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ADAPTABILITY AND REVISABILITY IN CLIMATE MODELS 

Kristopher Edelman 

 

Abstract 

The global climate is shifting rapidly, bringing with it increased risk for climate-related harms to 
human societies. Climate science is a multi-disciplinary field, requiring experts from diverse 
specialties to collaborate in order to model complex systems. The complexity and uncertainty of 
these scientific models raise philosophical questions such as:  

• What epistemic, ethical, and social assumptions go into model creation?  
• What mathematical and statistical principles are incorporated into their design?  
• How is interpretation involved in the selection and analysis of data to generate climate 

models? 
Philosopical issues related to complexity, uncertainty, and the role of values require that 
modelers evaluate trade-offs. I argue that not only ethical values should be made explicit and 
taken into account, but also the pragmatic considerations that make models more or less useful 
for specific purposes. I conclude that effort should be invested into tracking the reliability of 
climate models and also in making assumptions explicit and revisable. 

 

 

Introduction 

Climate science is a multi-disciplinary field, integrating research from the earth sciences, 

environmental sciences, and life sciences with the study of energy systems, economic trends, and 

social policy to understand, explain, and predict the interaction between climate and other natural 

and social systems. At the core of climate science, experts from diverse specialties collaborate to 

model complex systems, primarily through computational models and simulations. The nature of 

the system under study, i.e. the climate, and the sophistication of the tools and methods used to 

do so leads to substantial complexity and uncertainty in these models and simulations, and 

consequently in the inferences climate scientists draw.  This raises philosophical questions about 

what types of assumptions are made when creating and interpreting these models and 

simulations. What ethical, epistemic, political, practical, and aesthetic considerations are made 

when selecting methods, models, goals, and data? A clear understanding of the assumptions that 

are incorporated into climate models, as well as diagnosing where and how models are limited 
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can help design social and economic policies that are sensitive to specific areas of uncertainty. In 

turn, this could better direct research which can improve the utility of models for specific ends. 

Beyond the obvious ethical problems of responsibility among nations, corporations, 

governments, and communities for addressing this problem, there are deeper philosophical and 

ethical questions about the development of climate models. First among these is whether and 

when models should value simplicity. In short, there is a tradeoff between precise and accurate 

prediction on the one hand, and efficient modeling practices that are economically feasible on the 

other. At one extreme, a model that is parsimonious leaves out too many details and possible 

interactions to be useful (Baker 2016). At the other extreme, models of excessive complexity can 

become unwieldy and costly (Helgeson et al. 2021).  

This tradeoff between “goodness of fit” and efficiency directly contributes to another 

concern for philosophers, one that is foundational to what is considered good scientific practice: 

quantifying uncertainty. Many climate models work on probabilistic representations, and for 

several reasons uncertainty plays an outsized role in this discipline. The stakes are high, but there 

are a lot of unknowns, a lot of interactions that are sensitive to initial conditions and slight 

changes in parameters, and a lot of potential feedback loops between what we know and what we 

do. Both problems--simplicity and uncertainty quantification--give rise to questions about the 

ethical and epistemic values that are in play when we select interpretations of data, models of 

best fit, and the methodologies for constructing them. How we approach and overcome these 

challenges can have an outsized impact of the utility of the knowledge we produce. In the case of 

climate change mitigation, the production of highly revisable models should be a primary focus. 

Philosophers of science have established themselves to act as both interpreters and tethers to 

the wider world in this complicated enterprise. Much of the research produced by climate 

scientists is esoteric; the implications for what they find are wide ranging and difficult to 

contextualize. Simply put, the world is messy, and the climate is a direct reflection of that 

tangled reality. Unraveling what climate scientists observe and predict is an endeavor not to be 

taken lightly, and it carries grave consequences. The received interpretations of climate research 

become policy, and policies determine how well situated we are to deal with anticipated—or 

unanticipated—changes in the world around us (Tuana 2010, Tuana 2013, Cartieri & Potochnik 

2014). 
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Simplicity, Complexity, and Probability 

That simplicity is desirable in models, calculations, arguments, and proofs has been a central 

presumption of math, science, and philosophy. William of Ockham, the medieval Franciscan 

friar and scholastic philosopher, established the principle that if something can be explained 

without appealing to hypothetical causes or entities, there is no reason to presume the existence 

of such ancillary entities, a principle known as Occam’s Razor (Baker 2016). 

The principle has been widely adopted and restated by scientists and philosophers such as 

Galileo, Newton, and Einstein, and has been applied to replace supernatural explanations with 

mechanical ones, to press for the collection of empirical data, to develop efficient methods in 

mathematics, and to explore the difference between science and philosophy. Opposed to the 

implicit superiority of simplicity are pragmatists like Quine and Sober, who argued that there are 

certain epistemic advantages associated with complexity (Baker 2016).  

Simplicity in climate models has received a good measure of attention in this regard, with 

many justifications being made for appeals to both complexity and parsimony. The models 

which are used for climate research run the gamut from highly idealized to extraordinarily 

complex, and the epistemic ramifications are not the only reason this question is relevant. 

Simulation and prediction happen in a rapidly changing world, and modeling practices need to 

operate efficiently and quickly, while simultaneously providing useful results. The pressure to 

somehow accomplish both is high.  

However, there is a great deal of ambiguity in the language around simplicity in climate 

modeling. Indeed, simplicity itself evades a straightforward and simple definition in general, and 

that is doubly true when considered here. Despite the many interpretations of the meaning of 

simplicity or the kinds of simplicity, this paper will focus on simplicity in terms of mathematical 

and technical sophistication and practical scope. For instance, there is simplicity as it regards the 

amount of variability in parameterization, the number of auxiliary assumptions, the reliance of 

models on interactions between component models and couplers, and the spatio-temporal 

resolution of the differential equations used. In some models, the ‘couplers’ themselves are 

models. This means that many larger complex models are comprised of smaller, simpler models 

(Parker 2018). 
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An obvious aspect of simplicity regarding climate modeling is in probability and statistics. 

Bertrand Russell is quoted as having once said in a 1929 lecture that “probability is the most 

important concept in modern science, especially as nobody has the slightest notion what it 

means” (Bell 1945). Probability is a word used often, but what is key to the conclusions we draw 

from those statements is how we interpret probability. Different interpretations of probability 

lead to different methods, which in turn introduce different levels of complexity and revisability. 

Typically, researchers offer what are called frequentist interpretations of probability (Mann, 

Lloyd, and Oreskes 2017). Briefly, this is a measurement of the statistical frequency of an 

outcome in observed or simulated data. When dealing with frequentist probabilities, the 

measurement commonly encountered is called the p-value. The p-value gives a numerical 

assessment as to whether an observed frequency in a sample set is statistically significant enough 

for the researcher to reject the null hypothesis, measured against some pre-determined 

confidence interval. In other words, it is the probability of giving a false positive (or negative) to 

a hypothesis test. The null hypothesis usually takes the form of little or no change in the 

measured quantity, with an alternative hypothesis which suggests that the true value differs from 

the hypothesized value (Hájek 2019; Mann, Lloyd, and Oreskes 2017). This type of statistical 

inference is the conventional practice across most of the sciences. For decades, there has been a 

discussion about the causes for adopting this standard, with accusations of traditionalism or 

conservatism among scientists standing in the way of the progress of understanding. While the 

method seems quite entrenched in scientific practice, it only saw widespread adoption in the 

1940’s (Mann, Lloyd, and Oreskes 2017). This method has significant drawbacks. With enough 

data, what is and is not statistically significant becomes more obscure, and the significance levels 

selected for are a matter of convention. In other words, they are arbitrarily selected rather than 

determined by context and specific conditions. 

The meaning of probability changes when considered under a Bayesian framework, which 

expresses probability as a measure of belief in a given event. The Bayesian methodology takes 

updates knowledge, such as historical data and past inferences, and couples that with the model 

results. The researcher then constructs conditional statements which give a more nuanced 

understanding of the likelihood and usefulness of a hypothesis (Mann, Lloyd, and Oreskes 2017). 

Notably, this methodology is used more commonly in the biomedical disciplines because it can 
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be more sensitive to the impacts of studied treatments or procedures on patients, where lives are 

at stake (Mann, Lloyd, and Oreskes 2017). Similarly, climate science deals with predictions that 

carry weighty consequences for human beings.  

Some of the greatest motivators for climate research are the effects of climate change on 

extreme weather events and the potential for rising sea-levels (Anthoff, Nichols and Toll 2010). 

Both have aggravating effects on further climate changes. The forcing effect these events 

havecreates feedback loops between extreme weather phenomena and climate patterns. 

Considering this, we require modeling practices which are revisable under changing parameters 

and sensitive to the relationship between climate research and the stakes involved (Mann, Lloyd, 

and Oreskes 2017). It has been demonstrated that increased global temperatures influence the 

frequency of daily heat extremes (Meehl et al. 2007). This affects the global hydrological cycle 

(Trenberth 2011) which in turn drives greater likelihood of precipitative events such as extreme 

rainfall or prolonged dry periods, lower snowfall in polar regions, and increased loss of sea ice. 

Floods, changing monsoon patterns, and hurricanes have increased in frequency and intensity in 

recent years (Anthoff, Nichols and Toll 2010; Trenberth 2011). These events also have effects on 

rapidly shifting coastlines, and sea level rise (SLR) compounds the effect of these phenomena on 

already vulnerable communities (Anthoff, Nichols and Toll 2010; Diaz 2016; Hooijer and 

Vernimmen 2021). At the other extreme, droughts and wildfires have become larger, longer, 

more severe, and more destructive with increasing frequency(Halofsky, Peterson, and Harvey 

2020; Meehl et al. 2007; Ruffault et al. 2020). This trend is expected to continue, and research 

points to a forcing effect these events have on the initial conditions which produce these 

phenomena in the first place (Halofsky, Peterson, and Harvey 2020; Ruffault et al. 2020). 

Considering the complex interactions between climate related disasters and the acceleration 

of climate related changes, models should be accordingly revisable as new observations and data 

about shifting dynamics becomes available. One of the ways we might achieve this is a more 

widespread adoption of Bayesian interpretations and methodologies, but the attitude towards 

changing philosophies around probability interpretations is not without opposition. Some have 

suggested that public pressure to attribute causes to climate change and weather phenomena has 

motivated scientists to draw unwarranted conclusions, and that Bayesian methodologies are more 

susceptible to this type of faulty infrence (Winsberg 2018). The case against Bayesian 
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interpretations rests on the argument that inference based on projected dynamics with 

considerable uncertainty is not reliable (Stott et al. 2016). Others suggest that Bayesian 

interpretations are vulnerable to faulty inference because of the reliance on tuning the models 

based on their ability to produce the same prior data against which they were tuned (Parker and 

Winsberg 2018).  

Another consideration when adopting a Bayesian philosophy is the possible increased 

complexity in the modeling process. Additional calculations may be required, and the assessment 

of interactions between variables and conditional statements requires supplementary analysis 

(Mann, Lloyd, and Oreskes 2017). These factors can produce added layers of complexity in an 

already highly complicated research process. However, given the advantages of Bayesian 

analysis regarding revisability and the stakes involved, it is regarded by some as the more ethical 

approach, as Michael Mann, Lisa Lloyd, and Naomi Oreskes have concluded (Mann, Lloyd, and 

Oreskes 2017).  

The additional complexity from Bayesian methodologies is one of the potential ways we can 

increase the revisability of models to improve their utility. Another is using models of fine-

grained dimensions. Recently, Nancy Tuana, Casey Helgeson, and others have made the case 

that simplicity in climate models in the context of computational resources used is most relevant 

to utility (Helgeson et al. 2021). This includes the method of calibration and tuning, which 

extends to Bayesian methodologies. Climate modeling is done iteratively. Models are run 

through computer simulations repeatedly, and the results they generate are then compared to 

prior observations and historical data. (There are a host of auxiliary assumptions behind the 

historical data themselves that I will address later.) Often, separate models are run repeatedly, 

and results are compared and contrasted to give potential ranges of outcomes, in what is called 

the ensemble method (Parker 2014; Parker 2018; Winsberg 2018). These repeated simulations 

require time, and usually numerous and powerful computer processors. Access to these 

processors is limited both by availability and by funds, since renting time on these processors is 

expensive. The more complex a simulation, the more run-time it needs, and thus the more 

expensive it is (Helgeson et al. 2021). Simpler models, therefore, are desirable in this regard.  

 There are many processes that can be approximated or ignored in a highly idealized 

model. Often, such a model is still able to describe the interaction we are interested in without 
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necessarily needing to be a precise fit for the phenomenon in the world being modeled. For 

instance, the Danish Arctic Ice Sheet model (or DAISM) is an extremely simplified 

representation of a complex landscape. It represents the arctic ice sheet as a half spheroid placed 

over a shallow conical structure of land (Helgeson et al. 2021). This is an area larger than the 

continental United States, represented as idealized geometrical shapes. However, the results we 

are interested in from it are related to snow accumulation and ice melt, and this model can serve 

that purpose well without demanding much processor time (Helgeson et al. 2021). 

As models increase in scope to include further parameterizations such as a more complete 

accounting of the carbon cycle, additional phenomena such as dynamic vegetation, or previously 

ignored or approximated interactions like microphysical effects of aerosols on cumulus clouds, 

the models quickly become very elaborate (Schmidt and Sherwood 2015). These require 

increasingly complicated statistical techniques and computational methods to ‘couple’ the 

different component models used to produce simulations, which are then typically ‘tuned’ using 

a handful of variables deemed relevant to the inquiry at hand (Parker 2018; Schmidt and 

Sherwood 2015; Winsberg 2018). There is therefore an epistemic tradeoff in climate modeling 

between the scope and the resolution, which is to say that models designed to explore or predict 

climate events on global or hemispheric scales modified or tuned for expediency or 

computational efficiency tend to have less value for impact assessment or risk analysis on 

specific localities or for isolated events (Diaz 2016; Schmidt and Sherwood 2015).  

The Dynamic Interactive Vulnerability Assessment (DIVA) model is an integrated, 

aggregated, granular database on coastal segments detailing impacts on flooding, erosion, 

wetlands, estuaries, and associated analyses. It serves as an example of a model which offers the 

possibility of modeling on a global scale with the potential for fine grained resolution. Models 

such as this are necessarily complicated, and do not escape the challenges complexity brings to 

researchers, but they offer a great degree of utility to researchers when it comes to offering 

predictions and assessments important to stakeholders (Diaz 2016). This aptly demonstrates the 

ironic and paradoxical trade-off between simplicity and complexity. There is utility in a model 

being more complex, and utility in a model being simpler. 

However, with added complexity comes the additional aspect of resistance to tuning or 

calibration. As previously stated, models are programmed into computer simulations, and the 
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results generated are then checked against prior data. The models are then tuned to more closely 

approximate prior conditions given the appropriate inputs. Once they have been tuned to a 

satisfactory level, they can be fed inputs for present or predicted future parameters (Helgeson et 

al. 2021; Parker 2018). Bayesian methods require additional runs of the simulation to build out 

posterior distributions, thereby increasing complexity and, by extension, cost in time and money. 

Therefore, complex models inhibit the researcher from being able to accumulate enough 

simulation runs to develop these distributions, distributions which are necessary to perform a 

desirable accounting of uncertainty and track its propagation in model projections (Helgeson et 

al. 2021). 

Uncertainty and Quantification 

Uncertainty is often divided into two categories, aleatoric and epistemic. The former is 

sometimes also called ontological uncertainty, and it arises from the stochastic nature of the 

phenomena being modeled. Climate modelers do not always have a comprehensive theoretical 

model for systems, and some processes have internal variability. A climate modeler’s inability to 

predict the exact weather in Rochester, NY on some given day next July is not due to a fault of 

the climate projections, but a feature of the variability in the weather. So, atmospheric climate 

models have an irreducible uncertainty which arises from the randomness built into the model. 

This randomness is generated by a lack of ability to quantify or model stochastic processes in a 

way in which they become adequately determined.  

Epistemic uncertainty follows from factors such as errors in or dearth of data, from lack 

of knowledge about which initial conditions to seed a model with, and from idealization of the 

models. For example, if a researcher were to construct a counterfactual model of Earth without 

human activity in order to investigate anthropogenic climate change, there would be elements 

that would need to be approximated with ‘best guesses,’ the researcher would have to intuit 

which initial conditions to seed the respective models with in order to generate a reasonably 

simulated Earth, and there would be a great deal of idealization of the component systems in 

order to present a relevant and useful scenario from which to draw comparisons. The reflectivity 

of the Earth, called the albedo, is often calculated as if the planet were a sphere with a uniform 

reflectivity across its surface. It is given a number between 0, representing a black body which 

reflects no solar radiation, and 1, which represents a body that is perfectly reflective. In that case 
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there are a whole host of idealizations going on, but the calculations made are still useful for 

their prescribed purposes (Winsberg 2018). 

Elements of aleatoric uncertainty in a model might be moved into the second category 

were we able to build more exact models or become better acquainted with the systems that give 

rise to it. This draws out an interesting duality in aleatoric uncertainty, in that there are systems 

which are inherently chaotic, whose randomness will never be fully predictable, and systems 

which we treat as such because we do not understand them well enough to do otherwise. For 

instance, one of the more poorly understood phenomena is cloud dynamics, which lacks a 

working comprehensive theoretical model (Winsberg 2018). Workarounds for this might be to 

create a model of atmospheric dynamics which is fine-grained enough that cloud dynamics no 

longer need to be accounted for. Ideally, however, we would figure out a way to accurately 

understand and model what is going on. If we could do so, that would move the uncertainty of 

cloud dynamics from the first camp to the second, from inherent randomness to epistemic 

uncertainty.  

 Another challenge to understanding uncertainty quantification is the distinction between 

variability and uncertainty. These are two concepts often used interchangeably in conversation, 

but for a modeler there is a significant difference. Variability refers to the range of values a given 

prediction or measurement might take across different points in space and time, while 

uncertainty refers to our inability to know the exact value of some quantity. The first is 

traditionally quantified with a distribution of frequencies across numerous instances, and the 

second by probability distributions around the uncertain value of the quantity in a singular sense. 

However, both contribute to uncertainty. 

 Uncertainty quantification is done primarily in two ways. One is the previously 

mentioned calculation of forward propagation of uncertainty through a modeling process 

(Helgeson et al. 2021). This means researchers take into account uncertainty that arises from 

particular elements in the modeling process and how that uncertainty gets carried forward 

through subsequent steps to ultimately add to the uncertainty of the results. This includes 

consideration of uncertainty in parametric data, volatility inherent in the actual variables 

researchers feed into their models, errors in calculation, and algorithmic uncertainty. This last 

component comes from the inherent deficiencies in modeling phenomena through partial 
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differential equations. These algorithms for solving the mathematical models of change in the 

stochastic phenomena cannot be calculated to perfect certainty (Winsberg 2018). 

 Uncertainty in the parameters of the model is particularly prevalent in climate science, as 

historical data which are used to construct the models in the first place come from diverse 

sources: soil sediment sampling, tree rings, speleothem analysis, ice cores, and historical records, 

among others (Schmidt and Sherwood 2015; Winsberg 2018). Often these proxies are radically 

different from one another, occurring on different timescales and in sporadic and diverse 

geographic locations (ice cores from polar regions, tree rings from old growth forests, 

stalagmites from isolated caves, etc.). As such, these proxies can provide spotty background 

information, and require radically different methods of quantification and collection (Parker 

2018). Furthermore, the quality of the data can be questionable due to the lack of certainty 

around the methods of collection historically (Winsberg 2018). Some of these historical records 

contain no description of the methods used to collect the data, which can itself be an important 

consideration. For example, different methods for collecting sea water for temperature 

measurements produce statistically significant differences (Winsberg 2018). In the 19th century, 

regular buckets were used to collect samples. Around the turn of the century, the preferred 

method became a type of canvas bucket, which eventually was replaced by specialized collection 

receptacles which in very few ways resemble what we might think of as buckets. Each of these 

apparatuses gives different temperature readings on the same sample (Winsberg 2018). With 

incomplete or unclear historical records on methods of collection, researchers must build a 

certain degree of uncertainty into the historical data they use to construct models and for 

comparison purposes. This includes making numerous auxiliary assumptions and can necessitate 

further simulation and approximation to incorporate this historical data into the modelling 

framework (Schmidt and Sherwood 2015; Winsberg 2018). 

 Each of these sources of uncertainty feeds into later stages of modeling. It is the 

challenge for researchers doing uncertainty quantification to track this uncertainty, to create a 

sub-model for the uncertainty itself, and to give a reasonable account of how it shifts the 

predictions and results of the model overall for the purpose of gauging its utility (Helgeson et al. 

2021; Parker 2018; Winsberg 2018). 
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 The second type of uncertainty quantification has to do with calibrating a model to 

determine goodness of fit, which has also been mentioned previously. Experimental results are 

compared to simulation results, and discrepancies are identified between the observational data 

and the results. The model is then varied in a systematic to account for the perceived biases. This 

mode of uncertainty quantification is also affected by the uncertainty of the historical data to 

which it is compared. Typically, a model’s effectiveness is determined by its ability to reproduce 

historical data given the appropriate starting conditions. If we want to test a model for global 

temperatures, we feed it data from some past epoch and let it run a simulation. If the model can 

approximate the changes in the average temperature we know from our historical sources, we 

judge the model to be more useful than one which cannot reproduce the historical results. 

However, uncertainty in historical data can be a concern when measuring goodness of fit this 

way (Winsberg 2018).  

Another problem for calibration is the possibility of feeding flawed assumptions into the 

model (Pielke and Ritchie 2021). Researchers are often under social or professional pressures to 

ensure their models give results that do not stray too far from the wider consensus of their peers 

(Winsberg 2012; Winsberg 2018). Eric Winsberg has proposed that there may be subtle tweaking 

of models so that the model is not rejected out of hand for giving results that are perceived as too 

radical or too different from the body of research at large. Winsberg seems to suggest that this 

causes a repression of new research or evidence which might challenge the status quo of 

modeling in the discipline at large. The concern is that the certainty with which climate scientists 

make claims is unwarranted, and such confidence may not be justified (Winsberg 2012; 

Winsberg 2018).  

Roger Pielke has pointed out the flawed socioeconomic assumptions in the 

Intergovernemental Panel on Climate Change (IPCC) scenarios, which contemporary climate 

models continue to be based on (Pielke and Ritchie 2021). The projections produced under these 

flawed assumptions about future use of land resources, fossil fuel use, and particulate pollution, 

among other things, continue to be used by governments globally to drive policy and planning 

(Pielke and Ritchie 2021). Some of these assumptions include scenarios where coal use 

continues to increase for decades, when it has already slowed, or other assumptions which fail to 

account for economic value being placed on sustainable methods of production (Pielke and 
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Ritchie 2021). Without models that disrupt the consensus, we cannot investigate which of our 

assumptions might be flawed, or where our models might be deficient. Further, Pielke notes the 

conclusion of many of these scientists that producing models which tend towards a “single ‘best 

guess’ or ‘business as usual’ scenario is neither possible nor desirable” (Pielke and Ritchie 

2021). 

 It is apparent that much of the uncertainty in climate models is structural. It is generated 

by methodological choices, such as the mathematical methods used, and by the uncertainty in the 

instruments of measurement for background data. Minimization and accurate quantification of 

uncertainty are key concerns for researchers who want their work to be useful to policymakers 

and stakeholders (Helgeson et. al 2021). However, tuning models and producing projections 

require researchers to decide between tradeoffs. Models cannot be tuned for one purpose without 

becoming less efficient or useful for another. Methods of quantification take different factors into 

account, weight these factors inconsistently, and make distinct procedural decisions, all of which 

can lead to vastly different outcomes. 

Values, Evaluation, and the Ethical-Epistemic Coupling 

 Climate modelers have dual commitments in practice. There is, on one hand, the drive to 

create models which can explore climactic mechanisms, in order to identify causal relations or 

correlative patterns in climate data. On the other, there is a commitment to produce models 

which serve specialized purposes, such as giving socially and economically useful predictions 

for the impact of sea level rise on coastal communities. Because of the immediacy of climate 

related disaster, researchers are obligated to ensure their models and simulations reflect the 

realities of the world they are studying, not just mechanically but in terms of reliable and useful 

analysis and predictions. This draws attention to the purpose researchers have in mind during the 

process of model development and selection. Models can serve a primary function of discovery, 

or they can serve a primary function of utility. These ends are not always exclusive, but there 

seems to be some tension in the practice of climate modelling, as these two ends do not always 

converge. Researchers must make judgements about methods, datasets, and where to focus 

development; where there are judgements, there are values. 

When there is discussion about values in the context of scientific practice, there is often 

an ambiguity about the word value itself. When we talk about value and values (in the sense of 
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virtues) in science we are explaining or discussing commitments to epistemic or ethical 

principles. Epistemic value extends to a theory or model’s reliability in giving predictions, 

something eminently important in climate science. Social and ethical values are beliefs and 

principles held by practitioners or the public at large, and the pressures exerted by this type of 

value on model selection and causal attribution may have a forcing effect on the methodologies 

of researchers, which in turn has implications for the epistemic qualities of the models these 

researchers produce (Parker 2014; Parker and Winsberg 2018; Vezér et al. 2018; Winsberg 

2018). 

Conventionally, many scientists have held the view that ideal science is free from 

pressures induced by non-epistemic values, or at least should be practiced in way that works 

towards that end (Douglas 2009). Proponents of Bayesian reasoning contend that social, ethical, 

and political values play less of an influential role in Bayesian inference than standard methods 

of hypothesis selection (Parker and Winsberg 2018). Yet, the Bayesian analysis does not escape 

from the Duhem/Quine problem and inductive risk (Winsberg 2018). Heather Douglas, among 

others, has pointed out that selecting hypotheses and models requires researchers to consider the 

inductive risk involved (Douglas 2009; Cartieri & Potochnik 2014; Parker and Winsberg 2018). 

Eric Winsberg and Wendy Parker have also pushed back on the traditionally received view that 

climate modelling and science in general can be value-free, but they make a second, more novel 

contention. They have argued that models cannot be divorced from the non-epistemic value 

choices which influence model development (Parker 2014; Parker and Winsberg 2018; Vezér et 

al. 2018; Winsberg 2012; Winsberg 2018). However, interestingly, researchers need not concede 

that the value-ladenness of climate models is necessarily a fault. The coupling of ethical values 

with epistemic ones can help researchers better inform decision-makers when human costs are 

involved (Bessette et al. 2017; Cartieri & Potochnik 2014; Tuana 2010; Tuana 2013; Tuana 

2020). Ethical and social values can help direct researchers when evaluating a model’s utility, 

and they are the point of engagement for decision-makers and stakeholders (Bessette et al. 2017; 

Cartieri & Potochnik 2014; Tuana 2010; Tuana 2013; Tuana 2020). 

The roles simplicity and uncertainty quantification (UQ) play in all of this are central to 

understanding the practical value of specific models. It is through UQ that researchers can give a 

metric to both the likelihood of a particular outcome and the range of possible values for some 
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given quantity, such as the aforementioned sea level rise. Likelihood and variability are 

understandable to non-scientists, i.e., most policymakers and stakeholders. Human life and 

economies depend on reliable quantification and communication of uncertainty in climate 

modeling stakeholders (Cartieri & Potochnik 2014; Tuana 2010; Tuana 2013; Tuana 2020; 

Winsberg 2012). Simplicity lends itself to the cost-effectiveness of research. Models which are 

simplified to give projections on relevant phenomena for the sake of policymaking, impact 

analysis, or risk assessment are evaluated based on adequacy for purpose and need not always be 

so complex. This allows for more runs, larger pools of simulated observations, and a wider array 

of models presented in ensembles (Helgeson et al. 2021). On the other hand, the more fine 

grained the resolution of a model and its simulated results, the more well-informed decision-

makers might be when considering climate change mitigation strategies. It seems intuitive that 

more complex models with more component systems, each of which can be tuned individually, 

would be more flexible under revision, even if the process itself becomes more complicated.  

Understanding the complicated history of climate data sets and models for the purpose of 

UQ requires an examination of the influence of social and economic values on the researchers 

themselves, the schools and disciplines they were educated in, the institutions within which they 

practice, and the bodies they report to. All these factors may influence the methodological 

choices and priorities of modelers (Parker and Winsberg 2018; Winsberg 2018). The history of 

individual component models should be tracked as well. Because of the complexity of the 

systems under study and the modularity of component models, many of these modules are used 

in different models with divergent goals and different background assumptions. There are 

possible epistemic consequences for modelers when building complex assemblies out of existing 

component models that have been developed under different assumptions or for different 

purposes. The component models may have been constructed by different teams, at separate 

times, with varying expertise, training, or epistemic commitments. The computer driven aspect 

of these models means much of the programming is done by software engineers and computer 

scientists, who bring with them their own assumptions, idiosyncrasies, and foibles. Indeed, the 

very idea of what modularity means may be different between the climatologist directing the 

model development and the programmer building the code. These component models can 

contribute to the epistemic uncertainty of the simulation because of non-epistemic choices made 

during their development (Parker 2014; Parker and Winsberg 2018; Vezér et al. 2018; Winsberg 
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2012; Winsberg 2018). Without such examination, experts cannot begin to account for the 

sources of epistemic uncertainty in the climate models which they scrutinize.  

For example, we can look to recommendations by theorists on the role ethicists and non-

traditional experts can play in helping to build better models for driving policy and strategy. 

Because of the many layers of uncertainty and the variability of the natural processes under 

study, the condition that policymakers must operate in regarding climate mitigation strategies is 

called ‘deep uncertainty’ by decision theorists (Helgeson 2020; Vezér et al. 2018). Confronted 

by distinct projections, widely varying confidences, and lack of background information, 

decision makers have incomplete access to knowledge of possible outcomes or the impact of 

individual choices.  Structuring model development, prioritizing specific quantities or aspects of 

phenomena or systems for study, and desired utilities for the findings of the research can all be 

taken into consideration to help policymakers make decisions in the face of deep uncertainty and 

risk (Helgeson 2020; Vezér et al. 2018). These are non-epistemic concerns, but their 

enmeshment with the process of model creation, hypothesis selection, data interpretation, and 

model evaluation means these values have very nuanced interactions with the epistemic process. 

Wendy Parker and Eric Winsberg contend that this intertwining is so complete that total 

separation of the models (especially those which involve a great deal of computer driven 

simulation) from their non-epistemic influences is impossible (Parker 2014; Parker and 

Winsberg 2018; Winsberg 2018).  

The time for the ‘ivory tower’ intellectual who dreamily pontificates on an abstract and 

distant world is over. Unrealistic proclamations of idealized scientific practice free from outside 

influence are outdated and unproductive. Acknowledging and tracking the influence that values 

have on the selection of hypotheses and models is critical, whether the purpose of models is 

exploration, predictive analysis, impact assessments, policies, or action plans. Failure to do so 

amounts to ‘bad science.’  

Conclusion 

This is but a mere glimpse of the challenges in climate modeling. Attempting to 

inventory the various questions and problems facing researchers is a daunting task. Whether 

from epistemic tradeoffs between simplicity and totality of representation, differing methods for 

interpretations of probability, quantifying uncertainty, or the coupling of epistemic and ethical 
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values, there are a lot of nooks and crannies where we might find distributed epistemic agency. 

That is to say: the beliefs, conjectures, and conclusions which scientists explore, adopt, or reject 

via climate models and simulations are influenced by these attributes of the modeling and 

simulation processes, rather than purely by their relation to the real phenomena. Because of the 

high stakes, climate scientists and their collaborators have an obligation to be aware of how 

secondary or tertiary influences, such as methodological choices or non-epistemic values, affect 

their modeling practices. 

Therefore, it is a logical extension of that awareness to conclude that a model selected for 

adaptability to purpose and changing background information serves the ends of climate 

researchers better than some other model. On this view, models which can be easily fitted or 

tailored to both the particular phenomena under study and the epistemic and non-epistemic 

concerns of the researcher make ideal candidates for selection. This is arguably a more robust 

criterion for selection than simple computational simplicity. Interpretations of probability and 

other mathematical and methodological conventions and choices are important to track and 

understand because they give scientists insight into the process of how their beliefs are created, 

shaped, and refined. This goes double for the non-epistemic values that are injected into and 

intertwined with model creation and simulation. 

 This ambition calls for a comprehensive perspective, one which philosophers of science 

seem uniquely suited to provide. Much of climate modeling already takes place among teams 

with diverse disciplinary and personal backgrounds. Fostering this diversity and expanding the 

role of philosophers in the collective conversation allows for more acute observation of and 

accounting for the ways these trade-offs, methodological choices, interpretations, and values can 

shape and shift beliefs. 
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