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Abstract

The focus of this dissertation is the development of outlier-resistant stochastic algorithms for Prin-

cipal Component Analysis (PCA) and the derivation of novel asymptotic theory for Lp-norm Prin-

cipal Component Analysis (Lp-PCA). Modern machine learning and signal processing applications

employ sensors that collect large volumes of data measurements that are stored in the form of data

matrices, that are often massive and need to be efficiently processed in order to enable machine

learning algorithms to perform effective underlying pattern discovery. One such commonly used

matrix analysis technique is PCA. Over the past century, PCA has been extensively used in areas

such as machine learning, deep learning, pattern recognition, and computer vision, just to name a

few. PCA’s popularity can be attributed to its intuitive formulation on the L2-norm, availability

of an elegant solution via the singular-value-decomposition (SVD), and asymptotic convergence

guarantees. However, PCA has been shown to be highly sensitive to faulty measurements (out-

liers) because of its reliance on the outlier-sensitive L2-norm. Arguably, the most straightforward

approach to impart robustness against outliers is to replace the outlier-sensitive L2-norm by the

outlier-resistant L1-norm, thus formulating what is known as L1-PCA. Exact and approximate

solvers are proposed for L1-PCA in the literature. On the other hand, in this big-data era, the

data matrix may be very large and/or the data measurements may arrive in streaming fashion.

Traditional L1-PCA algorithms are not suitable in this setting. In order to efficiently process

streaming data, while being resistant against outliers, we propose a stochastic L1-PCA algorithm

that computes the dominant principal component (PC) with formal convergence guarantees. We

further generalize our stochastic L1-PCA algorithm to find multiple components by propose a new

PCA framework that maximizes the recently proposed Barron loss. Leveraging Barron loss yields a

stochastic algorithm with a tunable robustness parameter that allows the user to control the amount

of outlier-resistance required in a given application. We demonstrate the efficacy and robustness of
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our stochastic algorithms on synthetic and real-world datasets. Our experimental studies include

online subspace estimation, classification, video surveillance, and image conditioning, among other

things. Last, we focus on the development of asymptotic theory for Lp-PCA. In general, Lp-PCA

for p < 2 has shown to outperform PCA in the presence of outliers owing to its outlier resistance.

However, unlike PCA, Lp-PCA is perceived as a “robust heuristic” by the research community due

to the lack of theoretical asymptotic convergence guarantees. In this work, we strive to shed light

on the topic by developing asymptotic theory for Lp-PCA. Specifically, we show that, for a broad

class of data distributions, the Lp-PCs span the same subspace as the standard PCs asymptotically

and moreover, we prove that the Lp-PCs are specific rotated versions of the PCs. Finally, we

demonstrate the asymptotic equivalence of PCA and Lp-PCA with a wide variety of experimental

studies.
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Chapter 1

Introduction

This doctoral dissertation focuses on three directions of research, namely, dynamic algorithms for

L1-norm data analysis, stochastic algorithms for outlier-resistant PCA, and novel asymptotic theory

for Lp-norm principal component analysis (Lp-PCA). The latter two lines of research are our main

research thrusts.

Since its dawn more than a century ago, Principal Component Analysis (PCA) has been applied in

a wide variety of areas including machine learning, signal processing, computer vision, and pattern

recognition, to name a few [1]. Given a collection of data points, PCA strives to estimate the lower

dimensional subspace wherein data presence is maximized. Some of PCA’s advantages include its

intuitive problem formulation, low-cost solution via the Singular Value Decomposition (SVD) [2],

and its asymptotic optimality, among others. However, since PCA relies on the L2 (Frobenius)

norm, which places squared emphasis on each datum including outliers (peripheral measurements

that lie far from nominal data), it is sensitive to outliers and tends to provide inaccurate results

in their presence. In this big-data era, real-world datasets are often outlier corrupted and warrant

the use of outlier-resistant PCA solvers. L1-norm Principal Component Analysis (L1-PCA) is

one such robust counterpart that has gained recent research traction owing to the availability of

exact solvers [3] and multiple approximate algorithms [4–7]. L1-PCA straightforwardly replaces the

squared emphasis placed by the L2-norm in PCA by linear emphasis using the L1-norm. L1-PCA

has demonstrated similar performance compared to traditional PCA on nominal data, while being

significantly better on outlier-corrupted data.

Big and/or streaming real-valued matrix data. Many modern datasets are extremely large

and/or their constituent data measurements arrive in streaming fashion, possibly corrupted by

1
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outliers. In some applications, the underlying subspace of the streaming data may change over

time and needs to be tracked. Employing batch solvers in these settings and solving the problem

from scratch each time a new measurement becomes available is ineffective, inefficient, and infeasible

in some cases. In order to reliably process big and/or streaming outlier-corrupted data, while being

able to track any subspace change, we focus on developing methods for incremental and adaptive

L1-PCA.

Streaming complex-valued matrix data. Important applications in wireless communications

and wireless sensor array processing rely on complex-valued measurements. PCA algorithms pro-

posed to analyze real-valued data may yield degraded performance on complex-valued data. Algo-

rithms specifically designed to handle complex-valued data are required to maintain and leverage

the intrinsic complex-valued nature. As is the case with real-valued datasets, complex-valued data

come with outliers and in order to process such data reliably, we need outlier-resistant algorithms.

Additionally, some applications including direction-of-arrival (DoA) estimation encounter stream-

ing complex-valued data. As discussed earlier, employing batch PCA solvers to handle streaming

data is inefficient and may be infeasible in some cases. In order to process streaming complex-valued

data reliably and efficiently, we propose an incremental L1-PCA algorithm for complex-valued data.

Streaming tensor-valued data. Advanced Internet of Things (IoTs) employ sensors that collect

large volumes of measurements across diverse sensing modalities. Such data come with inherent

multilinear (tensor) structures and correlations. In order to learn/discover meaningful underlying

patterns from such data, we must maintain and leverage their tensor structure [8]. To this end,

PCA has been generalized to handle tensor data [9, 10] and recently L1-norm based algorithms

were proposed to reliably process tensor data corrupted with outliers [11–16]. Similar to data

matrices, tensor data may arrive in streaming fashion in some applications. In order to process

dynamic tensor data efficiently, we focus on the development of algorithms for dynamic L1-norm

tensor analysis

Robust stochastic PCA. In order to process big data with low cost, multiple algorithms have

been proposed, including the power method [17]. Although the power method is faster than SVD in

practice, for massive N and/or D, the power method is restrictive. A different class of algorithms

for incremental PCA offer gradient based methods that rely on single sample (stochastic) updates.

The landmark stochastic PCA algorithm of Oja in [18] paved the way in this direction and owing to

the recent surge of data availability, stochastic PCA algorithms have gained significant popularity.

Despite the noteworthy efficiency of stochastic PCA algorithms, they are notoriously sensitive to

outliers. In order to offer robustness against outliers while maintaining high efficiency, we propose
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algorithms for outlier-resistant stochastic PCA.

Asymptotic theory for Lp-PCA. Owing to its outlier-resistance, Lp-PCA, for p < 2 has recently

gained remarkable popularity in the research community. For instance, L1-PCA has attracted

significant research interest over the past decade leading to the development of exact and multiple

approximate solutions [3, 4, 6, 7]. Recent works have demonstrated the robustness of Lp-PCA

against outliers on real-world datasets [19–22]. Although Lp-PCA outperforms PCA in the presence

of outliers, its asymptotic characteristics are largely unknown and it is perceived as a robust

heuristic. While PCA tends to the dominant eigenvectors of the covariance matrix as the number

of processed points increase, the asymptotic properties of Lp-PCA remain to date unknown. In this

line of research, we aim at shedding light onto the asymptotic convergence guarantees of Lp-PCA.

We focus on developing the theory for asymptotic Lp-PCA, assuming the data is drawn from a

large family of well-known Elliptical distributions.

1.1 Contributions

Our contributions are organized in the following three chapters of this dissertation.

1. Chapter 1: Dynamic L1-norm Data Analysis. In this chapter, we present our work on

dynamic algorithms for matrix data (real-valued and complex-valued) and tensor data based

on the outlier-resistant L1-norm. This chapter is further divided into the following three

sections:

(a) Incremental and adaptive L1-PCA. In this line of research, we present an algorithmic

framework for the incremental and adaptive implementation of outlier-resistant L1-norm

PCA (L1-PCA) [4]. We would like to note that the majority of this work was completed

as part of the author’s Master thesis [23–25] and finalized during the early stage of his

doctoral studies.

(b) Incremental algorithm for complex-valued L1-PCA. We propose the first incremental al-

gorithm for complex L1-PCA and employ it for online direction finding in this direction

of research. Our algorithm is applied for online direction-of-arrival-estimation under the

presence of jammers, demonstrating its capability to perform efficient direction estima-

tion while identifying and rejecting misleading jamming signals.

(c) Dynamic Algorithms for L1-norm Tensor Analysis. In this work, we present Dynamic

L1-Tucker: a scalable method for incremental L1-norm based tensor analysis, with the
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ability to (i) provide quality estimates of the sought-after multilinear bases, (ii) detect

and reject outliers in an online fashion, and (iii) adapt to any nominal subspace changes.

2. Chapter 2: Robust Stochastic Principal Component Analysis. In this chapter,

we propose stochastic algorithms for outlier-resistant PCA that can process streaming data

with low cost. For the case of a single principal component (PC) estimation, we propose a

modified stochastic L1-PCA algorithm based on mean absolute projection maximization and

for multiple PCs, we propose a generalized framework for stochastic PCA based on the Barron

loss [26]. Our generalized framework comes with a tunable robustness parameter α that can be

handcrafted to achieve a trade-off between higher robustness and faster convergence. We show

in theory that by tuning the robustness parameter α we can vary the step-size of the proposed

algorithm, with particular values of α resulting in the coincidence of the proposed algorithm

with that of Oja, while other lower values of α yielding robust counterparts including the

robust stochastic PCA algorithm in [27]. We offer a variety of experimental studies on both

synthetic and real-world data to demonstrate the efficacy of the proposed methods.

3. Chapter 3: Asymptotic Theory for Lp-norm Principal Component Analysis. This

chapter focuses on the development of asymptotic theory for Lp-PCA, when the data follows

a broad family of Elliptical distributions. Firstly, for the case of single PC, we prove that

the asymptotic L1-PC coincides with the asymptotic standard PC, therefore to the dominant

eigenvector or the data covariance matrix. Next, for the case of multiple PCs, we extend

this theory and prove the asymptotic convergence of the Lp-PCA subspace to the L2-PCA

subspace, and therefore to the dominant eigensubspace. Moreover, we show that although the

dominant asymptotic Lp-PCs span the same subspace as that of the dominant eigenvectors of

the covariance matrix of the distribution, the asymptotic Lp-PCs are specific rotated versions

of the dominant eigenvectors. We offer an algorithm to derive the specific rotation matrix to

obtain the asymptotic Lp-PCs, starting from the dominant eigenvectors. Finally, we leverage

the proposed theory to initialize the iterative algorithms of Lp-PCA to obtain faster and

better convergence on synthetic and multiple real-world datasets.



Chapter 2

Dynamic L1-norm Data Analysis

2.1 Introduction

Principal Component Analysis (PCA) is a cornerstone of signal processing, data analysis, and

machine learning [28, 29]. Broadly, given a collection of data points, PCA seeks a small number

of orthogonal directions (principal components) that define a subspace wherein data presence is

maximized. Over the past decades, PCA has found numerous applications in wireless communica-

tions [30, 31], machine learning [32, 33], pattern recognition [1], video/image processing [34], and

biomedical signal processing [35–37], among other fields.

Mathematically, PCA approximates data matrix X = [x1,x2, . . . ,xN ] ∈ RD×N by the low-rank

matrix QS⊤ ∈ RD×N , where Q⊤Q = IK and K < d = rank(X), so that the L2-norm of the

approximation error is minimized. That is, PCA is formulated as [2]

(QL2,SL2) = argmin
Q∈RD×K , Q⊤Q=IK

S∈RN×K

∥X−QS⊤∥2F , (2.1)

where the squared Frobenius norm (or L2-norm) ∥ · ∥2F returns the sum of the squared entries of its

matrix argument. Observing that, for any given Q, S = X⊤Q minimizes the error in (2.1), QL2

can be found as solution to the equivalent projection maximization problem

QL2 = argmax
Q∈RD×K , Q⊤Q=IK

∥∥∥Q⊤X
∥∥∥2
F
. (2.2)

5
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Accordingly, SL2 = X⊤QL2. Principal component matrix QL2 consists of the K-dominant left

singular-vectors of X, obtained through standard Singular-Value Decomposition (SVD) [38], with

cost O(NDmin(N,D)).

In the big data era, real-world datasets often contain irregular or corrupted measurements that lie

far from the nominal data subspace. Such measurements are commonly referred to as “outliers”

[39] and may appear due to various causes, such as intermittent sensor malfunctions, errors in

data transcription, transmission or labeling, deliberate jamming, or other sporadic changes in the

sensing environment. Standard PCA is known to be very fragile in the presence of outliers, even

if they appear as a small fraction of the processed data. The reason is that the L2-norm objective

in (2.2), ∥Q⊤X∥2F =
∑N

n=1 ∥Q⊤xn∥22, places squared emphasis on each and every datum, therefore

benefiting unfavorably peripheral points. Therefore, for practical applications, there is a need for

robust/outlier-resistant PCA alternatives [40–43].

2.1.1 Outlier-resistant PCA

To counteract the impact of outliers, researchers have focused on robust PCA and subspace es-

timation alternatives. The term “Robust PCA” (RPCA) commonly refers to methods that seek

to rewrite the available data matrix as the summation of a low-rank component that describes

the sought-after subspace and a sparse component that captures outliers [40, 42, 44–46]. A rather

more straightforward approach substitutes the outlier-responsive L2-norm in (2.2) with the robust

L1-norm, effectively removing the squared emphasis that PCA places on the magnitude of each da-

tum [3–5]. This L1-projection-maximization PCA formulation, commonly referred to as L1-PCA,

is mathematically defined as

QL1 = argmax
Q∈RD×K , Q⊤Q=IK

||Q⊤X||1, (2.3)

where L1-norm ∥ · ∥1 returns the sum of the absolute entries of its matrix argument. Alternatively,

L1-error-minimization PCA replaces the L2-norm by the L1-norm in the error-minimization for-

mulation of (2.1) [47–49]. Interestingly, contrary to what is true for standard PCA in (2.1)-(2.2),

L1-projection-maximization PCA and L1-error-minimization PCA are not equivalent formulations.

Rotation-invariant and optimally zero-centered variants of RPCA and L1-PCA have also been

studied in [50–55]. In this work, we focus on L1-PCA in the form of (2.3).

In [5], Kwak proposed an early approximate solver for (2.3) with complexity O(N2DK). The solver

of [5] first approximates the dominant L1-PC (K = 1) of X and then computes the remaining K−1
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L1-PCs through a sequence of deflating nullspace projections. In [6], Nie et al. approximated jointly

all K ≥ 1 L1-PCs of X with a “non-greedy” alternating-optimization algorithm of complexity

O(N2DK + NK3). A semi-definite programming (SDP) approach for (2.3) was proposed in [7]

with cost O(KN3.5log(1/ϵ) +KL(N2 +DN)), for desired accuracy ϵ. Authors in [56] presented a

low-cost/high-performance L1-PCA/SVD hybrid model. More recently, [4] introduced L1-BF, a bit-

flipping-based approximate solver for (2.3), with cost O(NDmin{N,D}+N2(K4+DK2)+NDK3).

[4] showed that L1-BF attains very low (if any) performance degradation in the L1-PCA metric,

often outperforming its counterparts. The exact solution to L1-PCA was delivered in [3], where

authors reformulated (2.3) as an equivalent combinatorial optimization problem over NK {±1}
variables. Moreover, [3] showed formally that, contrary to standard PCA, the K L1-PCs in (2.3)

are to be computed jointly. The algorithms of [3] solve (2.3) exactly with complexity O(2NK), in

general, or O(NdK−K+1) when d = rank(X) is a constant with respect to N . A state-of-the-art

algorithm for L1-PCA of complex-valued data was recently presented in [57].

L1-PCA has found a plethora of applications over the past few years. In [58], L1-PCA was used for

outlier identification and elimination. In [59–66], It was used for robust image-fusion, face recog-

nition, and dynamic video foreground/background extraction. In [67, 68], L1-PCA was used for

DoA estimation. Authors in [69] proposed an L1-PCA-based nearest-subspace classifier for radar-

based indoor motion recognition. L1-PCA-informed reduced-rank filtering for robust interference

suppression was presented in [66]. A method for iterative re-weighted L1-PCA was recently pre-

sented in [70]. Our research on incremental and adaptive L1-PCA relies on the batch algorithms of

L1-PCA and for the sake of simplicity, we offer a brief review of theory and algorithms for L1-PCA

in Section 2.2.

2.1.2 Adaptive algorithms for L1-PCA of real-valued data

Modern day datasets are often extremely large and in some cases of interest, data measurements

arrive in an online fashion. In addition such big and/or streaning data may be corrupted by outliers.

Moreover in some applications, the underlying subspace of the streaming data may change over time

and needs to be tracked. In such scenarios, utilizing traditional batch solvers to solve the problem

from scratch each time a new measurement becomes available leads to severe computationally

inefficiency. Therefore, in order to process big and/or streaming outlier-corrupted data efficiently

and reliably, while being able to track any subspace change, we develop algorithms for incremental

and adaptive L1-PCA in Section 2.3.
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2.1.3 Incremental algorithm for L1-PCA of complex-valued data

Some applications including Direction of Arrival (DoA) estimation involve streaming complex-

valued data, wherein the received snapshots may be corrupted by jamming signals, resulting in

undesirable performance degradation if traditional PCA based techniques are employed [57]. In

order to diminish the effect of jammers, L1-PCA has been used in place of PCA for DoA estimation

[57, 68]. However, in an online direction finding scenario, the snapshots are received in stream-

ing fashion and re-running L1-PCA algorithms from scratch each time a snapshot is received it

computationally inefficient. In this line of research, we propose the first incremental algorithm for

complex L1-PCA in section Section 2.4 and employ it for online direction finding.

2.1.4 Dynamic L1-norm algorithms for tensor-valued data

State-of-the-art machine learning and signal processing applications employ sensors that collect

large volumes of measurements across diverse sensing modalities, with innate multilinear (tensor)

structure. In order to learn/discover meaningful underlying patterns from such data, we must

maintain and leverage their tensor structure [8]. To this end, standard PCA algorithms have been

generalized to handle tensor data [10, 71]. However, these methods have been shown to be produce

inaccurate results in the presence of outliers. In order to reliably process tensor data corrupted

by outliers, L1-norm based tensor processing algorithms were proposed [11–16]. On the other

hand, tensor data may arrive in streaming fashion in some applications and vanilla tensor analysis

algorithms result in exorbitant costs if used in this setting. In order to process streaming tensor

data efficiently, while offering sturdy outlier resistance, we focus on the development of algorithms

for dynamic L1-norm tensor analysis in Section 2.5.

2.1.5 Contributions

Our contributions in this chapter are summarized as follows:

1. First, we propose efficient algorithmic solutions for both incremental and adaptive L1-PCA.

Our first algorithm computes L1-PCA incrementally, processing one measurement at a time,

with low computational and memory requirements; thus, this algorithm applies to big data

and streaming data applications. Our second algorithm combines the merits of the first one

with the additional ability to track changes in the nominal signal subspace.
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2. Next, we present the first incremental method for complex L1-PCA and employ it for online

direction finding, as snapshots naturally arrive in a streaming fashion.

3. Finally, we present Dynamic L1-Tucker: an algorithm for dynamic and outlier-resistant Tucker

analysis of tensor data.

4. The superior robustness and the efficacy of our algorithms are corroborated by our experi-

mental studies on synthetic data and multiple real-world datasets. We present experiments

on online video background/foreground separation, glare/shadow artifact removal in facial

images, and online direction-of-arrival estimation.

The rest of this chapter is organized as follows. In Section 2.2, we provide a brief overview of the

theory and algorithms for L1-PCA. In Section 2.3, we present our research on incremental and

adaptive L1-PCA. In Section 2.4, we propose the first incremental algorithm for complex-valued

L1-PCA. Finally, in Section 2.5, we present dynamic algorithms for L1-Tucker.

2.2 L1-norm Principal-Component Analysis

Exact Solution. Authors in [3] showed that, if

Bopt = argmax
B∈{±1}N×K

||XB||∗, (2.4)

where nuclear norm ∥ · ∥∗ returns the sum of the singular values of its matrix argument, then

L1-PCA in (2.3) is solved by

QL1 = Φ(XBopt) (2.5)

where, for any tall matrix A ∈ Rm×n with SVD A
SVD
= UΣn×nV

⊤, Φ(A) = UV⊤. In addition, [3]

showed that ||X⊤QL1||1 = ||XBopt||∗ and

Bopt = sgn
(
X⊤QL1

)
. (2.6)

Therefore L1-PCA in (2.3) can be cast as an equivalent combinatorial optimization problem over

antipodal binary variables (“bits”) in {±1}. The first optimal algorithm in [3] performs exhaustive

search over the entire feasibility set of (2.4), {±1}N×K , to obtain a solution Bopt with exponential

complexity O(2NK). The second optimal algorithm in [3] first constructs a polynomial-size subset
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of {±1}N×K , wherein a solution to (2.4) is proven to exist; then it searches exhaustively within this

set to obtain Bopt and, after the SVD step in (2.5), returns the solution to L1-PCA, with overall

cost O(NdK−K+1), polynomial in N .

Efficient L1-PCA Through Bit Flipping (L1-BF). L1-BF is a state-of-the-art efficient al-

gorithm for L1-PCA, based on optimal single-bit-flipping iterations [4]. L1-BF has similar cost

to standard PCA (i.e., SVD), exhibits sturdy resistance against outliers, and has been shown to

outperform most of its counterparts in the L1-PCA metric. In the sequel, we offer a brief review of

L1-BF, since it is a core component of the incremental and adaptive L1-PCA calculators proposed

in this work.

L1-BF initiates at bit matrixB(0) ∈ {±1}N×K (arbitrary or better –see [4]) and executes a sequence

of optimal single-bit-flipping iterations, across which the metric in (2.4) monotonically increases.

Specifically, at each iteration, L1-BF examines all NK bits and recognizes the single one that, when

flipped, offers the highest increase to the metric of (2.4). That is, at the t-th iteration, L1-BF finds

(n, k) = argmax
(m,l)∈{1,2,...,N}

×{1,2,...,K}

∥∥∥XB(t)−2 [B(t)]m,l xme⊤l,K

∥∥∥
∗
, (2.7)

where el,K denotes the l-th column of the size-K identity matrix IK and xm is the m-th column of

data matrix X. Thereafter, L1-BF flips the (n, k)-th bit of B(t) setting

B(t+ 1) = B(t)− 2[B(t)]n,ken,Ne⊤k,K . (2.8)

Bit flipping terminates at iteration t if the nuclear norm in (2.4) cannot further increase by any

single-bit flip. Upon termination, L1-BF returns B̂ = B(t) as an approximation to Bopt in (2.4)

and Q̂ = Φ(XB(t)) as an approximation to QL1 in (2.3), in accordance with (2.5). It was shown

in [4] that the bit flipping iterations converge, since the metric of (2.4) (i) is upper bounded by

its exact solution and (ii) increases monotonically across the iterations. Henceforth, for brevity in

notation, we summarize the L1-BF procedure as (Q̂, B̂) = L1BF(X;B(0);K). A pseudo-code for

L1-BF is provided in Figure 2.1 and the code is available in [72]. The computational complexity of

L1-BF is O(NDmin{N,D}+N2(K4 +DK2) +NDK3).
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Algorithm L1-BF

Input: X ∈ RD×N , init. B ∈ {±1}N×K , K ≤ rank(X),

1: B← BF(X,B,K)

2: (U, ΣK×K , V)← SVD(XB)

3: Q← UV⊤

Output: (B̂, Q̂)← (B,Q)

Function: B← BF(XD×N ,B,K)

1: ω ← K||X[B]:,1||2
2: while true (or terminate at NK iterations)

3: for m ∈ {1, 2, . . . , N}, l ∈ {1, 2, . . . ,K}
4: am,l ← ||XB− 2[B]m,lxme⊤l,K ||∗
5: (n, k)← argmaxm,l am,l

6: if ω < an,k
7: [B]n,k ← −[B]n,k , ω ← an,k
8: else, break

9: Return B

Figure 2.1. Pseudocode of L1-BF.

2.3 Contribution 1: Incremental and Adaptive L1-PCA

Modern datasets often comprise a very large number of data points, N , of high dimensionality,

D. In such cases, jointly analyzing all measurements in X ∈ RD×N (“batch” PCA) may be of

prohibitively high computational cost. Moreover, in streaming data applications, data points are

initially unavailable and arrive sequentially (e.g., in video processing [73–78] and dynamic face-ID

[79]). Clearly, appending new points to the previously collected data matrix and recalculating batch

PCA anew may lead to unsustainably high computational and storage complexity. In view of the

above, big and/or streaming data processing can be significantly benefited by online/incremental

alternatives of PCA.

Finally, in many applications, the data subspace of interest shifts during the data collection process.

Oftentimes, recalculating anew the shifted subspace is an inefficient approach. For such applica-

tions, experts prefer instead to start from the already calculated subspace and adapt to the new

one –an approach also known as subspace tracking [41, 80].

In this work, we present an algorithmic framework for the incremental and adaptive implementa-

tion of outlier-resistant L1-norm PCA (L1-PCA) [3, 56]. The first proposed algorithm (L1-IPCA)

computes L1-PCA incrementally, processing one measurement at a time, with low computational

and memory requirements. In contrast to previous approaches in the literature, this algorithm

evaluates each new incoming data point by means of an L1-PCA-informed reliability criterion and

discards points that appear to be outliers. Our second algorithm for adaptive L1-PCA (L1-APCA)
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has the additional capability of tracking changes to the nominal signal subspace. The proposed

algorithms are evaluated in an array of experimental studies on subspace estimation/tracking,

video surveillance (foreground/background separation), image conditioning, and direction-of-arrival

(DoA) estimation/tracking.

2.3.1 Related Works

For big and streaming data applications, researchers have long focused on incremental PCA solu-

tions. Similar to batch PCA, incremental/adaptive PCA calculators perform well on clean data, but

experience significant performance degradation when they encounter outliers. This observation has

prompted extensive research on corruption-resistant incremental and adaptive PCA [80–96]. Thor-

ough reviews of robust incremental and adaptive algorithms for PCA are offered in [41, 78, 82];

in the sequel, we list few of the many notable works in the area. [92] presents an incremental

RPCA implementation based on projected gradient descent. Online RPCA (OR-PCA) in [84] uses

a stochastic model for accepting or rejecting new data points. [91] presents an online version of

Robust Subspace Learning (RSL) in [46], which detects outliers and replaces them by neighboring

nominal points. A kernel-based method for robust and fast incremental PCA was proposed in [96].

Grassmannian Robust Adaptive Subspace Tracking Algorithm (GRASTA) [93] operates on possibly

sparsely sampled data matrices and tries to track underlying subspace changes, while staying ro-

bust against corruptions. The works in [63–65] offer the first incremental L1-PCA algorithms in the

literature, proposed for compressed-sensed domain video surveillance and visual object tracking.

2.3.2 Proposed Algorithms for Incremental and Adaptive L1-PCA

Incremental L1-PCA

The first proposed algorithm (L1-IPCA) calculates incrementally the K L1-PCs of data matrix

X = [x1,x2, . . . ,xN ] ∈ RD×N as its columns arrive in a streaming fashion. In the case that

all columns of X are initially available, the proposed algorithm processes them one-by-one for

complexity savings.

To initialize, we first collect a small batch of n data points from X in Y0 = [X]:,1:n ∈ RD×n, with

rank(Y0) ≥ K. Then, we run L1-BF iterations on Y0, with some initialization B ∈ {±1}n×K , to

obtain the first approximate L1-PCA solution (Q̂0, B̂0) = L1BF (Y0;B;K).
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When a new data point x
(in)
i = [X]:,n+i arrives, for i = 1, 2, . . . , N − n, we first pass it through an

L1-PCA-informed reliability check. Specifically, the L1-reliability of x
(in)
i is defined as its angular

proximity to the previously calculated L1-PCs Q̂i−1,

r
(
x
(in)
i ; Q̂i−1

)
=

∥∥∥Q̂⊤
i−1x

(in)
i

∥∥∥2
2∥∥∥x(in)

i

∥∥∥2
2

. (2.9)

Based on the outlier resistance of L1-PCA, (2.9) constitutes a local measure for determining weather

x
(in)
i is nominal or outlying/corrupted.

If r(x
(in)
i ; Q̂i−1) ≤ τ , for some predetermined reliability threshold τ ∈ [0, 1) (practically τ is set

close to 1), then x
(in)
i is disregarded as a probable outlier and we maintain the previous L1-PCA

solution (Q̂i, B̂i) = (Q̂i−1, B̂i−1) and the previous memory matrix Yi = Yi−1. If, on the other

hand, r(x
(in)
i ; Q̂i−1) > τ , then x

(in)
i passes successfully the L1-reliability check and it is admitted

for processing; the i-th L1-PCA update (Q̂i, B̂i) is computed as follows. First, x
(in)
i is appended

to Yi−1, forming the augmented memory matrix

Ỹi−1 =
[
Yi−1, x

(in)
i

]
∈ RD×(n+1). (2.10)

Then, motivated by the optimality condition in (2.6), we use

B̃i−1 = sgn
(
Ỹ⊤

i−1Q̂i−1

)
∈ {±1}(n+1)×K (2.11)

to initialize L1-BF iterations on Ỹi−1; at the end of these iterations, we obtain(
Q̂i, B̂i

)
= L1BF

(
Ỹi−1; B̂i−1;K

)
. (2.12)

We notice that the number of data points stored in memory increased from n in Yi−1 to n+ 1 in

Ỹi−1. In order to maintain limited storage and computational cost, we proceed with discarding one

of the points in Ỹi−1. Specifically, similar to [63], we discard the point with the lowest L1-reliability,

as defined in (2.9). Formally, we identify

jmin = argmin
j=1,2,...,n+1

r

([
Ỹi−1

]
:,j
; Q̂i

)
(2.13)
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Proposed Algorithm L1-IPCA

Input: Y, K, τ

1: B← arbitrary

2: (B,Q)← L1BF(Y,B,K)

3: When x arrives,

4: (B,Q,Y)← uL1BF(Y,x,Q,K, τ)

Output: (B̂, Q̂)← (B,Q)

Function: (B,Q,Y, τ)← uL1BF(Y,x,Q,K, τ)

1: r ← L1rel(x,Q)

2: if r > τ

3: Ỹ ← [Y,x]

4: B← sgn(Ỹ⊤Q)

5: (B,Q)← L1BF (Ỹ,B,K)

6: rj ← L1rel([Ỹ]:,j ,Q), j = 1, . . . , n+ 1

7: jmin ← argminj=1,...,n+1 rj
8: Y ← [Ỹ]:,{1,...,n+1}\jmin

9: Return B, Q, Y

Function: r ← L1rel (x,Q)

1: r ← ||Q⊤x||22
||x||22

2: Return r

Figure 2.2. Pseudocode of proposed L1-IPCA algorithm.

and discard the (jmin)-th column of Ỹi−1, setting

Yi =
[
Ỹi−1

]
:,{1,...,n+1}\jmin

∈ RD×n. (2.14)

In view of the above, the proposed algorithm has two lines of defense against outliers. First,

the reliability of an incoming point is evaluated by means of the previously computed L1-PCs,

thus protecting the incremental L1-PCA procedure against processing outliers. Second, any point

that passes the reliability check, is processed by the outlier-resistant L1-BF procedure. A detailed

description of L1-IPCA is provided in Figure 2.2. A complexity analysis follows.

According to [4], L1-BF returns theK (approximate) L1-PCs of Ỹi ∈ RD×n with costO(nDmin{n,D}+
n2K2(K2+min{n,D})), for any i. Since i takes values 1, 2, . . . , N−n, the total cost of L1-IPCA is

O(NnDmin{n,D}+Nn2K2(K2 +min{n,D})) –i.e., linear in N . If n > D, the cost is simplified

to ONn2K2(K2 +D)); if D ≥ n, the cost is simplified to O(Nn2(K4 +K2n+D)).

At this point, it is worth noting that the pioneering work in [64] also proposed L1-BF updates

for incremental L1-PCA in compressed-sensed-domain video background tracking. L1-IPCA differs

from L1-PC-updating method of [64] in the following ways. First, L1-IPCA updates the L1-PCs
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using only new points that pass successfully the L1-reliability check; on the other hand, [64] does

not apply a reliability check and processes every incoming point. Thus, L1-IPCA has an additional

line of defense against outliers. Second, instead of (2.11), the algorithm of [64] sets the L1-BF-

initialization matrix to B̃i =
[
B̂⊤

i−1,bexact

]⊤
, where

bexact = argmax
b∈{±1}K

∥∥∥∥Ỹi−1

[
B̂⊤

i−1,b
]⊤∥∥∥∥

∗
. (2.15)

To identify bexact, [64] evaluates each of the 2K−1 candidate solutions of (2.15), with cost expo-

nential in K. The proposed simpler initialization in (2.11) costs only O(KnD). Finally, there is a

difference in the way L1-IPCA and the method of [64] drop points from the memory matrix Ỹi−1

to define Yi.

Adaptive L1-PCA

L1-IPCA presented above considers, implicitly, that the sought-after subspace is constant across

all processed data. In many applications however it is desired to track a dynamic signal subspace

that changes across the collected data points. In this section, we propose an algorithm for adaptive

L1-PCA (L1-APCA) that derives by two main modifications of L1-IPCA.

Modification 1: Adjustable reliability threshold. When the nominal signal subspace changes

significantly, new incoming points may fail the L1-reliability check and be discarded. Assuming

that outliers appear rather sporadically, when multiple incoming points fail the reliability check

one after the other, we have a strong indication that the signal subspace has changed. Thus, in

L1-APCA we consider adjustable reliability threshold that decreases every time that an incoming

point fails the reliability check and resets to its original high value whenever an incoming point is

admitted for processing. Specifically, let threshold τi denote the reliability threshold by which the

i-th incoming point x
(in)
i is evaluated, with initialization τ1 = τmax. If r

(
x
(in)
i ; Q̂i−1

)
< τi and

x
(in)
i fails the reliability check, then we reduce τi+1 = τiρ, for some predetermined decrease ratio

ρ in (0, 1]. Clearly, ρ = 1 corresponds to fixed threshold, as used in L1-IPCA. If x
(in)
i passes the

reliability check, then τi+1 is reset to τmax.

Modification 2: Preservation of recent measurements. Consider a change of the nominal

signal subspace and assume that x
(in)
i is the first point from the new subspace that passes the

reliability check (possibly after threshold reduction.) x
(in)
i will be inserted to Ỹi−1 and participate

to the computation of Q̂i. However, since n out of the n + 1 points in Ỹi−1 are drawn from the
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Proposed Algorithm L1-APCA

Input: Y, K, q, τmax, ρ

1: B← arbitrary, τ ← τmax

2: (B,Q)← L1BF(Y,B,K)

3: When x arrives,

4: (B,Q,Y, τ)← aL1BF(Y,x,Q,K, q, τmax, τ, ρ)

Output: (B̂, Q̂)← (B,Q)

Function:
(B,Q,Y, τ)← aL1BF(Y,x,Q,K, q, τmax, τ, ρ)

1: r ← L1rel(x,Q)

2: if r > τ

3: Ỹ ← [Y,x], τ ← τmax

4: B← sgn(Ỹ⊤Q)

5: (B,Q)← L1BF (Ỹ,B,K)

6: rj ← L1rel([Ỹ]:,j ,Q), j = 1, . . . , n+ 1

7: jmin ← argminj=1,...,n+1−q rj
8: Y ← [Ỹ]:,{1,...,n+1}\jmin

9: else

10: τ ← τρ

11: Return B, Q, Y, τ

Function: r ← L1rel (x,Q)

1: r ← ||Q⊤x||22
||x||22

2: Return r

Figure 2.3. Pseudocode of proposed L1-APCA algorithm.

previous signal subspace, Q̂i will probably remain similar to Q̂i−1. Thus, when the L1-reliability of

the points in Ỹi−1 is evaluated by means of Q̂i, x
(in)
i may be found to be the least reliable and as

such be discarded from Ỹi−1. Certainly, such an event would inhibit the subspace tracking process.

Therefore, in L1-APCA, we modify L1-IPCA so that the q < n most recently collected points Ỹi−1

cannot be discarded. That is, the i-th memory matrix is defined as Yi = [Ỹi−1]:,{1,...,n+1}\jmin
∈

RD×n where

jmin = argmin
j=1,2,...,n+1−q

r

([
Ỹi−1

]
:,j
; Q̂i

)
. (2.16)

A detailed description of L1-APCA is offered in the pseudocode of Figure 2.3.

2.3.3 Experimental Studies

Subspace tracking with L1-APCA on synthetic data. We consider data matrix X ∈ R5×200,

the first 90 columns of which are drawn from N (05, αzz
⊤), where ∥z∥2 = 1 and α = 100. The last
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Figure 2.4. Subspace tracking experiment. Average subspace error versus adaptation index i.
D = 5, N = 200, K = 1. Subspace change after 90 points. α = 100, β = 4000, z⊤z′ = 0.88,
p⊤z = 0.31, p⊤z′ = 0.2. n = 20, q = 0.8n, τ = 0.9, ρ = 0.5.Outliers in [X]:,5, [X]:,55, and [X]:,115.

110 columns of X are drawn from N (05, αz
′z′⊤), where ∥z′∥2 = 1 and z′⊤z = 0.88. All entries of X

are corrupted by AWGN from N (0, 1). Columns 5, 55, and 115 are once again corrupted additively

by outliers drawn from N (05, βpp
⊤), where ∥p∥2 = 1, p⊤z = 0.31, p⊤z′ = 0.2 and β = 4000. We

set L1-APCA parameters n = 20, τ = 0.9, ρ = 0.5, and q = 0.8n = 16.

In Figure 2.4, we plot the normalized subspace error, calculated as ei =
1
2∥q̂iq̂

⊤
i − zz⊤∥2 for i ≤ 90

and ei =
1
2∥q̂iq̂

⊤
i − z′z′⊤∥2 for i > 90. Together with L1-APCA, we plot again the performance of

batch SVD, batch L1-BF [4], ISVD [97], GRASTA [93], OR-PCA [85], and the method of [65], which

we refer to as L1-Grassmann. We notice that the L2-norm based methods, SVD and ISVD, deviate

from the nominal subspace when they process outliers and display slower response to subspace

changes. GRASTA, OR-PCA, L1-Grassmann [65], and batch L1-BF exhibit resistance against

outliers and respond quickly to nominal-subspace changes. L1-APCA outperforms all counterparts

in terms of outlier resistance and attains the lowest error upon convergence. We observe that

GRASTA adapts slightly faster than L1-APCA to the subspace change, converging though to

higher subspace error. L1-Grassmann also adapts slightly faster than L1-APCA to the subspace

change, however it is considerably more susceptible to outliers.

Background/Foreground Separation in Video Sequences.

For this experiment, we use a video recorded at a shopping center in Portugal, available in the
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(a)

(b) (c) (d) (e) (f) (g) (h)

(i) (j) (k) (l) (m) (n) (o)

Figure 2.5. Video processing experiment. (a) Original frame. Background extracted by (b) ISVD,
(c) GRASTA , (d) PCP, (e) OR-PCA, (f) RPCA, (g) ReProCS, and (h) L1-IPCA (proposed).
Foreground extracted by (i) ISVD, (j) GRASTA, (k) PCP, (l) OR-PCA, (m) RPCA, (n) ReProCS,
and (o) L1-IPCA (proposed).

standard CAVIAR database [98]. The video consists of N = 438 frames of size 202 × 269 pixels.

Video processing is carried out as follows. Each video frame is vectorized and arranged as a column

of data matrix X ∈ R54338×438. We set n = 20 and τ = 0.98 and apply L1-IPCA to compute the

K = 5 L1-PCs of the video sequence Q̂ ∈ R54338×5. The background of the i-th frame xi = [X]:,i is

obtained by projecting it onto the computed K L1-PCs as x
(back)
i = Q̂Q̂⊤xi; then, the foreground

component is obtained as x
(fore)
i = xi − x

(back)
i .

In Figure 2.5, we present the 200-th frame of the processed video sequence, together with its

background as extracted by (b) ISVD, (c) GRASTA, (d) PCP, (e) OR-PCA, (f) RPCA [45], (g)

ReProCS [83], and (h) L1-IPCA (proposed). In addition, we show the foreground of the frame, as

extracted by (i) ISVD, (j) GRASTA, (k) PCP, (l) OR-PCA, (m) RPCA, (n) ReProCS, and (o) L1-

IPCA (proposed). We observe that the background computed by ISVD exhibits a non-negligible

“ghostly” appearance of the walking man, whose blurred/inaccurate figure also appears in the

foreground. GRASTA, PCP, and RPCA exhibit similar performance, with a hazy appearance of

the man in the background; OR-PCA performs slightly better than the previous methods. The

proposed L1-IPCA, together with ReProCS, demonstrate similarly high performance, returning

clean background and a well defined outline of the man and his shadow in the foreground.
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2.4 Contribution 2: Incremental Complex L1-PCA for Direction-

of-Arrival Estimation

Direction-of-Arrival (DoA) estimation is a fundamental component of source localization in many

modern radar, sonar, and communications applications. For example, localizing interference/jam-

ming permits its successful mitigation [99, 100], ensuring safety in critical navigation applications

such as Global Navigation Satellite Systems (GNSS). In communications, direction finding enables

location-specific delivery of information, even in areas where Global Positioning System (GPS)

is ineffective [101]. In addition, with direction finding, automotive radars provide environment

awareness, enabling autonomous cruise control and collision avoidance [102].

DoA estimation is commonly based on likelihood maximization [103], spectral estimation [104],

compressive sensing [105, 106], and subspace-estimation [107]. In standard subspace-based di-

rection finding, e.g., by means of the multiple-signal classification (MUSIC) algorithm [108], the

receiver identifies the principal components (PCs) of a number of recorded snapshots, through their

singular-value decomposition (SVD); the span of these components constitutes an estimate of the

array-response subspace that corresponds to the source DoAs. In nominal system operation, when

snapshots are only corrupted by additive white Gaussian noise (AWGN), such methods are known

to offer asymptotically consistent DoA estimates, with high resolution [109].

However, even when a small part of the snapshots is corrupted by intense directional jamming,

principal-component analysis (PCA) and thereon-based MUSIC DoA estimation can be highly

misled. This corruption sensitivity of PCA can be attributed to its L2-norm-based formulation

which benefits points that lie far from the signal subspace. To counteract the impact of jamming,

PCA in the MUSIC procedure was recently replaced by the corruption-resistant L1-PCA [67, 68].

While PCA searches for the linear subspace that maximizes the L2-norm of the projected snapshots,

L1-PCA seeks to maximize their L1-norm; thus, L1-PCA places reduced emphasis to jamming-

corrupted, outlying snapshots. Incremental algorithms for L1-PCA of real-valued data were recently

proposed in [24, 25, 64, 65]. Exact and approximate algorithms for L1-PCA of real-valued data were

proposed in [3, 4]. Extensions of L1-PCA for tensor processing were also recently proposed in [11,

13, 14]. Authors in [57] presented the first algorithms for L1-PCA of complex-valued data. Other

recent applications of L1-PCA include image reconstruction [59], video foreground/background

analysis [63], radar-based motion recognition [69], visual object tracking [65], and reduced-rank

filtering [66].

In DoA estimation, the snapshots arrive in a streaming fashion and some of them may be jammer
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corrupted. Processing the entire data batch from scratch each time that a new snapshot is inserted

to it is highly inefficient, in terms of both storage and computational cost. This motivates the

development of incremental DoA estimators. In this work, we propose the first algorithm for

incremental L1-PCA of complex data and, then, we apply this algorithm for online DoA estimation.

Our experimental studies illustrate the computational efficiency and jamming resistance of the

proposed method.

2.4.1 System Model and Problem Statement

We consider uniform linear antenna array (ULA) with D elements at positions {0, 1, . . . , D − 1}d,
where d is the spacing reference unit (e.g., equal to half the wavelength). K < D sources of interest,

at the far-field, transmit signals with carrier frequency fc and propagation speed c. The signals

impinge on the array from distinct directions θ1, θ2, . . . , θK ∈ Θ = (−π
2 ,

π
2 ], with respect to the

broadside. Accordingly, the qth collected vector snapshot is of the form

xq =

K∑
k=1

s(θk)ξk,q + nq ∈ CD×1, (2.17)

where, for any DoA θ ∈ Θ, the array response vector s(θ) is

s(θ) = [1, e−j 2dπfc
c

sin(θ), . . . , e−j(D−1) 2dπfc
c

sin(θ)]⊤. (2.18)

ξk,q ∼ CN (0, αk) is the q-th transmitted symbol (power-scaled and channel processed) and nq ∼
CN (0D, σ

2ID) models complex additive white Gaussian noise (AWGN). Based on (2.17), the nom-

inal received-signal autocorrelation matrix is given by

R = E{xqx
H
q } =

K∑
k=1

αks(θk)s(θk)
H + σ2ID. (2.19)

The eigenvalue decomposition (EVD) R = QΛQH returns Q = [QSD×K
QND×D−K

], QHQ = ID,

and Λ = diag([ω1, . . . , ωK ,0
⊤
D−K,1]

⊤) + σ2ID, for ω1 ≥ . . . ≥ ωK ≥ 0. Thus, the dominant K

eigenvectors of R describe the subspace of the signals of interest interest –i.e., S = span(QS) =

span([s(θ1), . . . , s(θK)]). Accordingly, for any θ ∈ Θ, it holds that

(ID −QSQ
H
S )s(θ) = 0D ⇔ θ ∈ ΘS = {θ1, . . . , θK}. (2.20)
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In lieu of exact knowledge of R and QS , the receiver collects N coherent snapshots in

X = [x1,x2, . . . ,xN ] ∈ CD×N , (2.21)

estimates QS by the K L2-norm principal components (PCs) of the snapshots,

QL2 = argmax
Q∈CD×K ; QHQ=IK

∥∥QHX
∥∥2
F
, (2.22)

where ∥ · ∥2F returns the sum of squared magnitudes of the entries of its martix argument. The

solution to (2.22) is given simply by the K dominant left-singular vectors of X. Accordingly,

standard MUSIC computes the spectrum

PMUSIC(θ) =
∥∥(ID −QL2Q

H
L2)s(θ)

∥∥−2

F
, θ ∈ Θ (2.23)

and detects θ̂1, . . . , θ̂K as the K angle arguments that yield local maxima (peaks) to spectrum

PMUSIC(θ).

It has been observed that even if few of the snapshots in X are corrupted by strong directional

jamming, the metric of (2.22), ∥QHX∥2F =
∑N

n=1 ∥QHxn∥22, can be significantly misled [3, 4].

Similar to [57, 67], in this work, we replace the jamming-responsive QL2 in (2.23) by the complex

L1-PCs of X,

QL1 = argmax
Q∈CD×K ; QHQ=IK

∥∥QHX
∥∥
1
, (2.24)

where ∥·∥1 returns the sum of the magnitudes of the entries of its matrix argument. Specifically,

for the practical case when the snapshots arrive in a streaming fashion, in this work we present and

employ, for the first time, an incremental calculator of complex L1-PCA in (2.24).

2.4.2 Theoretical Preliminaries on Complex L1-PCA

Authors in [57] showed that L1-PCA in (2.3) is equivalent to the unimodular nuclear-norm maxi-

mization (UNM)

maximize
B∈UN×K

∥XB∥∗, (2.25)
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where U = {a ∈ C; |a| = 1} is the set of unimodular complex numbers and the nuclear norm ∥ · ∥∗
returns the sum of the singular values of its matrix argument. Specifically, if QL1 a solution to

L1-PCA,

Bunm = phase(XHQL1) ∈ UN×K (2.26)

is a solution to UNM in (2.25), where phase(·) returns the phases of the entries of its complex

matrix argument.1 Conversely, if Bunm is a solution to UNM, then

QL1 = Φ(XBunm) (2.27)

is a solution to L1-PCA, where for any tall matrix Am×n with “thin” SVD A = Um×nΣn×nV
H
n×n,

we define Φ(A) = UVH . Moreover,

∥QH
L1X∥1 = Tr

(
QH

L1XBunm

)
= ∥XBunm∥∗. (2.28)

Motivated by (2.26) and (2.27), [57] proposed an iterative algorithm that approximates the exact

L1-PCs QL1 by the locally optimal Q̂. The algorithm initializes at an orthonormal matrix Q0 and

iterates Bi = phase(XHQi−1) and Qi = Φ(XBi), for i = 1, 2, . . . , tconv, where tconv denotes the

converging, or terminating iteration index. The objective metric ∥QH
i−1X∥1 is upper-bounded by

∥QH
L1X∥1 = ∥XBunm∥∗ and increases monotonically across iterations towards convergence. For

simplicity in presentation, the two updates can be merged into the single one

Qi = Φ(X phase(XHQi−1)). (2.29)

Upon convergence, or termination, the algorithm returns Q̂ = Qtconv . In the sequel, we refer to the

above iterative procedure as Q̂ = L1-PCA(X, Q0).

2.4.3 Proposed Algorithm for Incremental Complex L1-PCA

We start with an initial basis Q(0) = L1-PCA(X(0); Q0), computed on a small batch of snapshots

Y = X(0) = [X]:,1:n, with K ≤ n < N .

Then, for every new snapshot xi = [X]:,n+i, i = 1, 2, . . . , N − n, arriving at the receiver, we first

1The phase of a complex number a ∈ C is given by a
|a| .
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Algorithm 1: Incremental Complex L1-PCA (Proposed)

Input: X ∈ CD×N , Q, n, τ
0: Y ← [X]:,1:n
1: Q← L1-PCA(Y,Q)

2: For i = 1, 2, . . . , N − n
3: x← [X]:,n+i

4: r ← p(Q,x); from (2.30)

5: if r > τ

6: Ỹ ← [Y, x]

7: Q← L1-PCA(Ỹ,Q)

8: j∗ ← argminj=1,...,n+1 p(Q, [Ỹ]:,j)

9: Y ← [Ỹ]:,{1,...,n+1}\j∗

Output: Q

Function: Q←L1-PCA(X,Q) [57]

Input: X, Q
1: Until convergence/termination

2: Q← Φ(X phase(XHQ))
Output: Q

Figure 2.6. The proposed incremental complex L1-PCA algorithm.

compute its reliability, in view of the current subspace estimate Qi−1, as

p(Q(i− 1),xi) =

∥∥Q(i− 1)Hxi

∥∥2
2

∥xi∥22
∈ [0, 1]. (2.30)

If p(Q(i− 1),xi) = 1, then xi is perfectly described by span(Q(i− 1)), while if p(Q(i− 1),xi) = 0,

then xi is orthogonal to the current subspace estimate span(Q(i− 1)). In view of this observation,

if reliability p(Q(i− 1),xi) is below a preset threshold τ , then xi is deemed jammer-corrupted and

hence rejected. Accordingly, our algorithm sets Q(i) = Q(i− 1) and X(i) = X(i− 1). Otherwise,

xi is deemed appropriate for processing and it is appended to the memory batch X(i− 1), forming

the augmented memory matrix

Ỹ = [X(i− 1), xi] ∈ CD×n+1. (2.31)

Subsequently, the L1-PCA basis estimate is updated as Q(i) = L1-PCA(Ỹ;Q(i− 1)).

Next, in order to maintain a fixed computational and storage cost, we remove from Y the snapshot

with the minimum reliability, settingY = [Ỹ]:,{1,2,...,n+1}\j∗ , where j
∗ = argminj=1,2...,n+1 p(Q, [Ỹ]:,j).

The iterations of (2.29) are proven to converge for arbitrary initialization in [57]. In Figure 2.6 we

present a pseudo-code of the proposed algorithm.
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Figure 2.7. MUSIC spectrum versus DoA θ ∈ Θ for K = 1 (D = 6, N = 200, and n = 20).

2.4.4 Experimental Studies

We consider DoA of interest θ1 = 40◦ and receiver ULA with D = 6 elements collecting N = 200

snapshots. The signal-to-noise-ratio (SNR) of the incoming signal is SNR1 = 5 dB. Snapshots 19,

85 and 155 are corrupted by directional jamming signal with DoA θj = −20◦ and SNRj = 15 dB.

We set n = 20 and τ = 0.7 and employ the proposed method for incrementally approximating the

K = 1 L1-PC of the received snapshots. At the i-th incremental update, DoA θ1 is estimated by

means of a spectrum in the form of (2.23), computed upon the approximate L1-PC q(i). In Figure

2.7, we plot the MUSIC spectrum after the last update. Together with the proposed method, we

plot the spectrum attained by batch SVD, batch complex L1-PCA [57], incremental SVD (ISVD)

[97], and two robust-PCA (RPCA) variants namely, online robust PCA (OR-PCA) [85], and Grass-

manian robust adaptive subspace tracking algorithm (GRASTA) [93]. We observe that OR-PCA,

GRASTA, and both L1-PCA methods point to the sought-after source DoA, while the SVD-based

methods are misled and point to the jammer DoA.

Next, we repeat the experiment, setting θ1 = 20◦, θj = 5◦, SNR1 = 6dB, and SNRj = 16dB, and

compute over 10,000 realizations the root-mean-square-error (RMSE)

RMSE =

√√√√ 1

10, 000

10,000∑
t=1

(
θ1 − θ̂1,t(i)

)2
, (2.32)
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where θ̂1,t(i) is the estimated angle of arrival at the i-th update of the t-th realization. In Figure

2.8, we plot the RMSE attained by the proposed algorithm and its counterparts, versus subspace

update index i. We notice that SVD and ISVD start at high RMSE, falsely pointing at the jammer;

this is arguably because one of the first n = 20 points is corrupted by the jammer. The perfor-

mance of both methods naturally improves as they process nominal points; however, when further

corruptions occur (see dotted lines in Figure 2.8), SVD and ISVD are again misled towards the jam-

mer. GRASTA begins at a relatively low error and quickly drops to RMSE lower than 1.5◦; when

jamming occurs, its RMSE increases momentarily but recovers again very quickly. OR-PCA with

regularization parameters λ1 = λ2 = 5 also starts at low RMSE but jammer-corrupted snapshots

have a longer impact on it; preferred (heuristically set) regularization parameters λ1 = λ2 = 2.5

yield lower RMSE, similar to that of the proposed algorithm. The batch complex L1-PCA algorithm

of [57] and the proposed incremental algorithm start at equally low RMSE. The performance of

batch L1-PCA decreases as it processes more nominal points; however, when the jammer is active,

the batch algorithm processes the corrupted snapshots and its RMSE increases –albeit momentarily.

On the other hand, the RMSE of the proposed algorithm drops quickly to a very low value (e.g.,

RMSE < 0.25◦ after processing just 4 nominal points) and, since the method avoids processing

jammer-corrupted snapshots, it stays close to zero across all updates i = 1, 2, . . . , N − n+ 1.



CHAPTER 2. DYNAMIC L1-NORM DATA ANALYSIS 26

0 50 100 150

Update index  i

0

1

2

3

4

5

6

7

8

9

A
v
e
ra

g
e
 t
im

e
 (

s
e
c
.)

10
-4

SVD (batch)

ISVD

OR-PCA, 
1
=

2
= 5

OR-PCA, 
1
=

2
= 2.5

GRASTA

Complex L1-PCA (batch)

Proposed method

1
3
1

1
3
2

1
3
3

1
3
4

1
3
5

1
3
6

1
3
7

1
3
8

1
3
9

1
4
0

1
4
1

0

2

4

6

8

10
-4

JammerJammer

Jammer

Figure 2.9. Average computation time versus update index i = 1, 2, . . . , N − n + 1 for K = 1
(D = 6, N = 200, and n = 20).

In Figure 2.9, we plot the average computation time2 needed by each algorithm for PC updates

versus the update index i. We observe that SVD and ISVD are the fastest; though, we recognize

that the cost of batch SVD slowly increases, while the cost of ISVD remains almost constant.

GRASTA also needs almost constant computation time across i. In addition, we notice that the –

otherwise nearly constant– computation time of OR-PCA exhibits a spike when a corrupted point is

processed; this illustrates the intense effort made by the algorithm to recover from the corruption.

Batch L1-PCA is the slowest among the compared methods, with computation time increasing

across i. The proposed incremental algorithm is considerably faster than batch L1-PCA, exhibiting

almost constant computation time across i. We also notice that, interestingly, the proposed method

often identifies and discards the jammer-corrupted snapshots without processing them, resulting in

steep instantaneous drops of the computation time.

2Reported computation times are measured in MATLAB R2017a, run on a computer equipped with Intel(R)
core(TM) i7-6700 processor @ 3.40GHz and 32GB RAM.
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2.5 Contribution 3: Dynamic Algorithms for L1-norm Tensor Anal-

ysis

Present-day datasets are collected across diverse sensing modalities and have an inherent N -way

array structure, commonly referred to as tensors [9]. Much similar to PCA for matrix data analysis,

Tucker decomposition is a standard method for tensor analysis, with many important applications

in machine learning [110–112], pattern recognition [1, 32], communications [31, 113, 114], and

computer vision [34, 115, 116], among other fields. Another successful tensor analysis tool is

the Canonical Polyadic Decomposition (CPD) [71, 117], also known as Parallel Factor Analysis

(PARAFAC), with many applications in machine learning, signal processing, and data mining.

In general, Tucker decomposition can be seen as a high-order extension of PCA [17], in the sense that

it analyzes a collection of (N ≥ 1)-way arrays to obtain an orthonormal basis for each mode. Impor-

tantly, as opposed to applying PCA on vectorized measurements, Tucker leverages and processes

multi-way measurements in their natural tensor form, often resulting in superior generalization

performance. Higher-Order Singular Value Decomposition (HOSVD) [10, 118] is the higher order

equivalent of SVD used to solve Tucker. Higher-Order Orthogonal Iterations (HOOI) [10, 118] is

another algorithm that solves Tucker.

The many advantages of Tucker decomposition in terms of its capability to handle tensor data in

their natural form, leading to superior underlying pattern discovery has been studies thoroughly in

the literature [9, 10, 71, 118]. However, as is the case with standard PCA, because of its formulation

on the outlier-sensitive L2-norm, Tucker is very sensitive against faulty measurements (outliers).

In order to rectify Tucker’s outlier sensitivity, many researchers have focused on outlier-resistant

formulation of Tucker. One common approach is the Higher-Order Robust PCA (HoRPCA) [119],

wherein the tensor data is modeled as the sum of a low multi-linear rank tensor, representing

nominal data and a sparse tensor capturing outliers. A more straightforward approach simply

replaces the L2-norm by the outlier-resistant L1-norm, resulting in the formulation of L1-Tucker [11,

12]. Multiple approximate algorithms for L1-Tucker have been proposed in [11–14, 16, 120, 121].

On the other hand, tensor measurements arrive in a streaming fashion in some applications of

interest. As a consequence, when new data becomes available, one needs to leverage the previous

solution and update it to obtain a new solution incrementally. Additionally, incremental processing

is preferred when the total number of measurements are too big to be stored and/or processed

as a batch. To this end, an array of algorithms for incremental Tucker decomposition have been

proposed in the literature, including Dynamic Tensor Analysis (DTA), Streaming Tensor Analysis
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(STA), Window-based Tensor Analysis (WTA) [122, 123], and Accelerated Online Low-Rank Tensor

Learning (ALTO) [124], to name just a few. Although these algorithms offer considerable speed up

and computational efficiency, similar to batch Tucker analysis, they are sensitive against outlying

measurements.

In this line of research, we present an outlier-resistant algorithm for Tucker based on the robust

L1-norm. Our algorithm named Dynamic L1-Tucker is a scalable method that computes the L1-

norm Tucker bases incrementally, with the ability to detect and reject outliers in an online fashion.

Moreover, our algorithm is capable of tracking and adapting to nominal subspace changes.

2.5.1 Related Works

Streaming and robust matrix PCA has been thoroughly studied over the past decades [24, 80, 84, 93,

125, 126]. However, extending matrix PCA (batch or streaming) to tensor analysis is a non-trivial

task that has been attracting increasing research interest. To date, there exist multiple alternative

methods for batch tensor analysis (e.g., HOSVD, HOOI, L1-HOOI) but only few for streaming/dy-

namic tensor analysis. For example, DTA [122, 123] efficiently approximates the HOSVD solution

by processing measurements incrementally, with a fixed computational cost per update. More-

over, DTA can track multi-linear subspace changes, weighing past measurements with a forgetting

factor. STA [122, 123] is a fast alternative to DTA, particularly designed for time-critical appli-

cations. WTA is another DTA variant which, in contrast to DTA and STA, adapts to changes

using considering only a sliding window of measurements. The ALTO method was presented in

[124]. For each new measurement, ALTO updates the bases through a tensor regression model.

In [127], authors presented another method for Low-Rank Updates to Tucker (LRUT). When a

new measurement arrives, LRUT projects it on the current bases and few more randomly chosen

orthogonal directions, forming an augmented core tensor. Then it updates the bases by standard

Tucker (e.g., HOSVD) on this extended core. In [128], authors consider very large tensors and

propose randomized algorithms for Tucker decomposition based on the TENSORSKETCH [129].

It is stated these algorithms can also extend for processing streaming data. Randomized methods

for Tucker of streaming tensor data were also proposed in [130]. These methods rely on dimension-

reduction maps for sketching the Tucker decomposition and they are accompanied by probabilistic

performance guarantees. More methods for incremental tensor processing were presented in [131–

134], focusing on specific applications, such as foreground segmentation, visual tracking, and video

foreground/background separation.

Methods for incremental CPD/PARAFAC tensor analysis have also been presented. For instance,
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authors in [135] consider the CPD/PARAFAC factorization model and assume that N-way mea-

surements are streaming. They propose CP-Stream, an algorithm that efficiently updates the CPD

every time a new measurement arrives. CP-stream can accommodate user-defined constraints in the

factorization such as non-negativity. In addition, authors in [136] consider a Bayesian probabilistic

reformulation of the CPD/PARAFAC factorization, assuming that the entries of the processed ten-

sor are streaming across all modes, and develop a posterior inference algorithm (POST). Further,

the problem of robust and incremental PARAFAC has also been studied and algorithms have been

presented in [137, 138]. Typically, the application spaces of CPD and Tucker are complementary:

CPD is preferred when uniqueness and interpretablity are needed; Tucker allows for the latent

components to be related (dense core) and it is preferred for low-rank tensor compression and

completion, among other tasks [71, 112].

The problem of both outlier-resistant and dynamic Tucker analysis remains to date largely unex-

plored and it is the main focus of this work.

For the sake of completeness, we offer a brief overview of batch Tucker and L1-Tucker decomposition

in the sequel.

2.5.2 Tucker Decomposition

Given tensor measurements Xt ∈ RD1×...×DN , t = 1, 2, . . . , T , Tucker decomposition of the mea-

surement batch {Xt}Tt=1 is formulated as

max.
{Qn∈SDn,dn}n∈[N ]

∥∥∥X ×n∈[N ] Q
⊤
n

∥∥∥2
F
, (2.33)

where X ∈ RD1×...×DN×T is the concatenation tensor, such that X (:, :, . . . , :, t) = Xt, ∥X ×n∈[N ]

Q⊤
n ∥2F =

∑
t∈[T ] ∥Xt ×n∈[N ] Q

⊤
n ∥2F . For dn ≤ Dn ∀n ∈ [N ], Tucker in (2.33) strives to compress the

tensor measurements such that the overall variance preserved after compression is maximized by

estimating N low-rank bases. Algorithms for Tucker decomposition include the HOSVD and HOOI.

HOSVD is a higher order analog of SVD and it is a straightforward method that approximates the

N bases in (2.33) by solving N PCA problems as follows

max.
Q∈SDn,dn

∥mat(X , n)⊤Q∥2F . (2.34)

Note that each PCA problem to estimate a basis for a particular mode is carried out disjointly of all

others and may be done so in parallel to the computation of the bases for other modes. In contrast
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L1-Tucker Decomposition (batch-processing) [139]

Input: X , {Qn}n∈[N ]

1: Until convergence/termination
2: For n ∈ [N ]
3: A← mat(X ×m∈[n−1] Q

⊤
m ×k∈[N−n]+n Q⊤

k , n)
4: B← sgn(A⊤Qn)
5: Qn ← L1-BF(A,B)

Return: Q1,Q2, . . . ,QN

Function: L1-BF(A,B), % B ∈ {±1}Q×z

1: Until convergence/termination

2: (k̄, l̄)← argmax
(k,l)∈[Q]×[z]

∥∥∥A(B− 2ek,Qe
⊤
l,z[B]k,l

)∥∥∥
∗

3: B← B− 2ek̄,Qel̄,z[B]k̄,l̄
4: UΣV⊤ ← svd(AB)
5: Q← UV⊤

Return: Q

Figure 2.10. L1-norm Tucker Decomposition algorithm for batch-processing.

to this approach, HOOI optimizes the N bases jointly by means of an iterative algorithm. Given

some initial bases {Qn,0}n∈[N ], at any iteration i > 0 and for n = 1, 2, . . . , N , HOOI computes Qn,i

by solving

max.
Q∈SDn,dn

∥An,i
⊤Q∥2F (2.35)

where

An,i = mat(X ×m∈[n−1] Q
⊤
m,i ×k∈[N−n]+n Q⊤

k,i−1, n). (2.36)

2.5.3 L1-Tucker to Combat Outliers

The success of L1-PCA in matrix analysis [3] on outlier corrupted data has prompted its gener-

alization to handle tensor data, resulting in the development of L1-norm Tucker decomposition.

Multiple recent works have demonstrated that L1-Tucker performs similar to Tucker with nominal

data, while offering significantly better performance on data corrupted with outliers [11–14, 140].

Mathematically, similar to L1-PCA, L1-Tucker derives by simply replacing the outlier-sensitive L2

norm in (2.33) by the outlier-resistant L1-norm, as

max.
{Qn∈SDn,dn}n∈[N ]

∥∥∥X ×n∈[N ] Q
⊤
n

∥∥∥
1
, (2.37)

where ∥X ×n∈[N ] Q
⊤
n ∥1 =

∑
t∈[T ] ∥Xt ×n∈[N ] Q

⊤
n ∥1. Researchers have developed a robust analog of

HOSVD, named L1-HOSVD [12, 15, 141], to solve L1-Tucker in (2.37). L1-HOSVD approximates
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the solution to L1-Tucker by N parallel L1-PCA problems as

max.
Q∈SDn,dn

∥mat(X , n)⊤Q∥1. (2.38)

Although L1-HOSVD is a fast single-shot algorithm it often obtains low L1-Tucker metric. In

order to achieve a higher L1-Tucker metric, L1-HOOI was proposed and initialized at the solution

of L1-HOSVD [12, 142]. Initialized at the L1-HOSVD bases {Qn,0}n∈[N ], L1-HOOI updates Qn,i

at each iteration i ≥ 1 by solving

max.
Q∈SDn,dn

∥An,i
⊤Q∥1, (2.39)

where An,i is defined in (2.36). A pseudo-code of L1-Tucker, implemented by means of L1-HOOI

is offered in Figure 2.10. The work in [12] presents formal convergence guarantees and offers

complexity analysis of the L1-HOOI algorithm. Since, L1-Tucker is implemented as a series of

L1-PCAs, it may be infeasible to rely on the exact algorithms of L1-PCA due to their high cost [3].

In this case, it is beneficial to leverage the approximate algorithms for L1-PCA instead [4, 6]. In

this work, we make use of the L1-BF algorithm of [4] and for the sake of completeness, we present

an overview of L1-BF in Section 2.2 and the corresponding pseudo-code is presented in Figure 2.1.

2.5.4 Proposed Algorithm

Motivated by the incremental and adaptive L1-PCA solvers of [24], we develop an algorithm for

dynamic L1-Tucker (D-L1-Tucker) in the sequel.

Batch Initialization

In order to obtain an initial set of L1-Tucker estimates Q0 = {Q(0)
1 , . . . ,Q

(0)
N }, we collect an initial

batch of B ≪ T measurements in B = {X1, . . . ,XB} and run L1-HOSVD/L1-HOOI on them. In

the absence of an initial batch, Q0 is initialized arbitrarily.

Additionally, we initialize a batch of measurements that acts as the memory of our algorithm,

namely, the memory set M0 = Ω(B,M), for some maximum memory size M ≥ 0, where, for any
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ordered set I and integer Z ≥ 0, we define

Ω(I, Z) =

I, if |I| ≤ Z,

[I]|I|−Z+1:|I|, if |I| > Z,
(2.40)

where | · | denotes the cardinality (number of elements in a set) of its input argument. In simple

words, Ω(B,M) returns the last min{M,B} elements in B. We resort to memoryless processing in

the absence of an initial memory batch B.

When a new measurement X̄t ̸= 0, t ≥ 1 arrives3, we compute its conformity with respect to the

most recently estimates bases Qt−1, using its reliability defined as [24, 59, 121, 143]

rt =
∥∥∥X̄t ×n∈[N ] Q

(t−1)
n

⊤∥∥∥2
F

∥∥X̄t

∥∥−2

F
∈ [0, 1]. (2.41)

Upon further simplification, (2.41) can be rewritten as

rt=cos2(ϕ(vec(X̄t×n∈[N ]Q
(t−1)
n Q(t−1)

n

⊤
), vec(X̄t))), (2.42)

where ϕ(·, ·) returns the angle between its two vector arguments. We note that rt quantifies the

measure of conformity of X̄t to the subspace spanned by {Q(t−1)
n }n∈[N ], or, the angular proximity

of vec(X̄t×n∈[N ]Q
(t−1)
n Q

(t−1)
n

⊤
) to vec(X̄t).

The value of rt is guaranteed to exist between 0 and 1. If rt = 1, then the bases in Qt−1 perfectly

describe X̄t. However, if rt = 0, then the set Qt−1 does not capture any component of X̄t. In order

to decide if a measurement X̄t should be admitted for processing or not, we define a threshold τ

and consider X̄t for bases update if its reliability rt ≥ τ . Otherwise, X̄t is considered to be an

outlier and it is rejected. We note that since the most recently updated bases were computed via

L1-Tucker, the reliability defined in (2.41) inherits its robustness. In the unlikely event that an

outlier passes the reliability check, L1-Tucker will suppress it, and provide a reliable update of

bases.

When a new measurement X̄t is deemed reliable by the reliability check, it is used to update the

bases and memory by first appending it to the existing memory batch to obtain the augmented

memory batchM′ = Φ(Mt−1, X̄t) =Mt−1 ∪ X̄t. Next, we initialize L1-HOOI at Qt−1 and run it

onM′ to obtain the updated bases Qt. Finally, we discard the oldest measurement in the memory

3A bar over a tensor denotes that it is streaming.



CHAPTER 2. DYNAMIC L1-NORM DATA ANALYSIS 33

batch to maintain a constant batch size as

Mt = Ω(M′,M). (2.43)

Therefore, the cost of the underlying L1-HOOI algorithm employed to update the bases at each

update index remains low (mostly constant) as the processed memory batch comprises at most

M + 1 measurements.

When a measurement X̄t is discarded as a result of its failure in the reliability check, we retain

the previous bases and memory by setting Qt = Qt−1 and Mt = Mt−1, respectively. At this

point, it is worth noting that the proposed approach focuses on temporal coherence of streaming

measurements. That is, temporally sporadic points from a second nominal source of measurements

could be perceived as outliers.

Zero Centering

In some applications, for example in image processing, subspaces of zero-centered data may be

needed. To this end, we can modify the proposed algorithm as follows. First, at each update index

(t− 1), we compute the mean of the memory batch as Ct−1 = (1/M)
∑M

m=1[Mt−1]m and then use

it for zero-centering as X̄ c
t = X̄t − Ct−1. Next, he reliability check is enforced on the zero-centered

memory batch and it is used to update the bases as described above, if it passes the reliability

check.

Adaptation to Subspace Changes

In many applications of interest, the underlying data subspaces change over time. In such cases,

the changing subspaces have to be tracked. To this end, we modify our D-L1-Tucker algorithm to

process measurements from changing subspaces. A natural ambiguity that arises when the data

subspace changes is on understanding whether the new measurement is to be treated as an outlier

or nominal with respect to a different subspace. We address this ambiguity as follows.

First, we introduce a memory buffer for ambiguous measurements, W, with capacity W > 0.

When a streaming measurement fails the reliability check, instead of discarding it, we store it in

W. This procedure is repeated for consecutive unreliable measurements until a measurement passes

the reliability check, when W is emptied. However, if W consecutive streaming measurements are
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Proposed Dynamic L1-Tucker Decomposition

Input: {X̄t}t∈[T ], B, M , W , τ , Q ← ∪n∈[N ]Qn

1: B ←
⋃

t∈[B] X̄t

2: (Q,M,W)← batch-init(B,Q,M)
3: For t > B
4: (Q,M,W)← online-updates(X̄t,M,Q,W, τ)

Return: Q → {Q1,Q2, . . . ,QN}
Function: batch-init(B,Q,M)

1: Q ← L1-Tucker(B,Q)
2: M← Ω(B,M)
3: W ← ∅

Return: Q,M,W
Function: online-updates(X̄t,M,Q,W, τ)

1: rt ← ∥X̄t ×n∈[N ] Q
⊤
n ∥2F ∥X̄t∥−2

F

2: If rt > τ
3: M′ ← Φ(M, X̄t)
4: Q ← L1-Tucker(M′,Q)
5: M← Ω(M′,M)
6: W ← ∅
7: Else
8: W ←W ∪ X̄t

9: If |W| =W
10: (Q,M,W)← batch-init(W,Q,M)

Return: Q,M,W
Figure 2.11. The proposed Dynamic L1-norm Tucker Decomposition algorithm.

rejected as outliers, we detect a subspace change. In order to adapt to this change, we empty the

existing memory batch, set B =W, and re-initialize (reset) the bases and memory, to update them

as described earlier. A pseudo-code of the proposed D-L1-Tucker algorithm is presented in Figure

2.11.

2.5.5 Experimental Study

Dynamic Video Foreground/Background Separation

Video background/foreground separation is a commonly used pre-processing technique employed

in many video processing applications, including security surveillance, foreground tracking, and

traffic monitoring. The static background defines a nominal subspace, while any foreground move-

ment constitute intermittent outliers. In this experiment, we employ the proposed D-L1-Tucker

to perform background/foreground separation on videos from the CAVIAR database [144]. In or-

der to demonstrate the ability of D-L1-Tucker to adapt to subspace changes, we make use of two

videos capturing different scenes, with 100 frames per video, each of size (D1 = 173)× (D2 = 231).

We form a single video stream by concatenating the frames of scene 2 behind those of scene 1 as

X ∈ RD1×D2×(T=200).
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

(p)

Figure 2.12. Dynamic video foreground/background separation experiment. (a) Original 75-th
frame (scene 1). Background extracted by (b) Adaptive Mean (λ = 0.95), (c) DTA (λ = 0.95), (d)
DTA (λ = 0.7), (e) LRUT, (f) OSTD, (g) HOOI (increasing memory), (h) L1-HOOI (increasing
memory), and (i) D-L1-TUCKER (proposed). Foreground extracted by (j) Adaptive Mean (λ =
0.95), (k) DTA (λ = 0.95), (l) DTA (λ = 0.7), (m) LRUT, (n) OSTD, (o) HOOI (increasing
memory), (p) L1-HOOI (increasing memory), and (q) D-L1-TUCKER (proposed).

We set dn = d = 3, B = 5, M = 10, W = 20, τ to the median of the reliabilities of the

initial memory batch, and run the proposed algorithm on X . For every t ∈ [T − B] + B, we

obtain bases Q
(t)
1 and Q

(t)
2 and the mean frame Ct. Accordingly, we estimate the background as

XBG
t = Q

(t)
1 Q

(t)
2

⊤ (
X̄t − Ct

)
Q

(t)
2 Q

(t)
2

⊤
+ Ct and the foreground as XFG

t = Xt −XBG
t .

For the sake of comparison, we employ DTA, LRUT, OSTD, HOOI (increasing batch), and L1-

HOOI (increasing batch). We note that HOOI and L1-HOOI are initialized arbitrarily and utilize
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

(p)

Figure 2.13. Dynamic video foreground/background separation experiment. (a) Original 150-th
frame (scene 2). Background extracted by (b) Adaptive Mean (λ = 0.95), (c) DTA (λ = 0.95), (d)
DTA (λ = 0.7), (e) LRUT, (f) OSTD, (g) HOOI (increasing memory), (h) L1-HOOI (increasing
memory), and (i) D-L1-TUCKER (proposed). Foreground extracted by (j) Adaptive Mean (λ =
0.95), (k) DTA (λ = 0.95), (l) DTA (λ = 0.7), (m) LRUT, (n) OSTD, (o) HOOI (increasing
memory), (p) L1-HOOI (increasing memory), and (q) D-L1-TUCKER (proposed).

all frames until frame index t, {X̄j}j∈[t] to estimate the background/foreground at update index

t. Since we rely on zero-centering for background estimation, we modify the adaptive method of

DTA to incorporate mean tracking as CDTA
t = λCDTA

t−1 + (1 − λ)X̄t, for CDTA
1 = X̄1. For all other

methods, we compute the mean incrementally at any t as Ct =
(
(t− 1)Ct−1 + X̄t

)
/t. For DTA,

we use two values of forgetting factor, λ = 0.95, 0.7 and for LRUT we set the number of additional

core dimensions to kn = Dn − d− 3.

Figures 2.12 and 2.13 depict the backgrounds and foregrounds obtained by the proposed method
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and all other methods under comparison at 75-th frame (scene 1) and 150-th frame (scene 2)

respectively. From Figure 2.12, we observe that HOOI (increasing batch), LRUT, and OSTD

demonstrate similar performance with a trail of ghostly appearance along the path of the pedestrian

in their corresponding foreground frames. OSTD and L1-HOOI (increasing batch) perform better

with a smoother trail behind the person in their foreground frames DTA background contains the

person, leading to an undesirably smudged foreground estimate for λ = 0.7 . However, DTA is

able to obtain a cleaner estimate of the foreground with λ = 0.95, similar to that of adaptive mean

(background estimated by the same adaptive mean that we use for DTA), but their backgrounds

contain a ghostly appearance of the person. The proposed method extracts a cleaner background

and foreground owing to its outlier rejection capability.

We demonstrate the adaptation capability of the proposed method by presenting the estimated

backgrounds and foregrounds after the scene change occurs after frame index t = 100. Specifically,

we present the background/foreground separating results on frame t = 150 in Figure 2.13 and

observe that HOOI, L1-HOOI, OSTD, and LRUT demonstrate degraded performance as these

methods that are not capable of subspace adaptation. Similar to our observation in Figure 2.12,

we note that DTA (λ = 0.95) outperforms DTA (λ = 0.7) after scene change, on frame t = 150.

We observe that DTA (λ = 0.7) retains the background of the previous scene resulting in an

undesirable estimate of the foreground, while DTA (λ = 0.95) obtains a clean background, and

hence a smooth foreground, wherein the person appears slightly blurry. On the other hand, the

proposed method demonstrates superior performance by successfully tracking the scene change

and consequently obtaining a clean estimate of the background and foreground. To quantify the

background/foreground estimation performance, we compute, for every frame, the Peak Signal-to-

Noise Ratio (PSNR) defined as PSNR = 10log10

(
2552

MSE

)
, where MSE is the mean square error

of the estimated background and the ground truth (clean) background. In Figure 2.14, we plot

PSNR versus the frame index and observe that all methods begin with high PSNR and their PSNR

degrades as foreground movement occurs. We observe that the PSNR of the proposed method

is the highest after approximately frame 25. When the scene changes, the PSNR of all methods

drops instantaneously. The PSNR values of HOOI, L1-HOOI, LRUT, and OSTD increase at a

low rate as they process frames from the new scene. Adaptive mean and DTA with λ = 0.95

demonstrate better performance with faster PSNR increase. DTA with λ = 0.5 adapts to the new

scene very quickly, but it is affected by foreground movement (depicted by oscillations in its PSNR

values). The proposed method adapts to the new scene after it processes W = 20 measurements

and attains the highest PSNR values across all frame indices thereafter. The PSNR values of the

proposed method drop and stay constant for W = 20 frames after scene change because the first

W = 20 points fail the reliability check and do not participate in the subspace update. After
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Figure 2.14. Dynamic video foreground/background separation experiment. PSNR (dB) versus
frame index.

W = 20 frames, the ambiguity memory overflows and the proposed method rapidly adapts to the

new scene. Right after adaptation, the proposed method is straightforwardly capable of extracting

the background and foreground of all ambiguous frames in W in a retroactive fashion, leading to a

better performance during scene change as shown in Figure 2.14.

2.6 Conclusions

In this chapter, we presented algorithms for reliable data analysis based on the L1-norm. In order to

handle matrix data, we presented an algorithmic framework for incremental and adaptive L1-PCA.

Our algorithm (L1-APCA) is capable of estimating the sought-after subspace in an online fashion

and adapting the L1-PCA solution to changes in the nominal signal subspace, while remaining

robust against outliers. Next, for complex-valued streaming data processing, we presented an

algorithm for incremental L1-PCA of complex-valued data and applied it for DoA estimation. Our

algorithm combines low computational cost with sturdy corruption resistance, allowing for superior

DoA estimation in the presence of intermittent jamming signals. Finally, to handle streaming tensor

data we proposed an algorithm for dynamic and outlier-resistant Tucker analysis. Our algorithm

is successful in multilinear subspace estimation, online outlier identification and rejection, and

adaptation to nominal subspace changes. Our numerical studies corroborate the efficacy of our

algorithms in terms of remarkable online subspace estimation and superior outlier resistance.



Chapter 3

Robust Stochastic Principal

Component Analysis

3.1 Introduction

Modern machine learning applications rely on large volumes of data to achieve impressive general-

ization performance and in order to perform effective underlying pattern discovery, these data need

to be manipulated efficiently. PCA is a ubiquitous method for high dimensional data analysis with

a plethora of applications in machine learning and signal processing among many other areas as also

motioned earlier [145]. Given a data matrix, PCA strives to estimate a low-rank subspace whereon

data variance is maximized by solving the problem in (2.2). Given access to the whole population

of data arising from some unknown zero-mean distribution D, PCA returns the subspace on which

the expected squared Frobenius-norm of the data projection is maximized by solving

QL2 = argmax
Q∈SD,K

E
x∼D

{∥∥Q⊤x
∥∥2
F

}
. (3.1)

Defining C := Ex{xx⊤}, the objective in (3.1) can be rewritten as Ex{trace(Q⊤xx⊤Q)} =

trace(Q⊤CQ) and it is maximized by the dominant K-eigenvectors of C. In practical appli-

cations, C is unknown and sample-average estimated as Ĉ := 1
N

∑N
i=1 xix

⊤
i = 1

NXX⊤, based

on a size-N batch of coherent data points X := [x1, . . . ,xN ]. Accordingly, substituting C with

Ĉ, the metric of (3.1) can be approximated as trace(Q⊤ĈQ) = 1
N ∥X

⊤Q∥2F , where the squared

Frobenius-norm ||.||2F returns the sum of the squared entries of its argument as discussed earlier.

39
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This results in the following sample average approximation of the PCA formulation in (3.1)

Q̂L2 = argmax
Q∈SD,K

1

N

∥∥X⊤Q
∥∥2
2
. (3.2)

Notice that the objective in (3.2) is simply a scaled version of that in (2.2), therefore, their corre-

sponding maximizing arguments are the same.

It is straightforward to show that for K = 1, the objective in (3.1) simplifies to

qL2 = argmax
q∈SD

E
x∼D
{|x⊤q|2}, (3.3)

whose solution is the dominant eigenvector ofC. Similarly, the sample approximated PC is obtained

by solving

q̂L2 = argmax
q∈SD

1

N
||X⊤q||22. (3.4)

We note that the solutions of (3.2) and (3.4) warrant the computation of the sample approximation

of the covariance matrix, which results in cost O(D2N) and an additional cost of O(D3) to compute

the eigenvalue decomposition (EVD). Interestingly, the solution to (3.2) and (3.4) can be obtained

directly from the SVD ofX with cost O(NDmin{N,D}). We note that in our big data era, practical

applications come with very large D and/or N , leading to prohibitively high cost of solving (3.2)

and (3.4) either using EVD or SVD.

In order to process big data with low cost, the power method was proposed in [17]. Although the

power method is faster than SVD in practice (more details in the related work subsection), for mas-

sive N and/or D, the power method is rendered restrictive, creating a need for efficient streaming

PCA algorithms. To this end, Oja proposed a stochastic PCA algorithm in [18]. Oja’s algorithm

has gained popularity in the big-data era due to its low cost and convergence guarantees [146–148].

Oja’s method can be perceived as a projected stochastic gradient ascent algorithm on the objective

of (3.1). A more detailed description of Oja’s algorithm and the associated cost is presented in

the related work subsection. Despite its recent fame, Oja’s algorithm is notoriously sensitive to

outliers due to the squared emphasis it places on each datum, including outliers. Moreover, since

Oja’s method employs stochastic gradient that relies on a single sample at each index, its updates

are noisy as also noted in [149].
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3.1.1 Contributions

In this chapter, we propose stochastic algorithms for outlier-resistant PCA that can process stream-

ing data with low cost. For the case of K = 1, we propose a modified stochastic L1-PCA algorithm

and for K ≥ 1, we propose a generalized framework for stochastic PCA based on the Barron loss

[26]. Our generalized framework comes with a tunable parameter for robustness that can be hand-

crafted to achieve a trade-off between higher robustness and faster convergence. Interestingly, our

numerical studies show that when the robustness parameter is chosen to offer outlier resistance,

we not only achieve superior robustness against outliers, but also the updates are of low variance.

Specifically, our contributions in this line of research can be summarized as follows

1. For K = 1, we extend batch L1-PC and propose a novel algorithm for stochastic PC calcula-

tion based on mean absolute projection maximization, with formal convergence guarantees.

2. Since the L1-PCA objective is discontinuous and therefore non-differentiable at the origin,

we propose an approach to approximate the L1-PCA objective near the origin to achieve dif-

ferentiablity. Next, we leverage the seminal stochastic approximation theory [150] to develop

an algorithm that offers superior outlier resistance while converging quickly to low subspace

error.

3. For K ≥ 1, we propose a generalized framework for Oja-like PCA algorithms by employing

the Barron loss [26]. Our framework offers the capability to tune the trade-off between

robustness versus speed of convergence by handcrafting the robustness parameter α based on

the application.

4. We show in theory that by tuning the robustness parameter α we can vary the step-size of the

proposed algorithm, with particular values of α resulting in the coincidence of the proposed

algorithm with that of Oja, while other lower values of α yield robust counterparts including

the robust stochastic PCA algorithm in [27].

5. We offer a variety of experimental studies on both synthetic and real-world data to demon-

strate the efficacy of the proposed methods. Our studies on synthetic data demonstrate the

convergence and outlier-resistance of the proposed algorithms. Our real-world studies on

images, videos, and biomedical data demonstrate the impressive robustness of the proposed

methods compared to state-of-the-art stochastic PCA methods.

The rest of this chapter is organized as follows. We offer an overview of existing stochastic PCA

algorithms and their variants in Section 3.2. Next, in Section 3.3, we present our algorithm and
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related experimental studies for K = 1. Section 3.4 deals with the derivation of our algorithm for

K ≥ 1 based on Barron loss and the corresponding experimental studies. Finally, in Section 3.5,

we offer our concluding remarks.

3.2 Related Works

In this section, we provide an overview of existing works on stochastic PCA, wherein the goal is

to perform incremental updates to the estimated subspace each time a new data measurement is

available. The fundamental approach for stochastic PCA based on the stochastic approximation

theory was proposed in 1982 by Oja [18]. Oja’s method has been studied and applied widely

in practice [149, 151–154]. The popularity of Oja’s method can be attributed to its intuitive

formulation, simplicity, ease of computation, and guaranteed asymptotic convergence under mild

conditions. Mathematically, given data matrix X = [x1,x2, . . . ,xN ], for K = 1, Oja’s method

estimates the dominant PC by performing the following update

qt = P(qt−1 + ηtxtx
⊤
t qt−1), (3.5)

where t = 1, 2, . . . , N , ηt is the step-size (or learning rate), q0 is arbitrarily chosen on the unit

sphere, and for any g ∈ RD \ 0D, P(g) = g
∥g∥2 . The extension of Oja’s method to multiple

components (K > 1) is straightforward and is achieved by updating the estimated subspace as

Qt = P(Qt−1 + ηxtx
⊤
t Qt−1), (3.6)

where for any G ∈ RD×K , P(G) projects G onto the Stiefel manifold {Q ∈ RD×K : Q⊤Q = IK}
by taking the QR-decomposition of G as G ← QR(G). The cost per iteration is O(DK) to

compute Qt−1 + ηxtx
⊤
t Qt−1 in (3.6) and O(DK2) to compute the orthogonalization step P(·)

[153]. Interestingly, the work in [153] showed that the orthogonalization step is performed purely

for computational purposes and excluding it still results in the iterates spanning the same subspace.

Therefore, in order to maintain numerical stability, the orthogonalization step may be performed

infrequently in practice. On the other hand, the power method performs repeated updates of the

form Qt = P(ĈQt−1), with cost O(KD2) (assuming Ĉ is available) to compute ĈQt−1 and an

additional cost of O(DK2) for orthogonalization. Clearly, neglecting the cost of orthogonalization

for both methods, the cost of Oja, O(DK) is significantly lower (linear in D) compared to the cost

of power method, O(D2K) (quadratic in D), especially in cases where D is large.
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An approach closely related to Oja for the computation of the dominant principal component was

presented by Krasulina in [146, 155, 156]. Krasulina’s update at each measurement index t is

qt = qt−1 + ηt

(
xtx

⊤
t −

q⊤
t−1xtx

⊤
t qt−1ID

∥qt−1∥22

)
qt−1. (3.7)

We note that the estimators of Oja and Krasulina in (3.5) and (3.7) respectively converge to the

dominant eigenvector of the data covariance matrix E{xx⊤}, under mild conditions [18, 146, 148]

such as

•
∑+∞

t=1 ηt = +∞ and
∑+∞

t=1 η
2
t < +∞.

• (λ1 − λ2) > 0 where λ1 and λ2 are the top two eigenvectors of E{xx⊤}.

• Bounded higher-order moment of x.

The recent work of [156] generalized Krasulina’s method for K > 1 by proposing a new method

named “Matrix Krasulina”. This work shows both theoretically and experimentally that their

method converges exponentially fast to the underlying subspace. In addition, they prove that the

gradient variance of the proposed Matrix Krasulina method decays naturally over time and achieves

exponential convergence rates even in the presence of noise.

As a consequence of its low computational complexity, Oja’s method has attracted significant re-

search interest resulting in thorough analysis of the algorithm for different step-sizes. Multiple

works have derived theoretical convergence rates for Oja’s method. Some methods propose vari-

ants of Oja’s algorithm with constant step-size [157–159]. The algorithm in [157] is a variant of

the Oja method with an added momentum term for accelerated convergence. The method employs

mini-batch processing to achieve optimal convergence rates. Interestingly, this work demonstrates

that naively adding momentum to Oja’s algorithm usually fails in practice and claims that when

the sample variance is bounded, momentum can achieve convergence acceleration. The work in

[159] introduces a variant of the Oja’s algorithm for time-series data. Data dependency is an is-

sue with time-series data and to overcome it, their algorithm employs down-sampling to generate

weakly dependant samples, thereby controlling the bias of the stochastic gradient caused by data

dependency. The work in [158] provides an Oja variant for K = 1 component with theoretical con-

vergence guarantees under the subgaussian distributional assumption on the data. The algorithm

in [160] relies on the step-size format ηt =
c
t and offers an acceleration scheme for the block variant

of Oja’s method without the need for apriori information like the eigengap. Convergence analysis is
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offered for the spiked covariance model and demonstrates empirically that their algorithm achieves

fast convergence even when the original (unaccelerated) algorithms fail to converge.

More recently, the work in [161] proposed a new block variant of Oja’s algorithm for streaming

PCA that utilizes mini-batches of past data samples and name their method “History PCA”.

The algorithm is accompanied by formal convergence guarantees. History PCA uses past data

measurements to achieve gradient variance reduction leading to faster convergence. Importantly, the

step size is of the format ηt =
1
t and therefore it is hyper-parameter free. The work in [149] strives

to achieve variance reduction in Oja’s method by leveraging recent variance reduction techniques

proposed for stochastic gradients in strongly convex problems [162]. The algorithm is referred to as

VR (variance reduced)-PCA and is shown to converges exponentially fast to the optimal solution.

The convergence analysis holds for any data distribution. The algorithm employs a fixed step-size

and requires multiple passes over the entire dataset making it an offline algorithm. The approach

in [163] presents streaming Oja-type algorithms that work well with noisy data. The also propose

an algorithms to handle missing and/or outlier data along with noise. These algorithms employ

step size format ηt =
c√
t
. An algorithm with non-zero approaching adaptive learning rate scheme

for global convergence of the Oja method for K = 1 was proposed in [151]. Their algorithm relies

on the step size ηt =
ζ

q⊤
t xtx⊤

t qt
, where 0 < ζ ≤ 0.8 is a tunable hyperparameter.

Additionally, the work in [151] identified the challenges of tuning the step-size in Oja-type algo-

rithms including the need for apriori information such as the eigengap of the data covariance matrix

and the influence of the correctness of the chosen step-size on convergence. Based on the AdaGrad

algorithm [164], the work in [151] proposed an adaptive learning scheme for Oja PCA without the

need to tune the step-size and was shown to work well in practice and under noise. The work

in [165] proposed an Oja-type algorithm that is hyper-parameter free. The proposed algorithm

leverages an implicit averaging scheme to achieve variance reduction and fast convergence, while

being efficient. A detailed convergence analysis is offered in [166]. The work in [167] proposes an

online approach for setting the learning rate for Oja-type algorithms. The presented method is

capable of learning the step-size in an online fashion based on observed data. It relies on a burn-in

scheme along with a probabilistic method to choose the step-size.

Block variants of Oja’s algorithm have been proposed in [157, 168–173]. These methods leverage

mini-batches of data as opposed to single samples to achieve faster convergence and higher noise

immunity. However, these algorithms have shown to be computationally intensive [149]. The

method of [168] is a block variant of Oja and offers convergence proofs for the spiked covariance

model but it is demonstrated to work well in practice for general data. The method of [169] was
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shown to work well with noisy data due to the use of mini batches and offers convergence analysis

for a more general distribution-free model. The algorithm in [171] is able to select the batch size

automatically leading to faster convergence.

Very recently, the work of [174] showed the equivalence between Oja’s method and GROUSE [175].

They showed that at any iteration, given a step size for one of the algorithms, it is possible to

construct a step size for the other algorithm, resulting in an identical update.

Moreover, multiple works have focused on developing convergence theory for stochastic PCA algo-

rithms [146, 147, 152, 156, 166, 176–179]. The works in [146, 147, 152, 176] focus on K = 1, while

the works in [152, 156, 177–179] provide convergence analysis for K > 1. Authors in [146] provide

finite sample convergence rates for Oja and Krasulina and show that Krasulina’s update can be

seen as performing stochastic gradient descent on the Rayleigh quotient objective. The work of

[147] provides an eigengap free convergence guarantee for K = 1 Oja PCA, when the step-size is

appropriately chosen. The work in [178] proves global theoretical convergence for Oja method and

the convergence rate is independent of the eigengap. They also provide an Oja variant algorithm

that runs much faster than Oja and name it Oja++. The algorithm in [152] presents an Oja-type

algorithm for K > 1 and offers a local convergence result that is eigengap dependent. It requires

an accurate initialization, with sufficient correlation with the optimal PCs. This happens with low

probability if arbitrary initialization is used in high dimensions.

In a different line of research, stochastic optimization was leveraged for kernel PCA [180]. In [181],

the authors propose a distributed averaging scheme for stochastic PCA, wherein they make use

of multiple machines to estimate the top K-PCs. Since the estimate of each machine is prone to

noise, they propose a distributed averaging scheme to average out the noise.

3.3 Contribution 1: Stochastic L1-PCA — One Component

While stochastic PCA has been well studied in the literature, the stochastic formulation of L1-

PCA remains to date unexplored, despite its clear robustness in batch processing. Under this

contribution, we formulate a novel stochastic version of L1-PCA, for one principal component,

based on mean absolute projection maximization. Then, we propose an incremental algorithm for its

solution, based on fundamental stochastic approximation theory [150]. Our method is accompanied

by formal convergence guarantees and numerical studies that corroborate its corruption resistance.

We present a step-by-step derivation of the proposed algorithm in the sequel.
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3.3.1 Problem Formulation

First, we note that the metric of (2.3) can be equivalently rewritten as 1
N ∥X

⊤q∥1. Next, we note

that 1
N ∥X

⊤q∥1 tends to Ex{|x⊤q|}, as N tends to infinity [182]. Thus, the stochastic L1-PC takes

the form

qL1 = argmax
q∈SD

Ex{|x⊤q|}. (3.8)

Incorporating the norm constraint in the objective function, we can rewrite the stochastic L1-PC

in (3.8) as the mean-absolute projection maximization (MaxAP)

zMaxAP = argmax
z∈RD

Ex

{
|x⊤z|
||z||2

}
, (3.9)

noticing that P(zMaxAP) solves (3.8). In order to ensure the definition and continuous differentia-

bility of the function inside the expectation, we modify it as

M(x; z, ϵ) :=

√
|x⊤z|2 + ϵ√
||z||22 + ϵ

, (3.10)

for some positive ϵ≪ 1, and rewrite MaxAP as

zMaxAP = argmax
z∈RD

Ex

{
M(x; z, ϵ)

}
. (3.11)

Certainly, for ϵ = 0, (3.11) coincides with (3.9). In the sequel, we focus on solving (3.11).

3.3.2 Proposed MaxAP Maximization

At the extrema of the ϵ-modified MaxAP metric in (3.11), it holds

∇z⊤

[
Ex

{
M(x; z, ϵ)

}]
= 0. (3.12)

In accordance with the regularity conditions on M(x; z, ϵ) [183], we interchange the gradient and

expectation operators in (3.12) as

Ex{L(x; z, ϵ)} = 0D, (3.13)
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Proposed Stochastic MaxAP

Input: {xt}t=1,2,...,N , {ηt}t=1,2,...,N , q0 ∈ RD

1: for t = 1, 2, . . . , N

2: zt ← zt−1 + ηtL(xt; zt−1, ϵ)

3: qt ← P(zt)
4: end for

Output: qN (as estimate of the stochastic L1-PC qL1)

Figure 3.1. Proposed method for PC estimation through MaxAP.

where

L(x; z, ϵ) :=∇z⊤M(x; z, ϵ) (3.14)

=
x⊤z√

(|x⊤z|2 + ϵ)(z⊤z+ ϵ)
x

−
√
|x⊤z|2 + ϵ

(
√
z⊤z+ ϵ)3

z. (3.15)

In view of (3.14), we first propose the iteration

zt = zt−1 + ηtL(xt; zt−1, ϵ), t = 1, 2, . . . , (3.16)

for step sizes {ηt} that satisfy
∑∞

t=1 ηt = ∞ and
∑∞

t=1 η
2
t < ∞ (e.g., ηt = γ

t , or ηt = γ√
t
for

some constant γ > 0). First, we note that, due to the step-size conditions, for any given stream

of data, the iteration converges in the argument: limt→∞ ∥zt − zt−1∥2 = 0. In addition, based

on the fundamental stochastic approximation lemma presented by Robbins-Monro in [150], the

iteration attains stochastic convergence, in the mean-square (m.s.) sense, to a root of (3.13). In

fact, similar to gradient ascent for standard Rayleigh quotient maximization [184], (3.16) appears

to stochastically converge to a maximizer of the ϵ-modified MaxAP in (3.11). Accordingly, the

dependent PC sequence

qt = P(zt), t = 1, 2, . . . , (3.17)

would converge to a solution of stochastic L1-PCA in (3.8). For ϵ = 0, the proposed iteration in

(3.16) simplifies to zt = zt−1+ηtPtvtsgn(v
⊤
t zt−1), t = 1, 2, . . . , where Pt := ID−zt−1

1
∥zt−1∥22

z⊤t−1 =

ID − qt−1q
⊤
t−1 is the projection matrix to the nullspace of the previous PC and vt := xt

1
∥zt−1∥2 is

the normalized new sample. A pseudocode for the proposed method is presented in Figure (3.1).
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Figure 3.2. Convergence of the proposed method: (a) argument convergence in an arbitrary single
stream of data; (b) estimated mean-square convergence to the stochastic L1-PC.

3.3.3 Experimental Studies

Synthetic Data

Convergence: We consider D = 3 and draw N = 500 data points from N (03,C), where C =[
2.05 1.05 1.08
1.05 0.7 0.31
1.08 0.31 0.97

]
. We set ϵ = 0 and run the proposed iteration with a step size ηt = 1

t . Then, we

compute the change magnitude ||qt − qt−1||22 and plot it in Figure 3.2(a), versus t. An argument

convergence to zero-change is observed after just 5 iterations. Then, we notice that, specifically

for Gaussian data x ∼ N (03,C), |z⊤x| follows half-normal distribution with mean Ex{|x⊤z|} =√
2
πz

⊤Cz [185]. Accordingly, the MaxAP metric becomes Ex{M(x; z, 0)} =
√

2
π

√
z⊤Cz
z⊤z

and the

stochastic L1-PC that solves (3.8) coincides with the dominant eigenvector of C, denoted here
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Figure 3.3. Average subspace error versus measurement index (t).

by p. To demonstrate the stochastic convergence of the proposed iteration, we draw S = 1000

independent realizations of length-N data streams from the above Gaussian distribution and, for

the i-th stream, we compute the proposed PC sequence {q(i)
t }t=1,2,...,N according to (3.17). Then,

we average-estimate the m.s. convergence metric as 1
2S

∑S
i=1 ∥q

(i)
t q

(i)⊤

t −pp⊤∥2F , for every t, where
∥.∥2F returns the squared Frobenius-norm of its matrix argument, and plot it in Figure 3.2(b). The

stochastic convergence of the proposed iteration is clearly documented.

Subspace estimation: We draw N = 300 independent points from N (03,C), where C =[
7 7 6
7 10 9
6 9 13

]
, and form data matrix X = [x1,x2, . . . ,xN ] ∈ R3×300. Then, we add benign zero-mean

white Gaussian noise (AWGN) from 2N (0, 1) to every entry of X. In addition, we corrupt x120

and x230 with outlying corruption drawn from N (03,Co), where Co =
[
1585 1039 −76
1039 1311 −61
−76 −61 104

]
, such that

the dominant eigenvector of the outlier covariance matrix Co, po, makes an angle of about 45◦

with the dominant eigenvector of the nominal covariance matrix C, p. Then, we apply the pro-

posed method to estimate p, from the corrupted data stream. We repeat this task for S = 104

independent data realizations and plot in Figure 3.3 the average-estimated mean subspace error
1
S

∑S
i=1 ||q

(i)
t q

(i)⊤

t − pp⊤||2F , versus t. Alongside the proposed algorithm, we also plot the perfor-

mance of SVD (batch processing –joint calculation on [X]:,1:t at the t-th iteration), Oja’s standard

stochastic PCA algorithm of [18], candid covariance-free incremental PCA (CCIPCA) [165], AdaOja

[151], and R-SGD1 [27]. For fairness we tune the step sizes of Oja, R-SGD1, and the proposed

algorithm to ηt =
0.05√

t
. We notice that for t < 120, all methods perform similarly well and returned

subspaces nearly converge to the span of p. For t ≥ 120, we observe that all L2-based methods
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Figure 3.4. Average classification accuracy versus (a) γ and (b) number of mislabeled training
points.

(SVD, Oja, CCIPCA, and AdaOja) are significantly affected by the corruptions. On the other

hand, the robust solver R-SGD1 [27] and the proposed algorithm show similarly good corruption

resistance, maintaining low subspace error.
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Wisconsin Breast Cancer Dataset

In this experiment, we perform nearest subspace (NS) classification on the Wisconsin breast cancer

dataset [186, 187], which contains (D = 30)-dimensional measurements on healthy and unhealthy

cell nuclei. The features of each sample describe characteristics of the cell nuclei present in the

digitized image of a fine needle aspirate (FNA) of a breast mass. The dataset consists of 569

samples in total, with 212 samples belonging to the benign class and 357 samples belonging to

the malignant class. We first split the dataset into 85% training and 15% testing data. In order

to identify a preferred learning rate for the stochastic methods, we vary γ ∈ {0.05, 0.05, 1} and

perform NS classification using the final element of each stochastic PC sequence. Specifically, we

first estimate for each method the individual PCs of training data from class 1 (healthy) and class

2 (unhealthy). Next, for each testing point, we measure its squared projection error for each PC

and assign it to the class with the PC that attained the lowest error. We repeat this experiment

over 104 independent data splits and, in Figure 3.4(a), we plot the average classification accuracy

versus γ (including the batch methods as benchmarks). For Oja’s method, γ = 0.05 is preferred,

while for R-SGD1 and the proposed method γ = 0.1 is preferred. Interestingly, we notice that

L1-BF outperforms SVD. In addition, we observe that the proposed method is significantly more

robust than its counterparts against inferior choices of γ.

Next, we tune γ to the preferred values found above and mislabel a portion of the training data. We

repeat the experiment over 103 independent data splits and plot in Figure 3.4(b) the average NS

classification accuracy versus number of mislabeled training data points from each class. First, we

observe that as the number of mislabelings increases, the performance of SVD drops significantly.

On the other hand, batch L1-BF, R-SGD1, and the proposed algorithm exhibit similar robustness

against mislabeling.
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3.4 Contribution 2: Generalized Framework for Stochastic PCA

via Barron Loss — Multiple Components

In this line of research, we extend the stochastic MaxAP algorithm we presented in the previous

section for K = 1 to multiple components (K ≥ 1) by employing the robust Barron loss [26].

Specifically, we propose a generalized framework for Oja-type PCA algorithms, which includes

a family of algorithms with varying degree of outlier resistance. Our framework includes the

fundamental Oja algorithm which is sensitive to outliers and the robust stochastic PCA algorithm

of [27] as special cases. We note that although Oja’s method is outlier-sensitive, while processing

nominal data, it is shown to converge faster to the underlying subspace compared to its robust

counterparts. We show in theory and practice that using the Barron loss to derive stochastic PCA

algorithms offers the user the flexibility to control the trade-off between faster convergence versus

higher outlier resistance by controlling the robustness parameter α. Since our framework is based

on the robust Barron loss, we provide a brief overview of Barron loss in the sequel.

A general and adaptive loss function with an in-built robustness parameter was proposed in [26].

Similar to the work in [188], we refer to this loss function as the Barron loss, after the last name of

the paper’s author. Virtually all machine learning applications require algorithms to be significantly

less influenced by outliers compared to nominal data. To this end, multiple robust loss functions

have been proposed, including the L1-loss and the Huber loss [189]. We read in [26] that the

proposed generalized loss function is a superset of many existing robust and non-robust losses. The

expression for Barron loss is given by

f(x;α, β) =
|α− 2|
α

((
(xβ )

2

|α− 2|
+ 1

)α
2

− 1

)
, (3.18)

where α is the shape parameter that controls robustness and β > 0 is the scale parameter that

controls the size of the quadratic bowl near x = 0. We present a visual representation of the Barron

loss curves for different α values in Figure 3.5 (a) and the corresponding derivatives in Figure 3.5

(b). The Barron loss in (3.18) approaches the standard L2-loss in limit as α tends to 2 and for α = 1,

it simplifies to the smoothed L1-loss or the pseudo-Huber loss. For α = 0, it yields the Cauchy

loss, α = −2 results in the Geman-McClure loss, and for α = −∞, it simplifies to the Welsch loss

in limit. Although Barron loss cannot yield the L1-loss for any value of α, it approximates the

L1-loss for α = 1, when x >> β, that is, f(x; 1, β) ≈ |x|
β − 1 [26]. Some properties of Barron loss

make it well-suited for use in gradient based optimization. For instance, Barron loss is smooth over

its input and parameters, its value is zero at the origin and increases monotonically with respect
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Figure 3.5. (a) Barron loss curves and (b) their corresponding gradients for various values of the
robustness parameter α. Note that different values of α show how differently the loss curves and
their corresponding gradients evolve. Specific values of α result in the well-known loss functions,
for example, α = 2 yields the L2 loss and α = 1 results in the pseudo-Huber loss.

to |x|. Owing to these useful properties, Barron loss has been successfully applied in multiple

machine learning applications [26, 188, 190] and in this work, we employ it to derive a generalized

framework for stochastic PCA algorithms offering varying robustness against outliers. Specifically,

we propose a generalized framework for Oja-type stochastic PCA algorithms which includes a family

of algorithms whose outlier-resistance can be controlled via the robustness parameter α. In the

following, we present the problem formulation and derivation of our generalized framework.

3.4.1 Barron Loss

3.4.2 Problem Formulation

In our derivation, without the loss of generality, we fix the scale parameter of the Barron loss to

β = 1. Nevertheless, our analysis holds for general β values. Given data measurements x arriving

from a distribution D, we strive to find an orthonormal basis of size D ×K that optimizes

argmax
Q∈SD,K

E
x∼D

{
f
(
∥Q⊤x∥F ;α, β = 1

)}
, (3.19)

where f(∥Q⊤x∥F ;α, β = 1) = |α−2|
α

((
∥Q⊤x∥2F
|α−2| + 1

)α
2

− 1

)
is the Barron loss with objective

∥Q⊤x∥F . Hereon, for brevity in notation, we drop β in the Barron loss notation for the proposed

generalized stochastic PCA framework as it is set to one and does not affect the loss function. We
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note that different values of α yield different step-sizes for the Oja algorithm and therefore different

amount of robustness. Specifically, lower values of α offer higher outlier-resistance compared to

higher α values. For example, when α = 2, the objective in (3.19) simplifies to f(∥Q⊤x∥F ;α, β =

1) = 1
2∥Q

⊤x∥2F which is the L2-loss and when α = 1, f(∥Q⊤x∥F ;α, β = 1) = (∥Q⊤x∥2F + 1)
1
2 − 1,

which is the of pseudo-Huber loss. In the sequel, we present the stochastic gradient of the objective

in (3.19) and use it with projected gradient ascent to estimate the Q ∈ SD,K that solves (3.19).

3.4.3 Proposed Generalized Framework

The expected value in (3.19), Ex∼D

{
f
(
∥Q⊤x∥F ;α, β = 1

)}
= Ex∼D

{
|α−2|
α

((
∥Q⊤x∥2F
|α−2| + 1

)α
2

−

1

)}
can be sample average approximated as 1

N

∑N
t=1

{
|α−2|
α

((
∥Q⊤xt∥2F
|α−2| + 1

)α
2

− 1

)}
, whose

gradient with respect to Q can be shown to be 1
N

∑N
t=1

(
∥Q⊤xt∥2F
|α−2| + 1

)α
2
−1

xtx
⊤
t Q. In a practical

streaming application, one may not have access to all the N measurements to begin with as they

may arrive incrementally over time. In order to process streaming data efficiently, similar to Oja’s

method [18], we approximate the batch gradient by the stochastic counterpart that relies on just

one sample at each update index t, resulting in the stochastic gradient

(
∥Q⊤xt∥2F
|α−2| + 1

)α
2
−1

xtx
⊤
t Q.

We employ this single-sample approximated gradient in projected gradient descent to obtain the

generalized framework

Qt ← P
(
Qt−1 + ηt

(∥Q⊤
t−1xt∥2F
|α− 2|

+ 1

)α
2
−1

xtx
⊤
t Qt−1

)
, (3.20)

where the step-size (or learning rate) ηt =
γ
t , such that

∑+∞
t=1 ηt = +∞, while

∑+∞
t=1 η

2
t < +∞ to

ensure convergence [18]. Defining η̃t = ηt

(
∥Q⊤

t−1xt∥2F
|α−2| + 1

)α
2
−1

, we obtain a simplified version of

(3.20) as

Qt ← P
(
Qt−1 + η̃txtx

⊤
t Qt−1

)
, (3.21)

which resembles Oja’s algorithm in (3.6) with step size η̃t. That is, the proposed update generalizes

Oja’s algorithm with a different step-size at each update index t that is a function of γ, Qt−1, xt,

and α. For instance, by setting α = 2, the update in (3.20) simplifies to Oja’s update exactly, but

may be sensitive to outliers due to the squared emphasis on each measurement, including outliers.
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Proposed Generalized Framework for Oja-type Stochastic PCA

Input: {xt}t=1,2,...,N , γ ∈ N, Q0 ∈ SD,K , and α ∈ R
1: for t = 1, 2, . . . , N

2: Qt ← Qt−1 +
γ
t

(
∥Q⊤

t−1xt∥2
F

|α−2| + 1

)α
2 −1

xtx
⊤
t Qt−1

3: Qt ← QR(Qt)

4: end for

Output: QN

Figure 3.6. Proposed generalized algorithm for Oja-type stochastic PCA.

Values of α < 2, impart robustness by down-weighting the influence of outliers compared to inliers.

Specifically, by simply tuning the value of α, the user can control the robustness offered by the

update in (3.20) per application. Another way to perceive this is that the proposed framework can

impart robustness to Oja’s algorithm by choosing a different step-size at each update index. We

present a pseudo-code for the proposed generalized Oja-type stochastic PCA algorithm in Figure

3.6.

A previous work in [27] noticed the sensitivity of Oja’s method to outliers and proposed a robust

counterpart of Oja’s algorithm named R-SGD1, with the update Qt ← P(Qt−1 + ηt
xtx⊤

t Qt−1

∥Q⊤
t−1xt∥F

).

Interestingly, our general algorithm for α = 1 obtains the update Qt ← P
(
Qt−1+ηt

xtx⊤
t Qt−1

(∥Q⊤
t−1xt∥2F+1)

1
2

)
and in practice, it holds that ∥Q⊤

t−1xt∥2F >> 1, and therefore our algorithm further simplifies to

Qt ← P(Qt−1 + ηt
xtx⊤

t Qt−1

∥Q⊤
t−1xt∥F

), coinciding with R-SGD1 [27] as also verified by our experimental

studies. Therefore, our framework includes the fundamental Oja’s algorithm as well as the robust

counterpart R-SGD1 [27], along with any variants in between. Moreover, for values of α < 1, we

can obtain algorithms more robust compared to R-SGD1 while processing outlier-corrupted data

and for values of α > 2, we can obtain algorithms that converge faster on average under nominal

conditions. In addition, our experimental studies demonstrate that the variance of the stochastic

gradient of Oja’s algorithm is high as it takes a larger step in the direction of the noisy gradient

compared to robust counterparts as noted in [149, 156, 157]. The size of the step taken by the

proposed framework in the direction of the noisy gradient can be controlled via the robustness

parameter α and therefore for low values of α, our algorithm’s variance is minimal and converges

to low subspace error even with a single pass on the data.

Outlier-resistance of the proposed framework for α < 2. We observe that Oja’s iteration

(ignoring the orthogonalization) can be rewritten as Qt ← Qt−1 + ηt
xtx⊤

t Qt−1

∥xtx⊤
t Qt−1∥2

∥xtx
⊤
t Qt−1∥2,

where
xtx⊤

t Qt−1

∥xtx⊤
t Qt−1∥2

is the gradient direction (with unit magnitude) and ∥xtx
⊤
t Qt−1∥2 is the gradient

magnitude, which is upper-bounded by ∥xtx
⊤
t ∥2∥Qt−1∥2. Since ∥Qt−1∥2 = 1, ∥xtx

⊤
t Qt−1∥2 ≤

∥xtx
⊤
t ∥2 = ∥xt∥22. That is, the magnitude of Oja’s step in the direction of the gradient is at

most quadratic in the magnitude of xt, which may yield a large value if xt is an outlier, thereby
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misleading the updates in the direction of the outlier with a large step. Similarly, the update of the

proposed method can be expressed as Qt ← Qt−1+ηt
xtx⊤

t Qt−1

∥xtx⊤
t Qt−1∥2

(
∥Q⊤

t−1xt∥2F
|α−2| +1

)α
2
−1

∥xtx
⊤
t Qt−1∥2.

We observe that the gradient direction is the same as that of Oja, but the gradient magnitude,(
∥Q⊤

t−1xt∥2F
|α−2| +1

)α
2
−1

∥xtx
⊤
t Qt−1∥2, is different. In the sequel, we show that the gradient magnitude

of the proposed update is less than that of Oja for α < 2, thereby making the proposed method more

resistant to outliers. Firstly, we note that for α < 2, α
2 − 1 < 0 and ∥Q⊤

t−1xt∥22 >> 1 in practice,

resulting in a gradient magnitude of
|α−2||

α
2 −1|∥xtx⊤

t Qt−1∥2
∥Q⊤

t−1xt∥
2|α2 −1|
2

. As stated earlier, ∥xtx
⊤
t Qt−1∥2 ≤ ∥xt∥22

and therefore the denominator, ∥Q⊤
t−1xt∥

2|α
2
−1|

2 ≤ ∥xt∥
2|α

2
−1|

2 . For α < 2, 2|α2 −1| > 0, consequently

the influence of xt on the gradient magnitude is less than quadratic and this emphasis reduces

as α is further decreased. In other words, the magnitude of the gradient step is dampened by

∥Q⊤
t−1xt∥

2|α
2
−1|

2 , thereby imparting robustness against (high magnitude) outliers. For example, if

α = 1, ∥Q⊤
t−1xt∥

2|α
2
−1|

2 ≤ ∥xt∥2 and the resulting gradient magnitude is at most linear in xt, thereby

offering robustness against outliers.

To summarize, our generalized framework offers the user the flexibility to choose an appropriate

value of α per application to achieve a sweet-spot between faster convergence and higher outlier

resistance. Additionally, our algorithm demonstrates intrinsically low gradient variance for smaller

values of α assisting in faster convergence under noise. Next, we demonstrate the efficacy of the

proposed algorithm in terms of convergence to low subspace error and outlier resistance for various

values of α on synthetic and multiple real-world datasets.

3.4.4 Experimental Studies

Synthetic Data Experiments

Convergence. We demonstrate the convergence of the proposed algorithm in terms of sub-

space estimation by forming a data matrix X = UΣV⊤ ∈ RD=3×N=750, where U ∈ SD,D,

Σ = diag(65, 30, 10), V ∈ SN,D. We compute the average subspace error

1

2K

1

S

S∑
i=1

∥PP⊤ −Q
(i)
t Q

(i)⊤
t ∥22, (3.22)

and plot is versus measurement index t in Figure 3.7, where S = 2000 is the number of realizations

over which the average is computed, K = 2 is the number of PCs we seek, P = U:,1:K , and Q
(i)
t is
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Figure 3.7. Synthetic data. Empirical convergence of the proposed stochastic Barron PCA algo-
rithm for different values of the robustness parameter α.

the estimated subspace at the i-th realization after the t-the measurement is processed.

We set the learning rate γ = 5, β = 1, and initialize all algorithms arbitrarily unless specified

otherwise. We observe from Figure 3.7 that the proposed algorithm converges to low subspace

error for various values of α. We note that the rate of convergence to low subspace error is faster

for larger values of α compared to smaller values because smaller α values impart robustness by

being reluctant to quicker updates of the algorithm.

Outlier resistance. In this experiment we demonstrate the outlier resistance of the proposed

algorithm for various α values compared to state-of-the-art stochastic PCA algorithms, a robust

variant (R-SGD1 [27]), and L1-Oja whose update is of the formQt ← P
(
Qt−1+ηtxtsign(x

⊤
t Qt−1)

)
.

Notice that the update of L1-Oja corresponds to the objective ∥Q⊤x∥1, which is robust against

outliers because of the L1-norm. To this end, we form the data matrixX = UΣV⊤ ∈ RD=4×N=1000,

where U ∈ SD,D, Σ = diag(100, 95, 1, 0.25), and V ∈ SN,D. We add additive white Gaussian noise

(AWGN) to X with signal-to-noise-ratio (SNR) 20dB. We corrupt measurements t = 350, 750

by replacing nominal data with outliers chosen arbitrarily from the outlier data matrix Xo =

UoΣoV
⊤
o , where Uo, Vo are drawn from the Stiefel manifold of conforming sizes, and Σo =

diag(600, 850, 1250, 1750). This yields an average normalized subspace distance of about 0.3

and an average angle of about 58◦ between U:,1:K and Uo:,1:K , resulting in the outliers being

significantly far from nominal data. We compute the average subspace error for K = 2 versus

measurement index (t) over 104 realizations and plot it in Figure 3.8(a) and observe that when

the data is nominal, all methods converge quickly to low subspace error. However, when outliers

are encountered at fixed indices t = 350, 750, we observe that L2-norm based methods Oja [148]
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Figure 3.8. Results on synthetic data with fixed outlier indices t = 350, 750. Average subspace
error versus measurement index t for (a) SNR = 20dB and (b) SNR = 1dB.

and Ada-Oja [151] are significantly affected, while L1-Oja demonstrates more outlier resistance

compared to Oja and AdaOja. Proposed method with larger α values are affected more by outliers.

For example, for α = 1.5, the proposed method is significantly affected by outliers whereas for

α = 0, the proposed method is unaffected by outliers and maintains the lowest subspace error

across the board. Interestingly, as previously derived in theory, the proposed method with α = 1

performs very similar to a state-of-the-art robust stochastic PCA method R-SGD1 [27].

We repeat the experiment with low SNR, specifically 1 dB and plot the results in Figure 3.8(b).

We observe that Oja converges slowly to low subspace error due to noisy gradients at each update

and it is significantly affected by the outliers fixed at indices t = 350, 750. On the other hand, we

notice that AdaOja quickly converges to low error owing to its adaptive step size that is able to

account for lower SNR, however, it is significantly affected by outliers. The proposed method for

lower α values converges faster to lower subspace error and demonstrates more resistance against

the outliers compared to higher α values. Specifically, for α = 0, the proposed method quickly

converges to low subspace error and remains there regardless of the occurrence of outliers, whereas

for α = 1.5, the proposed method’s performance approaches that of Oja – slow convergence and

high outlier susceptibility.

Next, instead of fixing the outlier indices beforehand, we let each measurement be corrupted by

outlier with probability 2.5% and plot the resulting average subspace error versus update index in

Figure 3.9(b). We set the SNR to 4dB in this study and observe that Oja’s method converges slowly

and to higher subspace error because of the probability of each measurement being corrupted by an

outlier, albeit with a small probability. AdaOja performs similarly by converging to higher subspace
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Figure 3.9. Results on synthetic data with SNR=4dB and each measurement corrupted by an
outlier with some probability. Average subspace error versus measurement index t for probability
of outlier corruption per frame (a) = 0 and (b) = 2.5%.

error on average. L1-Oja is able to achieve low subspace error owing to its outlier resistance, but

converges slowly. The proposed method for lower α values converge to lower subspace errors faster

compared to higher α values, demonstrating the superior outlier resistance of the proposed method

for low α values. For the sake of comparison, we present the performance of all algorithms with zero

probability of corruption per measurement in Figure 3.9(a). The comparison between 3.9(a) and

3.9(b) clearly depicts the outlier sensitivity of Oja, AdaOja, and the proposed method for larger α

values, while reinforcing the outlier resistance of the proposed method with low α values.

Our synthetic data studies demonstrate the generality of the proposed framework in terms of the

speed of convergence to the underlying ground-truth subspace and the level of outlier resistance

for different values of α. In appendix A, we offer a thorough comparison of our method with other

state-of-the-art online non-Oja-type robust and non-robust algorithms.

Real-world Data Experiments

Glare/shadow artifact removal in face images. In this experiment, we operate on the

Extended Yale Face Database B [191]. The dataset consists of face images of 28 subjects captured

under 64 varying illuminations in 9 different poses. We select the face images with front pose

of individuals under 64 varying illuminations, resize each image to 173 × 152 and form the data

matrix by vectorizing each image and stacking them as the columns of X of size 26296×64. We note

that the face images (with the same pose) form a lower-dimensional subspace while the varying
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Figure 3.10. Glare/shadow removal results. Comparison with state-of-the-art Oja type methods.
Rows 1 - 3 correspond to subject 05, rows 4 - 6 correspond to subject 09, and rows 7 - 9 correspond
to subject 18 respectively. For each subject, we demonstrate the glare/shadow artifact removal at
frame indices t = 40, 46, and 54.

illumination resulting in glare and shadows on the face constitute sparse outliers [40]. We aim

to perform glare/shadow of any image vector xt, where t = {1, 2, . . . 64} by projecting it onto

the subspace estimated after processing the t-th image vector as QtQ
⊤
t xt, with a learning rate

ηt = 10−3/t. We use this learning rate for all out studies on real-world datasets. It is known that
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Figure 3.11. Video background/foreground separation. Comparison with state-of-the-art Oja type
methods. Rows 1 - 5 correspond to frame indices t = 100, 120, 140, 160, and 165.

around a subspace of K = 9 well approximates the face images under varying illumination [27, 192]

and with this motivation, we use K = 9 in our study. We present the glare removal results for

frame indices t = 40, 46, 54 of subjects 5, 9, and 18 in Figure 3.10 and observe that L2-norm based

methods Oja [148] and Ada-Oja [151] retain most of the glare/shadows on the face. The robust

counterpart R-SGD1 [27] performs better than Oja and AdaOja, similar to the proposed method

with α = 1. The proposed method with low α values result in effective glare/shadow removal and

smoothen the features of the face. By tuning the α values, we are able to retain more facial features

versus more glare. Moreover, in order to demonstrate our claim of making Oja’s method resistant

to outliers by choosing a different step-size per update, we hand-tune the step-size ηt = 10−7/t for

Oja’s method and observe that the glare/shadow artifact removal performance is much improved.

Foreground/background separation in surveillance videos. Video foreground extraction

is an integral part of many applications including real-time gesture/object identification, human-

computer interaction, security surveillance, and traffic monitoring [193]. The static background of

all frames of the video spans the common nominal subspace, whereas moving components in the

foreground such as people and vehicles constitute intermittent outliers. Common foreground/back-

ground separation methods first estimate the underlying background of the video and then subtract

it from the original frame to obtain any foreground objects. In this experiment, we make use of a

video recorded at a shopping center in Portugal, made available in the benchmark CAVIAR dataset

[144]. The video captures the frontal video of the mall corridor with stationary background and
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Figure 3.12. Video Background/foreground separation structural similarity index (SSIM) of the
estimated background and the ground-truth background versus frame index (t).

sparse foreground movement of shoppers. In order to achieve a manageable computational burden,

we resize the original frame size by 50% to 144× 192 and operate on N = 175 frames. We perform

three different types of experiments on this dataset. First, we demonstrate the foreground/back-

ground separation performance of each method on the original dataset. Next, we introduce salt &

pepper noise with small density to each frame of the video and plot the structural similarity (SSIM)

[194] of the estimated background and the ground-truth background. Finally, we introduce occlu-

sions in terms of white patches to simulate outliers and plot the SSIM of the estimated background

and the ground-truth background.

Foreground/background separation under nominal conditions. For every frame of the video, we

obtain the static background at the particular frame index t by projecting the processed frame

onto the estimated subspace as QtQ
⊤
t xt, with K = 8. We present the estimated background

frames of frames t = 100, 120, 140, 160, 165 in Figure 3.11 and observe that across all frames, Oja

retains much of the foreground. AdaOja performs marginally better owing to its adaptive step-size

selection per update. Oja with a hand-tuned step-size of 8·10−8/t performs slightly better than Oja.

The robust algorithm R-SGD1 performs better than Oja but retains some part of the foreground,

similar to the proposed method for α = 1. L1-Oja demonstrates its robustness by eliminating most

of the foreground. As expected, the proposed method obtains a cleaner background with lesser

foreground component for smaller values of α. Specifically, for α = 0.75, the proposed method

obtains the best estimate of the background across all frames.
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Foreground/background separation under salt & pepper noise. We read in [195–197] that salt &

pepper noise is a common occurrence in images and video surveillance due to acquisition and/or

transmission errors. In order to evaluate the performance of the proposed method under noise, we

introduce salt & pepper noise with a small density of 2%. We evaluate the background estimation

performance by computing the structural similarity index (SSIM) of the estimated background

frame and the ground-truth background frame, which is defined for any two images X and Y as

[194]

SSIM(X,Y) =
(2µxµy + c1)(2σxσy + c2)

(µ2x + µ2y + c1)(σ2x + σ2y + c2)
, (3.23)

where µx is the average pixel intensity of X, µy is the average pixel intensity of Y, σ2x is the

variance of the pixel intensities of X, σ2y is the variance of the pixel intensities of Y, c1 = (k1L)
2

and c2 = (k2L)
2 are two variables that prevent the division with a weak denominator, with k1 = 0.01

and k2 = 0.03 by default and L is the dynamic range of the pixel intensities (e.g., 255 for 8-bit

gray-scale images). We note that SSIM(X,Y) is bounded by one and is equal to one only if

X = Y and in general a higher value of SSIM signifies better structural similarity between X

and Y. Keeping all the parameters of the experiment the same as before, except the added salt

& pepper noise with density 2%, we plot the average SSIM versus frame index t in Figure 3.12

computed over 1000 independent realizations of noise in order to demonstrate the evolution of the

proposed algorithm under noise and observe that Oja’s method does not improve over t due to

the noise in each frame. Hand-tuning the step-size of Oja to 8 · 10−8/t (same as before) yields

better performance, comparable to the proposed method with α = 1.1. AdaOja demonstrates good

performance, similar to R-SGD1, and the proposed method with α = 1, owing to its adaptive step-

size. We note that L1-Oja performs better than Oja with the same step-size, but by setting the

step size to 2 · 10−5/t, it performs the best, very similar to the proposed algorithm with α = 0.75.

As noted in previous experiments, the proposed method is capable of generalizing the performance

of Oja and other robust variants, with lower values of α yielding higher noise immunity and outlier

resistance. Next, we vary the noise density from 0% to 5% in steps of 1% and plot the average

SSIM of the last 75 frames of the video computed over 1000 independent realizations of noise in

Figure 3.13. We observe that Oja is significantly affected by noise and its susceptibility to noise can

be controlled by setting its step-size to the same value as before, 8 · 10−8/t. AdaOja is relatively

more robust against noise, similar to our observations in previous experiments. L1-Oja with a

step-size of 2 · 10−5/t performs well, demonstrating high noise immunity. The proposed method

with α = 0.75 on the other hand performs the best with the highest noise immunity across the

board. Higher values of α results in high noise susceptibility owing to larger steps along the noisy
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Figure 3.13. Video Background/foreground separation structural similarity index (SSIM) of the
estimated background and the ground-truth background versus salt & pepper noise density.

gradient. Finally, we demonstrate the robustness of the proposed method for low α values when

the processed data contain outliers.

Foreground/background separation under arbitrary occlusions. In this experiment, we operate with

the original dataset (no noise), but we simulate outliers through arbitrary occlusions of a given

frame. A corrupted frame contains a square white patch of size 75 × 75 whose entries are all

255, placed at an arbitrary position in the image. Similar to previous experiment, we report the

performance by computing the SSIM of the last 75 frames. We vary the corruption probability

per frame in the range [0 : 10% : 50%] and compute the SSIM of the estimated background frame

with that of the ground-truth frame, computed over 500 realizations of the experiment. We plot

the average SSIM versus occlusion probability per frame in Figure 3.14 and observe that Ada Oja

is affected the most by outliers in the form of occlusions. Interestingly, L1-Oja shows degraded

performance with increasing occlusion probability. Oja’s method is also significantly affected by

outliers, whereas the proposed method with lower α values demonstrate superior outlier resistance

and their outlier resistance vanes as α increases. Similar to previous observations, R-SGD1 and the

proposed method for α = 1 demonstrate the same performance across all occlusion probabilities.

Classification of Wisconsin Breast Cancer data. In this experiment, we perform nearest

subspace (NS) classification on the Wisconsin breast cancer dataset [186, 187] in two parts. Firstly,

we compute the F1-measure versus measurement index t using the original dataset. Next, we sim-
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Figure 3.14. Video Background/foreground separation structural similarity index (SSIM) of the
estimated background and the ground-truth background versus probability of occlusion per frame.

ulate outliers in the dataset by mislabelling each measurement with some probability. We vary the

mislabeling probability per measurement and compute the F1-measure per mislabeling probability.

As noted earlier, the dataset consists of 569 samples in total, with 212 samples belonging to the

benign class and 357 samples belonging to the malignant class. Out of these measurements, we ar-

bitrarily choose 150 measurements per class for training and 25 measurements per class for testing

at each realization of the experiment. In nearest subspace classification, we estimate the subspace

of each class using the corresponding training data. We project each held-out test data point onto

both subspaces and measure the corresponding projection magnitudes and assign it to the class

whose subspace yields the higher projection magnitude. Mathematically, at any update index t,

assign the i-th test data x
(i)
test to class 1, if ∥Q(1)

t Q
(1)⊤

t x
(i)
test∥2F > ∥Q(2)

t Q
(2)⊤

t x
(i)
test∥2F , else assign it to

class 2, where K = 3, Q
(1)
t and Q

(2)
t are the estimated subspaces of class 1 and class 2 respectively

at update index t. The F1-measure is measured as the harmonic mean of precision and recall, that

is, F1-measure = 2 precision·recall
precision+precision

, where precision = TP
TP+FP , recall = TP

TP+FN , TP is the

number of true positive predictions, FP is the number of false positive predictions, and FN is the

number of false negative predictions.

Evolution of the classification performance. We compute the average precision (as explained earlier)

over 4000 realizations of the experiment and plot it versus the measurement index t in Figure 3.15,

where we observe that Oja evolves slowly to higher average f1-measure. Hand-tuning the step

size to 2.5 · 10−6/t results in a better performance for Oja. AdaOja quickly achieves relatively
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Figure 3.15. Average F1-measure versus measurement index (t) on the Wisconsin breast cancer
dataset.

high average f1-measure but converges close to Oja with handpicked learning rate. L1-oja adapts

slightly slower but converges to higher average F1-score. We observe that the proposed method

with lower α values evolve slower, but converge to higher average F1-scores. This demonstrates the

trade-off between faster convergence versus higher outlier-resistance controlled by the value of α.

For the sake of baseline comparison, we plot the F1-score obtained by k-nearest neighbor (k-NN)

classification with k = 1, seen as horizontal black dashed line. Interestingly, we notice that L2-

based methods converge to lower F1-scores compared to the robust counterpart, L1-Oja, and the

proposed method because the original dataset consists of subspace outliers with high magnitude.

We present a detailed discussion of this in Appendix A.

Classification performance under mislabeling. In this experiment, we simulate outliers in the dataset

by introducing mislabeling between classes. Specifically, we interchange the labels of each training

datum with some probability. We vary the mislabeling probability per measurement and compute

the average F1-measure at the last update. The average F1-measure is computed over 5000 re-

alizations and plotted versus mislabeling probability per measurement in Figure 3.16, where we

observe that k-NN’s performance severely degrades under mislabeling. L2-based approaches Oja,

Oja with handcrafted learning rate, and AdaOja are also significantly affected by mislabeling. L1-

Oja, R-SGD1, and the proposed method demonstrates remarkable resistance against mislabeling.

The proposed method with α = 0.95 shows the best performance across increasing probability of
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Figure 3.16. Average F1-measure versus probability of mislabeling per frame on the Wisconsin
breast cancer dataset.

mislabeling per frame, reinforcing the superior outlier resistance of the proposed method with low

α values.

3.5 Conclusions

In this chapter, we propose algorithms for outlier-resistant stochastic PCA. First, we propose a

modified L1-norm stochastic PCA for K = 1 with formal convergence guarantees. Next, we pro-

pose a generalized framework for Oja-type stochastic PCA based on the Barron loss for K ≥ 1.

The proposed framework yields algorithms with varying degree of outlier-resistance depending on

the robustness parameter α. We show that the proposed method is the same as Oja update with

a different step-size. The proposed method allows the user to choose a trade-off between faster

convergence versus higher outlier resistance by tuning the robustness parameter α. Addition-

ally, by appropriately choosing the α value for the proposed framework, we can approximate the

performance of Oja, a robust variant R-SGD1, and any other Oja-type algorithm in between. In-

terestingly, we note that lower values of α not only yield higher outlier resistance, but they also

demonstrate lower gradient variance under noisy conditions. Our numerical studies demonstrate

the convergence and corroborate the sturdy outlier resistance of the proposed method on synthetic

and multiple real-world datasets.



Chapter 4

Asymptotic Theory for Lp-norm

Principal Component Analysis

4.1 Introduction

Although PCA enjoys many advantages including a simple solution via SVD [38], many works

in the literature have demonstrated the severe outlier susceptibility of PCA, and offered robust

counterparts [3–6, 27, 40]. One line of research imparts robustness to PCA by employing the

general Lp-norm as opposed to the L2-norm. Specifically it has been observed that for p < 2,

Lp-norm offers more robustness compared to the L2-norm [19–22]. Motivated by this observation,

the formulation of projection maximization PCA was generalized to the Lp-norm, giving rise to

Lp-norm principal component analysis (Lp-PCA), with p = 2 resulting in standard L2-PCA and

p = 1 yielding L1-PCA. Early algorithms for general p, that is, for 0 < p ≤ 2 were proposed in [19]

and multiple solvers were proposed for p ≤ 1 in [20–22]. In general, it is known that the algorithms

for p < 1 are more robust to outliers but converge slower compared to L1-PCA, owing to sub-linear

emphasis on each datum, whereas for p > 1, they are less robust, but converge faster. In Figure

4.1, we present the loss curves of Lp-norm for various p values in one dimension and observe that

the loss curves corresponding to larger values of p evolve much more rapidly compared to smaller

values of p as |x| increases. This demonstrates that an outlier with large magnitude results in a

significantly large loss for larger values of p.

Despite the fact that Lp-PCA algorithms (for p < 2) have demonstrated significant outlier-

resistance compared to L2-PCA, they are perceived as “robust heuristics”, owing to the lack

68
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Figure 4.1. Loss curves of Lp-norm, for various p values. x-axis represents the scalar argument x
and the y-axis represents the p-th power of absolute value of x, that is, |x|p.

of asymptotic convergence properties. Although relying on Lp-PCA algorithms for p < 2 to impart

robustness makes intuitive sense, there is a lack of understating of their asymptotic behavior, unlike

the case of L2-PCA. For the special case of p = 1, the work in [198] proved that if the data is drawn

from a zero-mean Gaussian distribution, then the L1-PC coincides asymptotically with the stan-

dard PC, therefore to the dominant eigenvector. First, we extend this result for the large family

of Elliptical distribution, which includes the Gaussian distribution. Next, we bridge the literature

gap in the understanding of asymptotic convergence of Lp-PCA for general values of p and K ≥ 1

by deriving theoretical convergence guarantees for Lp-PCA as N → +∞. Our analysis stems from

the asymptotic convergence properties of standard PCA and for the sake of completeness, we offer

a brief overview of the asymptotic theory for PCA.

4.1.1 Brief Review of Asymptotic PCA

As previously discussed in Section 3.1, it has been shown for PCA that, as the number of data points

N → +∞, the dominant PCs coincide with the dominant eigenvectors of the covariance matrix of

the data. That is, assuming the data is drawn from a zero-mean distribution D, with covariance

matrix C, the dominant K-PCs obtained by the SVD of X ∈ RD×N coincide asymptotically with

the dominant K-eigenvectors of C [199, 200]. This is a well-known asymptotic property that

motivates practitioners to rely on PCA for data analysis. Mathematically, consider independent

and identically distributed (i.i.d.) data vectors {xn}Nn=1, drawn from some distribution D. Since
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Figure 4.2. Illustration of our proof-sketch for the asymptotic coincidence of the subspaces of Lp-
PCA and PCA.

1
N ∥X

⊤Q∥2F = 1
N trace(Q⊤xx⊤Q), standard PCA in (2.22) is equivalent to the sample average

approximated version in (3.2),

argmax
Q∈SD,K

trace(Q⊤ĈQ), (4.1)

where Ĉ := 1
N

∑N
i=1 xix

⊤
i = 1

NXX⊤, based on a size-N batch of coherent data points X :=

[x1, . . . ,xN ]. For K = 1, the above expression in (4.1) simplifies to

argmax
q∈SD

q⊤Ĉq. (4.2)

By the strong law of large numbers, as N increases asymptotically, Ĉ converges to the distribution

covariance matrix C. Accordingly, (4.1) converges to trace(Q⊤CQ) = E
{∣∣Q⊤X

∣∣2}, where E{·}
returns the expected value of its argument with respect to the data distribution. Thus, the following

lemma holds.

Lemma 1 : As N increases asymptotically, the solution of (3.2), Q̂L2, maximizes q⊤Cq over SD,
coinciding with Qeig (the dominant eigenvector subspace of the covariance matrix C), spanning the

subspace corresponding to the K-highest eigenvalues of the distribution D [199, 200].

Corollary 1 : For K = 1, as N increases asymptotically, the solution of (3.4), q̂L2, maximizes

q⊤Cq over SD, coinciding with qeig, which is the dominant eigenvector of the covariance matrix

C, spanning the highest-variance line (rank-1 subspace) of distribution D.
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4.1.2 Brief Overview of Proof-sketch

We offer a brief overview of our proof-sketch in the following. We assume that the data is indepen-

dent and identically distributed (i.i.d.) from a zero-mean Elliptical distribution. Firstly, we note

that for limited N , the solutions of Lp-PCA [19] and PCA can be very different. Next, we show that

as N → +∞, the sample average approximations of PCA and Lp-PCA tend almost surely (a.s.) to

their population counterparts. Finally, we prove that the subspace spanned by Lp-PCA coincides

with that of PCA asymptotically. An illustration of our proof-sketch is presented in Figure 4.2.

4.1.3 Contributions

Our contributions in this chapter are as follows:

1. We offer the proof of asymptotic coincidence of the L1-PC and the standard PC for K = 1.

2. We show that L1-PCA is as good an estimator of the maximum-variance line (dominant

eigenvector) as PCA asymptotically, while remaining robust against outliers in the limited

data scenario.

3. We present the proof of asymptotic convergence of the Lp-PCA subspace to the L2-PCA

subspace and therefore to the dominant eigensubspace for K ≥ 1.

4. Although the dominant asymptotic Lp-PCs span the same subspace as that of the dominant

asymptotic L2-PCs, we show that the asymptotic Lp-PCs are specific rotated versions of the

dominant eigenvectors of the covariance matrix. That is, we show that asymptotic Lp-PCA

solves asymptotic L2-PCA, but not every solution of asymptotic L2-PCA solves asymptotic

Lp-PCA.

5. We offer an algorithm to derive the specific rotation matrix that obtains the asymptotic

Lp-PCs from the dominant eigenvectors.

6. We demonstrate the derived convergence theory in practice through our experimental studies

on data drawn from multiple members of the elliptical distribution.

7. Finally, we show that the proposed theory can be leveraged to initialize the iterative al-

gorithms of Lp-PCA to obtain faster and better convergence on synthetic and real-world

datasets.
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We organize the rest of this chapter as follows. In Section 4.2.1, we offer a background on Elliptical

distribution, its probability density function, some relevant properties, and highlight its application

in modeling real-world data. Followed by Section 4.3.1, where we present the coincidence of L1-

PCA and PCA for K = 1 and offer experimental studies. Finally, in Section 4.4, we generalize

this result to K ≥ 1 and Lp-PCA, where we prove that the subspaces obtained by Lp-PCA and

PCA coincide asymptotically. Moreover, we show that the Lp-PCs are specific rotated versions of

the standard PCs as N → +∞ and offer a wide variety of experimental studies to demonstrate the

proposed theory empirically.

4.2 Background on Multivariate Elliptical Distribution

4.2.1 Density

In this work, we focus on zero-mean Elliptical distributions that have a well-defined probability

density function. We denote by x ∼ ED(0D,ΣΣΣ, gD) a zero-mean Elliptically distributed multivariate

random variable x, where ΣΣΣ ∈ RD×D is a positive-definite scatter matrix and gD(·) is a non-

negative function known as the density generator such that
∫ +∞
0 u

D
2
−1gD(u)du < +∞ for any

positive u [201, 202]. The density of x ∼ ED(0D,ΣΣΣ, gD) is defined as f(x) = cD

|ΣΣΣ|
1
2
gD
(
x⊤ΣΣΣ−1x

)
,

where |·| returns the determinant of its matrix argument and cD is a normalizing constant such that∫ +∞
−∞ f(x)dx = 1 [201, 202]. For any elliptically distributed random variable, if

∫ +∞
0 g1(u)du < +∞,

then the mean vector is given by µ := E{x} and if |ψ′(0)| < +∞, then the covariance matrix is

given by C := E
{
xx⊤} = −2ψ′(0)Σ, where ψ(·) is known as the characteristic generator function

and ψ′(·) is the first derivative of ψ(·) [202, 203]. The density generator function for some members

of the Elliptical distribution is presented in Table 4.1 below, where κ for the Power Exponential

distribution is kurtosis parameter that defines the shape of the distribution, for example κ = 1

yields the Gaussian distribution, while κ = 0.5 yields the Laplace distribution [204]. For Student’s

t distribution, ν signifies the number of degrees of freedom.

Elliptical Family Member Density Generator gD(u)

Power Exponential (Generalized Gaussian) exp(−uκ

2 )

Gaussian exp(−u
2 )

Laplace exp(−u0.5

2 )

Logistic exp(−u)
(1+exp(−u))2

Student’s t (1 + 1
νu)

− ν+D
2

Table 4.1: Important members of the Elliptical Distribution and their density generator functions.
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Importantly, for any x ∼ ED(0D,ΣΣΣ, gD) and q ∈ RD, it holds that Y = q⊤x ∼ E1(0, q⊤ΣΣΣq, g1)

[201, 202]. Thus, the probability density function of Y is

fY (y) =
c1

(q⊤ΣΣΣq)
1
2

g1

(
y2

q⊤ΣΣΣq

)
. (4.3)

4.2.2 Applications of Elliptical Data

Elliptical distributions are commonly used to model financial data and consequently, they are

applied in the areas of portfolio theory and risk management [205]. In addition, they are used in

astronomy, physics, radioimmunoassay, signal processing, machine learning, and pattern recognition

[206]. Members of Elliptical distribution such as Gaussian, Laplace, Student’s t, Logistic, and

Generalized Gaussian are extensively used in practice.

For example, Gaussian distribution being one of the most widely encountered distribution in prac-

tice finds application in many areas including in image segmentation and anomaly detection [207],

face detection [208], wireless communications [209], cyber attack detection [210], financial eco-

nomics [211], and biology [212], to name just a few. Laplace distribution is used to model AC

coefficients generated by the discrete cosine transform (DCT) in JPEG image compression [213],

discrete Fourier transform (DFT) coefficient priors in speech recognition [214], and wind-shear expe-

rienced by airplanes [215]. Student’s t distribution is commonly used for cluster analysis, regression

analysis, discriminant analysis, missing data imputation, and to model stock returns [216–219]. Lo-

gistic distribution is used in applications of population growth, bioassay, medical diagnosis, public

health and social sciences [220]. Generalized Gaussian (Power Exponential) distribution [221–223]

is a notable member of the Elliptical distribution used to model Gabor coefficeint features for

face recognition in [224], multiple access interference in ultra wide-band wireless communication

systems [225], synthetic aperture radar (SAR) images [226], and echocardiographic (ECG) images

[227]. In signal processing, the generalized Gaussian distribution finds many applications as stated

in [228], including: (i) for p ≤ 1 to model interference for high to moderate signal-to-noise ratio in

ultra-wide band systems with time hopping, (ii) modeling atmospheric noises (for 0.1 < p < 0.6),

and (iii) modeling the underwater acoustic channel (for p = 2.22, generalized Gaussian models well

the ship-transit noise, while for p = 1.6, it models the sea surface agitation noise).
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4.3 Contribution 1: Asymptotic Theory for L1-PCA — One Com-

ponent

In this section, we present the coincidence of L1-PCA and PCA for K = 1. We provide a detailed

proof sketch that proves the equivalence and offer experimental studies to corroborate the proposed

theory.

4.3.1 Proposed Theorem

We start with Lemma 2 that expresses L1-PCA in an equivalent form, in terms of its maximization

argument.

Lemma 2 : The L1-PC q̂L1, solution of (2.3), also solves

max
q∈SD

1

N

N∑
i=1

|q⊤xi|. (4.4)

Considering again i.i.d. points {xn}Nn=1, drawn from D, random variables {|q⊤xi|}Nn=1 are also i.i.d.

and, by the strong law of large numbers, Lemma 2 below holds true.

Lemma 3 : As N increases asymptotically, 1
N

∑N
i=1 |q⊤xi| converges to E

{
|q⊤x|

}
.

As stated in Section 4.2.1, for any x∼ED(000D,ΣΣΣ, gD) and any given q ∈ RD, q⊤x∼E1(000,q⊤ΣΣΣq, g1).

Accordingly, it holds that [229]

E
{∣∣∣q⊤x

∣∣∣} =

∫ +∞

−∞
|y| c1

(q⊤Σq)
1
2

g1

(
y2

q⊤Σq

)
dy. (4.5)

Since g1 (·) is symmetric about 0 and |·| is an even function,

E
{∣∣∣q⊤x

∣∣∣} =
2c1

(q⊤Σq)
1
2

∫ +∞

0
y g1

(
y2

q⊤Σq

)
dy. (4.6)

Setting u = y2

q⊤Σq
, we get 2ydy = q⊤Σq du and

E
{∣∣∣q⊤x

∣∣∣} = c1 (q
⊤Σq)

1
2

∫ +∞

0
g1 (u) du. (4.7)



CHAPTER 4. ASYMPTOTIC THEORY FOR LP-NORMPRINCIPAL COMPONENT ANALYSIS75

Interestingly, E{|y|} is finite only if β =

∫ +∞

0
g1 (u) du < +∞, which holds true by the definition

of g1 (·). Based on the above it follows that

E
{∣∣∣q⊤x

∣∣∣} = c1 β (q
⊤Σq)

1
2 . (4.8)

Thus, the solution to (4.8), qL1, maximizes (q⊤Σq)
1
2 .

The above hold true for any elliptical distribution. For zero-mean elliptical distributions it holds

that

C = E{xx⊤} = αΣ, (4.9)

where α = −2ψ′(0) > 0. By (4.8), (4.9), and the monotonicity of (·)1/2, the following Lemma 3

holds.

Lemma 4: For elliptical x∼ED(0D,Σ, gD), E
{
|q⊤x|2

}
= q⊤Rq and E

{
|q⊤x|

}
in (4.8), are

maximized at the same q ∈ SD.

Finally, by Lemmas 1-4 the following Theorem 1 holds.

Theorem 1 : Consider i.i.d. data points {xn}Nn=1 from zero-mean Elliptical distribution ED(000D,Σ, gD).
As N increases asymptotically, the L1-PC q̂L1 in (2.3) coincides with qL1 in (3.8) and qL2 in (3.3).

4.3.2 Experimental Studies

In this section, we demonstrate the asymptotic coincidence of L1-PCA and PCA empirically. In our

first experiment, we show that the L1-PCA objective tends to a scaled version of the PCA objective

asymptotically, whereas for limited data, L1-PCA objective is generally not a scaled version of the

PCA objective. To that end, we draw N = 5 (non-asymptotic case) data points from N (02,C),

where C = [ 2.2501 1.3170
1.3170 1.7299 ] , to form the data matrix X = [x1,x2, . . . ,xN ] ∈ R2×N . Next, we estimate

the L1-PCA objective as 1
N ||q(θ)

⊤X||1, where q(θ) = [cos(θ), sin(θ)]⊤, for θ varied from −90◦

to +90◦ in steps of 10−3, and plot it versus θ in Figure 4.3(a). In the same figure, we also plot

the estimated PCA objective 1
N ||q(θ)

⊤X||22 versus θ and observe that the L1-PCA objective is

non-smooth, with multiple local-maxima. Moreover, the maximum value of the L1-PCA objective

does not coincide with that of PCA.

Next, we repeat the experiment for N = 105 (asymptotic case) and plot the resulting L1-PCA and

PCA objectives versus θ in Figure 4.3(b). We observe that the L1-PCA objective is (i) smooth and
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Figure 4.3. Objective value
(
1
N ||q(θ)

⊤X||1 for L1-PCA and 1
N ||q(θ)

⊤X||22 for PCA
)
versus θ for

(a) N = 5 (b) N = 105.
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Figure 4.4. Estimated MSSE versus number of processed measurements, N for (a) Gaussian and
(b) Laplace data distributions.

(ii) proportional to the square root of the PCA objective, thereby making its global maximum value

also proportional to the square root of that of PCA. Importantly, the maximizer of the L1-PCA

metric coincides with that of PCA.

In our next experiment, we demonstrate that for data drawn from members of the Elliptical distri-

bution, the optimal L1-PC tends to the dominant eigenvector asymptotically, as explained in the

following. We draw N ∈ {5, 9, 13, . . . , 54} independent data points from N (02,C) (a member of

the Elliptical distribution family), where C = [ 4.0172 3.4740
3.4740 7.9828 ] , to form the data matrix X ∈ R2×N .

Next for every N , we estimate the mean squared subspace error (MSSE) over S = 106 independent

realizations as 1
S

∑S
i=1 ||qiq

⊤
i − qeigq

⊤
eig||2F , where qi is the PC obtained after processing N data

points at the i-th realization and qeig is the dominant eigenvector of C. In Figure 4.4 (a), we plot

the estimated MSSE attained by the dominant L1-PC obtained by the optimal L1-PCA algorithm

[3] and the dominant PC obtained by SVD (PCA) versus N . We observe that PCA starts at a lower

error but as N increases, the MSSE of both L1-PCA and PCA jointly approach zero, coinciding

with qeig.
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Subsequently, we repeat the experiment with data drawn from the Laplace distribution (another

member of the Elliptical distribution family), L(02,C), where C = [ 5.6950 3.9884
3.9884 6.3050 ]. From Figure 4.4

(b), we observe that both L1-PCA and standard PCA demonstrate similar performance across N

and appear to jointly coincide with qeig for large N .

In addition, our final experiment demonstrates the asymptotic coincidence of the approximate

maximizer of the L1-PCA metric in (2.3) and the value of the metric obtained when q = qeig,

thereby showing that the L1-PC asymptotically coincides with qeig. To this end, we plot in Figure

4.5, the ratio r =
∥q⊤

eigX∥1
∥q⊤

L1X∥1
versus N ∈ {20, 40, 60, . . . , 5000}, where q∗ is the dominant eigenvector

of the covariance matrix C = [ 6.0541 0.9985
0.9985 5.9459 ] , X ∈ R2×N contains entries drawn from N (02,C), qL1

is the maximizer of ∥q(θ)⊤X∥1, q(θ) = [cos(θ), sin(θ)]⊤, for θ ∈ Θ = {−90·,−89.75·, . . . , 90·}.
Since it is infeasible to search all possible q ∈ S2 to find the maximizer qL1 of ∥q⊤X∥1, for

large values of N , we resort to a fine-approximation of it by the maximizer of ∥q(θ)⊤X∥1, over
θ ∈ Θ = {−90·,−89.75·, . . . , 90·}. We observe that the ratio r starts at a lower value initially and

increases with N . Finally for large values of N ∼ 4000, the value of r converges to 1, signifying

that the maximum L1-PCA metric ∥q⊤
L1X∥1 coincides with the value of ∥q⊤

eigX∥1.

Therefore, our numerical studies corroborate Theorem 1 by demonstrating empirically, the asymp-

totic coincidence of L1-PCA and PCA for Elliptical distribution possessing a well-defined mean.
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4.4 Contribution 2: Asymptotic Theory for Lp-PCA — Multiple

Components

In this section, we generalize the convergence theory presented in the previous section to K ≥ 1

and Lp-PCA. We offer a detailed proof sketch that proves the equivalence of Lp-PCA and PCA.

Specifically, we prove that as N → +∞, the subspaces spanned by Lp-PCs and the standard

PCs coincide. Moreover, we show that the Lp-norm principal components (Lp-PCs) are specific

rotated versions of L2-PCs. We present an algorithm to derive the rotation matrix that rotates the

asymptotic PCs to obtain the asymptotic Lp-PCs. We leverage the proposed theory to intelligently

initialize the iterative algorithms of Lp-PCA, leading to faster and/or better convergence in terms

of the Lp-PCA metric. We conclude by offering a wide variety of experimental studies to empirically

demonstrate the convergence theory.

Problem formulation of Lp-PCA. Given a data matrix X = [x1,x2, . . . ,xN ] ∈ RD×N , compris-

ing of N measurements drawn from a zero-mean D-dimensional distribution, the Lp-PCs, arranged

as the K columns of Q̂Lp are defined as the solution to

argmax
Q∈SD,K

∥Q⊤X∥pp. (4.10)

The above problem in (4.10) is equivalent to the following problem

argmax
Q∈SD,K

1

N

N∑
i=1

K∑
j=1

|q⊤
j xi|p. (4.11)

Substituting p = 2 in the above problem formulation results in the following standard PCA formu-

lation on (3.2).

4.4.1 Proposed Theorem

Considering i.i.d. data points {xi}Ni=1 drawn from any distribution D, we formalize the convergence

of the Lp-PCA objective of (4.11) as N → +∞ in Lemma 5, similar to Lemma 2 in Section 4.3.1.

Lemma 5 : The objective value of Lp-PCA in (4.11), 1
N

∑N
i=1

∑K
j=1 |q⊤

j xi|p converges almost surely

to E
{∑K

j=1 |q⊤
j x|p

}
according to the strong law of large numbers.



CHAPTER 4. ASYMPTOTIC THEORY FOR LP-NORMPRINCIPAL COMPONENT ANALYSIS79

Consequently, we obtain the following problem formulation that solves for the asymptotic Lp-PCs

QLp = argmax
Q∈SD,K

E
{ K∑

j=1

|q⊤
j x|p

}
. (4.12)

Moreover, owing to the linearity of expectation and summation, we can interchange their order with-

out the loss of generality in the objective of (4.12), that is, E
{∑K

j=1 |q⊤
j x|p

}
=
∑K

j=1 E
{
|q⊤

j x|p
}
.

Lemma 6 : For i.i.d. data points {xi}Ni=1 drawn from a zero-mean Elliptical distribution with

scatter matrix Σ, we have
∑K

j=1 E
{
|q⊤

j x|p
}
= c

∑K
j=1

(
q⊤
j Σqj

) p
2 , where 0 < c < +∞

Similar to Lemma 3, as stated in Section 4.2.1, for any x∼ED(000D,ΣΣΣ) and any given q ∈ RD,

y = q⊤x∼E1(000,q⊤ΣΣΣq). Moreover, it holds that [229]

E
{∣∣∣q⊤x

∣∣∣p} =

∫ +∞

−∞
|y|p c1

(q⊤ΣΣΣq)
1
2

g1

(
y2

q⊤ΣΣΣq

)
dy. (4.13)

Since g1 (·) is symmetric about 0 and |·|p is an even function,

E
{∣∣∣q⊤x

∣∣∣p} =
2c1

(q⊤ΣΣΣq)
1
2

∫ +∞

0
yp g1

(
y2

q⊤ΣΣΣq

)
dy. (4.14)

Setting u = y2

q⊤ΣΣΣq
, we get 2ydy = q⊤ΣΣΣq du and

E
{∣∣∣q⊤x

∣∣∣p} = c1 (q
⊤ΣΣΣq)

1
2

∫ +∞

0
yp−1g1 (u) du. (4.15)

Plugging back y = q⊤x in the above expression, we obtain

E
{∣∣∣q⊤x

∣∣∣p} = c1 (q
⊤ΣΣΣq)

1
2

∫ +∞

0
u

p−1
2 g1 (u) du. (4.16)

Since u
p−1
2 and g1 (u) are positive [230],

∫ +∞
0 u

p−1
2 g1 (u) du > 0. Interestingly, E{|y|} is finite only

if β =

∫ +∞

0
u

p−1
2 g1 (u) du < +∞. Based on the above it follows that

E
{∣∣∣q⊤x

∣∣∣p} = c1 β (q
⊤ΣΣΣq)

p
2 . (4.17)

Finally, setting c = c1β and using the above expression, we obtain
∑K

j=1 E
{
|q⊤

j x|p
}
= c

∑K
j=1

(
q⊤
j Σqj

) p
2 .
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Accordingly, from Lemmas 5 and 6, as N → +∞, we can formulate Lp-PCA for Elliptical data as

argmax
Q∈SD,K

K∑
j=1

(
q⊤
j Σqj

) p
2 . (4.18)

Assuming Σ admits eigenvalue decomposition EΛE⊤ and setting Q = ER in (4.18), we obtain the

following equivalent problem that solves for the optimal rotation matrix

R∗ = argmax
R∈SD,K

K∑
j=1

(
r⊤j Λrj

) p
2 . (4.19)

Lemma 7 : For 0 < p < 2 and R ∈ SD,K , the objective in (4.19) is upper-bounded,

K∑
j=1

(
r⊤j Λrj

) p
2 ≤

( K∑
j=1

r⊤j Λrj

) p
2

K
2−p
2 , (4.20)

and achieves equality if and only if r⊤j Λrj is constant ∀j ∈ {1, 2, . . . ,K}. The proof follows from

the Holder’s inequality [231] and is presented in Appendix B.

Lemma 8 : The upper-bound in (4.20) (ignoring the scaling) is further upper-bounded as

( K∑
j=1

r⊤j Λrj

) p
2

≤
( K∑

j=1

λj

) p
2

, (4.21)

where λj is the j-th eigenvalue (diagonal entry) of Λ.

Corollary 1 : If D = K, the above inequality simplifies to equality ∀R ∈ SK,K .

Corollary 2 : If D > K, the upper-bound is achieved in (4.21) if and only if the bottom D−K rows

of R are zeros row vectors. That is, the optimum R∗ =

[
R̃ ∈ SK,K

0D−K×K

]
, accordingly, the solution

to (4.18) is of the form ER∗ = E:,1:KR̃, where E:,1:K consist of the top-K eigenvectors of C,

since C is a positive scaling of Σ per (4.9), and we refer to R̃ as the connecting rotation matrix.

Therefore, asymptotically, the solution of Lp-PCA spans the same subspace as that of the dominant

eigenvectors (and the standard PCs). The proof is presented in Appendix B. Moreover, we note

that any rotation of the eigenvectors is a valid solution to the asymptotic L2-PCA problem, but

a specific rotation of the eigenvectors is a solution to the asymptotic Lp-PCA problem. that is,
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Pseudocode for the Connecting Rotation Matrix Computation
Input: Λ
1: Λ̃ = Λ, K = size(Λ, 1), R̃ = IK , and δ = 10−10

2: while(true)

3: if
∣∣Λ̃(end)− mean(diag(Λ))

∣∣ < δ

4: break

5: end

6: (A, i, j)← submatrix(Λ̃)

7: R′ ← rotmatrix(A, i, j,K)

8: Λ̃ = R′⊤Λ̃R′

9: R̃ = R̃R′

Output: R̃ ∈ SK,K .

Function: (A, i, j)← submatrix(B)

1: (i, j)← argmaxĩ,j̃∈{1,2,...,K}
∣∣Bĩ,̃i −Bj̃,j̃

∣∣
2: A =

[
Bi,i, Bi,j

Bj,i, Bj,j

]
3: Return A, i, j

Function: R′ ← rotmatrix(A, i, j,K)

1: R′ = IK
2: α =

A2,1+A1,2

A1,1−A2,2

3: β = 0.5cot−1(α)

4: R′
i,i = cos(β), R′

j,j = cos(β), R′
j,i = sin(β), R′

i,j = -sin(β)

5: Return R′

Figure 4.6. Algorithm to compute the connecting rotation matrix that rotates the dominant eigen-
vectors of the covariance matrix, C, to align with the asymptotic Lp-PCs.

Lp-PCA solves L2-PCA asymptotically, however, not every asymptotic L2-PCA solution solves

asymptotic Lp-PCA.

As an outcome of Lemmas 1, 5-8, the following theorem holds true.

Theorem 2 : For 0 < p < 2 and i.i.d. data points drawn from a zero-mean Elliptical distribution

with covariance matrix C, the subspace spanned by the asymptotic Lp-PCs in (4.12) coincides

with the maximum-variance subspace of the distribution and consequently, with the dominant

eigensubspace (or the asymptotic L2-PCs) of C. Moreover, the asymptotic Lp-PCs are rotated

versions of the dominant eigenvectors.

Connecting rotation matrix estimation algorithm. Equality in Lemma 7 is achieved if and

only if ∀j ∈ {1, 2, . . . ,K}, r⊤j Λrj is a constant. Moreover, per Corollary 2 of Lemma 8, for D > K,

the bottom D−K rows of the optimal rotation matrix must contain zeros. In other words, for any
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(a) (b)

Figure 4.7. Graphical illustration of the asymptotic coincidence of the subspaces of L1-PCA and
PCA for Gaussian data and K = 2. (a) N = 10, the L1-PCA plane does not coincide with that
of PCA. (b) N = 108, planes of L1-PCA and PCA coincide. The angle of rotation between the
L1-PCs and the PCs is 45◦.

K, we seek a rotation matrix of the form

R∗ =

[
R̃ ∈ SK,K

0D−K×K

]
, (4.22)

such thatR∗⊤ΛR∗ results in a matrix with equal diagonal entries, where R̃ ∈ SK,K is the connecting

rotation matrix between the dominant eigenvectors, E:,1:K , and the asymptotic Lp-PCs, QLp. That

is, we seek a K × K rotation matrix, such that R∗⊤ΛR∗ achieves unitary similarity to a matrix

with equal diagonals [232]. In order to compute the optimal rotation matrix, we need access to the

true (distribution) eigen (or singular) values. However, in a practical setting, since the population

eigen (or singular) values are unavailable, we approximate them by their sample estimates. For

any K, given the top K singular (or eigen) values, we compute the optimal rotation matrix that

rotates the dominant eigenvectors to coincide with the Lp-PCs using the algorithm in Figure 4.6

[232].

Toy example for the visual representation of asymptotic coincidence of PCA and L1-

PCA. First, we note that for K = 2, regardless of the eigen (singular) values, the optimal 2 × 2

sub-rotation matrix is always R̃ =

[
1√
2

−1√
2

1√
2

1√
2

]
and R∗ is formed by arranging R̃ on top with the

bottom D − K rows being zeros as in (4.22). That is, the asymptotic Lp-PCs are 45◦ rotated

versions of asymptotic PCs. We demonstrate this visually in Figure 4.7 for Gaussian data. We

form a data matrix X ∈ R3×N , whose entries are drawn from a multivariate zero-mean Gaussian
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distribution. Next for N = 10, we estimate the PCs using SVD and L1-PCs using the algorithm

of [6]. We observe from Figure 4.7(a) that the PCs that span the PCA plane and the L1-PCs that

span the L1-PCA plane do not coincide. That is, the L1-PCs and standard PCs span different

subspaces. However, when we set N = 108 and repeat the experiment, we observe from Figure

4.7(b) that the L1-PCA plane and PCA plane coincide exactly and span the same 2-dimensional

subspace. Moreover, the subspace angle (angle between the PCs and L1-PCs) is 45◦ as predicted

in theory.

4.4.2 Experimental Studies

In this section, we demonstrate empirically the asymptotic coincidence of Lp-PCA and PCA on data

drawn from multiple members of the Elliptical distribution. Moreover, we leverage the proposed

theory to offer intelligent initialization for the iterative algorithms of Lp-PCA, thereby resulting

in faster and/or convergence to higher objective values on both synthetic and real-world datasets

following the Elliptical distribution. Additionally, we demonstrate the general applicability of

the proposed intelligent initialization scheme by employing it on multiple real-world non-elliptical

datasets and achieving much faster and better convergence. First, we present our result on synthetic

datasets.

Studies on Synthetic Data

Asymptotic coincidence. In this experiment we demonstrate the asymptotic convergence of

Lp-PCA to the underlying dominant eigensubsapce for various p values and data distributions.

We set D = 3, K = 2, to form the covariance matrix C = EΛE⊤, where E ∈ SD×D and Λ =

diag(200, 45, 25). We draw data from zero-mean Gaussian, Laplace, and Power Exponential (or

Generalized Gaussian) distribution. The Power Exponential distribution is a generalization of the

Gaussian distribution and is parameterized on a shape parameter κ. For κ = 1 and κ = 0.5,

it coincides with Gaussian and Laplace distribution respectively. Power Exponential distribution

allows for tails that are heavier and lighter than that of Gaussian for κ < 1 and κ > 1 respectively.

In our studies, we use κ = 0.75 to obtain tails heavier than Gaussian, κ = 1.5 and κ = 2.5 to

obtain tails lighter than Gaussian. We form the data matrix X ∈ RD×N for various values of

N ∈ [10, 50, 102, 103, 104, 105] and p ∈ [0.5, 0.75, 1, 1.5] and employ the iterative Lp-PCA algorithm

of [19] to obtain the respective subspaces. Next, we compute the proximity of the computed

subspace Q ∈ SD,K to that of the underlying optimal eigenbasis E ∈ SD,K by estimating the mean
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Figure 4.8. MSSE versus N for various values of p, with data drawn from (a) Gaussian, (b)
Laplace, (c) Power Exponential (κ = 0.75), (d) Power Exponential (κ = 1.5), (e) Power Exponential
(κ = 2.5).

subspace error (MSSE) as

MSSE =
1

S

S∑
i=1

∥E:,1:KE⊤
:,1:K −QiQi∥22, (4.23)
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Figure 4.9. Histogram of rotation matrix estimation error for p = 0.75, N = 10 with data drawn
from (a) Gaussian, (b) Laplace, (c) Power Exponential (κ = 0.75), (d) Power Exponential (κ = 1.5),
(e) Power Exponential (κ = 2.5). Histogram of rotation matrix estimation error for p = 0.75,
N = 106 with data drawn from (f) Gaussian, (g) Laplace, (h) Power Exponential (κ = 0.75), (i)
Power Exponential (κ = 1.5), (j) Power Exponential (κ = 2.5).
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where S is the number of independent realizations of the experiment, set to 103 in this experiment

and Qi is the subspace computed at the i-th realization. We plot the MSSE versus N for Gaussian,

Laplace, Power Exponential with κ = 0.75, 1, and 1.5 in Figures 4.8 (a), (b), (c), (d), and (e)

respectively. We observe that consistently across data distributions and various values of p, the

MSSE starts at a non-zero value for small N values, while converging to zero for large values of

N (around N = 104), demonstrating asymptotic convergence. Interestingly, we note that larger

values of p achieve faster convergence to lower MSSE.

Next, we show that not only, the Lp-PCs span the same subspace as the PCs, they are specific

rotated version of the PCs by computing the histogram of rotation matrix estimation error as ∥R∗−

R̂∥22, where R∗ =


1√
2

−1√
2

1√
2

1√
2

0 0

 as predicted by theory for K = 2, D = 3, and R̂ = E⊤Q̂Lp, where

Q̂Lp consists of the Lp-PCs estimated by the iterative algorithm of [19]. We plot the histogram of

the rotation matrix estimation error computed over 1000 realization on data drawn from Gaussian,

Laplace, Power Exponential with κ = 0.75, 1, and 1.5 data for N = 10 and p = 0.75 in Figures 4.9

(a)-(e) and observe that the estimated rotation between Lp-PCs and PCs and the expected rotation

predicted by theory do not coincide. However, for N = 106, we observe that the histogram shows

a spike at zero with a magnitude of 1000, signifying that the estimated rotation and the expected

rotation coincide exactly across all realizations. We repeat the experiment for p = 1 in Figure 4.10

and make similar observations.

Intelligent initialization for large N . In the next set of experiments, we leverage the pro-

posed theory to intelligently initialize the iterative algorithms of Lp-PCA. Traditionally, Lp-PCA

(and L1-PCA) algorithms are initialized randomly or at the estimated dominant eigenvectors of

the covariance matrix [4, 6, 19, 22, 233]. We demonstrate that such initialization schemes are

outperformed by the proposed intelligent initialization, wherein we initialize at specific rotation

of the dominant eigenvectors as obtained by the algorithm in Figure 4.6. We observe that the

proposed initialization consistently outperforms other initialization schemes across different algo-

rithms and datasets. Specifically, since we initialize at the expected solution (rotated asymptotic

PCs), the iterative algorithms converge at the initialization for large N and converge faster to

better L1-PCA objective value in very few iterations for small N . Firstly, we plot the L1-PCA

objective value 1
N ∥Q

⊤X∥1 versus the number of iterations of the algorithm in [6], where Q is the

L1-subspace estimated by the algorithm of [6], X ∈ RD=3×N=15000 is the data matrix with entries

drawn from different distributions in Figure 4.11. Results for data drawn from zero-mean Gaussian,

Laplace, Logistic, Power Exponential with κ = 0.75, 1.5, and 2.5, and Student’s t with degress of
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Figure 4.10. Histogram of rotation matrix estimation error for p = 1, N = 10 with data drawn from
(a) Gaussian, (b) Laplace, (c) Logistic, (d) Power Exponential (κ = 0.75), (e) Power Exponential
(κ = 1.5), (f) Power Exponential (κ = 2.5). Histogram of rotation matrix estimation error for p = 1,
N = 106 with data drawn from (a) Gaussian, (b) Laplace, (c) Logistic, (d) Power Exponential
(κ = 0.75), (e) Power Exponential (κ = 1.5), (f) Power Exponential (κ = 2.5).
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Figure 4.11. L1-PCA objective versus number of iterations for p = 1, N = 15000, with different
initializations and data drawn from (a) Gaussian, (b) Laplace, (c) Logistic, (d) Power Exponential
(κ = 0.75), (e) Power Exponential (κ = 1.5), (f) Power Exponential (κ = 2.5), (g) Student’s t
(ν = 2.25), (h) Student’s t (ν = 2.5), and (i) Student’s t (ν = 3).

freedom ν = 2.25, 2.5, and 3 are presented in Figure 4.11 (a)-(i) respectively. We observe that

across the board, the proposed initialization leads to quick convergence to the highest objective

value. Random initialization achieves the objective value achieved by the proposed initialization

but consumes more iterations, however, initialization to eigenvectors (or L2-PCs) takes the longest

to converge and at convergence, it achieves lower L1-PCA objective value. We offer more details

on why PCA initialization fails in Appendix B. We repeat the experiment with L1-BF [4] in Figure

4.12 for N = 1500, wherein we observe that random initialization and PCA initialization require

significantly more iterations to converge, although random initialization is slightly better compared

to PCA initialization. Interestingly, a special initialization scheme proposed in [4], namely the
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Figure 4.12. L1-PCA objective versus number of iterations of the L1-BF algorithm for p = 1,
N = 1500, with different initializations and data drawn from (a) Gaussian, (b) Laplace, (c) Power
Exponential (κ = 0.75), (d) Power Exponential (κ = 1.5), (e) Power Exponential (κ = 2.5), (f)
Student’s t (ν = 2.25), (g) Student’s t (ν = 2.5), and (h) Student’s t (ν = 3).

SV-sign initialization achieves much faster convergence compared to random and PCA initializa-

tion. However, the proposed initialization scheme outperforms all other initialization schemes by

converging extremely quickly to the highest metric value across the board.

Intelligent initialization for small N . In this experiment, we demonstrate the benefit of

the proposed initialization scheme on datasets with small values of N . Specifically, we plot the

L1-PCA objective achieved by L1-BF [4] versus the number of iterations of the algorithm for

various initializations on Gaussian, Laplace, and Logistic data with N = 100 in Figures 4.13 (a)-(c)

respectively. We observe that the proposed initialization converges closest to the optimal L1-PCA

metric obtained by the optimal algorithm of [3] across all datasets. The SV-sign initialization
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Figure 4.13. L1-PCA objective versus number of iterations of the L1-BF algorithm for p = 1,
N = 100, with different initializations and data drawn from (a) Gaussian, (b) Laplace, and (c)
Logistic.

proposed in [4] demonstrates the next best performance followed by random initialization, and

PCA initialization.

This concludes our experiments on synthetic data. In summary, we have empirically demonstrated

the proposed convergence theory on various members of Elliptical distribution for different values

of p. Moreover, we illustrate the superior advantage of the proposed intelligent initialization scheme

for faster and/or better convergence in terms of the Lp-PCA metric.
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Figure 4.14. L1-PCA objective versus number of iterations on stock return data of Microsoft,
Boeing, and Ford collected from Jan. 2000 to Feb. 2020 for (a) p = 0.75, (b) p = 1, and (c)
p = 1.5.

Studies on Real-world Data

In this section, we take advantage of the proposed theory to initialize the iterative algorithms of

Lp-PCA intelligently. Across our experiments, we observe that the proposed initialization results

in faster convergence to higher objective value on both real-world elliptical and non-elliptical data.

Stock returns data (Elliptical). In our first experiment on real-world data, we operate on stock

return data obtained from Yahoo Finance [234]. We read in [217–219, 235] that stock returns can

be modeled well by a multivariate Student’s t distribution, a member of the Elliptical distribu-

tion. In our experiments we make use of two datasets. First dataset consists of stock returns

of Microsoft, Boeing, and Ford from January 2000 to February 2020 arranged as the columns of
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Figure 4.15. L1-PCA objective versus number of iterations on stock return data of Microsoft,
Amazon, and Netflix collected from Jan. 2010 to Dec. 2020 for (a) p = 0.75, (b) p = 1, and (c)
p = 1.5.

X = [x1,x2,x3] ∈ RD=3×N=5070, where x1, x2, and x3 are the stock returns of Microsoft, Boeing,

and Ford respectively. We zero-center the data matrix X and set K = 2 (chosen to capture at least

75% variance of the dataset in all our studies on real-world data). We plot the Lp-PCA objective

value versus the number of iterations of the algorithm in [19] for p = 0.75, 1, and 1.5 in Figures

4.14 (a)-(c), wherein we observe that the proposed initialization quickly converges to the high-

est objective value across p values, whereas random initialization and PCA initialization converge

much slower. In all our experiments involving the proposed initialization scheme, we compute the

rotation matrix, R∗, using the algorithm in Figure 4.6 and then obtain the proposed initialization

as ÊR∗, where Ê is the estimated eigenvectors of the covariance matrix (or the SVD of X).

Our second dataset X = [x1,x2,x3] ∈ RD=3×N=2768, where x1, x2, and x3 are the stock returns

of Microsoft, Amazon, and Netflix respectively from January 2010 to December 2020. We make
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Figure 4.16. L1-PCA objective versus number of iterations on body measurements data from
Kaggle for (a) p = 0.75, (b) p = 1, and (c) p = 1.5.

similar observations for the proposed initialization and random initialization as before – fast con-

vergence to the highest metric for proposed initialization and slower convergence to possibly lower

metric value when random initialization is employed. Interestingly, we observe that for p = 0.75

and 1, PCA initialization converges to much lower metric without any improvement. For p = 1.5

however, it converges to the metric value obtained by the proposed initialization after about 50

iterations. This observation is consistent with that in [19] on the existence of multiple local optima

for p ≤ 1 and the inability of the algorithm to converge to the global solution frequently. There-

fore, the above studies demonstrate that the proposed initialization is successful in achieving a high

objective value, thereby signifying convergence close to (or to) the global optimum.

Body measurements dataset (Elliptical). In this experiment, we operate on the Kaggle body

measurements dataset [236]. The dataset contains body measurements of 250 individuals, measur-
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Figure 4.17. L1-PCA objective versus number of iterations for p = 1 on texture images of (a) tree
bark and (b) leaves.

ing their age in years, height in inches, weight in pounds, chest circumference in cm, abdominal

circumference in cm, and fat percentage. We form the data matrix X of size 5 × 250 with each

row corresponding to the body measurements mentioned above except age. This dataset follows a

multivariate Gaussian distribution. We compute the objective value for p = 0.75, 1, and 1.5 using

the algorithm of [19] and plot it versus the number of iterations of the algorithm in Figures 4.16

(a)-(c). We observe that across p values, the proposed initialization converges in a single iteration

of the algorithm, while PCA and random initialization converge slightly slower.

Texture images (Elliptical). The wavelet statistics of texture images such as those of a tree

bark, leaves, grass, sand, among others follow a Generalized Gaussian distribution [223]. We make

use of texture images from the VisTex dataset [237] and form the data matrix X ∈ R3×262144,

whose columns are obtained by filtering the red, green , and blue channels of a 512 × 512 sized

image using the stationary wavelet transform with db4 wavelet as suggested in [223]. We perform

two experiments, one on a tree bark image and another on a leaves image. We plot the L1-PCA

objective value versus the number of iterations of [6] in Figures 4.17 and observe that the proposed

initialization converges in a single iteration while random and PCA initialization converge after a

few iterations.

Convolutional layer weights of a CNN (non-Elliptical). In this experiment, we operate on

the convolutional layer weights of convolutional neural networks (CNNs). In specific, we operate

on the convolutional weights of layer 14 of AlexNet [238], layer 337 of ResNet-101 [239], and layer
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Figure 4.18. L1-PCA objective versus number of iterations for p = 1 on convolutional layer weights
of (a) layer 14 of AlexNet, (b) layer 337 of ResNet-101, and (b) layer 16 of VGG-19.

16 of VGG-19 [240]. For AlexNet, the 14-th layer is a convolution layer of size 3 × 3× 128× 192,

which is reshaped into a matrix X of size 3× 73728 by arranging the mode-1 fibers of the original

convolutional layer as the columns of X. Similarly, we reshape the 337-th layer of ResNet-101 of

size 3× 3× 512× 512 into a matrix X of size 3× 786432. Finally, the 16-th layer of VGG-19 of size

3× 3× 256× 256 into a matrix X of size 3× 196608. We plot the L1-PCA objective value versus

the number of iterations of the algorithm of [6] in Figures 4.18 (a)-(b) obtained on the weights of

AlexNet, ResNet-101, and VGG-19 respectively. In consistent with our observations on elliptical

data, we observe that the proposed initialization converges at the very first iteration. Random

initialization converges slower than the proposed but faster than PCA initialization, which takes

significantly higher algorithm iterations to converge.

Fully-connected layer weights of a CNN (non-Elliptical). We operate on the fully-connected



CHAPTER 4. ASYMPTOTIC THEORY FOR LP-NORMPRINCIPAL COMPONENT ANALYSIS96

0 10 20 30 40 50

Number of iterations

0.06

0.062

0.064

0.066

0.068

0.07

0.072
O

b
je

c
ti
v
e

 V
a

lu
e

Random initialization

PCA initialization

Proposed initialization

(a)

0 10 20 30 40 50

Number of iterations

0.1

0.12

0.14

0.16

0.18

0.2

O
b

je
c
ti
v
e

 V
a

lu
e

Random initialization

PCA initialization

Proposed initialization

(b)

0 10 20 30 40 50

Number of iterations

0.045

0.05

0.055

0.06

0.065

0.07

O
b

je
c
ti
v
e

 V
a

lu
e

Random initialization

PCA initialization

Proposed initialization

(c)

Figure 4.19. L1-PCA objective versus number of iterations for p = 1 on full-connected layer weights
of (a) layer 20 of AlexNet, (b) layer 345 of ResNet-101, and (b) layer 45 of VGG-19.

layer weights of the same CNNs as in the previous experiment. Specifically, we operate on the

weights of layers 20, 345, and 45 of AlexNet, ResNet-101, and VGG-19 respectively. Layer 20 of

AlexNet is a fully-connected layer of size 4096× 4096, layer 345 of ResNet-101 is a fully-connected

layer of size 1000 × 2048, and layer 45 of VGG-19 is a fully-connected layer of size 1000 × 4096.

We compute the L1-PCA objective value of each of these layers using the algorithm in [6] with

K = 2 and plot it versus the number of iterations in Figures 4.19(a)-(c). We observe that again,

the proposed initialization leads to very quick convergence. PCA initialization achieves the next

fastest convergence, followed by random initialization.

Human activity detection dataset (non-Elliptical). In this experiment, we operate on the

human activity detection dataset [241]. The dataset consists of five human activities, namely,

sitting, standing, walking, running, and dancing. The dataset is of size 60 × 24075. We compute
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Figure 4.20. L1-PCA objective versus number of iterations on the human activity dataset for (a)
p = 0.75, (b) p = 1, and (c) p = 1.5.

the objective value of Lp-PCA for p = 0.75, 1, and 1.5, obtained using the algorithm of [5] with

K = 2 and plot it versus the number of iterations in Figures 4.20(a)-(c). We observe that the

proposed initialization scheme archives the highest metric value in the least number of iterations,

while random and PCA initializations converge slower.

Fisher Iris dataset (non-Elliptical). We operate on the Fisher Iris dataset [242] in this ex-

periment. The dataset consists of Iris flower measurements such as the sepal length, sepal width,

petal length, and petal width in cm corresponding to 3 classes of flowers, namely Setosa, Versicolor,

and Virginica. The dataset is of size 4× 150 and we set K = 2 to compute the Lp-PCA objective

using the algorithm in [19]. We plot the Lp-PCA objective value versus the number of iterations of

the algorithm for p = 0.75, 1, and 1.5 in Figures 4.21 (a)-(c) and observe that PCA initialization

converges the slowest. Random initialization converges faster. The proposed initialization yields
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Figure 4.21. L1-PCA objective versus number of iterations on the Fisher Iris dataset for (a)
p = 0.75, (b) p = 1, and (c) p = 1.5.

instantaneous convergence to the highest metric value across the board.

Ionosphere dataset (non-Elliptical). In this experiment, we make use of the Ionosphere dataset

from the UCI Machine Learning Repository [243]. This data consists of radar returns collected in

Goose Bay, Labrador, Canada. The radar system system consists of a phased array of 16 high-

frequency antennas with a total transmitted power on about 6.4 kilowatts. The transmitted signal

passes through the ionosphere, hits the free electrons in it, and returns back to the Earth. Any

received signal is labelled good if it shows evidence of structure in the ionosphere or bad if it does

not. The received radar returns are processed via an auto-correlation function with a pulse number

of 17. Each instance is complex valued and therefore there are 34 entries per measurement and a

total of 351 measurements, resulting in a data matrix of size 34 × 351. We compute the L1-PCA

objective value using the algorithm in [6], setting K = 10 and plot it versus the number of iterations
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Figure 4.22. L1-PCA objective versus number of iterations on (a) the Ionosphere dataset and (b)
the Exam Grades dataset for p = 1.

in Figure 4.22(a). We observe that the proposed initialization scheme achieves the highest L1-PCA

objective, followed by random initialization. PCA initialization achieves convergence to a lower

objective value.

Exam grades dataset (non-Elliptical). In this experiment, we operate on the Exam Grades

dataset [244], consisting of the grades of 120 students in 5 subjects on a scale of 0-100. The dataset

is of size 5 × 120. We set K = 4 and compute the L1-PCA objective value using the algorithm

in [6] and plot it versus number of iterations in Figure 4.22(b). We observe that the proposed

initialization begins at and converges the fastest to the highest objective value. PCA initialization

starts with a low objective value but recovers to the objective value achieved by the proposed

initialization scheme. Random initialization however yields convergence to lower objective value.

This concludes our studies on real-world data. Throughout our studies, we have observed that the

proposed asymptotic theory for Lp-PCA can be leveraged to initialize the iterative algorithms of Lp-

PCA intelligently to achieve superior performance in terms of faster convergence and convergence

to high objective value on both elliptical and non-elliptical real-world datasets. This indicates

that the proposed initialization scheme initializes the iterative algorithms of Lp-PCA close to

the optimum solution. We note that each iteration of the existing Lp-PCA algorithms can be

computationally intensive for large N and/or D, and enabling faster convergence (to a better

solution) by leveraging the proposed intelligent initialization scheme results in significant overall

computational cost savings.
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4.5 Conclusions

In this chapter, we offer novel asymptotic theory for Lp-PCA when the data is drawn from the

broad family of Elliptical distributions. First, we prove the asymptotic coincidence of the L1-

PCA and the standard PC for K = 1. We show that L1-PCA is as good an estimator of the

maximum-variance line (dominant eigenvector) as PCA asymptotically, while remaining robust

against outliers in the limited data scenario. Next, for K ≥ 1, we present a proof of asymptotic

convergence of the Lp-PCA subspace to the L2-PCA subspace and therefore to the dominant

eigensubspace. Moreover, we show that the asymptotic Lp-PCs are specific rotated versions of

the dominant eigenvectors of the covariance matrix and offer an algorithm to derive the specific

rotation matrix to obtain the asymptotic Lp-PCs from the dominant eigenvectors. Finally, we offer

a wide variety of experimental studies to demonstrate the derived convergence theory in practice,

including experiments on leveraging the proposed theory for intelligent initialization of iterative Lp-

PCA algorithms to achieve faster and better convergence on both synthetic and real-world datasets

belonging to Elliptical and non-elliptical distributions.



Chapter 5

Future Work

We dedicate this chapter to include the limitations and possible future extensions of this disserta-

tion. First, we identify some shortcomings and then propose future extensions to address them in

the following.

5.1 Limitations of Existing Work

In Chapter 3’s Section 3.3, for the case ofK = 1, we note that the L1-PCA objective is discontinuous

and therefore its derivative is undefined at the origin. We overcome this problem by smoothening

the L1-norm at the origin and thereby enabling the definition of the gradient. This smoothened

stochastic L1-PCA formulation in (3.11) can be solved using projected stochastic gradient ascent

as in Figure 3.1. Next, we extend our research for K ≥ 1 by employing the Barron loss with a

tunable robustness parameter α [26]. Notice that we rely on a robust loss function as opposed to

generalizing to multiple components (K ≥ 1) using Lp-norm. Although this is not a limitation, a

future research direction may include the development of stochastic Lp-PCA algorithms for multiple

components.

On the other hand, in Chapter 4, we proposed asymptotic theory for Lp-PCA, for p ∈ (0, 2).

Interesting recent work of [245] has shown that p > 2 in Lp1-PCA can be beneficial for spectral

clustering. A limitation of our theory is that it does not cover this regime of 2 < p < +∞.

Moreover, our theory proves the asymptotic convergence of the subspaces of Lp-PCA and dominant

eigenvectors, but does not provide a closed form expression for the dominant eigenvector subspace

101
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Figure 5.1. stimated mean subspace error versus N for various p values.

estimation error of Lp-PCA for limited N .

5.2 Possible Extensions of Existing Work

Based on the limitations identified in the section above, we proposed the following potential future

extensions:

• Stochastic Lp-PCA algorithms for multiple (K ≥ 1) components. Instead of devel-

oping stochastic PCA algorithms using Barron loss, it would be interesting to do so with the

Lp-norm. Specifically, since Lp-norm for p ≤ 1 has an undefined derivative at the origin, one

may smoothen it similar to our approach in Chapter 3’s Section 3.3, and develop a projected

stochastic gradient ascent algorithm to solve the corresponding problem.

• Explore asymptotic theory for Lp-PCA for p > 2. The asymptotic theory we have

derived in Chapter 4 is for p ∈ (0, 2). However, the case of p > 2 is unexplored to date and

maybe of interest in some cases, for example in spectral clustering [245].

• Develop a closed form expression of the dominant eigensubspace estimation error

of Lp-PCA for limited number of data points N . We observe empirically that Lp-PCA

for larger p values converges faster to lower subspace error. That is, for a given covariance

matrix C and number of measurements N , Lp-PCA for a larger p appears to have a lower

subspace error compared to that of smaller p values. We present an illustration of this effect

in Figure 5.1. Specifically, given data drawn from a distribution with covariance matrix C
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that admits EVD EΛE⊤ and some p ∈ (0, 2), the goal would be to derive a closed from

expression for

MSSE = E
{∥∥E:,1:KE⊤

:,1:K −QLpQLp

∥∥2
2

}
, (5.1)

where QLp consists of the K Lp-PCs. Since a closed form expresison for the above is not

known at this time, we approximate the expectation in the above expression using the sample

average computed over S = 104 independent realizations and plot it versus N in Figure 5.1,

where C = EΛE⊤, Λ = diag(50, 25, 15), and K = 2 using the expression below

Estimated MSSE =
1

S

S∑
i=1

∥∥E:,1:KE⊤
:,1:K −QLpQLp

∥∥2
2
. (5.2)

Similar to Figure 4.8, we observe that larger p values converge to lower estimated MSSE values

quicker.
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Appendix A

Chapter 3

A.0.1 Experiments on Outlier Resistance

We repeat the experiment associated with Figure 3.8 by maintaining the same setting of Sec-

tion 3.4.4 and estimate the performance of other non-Oja type algorithms including ORPCA [85],

AdaOja [151], ISVD [97], GRASTA [93], GROUSE [175], and Krasulina [155]. We compute the

average subspace error for K = 2 versus measurement index (t) over 104 realizations and plot it

in Figure A.1(a). We observe that all methods process nominal data similarly and achieve low

subspace error. However, when outliers are encountered at measurement indices t = 350, 750,

methods relying on the L2-norm, namely SVD (obtained as Q
(svd)
t ← SVD

(
[x1,x2, . . . ,xt])

)
, Oja,

ISVD, and GROUSE are significantly affected. Robust methods like L1-Oja, AdaL1-Oja (L1-Oja

with adaptive step size scheme as in [151]), GRASTA, and ORPCA offer relatively better outlier

resistance. The proposed method offers high outlier resistance, especially for lower values of α. For

α = 0, the proposed method quickly converges to low subspace error and stays there by completely

disregarding the outliers.

We repeat the above experiment with low SNR (=1 dB) and plot the results in Figure A.1(b). We

observe that L2 methods including Oja, and Krasulina converge slowly to low subspace error due

to noisy gradients at each update and it is significantly affected by the outliers fixed at indices t =

350, 750. Interestingly, Krasulina achieves lower subspace error much quicker than Oja. GRASTA,

although robust against outliers, converges slowly under noise. SVD converges the fastest because

it has access to t measurements are at update index, as opposed to just one measurement used by

other methods. Despite fast convergence initially, SVD experience performance degradation when it

126
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Figure A.1. Results on synthetic data with fixed outlier indices t = 350, 750. Average subspace
error versus measurement index t for (a) SNR = 20dB and (b) SNR = 20dB.
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Figure A.2. Results on synthetic data with SNR=4dB and each measurement corrupted by an
outlier with some probability. Average subspace error versus measurement index t for probability
of outlier corruption per frame (a) = 0 and (b) = 2.5%.

encounters outliers. Similar performance is demonstrated by ISVD. ORPCA depicts resistance and

noise. AdaOja is able to achieve high noise immunity owing to its adaptive step-size selection, but

it is misled by outliers. AdaL1-Oja leverages the adaptive step size scheme to achieve low subspace

error under noise and its reliance on the L1-norm imparts outlier resistance. The proposed method

on the other hand, converges faster to lower subspace error and demonstrates more resistance

against the outliers for lower α values.
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In our subsequent experiment, we let each measurement be corrupted by outlier with probabil-

ity 2.5% instead of fixing the outlier indices beforehand and plot the resulting average subspace

error versus update index in Figure A.2(b). We set the SNR to 4dB in this study and as ex-

pected, L2 methods like GROUSE, OJA, SVD, Krasulina, AdaOja, and Krasulina are misguided

by outliers and they converge to higher subspace error. Robust methods such as AdaL1-Oja,

RSGD1, GRASTA, and ORPCA demonstrate clear resistance against outliers by converging to

lower subspace errors. The proposed method demonstrates sturdy outlier resistance for lower α

values converge to lower subspace errors faster compared to higher α values. Next, we re-run the

experiment by setting the probability of corruption per measurement to zero and plot the subspace

estimation performances in Figure A.2(a). Comparing A.2(a) and A.2(b) demonstrated the suscep-

tibility of L1-based methods to outliers, while the robust counterparts offer significant immunity

against them.

A.0.2 Glare/shadow Artifact Removal in Face Images

We repeat the experiment corresponding to Figure 3.10, with the same data and experimental

setting on other stat-of-the-art methods including SVD, ISVD, Krasulina, GRASTA, GROUSE, and

ORPCA. We present the glare/shadow artifact removal in Figure A.3 and observe that SVD, ISVD,

Krasulina, and GROUSE retain most of the glare and shadow specularities on the reconstructed

face. ORPCA, although a robust method, performs similar to L2-based methods. GRASTA,

performs well be removing most of the glare and shadow artifacts in the image. The proposed

method for α = 0.8 demonstrates the best performance by getting obtaining a smooth image of the

face free of any glare/shadow, even on face images that are mostly dark on one side, for example,

rows 3, 6, and 9.

A.0.3 Foreground/background Separation in Surveillance Videos

Finally, we repeat the experiment of Figure 3.11 with the same setting and present the performance

of other state-of-the-art methods such as SVD, ISVD, Krasulina, GRASTA, and ORPCA. We note

from Figure A.4 that SVD, ISVD, Krasulina retain the foreground in the frame. GROUSE obtains a

frame with ghostly appearance of the foreground in the estimated background. GRASTA, although

a robust method obtains an estimate of the background with some foreground in it. ORPCA and

the proposed method for α = 0.75 are able to obtain a clean estimate of the background frame

without any foreground component in it.
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Figure A.3. Glare/shadow removal results. Comparison with other state-of-the-art methods. Rows
1 - 3 correspond to subject 05, rows 4 - 6 correspond to subject 09, and rows 7 - 9 correspond
to subject 18 respectively. For each subject, we demonstrate the glare/shadow artifact removal at
frame indices t = 40, 46, and 54.
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Figure A.4. Video background/foreground separation. Comparison with other state-of-the-art
methods. Rows 1 - 5 correspond to frame indices t = 100, 120, 140, 160, and 165.
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Figure A.5. Squared column-wise L2-norms versus measurement index of the Wisconsin breast
cancer dataset.

A.0.4 Analysis of the Wisconsin Breast Cancer Dataset

Firstly, we note that the size of the dataset is 30 × 569 and compute the squared L2-norm of

each measurement. We plot it versus the measurement index in Figure A.5 and observe that some
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measurements have significantly higher norm compared to all the others. In order to quantify

how large the norms of some measurements are, we plot the mean, two standard deviations, three

standard deviations, and four standard deviations as reference points. We notice that the norm

of most measurements are around the mean, however, some measurements have norm more than

two, three, or four standard deviations from the mean, signifying much higher norm compared

to most measurements and such measurements can be deemed norm outliers. In order to check

if these measurements are subspace outliers, we follow the following procedure. We consider the

whole dataset belonging to class 1 (benign class) X1 and compute its top K PCs, U1 ∈ SD=30,K=3

via SVD. Next, we store measurements that have norm less than 3 standard deviations from the

mean in matrix X̃1 and compute its K PCs, Ũ1 ∈ SD=30,K=3. Finally, we compute the subspace

angle [246] between U1 and Ũ1 and find it to be about 60◦, signifying that the measurements with

large magnitude are also subspace outliers for class 1. For class 2, although some measurements

are norm outliers, we find them not to be subspace outliers.
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Chapter 4

B.0.1 Proof of Lemma 7

For the sake of continuity, we restate Lemma 7 here in the following. For 0 < p < 2 and R ∈ SD,K ,

the objective in (4.19) is upper-bounded,

K∑
j=1

(
r⊤j Λrj

) p
2 ≤

( K∑
j=1

r⊤j Λrj

) p
2

K
2−p
2 , (B.1)

and achieves equality if and and if r⊤j Λrj is constant ∀j ∈ {1, 2, . . . ,K}. We recall Holder’s

inequality [231], which states that for any two vectors x,y ∈ RD,

|x⊤y| ≤ ∥x∥m∥y∥n, (B.2)

where 1 < m,n ≤ +∞, such that 1
m+ 1

n = 1, with equality if and only if

(
xj

∥x∥m

)m

=

(
yj

∥y∥n

)n

, ∀j.

Now, set y = 1K (vector of all ones of size K) and xj = (r⊤j Λrj)
p/2. From (B.2), we get∑K

j=1(r
⊤
j Λrj)

p/2 ≤ {
∑K

j=1{(r⊤j Λrj)
p/2}m

}1/m(∑K
j=1 1

n
)1/n

. Setting m = 2/p, we get

K∑
j=1

(r⊤j Λrj)
p/2 ≤ {

K∑
j=1

r⊤j Λrj}p/2K1/n. (B.3)

Since m = 2/p and m > 1, p takes values between 0 and 2, that is, 0 < p < 2 and n = 2/(2 − p).

We note that the equality in (B.3) is achieved if and only if

(
xj

∥x∥m

)m

=

(
yj

∥y∥n

)n

= 1
K . We have,

132
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(
xj

∥x∥m

)m

=
(r⊤j Λrj)

mp/2∑K
j=1(r

⊤
j Λrj)mp/2

=
r⊤j Λrj∑K
j=1 r

⊤
j Λrj

. Therefore,

(
xj

∥x∥m

)m

=
r⊤j Λrj∑K
j=1 r

⊤
j Λrj

= 1
K =

(
yj

∥y∥n

)n

if

and only if r⊤j Λrj is equal (constant) ∀j. This concludes our proof.

B.0.2 Proof of Corollary 2 of Lemma 8

Lemma 8 states that the upper-bound in (4.20) (ignoring the scaling) is further upper-bounded as

( K∑
j=1

r⊤j Λrj

) p
2

≤
( K∑

j=1

λj

) p
2

. (B.4)

The corresponding corollary 2 claims that if D > K, the upper-bound in (4.21) if and only if

the bottom D − K rows of R are zeros row vectors. That is, the optimum R∗ =

[
R̃ ∈ SK,K

0D−K×K

]
,

accordingly, the solution to (4.18) is of the form ER∗ = E:,1:KR̃, where E:,1:K consist of the top-K

eigenvectors of Σ.

We recall that the objective in problem (3.1) can be rewritten as trace(Q⊤CQ) to obtain the

corresponding PCA problem

argmax
Q∈SD,K

trace(Q⊤CQ). (B.5)

The above problem in (B.5) can be recast as a problem of estimating the optimal rotation matrix

R ∈ RD,K , by setting Q = ER and solving for

R∗ = argmax
R∈SD,K

trace(R⊤ΛR) (B.6)

Clearly, the R∗ that maximizes the above problem in (B.6) also maximizes the quantity on the left

hand side of (B.4).

Now, we note that (B.5) is solved by Q of the form Q = E:,1:KR̃, where EΛE⊤ ← EVD(C),

E:,1:K consists of the dominant eigenvectors of C, and R̃ ∈ SK,K . At the optimum, the metric

in (B.5) achieves the value of
∑k

j=1 λk, where λk is the k-th eigenvalue of C. Therefore, since

IDΛID ← EVD(Λ), the optimal rotation matrix, R∗ takes the form R∗ = ID[:,1:K]
R̃ =

[
R̃ ∈ SK,K

0D−K×K

]
.

Setting R = R∗ achieves equality in (B.4). This concludes the proof.
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Figure B.1. PCA initialization occurs at the minimum of the L1-PCA objective.

B.0.3 Underperformance of PCA Initialization on Elliptical data

We offer an insight onto why PCA initialization underperforms on Elliptical data. We set D =

K = 2 in (4.20) and plot the quantities, (r⊤1 Λr1)
0.5, (r⊤2 Λr2)

0.5, (r⊤1 Λr1)
0.5 + (r⊤2 Λr2)

0.5, and

(r⊤1 Λr1 + r⊤2 Λr2)
0.5, where r1 = [cos(θ), sin(θ)]⊤, r2 = [-sin(θ), cos(θ)]⊤, and Λ =

[
200 0

0 45

]
,

versus θ ∈ {−90◦,−89.9◦, . . . ,+90◦} in Figure B.1. We observe that the L1-PCA objective metric

in terms of the rotation matrix on the left hand side of (4.20), (r⊤1 Λr1)
0.5 + (r⊤2 Λr2)

0.5 meets

its upper, bound (r⊤1 Λr1 + r⊤2 Λr2)
0.5 when θ = ±45◦. Additionally, the metric, (r⊤1 Λr1)

0.5 +

(r⊤2 Λr2)
0.5 is minimum when θ = 0◦. Note that PCA initialization coincides with θ = 0◦, therefore

corresponding to the minimum value of the metric which occurs the farthest from the maximum

value. Such initialization to a minimum value of the metric may make it infeasible for the iterative

L1-PCA algorithms to converge to better metric values, especially to obtain near-optimal or optimal

solutions.

B.0.4 Experimental Studies on the Ionosphere and Exam Grades Dataset (non-

Elliptical)

We repeat the experiments corresponding to the Ionosphere and Exam grades dataset in Section

4.4.2 by replacing the L1-PCA algorithm of [6] by L1-BF [4]. It was shown in [4] that L1-BF ob-

tains higher metric compared to other sub-optimal algorithms, especially when using the SV-sign

initialization proposed in that paper. We note that for the Ionosphere dataset, the proposed initial-

ization scheme begins at the highest objective value and converges faster than other initializations,

whereas other initialization methods take a long time to converge to smaller metric values. We note

that PCA initialization demonstrates the worst performance. Comparing Figure B.2 (a) to Figure
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Figure B.2. L1-PCA objective versus number of iterations of the L1-BF algorithm on (a) the
Ionosphere dataset and (b) the Exam Grades dataset for p = 1.

(a) (b)

Figure B.3. Illustration of the images from the VisTex dataset used in our studies on real-world
data in Section 4.4.2. (a) presents the Bark image and (b) presents the Leaves image.

4.22 (a), we observe that L1-BF is able to achieve higher L1-PCA objective values for random and

SV-sign initialization.

Finally, for the Exam grades dataset, we observe from Figure B.2 (b) that the proposed initialization

converges to the highest L1-PCA objective quickly. Other initialization methods converge much

slower. Random initialization is also able to achieve the maximum metric value obtained by the

proposed initialization scheme, as opposed to the maximum metric value obtained by the algorithm

of [6] using random initialization in Figure 4.22 (b).
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B.0.5 Illustration of the Bark and Leaves Images of the VisTex Dataset

We present illustrations of the texture images we used in our experimental study on real-world

datasets in Section 4.4.2 in Figure B.3 (a) and (b).
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