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N. John: Data-Driven Equations for Coevolving Network Systems

Abstract
The framework of coevolving networks is a tool to model large-scale interacting dynamical

systems undergoing change in connective structure, describing phenomena such as epidemic

spreading on social networks with individuals changing their connections to avoid infection.

Along with direct computational simulation, coevolving network systems are often formulated

in terms of systems of ordinary differential equations in their descriptive statistics. The equation

approach reduces the computational burden of analyzing the systems, but deriving equations

becomes difficult as the underlying model becomes more complicated and as the desire for

accuracy increases. We present an approach to construct equations for coevolving network

systems automatically, using data from computational simulations and a formulation of sparse

model identification. Using this approach we construct a data-driven system of equations

for a coevolving SIS model that reproduces system behavior in both temporal evolution and

dependence of steady states on system parameters.
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1. Introduction

Consider a network with each vertex labeled either S or I, like the example in Figure 1. This

network is the base component of the mathematical model that this thesis examines.

In this model, the vertices represent people, and their labels indicate infection with a disease. The

vertices labeled I represent people who are infected with the disease and capable of spreading the

disease to others. We call these vertices infectious nodes. The vertices labeled S represent people

who are not infected with the disease but susceptible to becoming infected. We call these vertices

susceptible nodes.

The edges represent connections between people. If two nodes are connected, the disease can

1
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Figure 1: An example graph with nodes labeled I or S.

spread between the two nodes. An infectious node on one side of an edge can infect a susceptible

node on the other side of the edge.

As time progresses, the network changes in three ways. First, the infectious nodes revert to

susceptible at some rate r, representing recovery from the disease. Second, infectious nodes infect

their susceptible neighbors at some rate p. Third, susceptible nodes "rewire" their connections to

infectious nodes with connections to other susceptible nodes, at some rate w (See Figure 2). To

emphasize, both the states of the nodes and the structure of the graph change with time. We call

such models in which both the states of the nodes and the structure of the network change with

time coevolving networks, and the literature also refers to them as adaptive networks [2].

We call the above model the coevolving network SIS model. Gross et al. develop this model in their

2006 study [1] and present a system of ordinary differential equations (ODEs) to approximate

the density of infection over time. Equation 1.1 describes this pair approximation, in which i and s

represent respectively the fractions of infected and susceptible nodes at a given time. lI I , lSS, and

lSI refer to the proportions of edges connecting infectious nodes to infectious nodes, susceptible

nodes to susceptible nodes, and susceptible nodes to infectious nodes, respectively.

d
dt

i = plSI − ri

d
dt

lI I = plSI(
lSI
s

+ 1)− 2rlI I

d
dt

lSS = (r + w)lSI −
2plSI lSS

s

(1.1)

The coevolving network SIS model illustrates the value of coevolving networks to mathematical

2
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Figure 2: An example of rewiring. On the top, the susceptible node A shares an edge with with infectious

node B. On the bottom, node A replaces its connection to node B with a connection to the

susceptible node C.

modeling. The network setting for disease spread reflects that a given person realistically only

communicates the disease with a small subset of the population. People in California are unlikely

to directly infect people in New York. Rewiring reflects the tendency for people to avoid becoming

infected. If you know that one of your friends is sick, you might avoid that friend for a while to

avoid becoming infected yourself.

Gross et al. (2006) is one of a cohort of publications describing coevolving network models and

ODE systems to approximate their temporal evolution. Chapter 2 introduces a few of these coe-

volving network models and demonstrates how approximations like Equation 1.1 require intense

mathematical modeling to produce. More accurate approximations than 1.1 and its analogues tend

to be much larger equation systems, which are more difficult to produce and analyze. Moreover,

approximations are scarce for more complicated coevolving network models.

In the case of the coevolving network SIS model, we want to understand the effect of the parameters

p, r, and w, as well as the initial configuration of the network, on the prevalence of the disease.

3
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A system of equations describing the progression of the disease in terms of these parameters

improves understanding of the underlying system by allowing for analysis without the need to

perform additional simulations.

The topic of this thesis is constructing equations like 1.1 using data. We simulate the coevolving

network programmatically and record information about the system at discrete time points.

Numerical simulations proceed in discrete time, and the parameters p, w, and r are probabilities of

infection and rewiring along each I-S link, and recovery of each infectious node. With time series

from a large sample of parameter combinations and initial conditions, we present an approach to

automate the construction of ODE systems to describe coevolving networks. The approach fits

into the category of methods called sparse model identification, which use regression and subsequent

truncation of small coefficients to produce symbolic equations.

In addition to developing the analysis of coevolving networks, this thesis is also a case study

in sparse model identification. Chapter 3 explains the methods we employ and demarcates our

specific modifications to the basic approach to sparse model identification. While the focus of this

thesis is application to coevolving network systems, the approach we present generalizes to other

systems.

Chapter 2 of this thesis introduces coevolving networks, including a review of previous efforts

to model the macroscopic dynamics of coevolving networks using ODE models and a review of

methods to construct differential equations from time series data.

Chapter 3 describes our approach to sparse model identification and its application to the problem

outlined above. Chapter 4 demonstrates the performance of our solution in the context of the

coevolving SIS system. Chapter 4 concludes with a discussion of the results and suggests areas for

improvement and further investigation.

The essential three contributions of the thesis are: a method of numerical differentiation suited

to the task of sparse model identification, a formulation of sparse model identification that takes

advantage of conserved quantities in coevolving networks, and data-driven systems of equations

for the coevolving SIS system.

4
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2. Background

2.1 Coevolving Networks

Introduced in Chapter 1, the coevolving SIS model of epidemic spread illustrates how networks

model large systems with interacting components. Epidemics are one example of a networked

dynamical system; each node in the network takes a value in some set that can change with time.

The change of a node is influenced by the values of its neighbors. Moving forward we call the

value of a node its state. Some models just consider temporal changes in node states. The Glauber

dynamics for the Ising model is a famous example from physics, and some of the examples to

5
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follow, such as the SIS model, the voter model, and others have been studied on static, unchanging

networks [10].

In addition to the temporal evolution of node states, coevolving networks also incorporate the

temporal evolution of the network structure. In other words, the pattern of connection between

nodes evolves in time. We sometimes refer to this evolution as a change in the network’s

topology.

Because the dynamics of a node’s state depends on the influence of adjacent nodes, change in

topology affects change in state. As we see in the below examples, changes in topology are

influenced by node states. It is because of this two-way interaction that such systems are called

coevolving, or adaptive, networks. The review paper by Gross et al. [2] provides an overview

of coevolving networks and furnishes a collection of examples. The remainder of this section

describes a selection of examples and their interesting properties.

2.1.1 The Coevolving Voter Model

Having introduced the coevolving SIS system in Chapter 1, the next example system takes us from

epidemics to a new application, the diffusion of opinions in a society. Just like our exposure to

diseases, our exposure to ideologies depends on the people with whom we interact. Likewise,

such ideologies steer us towards some people and away from others. Introduced by Holme et

al. [5] and modified by Durrett et al.[6] (described here), the coevolving voter model formulates

this interaction as a process on a social network. The nodes in the network all take one of two

values at a given time, either opinion 0 or opinion 1. We call an edge connecting two nodes of

different opinions a discordant edge [6]. Proceeding in discrete time, each step of the simulation

chooses randomly one discordant edge and one of its incident nodes (node a, connected to node

b). With probability α, node a rewires to a new, random node holding the same opinion as itself.

With probability 1 − α, node a changes its opinion to match node b. The simulation can proceed

until there are no discordant edges. See figure 3 for an illustration of two possible outcomes:

a network dominated by one opinion, or a split into disconnected subnetworks dominated by

different opinions. The model considers our tendency to 1) replicate the opinions of our friends

and 2) choose friends with similar opinions.

2.1.2 Evolutionary Game Theory with Coevolving Networks

Evolutionary game theory investigates how prevailing strategies emerge in populations of individ-

uals making decisions regarding their interaction with other individuals, where the individuals

6
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Figure 3: Two possible outcomes for the coevolving voter model [6]. Left, the simulation ends, and opinion 0

dominates. Right, the simulation ends with the graph split in two, with each connected component

dominated by one opinion.

are referred to as players. In standard game theory, players make what is determined to be the

"best" decision with the assumption that the adjacent player will also make its own "best" decision.

Evolutionary game theory instead affords players flexibility in their decision making. Rather

than maximizing their utility in an isolated 1-on-1 game, players strive to succeed in the dynamic

ecosystem of other players. For a review of evolutionary game theory see [7].

Fu et al. [8] introduce a model of evolutionary game theory in the context of coevolving networks.

In the model they present, each node in the network is a player, and each edge indicates a game

played by its two incident nodes. The game of choice in this case is called the prisoner’s dilemma

game [9], in which both players choose to either cooperate or defect. The payoff matrix gives the

outcome for a given player:

C D

C 1 0

D 1+u u

The row indicates the decision of player 1, the column indicates the decision of player 2, and the

entry indicates the payoff received by player 1. The constant parameter u falls in the interval (0, 1).

If both players cooperate, then both players receive a payoff of 1. If player 1 defects and player 2

cooperates, player 1 receives a payoff of 1 + u, and player 2 receives a payoff of 0. If both players

defect, then both players receive a payoff of u. A larger value of u makes defecting more tempting

7
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(consider the limits in which u approaches either 0 or 1).

The state of each node and its inclination to rewire is just a little more complicated than in previous

examples. At a given time, every node is labeled either C, for cooperator, or D, for defector. A

node labeled C cooperates in all of the games along its edges, and a node labeled D defects in

all of the games along its edges. Like in the voter model, each discrete time step selects an edge

connecting nodes of differing type: a C node and a D node. With probability w, one of the nodes

changes its strategy. To decide which node changes, the total payoff for each node is calculated by

summing the payoffs from the games along all of its edges. We can call the total payoff for the C

node PC and likewise PD for the D node. The probability that the C node becomes a D node is

then

ϕC→D =
1

1 + eβ(PC−PD)
,

where β is a constant parameter in the interval [0, ∞). Otherwise the D node becomes a C node.

The node with the lower total payoff is more likely to change. Setting the value of β at its endpoints

leads to two simplified models. If β = 0, either node will change with equal probability, regardless

of total payoff. In the limit of large β, the node with lower payoff automatically changes.

With probability 1−w, the node labeled C rewires to a different node, chosen uniformly at random

from all nodes in the network, with the exception of immediate neighbors.

Numerical simulations show that with little to no rewiring, all nodes eventually become defectors.

Introducing a sufficient level of rewiring, however, allows cooperation to persist in a portion of

the population. For a further description, detailing abrupt dynamical transitions and extensions of

the model, see the referred publication [8].

2.1.3 Reinforcing Transitivity

Transitivity is a property observed particularly in social networks, in which neighbors of a node

tend to be neighbors with each other. Equivalently, transitivity quantifies the prevalence of

triangles in a network, as illustrated in Figure 4. For more information on transitivity (and

complex networks in general), see the textbook [4] or the review [3] by Newman. One of a few

alternate definitions for a network’s transitivity found therein is

C =
3 × (total number of triangles)

number of connected triples
.

8
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A connected triple is a connected component consisting of three nodes and two edges (Figure

4). The number 3 appears in the numerator because a triangle consists of three connected triples.

The expression thus gives the fraction of connected triples in the network that are closed off as

triangles. The value of C ranges between 0 and 1, with a higher value indicating higher transitivity

and higher prevalence of triangles. The symbol C refers to another name for this quantity, the

“clustering coefficient."

Figure 4: A triangle (black) and a connected triple (red) within a larger network. Transitivity quantifies the

prevalence of these triangles in a network. Can you spot the other triangle?

Of interest to us is the impact of transitivity on dynamical processes. If the nodes are clumped

together with lots of triangles, what is the impact on spreading processes and other dynamical

systems? This question is addressed in the context of coevolving networks by adjusting some of

the system rules with attention to transitivity. Malik et al. [12] observe that coevolving network

models tend to remove triangles over time, since when nodes rewire, they find a node with the

same state without regard for its location in the network. This tendency makes the networks less

resemblant of actual social networks. Motivated by this observation, they propose a modification

of the coevolving SIS model that encourages transitivity.

Recall that at rate w, susceptible nodes remove links with infectious nodes and rewire to a new

susceptible node, choosing randomly from the members of the population that are not already

9



N. John: Data-Driven Equations for Coevolving Network Systems

neighbors. In the modified model, upon the occurence of a rewiring, with probability η the

susceptible node rewires to a susceptible neighbor of a neighbor. The result is the formation of a

new triangle. Otherwise, with probability 1 − η, the susceptible node rewires to any random

susceptible node from the population. This new parameter η ∈ (0, 1) adjusts the amount of

transitivity reinforcement. Computational experiments indicate that higher η leads to fewer

infections over the long term. This result tentatively suggests that actual societies can slow

infectious disease outbreaks by closing their triangles. Related studies reinforce transitivity in the

coevolving voter model as well [11, 12, 13].

2.1.4 ODE Approximations for Coevolving Networks

Having become aquainted with a few examples of coevolving networks and their modeling scope,

we turn our attention to some of the tools to investigate them. The first and foremost tool is, surely,

computational simulation. All of the models are stated in terms of rules to update the system in

discrete time steps. These rules translate to computer code for stochastic simulations. Simulations

can reveal the effects of varying parameter values and initial conditions on the trajectories and

long-term evolution of coarse variables, such as the fraction of infectious nodes in the SIS model.

The alternate approach in common use is to construct systems of ordinary differential equations

that approximate the temporal evolution of coarse variables, or summary statistics, describing

the state of the network system. This system of equations serves as an alternate picture of the

coevolving network system.

Why make equations? After all, these equations are only approximations, and their predictions can

deviate from the results of computational simulations. For one thing, the equations can usually be

numerically integrated to obtain trajectories and long-term behavior much more quickly than the

computational simulations. When investigating the behavior as (potentially several) parameters

vary, this computational advantage adds up. Furthermore, equations contain information on their

own, codifying the effect of each variable and parameter on the rate of change of each variable.

The computational simulations and the ODE systems are both mathematical models; both describe

the interaction of state and topology, and both have limitations in their resemblance to the real

world. When viewed as a modeling framework, coevolving networks ought to be actualized in the

way that best serves an application. As coevolving networks become more popular as modeling

tools, perhaps they will find use in settings that necessitate quick, on-the-fly evaluation, where

equations are more appropriate.

In this thesis, the type of ODE system that we are most interested in is called a pair approximation.

10
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Let us look again at the pair approximation (Equation 1.1) for the coevolving SIS system, introduced

in [1]. This time we dispense with the parentheses in order to look at each term separately.

d
dt

i = plSI − ri

d
dt

lI I = plSI − 2rlI I +
plSI lSI

s
d
dt

lSS = rlSI + wlSI −
2plSI lSS

s

The variable i is the fraction of nodes that are infectious at a given time. Because the number of

nodes does not change with time, the variable s, the fraction of susceptible nodes, is 1 − i. The

variable lI I is defined as the number of edges connecting two infectious nodes divided by the

number of nodes in the network. lSS is defined analogously. Because the number of edges does

not change with time, lSI is M/N − lI I − lSS. M is the number of edges, and N is the number of

nodes.

In the first equation, the term plSI accounts for new infections taking place along edges between

susceptible and infectious nodes. At each time step, the infectious node infects the susceptible

node with probability p, and the edge of type SI becomes an edge of type I I. Scaling with the

number of SI links in the network gives a good indication of new infections, but it does have a

shortcoming. The term does not consider that some susceptible nodes are neighbors with more

than one infectious node, so this first equation will consequently overestimate the occurence of

new infections. The term −ri accounts for recovery reducing the number of infectious nodes. At

each time step, an infectious node becomes a susceptible node with probability r.

In the second equation, the term −2rlI I considers that when a node on either side of an edge of

type I I recovers, the edge becomes an edge of type SI. The factor of 2 reflects that either node

could cause this change. The term plSI accounts for the formation of new edges of type I I when

an infection occurs over an edge of type SI. This term is inexact for the same reason it is inexact

in the first equation. When the susceptible node becomes infectious, it could create more than one

edge of type I I, depending on who its other neighbors are. This imbalance is the reason for the

third term, which is less transparent. The term plSI lSI
s is an approximation of another term that

considers connected triples [14], which can be written as ptISI . See Figure 5 for an illustration of

a connected triple. This new notation tISI is the number of connected triples with a susceptible

node between two infectious nodes, divided by the number of nodes in the network. Because

variables representing connected triples like tISI are not part of the system of equations, they need

to be approximated in terms of the variables that are in the system of equations. For this reason

11
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Gross et al. [1] use the moment closure approximation of [15]

tabc ≈ lab
lbc
b

. (2.1)

The approximation starts with the prevalence of edges of type ab. If the node of type b at the end

of this ab edge is connected to a node of type c, then we have a triple of type abc. If we select an

arbitrary node of type b from the network, we can expect it to be connected to lbc
s nodes of type c,

on average. Thus the product lab
lbc
b approximates tabc.

b

ca

Figure 5: A connected triple of type abc. The moment closure approximation [1, 15] tabc ≈ lab
lbc
b allows for

connected triples to appear in pair approximations.

Plugging in this approximation, ptISI becomes plSI lSI
s . The terms in the third equation have similar

motivation.

Similar systems of equations have been derived for other models, including dynamics on static

networks [10] and other coevolving networks including the coevolving voter model [6] and the

prisoner’s dilemma system [16]. Demirel et al. [17] present and juxtapose strategies to construct

pair approximations and their moment closures.

In Chapter 4 we compare the performance of this pair approximation with computational simula-

tions and the data-driven equations developed in this thesis. For now, however, we can see that this

pair approximation has a few potential sources for error, and they result from ignoring intricacies

of the network structure. Using an approximation to represent connected triples in terms of

12
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edge types and node types suggests the possibility of including such higher-order subnetworks

as variables in the system of equations. The most popular approach to do so is the method of

approximate master equations.

Marceau et al. (2010) [14] develop approximate master equations for the coevolving SIS system.

The variables used in the equations are Skm and Ikm for 0 ≤ m ≤ k, and 0 ≤ k ≤ kmax, totaling

(kmax + 1)(kmax + 2) equations [10]. Skm is the fraction of nodes in the network that are susceptible,

have k neighbors (“degree k", in the language of graph theory and network science), and have m

infectious neighbors. See figure 6 for an illustration. Ikm is the fraction of nodes in the network

that are infectious, have k neighbors, and have m infectious neighbors. The approximation is cut

off at some positive integer kmax which the degree of the vast majority of nodes is expected to stay

below.

SS

S
S S

S
I

I

I

Figure 6: A node of type Skm, k = 8, m = 3 (center).

The system of equations includes a term for each of the ways in which one type of node can

become another type of node, resulting from infection, recovery, or rewiring. The equations in [14]

take the form

13
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dSkm
dt

= rIkm − pmSkm + r[(m + 1)Sk(m+1) − mSkm] + p
SSI
SS

[(k − m + 1)Sk(m−1) − (k − m)Skm]

+w[(m + 1)Sk(m+1) − mSkm] + w
SI
S
[S(k−1)m − Skm]

dIkm
dt

= −rIkm + pmSkm + r[(m + 1)Ik(m+1) − mIkm] + p(1 +
SI I
SI

)[(k − m + 1)Ik(m−1) − (k − m)Ikm]

+w[(k − m + 1)I(k+1)m − (k − m)Ikm].

A derivation of these equations is beyond the scope of this review; even some of the notation is

left unexplained here. Regardless, we can see the jump in complexity from the pair approximation,

both in the number of equations and the complexity of the equations themselves. The reward

is an increase in accuracy resulting from more detailed modeling of the coevolving network

system. Similar systems of equations have been derived for dynamics on static networks [10],

the coevolving voter model [6], the prisoner’s dilemma system [16], and transitivity-reinforced

systems [13]. While the objective of this thesis is to create pair approximations from data, a project

for the future could be to do the same for approximate master equations.

2.2 Sparse Model Identification

Sparse model identification is an approach to use time series data to create a mathematical

model in the form of a system of differential equations. Sparse model identification is the basic

procedure through which we create pair approximations for the coevolving SIS system. Wang et

al. introduced sparse model identification in [31].

Given an n-dimensional time series x(ti), the objective is to obtain a system of differential

equations

dx1

dt
= f1(x)

dx2

dt
= f2(x)

...

dxn

dt
= fn(x)

corresponding with x(ti) and hopefully corresponding accurately with other time series generated

by the process that generates x(ti).

14
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Using a procedure for numerical differentiation, produce an accompanying time series d
dt x(ti) that

estimates the derivative of x(ti). We discuss such procedures in Chapter 3.

Sparse model identification produces equations of the form

fi = C1g1 + · · ·+ Csgs,

where each function fi is a linear combination of some collection, or library [19], of functions

g1 . . . gs. The functions in this library are chosen by the investigator. The coefficients C1 . . . Cs result

from a regression procedure, fitting the numerical derivatives d
dt x(ti) with the library functions

evaluated on the time series x(ti). Using a regression that induces some of the coefficients Cj to

be zero, such as LASSO [44] or sequential threshold least squares [19], reduces the number of

terms in the equations to a desired level. By not just scaling but also selecting the terms of the

equation, sparse model identification attempts to reveal the fundamental interactions driving the

system.

References [37] and [38] overview sparse model identification and discuss best practices. In

Chapter 3 we describe the modified approach to sparse model identification used in this thesis. The

approach described above has a number of extensions and modifications. Yang et al. investigate

an extension to time-varying systems in [32]. Boninsegna et al. propose an extension to stochastic

differential equations [35]. Zhang et al. [36] present convergence results for the formulation

of [19]. Schaeffer et al. [34] avoid numerical differentiation by optimizing coefficients in the

integral form of the equations to identify. Similarly, Messenger et al. [40] use the weak form of

the equations in order to optimize through a Galerkin procedure. Mangan et al. [33] discuss

hyperparameter tuning using information criteria. Kaheman et al. [39] use optimization via

automatic differentiation to both identify a model and remove noise simultaneously.

It is worth noting that parameter estimation from data, including for differential equations, is an

established subject in the field of inverse problems [28], and that sparse model identification is a

form and application of parameter estimation. As a notable early example, Crutchfield et al. use

data to make differential equations in the 1987 paper [29]. Kukreja et al. use LASSO to create

sparse and interpretable NARMAX models, addressing a similar problem for difference equations

rather than differential equations [30].

There is some previous work that resembles the application of this thesis. While this thesis presents

results for global-scale dynamics (variables like i, lI I , and lSS), Bakhtiarnia et al. [42] nest sparse

model identification with a genetic algorithm to build equations for the micro-scale dynamics, at

15



N. John: Data-Driven Equations for Coevolving Network Systems

the node-level, of networked dynamical systems from simulation data. Daniels et al. [41] use a

procedure similar to sparse model identification to construct equations of global-scale dynamics

from data generated through simulation of high-dimensional biochemical processes. Bramburger

et al. [43] use sparse model identification to build equations for the slow-timescale dynamics of

time series possessing dynamics occurring also on a fast, periodic timescale.
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3. Methods

Similar to previous developments of sparse model identification (see Chapter 2), we produce our

equations as linear combinations of basis functions, selected in a sparse regression of training

trajectories and their numerically estimated derivatives. The method employed here offers

several adjustments to suit the needs of the application to coevolving networks, including a new

differentiation method that is well suited to the task of sparse model identification, and regression

that leverages conserved quantities of coevolving networks (number of nodes and edges) to

improve the model identification performance. The chapter ends with an example to demonstrate

the utility of these modifications to model identification in general.
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3.1 Data Collection

In general, the data collection process goes as follows. Obtain a computer simulation of a

coevolving network system, in order to run a collection of simulations sampling the range spanned

by each system parameter. At each step of the simulation, record the values of coarse variables

to be described in the final equations. To make pair approximations, the coarse variables are the

densities of each compartment and link type. In the case of the SIS model of [1], the densities of

compartments are labeled i and s. The variable i is the ratio of infectious nodes to the total number

of nodes, and s is the same ratio but for susceptible nodes. Because the number of nodes in the

network is conserved, only one of i and s needs to be recorded, and the other can be calculated

afterward. The densities of link types are labeled lI I , lSS, and lSI . The variable lI I is the number of

links in the network connecting two infectious nodes, divided by the number of nodes. Because

the number of links in the network is conserved, only two of the three edge types must be recorded

during simulation. The parameters to the system, p, r, and w, are sampled from the range of

values they can take. Another parameter that can be sampled is the mean degree, < k >= 2M
N .

The maximum number of links in a network with N nodes is (N
2 ), but because the simulations

become increasingly computationally demanding with higher mean degree, the value of < k >

should be sampled in a predefined interval. Figure 7 plots a time series of measurements of i, lI I ,

and lSS collected from a simulation.

For the experiments and results shown in Chapter 4, we implement a numerical simulation of

the coevolving SIS system with the C++ programming language. Each simulation accepts values

for the number of nodes N and the number of edges M in the network, the system parameters

p, r, and w, and an initial number of infectious nodes. For the initial network configuration,

we sample an Erdős-Rényi random graph [18, 4] by successively placing the M edges between

randomly-selected pairs of non-adjacent nodes. Initial network configuration does affect the

trajectories of the coarse variables [10, 11, 14] (in this case i, lI I , and lSS), and it is possible to

sample additional initial network configurations, but for simplicity we use the Erdős-Rényi model

for all simulations. We also limit the variety of network configurations by using N = 5, 000

nodes and M = 5, 000, M = 17, 500, and M = 10, 000 edges (resulting in mean degree < k >= 2,

< k >= 7
2 , and < k >= 20 respectively) for the simulations used in our three examples. Ideally

we would create data-driven equations that apply to network systems with any mean degree, and

we anticipate this simplification to be generalized in future work. The initial number of infectious

nodes N ∗ i0 is sampled in the interval (0, N), and every node has equal probability i0 of being

infectious at the beginning of the simulation.
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Figure 7: Example time series from the coevolving SIS system with a network of N = 20, 000 nodes and

M = 200, 000 edges. Zooming in shows the stochastic influence on the system evolution, especially

around equilibrium. p = .000000037, r = .000000156, w = .0000509781 (approximately), i0 = .01825,

lI I0 = .00295, lSS0 = 9.6544. Each variable in the time series has 24, 299 measurements.

The selection of system parameters p, r, and w is a matter of objective. Scaling all of the

parameters by the same factor amounts to slowing down or speeding up the process by that factor,

and although there are three parameters, all of the behavior can be observed by varying just two

of them [14]. All simulations use fixed r and sample p and w across a grid. We choose parameter

values to match the examples shown in [1] and [14]. Numerical simulations in these parameter

ranges demonstrate behavior that we are interested in capturing with our data-driven equations,

particularly the emergence of bistability in the system variables as w increases [1, 14] (see Figure

21 in Chapter 4).

3.2 Numerical Differentiation

For each coarse variable, expressed as a vector x, and a chosen odd whole number k, perform a

k-point moving average of the form

yi =
1
k

i+ k−1
2

∑
j=i− k−1

2

xj (3.1)

to obtain a vector y, assuming equal time intervals between each measurement. This optional first

step reduces the local variation of the time series to reduce the footprint of the underlying system’s

stochastic component and to make the data more amenable to numerical differentiation.

Following the optional preprocessing with a moving average, the method proceeds with numerical

differentiation of the resulting time series y. One method recommended for sparse model

identification in [19], is the total variation regularized derivative [20] which takes an optimization
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approach that balances both smoothness and agreement with antidifferentiation. It encourages the

derivative estimate f̂ to be smooth by penalizing its total variation ∥ d
dt f ∥1 in the objective

f̂ = argmin
f

{∥∥∥∥∫ tfinal

t0

( f )dt − y
∥∥∥∥2

2
+ γ

∥∥∥∥ d
dt
( f )

∥∥∥∥
1

}
.

The use of an L1 penalty allows the method to estimate derivatives that are discontinuous [20].

This feature is useful in such cases but is extraneous for many cases of sparse model identification,

including the coevolving networks in which we are interested.

An appropriate alternative to differentiate noisy but intrinsically smooth time series is the method

introduced in [21], which instead of using an L1 penalty uses a penalty of the form (∥ f ∥2
2 + ∥ d

dt f ∥2
2)

in its objective. The two methods form a useful duo, but the bias that their regularizations introduce

can still compromise the model identification. Indeed, experiments with model identification

for example ODE systems show that a simple difference quotient procedure can sometimes

outperform regularized differentiation methods, as we investigate in Section 3.5 (see Figures 10

and 13).

The differentiation method presented here attempts to split the difference between the noise

amplification of a difference quotient calculation and the bias of a regularized derivative. Like

[20] and [21], this derivative is computed through an optimization procedure. Similar to [22] and

resembling the hyperparameter tuning of [23], we formulate the optimization as a smoothing of

the input time series, such that its derivative computed with a difference quotient is well behaved.

We call this procedure the “denoising derivative." First consider the motivating preliminary

formulation

ŷ = argmin
z

{
γ ∥Quad[ DQ(z) ]− z∥2

2 + ∥y − z∥2
2

}
. (3.2)

The left term of the cost function requests that the derivative is consistent in antidifferentiation,

so that d
dt ŷ becomes ŷ when integrated. The operator Quad refers to the application of a nu-

merical quadrature such as the trapezoid rule, Simpson’s rule, or similar, while DQ refers to the

computation of a difference quotient such as

d
dt

yi ≈
yi+1 − yi−1

2δ
.
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The second term of the cost function in Equation 3.2 prevents the estimate ŷ from straying

too far from y, with the adjustable parameter α scaling the term’s influence. As α −→ 0+, the

denoising derivative reduces to the difference quotient calculation. Larger α values prioritize the

smoothness of the estimate. In this way the denoising derivative bridges the gap between the

noise-amplifying but unbiased difference quotient and the noise-robust but biased regularized

differentiation methods, filling a niche for the problem of sparse model identification and its need

for both accuracy and stability in the ultimate model.

Equation 3.2 is less than ideal for actual implementation because the composition of numerical

quadrature and numerical differentiation introduces an artifact near the endpoints of the time

interval. Specifically, the composition amounts to a moving average with extraneous effects near

the endpoints of the time series (see Figure 8 for an explanation and Figure 9 for an example), so

for this reason we proceed with a modified version of Equation 3.2. The replacement, Equation 3.3,

directly invokes a moving average to avoid the introduction of an artifact. Discerning readers may

notice that Equations 3.2 and 3.3 are not entirely equivalent, as Equation 3.3 optimizes through

a moving average of DQ(z), not z. This change takes the opportunity to smooth the difference

quotient, which has more local variability than the original time series.

ŷ = argmin
z

{
γ ∥MA[ DQ(z) ]− DQ(z)∥2

2 + ∥y − z∥2
2

}
(3.3)

Figure 10 in Section 3.5 compares the performance of the denoising derivative with the L1

procedure of [20] and the L2 procedure of [21].

To implement the denoising derivative we use the convex optimization library CVXPY [24, 25],

an interface for the Python programming language. Convex optimization also allows for the use

of constraints, which may be useful depending on the problem. In extending this work to the

voter model, for example, a constraint to the denoising derivative could require ŷ to equal y at

the endpoints, since in some parameter settings the ending values of the coarse variables depend

continuously on the initial values [6], and their exact values ought to be maintained for maximum

accuracy in the final model.

3.3 Selecting Basis Functions

Following numerical differentiation, the next step of sparse model identification is establishing

a collection of basis functions, sometimes called a library [19], for the ODE system. Depending

on the application for model identification, understanding of the system mechanics could guide
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Given a time series y, the application of a difference quotient d
dt yi ≈ yi+1−yi−1

2δ can be expressed as

a matrix multiplication of y:

DQ(y) =
1
2δ



−1 0 1 0 0 0 0 0

0 −1 0 1 0 0 0 0

0 0 −1 0 1 0 0 0

0 0 0 −1 0 1 0 0

0 0 0 0 −1 0 1 0

0 0 0 0 0 −1 0 1





y1

y2

y3

y4

y5

y6

y7

y8


Likewise, numerical quadrature with the trapezoid rule can be expressed with the matrix multipli-

cation of a vector y′:

Quad(y′) = δ

2



1 1 0 0 0 0

1 2 1 0 0 0

1 2 2 1 0 0

1 2 2 2 1 0

1 2 2 2 2 1





y1′
y2′
y3′
y4′
y5′
y6′


The composition of quadrature and differentiation is the multiplication of these two matrices:

Quad(DQ(y)) =
1
4



−1 −1 1 1 0 0 0 0

−1 −2 0 2 1 0 0 0

−1 −2 −1 1 2 1 0 0

−1 −2 −1 0 1 2 1 0

−1 −2 −1 0 0 1 2 1





y1

y2

y3

y4

y5

y6

y7

y8


which resembles a moving average but shifted and with extraneous terms in the first three columns.

These artifacts resulting from composing two numerical procedures lead to poor estimation of

the derivative near the endpoints of the time series. For this reason we directly invoke a moving

average in the loss function of the denoising derivative.

Figure 8: Why we replace Equation 3.2 with Equation 3.3 to implement the denoising derivative.
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Figure 9: Comparison of the preliminary composition-based implementation of the denoising derivative with

the moving average-based implementation. Notice how the preliminary implementation strays

further at the endpoints.

the choice of basis functions, or alternatively, it can be useful to have a default library that makes

no assumptions. In the examples to follow we use multiplications of the system variables and

parameters, as advocated in [31]. We also take advantage of a property mentioned in Section 3.1,

which is the speeding-up-or-down effect of multiplying all of the system variables by a constant.

Look again at the analytically-derived pair approximation from [1]:

d
dt

i = plSI − ri

d
dt

lI I = plSI(
lSI
s

+ 1)− 2rlI I

d
dt

lSS = (r + w)lSI −
2plSI lSS

s
.

You may notice a commonality; the terms are all multiples of exactly one system parameter. This

way, if the parameters are all multiplied by a positive factor a, the derivatives are all multiplied

by a, and the system moves a times as fast. We would like to maintain this property in our

data-driven model, so we correspondingly make all of our library functions multiples of exactly

one system parameter.

Sparse model identification proceeds by winnowing the library to suggest a sparse subset of its

basis functions for each dynamic variable, eliminating functions whose coefficients are small in
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the regression.

3.4 Choosing Coefficients

With the basis functions that remain, the final model identification follows from a least-squares

regression, matching function evaluations to numerical derivatives. In the application to coevolving

networks, known conserved quantities augment the regression. Namely, in the coevolving SIS

example, the number of nodes is constant, and the number of edges is constant, so d
dt i + d

dt s = 0,

and d
dt lI I +

d
dt lSS +

d
dt lSI = 0. These conservations are constraints on the regression, and it works

as follows.

The identified model is an n-dimensional ordinary differential equation,

d
dt

x = f̂(x)

with each component f̂1 . . . f̂n a linear combination of its library.

f̂i = Ĉ1g1 + · · ·+ Ĉsi gsi

Suppose the model should hold the conservation f̂1 + · · ·+ f̂n = 0. For a time series y1 . . . yN

and derivatives d
dt yi . . . d

dt yN , the estimated coefficients Ĉ emerge from an optimization of the

form

Ĉ = argmin
C

{
N

∑
j=1

∥∥∥∥ d
dt

yj − f (yi)

∥∥∥∥2

2
+ α

N

∑
j=1

( f1(yj) + · · ·+ fn(yj))
2 + λ1 ∥C∥1 + λ2 ∥C∥2

2

}
. (3.4)

The parameters λ1 and λ2 scale optional L1 and L2 penalties to improve conditioning and en-

courage sparsity in Ĉ [50]. Experiments with the coevolving SIS system indicate that using a

combination of L1 and L2 penalties leads to the best performance. The parameter α scales the

conservation term, though its value appears to have little effect on the outcome. As with differ-

entiation, this optimization is obtained numerically through convex optimization, implemented

with the library CVXPY [24, 25]. As introduced for model identification in [19], the method uses a

sequential thresholding procedure, iteratively removing terms with coefficients smaller in absolute

value than a specified value until no more terms are removed.

3.5 Example: Model Identification of a Classical SIR System

As an example to illustrate the method presented here, not in the context of networks, consider

the system of equations 3.5 for the SIR epidemiological model
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d
dt

S = −βIS ,
d
dt

I = βIS − ϵI ,
d
dt

R = ϵI (3.5)

with β = 2 and γ = 1 [26]. It is helpful to begin with a system of equations like this one, whose

true form is already known, before moving on to model identification with experimental data.

Equation 3.5 possesses the conserved quantity dS
dt +

dI
dt +

dR
dt = 0, similar to the conservations

present in many coevolving network systems.

First we use this example system to compare the model identification performance of the three

regularized differentiation methods introduced in Section 3.2, namely the denoising derivative

introduced in this thesis, the derivative with Tikhonov penalty γ(∥ f ∥2
2 + ∥ d

dt f ∥2
2) [21], and the

total variation derivative with penalty γ∥ d
dt f ∥1 [20]. For the total variation derivative we use an

implementation from the derivative library for Python [27], with setting order=2. For training

data we integrate Equation 3.5 using the Python function scipy.integrate.solve_ivp [46] using

solver BDF starting from three initial conditions: (S = .9, I = .1, R = 0), (S = .1, I = .9, R = 0),

and (S = .4, I = 0, R = .6). All three trajectories take 1000 evenly spaced measurements on

the interval (0 ≤ t ≤ 15), and to replicate experimental data, independent, normally distributed

noise with mean 0 and standard deviation .001 is added to each measurement in all three

dimensions.

In this example we skip the initial moving average treatment and proceed directly to numerical

differentiation. In addition, the denoising derivative provides a smooth version of the time series,

which we will use in our experiments with the coevolving SIS system, but for the sake of fair

comparison we use the original time series for model identification in this example. For all three

methods of numerical differentiation, we let their regularization parameter take the values γ = 100,

γ = 10−1, . . . , γ = 10−8, γ = 10−9 and compare model identification performance as γ varies.

The denoising derivative uses an equally weighted 3-point moving average.

All equations in the identified systems are linear combinations of the library {S, I, R, SS, I I, RR, SI, SR, IR}.

The coefficients result from optimizing the special case of Equation 3.4

Ĉ = argmin
C

{
N

∑
j=1

∥∥∥∥ d
dt

yj − f (yi)

∥∥∥∥2

2
+ α

N

∑
j=1

( f1(yj) + f2(yj) + f3(yj))
2 + λ ∥C∥1

}
(3.6)

with α = 1 and λ = 10−3, with the term α ∑N
j=1( f1(yj) + f2(yj) + f3(yj))

2 acknowledging the con-

served quantity dS
dt +

dI
dt +

dR
dt = 0. In this first example we refrain from sequential thresholding and

simply choose coefficients once, keeping all of them regardless of their magnitude. For simplicity

we use only the L1 penalty in coefficient selection, for every example in this section.
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Figure 10: Three regularized differentiation methods when used for model identification, over different values

of the differentiation’s regularization parameter (γ). Dashed black curves show the numerical

integration of a test SIR trajectory. Notice that the denoising derivative performs consistently for

varying amount of regularization, while the other methods require some tweaking.
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d(S)/dt =7.312195290815341e − 17(S)− 0.0029846110491668736(I)

− 0.002305440327027366(R) + 0.0035241332379654772(SS)

+ 0.010762043275610847(I I) + 0.0024868711205385742(RR)

− 2.0076248770571117(SI)− 3.440099612857256e − 17(SR)

− 1.847699547111957e − 16(IR)

d(I)/dt =1.228359177988061e − 16(S)− 0.7502237574779195(I)

− 0.00016891337361823534(R)− 0.0015269183408076125(SS)

− 0.25500283456471895(I I)− 3.456445170450389e − 16(RR)

+ 1.756149630694258(SI) + 0.001323760970765102(SR)

− 0.2447354020299107(IR)

d(R)/dt =1.0735585662730585e − 16(S) + 0.995236488253796(I)

+ 0.00785171488185314(R)− 0.0007519092829280412(SS)

+ 3.390521668553451e − 17(I I)− 0.007857054581881757(RR)

+ 0.0057878129647582(SI)− 0.007481891361761569(SR)

− 2.186338771921895e − 16(IR)

Figure 11: Model identified using the denoising derivative with equally weighted 3-point moving average,

γ = 1, and coefficient selection with α = 1 and λ = 10−3, as seen in Figure 10. Notice that some

terms are quite small.

Figure 11 displays one system of equations obtained using the denoising derivative. Figure 10

displays integrations of the identified models from the starting point (S = .8, I = .1, R = .1)

alongside the integration of the true system of equations. All three methods lead to satisfactory

models for at least some values of γ, but the denoising derivative is more consistent in its

performance.

The next example compares model identification performance with and without the use of

conserved quantities to inform the coefficient selection, the former using Equation 3.6 and the latter

omitting the term α ∑N
j=1( f1(yj) + f2(yj) + f3(yj))

2. The training data is the same as the previous

example but with normally distributed noise of standard deviation .01 added to each point. The
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denoising derivative is used with an equally weighted 3-point moving average and regularization

parameter γ = 10−2, and the denoised estimate of the trajectory is used in the regression in place

of the original trajectories. Both with and without use of conserved quantities, the regression’s L1

parameter takes the values γ = 10−1, γ = 10−2, . . . , γ = 10−9, γ = 10−10.

Figure 12 displays integrations of the identified models from the starting point (S = .8, I = .1, R =

.1) alongside the integration of the true system of equations. In both cases, there are values of

λ that lead to satisfactory models, and the difference is less striking in this second example, but

when using conserved quantities the predictions tend to remain more accurate as λ varies.

Finally, we compare the model identification performance of the denoising derivative with a

simple difference quotient as the noise level varies. The training data is the same as the previous

two examples but adds normally distributed noise with standard deviations σ = .001, σ = .01,

σ = .05, and σ = .1. The denoising derivative uses an equally weighted 3-point moving average

and regularization parameter γ = 10. The other derivative is a 3-point difference quotient sourced

from the Python derivative library [27]. Each case performs coefficient selection with α = 1,

λ = 10−3. Figure 13 compares both identified models with an integration of the true system. The

denoising derivative yields more accurate predictions as σ increases. It is worth noticing, however,

that the difference quotient performs well at lower noise levels. When compared with Figure 10,

the case σ = .001 shows that depending on the choice of regularization parameter, the simple

difference quotient can outperform the total variation derivative and the derivative with Tikhonov

penalty. This observation poses the denoising derivative as a bridge between the noise-amplifying

but unbiased simple difference quotient and the accurate but biased regularized differentiation

methods.
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Figure 12: Model identification with and without use of conserved quantities, over different values of the

model identification’s L1 regularization parameter (λ). Dashed black curves show the numerical

integration of a test SIR trajectory. The use of conserved quantities results in improved predictive

ability.
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Figure 13: Model identification over four noise levels with the denoising derivative (equally weighted 3-point

moving average, γ = 10) and a simple 3-point difference quotient [27]. Coefficient selection uses

α = 1, λ = 10−3. The denoising derivative yields more accurate predictions as σ increases. Notice,

however, the accuracy of the difference quotient at low σ and compare to some of the results in

Figure 10.
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4. Results

This chapter presents three examples of pair approximations for the coevolving SIS system

obtained through sparse model identification. In the first example we identify a model using

simulations with N = 5, 000 nodes and M = 17, 500 edges. All simulations take r = .005, p covers

the interval (0, .008), and w covers the interval (0, .04). In the second example we identify a model

using simulations with N = 5, 000 nodes and M = 5, 000 edges. All simulations take r = .002, p

covers the interval (0, .006), and w covers the interval (0, .04). In the third example we identify

a model using simulations with N = 5, 000 nodes and M = 50, 000 edges. All simulations take

r = .005, p covers the interval (0, .04), and W covers the interval (0, .04). The parameter regions
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for these examples correspond to examples in [14] and [1]. We assign initial networks Erdős-Rényi

random graph topology.

In order for the identified models to describe the effect of the system parameter r, we use the

scaling property mentioned in Chapter 3 to synthetically sample different values of r. Given time

series of measurements and their corresponding numerically computed derivatives, the parameters

and derivatives at each time point are multiplied by a scale factor. In this case, the scale factors

alternate through 1, 2, 4, 6, and 8 at each time point. It would also be valid to simply simulate

with the desired values of r.

The model selection produces equations by iteratively fitting to 30 initial terms:

{p, r, w,

pi, ri, wi,

plI I , rlI I , wlI I ,

plSS, rlSS, wlSS,

pi2, ri2, wi2,

pl2
I I , rl2

I I , wl2
I I ,

pl2
SS, rl2

SS, wl2
SS,

pilI I , rilI I , wilI I ,

pilSS, rilSS, wilSS,

plI I lSS, rlI I lSS, wlI I lSS} (4.1)

using Equation 3.4 and removing terms with coefficients smaller than a threshold.

After obtaining a model we assess its performance by integrating along sample trajectories and

by creating bifurcation plots. Both tasks are aided by obtaining the Jacobian matrix for the data-

driven equations. As one of the benefits of describing time series with differential equations, as

opposed to some kind of black-box model, the Jacobian matrix can be obtained symbolically using

a computer algebra system to improve integration performance when supplied to a stiff ODE

solver. We obtain the symbolic Jacobian using the Python library Sympy [45], and we integrate

the equations, with the help of the Jacobian, using the integrator scipy.integrate.BDF [46]. To

create bifurcation plots as shown in Figures 17, 21, and 24, we numerically solve the equations

and stop integration when a convergence criterion is satisfied.
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4.1 First Example

In all simulations used for Example 1, the networks contain N = 5, 000 nodes and M = 17, 500

edges and use r = .005. The values of w sampled are 0, .01, .02, .03, and .04. For each value of

w we sample 30 values of p, equally spaced from p = 0 to p = .008. For each combination of

parameters we simulate from five initial conditions: i0 = .001, i0 = .01, i0 = .05, i0 = .99, and

i0 = .999. Each simulation runs for 2000 steps, which is typically sufficient for the number of

infectious nodes to reach equilibrium.

The recordings of i, lI I , and lSS, and the computed series of s and lSI , are smoothed with a 41-point

moving average, tapered to avoid cutting off the endpoints. Numerical differentiation uses the

denoising derivative with γ = .1 and equally weighted 3-point moving average. The smoothed

time series given by the denoising derivative is maintained, and the output of the derivative is

smoothed with another 5-point moving average, tapered to avoid cutting off the endpoints. To

reduce memory load, every 50 points are maintained from each series of positions and derivatives,

leaving 40 time samples from each simulation. The remaining points are then alternately scaled

by 1, 2, 4, 6, and 8.

Using the set of terms 4.1 and optimizing according to Equation 3.4 with α = 1, λ1 = .001, and

λ2 = .00001, terms with coefficients of absolute value less than 10−4 are removed, and the process

repeats until no terms are removed. In this example, 3 optimizations result in 5 equations with 23,

23, 25, 27, and 28 terms each. The equations for i, lI I , and lSS (the others are unused) are displayed

in Figure 14.

Figures 15 and 16 display integrations of the resulting equations against actual simulations and the

integration of the analytically derived pair approximations (Equation 1.1). The bifurcation plots in

Figure 17 display steady states after a stretch of time, covering the parameters used as training

data. The steady states of the simulations average the values of the system variables between steps

9,000 and 10,000. The steady states of the analytically derived pair approximations give the values

after integrating over 10,000 units of time. The data-driven equations are considered to reach

equilibrium when i remains within a window of size .005 after 100 units of time. If the integration

does not satisfy the convergence criterion, its value after 10,000 units of time is taken as its steady

state. This rather particular criterion addresses one of the key weaknesses of the data-driven

equations. Probably owing to the complexity of the data-driven equations and the emperical

nature of their derivation, they demonstrate instability around their equilibrium values. Even after

predicting well for a long interval and reaching the correct equilibrium, they have a tendency
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d(i)/dt =0.0809(pi)− 0.1243(ri)− 0.0823(wi)− 0.0697(rii) + 0.1442(pilSS)

− 0.1877(rilI I)− 0.2791(rilSS) + 0.0826(wilI I)− 0.0724(wilSS) + 1.3658(p)

− 0.1604(w) + 0.5962(plI I) + 0.8973(plSS)− 0.1799(wlI I) + 0.0482(wlSS)

+ 0.5161(plI I lSS)− 0.2935(plI I lI I)− 0.4498(plSSlSS)− 0.6053(rlI I lSS)

− 0.2425(rlI I lI I) + 0.0837(wlI I lSS) + 0.0565(wlI I lI I) + 0.0016(wlSSlSS)

d(lI I)/dt =1.6433(pi) + 0.2255(pii)− 0.2677(rii) + 0.2044(pilI I)− 0.2704(pilSS)

− 0.6635(rilI I) + 0.5135(wilI I) + 0.0170(wilSS) + 4.4206(p) + 0.2643(r)

− 0.5692(w) + 4.7223(plI I) + 0.2085(plSS) + 0.7232(rlI I)− 0.3192(rlSS)

− 0.1182(wlI I)− 0.1034(wlSS) + 0.9237(plI I lSS)− 1.9400(plI I lI I)− 0.5637(plSSlSS)

− 2.4757(rlI I lSS)− 1.8641(rlI I lI I) + 0.0788(rlSSlSS)− 0.1242(wlI I lI I)

+ 0.0977(wlSSlSS)

d(lSS)/dt =− 0.0347(pi) + 0.7670(ri)− 0.0591(wi) + 0.5517(rii)− 0.9824(wii)

+ 0.3106(pilI I)− 1.1035(pilSS) + 0.7502(rilI I) + 0.3928(rilSS)− 0.7552(wilI I)

+ 0.1211(wilSS)− 3.6570(p) + 0.0591(r) + 0.5669(w)− 5.0167(plSS)

+ 1.5303(rlI I)− 0.0204(rlSS) + 1.4178(wlI I) + 0.6085(wlSS)− 3.0719(plI I lSS)

+ 0.3405(plI I lI I) + 2.0789(plSSlSS) + 1.6048(rlI I lSS)− 0.6702(rlI I lI I)

− 0.4207(wlI I lSS)− 0.1571(wlI I lI I)− 0.2657(wlSSlSS)

Figure 14: Data-driven model for Example 1. Coefficients are truncated for brevity.
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to quickly diverge. The convergence criterion attempts to balance accuracy while keeping the

integration short enough to avoid diverging. Indeed, some of the points in the bifurcation plots

are missing, in which case the data-driven equations diverge at the given parameter setting. The

steady states of the data-driven equations are evaluated from two intial conditions: one close

to i0 = 0 and another close to i0 = 1, with the values of r and w the same as the training data.

They are evaluated at 20 values of p equally spaced in the interval used for training data. The

steady states of the analytically derived pair approximation are evaluated at every initial condition

and parameter combination used for training data (30 values of p). This discrepancy tests the

performance of the data-driven equations slightly offset from their training data, and it reduces

the number of computations necessary.

0 5000 10000

t

0

0.5

1

i

0 5000 10000

t

0

2

4

l I
I

0 5000 10000

t

0

2

4

l S
S

Data-Driven Model

Simulation

Analytical Pair Approximation

Figure 15: Comparison of the data-driven and analytically derived pair approximations on a trajectory of

the coevolving SIS system from Example 1. Both evolve from initial condition (i = .01, lI I =

.0002, lSS = 2.9384), with system parameters p = .00346667, r = .005, w = .01.
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Figure 16: Comparison of the data-driven and analytically derived pair approximations on a trajectory of

the coevolving SIS system from Example 1. Both evolve from initial condition (i = .99, lI I =

2.9348, lSS = 0), with system parameters p = .00453333, r = .005, w = .04.

Figures 15, 16, and 17 show that the data-driven equations can outperform the analytically-derived
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Figure 17: Bifurcation plots for Example 1.
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pair approximations in some cases. It is interesting to note that in all three examples in this chapter,

the data-driven equations show some of the same shortcomings as the analytically derived pair

approximations. In particular, they both capture the discontinuous dependence on the parameter

p, but they both struggle in the bistable region, leaving an empty stretch of grey squares at i∗ = 0.

The data-driven equations struggle a bit more in the later examples.

4.2 Second Example

In all simulations used for Example 2, the networks contain N = 5, 000 nodes and M = 5, 000

edges and use r = .005. The values of w sampled are 0, .01, .02, .03, and .04. For each value of

w we sample 30 values of p, equally spaced from p = 0 to p = .04. For each combination of

parameters we simulate from five initial conditions: i0 = .001, i0 = .01, i0 = .05, i0 = .99, and

i0 = .999. Each simulation runs for 2000 steps.

The treatment of the training data is largely the same as in Example 1. The denoising derivative

uses γ = 104, and the coefficient optimization uses α = 1, λ1 = .1, and λ2 = .001. Terms are again

removed with a threshold, but we use individualized thresholds 10−2, 10−2, 10−1, 10−1, and 10−1

for the 5 equations. 6 cycles of optimization and term removal result in 5 equations with 15, 15, 14,

13, and 11 terms each. The bifurcation plots consider the data-driven equations converged when i

remains in a window of size .001 for 100 units of time.

Figure 18 displays the system of equations obtained in this example. Figures 19 and 20 plot

integrations of the resulting equations against actual simulations and the integration of the

analytically derived pair approximations (Equation 1.1).

4.3 Third Example

In all simulations used for Example 3, the networks contain N = 5, 000 nodes and M = 50, 000

edges and use r = .002. The values of w sampled are 0, .01, .02, .03, and .006. For each value

of w we sample 30 values of p, equally spaced from p = 0 to p = .04. For each combination of

parameters we simulate from five initial conditions: i0 = .001, i0 = .01, i0 = .05, i0 = .99, and

i0 = .999. Each simulation runs for 2000 steps.

The treatment of the training data is largely the same as in Example 1. The denoising derivative

uses γ = 1, and the coefficient optimization uses α = 1, λ1 = .001, and λ2 = .001. Terms are

removed with individualized thresholds 10−4, 10−4, 10−3, 10−3, and 10−3 for the 5 equations. 3

cycles of optimization and term removal result in 5 equations with 19, 19, 26, 26, and 20 terms
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d(i)/dt =− 1.0006438403665256(ri) + 0.09777038130707723(pii)

− 0.5501074035856202(rii) + 0.09844952403641638(wii)

− 0.1111508218669941(rilI I)− 0.05126570955930179(rilSS)

− 0.24260996897557557(wilSS) + 0.6638855330462314(p)

− 0.0432689191465659(r)− 0.11260960525735672(w)

− 0.1264719889050649(rlI I)− 0.7350979272600652(plI I lI I)

− 0.6576451221453764(plSSlSS) + 0.02848693941797711(rlSSlSS)

+ 0.1125858639606359(wlSSlSS)

d(lI I)/dt =0.14473164636098368(pi)− 1.000874570365459(ri)

− 0.6218683306693004(rii) + 0.2663423127246033(wii)

− 0.20250435862301122(pilSS)− 0.34564186407688013(rilI I)

+ 0.9535702436934349(p)− 0.26166736215596803(w)

− 0.48849104620051426(plSS)− 0.4289347236398379(rlI I)

− 1.071879678926603(plI I lI I)− 0.4601443824311606(plSSlSS)

− 0.17661416328506777(rlI I lI I) + 0.2595418720021471(wlSSlSS)

d(lSS)/dt =0.9285387595803297(ri) + 0.17343395174346787(rilSS)

− 0.32834718710861555(wilI I)− 0.7763010244683582(p)

+ 0.17574608278496298(r) + 0.2804551388649336(w)

+ 0.31431187025266333(plI I)− 0.24901421987824918(plSS)

+ 0.2804389296421176(rlI I) + 0.49201794552515693(plI I lI I)

+ 1.01447714962108(plSSlSS)− 0.17542188189093966(rlSSlSS)

− 0.2770356563483522(wlSSlSS)

Figure 18: Data-driven model for Example 2.
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Figure 19: Comparison of the data-driven and analytically derived pair approximations on a trajectory of

the coevolving SIS system from Example 2. Both evolve from initial condition (i = .999, lI I =

.9978, lSS = 0), with system parameters p = 0, r = .005, w = .04.
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Figure 20: Comparison of the data-driven and analytically derived pair approximations on a trajectory of the

coevolving SIS system from Example 2. Both evolve from initial condition (i = .01, lI I = 0, lSS =

.9772), with system parameters p = .0173333, r = .005, w = 0.
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Figure 21: Bifurcation plots for Example 2.
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d(i)/dt =0.0002(pilI I) + 0.0107(pilSS)− 0.0106(wilI I) + 0.0016(p) + 0.0053(w)

+ 0.0132(plI I) + 0.0170(plSS) + 0.0017(rlSS) + 0.0030(wlI I) + 0.0286(wlSS)

+ 0.0901(plI I lSS) + 0.0007(plI I lI I) + 0.0195(plSSlSS) + 0.0113(rlI I lSS)

− 0.0039(rlI I lI I) + 0.0006(rlSSlSS)− 0.0024(wlI I lSS) + 0.0005(wlI I lI I)

− 0.0034(wlSSlSS)

d(lI I)/dt =0.0284(pi) + 0.0019(ri) + 0.0083(pii)− 0.0271(wii) + 0.0509(pilI I)

+ 0.1420(pilSS) + 0.0123(rilSS)− 0.1101(wilI I)− 0.0536(wilSS) + 0.0569(p)

+ 0.0141(r) + 0.0840(w) + 0.1921(plI I) + 0.1852(plSS) + 0.0437(rlI I) + 0.0397(rlSS)

+ 0.1348(wlI I) + 0.2172(wlSS) + 1.0015(plI I lSS) + 0.0026(plI I lI I)

+ 0.0971(plSSlSS) + 0.1514(rlI I lSS)− 0.0602(rlI I lI I)− 0.0269(wlI I lSS)

− 0.0056(wlI I lI I)− 0.0254(wlSSlSS)

d(lSS)/dt =− 0.0244(pi)− 0.0051(pii) + 0.0303(wii)− 0.0348(pilI I)− 0.1459(pilSS)

+ 0.0028(rilI I)− 0.0171(rilSS) + 0.1326(wilI I)− 0.0108(wilSS)− 0.0553(p)

− 0.0135(r)− 0.0948(w)− 0.1543(plI I)− 0.2120(plSS)− 0.0267(rlI I)− 0.0534(rlSS)

− 0.0706(wlI I)− 0.3313(wlSS)− 0.8949(plI I lSS)− 0.2278(plSSlSS)

− 0.1232(rlI I lSS) + 0.0426(rlI I lI I)− 0.0115(rlSSlSS) + 0.0435(wlI I lSS)

− 0.0037(wlI I lI I) + 0.0405(wlSSlSS)

Figure 22: Data-driven model for Example 3. Coefficients are truncated for brevity.

each. The bifurcation plots consider the data-driven equations converged when i remains in a

window of size .001 for 100 units of time.

Figure 22 displays the system of equations obtained in this example. Figure 23 plots an integration

of the resulting equations against an actual simulation and an integration of the analytically

derived pair approximations (Equation 1.1).

Figure 23 exemplifies how the data-driven equations can evolve accurately and reach the correct

equilibrium before suddenly destabilizing and diverging. Notice that in the bifurcation plots of

Figure 24, some intervals of p display no blue dots, whereupon the integrations of the data-driven
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Figure 23: Comparison of the data-driven and analytically derived pair approximations on a trajectory of

the coevolving SIS system from Example 3. Both evolve from initial condition (i = .01, lI I =

.0012, lSS = 9.805), with system parameters p = .003, r = .002, w = .03.

equations diverge without satisfying the convergence criterion.

4.4 Discussion

It is worth addressing that the analysis of these examples compares the performance of the

data-driven models with the same data that is used to train them. While validation against out-of-

sample data demonstrates a model’s ability to generalize beyond the training data, at the moment

we are focused on simply obtaining a model that describes the data used to train it. Figures 17,

21, and 24 illustrate that there is room for improvement in two primary areas: first, replicating

the bistability that emerges with increasing values of w and, second, consistently evolving to

the steady states without diverging. Validation with out-of-sample data will be of interest upon

meeting these goals. Still, agreement with training data carries a bit more importance when

performing regression to fit differential equations than it does when fitting algebraic equations,

given the more layered objective of creating equations that admit both stable and accurate solution

when supplied to an ODE solver.

The preceeding results suggest a few actionable steps for improvement. The most apparent action

is to perform the simulations with larger networks. Increasing from N = 5, 000 nodes to at

least N = 30, 000 nodes is computationally obtainable and would probably result in smoother

training data more amenable to numerical differentiation and description with a low-dimensional,

deterministic model. A related step to take is to be thoughtful about how long we simulate

for our training data. Once the simulation reaches its steady state, simulating for longer time

gives no new information. A solution would be to simulate only until a convergence criterion is
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Figure 24: Bifurcation plots for example 3.
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satisfied. In order for parameter settings with short time series to have equal representation in the

regression, an interpolation method can allow every time series to have the same number of time

points.

The choice of basis functions, regularization parameters, threshold values, and settings for

smoothing and numerical differentiation are all chosen manually in these examples. All of these

settings require tweaking in order to acheive the reported results, and automating their selection

with cross-validations would streamline the experience of using the presented method.

44



N. John: Data-Driven Equations for Coevolving Network Systems

5. Conclusion

Some directions for further work stand out. We first would like to create a data-driven model that

describes the coevolving SIS system for general mean degree, rather than creating different models

for different mean degrees. This extension would make for a more sportsmanlike comparison with

the analytically derived pair approximations and perhaps with the more accurate approximate

master equations. Another direction, in line with the greater purpose of this work, is to create

data-driven equations for coevolving network systems that do not already have analytically

derived equations to describe them. For instance, repeating this work for an equivalent coevolving

SIR model would yield a model that is not currently in circulation. These next steps proceed
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through the same method, and we will achieve them by further refining the techniques presented

here.

Reproducing some of the key behavior of the coevolving SIS system is an encouraging step

towards a reliable procedure to construct data-driven equations for coevolving network systems.

Subjectively, even after the review in Chapter 2, the application of coevolving networks may not

immediately appear to be worth the effort. Given all of the things in science and engineering

that can be described by systems of differential equations, one may wonder why we direct our

attention to simplistic computational models. Part of the value of this application is its difficulty.

Working against the dependence on several system parameters and the stochastic effects ill-suited

to numerical differentiation, every modest observation and improvement in understanding we

make about model identification is available to people working in other application areas. In a

different direction, the greater value of the work is, perhaps, enabling better understanding of

networks.

In Chapter 2 we saw a selection of coevolving network systems and discussed how they model sys-

tems with interconnected, interacting parts, in particular when the pattern of connection changes

in time. Some of the application settings are epidemics, spread of opinions, and evolutionary game

theory. In the broader context, networks are used to codify food webs, transportation systems,

communication infrastructure, the world wide web, biochemical function, the brain, academic

collaboration, and more [4]. Thresholding on measures of time series correlation is used to build

complex networks from spatiotemporal climate records [47, 48]. All of these systems change

in time, just like our coevolving networks. Sometimes this change is rapid and consequential.

Diseases break out, dissent turns to revolution, ecosystems collapse, supply chains fail, normal

brain function turns to epilepsy [49], and positive feedbacks may lead to virtually irreversible

change in the Earth’s climate system. Figures 17, 21, and 24 in Chapter 4 illustrate the sensitive

dependence of the coevolving SIS system on its parameters. Increasing the value of p causes the

steady state at zero infections to disappear, and the steady state changes to a significant portion

of the population infected. Applying this line of analysis to other network systems, bridging the

gap between complex, fine-scale interactions and essential, global-scale behavior, could enable

better understanding of consequential transitions and possibly how to predict, avoid, or cause

them.
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