number of orientations in S(TC), where v1 ∈ Sep(C) is a source.

• SiO(TC , v2): The number of orientations in S(TC), where v2 ∈ Sep(C) is a sink.

• SoSiO(TC , v1, v2): The number of orientations in S(TC), where v1 ∈ Sep(C) is a source and

v2 ∈ Sep(C) is a sink. Notice that since Res(C) ̸= ∅, it follows that v1 ̸= v2.
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The quantity SSFO(TCr) computes the number of source-sink-free orientations of G, where Cr is

the root clique of the clique tree T .

In addition to the quantities oa(C), os(C, v), and ox(C) defined for a given clique C in Section 4.4.2,

here we will use also these additional quantities:

(i) Let oss(C, v1, v2) be the number of orientations of C where v1 is a source and v2 is a sink. It

follows that oss(C, v1, v2) = 2(
|C|−2

2 ). Since the value does not depend on v1, v2, we simplify

the notation to just oss(C).

(ii) Let oxx(C) be the number of orientations of C with no sources or sinks. An oriented clique

can have at most one source and at most one sink. Therefore, from all orientations we can

subtract those that have a sink and those that have a source; leading to “double penalization”

of orientations with both a source and a sink. Therefore, oxx(C) = oa(C) − 2|C| os(C) +(|C|
2

)
oss(C).

As before, we will compute the quantities SSFO(TC), SoO(TC , v1), SiO(TC , v2), and SoSiO(TC , v1, v2)

by dynamic programming on the rooted clique tree T .

Base case. Let C be a leaf of T . In SoO(TC , v1) and SoSiO(TC , v1, v2) all edges incident to v1

point away from v1, and in SiO(TC , v2) and SoSiO(TC , v1, v2) the edges incident to v2 need to point

towards v2; the other edges can be oriented either way. We get:

SoO(TC , v1) = SiO(TC , v2) = oa(Res(C))2|Res(C)|(|Sep(C)|−1),

SoSiO(TC , v1, v2) = oa(Res(C))2|Res(C)|(| Sep(C)|−2).

For SSFO(TC), we partition S(TC) into these mutually exclusive possibilities.

1. The orientation restricted to G[Res(C)] contains no sources nor sinks. Then, the edges between

Res(C) and Sep(C) can be oriented arbitrarily, leading to oxx(Res(C))2|Res(C)|| Sep(C)| of such

orientations.

2. The orientation restricted to G[Res(C)] contains a (single) source u1 ∈ Res(C) and no sinks.

Then, at least one of the edges from Sep(C) needs to be oriented towards u1 to prevent it from

remaining a source, and the other edges between Sep(C) and Res(C) − {u1} can be oriented

arbitrarily. The part of the orientation within Res(C) has to have all edges outgoing from u1,

and the remaining edges must be oriented so that there is no sink within Res(C) − {u1}. This

corresponds to ox(Res(C)− {u1})(2| Sep(C)| − 1)2| Sep(C)|(|Res(C)|−1) of such orientations.
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3. The orientation restricted to G[Res(C)] contains a (single) sink u2 ∈ Res(C) and no sources.

The calculation is analogous to the previous case.

4. The orientation restricted toG[Res(C)] contains a (single) source u1 and a (single) sink u2. Then,

u1 needs to be “fixed” by at least one edge from Sep(C), u2 by at least one edge to Sep(C),

and the other edges between Sep(C) and Res(C) can be oriented arbitrarily. Likewise, the edges

within Res(C) − {u1, u2} can be oriented arbitrarily. We get oa(Res(C) − {u1, u2})(2|Sep(C)| −
1)22| Sep(C)|(|Res(C)|−2) of such orientations.

Therefore, summing across possible u1, u2 ∈ Res(C), we get

SSFO(TC) = oxx(Res(C))2|Res(C)|| Sep(C)|+

2|Res(C)| ox(Res(C)−1)(2|Sep(C)| − 1)2|Sep(C)|(|Res(C)|−1)+(
|Res(C)|

2

)
oa(Res(C)−2)(2|Sep(C)| − 1)22| Sep(C)|(|Res(C)|−2),

where for a clique Ĉ, the notation Ĉ−k stands for removing k vertices from Ĉ.

Inductive case. Let C be a non-leaf of T , and let C1, C2, . . . , Cd be its children cliques in T . As

before, for u ∈ Res(C) we denote by Iu the set of indices such that u ∈ Ci for i ∈ Iu.

To compute SoSiO(TC , v1, v2), the edges between v1, respectively v2, and Res(C) are forced (away

from v1, towards v2). This implies that no vertex in Res(C) will be a source, nor sink, and hence

the orientation of all other edges can be arbitrary. We get:

SoSiO(TC , v1, v2) = oa(Res(C))2| Sep(C)|(|Res(C)|−2)
d∏

i=1

SSFO(TCi).

For SoO(TC , v1), the edges between v1 and Res(C) need to point away from v1, and as such there

will be no sources in Res(C). We distinguish two cases:

1. There is no sink in the orientation restricted to G[Res(C)]. The number of orientations of Ĝ[TC ]

corresponding to this case is

ox(Res(C))2| Sep(C)|(|Res(C)|−1)
d∏

i=1

SSFO(TCi).

2. The orientation restricted to G[Res(C)] contains a (single) sink u2. Then either there is an edge

between u2 and Sep(C) pointing towards u2, or all edges point away from u2 and u2 cannot be
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a sink at at least one of the children subtrees. We get

os(Res(C), u2)(2
|Sep(C)| − 1)2|Sep(C)|(|Res(C)|−1)

d∏
i=1

SSFO(TCi)+

os(Res(C), u2)2
| Sep(C)|(|Res(C)|−1)

∏
i∈[d]−Iu2

SSFO(TCi)× ∏
i∈Iu2

SSFO(TCi)−
∏
i∈Iu2

SiO(TCi , u2)

 .

orientations of Ĝ[TC ] corresponding to this case.

Therefore, SoO(TC , v1) can be computed as follows:

SoO(TC , v1) = ox(Res(C))2| Sep(C)|(|Res(C)|−1)
d∏

i=1

SSFO(TCi)+

∑
u2∈Res(C)

os(Res(C), u2)(2
| Sep(C)| − 1)2|Sep(C)|(|Res(C)|−1)

d∏
i=1

SSFO(TCi)+∑
u2∈Res(C)

os(Res(C), u2)2
| Sep(C)|(|Res(C)|−1)

∏
i∈[d]−Iu2

SSFO(TCi)× ∏
i∈Iu2

SSFO(TCi)−
∏
i∈Iu2

SiO(TCi , u2)

 .

Analogously, we get

SiO(TC , v1) = ox(Res(C))2| Sep(C)|(|Res(C)|−1)
d∏

i=1

SSFO(TCi)+

∑
u1∈Res(C)

os(Res(C), u1)(2
| Sep(C)| − 1)2|Sep(C)|(|Res(C)|−1)

d∏
i=1

SSFO(TCi)+∑
u1∈Res(C)

os(Res(C), u1)2
| Sep(C)|(|Res(C)|−1)

∏
i∈[d]−Iu1

SSFO(TCi)× ∏
i∈Iu1

SSFO(TCi)−
∏
i∈Iu1

SoO(TCi , u1)

 .

Finally, we need to compute SSFO(TC). We will split the possible orientations into these four

mutually exclusive cases:
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1. The orientation restricted to G[Res(C)] contains no sources nor sinks. Then, all the remain-

ing edges with Res(C) can be oriented arbitrarily, and the children subtrees can be oriented

recursively (provided, as always, that there are no sinks or sources outside their separator sets).

Therefore, the number of these orientations is ox(Res(C))2| Sep(C)||Res(C)|∏d
i=1 SSFO(TCi).

2. The orientation restricted to G[Res(C)] contains a (single) source u1 and no sinks. Then, either

there is an edge oriented from Sep(C) to u1, or all edges are oriented from u1 to Sep(C) and one

of the children subtrees does not have u1 as their source. Within Res(C), all edges point away

from u1 and the remainder of Res(C) needs to be sink-free. Thus, the number of orientations of

Ĝ[TC ] corresponding to this case is:

ox(Res(C)−1)(2| Sep(C)| − 1)2| Sep(C)|(|Res(C)|−1)
d∏

i=1

SSFO(TCi)+

ox(Res(C)−1)2| Sep(C)|(|Res(C)|−1)
∏

i∈[d]−Iu1

SSFO(TCi)× ∏
i∈Iu1

SSFO(TCi)−
∏
i∈Iu1

SoO(TCi , u1)

 .

3. The orientation restricted to G[Res(C)] contains a (single) sink u2 and no sources. Analogously

to the previous case, the number of the corresponding orientations of Ĝ[TC ] is:

ox(Res(C)−1)(2| Sep(C)| − 1)2| Sep(C)|(|Res(C)|−1)
d∏

i=1

SSFO(TCi)+

ox(Res(C)−1)2| Sep(C)|(|Res(C)|−1)
∏

i∈[d]−Iu2

SSFO(TCi)× ∏
i∈Iu2

SSFO(TCi)−
∏
i∈Iu2

SiO(TCi , u2)

 .

4. The orientation restricted to G[Res(C)] contains a (single) source u1 and a (single) sink u2. We

will partition the corresponding orientations of Ĝ[TC ] into these subcases:

a) There is an edge from Sep(C) to u1 and from u2 to Sep(C). (I.e., both u1 and u2 are “fixed”

by an edge from/to Sep(C).) The number of corresponding orientations is

oss(Res(C))(2| Sep(C)| − 1)22|Sep(C)|(|Res(C)|−2)
d∏

i=1

SSFO(TCi).
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b) There is an edge from Sep(C) to u1 but no edge from u2 to Sep(C). (I.e., u1 is “fixed” by

Sep(C) but u2 is not.) Then u2 needs to be “fixed” by one of the children subtrees. The

number of corresponding orientations is

oss(Res(C))(2| Sep(C)| − 1)2| Sep(C)|(|Res(C)|−2)
∏

i∈[d]−Iu2

SSFO(TCi)× ∏
i∈Iu2

SSFO(TCi)−
∏
i∈Iu2

SiO(TCi , u2)

 .

c) There is an edge from u2 to Sep(C) but no edge from Sep(C) to u1. (I.e., u2 is “fixed”

by Sep(C) but u1 is not.) Analogous to the previous subcase, the number of corresponding

orientations is

oss(Res(C))(2| Sep(C)| − 1)2| Sep(C)|(|Res(C)|−2)
∏

i∈[d]−Iu1

SSFO(TCi)× ∏
i∈Iu1

SSFO(TCi)−
∏
i∈Iu1

SoO(TCi , u1)

 .

d) There is no edge from Sep(C) to u1 and no edge from u2 to Sep(C). (I.e., neither u1 nor u2 is

“fixed” by Sep(C).) Then both u1 and u2 need to be “fixed” by one of the children subtrees.

Let Xu1 be the set of valid orientations of the subtrees where no subtree fixes u1. (We call

an orientation of the subtrees valid if sinks and sources are present only in the residual sets

in the root cliques of each tree.) Then,

|Xu1 | =
∏

i∈[d]−Iu1

SSFO(TCi)
∏
i∈Iu1

SoO(TCi , u1).

Let Yu1 be the set of valid orientations of the subtrees where no subtree fixes u2. Then,

|Yu2 | =
∏

i∈[d]−Iu2

SSFO(TCi)
∏
i∈Iu2

SiO(TCi , u2).

Let Zu1,u2 = Xu1 ∩Yu2 . In particular, Zu1,u2 is the set of all valid orientations of the subtrees

where no subtree fixes u1 nor u2. In other words, the subtrees containing u1 but not u2 have

u1 as a source, the subtrees containing u2 but not u1 have u2 as a sink, and the subtrees

containing both u1 and u2 have u1 as a source and u2 as a sink. Therefore,

|Zu1,u2 | =
∏

i∈[d]−Iu1−Iu2

SSFO(TCi)
∏

i∈Iu1−Iu2

SoO(TCi , u1)×∏
i∈Iu2−Iu1

SiO(TCi , u2)
∏

i∈Iu1∩Iu2

SoSiO(TCi , u1, u2).
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Then, when accounting for all orientations in case 4d, we use inclusion-exclusion as follows:

We consider all valid orientations of the subtrees, then subtract those in Xu1 and Yu2 , and

then add those in Zu1,u2 to compensate for double subtraction. Therefore, the number of

orientations of Ĝ[TC ] corresponding to case 4d is

oss(Res(C))2| Sep(C)|(|Res(C)|−2)

∏
i∈[d]

SSFO(TCi)− |Xu1 | − |Yu2 |+ |Zu1,u2 |

 .

Putting it all together we get

SSFO(TC) = ox(Res(C))2| Sep(C)||Res(C)|
d∏

i=1

SSFO(TCi)+

∑
u1∈Res(C)

ox(Res(C)−1)2| Sep(C)|(|Res(C)|−1)
d∏

i=1

SSFO(TCi)×2|Sep(C)| −
∏
i∈Iu1

SoO(TCi , u1)

SSFO(TCi)

+

∑
u2∈Res(C)

ox(Res(C)−1)2| Sep(C)|(|Res(C)|−1)
d∏

i=1

SSFO(TCi)×2| Sep(C)| −
∏
i∈Iu2

SiO(TCi , u2)

SSFO(TCi)

+

∑
u1,u2∈Res(C),u1 ̸=u2

oss(Res(C))2| Sep(C)|(|Res(C)|−2)
d∏

i=1

SSFO(TCi)×

[(2| Sep(C)| − 1)2 + (2| Sep(C)| − 1)

1−
∏
i∈Iu2

SiO(TCi , u2)

SSFO(TCi)

+

(2| Sep(C)| − 1)

1−
∏
i∈Iu1

SoO(TCi , u1)

SSFO(TCi)

]+

∑
u1,u2∈Res(C),u1 ̸=u2

oss(Res(C))2| Sep(C)|(|Res(C)|−2)×

∏
i∈[d]

SSFO(TCi)− |Xu1 | − |Yu2 |+ |Zu1,u2 |

 .
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Finally, we need to estimate the running time of the algorithm. The base case is O(1) arithmetic

operations per leaf clique. For the inductive case, if we were only considering orientations in

subcases 1, 2, 3, 4a, 4b, and 4c, then we would get a linear upper bound on the number of needed

arithmetic operations, using the same reasoning as in Section 4.4. However, here we also need to

account for case 4d. In particular, we want to efficiently compute∑
u1,u2∈Res(C),u1 ̸=u2

[
∏
i∈[d]

SSFO(TCi)−
∏

i∈[d]−Iu1

SSFO(TCi)
∏
i∈Iu1

SoO(TCi , u1)−∏
i∈[d]−Iu2

SSFO(TCi)
∏
i∈Iu2

SiO(TCi , u2) +
∏

i∈[d]−Iu1−Iu2

SSFO(TCi)×∏
i∈Iu1−Iu2

SoO(TCi , u1)
∏

i∈Iu2−Iu1

SiO(TCi , u2)
∏

i∈Iu1∩Iu2

SoSiO(TCi , u1, u2)].

This can be simplified as∏
i∈[d]

SSFO(TCi)
∑

u1,u2∈Res(C),u1 ̸=u2

[(1−
∏
i∈Iu1

SoO(TCi , u1)

SSFO(TCi)
−
∏
i∈Iu2

SiO(TCi , u2)

SSFO(TCi)
+

∏
i∈Iu1−Iu2

SoO(TCi , u1)

SSFO(TCi)

∏
i∈Iu2−Iu1

SiO(TCi , u2)

SSFO(TCi)

∏
i∈Iu1∩Iu2

SoSiO(TCi , u1, u2)

SSFO(TCi)
].

The first three products can be computed within the linear number of arithmetic operations dis-

cussed earlier. For the remaining part of the calculation, we get the following bound on the number

of arithmetic operations across all cliques in T (recall that |Iu| ≤ degG(u)):

O

∑
C∈T

∑
u1,u2∈Res(C)

[degG(u1) + degG(u2)]

 =

O

∑
C∈T

∑
u1,u2∈Res(C)

degG(u1) +
∑
C∈T

∑
u1,u2∈Res(C)

degG(u2)

 =

O

∑
C∈T

∑
u1∈Res(C)

|C|degG(u1)

 = O

 ∑
v∈V (G)

|Cmax|degG(v)

 = O (|Cmax||E(G)|) .

The above discussion yields the following theorem.

Theorem 18. Let G be a chordal graph. The number of source-sink-free orientations of G can be

computed in time Õ(|Cmax||E(G)|) = Õ(|E(G)||V (G)|), where Cmax is a maximum clique of G.

Counting algorithms based on dynamic programming can often be used to sample: If the algorithm

is based on summing counts corresponding to disjoint subproblems, one first runs the counting
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algorithm, followed by the sampling which proceeds top-down, always choosing which subproblem

to go into proportionally to its count. However, here we are subtracting quantities as part of

our computations and, as such, a sampling algorithm does not seem to follow from the counting

algorithm. For a single level inclusion-exclusion (a single subtraction), one could employ rejection

sampling to reject the unfavorable (i.e., those that are subtracted) configurations. However, if

almost all configurations are rejected, the probability of sampling success could be minuscule. For

two-level inclusion-exclusion, as is the case for our algorithm, even this (potentially low-probability

and hence large running time) approach is unclear. We leave the problem of efficient (almost)

uniform sampling of source-sink-free orientations in chordal graphs open.

4.6 Sampling Partial Acyclic Orientations by the Lovász Local

Lemma

For an undirected graph, a partial acyclic orientation is an assignment of directions to a subset

of its edges such that the directed edges do not form a directed cycle. We are interested in

sampling partial acyclic orientations in polynomial time, with the hope that this will shed light

on the possibility of sampling acyclic orientations in general graphs. In this section, we focus on

chordal graphs and initiate a study of applying the partial rejection sampling framework [27] to

the problem of sampling partial acyclic orientations from a Gibbs-like underlying distribution.

In other words, each partial acyclic orientation will be sampled with probability proportional to

λnumber of directed edges, where λ ∈ R+. This work was published in AAAI ’21 [70].

4.6.1 Partial rejection sampling by the Lovász Local Lemma

The Lováz Local Lemma (LLL) is a powerful tool in combinatorics that guarantees the existence

of a perfect object that avoids all “bad” events. Moser and Tardos [53] designed algorithms to

find a perfect object under conditions that match the LLL in the variable framework (introduced

below). Later on Guo, Jerrum, and Liu [27] designed the partial rejection sampling based on this

framework and proved under this framework that some classical sampling algorithms, such as the

“cycle-popping” algorithm by Propp and Wilson [58] for sampling rooted spanning trees and the

“sink-popping” algorithm by Cohn et al. [17] for sampling sink-free orientations, do provide samples

uniformly at random.

We will first introduce the “variable” framework before we talk about this sampling technique. Let
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X = {X1, . . . , Xn} be a set of n random variables and each of which has its own distribution. Let

A = {A1, . . . , Am} be a set of m “bad” events that depend on Xi’s, we use var(Ai) to denote the

variables that Ai depends on. A dependency graph G = (A, E) is a graph that has vertex set X and

edge set E . If (Ai, Aj) are connected in G if var(Ai) ∩ var(Aj) ̸= ∅. For example, in the problem

of sampling sink-free orientations [15], where each edge of a given undirected graph G needs to be

directed and no vertex is allowed to have only incoming edges. A bad event is a sink vertex, and

its variables are edges incident to that vertex. The dependency graph for this problem is just the

original input graph.

A problem satisfies the so called “extremal condition” if (Ai, Aj) ∈ E implies Pr (Ai ∧Aj) = 0. It

means that two bad events is either independent or cannot occur at the same time. For example,

the problem of sampling sink-free orientation satisfies the extremal condition because two adjacent

vertices cannot be both sinks. Algorithm 2 in [27] simply keeps resampling variables that are

involved in bad events in parallel until there is no bad event. When the extremal condition holds,

Guo, Jerrum, and Liu proved that once the algorithm halts, the output is a product distribution

conditioned on avoiding all bad events. For sink-free orientations, since each edge will be directed

in either direction with equal probability, the output sink-free orientation is just from the uniform

distribution.

However, not all problems satisfy the extremal condition. To address this, Guo, Jerrum, and

Liu [27] extended the framework beyond the extremal condition, i.e., when two dependent bad

events can occur at the same time. In addition to resampling the set X of the variables involved

in the current bad events, they also resample the variables for which some values trigger a new

bad event with the current assignment of the variables in X . The following is the general sampling

algorithm:
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Algorithm 1 General partial rejection sampling

1: Draw independent samples of all variables from their respective distributions.

2: while there is an bad event under the current assignment do

3: Let R be the set of bad events.

4: Let N be the set of events that will not be resampled, be ∅.
5: Let ∂R denote the boundary of R (neighbors of R outside R) in the dependency graph.

6: Let U ← ∂R\N
7: while U ̸= ∅ do
8: for each event Ai ∈ U do

9: if Ai can be extended to occur then

10: Add Ai to R

11: else

12: Add Ai to N .

13: U ← ∂R\N

14: for each variable in
⋃

Ai∈R var(Ai) do

15: Resample it according to its own distribution.

16: Output G.

The resulting distribution is still a product distribution conditioned on no occurring bad events,

and the expected running time is stated in the following theorem.

Theorem 19 (Guo-Jerrum-Liu). Let n be the number of variables, N be the number of bad events,

and ∆ be the maximum degree of the dependency graph. For any bad event, let p be an upper bound

on the probability that this bad event occurs. Finally, let r be the maximum probability such that

for a pair of neighboring bad events A,B and an assignment of values to the variables in A, if

the variables in var(B) \ var(A) are drawn, B occurs. Then, for any ∆ ≥ 2, if 6ep∆2 ≤ 1 and

3er∆ ≤ 1, the expected number of resampling rounds is O(logN) and thus the expected number of

variable resamples is O(n logN) with high probability.

4.6.2 Our contributions

We define a random variable Xe for every edge e = (u, v) of a given chordal graph G. This random

variable will take one of three possible values: direction from u to v, direction from v to u, or

staying undirected, chosen from distribution [q, q, 1 − 2q] for some q ∈ [0, 1] that will be specified

soon. We define bad events as directed cycles of length three (triangle cycles). We note that

the partial acyclic orientation does not fit the extremal condition since two directed triangles can

share an edge. We also notice that a directed cycle could still exist even if there is no bad event.
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Applying the above framework, we get Algorithm 2 (which uses Algorithm 1) sampling partial

acyclic orientations of G with probability proportional to qnumber of oriented edges. An example

of running Algorithm 2 is shown in Figure 4.4.

Algorithm 2 Sampling partial acyclic orientations

1: Assign a direction to each edge in G according to the distribution [q, q, 1− 2q].

2: while G contains a directed cycle do

3: Assign a direction to each edge in G according to the distribution [q, q, 1− 2q].

4: while triangle cycles exist do

5: Let R be the set of triangle cycles

6: Let N be the set of events that will not be resampled, be ∅.
7: Let ∂R denote the boundary of R (neighbors of R outside R ) in the dependency graph.

8: while ∂R\N ̸= ∅ do
9: for each triangle T ∈ ∂R\N do

10: if var(T ) ∩ var(R) = Xe and e is directed then

11: Add T to R

12: else

13: Add T to N .

14: for each edge e in R do

15: Resample e according to the distribution

16: Output G.

Figure 4.4: The orientation on the left has one bad event (the red directed triangle ABC). Blue

triangles are on the boundary. Both red and blue edges need to be resampled. The middle orien-

tation is an orientation after resampling. Even though there is no directed triangle, the graph is

still acyclic (cycle BGEC). It means that we need to resample all edges. Finally, we get the right

partial acyclic orientation.
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Theorem 20. Let G = (V,E) be a chordal graph with maximum degree d. If q ≤ 0.24d−
2
3 , the

expected number of variable resamples is O(|E| log |V |).

Proof. We will apply Theorem 19. The probability that a specific bad event occurs is p = 2q3,

since the cycle can be oriented in two ways and it has three edges. Let A and B be two neighboring

events. This can happen only if they share a single edge. Hence, for B to happen, the shared edge

already has to be directed and its other two edges need to take the compatible direction. Thus,

r = q2. We claim that ∆ ≤ 3
2d. To see this, let A be a bad event with a maximum degree in the

dependency graph. Let Xe1 , Xe2 , and Xe3 be the variables involved in A and let ci be the number

of other bad events that involve Xei . These other bad events correspond to different cycles of length

three. If e1 = (v1, v2), e2 = (v2, v3), and e3 = (v3, v1), then v2’s degree is c1 + c2 + 2, where the +2

are for v1 and v3. Since we have c1+c2+2 ≤ d, c2+c3+2 ≤ d, c1+c3+2 ≤ d, and c1+c2+c3 = ∆,

we get that 2(c+ 1+ c2 + c3) + 6 = 2∆+ 6 ≤ 3d, leading to ∆ ≤ 3
2d. Finally, from 6ep∆2 ≤ 1 and

3er∆ ≤ 1 we get q ≤
(
3 3
√
ed

2
3

)−1
≤ 0.24d−

2
3 . Since the given chordal graph has |E| edges and at

most
(|V |

3

)
bad events, the expected number of variable resamples is O(|E| log |V |).

The open problem is how many times do we need to resample all edges, in order to bound the overall

running time. One of our original motivations for this work was to extend the partial rejection

sampling framework to acyclic orientations. In a subsequent work, presented in Section 4.2, we

found a more elegant and efficient algorithm for acyclic orientations in chordal graphs. While this

particular motivation no longer applies to chordal graphs, we hope that the result presented here

will be useful in other contexts as an illustration of the power and pitfalls of the partial rejection

framework technique.



Chapter 5

Sampling Random Chordal Graphs

In this section, we present a Markov chain to sample chordal graphs uniformly at random. Inspired

by the decomposition technique for bounding mixing times of Markov chains [48], we prove a

polynomial mixing time bound for the Markov chain for chordal graphs with treewidth one and a

fixed number of simplicial vertices.

5.1 Motivations and Related Works

The underlying structure of a Bayesian network, the most common graphical model for represent-

ing causal relationships among a set of variables, is a directed acyclic graph (DAG). In a DAG

representation, a directed edge X → Y means that variable X is a cause of variable Y . Learning

the underlying structure of a Bayesian network from data is a hot topic in research of probabilistic

graphical models, with substantial recent progress [22,55,60,83]. The main idea is to define a score

for the Bayesian network, indicating how the network fits the given data, and then to try to find

a Bayesian network with the highest score. For a given structure of the Bayesian network, there

exists a class of structures that have the same score; this class is called the Markov equivalence class

(MEC). All DAGs in a MEC share the same skeleton (that is, the underlying undirected graph)

and v-structures, where a v-structure for variables (a, b, c) is an induced subgraph a→ b← c [76].

MEC can be represented by an essential graph, which contains both directed and undirected edges,

an edge is directed if it has the same direction in all DAGs in the MEC, otherwise, it is undirected.

The size of a MEC is the number of v-structure-free DAGs in it, and calculating the size of a MEC

is crucial because it indicates how much additional information is needed in order to recover the
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underlying structure. It was proved that calculating the size of a MEC can be achieved by counting

the number of v-structure-free DAGs in undirected connected chordal graphs (UCCGs) [5, 29].

The existing approaches to find the size of a MEC include Markov chain Monte Carlo methods [7,28],

exact counting by recursion [29, 30], and tree decomposition [25, 71, 83]. These algorithms are all

tested on UCCGs that are generated by non-uniform samplers [49, 61, 62], which may result in a

bias on their real performance. This motivates our study of sampling chordal graphs uniformly at

random.

The closest #P-hardness results for chordal graphs are from Kijima et al. [41]. For chordal graphs

G,G, Kijima et al. proved that counting chordal graphs in a chordal sandwhich ΩC(Ḡ,G) is #P-

complete, where ΩC(Ḡ,G)
def.
= {G | G is chordal, G ⊆ G ⊆ G, and ⊆ denotes the subgraph

relationship}. The #P-completeness holds when G does not have any edges. Due to the computa-

tional hardness of counting, we consider sampling approaches for generating chordal graphs.

Since efficient algorithms exist for deciding whether a graph is chordal [59], a simple Markov chain

can be used to sample chordal graphs with n vertices: let G be the current chordal graph, then:

• Choose an edge e = (i, j) for 1 ≤ i, j ≤ n uniformly at random. Then there are three possible

cases:

– If e ∈ G and G− e is chordal, set G′ = G− e.

– If e /∈ G and G+ e is chordal, set G′ = G+ e.

– Otherwise, set G′ = G.

• Update G = G′ with probability 1/2.

The Markov chain is symmetric, thus, if it is also ergodic, the underlying sampling distribution is

uniform. Ergodicity follows from the fact that this Markov chain connects the state space (that is,

the Markov chain is irreducible): One can use the theory of chordal graphs to find edges to remove,

one by one, to get to a tree, and then design a mechanism to convert one tree into another tree.

This procedure is reminiscent of what we describe below for chordal graphs of bounded treewidth,

hence we focus on the bounded treewidth case in this work.

Kijima et al. [41] showed that the above Markov chain, when restricted to a sandwich scenario, is

slow mixing for some pairs of chordal graphs (G,G). To the best of our knowledge, the mixing

time is unknown when there are no sandwich restrictions (that is, when G is the graph of n isolated

vertices and G is the complete graph).
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5.2 Our contribution

From now on, we will assume that we have a constant r bounding the treewidth, and, slightly

abusing the notation, we denote by Ωn all connected chordal graphs with n vertices and a treewidth

bound r. We aim to design a Markov chain that samples graphs from Ωn uniformly at random.

Algorithm 3 One step transition of the Markov chain

1: Pick a vertex u uniformly at random (u.a.r.).

2: if u is simplicial then

3: Pick a set W of r vertices other than u u.a.r.

4: Choose a random nonempty subset W ′ of W .

5: if W ′ forms a clique then

6: Deattach u from its current neighbors.

7: Attach u to W ′.

Every step of this chain happens with the same probability, hence the Markov chain is symmetric.

It can convert the current chordal graph into a tree by always choosing W ′ of size 1. Hence, to

prove the connectivity of the chain, it remains to show how it can convert one tree into another

tree. Therefore, it suffices to prove connectivity for r = 1.

Along the lines of the decomposition technique [48] for bounding mixing times, we will decompose

our state space into sets Ωk
n containing chordal graphs on n vertices with exactly k simplicial vertices

(and treewidth bound r = 1 ).

We show that the above Markov chain, when restricted to only states in Ωk
n (that is, any state not

in Ωk
n will be rejected), connects the state space and mixes rapidly, as long as k ̸= 2 (for k = 2

every such chordal graph is a path) and k ̸= n− 1 (star graphs).

We will use the following notation. For G ∈ Ωk
n, let S

G be the set of its simplicial vertices and let

SG
0 ⊆ SG be the simplicial vertices whose neighbor is of degree 2. Whenever clear from the context,

we will omit the superscript G.

Lemma 21. The Markov chain over Ωk
n for 3 ≤ k ≤ n − 2 connects the state space, which has

diameter O(n2).

Proof. Let the vertex set be {v1, . . . , vn}. We say that a graph in Ωk
n is canonical if it has v1 as the

root, has edges (v1, vj) for 2 ≤ j ≤ k + 1 and edges (vj+1, vj) for k + 1 ≤ j ≤ n.
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Figure 5.1: An example of converting a graph in Ω4
8 to the “star with a tail” graph with vertex C

as the star using the Markov chain transitions. Simplicial vertices are in black. After each step of

the transitions, there are always four simplicial vertices.

We will first show that any graph in Ωk
n can be transformed, using steps of the Markov chain, to a

“star with a tail” graph with v1 at the center of the star. The “star with a tail” graph consists of

k − 1 vertices attached directly to v1 and a path of n− k vertices also attached to v1. Notice that

the canonical graph is a special case of “star with a tail”. An example is shown in Figure 5.1.

Let G ∈ Ωk
n. We will first achieve that v1 /∈ S. If v1 ∈ S, and there is a u ∈ S0, we just reconnect

u to v1 (notice that the number of simplicial vertices did not change, since u was in S0). If there

is no such u, then suppose we root the tree at v1 and u be the leaf furthest from v1. This leaf has

siblings (since it is not in S0), we reconnect each of the siblings to an arbitrary vertex in G − S.

Now we have u ∈ S0 and we proceed as before.

Let t be a simplicial vertex. We will process the current simplicial vertices one by one. For a

simplicial vertex u ̸= t, if u ∈ S0, reconnect u to t and let t := u; otherwise reconnect u to v1. Both

changes will keep the number of simplicial vertices unchanged.

The final step is to transform the current “star with a tail” graph into the canonical form. While
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there is a u ≤ k in the tail part, then there must exist a v in the star part such that v > k. If u ∈ S,

we reconnect v to the parent of u, then reconnect u to v1, keeping the number of simplicial vertices

the same. Otherwise, when u /∈ S, let w ̸= v be a vertex in the star (notice that it must exist since

k ≥ 3 ). Let x1, . . . , xp be the descendants of u, in this order (where xp ∈ S). We remove them,

one by one, and attach them to v, forming a path xp, . . . , x1 of descendants of v. At this time u

will be simplicial and we proceed with u as before and reconnect xi’s back to the tail.

Now vertices vj for k+1 ≤ j ≤ n are all in the tail, but may be in the wrong order. We first make

vk+1 to be connected to v1. We proceed through its descendants as before with a w1 in the star,

reconnect vk+1 to another w2 in the star, proceed one by one with vk+1’s ancestors to the path

start at w1. Then we reconnect vk+1 to v1 and reconnect ancestors and descendants one by one

back to vk+1. We keep doing this until we get the correct order.

From the above, we know that at most O(n) transitions are needed to move a vertex to its correct

position. So the diameter of the state space is O(n2).

Next we prove a mixing time bound within each subspace Ωk
n.

Lemma 22. The mixing time of the Markov chain on Ωk
n for 3 ≤ k ≤ n− 2 is O(kn log n).

Proof. We use the path coupling technique [15] to bound the mixing time. We will use moves of the

Markov chain to induce the metric on the state space. In other words, two trees are at a distance

that equal the smallest number of Markov chain moves that transform the first tree into the second

tree.

Therefore, two trees Xt and Yt are adjacent if they differ by exactly one Markov chain move. Let

u be that different vertex, vx be the parent of u in Xt, vy be the parent of u in Yt. The coupling

chooses the same pair of vertices in both Xt and Yt : the first vertex will be detached from its

current neighbor and attached to the second vertex. There are two possible cases.

The first is u ∈ S0, then the removal of u will make vx, vy simplicial. So, in this case the good moves

(when the distance decreases) are Xt removes (u, vx) , Yt removes (u, vy), and both add (u,w) and

w ∈ S. There are |S| good moves; bad moves are Xt and Yt remove w ∈ S0 and add (w, u). So the

number of bad moves is |S0| − 1. Obviously |S0| − 1 < |S|.

Another possibility is u ∈ S≥1, in which case good moves are Xt removes (u, vx) , Yt removes (u, vy),

and both add (u,w) and w /∈ S. So there are n − |S| + 1 good moves. And the number of bad
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moves is still |S0| − 1. We will show by induction that n − |S| + 1 > |S0| − 1, which is equivalent

to showing

n > |S0|+ |S| − 2 = 2 |S0|+ |S≥1| − 2 (5.1)

1. If |S≥1| = 0, then for each v ∈ S0 its parent is nonsimplicial, so n ≥ 2 |S0|+ 1.

2. If |S0| = 0, (5.1) is obviously true.

3. Assume (5.1) holds for step t ≥ 0 and at step t+1 a new vertex is connected to a vertex v in

the tree. If v ∈ S then S | will not change and |S0| will increase by one if and only if v ∈ S≥1;

if v /∈ S, then |S0| will not change and |S≥1| will increase by one. Therefore, (5.1) holds at

step t+ 1 in both cases.

Therefore, in every case, the number of good moves is strictly larger than the number of bad moves.

Plugging this in [15] yields a mixing time of O(kn log n).

We showed that the Markov chain, when restricted to trees with k leaves (these are exactly the

simplicial vertices), mixes rapidly. A natural open question is whether the Markov chain mixes

rapidly for all (labeled) trees, though it should be noted that there is an exact formula (the Caley’s

formula) for the number of all labeled trees with n vertices, and therefore we find the restricted

version of the Markov chain more exciting to study. We conclude the chapter with a generalization

of the above open problem: Is the mixing time of the Markov chain polynomial for an arbitrary

(constant) treewidth bound r? And, what is the mixing time of the edge add/remove chain?
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Conclusions

Counting and sampling of different types of graph structures on general graphs have been widely

studied. Most of the studied graph structures are hard (unlikely to be exactly solved or approx-

imately solved) on general graphs as well as restricted graphs like bounded-degree graphs and

planar graphs. Finding underlying graphs that make counting and sampling of those graph struc-

tures polynomial-time solvable helps us understand both the graph and the structures better.

In Chapter 3 we studied the classical problem of sampling independent sets. We showed that the

well-known Dyer&Greenhill chain can sample weighted independent sets in polynomial time on

chordal graphs with bounded separator sizes. Also, the bound of mixing time we got gives us a

strong hint that the Markov chain might mix in polynomial time on chordal graphs without a

separator bound. We leave the problem of bounding the mixing time on general chordal graphs

open.

In Chapter 4 we first presented a polynomial-time counting framework for acyclic, bipolar, sink-free,

source-sink-free orientations on chordal graphs through a manner of applying dynamic program-

ming over a clique tree. For acyclic and bipolar orientations, we also designed polynomial-time

uniform samplers for them based on the counter we developed. We also introduced source-sink-free

orientations, which are a natural restricted version of sink-free orientations. Strong orientations are

a special case of source-sink-free orientations since they have no sources and no sinks. Unlike acyclic

and bipolar orientations, we cannot convert the counter to a uniform sampler because of a two-level

inclusion-exclusion approach used for the counter. We leave uniform sampling of source-sink-free

orientations as an open problem. Besides this, we are also interested in designing a sampler and a

counter for strong orientations. In the remainder of the chapter, we presented a weighted sampler
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for so-called “partial acyclic orientations” on chordal graphs using the partial rejection sampling

framework.

In Chapter 5, we designed a Markov chain to sample random chordal graphs with fixed number of

vertices. We proved a polynomial mixing time bound for chordal graphs with treewidth 1 and fixed

number of simplicial vertices. A natural open problem is to bound the mixing time of the chain for

general chordal graphs.
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