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Abstract

The discovery of Adversarial Examples — data points which are easily recognized by

humans, but which fool artificial classifiers with ease, is relatively new in the world of

machine learning. Corruptions imperceptible to the human eye are often sufficient to

fool state of the art classifiers. The resolution of this problem has been the subject of a

great deal of research in recent years as the prevalence of Deep Neural Networks grows

in everyday systems. To this end, we propose InfoMixup , a novel method to improve

the robustness of Deep Neural Networks without significantly affecting performance

on clean samples. Our work is focused in the domain of image classification, a popular

target in contemporary literature due to the proliferation of Deep Neural Networks in

modern products. We show that our method achieves state of the art improvements

in robustness against a variety of attacks under several measures.
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Chapter 1
Introduction and Background

1.1 Introduction

The brittle nature of Deep Neural Networks is a well-known problem. Changes in

image structure which are imperceptible to humans fool modern classifiers with ease,

and often the incorrect prediction is given with high confidence. The prevalence of

Adversarial Examples, and the development of algorithms to produce them, suggests

that they are not statistical anomalies or outliers, but rather a side-effect of current

models and training procedures.

Figure 1.1: Creation of an adversarial example [1]

Recent studies have classified adversarial examples into different categories. Natu-

ral adversarial examples [2] are those which have not been modified by any algorithm,

but readily fool a classifier. Hendrycks et. al. [2] have further classified natural ad-

versarial examples into those which are in-distribution data, and those which are
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Chapter 1. Introduction and Background

out-of-distribution data. In-distribution adversarials are those whose correct classifi-

cation is among the classes the model was trained on, but which the model fails to

classify correctly. Out-of-distribution adversarials are data points which fall outside

the set of classes known to the model, but which the model confidently predicts as

being in one of the classes it was trained on.

Figure 1.2: Natural Adversarial Examples [2]

One step up in difficulty while remaining near the world of natural adversarial

examples, are “common corruptions”. In the image classification domain, these are

modifications to an image which make its contents less clear via artifacting caused

by the image sensor, compression, transmission losses, or environmental conditions

during image capture which have caused abberations in the image. The contents of

the image are still recognizable to a human observer, but the quality of the image is

reduced. Examples include rain on the lens of a camera, JPEG compression artifacts,

salt-and-pepper noise, and posterization. Hendrycks et. al. have produced a database
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Chapter 1. Introduction and Background

of these so-called “common corruptions” on ImageNet-1k and TinyImageNet.[4] Their

approach algorithmically generates abberations which follow similar trends to the

sorts of corruptions observed in real-world images.

Adversarial examples can additionally be crafted algorithmically, via optimization

techniques. By far the most difficult to overcome, it is algorithmically generated ad-

versarial examples which granted these extreme edge case images their name. These

adversarial attacks generate data which are edge cases for a model. Several subclasses

of adversarial attack have been created. Attacks which have access to the model’s pre-

dictions and gradients are considered white-box attacks. Attacks which have access

only to the predictions are called black-box. Targeted adversarial attacks attempt to

cause a certain sample of a source class to appear to the model to belong to a spe-

cific target class, while untargeted attacks simply aim to create any misclassification,

regardless of the final classiciation result of the perturbed image.

There are two overarching classes of adversarial attack. Untargeted attacks are

those which cause any misclassification, but do not attempt to make an example of

a particular class appear to be an example of a specific class. Targeted attacks, then,

are those which intend to cause an example of some class to appear to be an example

of a different, but specific class. Within each of these classes, there are black-box

and white-box attacks, where black-box attacks do not have knowledge of the model,

whereas white-box attacks assume the adversary has full knowledge of the model

architecture, and has access to more than classification results for a set of examples.

It is difficult to draw distinction between what is an adversarial example, and

what is simply corrupted or unrecognizable. Adversarial examples generally have

obvious classification to a human observer, but it is difficult to draw a boundary

in a rigorous way under this intuition. Although mathematical bounds on what is

considered adversarial have not been established, a concept for the general strength

of an adversary has been developed. Common to all adversarial attacks is the concept
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Chapter 1. Introduction and Background

of a maximum perturbation, a rational positive number which is relative to a distance

metric in the data space between the original and the adversarial image. Common

distance metrics are l0, l2, and l∞ norms. The maximum distance from the source

data point the attacker is allowed to move the data point in space is referred to as

the epsilon (ε) of the attack.

Strength of algorithms vary and are difficult to compare. FGSM is known to be

fast and effective against unregularized networks, but can be defended against with

Adversarial Training [5] and regularization. In contrast, attacks such as the method

of Carlini and Wagner [6] are known to be very strong and difficult to defend against.

In our work we will consider all varieties of adversarial examples, but focus on

those which are generated algorithmically.

1.2 Background

1.2.1 Adversarial Machine Learning

A common property of deep neural network architectures is the prevalence of ”ad-

versarial examples”, or inputs which are imperceptibly altered to a human observer,

but which are incorrectly classified by the neural network [7].Adversarial examples

are observations which have been intentionally altered to be a worst-case example of

a particular class as viewed from the perspective of the network.

Consider a topological space of n-dimensional vectors, X . A classifier C takes

vectors in X and maps them to a set of m-dimensional vectors Y which are class

labels corresponding to a subset of vectors in X . Let A and B be non-intersecting,

open subsets of X with class labels At and Bt, which contain all vectors in X which

correspond to their associated labels in the true distribution. Let Al and Bl be subsets

of At and Bt which are the examples which C can map to their corresponding labels

in Y correctly. The classifier C learns a boundary Bl between Al and Bl, which will
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Chapter 1. Introduction and Background

be dissimilar from the true boundary, Bt between At and Bt. Using this construction,

we define adversarial examples on At to be those vectors which are in At, and also in

Bl.

Definition 1. Adversarial Examples are vectors which reside in the intersection of

At and Bl for some class A.

Under the traditional view of class boundaries, we consider there to be a “margin”

region which resides between two classes, and it is believed that both natural and

generated adversarial examples may lie in this space. While this view is not false,

we propose a slightly modified view of the representation space, which lends itself to

describing adversarial examples and potential solutions better than the traditional

view.

Figure 1.3: Boundary between hypothetical classes A and B.

Note that we can also consider naturally misclassified examples in this framework.

Examples which are misclassified at all can be considered “adversarial”, though they

6



Chapter 1. Introduction and Background

are not perturbed in any way, but are simply outside the model’s classification bound-

ary for its target class. “Natural adversarial examples” are common. Hendrycks et. al.

have created the ImageNet-A benchmark [2], a collection of images which correspond

to the ImageNet-2012 labels, but which are all misclassified by state-of-the-art models.

Many explanations have been made for the existence of these examples. Goodfel-

low et. al claim that adversarial examples arise from networks being “too linear” [1],

making them unable to draw sufficiently complex boundaries in the input space to

classify a wide space of examples in each class. Another explanation for the existence

of these adversarial examples is the presence of highly predictive, but non-robust fea-

tures in a dataset. These non-robust features are an intrinsic property of the images

in commonly-used datasets, and they are relied upon by classifiers when the objective

function being optimized considers only classification accuracy [8].

Although generalization is arguably one of the most central concepts to modern

machine learning, it is surprisingly difficult to make a rigorous definition of general-

ization that captures all ways in which it can be applied. Broadly, we can say that

a model which generalizes well has learned boundaries which are “close” to the true

boundaries for every subset in X . Several tactics for indicating the similarity of the

learned boundaries to the true boundaries arise from statistical modelling. A com-

mon measure of generalization is classification accuracy on a withheld set of testing

data. Predicted class labels in a test set are compared to their true labels, and with

a large test set, high similarity between the predicted labels and the true labels is

considered to be an indication of a well-fit model. In applications that require more

robust classifiers, validation procedures include cross-validation, and robust test set

generation. The former splits the dataset into fractions of testing and training data

such that each pair of train and testing sets is mutually exclusive, but the test data

for one train-test pair may appear in the training data for a different train-test pair.

This method allows the model to be compared against itself on different arrangements
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Chapter 1. Introduction and Background

of the data, to ensure the model performance is not a side effect of poorly chosen test-

ing data. Robust testing involves withholding a further subset from a cross-validated

dataset which is intentionally chosen to be different from the rest of the data. In the

case of biometrics, this may be data from subjects whose training data is not included

in cross-validation in any way.

Both of these techniques rely on random selection to ensure that the test set

provides useful information about the class boundaries. When this assumption fails,

models which appear to perform well on a particular task during development may

fail in deployment. In adversarial settings, accuracy on test set examples is called

“clean accuracy”, to allow the term “accuracy” to apply to examples which have been

perturbed by an attacker.

In this work we suggest that generalization and adversarial robustness are two

facets of the same problem. Fundamentally, a classifier whose learned boundaries are

identical to the true boundaries of each known class in the input space would have no

adversarial examples, and no unexpected failures due to incorrect labeling. Training

such a system would require infinite data, and so instead we seek a way to determine

the degree to which the relevant information about a distribution of labels has been

extracted by a model, thus providing a way to make informed estimations about the

fitness and generalization of a model.

1.2.2 Information Theory in Machine Learning

Information theory is the field of mathematics concerned with the ways in which

“messages” — elements of a set of possible messages, each with their own related

meaning and information content, are recovered either exactly or approximately after

some process has taken place. It was coined by Claude Shannon and his fellows, the

first formal public appearance being the famous paper A Mathematical Theory of

Communication [9]. Consider an observation in X with some corresponding label in

8



Chapter 1. Introduction and Background

Y . If X is a space of images, for example, then a single observation might be labeled

as “panda”, but contain context that one might expect to see along with an image of

a panda, such as bamboo fronds, or blue skies, etc. All of this context is information

that is present in the observation, but is useless to the classification problem at hand.

Ideally, a well-fit classifier would be able to identify that a given observation contains

a panda even if that panda were placed in a completely unfamiliar context. If the

intent of the model is to obtain a label for the foreground of an image, then all

information regarding the background can be discarded. In effect, the image can be

compressed, removing all information from it that is non-essential to the classification

task at hand. Since the label “panda” contains the same meaning as a context-free

image of a panda in this context, but with many less bits required to represent it, it

is clear that the image is not the most efficient way to represent this information.

Figure 1.4: High-level diagram of encoding information into a set of codewords which
capture the information content of a set of examples, and then decoding the codewords into
a different representation.

Central to information theory is the idea that for a given set of possible messages,

there is a minimal set of “codewords” that can represent each possible message while

9



Chapter 1. Introduction and Background

allowing the original to be reconstructed in whole or in part. The loss of informa-

tion can be useful, for example in providing more reliable communication channels

by maximizing the use of channel capacity on information that is critical, and min-

imizing transmission of information which is not necessary. In the case of learning

algorithms, minimizing information about the input space while maximizing informa-

tion about the label space is critical to solving complex tasks due to both resource

and representational ability constraints.

The concept of compression — the idea that a finite set of messages can be repre-

sented in a compact way, possibly at the expense of precision, can be applied to learn-

ing algorithms instead of communication channels, and is done so by the Information

Bottleneck Method [10]. The Information Bottleneck (IB) Method restructures the

learning problem into an encoding and decoding problem with a constrained optimiza-

tion solution. Most classification tasks operate on high-dimensional, information-rich

input spaces and yield vectors in relatively low-dimensional spaces. In the view of

information theory, this means that the relevant information about the label dis-

tribution contained in each observation is small compared to the total amount of

information contained in the observation. Thus, the model is trying to extract only

the relevant information, or equivalently, create a compressed representation of the

input from which the label of the observation can be easily obtained. The IB method

creates an optimization problem, where the maximum amount of information about

the label distribution Y is extracted from the input distribution X into a compressed

representation T , while minimizing the amount of information contained in T about

X .

The IB method translates to neural networks well. The compressed representation

of X is exactly the hidden representation H or latent space of vectors observed at

the output of the penultimate layer of the neural network. It is from this hidden

representation that labels of the observations are predicted by a linear classifier. It is

10



Chapter 1. Introduction and Background

Figure 1.5: High-level diagram representing the use of an Information Bottleneck on a
neural network as an encoder, and a softmax classifier as a decoder for a one-hot class
representation.

easy to see then, that H is produced through the IB framework implicitly, since only

so many bits of representation are available in H, and standard training[8] optimizes

the usefulness of H to the linear layer in predicting Y .

The important side effect of standard training is that it encourages the model to

learn any representation H that is useful for predicting Y , without any constraint

on the whether those features generalize well. Standard training will in fact choose

predictive features over features which generalize well, even if they are brittle [8].

While the IB framework does limit the amount of information which can be retained in

the hidden representation, which may discourage brittle features from being retained

by the model, ultimately it does not eliminate the problem — sufficiently predictive,

but brittle, features may still be retained in the compressed, hidden representation

learned by the model.

A significant challenge in training robust models is to know which features are

robust, and which are not. Often times, the features learned by deep neural networks

11



Chapter 1. Introduction and Background

are unintelligible to humans, and thus the decision boundaries drawn by the network

are similarly difficult to understand. Adversarial features are completely unintelli-

gible to humans, as shown in the work of Ilyas et. al. [8], where images containing

only adversarial features were produced by means of a Projected Gradient Descent

adversary. To the human eye, these images appear to be static with a few silhouettes

of unintelligible shapes within them, but the network can be confident that they cor-

relate to one of its classes. It is often the case that extremely small perturbations of

the input data cause catastrophic differences in the classification result.

0
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Figure 1.6: Image comprised of solely non-robust features, generated from an MNIST test
image for “6” using the FGSM attack with ε = 0.1. The above image is labeled “0” by an
unsecured network. This image has been scaled for visibility the scale on the righthand side
reveals the severity of this problem.

It was found in that work that these images containing only adversarial features

suffice for standard classification; models trained on these images alone were able

to acheive state-of-the-art accuracy on CIFAR-10 images from which the adversarial

images were produced, which suggests that adversarial features are not the noise

that they appear to be, but rather are highly predictive features present in natural

settings, which are not perceptible to humans. This reality suggests that even an

ideal model under information bottleneck, having only as many bits in the hidden

12



Chapter 1. Introduction and Background

representation as in the target distribution, may contain adversarial features which

are more predictive than robust features on the subset of the data distribution used

during training, thus leading to a model which appears to perform optimally, but will

fail in deployment.

Before adversarial examples were ever formally studied, overfitting was a well

known failure mode of both statistical and deep neural models. Broadly, an overfit

model is one which performs well on its training data, according to some metric of

performance used to evaluate it, but performs significantly worse on related data

which it has not seen before, by the same metric. Adversarial examples, then, are

just an extreme case of overfitting, where nearly imperceptible differences between the

training data and the adversarial data cause the same behavior as an overfit model.

Overfitting is a side-effect of the bias-variance tradeoff that is common to all sta-

tistical models. Any attempt to reduce the variance of a model will cause it to become

biased towards the data used to develop the model. In the extreme case, the model

perfectly learns the data distribution. The true distribution, from which the data was

sampled, however, will in practice always be wider than the sampled distribution, and

thus the model will fail when shown a sample from the true distribution.

An effective method of reducing overfitting is to make the model less complex,

which widens the confidence interval and thus variance of the model, but causes it

to be less biased towards the training data. This may have the effect of lowering the

accuracy that the model can obtain on training data, but allows it greater flexibility

to make predictions on samples outside the training data.

In deep neural networks, however, model complexity is not well understood. Re-

ducing the number of trainable parameters of the model by decreasing the number

of layers, removing connections between layers, or decreasing the number of nodes in

each layer — may reduce the complexity of the network so much that it is unable to

learn even the training data.

13
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To combat this, rather than decreasing the number of parameters of the model,

the model is instead regularized, or given additional constraints that prevent it from

learning a strongly biased representation of the training data. Numerous regulariza-

tion techniques have been developed in the study of robust neural network models,

which can be broadly divided into three categories:

1. Weight regularization schemes. These techniques apply a constraint on

the trainable parameters of the network through a penalty applied to the loss

function. Manifold Mixup [11] implicitly apply a smoothing constraint on the

weights of each layer by causing points around each transformed datapoint to

cause similar predictions.

2. Data augmentation schemes. Methods of this class create additional data

from only the training data, generally through transformations, such as scaling

and rotation. Methods such as Mixup [12] perform interpolation between exam-

ples of different classes. Modifications like MixBoost [13] perform interpolation

within a minority class to produce more examples of that class.

3. Adversarial training schemes. An extension of data augmentation, these

methods explicitly extend the data distribution by use of adversarial exam-

ples [5] and harsh transformations [14].

In this work, we will focus on data augmentation and adversarial training, which

are most closely related to our approach. We will show that carefully applied regular-

ization can improve adversarial robustness without increasing model complexity, and

propose a new method for improving the robustness of models, along with supporting

empirical results.

14



Chapter 1. Introduction and Background

1.3 Related Work

1.3.1 Data Augmentation and Adversarial Training Schemes

Perhaps the most effective and well-known way to improve adversarial robustness in

deep neural networks is adversarial training, proposed by Madry et. al. [5]. Under this

scheme, a trained model with similar or identical architecture to the target network

to be implemented is trained on the clean dataset to desired performance. After it

has been trained, the model is attacked by a variety of different adversaries, and the

adversarial examples produced by the adversary are saved. After a large corpus of

adversarial examples have been collected, a new model is trained on both the clean

and adversarial data. The resulting model is significantly more robust to attack than

models trained only on clean examples.

Their work builds on the idea that adversarial examples stem from features present

in the input data which are predictive, but brittle, as supported by their later 2019

work [8]. By including adversarial examples in otherwise clean batches, these ad-

versarial features are muted in the learned representation. In their work, they note

that FGSM adversaries do little to improve the robustness of models in their method,

indicating that FGSM attacks are relatively weak. This is supported by [15], which

shows that models robustified against FGSM overfit to l1 distance metrics.

Zhang et. al. proposed a novel and elegant method for improving both predictive

performance and adversarial robustness with the now-famous mixup technique[12].

Mixup does not require any adversarial examples, but instead creates new, soft-

labeled examples by linearly interpolating between examples from different classes

with known labels. Mixup linearly interpolates according to Equation (1.1), where λ

is drawn from a Beta distribution with equal parameters α = β ∈ (0, inf). The single

hyperparameter α controls the extremity of mixing. As α approaches zero, the values

of lambda drawn as λ = β (α, α) will have higher probability density towards zero
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and one. As α approaches infinity, the drawn values will be more uniform on [0, 1].

x̂ = xa × λ+ xb × (1− λ)

ŷ = ya × λ+ yb × (1− λ)

(1.1)

The effect of this is that the interpolated examples produced by mixup are more

similar to their ground-truth classes for lower values of α, and are more of a mixture

for higher values of α. It is proposed that the examples produced by mixup are

potentially outside the data manifold visible through the samples in the data set, and

overlap with examples which might be chosen by an adversary [15].

The value chosen for α is strongly dependent on the model and the dataset used

during training [16], which makes training with mixup difficult and time consuming

for many modern architectures.

AugMix [14] is a data augmentation technique which combines several fixed-

function transformations on image data, creating new examples which share the same

label as the original image. AugMix creates new examples and labels in the same fash-

ion as standard data augmentation techniques such as scaling, rotation, cropping, and

posterization, but it interpolates between pairs of the transformed images to create a

single new image which looks noticably distorted to the human eye, but is still clearly

within the original class. These images are outside the distribution of clean images in

pixel space, which places them in areas that an adversary may attempt to perturb an

image towards. By including them in the training data, AugMix improves adversarial

robustness by widening the learned distribution.

CutMix [17] is a data augmentation technique which interpolates between images

by splicing them together in a picture-in-picture fashion, rather than linearly inter-

polating between them in pixel space as Mixup does. CutMix combines image by

selecting randomly sized and randomly located squares from an image and splicing

them into an equally-sized and randomly located space in a base image. The label
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is mixed based on the proportion of the resulting image which is assigned to each

underlying label. This strategy improves the localization of predictive features, en-

couraging the model to recognize foreground features anywhere in the image. An ad-

ditional benefit is that images with multiple labels and foreground objects are shown

to the model, which improves the localization of objects in the representation — a

model pretrained with CutMix on a classification task can improve the performance

of an image segmentation task when compared to a pretrained model that was not

trained with CutMix. The randomly selected image segments are chosen via uniform

distribution over the image dimensions, by default. This leaves the possibility that

an entirely or primarily background-containing patch of the image could be cut out

of one image, and placed directly over a primarily foreground patch of another image,

thus obscuring the foreground features of both classes. The resulting label will still

indicate that the resulting image is a mixture of the two original classes, which may

cause the model to become confused, have degraded accuracy on clean samples, or

produce confident predictions on information-free samples.

PuzzleMix [18] incrementally builds upon the concept of object localization from

CutMix. The main improvement over CutMix is the use of optimal transport to

place the spliced image segments such that foreground segments are always selected.

Thus, PuzzleMix overcomes the main drawback of CutMix. PuzzleMix employs a

pre-trained classifier which was trained in any way to produce a class activation map

for each sample. The class activation map provides “saliency information” about

the image. This saliency information indicates which areas of the image were most

important in making the classification for that image. Puzzle mix does this for each

image in a set of images to be mixed. The high-saliency areas of each image contain

primarily foreground features for a well-trained model, and low-saliency areas should

contain primarly background features. This allows PuzzleMix to create new training

samples such that the entire image contains foreground features from many classes.
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Similarly to CutMix, PuzzleMix labels the resulting image according to the fraction

of the image assigned to each class. PuzzleMix produces localized feature recognition

just as CutMix does, but without the potential for feature obfuscation.

The need for saliency information can make PuzzleMix computationally expensive

compared to other data augmentation techniques. A pretrained classifier is required

for PuzzleMix to operate, although it does not have to be of the same architecture as

the model to be trained with PuzzleMix. Additionally, saliency maps could be pre-

computed and cached, allowing multiple training runs to proceed with only slightly

increased computational load as compared to a standard training session. A signif-

icant drawback of PuzzleMix is that it does not specify how the foreground image

sections are spliced together in the image. PuzzleMix subsamples the saliency map

down to a 4×4 matrix, and selects elements from that matrix above a certain thresh-

old to be mixed into the new image. The selected elements from the subsampled

saliency map are expanded to match the original image dimensions, and in turn used

to selectively mask background features. The tiles of foreground information are ran-

domly emplaced in the mixed image, which has the drawback of potentially allowing

foreground features to be split apart in a way that degrades their recognizability.

Co-Mixup [19] builds upon PuzzleMix and CutMix, and resolves the potentially

hazardous dissociation of foreground features from PuzzleMix. The Co-Mixup algo-

rithm solves an optimization problem for each minibatch, choosing how many images

to mix and what regions from the source images should be chosen such that the

patches contain most of the foreground information. The Co-Mixup mixing objec-

tive is significantly more complex than even PuzzleMix, but it automatically splices

images together in a semantically-sensible manner such that the final image strikes a

balance between maximizing salient information via foreground features, and maxi-

mizing diversity, by including foreground features from as many images as possible.

Co-Mixup creates a jigsaw puzzle for as many images in each minibatch as possible,
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where the edges of the mixed regions may not be square bounding boxes. Each jigsaw

piece from a source image contains primarily foreground features, thus maximizing

the amount of useful information in each image passed through the model. This

maximization ensures that the model learns to recognize features in all regions of the

input image, and that each image contains primarily predictive, foreground features.

It is unclear how useful any of CutMix, PuzzleMix, or Co-Mixup are with re-

gard to adversarial robustness. While CutMix and PuzzleMix both show significant

improvement against an FGSM adversary, Co-Mixup has no analysis relating to ad-

versarial robustness. PuzzleMix claims to be able to include Adversarial Training in

their method without additional cost, since their methods already employ gradients

of the loss function to select images for mixing; The same gradient can be used for

creating adversarial examples with a variety of attack algorithms. PuzzleMix does

not perform adversarial analysis on ImageNet, which makes it difficult to compare

against other methods who report adversarial accuracy on ImageNet.

Adversarial Vertex Mixup (AVM) [20] is a Mixup-inspired technique specifically

designed to improve adversarial robustness. It combines Adversarial Training with

Mixup. AVM seeks to improve Adversarial Training by reducing Adversarial Feature

Overfitting, whereby the model learns the adversarial features in combination with

robust features, causing it to overfit to the attacks, distance metrics, and attack

strengths used during Adversarial Training. AVM operates by drawing a vector in

the input space between an example and an adversarial example generated from it

by an attacker, and creates new examples by sampling along that vector. In this

way, AVM can create both mild and very strong adversarial examples easily, from

relatively few base adversarial examples at very little computational cost compared to

generating a similar number and variety of examples via directly attacking a network.

AVM can be used with any adversary or combination thereof. AVM does not sacrifice

significant performance on clean examples, but can significantly improve performance
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on adversarial examples. No comparison against ImageNet is made, which makes

comparison against VIB and other schemes impossible.

1.3.2 Regularization Schemes

In a similar vein as mixup, Manifold Mixup operates in much the same manner,

but applies equation (1.1) to the hidden representation at various layers of the net-

work [11]. The effect of Manifold Mixup is to flatten the representation learned at

each layer, which has the effect of simplifying the boundaries and representations,

which has the effect of improving classification performance, and minimally improv-

ing adversarial robustness.

The original Mixup technique draws from the dataset at random for each mini-

batch and mixes two minibatches against each other. Manifold Mixup, however, mixes

within each batch for efficiency.

The authors of Manifold Mixup note that their method improves defense against

FGSM attacks, but did not markedly improve performance against projected gradient

descent (PGD) attacks.

Batch Normalization [21] is a well-known regularization strategy that is essential

to modern network architectures, the most prevalent being the ResNet family of

architectures [22]. ResNets employ batch normalization in their basic building blocks

between each convolutional layer to prevent features from shifting in a particular

direction at each layer, which hurts the generalization and learning speed of layers

deeper in the network pipeline. Batch normalization effectively whitens the inputs

to a particular layer on a per-batch basis, optionally with learned parameters which

correct the mean and variance of a mini-batch based on the data observed for an

entire epoch. This process has the same benefit as whitening the input data to a

network — it enables networks to achieve better performance in less epochs, using

a higher learning rate. On its own, batch normalization does not directly improve
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adversarial robustness. A perturbed data sample will still be perturbed after its mean

and variance have been corrected.

The Variational Information Bottleneck (VIB) [23] is the realization of The Infor-

mation Bottleneck Method of Tishby et. al [10]. VIB adapts the work of Kingma and

Welling on Variational Autoencoders [24], specifically the reparameterization trick to

classification problems. The reparameterization trick allows the computation of gra-

dients through a function involving a Gaussian random variable, which in turn allows

a model to output the sufficient statistics for a random variable, instead of a direct

prediction of a vector in the latent space. This prediction can be sampled and used

during decoding, which aids the network in learning to represent similar inputs in a

consistent manner.

VIB leverages this encoder/decoder paradigm to produce Gaussian random vari-

ables in the hidden representation space. The hidden representation outputs are

considered in the objective function (1.2) along with the classification results.

JIB =
1

N

N∑
n=1

Eε∼p(ε) [− log q (yn|f (xn, ε))] + βKL [p (Z|xn) , r (Z)] (1.2)

In the VIB objective, a surrogate distribution, r (z) is used as the target distri-

bution that all the class Gaussians are forced to be similar to via the VIB objective.

The authors take r (z) to be equal to N (0, I), the standard normal in the repre-

sentation space. This choice of surrogate distribution acts as a weight regularizer,

forcing the statistics predicted by the model to be near to zero and with low vari-

ance. VIB significantly improves adversarial robustness against the targeted version

of C&W 2016 [6] on both ImageNet and MNIST due to its improved representation

and well-regularized weights. However, much like Mixup, VIB requires careful tuning

of its hyperparameter, β, which controls the strength of the regularization loss when

compared to the classification loss.

From an information theoretic point of view, VIB constrains the number of bits
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of mutual information between the data and the representation, I (X ;Z), as stated

by the Information Bottleneck method. In standard training, no constraint is placed

on how the model learns to predict Y from X , and often, classifiers will have repre-

sentation spaces capable of representing far more bits of information than are strictly

necessary to encode Y , which suggests that, with no constraint on the information

in Z, some information about X which is not strictly necessary for predicting Y is

likely to be present. This ancillary information retained about the model causes it

to overfit to X . VIB places a constraint on the information retained about X by the

model, which encourages the model to retain significantly less information about the

training data.

1.4 Adversarial Machine Learning

1.4.1 Attack Strategies

Techniques used to train accurate models can also be used to attack them. In the

simplest case, an adversarial example can be found by simply making random per-

turbations to a sample until the model incorrectly classifies it, but this brute force

approach is often inefficient and may fail to produce images which are adversarial

and minimally perturbed under some metric. A few classes of attack have emerged

as new adversarial attack methods are developed.

• Iterative Methods Iterative methods start from an initial data point that

is known to be within a particular class boundary, and query the model with

this sample to learn the gradient of the model at the data point in the data

space. The gradient information is then used to direct a search for adversarial

examples near the initial data point.

The Fast Gradient Sign Method (FGSM) [1] is one of the earliest and most

well-known adversarial attacks, which moves against the direction of the gra-

22



Chapter 1. Introduction and Background

dient sign in search of adversarial examples. Adversarials produced by FGSM

appear to have a small amount of colored noise added to them and easily fool

unsecured networks. FGSM is easily defended against, however, due to its de-

pendency on quality gradient signal and iterative, unidirectional approach to

finding adversarials.

• Optimization-based Methods Optimization-based methods use numerical

methods to optimize a function which produces an adversarial example from a

non-adversarial sample, and use the gradients of the model at multiple points

to produce a minimally perturbed adversarial. These multi-step methods start

at a known data point and make a small step against the gradient, and then

query the model again with the modified sample. While these methods depend

on being able to query the model and obtain gradients at many points, they

are often extremely powerful and produce images with smaller perturbations

than iterative methods in many cases. The most prominent optimization-based

method is that of Carlini and Wagner in their 2016 work [6]. This method

defeats even secured moedls with minimal effort, yielding images which fool

even secured networks.

1.4.2 Transferability of Adversarial Examples

A salient feature of adversarial examples is their transferability between trained mod-

els and architectures [6]. Adversarial samples produced by attacking a ResNet are

likely to also fool VGG networks, and vice versa. This would seem to indicate that

adversarial examples are not necessarily a feature of the model, but of the training

data.This poses a significant threat to “secured” models, or attack situations in which

the defender assumes immunity from powerful white-box attacks due to their model

being private. An attacker could produce adversarials which have a high probability

of success on the black-box model by attacking a completely dissimilar model.

23



Chapter 1. Introduction and Background

1.4.3 Obfuscated Gradients as a Defense

Many defenses which attempt to secure a model from adversarial attack do so by

obfuscating the gradients of that model. Gradients can be made to point in the wrong

direction, become numerically unstable, or become non-differentiable in critical points

by training the model to have parameters causing these issues. Models with these

obfuscated gradients are difficult to produce attacks for, since any optimization-based

attacks will get stuck in local minima or fail to converge on an adversarial example

for the specified input image. Although optimization based attacks will fail against

these models, several authors have shown that this assumption is false in the general

case.

1.4.4 Defeating Weak Defenses

Common defenses to adversarial attacks appear to perform well under a specified

threat model and against specific attacks.

• Approxmiation of Gradients

The work of Athalye et. al. [3] proposes that defenses which rely on changing

the gradients of the model can be defeated through approximations of those gra-

dients. They propose Backwards Pass Differentiable Approximation (BDPA),

which relies on an adversarial x̂ satisfying x̂ ∼ x in the data space. Then a

linear approximation to the gradient at x̂ can be made from the gradients at x.

• Surrogate Models

Liu et. al.[25] show that it is possible to transfer adversarial examples from

a surrogate model will transfer to a black-box model. Non-targeted examples

transfer much more easily than targeted adversarials. Targeted adversarials

may still cause misclassification, but may not cause the desired label to be
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predicted. This is especially true considering that the choice of labels may be

different among models that are trained on different data sets.

While the work of Liu et. al. considers transferrability between unsecured mod-

els, the changes necessary to make examples transfer from unsecured models to

secured models may be small, and the work to transfer from one secured model

to another may be even less.
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In this work, we propose InfoMixup —our novel regularizer, which we intend to

be an intuitive and explainable way to improve the representation of a neural net-

work in terms of separability, while simultaneously improving the robustness of that

representation under attack. InfoMixup bridges between a data augmentation and a

regularization scheme, by building on top of both Manifold Mixup and the Variational

Information Bottleneck (VIB) methods.

2.1 Categorizing InfoMixup

2.1.1 InfoMixup vs. Data Augmentation

Data augmentation strategies are known to be expensive in training time. While

many modern networks have pre-trained weights available for use in various settings,

the errors and weaknesses of those weights are carried with them into deployment,

possibly unbeknownst to the implementors. Not all implementors or researchers have

the resources required to produce an adversarilly robust model using a data augmen-

tation scheme, since methods like Adversarial Training add further examples to an

already augmented dataset.

The authors are not aware of any guidance for how much augmentation benefits

the parameterization of a network, rather, most data augmentation is either done
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according to a previously-successful pattern, or via trial and error — an expensive

process.

Our method requires no extra data, and does not require larger epochs due to

data augmentation. Instead, InfoMixup chooses existing data points which are trou-

blesome for the model and asks the optimizer to consider those data points more

heavily. No augmentation strategy or schedule is necessary either — The model can

simply be trained until it reaches its maximum level of convergence.

2.1.2 InfoMixup vs. Regularization

Regularization techniques are well known and have been common in learned mod-

els since long before data augmentation. Common regularization schemes for deep

learning include dropout [26] and batch normalization [21].

InfoMixup does not rely on entropy to evenly distribute regularization through-

out the network. Contemporary regularization strategies rely on entropy indirectly:

Manifold Mixup [11] relies on entropy for random sampling of a β-distribution for

the selection of selection of λ, and Dropout [26] relies on entropy to determine which

connections are zeroed at each layer. InfoMixup chooses examples which are demon-

strably difficult or adversarial to the model, and adjusts the label of those examples to

guide the model towards a lower-confidence prediction while still producing a result.

The smoother labels produced by InfoMixup cause models to produce smoother repre-

sentations of the data, which necessarily widens the margin between classes where the

model is uncertain. The outputs of an InfoMixup trained model display a smoother

transition of confidence when moving between classes than an unregularized model.

While InfoMixup does not fit cleanly into either of these categories, the operation

of InfoMixup is closer to that of a regularizer. Our theory and analysis are easily

explained through the lens of regularization, and so we will refer to InfoMixup as a

regularization strategy throughout this work.
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2.2 A brief tour of InfoMixup

The InfoMixup algorithm is complex, but its operation is intuitive and grounded in

rich mathematical foundations.

We use the VIB objective and variational inference layer to obtain Gaussian pre-

dictors for the class mean and variance, given a sample from the dataset, in exactly

the same way as the VIB method. These predictors are collected throughout an entire

epoch of training, and a mixture of Gaussians is produced which models the likeli-

hood of a particular output from the network in the hidden representation. Using

the mixture, the predictors of the next epoch are measured for their likelihood of

being produced by the model based on the previous epoch’s parameters. Predictors

which are unlikely by a certain threshold are considered to have come from edge-case

examples.

When an edge case is detected, InfoMixup considers where that point is located

in the representation space, and finds the class which is nearest to that point, but

not the ground truth class which the edge case example was drawn from. The edge

case is pushed in a straight line drawn from the edge case itself toward the mean of

that next most likely class by a small amount, and softmax classification proceeds on

the adjusted point. The gradients from that prediction are propagated through the

entire network. This process effectively gives higher weight to edge case examples in

the information loss component of the VIB objective. The predictors are constrained

toward the standard normal, just as in the VIB method.

We use the Mixup equation (1.1) to interpolate between the edge case example

and the nearest incorrect class. The mixing is applied to both the example and the

label, so that the decoder also learns a smoother mapping from the representation

space to the label space. InfoMixup encourages the decoder to make lower confidence

predictions for representation vectors in the margin between class clusters. We borrow
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the hyperparameter α from Mixup for InfoMixup .

We use Mahalanobis distance for both determining which examples are edge cases,

and for computing the next-nearest class. The Mahalanobis distance considers the

probability density of an underlying distribution of points when measuring the dis-

tance between two points in space.

d =

√
(xi − µi)

T Σ−1 (xi − µi) (2.1)

Where µi is the mean of class i, xi is an example known to be in class i, and Σ−1 is

the inverse of the covariance matrix for class i.

To understand the how this metric works, consider choosing two points from a

space with a fixed Euclidean distance between them, and place a probability distri-

bution with known mean and standard deviation in the space from which the points

were chosen. The Mahalanobis distance between those chosen points will shrink as

they are brought towards the direction of greatest variance, and will grow as they are

brought closer to the mean and in the direction of least variance. The Euclidean dis-

tance between the points remains fixed, however. The Mahalanobis distance allows us

to consider the underlying distribution of points when measuring distances between

classes, the effect of which is that two classes whose directions of greatest variance

are in the same direction appear closer together when computing the next-nearest

class, and points which are near to the mean, but in the direction of least variance

have similar uncertainty to points which are far from the mean but in the direction of

greatest variance. This allows us to use a simple threshold for determining if a point

is an edge case.

Another detail of InfoMixup is in how the threshold for edge cases is chosen.

Intuitively, we would like to say “an example that is outside of the 95% probability

mass of the cluster is an edge case”. There does not exist a closed form solution for the

cumulative distribution function for a multivariate Gaussian distribution, so instead
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(a) Euclidian distance level lines (b) Mahalanobis distance level lines

Figure 2.1: Comparison of “level lines” for Euclidean and Mahalanobis distance metrics,
using the same metric value. Mahalanobis distance stretches the level lines to mirror the
probability density of points in a vector space.

we use an upper bound for it. The inverse quantile function of the χ2
k distribution

with k degrees of freedom gives an upper bound for the Mahalanobis distance from

the mean of a multivariate Gaussian, given a desired probability of a point residing

within that radius. To simplify the choice of hyperparameter, we use χ2
k (p), where p

is the hyperparameter selecting what probability mass a point must be outside of to

be considered an edge case, and k is the dimension of the hidden representation.

The selection of p from a χ2
k quantile function is not necessary for proper operation

of InfoMixup , but it lends an intuitive meaning to the value of p.

At a high-level, InfoMixup is Manifold Mixup with some notable adjustments.

• InfoMixup does not allow intra-class mixing. Edge cases are mixed only with

classes which are not their ground truth class.

• InfoMixup moves examples in the direction of a class mean, not of a particular

example.

• InfoMixup selectively mixes the examples with only their nearest class, to lower

the chance of a mixed example landing in a third, unrelated class.
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Algorithm 1 InfoMixup Algorithm
if not training then return # InfoMixup plays no role in evaluation
init_flag ← False
for xb, yb in epoch do

if not init_flag then
mean_matrix ← 0
variance_matrix ← 0
init_flag ← True

# Initialize class distribution tracking variables
mean_matrix,variance_matrix←computeBatchMixtureStats(

encoder_mean,encoder_var
)

else
# Update class distribution tracking variables with data from current batch

mean_matrix,variance_matrix← computeBatchMixtureStats(
concat(encoder_mean,mean_matrix),
concat(encoder_var,variance_matrix)

)
edge_cases ← filter(

not withinInterval(xb,mean_matrix,variance_matrix)
)
class_dists ← mhDist(edge_cases,mean_matrix,variance_matrix)
new_xb,new_yb ← bipartiteMixup(

edge_cases,yb,mean_matrix,variance_matrix,λ
)

Several approximations are made to speed up computation. The most impact-

ful approximation is the mixture of two Gaussian distributions being approximately

Gaussian. If we were to retain all the predictions for an entire batch, and then at

the end of each epoch, compute the Gaussians of each class, the memory usage of

InfoMixup would scale infeasibly for any modern applications. Since we are pri-

marily concerned with the “perimeter” of the class Gaussian, and not with its exact

density function, we instead assume that each batch is similar on a per-class basis,

and compute the class Gaussian as a Gaussian whose mean is the mean of the batch

means and whose variance spans the widest gap between the batch distributions. The

benefits for computational resources are twofold: if the batch is sufficiently large that

the likelihood of seeing all classes in a single batch is high, then we can assume that
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Algorithm 2 withinInterval function
function withinInterval(sample_batch,ground_truth_labels,interval)

dist ←mhDist(
sample_batch,mean_matrix[ground_truth_labels],
variance_matrix[ground_truth_labels]

)
return interval > dist

Algorithm 3 bipartiteMixup procedure
procedure bipartiteMixup(

sample_batch,ground_truth_labels,mean,variance, λ
)

new_samples, new_targets ← 0
for t in unique(targets) do

others ← Set(targets) − t
for other in unique(targets) where other 6= t do

# MH-Distance of sample from all other classes
nearest_class ← argmin(mhDist(

sample_batch,mean[others],variance[others]
))

# Mixup equation with non-intra-class constraint
new_samples[t] ← sample_batch*λ + (1− λ)mean[nearest_class]
new_labels[t] ← ground_truth_labels*λ + (1− λ)nearest_class_label

return new_samples,new_targets

after a single batch all mean and variance parameters have been initialized. This al-

lows us to parallelize computations throughout InfoMixup . We believe this tradeoff

of precision for significant decrease in computational resource requirements is worth-

while and minimally affects the performance of InfoMixup . We also constrain the

covariance matrix of each class to be diagonal as in VIB. Doing so greatly simplifies

inversion of each covariance matrix when computing the Mahalanobis distance under

each class.
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Algorithm 4 computeBatchMixtureStats procedure
procedure computeBatchMixtureStats(

batch_mean,batch_variance,targets
)

stats_accum ← 0
for t in unique(targets) do
# Compute a Gaussian that is similar to the mixture of two Gaussians

stats_accum[t] = GaussianMixture(
batch_mean,batch_variance,mean_matrix,variance_matrix

)
return stats_accum
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3.1 Visual Exploration: Spiral Dataset

As an initial exploration of regularization, we take inspiration from Verma et. al. [11]

and visualize the effects of various regularizers on a common two-dimensional problem:

the intertwined spirals dataset. This problem is nonlinear in Cartesian coordinates,

and so cannot be learned by a linear classifier, but it is easily learned via the kernel

trick or with a neural network, and due to the low dimension of the problem, trains

quickly without hyperparameter tuning.
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Figure 3.1: Spiral Dataset
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We evaluate all regularization strategies with a custom feed-forward network,

trained for 2000 epochs with the regularization hyperparameters set by intuition and

without tuning. Thus, our results are non-optimal for each regularizer, but the intent

is to simply visualize the differences between each, and not to effectively regularize

the spiral problem.

The spirals used as training data are normally distributed along each curve. After

training, we evaluate the network over a range which contains a range of points wider

than those in the training set and plot the model prediction as a color at each point,

to display the gradient of confidence between the two classes. An ideal result from a

given regularizer would be the average of a linear gradient between every possible pair

of points with one point in each pair drawn from each class. In practice, we expect

that a wider margin of low-confidence predictions between ranges of high-confidence

will be displayed in better-regularized models, ideally without sacrificing accuracy in

the high-confidence regions.
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(b) Manifold Mixup
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(c) Variational Information Bottleneck
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(d) Dropout p = 0.5
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(e) InfoMixup

Figure 3.2: Comparison of Various Regularizers on the Spiral Dataset

Most regularizers appear to have a similar effect over the unregularized network
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in Figure 3.2. The unregularized network discovers the “simplest” function, which

corresponds nicely to the results of Hoffer et. al. [27]: a network with higher repre-

sentational capacity learns a less complex representation of the data than a network

with lower representational capacity, if given enough training time.

Manifold Mixup, combined with Input Mixup in this comparison, appears to have

a smoothing effect, but does not make the representation appear more jagged, which

may imply that its regularization strength is relatively low in comparison to the others.

The margin is wider where the data points are naturally more spread out, and the

margin appears to be wider everywhere compared to the unregularized baseline. This

is as one might expect, given the random per-batch mixing performed by Mixup and

Manifold Mixup.

Dropout is of particular interest. The margin regions are actually narrowed for

Dropout, so much so that the network incorrectly predicts certain sections of the blue

spiral. This is likely due to the ensemble effect of Dropout: multiple smaller networks

are effectively created via random selection of nodes whose output is canceled. In this

case, the resulting smaller networks may not have sufficient representational capacity

to remain able to map the data correctly.

VIB much more drastically regularizes the network. The learned function has

jagged edges, which may indicate either a reduction in representational capacity, or a

significant and perhaps overbearing reduction in the amount of information retained

by the network. Suppose the unregularized network has learned a sinusoidal function

to represent each spiral: Then the VIB-regularized network appears to have learned

a piecewise-linear approximation to that function. In low dimensions, this result is

to be expected, since the optimal function to be learned is likely to be simple. In

higher dimensional spaces, the effect of regularization may be to flatten jagged or

discontinuous boundaries.

InfoMixup appears to perform the best. While it causes jagged edges similar to
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Table 3.1: Comparison of Margin Between InfoMixup and Standard Training

Model Mean Margin Median Margin

Unregularized 0.4362 0.3986

InfoMixup 0.3694 0.4235

VIB, the margin region between classes is significantly wider in all locations com-

pared to any of the other regularizers. Most notably, InfoMixup widens the margins

evenly across the entire dataset, but does so in a fashion that reflects the separation

between the classes at each point. In the training data, the two classes do not touch

at the origin, however in the testing data, there is overlap near the origin. While all

the regularizers have some margin in this area, only InfoMixup captures the over-

lap with a margin wider than that of the unregularized network. This implies that

InfoMixup may perform well in situations where there are naturally neighboring or

nearly-overlapping classes in the true distribution.

We consider the numerical width of the margin as well, as further evidence of the

strength of InfoMixup as a regularizer. We consider every point in the test set as

a complete bipartite graph, and for every edge sample 25 points in the data space

along the line segment whose endpoints are in each class. The point at which the

confidence of the model drops below 90% for the nearer endpoint is considered as the

boundary of the margin region, and we then compute both the mean and the median

length of this margin.

The margin is notably not widened on average by InfoMixup , which is obviated

when observing the decision boundary. After our initial figures were created for

Figure 3.2, we were unable to re-create an unregularized model which learned the

true underlying function in an updated version of PyTorch. Instead, all trained

models memorized blobs of points in the training distribution, which led to confusing

results in margin width computation.

Since the results of the spiral dataset are not tuned, these comparisons are in-
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Figure 3.3: InfoMixup Decision Boundaries used in Margin Measurement

sufficient to perform a performance ranking. We move on to more realistic problems

before making further comparisons.
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Figure 3.4: Unregularized Decision Boundaries used in Margin Measurement

3.2 Proof of Concept: MNIST and LeNet5

3.2.1 Regularizer Comparison

As an introductory exercise, we chose to develop InfoMixup on MNIST, a popular

image recognition task based on small images of handwritten digits. A modern version

of LeNet5 was used as the model, with ReLU activation. As a baseline, we trained

the LeNet5 model for 30 epochs at a batch size of 256 images with Adam. Additional

information about the training parameters for the baseline LeNet5 model are available

in Appendix A. We then attacked the baseline model with a variety of state of the

art methods. We obtained accuracy decay with respect to attack strength, and found

that even weak attacks were able to easily fool an unregularized network, which is

consistent with the findings of many other authors [11] [23]. We chose to use the

Fast Gradient Sign Method [1] for our proof of concept, since it is simple, fast, and
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effective. Additionally, a defense which is bested by FGSM is unlikely to generalize

to stronger attacks.

Each attack yielded a corpus of new data in which every image is adversarial to

a baseline network. In a classification task where the test data is drawn exclusively

from this corpus, the baseline network acheieves 0% accuracy. We now look at meth-

ods through which we can improve classification accuracy on this dataset without

substantially affecting the performance on clean data. Various state of the art meth-

ods which claim to improve adversarial accuracy were tested as a survey of existing

methods to which our own novel method would be compared.

In order to visualize the operation of InfoMixup , we modify the LeNet5 archi-

tecture in Appendix A to have a two-dimensinoal encoder and representation, but

still have ten output classes. We train this constrained model identically to a normal

LeNet5 and then plot its embedding of the test set. We study both the actual em-

beddings of the test set with and without incorrectly-predicted data points, and the

estimated class distributions produced by InfoMixup . We sample 1000 points from

each class to draw its estimated density function.

Observation of figures 3.5 and 3.6, we can observe that the predicted class density

functions are similar to the embedding produced by the network. Note that in testing

mode, InfoMixup is switched off, allowing the network to operate without guidance

from the estimated density functions. This observation aligns with the intended oper-

ation of InfoMixup , and demonstrates that it is able to estimate the class densities in

the embedding space, which enables the selective mixing of high-information vectors.

Comparison of figures 3.6 and 3.7 shows that the margin between distributions

contains some points which the classifier fails to predict, and that these points lie in

the regions where the margin is already narrowest. This observation is concerning in

that the VIB objective coerces all distributions towards the standard normal distri-

bution; the effect of this is that the optimization objective tries to make all the class
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Figure 3.5: Estimated class distributions for a 2D embedding of MNIST.

distributions as close together as possible (minimizing the number of bits required to

represent them), while also making them linearly separable. Some examples must fall

in the margin region and be misclassified then, since no embedding is perfect.

In a higher-dimensional space, this problem may be less severe. The VIB authors

achieve excellent performance on ImageNet and do not report a significant problem

with the resulting embedding.

3.2.2 Accuracy Decay

We show that InfoMixup provides significant improvement in adversarial robustness

to various attacks over other methods. Our methodology is simple and consistent.

Every method is applied to the same LeNet5 model as seen in Appendix A. We

use a training budget of 30 epochs, no data augmentation, Adam optimization with

an initial learning rate of 0.1, a stepped learning rate decay of 0.1 every 5 epochs,
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Figure 3.6: Embeddings of the MNIST test set produced by an InfoMixup - regularized
LeNet5, with incorrect predictions removed.

cross-entropy loss, and batch size 256 for this experiment. We then consider the hy-

perparameters proposed by the authors of each method, and sweep through them,

running 5 independent and identical training sessions for each hyperparameter. The

resulting models are attacked with various methods, sweeping through epsilons to

show how the accuracy of each resultant model decays with respect to the strength

of the adversary. We then average the performance of all 5 models and compute the

area under the accuracy decay curve using a trapezoidal integration. We use this area

as a measure of overall robustness. We proposed this method of measuring robust-

ness independently, however have since seen it used by [4], which lends credibility

and precedent to this method. We independently select the best-performing hyper-

parameters for each method with the intent of giving each method the best possible

chance in the competition, as our models are different in certain cases than those of

the original authors. Additionally, some methods do not have significant investigation
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Figure 3.7: Embeddings of the MNIST test set produced by an InfoMixup -regularized
LeNet5.

regarding adversarial robustness, so we opt to perform this work ourselves.

The best performing hyperparameter based on the average area-under-decay-curve

for each model is selected, and we then compare each champion method against all

other champions of other methods.

The same corpus of data through which the aforementioned methods were evalu-

ated were also used for Adversarial Training [5]. The adversarial samples generated

against the baseline network from all of the attacks were combined with the clean data

samples to create a broader dataset, and a model identical to the baseline network

was trained from scratch using the augmented dataset until convergence was reached.

This analysis yielded promising results, showing that InfoMixup consistently out-

performs all other tested methods when optimal hyperparameters are selected for all

methods. We observe that even the worst-case performance in five runs is notably

more robust than the average performance of contemporary methods.
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Figure 3.8: Accuracy Decay on FGSM for Baseline, VIB, Adversarial Training, and In-
foMixup . We elide ManifoldMixup and Mixup due to low performance for readability.

The poor performance of Adversarial Training is reason for concern. A theoretical

model of adversarial robustness would indicate that Adversarial Training is capable

of making an arbitrarily strong network, assuming that there is sufficient represen-

tational capacity in the model and that a sufficient breadth of adversarial data is

available for training. We believe the poor performance is due to our use of a differ-

ent model with significantly less representational capacity than the model used in [5].

The average clean accuracy is significantly lower, denoting a failure to converge to

the same degree as the other methods, all of which have nearly-perfect performance

in clean accuracy. In this experiment, we opted to change only the regularizer, and

no other training parameters, for the clearest possible comparison.
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3.3 Methodology

3.3.1 InfoMixup Does Not Obfuscate Gradients

A common problem with defenses to adversarial attack is that they function by ob-

fuscating the gradient signal used by a white-box attacker [3]. This defense is easily

circumvented and makes the defense meaningless. To show that InfoMixup does not

improve robustness by obfuscating gradients, we compare the performance of a black-

box attack at the same epsilons as a white-box attack. BoundaryAttack and FGSM

were chosen as the black-box and white-box methods respectively, and we observe

that FGSM has a much higher success rate at fooling the network for every nonzero

ε.

0 0.1 0.2 0.3 0.4

0.2

0.4

0.6

0.8

max (l∞) = ε

C
la
ss
ifi
ca
ti
on

A
cc
u
ra
cy

Boundary Attack

FGSM

Figure 3.9: InfoMixup vs. FGSM and BoundaryAttack for the same epsilons. Per [3],
the failure of BoundaryAttack and success of FGSM is a strong indication that InfoMixup
does not obfuscate gradients.

The highest-performing hyperparameters from InfoMixup were used to train mod-
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els on MNIST for this test. We then attacked the same networks with both FGSM and

BoundaryAttack for epsilons ranging from 0.0− 0.5. We observe that indeed FGSM

performs significantly better. The lack of errorbars on the BoundaryAttack accuracy

decay in Figure 3.9 is not a mistake — BoundaryAttack only succeeded in finding

adversarial examples in one out of the five models attacked, whereas FGSM found

examples in all five and was able to fool the network for sufficiently large distortion.

3.3.2 InfoMixup and Transferability

Under the lens of adversarial examples arising from a data and optimization problem,

where naturally occurring samples do not cover enough volume in the data space to

allow for robust generalization, InfoMixup should cause significant improvements in

robustness in the same fashion as VIB. Although it is impossible to create a per-

fectly secured network, a InfoMixup reduces the quantity of irrelevant information

about the data space retained in the intermediate representation, thus decreasing the

dependence of the classifier on brittle features.

In our testing however, we did not observe that InfoMixup defends against trans-

ferred adversarial examples. We choose a LeNet5 baseline, trained without any reg-

ularization or data augmentation, and attack it with FGSM. The resulting examples

we then use to evaluate the best-performing InfoMixup model, which has not seen

any adversarial data. The resulting performance was indistinguishable from that of

the unregularized model.

This result is reason for concern about the performance of InfoMixup . Car-

lini et. al. suggest that strong adversarial defenses should be able to defeat the

transfer of adversarial examples from one network to another [6]. This claim is ra-

tional, since transfer of adversarial examples is an effective side-channel attack that

can be used to unlock black-box methods for attacking a model in a known problem

domain when gradients are not available. InfoMixup does not appear to provide any
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Figure 3.10: InfoMixup performance vs. transferred adversarial examples. Please note
the graph scale on the dependent axis.

defense against transfer.

Another question is raised from this result: “If InfoMixup reduces the mutual

information between the data and hidden representation, but does not resist transfer

attacks, is it effectively performing this task?” We believe that more investigation is

necessary in this domain.

In the theory of Ilyas et. al. [8], adversarial examples arise from the presence of

features which correlate strongly with the label distribution within some radius, and

under a certain measure away from the coordinates of an input sample in the data

space, but which cease to provide correlation outside of that radius, with respect

to the perturbation distance after a certain point. Thus, these features suffice for

standard classification and are useful to the model in standard training, so they are

incorporated into the model’s “understanding” of the mapping between data and

labels.
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In order to perfectly defend against transfer examples, the model should have

no dependence on these brittle features whatsoever. Given that the source of these

brittle features is unknown and that the dimension of the subspace of brittle features

in a particular dataset may not be possible to enumerate, nor the amplitude of those

features possible to determine without the use of numerical optimization techniques to

create perturbed samples, defending against transfer examples is extremely difficult.

Our experiment concerning transfer examples is significantly more difficult to

obtain favorable results on than that of contemporary literature. We allow transfer

examples to be generated with an attack which is different than the one used during

training of the secured model, and additionally allow the use of a different metric.

This allows an attacker to craft examples which use the brittle features in a different

way than the examples used during training, which in turn allows the model to be

fooled with ease.

3.4 CIFAR10 and PreActResNet18

With our initial experiments on MNIST showing promise, we turn our attention

towards gathering empirical evidence supporting our theory in more complex and

realistic scenarios. A popular next step from the MNIST dataset is CIFAR-10, a

collection of 60000 32×32 pixel color images with ten labels. Compared to MNIST, a

significantly larger proportion of the image plays a role in the classification compared

to the black-and-white images in MNIST, which are nearly binary and thus have

a much less complex decision boundary [28]. Considering this, CIFAR-10 generally

needs larger networks to solve as compared to MNIST, and so from this experiment

we can also learn about the behavior of InfoMixup on more complex convolutional

neural networks.

Our experiments with CIFAR-10 use PreActResNet-18 configured with a single

fully-connected linear layer. ResNets are generally easier to train due to the residual
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paths allowing gradients to propagate backwards without vanishing, and having gen-

erally lower parameter counts than denser network architectures like SENet or VGG

for similar representational capacity. The choice of a pre-activation ResNet is guided

by their generally better performance over post-activated ResNets [22] of similar rep-

resentational capacity. The authors of Manifold Mixup [11] use a PreActResNet-18

for their experiments with CIFAR-10 and CIFAR-100, which we use as a point of

comparison for our own results. We use the training parameters detailed in [11] as

a baseline, changing only the regularizer or the adversarial hardening scheme during

training.

As a proof of concept, we train PreActResNet-18 for 1200 epochs using SGD with

momentum of 0.9, Nesterov gradients, weight decay of 10−4 and a learning rate of

10−1. We use a batch size of 100, to exactly match the baseline of Verma et. al [11].

The learning rate is multiplied by 0.1 at epochs 400 and 800, and we use binary cross

entropy for the loss function. Binary cross entropy encourages the network to be

highly selective of a single class by considering the cross entropy of the estimated and

ground truth labels as well as the cross entropy of the inverse of the predicted and

ground truth labels. The selectivity of binary cross entropy boosts performance in

one-versus-all identification tasks.

We then trained a PreActResNet-18 with Manifold Mixup, using the best-performing

parameters from its authors [11]. The authors claim 97.5% accuracy using α = 2 with

Manifold Mixup on PreActResNet-18. However, in our attempt to recreate this re-

sult, PreActResNet-18 reached an accuracy of 93% after 1200 epochs using identical

parameters. This significant reduction in test set accuracy is reason for concern, how-

ever, a single training run was completed to verify these results, rather than a large

batch from which the best performing model was selected.

With our baselines established, we run a parameter sweep of InfoMixup parameters

α and β, covering 77 combinations drawn from the parameter sweeps in [11], [23]. We
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record the clean accuracy on the test set for each set of hyperparameters after 1200

epochs, this time using an adjusted learning rate of 10−4, which compensates for the

increased magnitude of loss applied by InfoMixup ’s objective function. Large values

of β in particular need this adjustment, as the KL-divergence between the predicted

and ideal class distributions is quite high in early epochs.

Upon completion of the grid search of hyperparameters, we were greeted with

strikingly low top-1 accuracy on clean test data for all tested combinations, peaking

at 60% with α = 2 and β = 10−8. These selections of hyperparameters that were

automatically determined by the grid search align well with the selections made for

CIFAR-10 from the constituent methods which InfoMixup is related to. An α value of

two is the same as the highest performing α in ManifoldMixup, and β = 10−8 is similar

to the value chosen for MNIST in VIB, but is larger: we expect this due to the higher

dimensional complexity of CIFAR-10 as compared to MNIST. This result suggests

that InfoMixup does not generalize to complex problems despite promising results on

MNIST. However, there is theory to suggest that CIFAR-10 does not contain enough

information for robust generalization. The dimension of images increases significantly

from MNIST and the images are no longer nearly binary. Schmidt et. al. [28] suggest

that it is not possible to learn a p-robust classifier on CIFAR-10 for arbitrary p, with

p being a measure of adversary strength. Since InfoMixup constrains the information

content of the representation, we consider moving to a more complex dataset to see

if InfoMixup performs better there.

3.5 TinyImageNet with PreActResNet18

We choose TinyImageNetfor our more complex dataset with which to test the gener-

alization of InfoMixup . TinyImageNet consists of 100k images with a resolution of

64 × 64 × 3, 500 images per class, with 50 from each class reserved for testing and

validation. The test and validation sets for TinyImageNetare identical.
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TinyImageNetis used by the authors of Manifold Mixup, which aids us in reducing

the number of training sessions we must complete. Additionally, hardware and time

constraints prevent us from testing on ImageNet-1k and others. We obtain several

baselines, one from the authors of Manifold Mixup, and another from the course notes

of CS231n from Stanford University, the course for which TinyImageNetwas created.

Time constraints made testing with the parameters of Manifold Mixup difficult, so

we attempted only a baseline unregularized training with this method, to determine

if it would converge. We did not achieve convergence, with accuracies in the 3–4%

range for this baseline.

We also attempted a method using Super Convergence [29], which uses large

learning rates annealed quickly to train models in a fraction of the epochs required by

standard training. Super Convergence also did not achieve a functional baseline, nor

did any of the regularization techniques used here provide any increase in performance.

All models trained did not learn whatsoever and stalled at random accuracy. Due

to time and resource constraints, no further testing has been performed on larger

datasets.
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4.1 Observations about Representational Capacity

When developing models to solve complex problems, one needs to select a model with

sufficient representational capacity to solve the problem at hand. One might select

LeNet5 for a handwriting recognition task similar to MNIST, its original problem

domain, but a model on the scale of LeNet5 is unlikely to converge on ImageNet or

similar classification tasks. Although defining model capacity and measures thereof

it is outside the scope of this effort, it is important to consider the effect of repre-

sentational capacity on robustness and generalization. It is well known that models

with a large number of parameters require a large number of epochs to train, but that

their resulting representations are likely to be simpler and to generalize better than a

model which has a smaller number of parameters on the same dataset [27]. This is in

contrast to the traditional view in statistical analysis, where the simplest model ca-

pable of representing the data will also generalize the best. This phenomenon of deep

neural networks is not well understood, but it is nevertheless common to see models

with more parameters than data points in large-scale machine learning. Increasingly

popular methods involve convolutional layers which have a wide expansion ratio, such

as MobileNets and WideResNet, prized for their parallel and efficient operation with

notable performance benefits as well.

We seek to determine whether the additional dense linear layer used in VIB and
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InfoMixup increases the representational capacity of the model in a way which affects

adversarial robustness. This layer is used to provide a linear transformation from the

column space of the hidden layer before the variational encoder to a space which is

optimized by the VIB objective to have a probability density of points corresponding

to classes in Y , one cluster for each class. Madry et. al. [5] claim that increasing

model capacity provides non-negligible improvements in adversarial robustness. We

aim to rule out the possibility that the advantage of information-guided approaches

to improving robustness lies in additional representational capacity.

A theoretical outcome is simple to obtain. The constraint on the output of the

variational layer is given by Equation 1.2, specifically the latter term multiplied by

the constant β. The behavior of the variational encoder is deterministic when β = 0,

since the objective at that point becomes identical to cross-entropy loss.

JIB,β=0 =
1

N

N∑
n=1

Eε∼p(ε) [− log q (yn|f (xn, ε))] (4.1)

The reparameterization trick is used to insert Gaussian noise such that the output

of the dense linear layer within the variational layer becomes the parameters to a

Gaussian distribution in the dimension of the representation space. If the source of

noise is set to a constant value, then the variational layer becomes fully deterministic,

and will learn a function:

f (x) = W−→x +
−→
b (4.2)

Where
−→
b contains the linear offset that would be learned with no constant off-

set added by the reparameterization, plus the offset added by reparameterization.

Sampling and then averaging the output of the variational layer will still yield the

same result, since all sampled points will be identical. Note, however, the lack of an

activation function. The variational layer has no activation function applied, since

its outputs are distributions in the representational space. Thus in this instance the
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layer is only a linear transformation, and has little or no effect on the representational

capacity of the network.

However, consider the case where β = 0, but the noise source is allowed to be

Gaussian, and the noise is shifted by the location parameter and scaled by the variance

parameter predicted by the variational layer. The function learned by the variational

layer is now:

f (x) = N (µvar, σvar) (4.3)

The normal distribution predicted by the variational layer to correspond to a

given input is completely unconstrained with β = 0, so there is no restriction on the

information content of the representation, since the parameters are allowed to vary

freely. However, since the resulting distribution is sampled to produce a point in the

representational space for the decoder to classify, the variational layer still cannot

add representational capacity to the degree of a dense linear layer, since noise is still

injected via the sampling operation.

Lastly, we consider the case where β 6= 0, and the noise source is allowed to be

Gaussian. This is the case in normal operation of the variational layer during training.

In this mode, the distributions produced by the variational layer are now penalized

for having a nonzero KL-divergence against the standard normal. The effect of this is

that the distributions are kept arbitrarily close to the origin, reducing the separation

between distributions as compared to the unconstrained case. The output of the layer

is still sampled in order to produce the point in the representational space for the

decoder, thus the variational layer cannot act like a representational layer.

We also attempt to empirically demonstrate this fact. Three variations of LeNet5

are trained identically for this experiment, using the best-performing InfoMixup hy-

perparameters. The VIB-related hyperparameter of InfoMixup is data-dependent [23]

and so requires no re-tuning for a new model. The Manifold Mixup parameter of

InfoMixup is less clearly dependent on data or model, however, it is intuitive to
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understand its value in terms of the dimension of the hidden representation. Higher

dimensional spaces have lower point densities, and thus two data points in that space

naturally appear further apart. Since we do not change the size of the representation

layer in this experiment, we also do not re-tune α.

In addition, we train the MNIST model of [5] without regularization, and an

unmodified LeNet5 without regularization, to back up the claims of [5] regarding

model capacity and robustness. Indeed, we observe that increased model capacity of

the model provided by Madry et. al. results in significantly lower validation loss than

that of our LeNet5 implementation, which is consistent with the findings in [5].

The three LeNet5 variants we trained have one less layer, no changes, and one

additional layer. In each model we maintain a taper in dimension as the layers

progress towards the output, and do not allow any layers to have the same size,

thus maximizing the ability of each layer to increase representational capacity. We

observe that the model with an additional layer shows noticably lower validation loss,

which is as we expect. The smaller model and the default show validation loss which

are negligibly different, which raises a question about the continuity of performance

increase with respect to network depth. We believe that this result does show that the

representational capacity of information guided approaches does not lie in the linear

layer within the variational encoder. If that were to be the case, we would expect to

see that a model with one less layer would have higher validation loss. Instead, the

representational capacity of a smaller model is actually increased significantly via the

information-guided regularization.

Both networks were trained identically, and for 200 epochs, which was intended to

cause extreme overfitting. However, neither the larger nor the smaller network overfit

when trained with InfoMixup .
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Figure 4.1: Training and validation loss of various model sizes. Extra layer pictured in
green, withheld layer in gray.

Table 4.1: 30-Epoch MNIST Training Times for Contemporary Regularization

Method Mean Training Time (s) Std. Dev. (s)

Baseline 56.4 0.490

Mixup 58.6 0.490

Manifold Mixup 58.0 0.001

VIB 61.6 0.490

InfoMixup 84.6 1.2

4.2 Compute Performance Comparison

InfoMixup has significant mathematical complexity compared to its contemporaries,

which raises the concern about the scalability of InfoMixup to larger datasets and

dimensions, especially when computing resources may be limited.

We test the complexity of InfoMixup via running several training runs on MNIST,

using a dedicated workstation, with no other computational loads on the CPU or

GPU. The recorded times are for an AMD Ryzen 7 3700X operating at 2.2GHz, and

an NVIDIA RTX 2070 TI. Five duplicate runs were executed for each method.
1

1Manifold Mixup produced exceedingly consistent execution times, the variation for which is
below the accuracy of the system clock. We report zero for the standard deviation, but some
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Our testing shows that InfoMixup does indeed require more computation time,

30% more than VIB and 44% more than Manifold Mixup, on average. Over the

baseline, VIB requires 9.2% more execution time, and Manifold Mixup requires 2.8%

more time. InfoMixup requires 50% more compute time, which is a very significant

increase.

A significant portion of this extra computation time is the non-parallel nature of

many statistical computations, which make InfoMixup difficult to compute on GPU

or other data-parallel acceleration schemes. The lower clock speed and thread group-

ing on highly data-parallel compute systems makes InfoMixup even more expensive

on these systems, which is a strong disadvantage of our method. However, given

the excellent performance of InfoMixup versus white-box adversaries, the cost may

be worthwhile in critical cases. We also propose that there may be hope for In-

foMixup and related methods in the near future, as custom computer architectures

for both training and inference which speed up computations for neural networks are

becoming commonplace. Although GPU acceleration fails to provide speedup for op-

erations with decaying parallelism, future architectures which can perform statistical

computations quickly may soon become available.

We also consider the performance of InfoMixup with respect to the percentile

radius parameter, p, which controls the radius used as the cutoff between mixed and

unperturbed examples. Decreasing the percentile radius should cause more examples

to be included in the InfoMixup process, which will increase the necessary computa-

tion time.

Robustness of the model does not correlate with constrained percentile radius.

Due to the nature of using a percentile as the cutoff, a non-constant number of

examples are mixed in each minibatch, and different initialization may cause the

network to simply have less outliers in the first place. Since our use of the quantile

variation is expected.
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Figure 4.2: Robustness Evaluated at Various p

function of the χ2 distribution is an upper-limit of the radius which contains p% of

the examples, model initialization may change the precision of our estimate.

In a pathological case, the network learns to fit all the examples for a given label

within the percentile radius, which effective disables InfoMixup , and from there the

training will proceed as standard training with added distribution tracking, as no

examples will be chosen for mixing.

We choose to empirically determine the compute cost. Models trained with opti-

mal parameters, but with p swept from 0.70 to 0.95 were attacked with FGSM. One

might expect that as the percentile boundary shrinks, such that more examples are

included in mixing, the robustness of the model will increase. However, this is not

what we observe. Instead, we see that 0.95 is the optimal value by a significant mar-

gin, and that the robustness oscillates, but trends downwards as the percentile drops.

It is possible that the network is indeed learning to simply constrain its predictions
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Table 4.2: Compute Time for Various p

p-value 25-epoch Compute Time (s)

0.95 134.727921

0.90 134.109429

0.85 133.655421

0.80 135.528113

0.75 88.591593

0.70 89.101397

for clean data to within the percentile radius, which will minimize the VIB objective

in Equation (1.2) to a local minima which does not encourage robustness as intended.

Since InfoMixup is effectively disabled for p = 0.75 and p = 0.70 in our experiments

here, the compute time required drops significantly.

All times measured in this experiment were taken on a workstation with a Ryzen 7

3700X, 64 GB of 3600MHz DRAM, and an NVIDIA RTX 2070 TI, which was entirely

dedicated to the task being measured for the duration of the experiment.

4.3 Analysis of Adversarial Training Performance

Our replication of the work of Madry et. al. [5] notably lacks the original performance

claimed in their work.

LeNet5 as configured for our experiments, has 80,582 parameters. Madry et. al.

use a model which has 3,233,034 parameters. Madry et. al. also claim that robust-

ness increases with model capacity. Given the extreme difference in the number of

parameters, a significant drop in overall performance is expected.

Lowering the correlation of brittle features with the label distribution by adding

examples to the training set where these features do not correlate with the label

distribution is in effect removing useful information that can be used by the model

in its predictions. In addition, Madry et. al. train their network for 100 epochs,
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whereas mine is trained for only 30, thus giving the optimizer less time to find the

robust features and incorporate them into the model.

We clone the procedure of Madry et. al. exactly in an attempt to simply recreate

their experimental results. We restricted training to include only adversarial exam-

ples, and use an independently initialized and trained copy of their MNIST model

for generating the examples. Even so, we are unable to reproduce their results in our

environment, which is using PyTorch 1.10.1. We use Foolbox [30][31] to perform all

attacks. Our best-case results use a 50% blend of adversarial and clean examples in

a LeNet5, which are the results presented in Figure 3.8.

There are several known problems with Adversarial Training, some of which are

displayed here by our poor-performance models.

• Adversarial Training easily overfits to a metric [5]. During training, the model

sees variations of each input image which have been perturbed a certain max-
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imum radius under a fixed metric. A sufficiently powerful model may learn to

represent the perturbations to each input sample in addition to the clean sam-

ples without common signs of overfitting. This makes the model secure against

a specific kind of adversary and of a certain strength, but it remains fragile to

other attack methods, potentially at lower ε.

• Adversarial Training can overfit to a metric [5]. A network trained with only

l2-bounded examples of a given ε is likely to be weak to examples generated

under an l∞ norm, even for the same ε. This result can be expected, as the

meaning of ε is different under different metrics. Using several metrics and

attacks during training greatly increases the computational cost of training.

• Distribution shifts can occur from large ε. When allowed a large perturbation,

examples may become significantly different from the distribution of the training

data. This is especially true for l2-bound attacks. In this case, the overall

performance of the network may decrease on clean examples.

This result is in line with the theory on which InfoMixup was born: adversarial

features are highly predictive, but brittle [8]. After the initial publication, Madry et.

al. have edited their paper to indicate that their results are skewed due to overfitting

to the metric used to generate examples during training. In our experiments, we

train with PGD as proposed in the original paper, but always attack with FGSM.

Although both FGSM and PGD are using l∞ norm in this experiment, the different

nature of the attack is sufficient to decrease robustness of the secured model.
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5.1 Future Directions

In this work we did not investigate several other possible uses of InfoMixup . Out-

of-distribution data detection is a problem which is rising in popularity in recent

years. Datasets for this use have been developed, namely ImageNet-O [32], which

consists of images not contained within the ImageNet-1k challenge which are con-

fidently predicted as classes within the Imagenet-1k class labels by state-of-the-art

models. While not directly related to adversarial examples generated by optimiza-

tion algorithms, certainly the phenomenon of deep networks placing high confidence

predictions on out-of-distribution data is similarly a reason for concern.

The representation space of InfoMixup -regularized models has a point density

with clusters for each class. Since the softmax classifier placed after InfoMixup con-

siders the distance of a particular point from one of the class distributions as a stan-

dard softmax classifier would, InfoMixup does not inherently provide robustness to

out-of-distribution data. However, since the density of points within the distribution

of training data is well known, InfoMixup may be able to provide a signal to a side-

channel mechanism for detecting out-of-distribution data points, either by detecting

that the probability density at the point in the representation space corresponding to

a particular example is lower than some learned threshold, or by detecting that the

point resides in the margin between known class clusters. This information could be
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used to raise suspicion on high-confidence predictions.

The same side-channel signal of out-of-distribution data could be used to detect

Gaussian shifts in input data and potentially correct it, and then re-classify. This

approach may allow learning a smaller model which can detect and correct Gaussian

shifts in data, and determine whether correction is necessary before classification.

Large-scale deployments of complex models will benefit from this detection, since

re-training or incremental adjustments to the model may be expensive or simply

not effective without enough data to meaningfully broaden the training distribution

to include the real-world examples which are edge cases from the point of view of

the model [33] [34]. Continual and lifelong learning applications may also benefit

from this kind of signal. Robustness to distribution shifts is a significant problem

in continual learning which is under active research today. Other potential benefits

include automatic detection of new classes via clustering methods, which may be able

to detect sub-classes in the output of InfoMixup -regularized models, or indicate to

an engineer that an unknown class has appeared in deployment, or that there are

deficiencies in the representation of a class in the existing model.

Robustness to adversarial examples, whether generated or natural, may also be

improved by the use of non-softmax classifiers after InfoMixup regularization. Since

the representation space of InfoMixup -regularized models has a known probabil-

ity density and each class is Gaussian under some linear distortion in variance and

mean, other classification methods, such as cluster-displacement classifiers or sta-

tistical Bayesian classifiers may be used in place of the standard softmax classifier,

which boils down to a linear discriminant. Since InfoMixup produces a probabil-

ity density in the representation space with distinct clusters for each class, it may

also be possible to slightly perturb data to be classified, and compare the resulting

sample distribution with the Gaussian mixture (albeit not a formal one) produced

by InfoMixup for each class. If the variance of the sample distribution is very high
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in a particular direction after being passed through InfoMixup , it is possible that a

weakness in the model has been found, or that low confidence should be placed on the

model’s prediction for the original input. While this strategy is certainly applicable

to non-InfoMixup models, our method enables more concrete statistical analysis of

the results than contemporary methods due to the nature of the representation space.

The lack of resistance to transfer examples is reason for concern. A few hypotheses

for why this is the case are known to the authors:

• InfoMixup dampens, but does not shatter gradients. It is possible that In-

foMixup is modifying gradient information in a manner which confuses white-

box attacks, but that does not cause them to be so confused as to perform worse

than a black-box attack.

• InfoMixup may not protect against adversarial images which are out-of-distribution

in a meaningful capacity. We believe that with a proper out-of-distribution

detection mechanism, we may be able to flag adversarial inputs as “not classi-

fiable” instead of misclassifying.

These items are excellent directions for future investigation, but may require signifi-

cantly more analysis than can be done in this work. InfoMixup shows promise that

more advanced information-guided regularization, and moreover classification tech-

niques, are feasible in the realm of deep learning. The authors hope that this work

will provide a foundation for further research in this area, and in an effort to ease

developments have made the InfoMixup codebase open-source for inclusion in other

projects. Our testing and training framework has also been open-sourced and made

available for both verification of our results by our fellow researchers, and to ease the

development of future methods.
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