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Abstract

A considerable part of the source code is identifier names– unique lexical tokens that provide infor-

mation about entities, and entity interactions, within the code. Identifier names provide human-

readable descriptions of classes, functions, variables, etc. Poor or ambiguous identifier names (i.e.,

names that do not correctly describe the code behavior they are associated with) will lead devel-

opers to spend more time working towards understanding the code’s behavior. Bad naming can

also have detrimental effects on tools that rely on natural language clues; degrading the quality

of their output and making them unreliable. Additionally, misinterpretations of the code, caused

by poor names, can result in the injection of quality issues into the system under maintenance.

Thus, improved identifier naming increases developer effectiveness, higher-quality software, and

higher-quality software analysis tools.

In this dissertation, I establish several novel concepts that help measure and improve the quality

of identifiers. The output of this dissertation work is a set of identifier name appraisal and qual-

ity tools that integrate into the developer workflow. Through a sequence of empirical studies, I

have formulated a series of heuristics and linguistic patterns to evaluate the quality of identifier

names in the code and provide naming structure recommendations. I envision and working towards

supporting developers in integrating my contributions, discussed in this dissertation, into their de-

velopment workflow to significantly improve the process of crafting and maintaining high-quality

identifier names in the source code.
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Chapter 1

Introduction

Regardless of industry or technical domain, quality is a critical aspect of any software system [134].

Furthermore, ensuring the quality of a software system is not a one-time task; starting from im-

plementation and continuing throughout the system’s lifetime, developers perform maintenance

tasks on their software to meet functional and non-functional goals [100]. This emphasis on soft-

ware quality has resulted in organizations dedicating between 60% to 80% of resources to software

maintenance [158,198], thus being the costliest phase of the software development lifecycle.

A key element of software maintenance is program comprehension [200]. Program comprehension

is the act of developers reading source code to either understand the purpose of the code or to

identify the statements related to their maintenance activity. Prior to making changes to the code

that facilitate the evolution of the system, developers need to read the lines of code in the source

files to understand the behavior of the code [162, 220]. Naturally, it is not surprising that issues

such as poor code readability and understandability not only impact the time developers take

to perform their tasks but can also impact the quality of the updates performed on the system.

Furthermore, differences in the background (e.g., skill, experience) between the original author of

the code and the maintainer also impacts comprehension [199]. With 58% of a developer’s time

spent on comprehension activities [223], it is essential that developers craft source code such that it

does not hinder readability and understandability. This includes making improvements to the code

ranging from design level changes, such as reducing cyclomatic complexity [197] to the compliance

of consistency, in the form of naming conventions [210].

As fundamental elements in the source code, identifier names account for almost 70% of the char-

acters in a software system’s codebase [124]. These names are lexical tokens that uniquely identify

entities in the code (such as classes, methods, variables, etc.) and play a significant part in code

1
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comprehension. Indeed, the importance of good identifier names is recognized by both industry

and academia. This importance is reflected through software engineering practices, which provide

guidelines [136,167], best practices [135,164], metrics, and models [112,205] to assist developers in

naming identifiers with the overall goal of improving code comprehension [116]. Therefore, develop-

ers must pay significant attention when constructing an identifier’s name as their choices impact the

time spent understanding the identifier’s purpose [155,206]; as well-constructed names can improve

comprehension activities by as much as 19% [144].

1.1 Problem Statement

While quality metrics, best practices, and guidelines highlight the need for high-quality identifier

names, they only act as heuristics for developers; they are not formal mechanisms to produce

strong names. These mechanisms cannot help developers use the correct wording, nor can they

recommend the lexical structure beyond what is heuristically correct (e.g., naming conventions).

For instance, the example presented in Listing 1.1 is a clear indication of a poor identifier name

that can be detected using standard naming conventions. However, determining the quality of the

identifier names in Listing 1.2 and 1.3 is not straightforward. In these two examples, the names

follow a specific naming style (i.e., camel case), utilize a known set of terms, and are readable.

However, they do not accurately reflect the intended behavior of the identifier. In Listing 1.2, the

identifier’s name is singular, but its associated data type is a collection; does this identifier represent

a collection of URLs or a single URL? In Listing 1.3, the method name suggests a transformation

of a given object, but the method does not return a value. Furthermore, quality metrics around

readability are generally unable to capture readability improvements [181].

1 @Override

2 protected boolean func_22246_a(int var1)

3 {

4 return false;

5 }

Listing 1.1: An example of a poor quality identifier name (‘func 22246 a’ [169]).

6 private HashSet includeCrawlingURL;

Listing 1.2: An example of a poor but readable identifier name (‘includeCrawlingURL’ [98]).

To correct poor identifier names, like those shown in the above examples, developers perform a

rename refactoring operation [133] on the identifier’s name, which either preserves the original
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7 public void toSAX(ContentHandler ch) throws SAXException {

8 XMLByteStreamInterpreter deserializer = new XMLByteStreamInterpreter ()

;

9 deserializer.setContentHandler(new EmbeddedXMLPipe(ch));

10 deserializer.deserialize(this.xmlBytes);

11 }

Listing 1.3: An example of a poor but readable identifier name (‘toSAX’ [99]).

12 @Override

13 protected boolean isSelected(int var1)

14 {

15 return false;

16 }

Listing 1.4: An example of a renamed identifier name (‘func 22246 a’ → ‘isSelected’ [169]).

meaning of the name or changes it [101]. For example, to correct the poor quality identifier name

in Listing 1.1, the developer performs a Rename Method refactoring operation, the results of which

yield a high-quality name, as shown in Listing 1.4. To this extent, most current approaches, pro-

posed by the research community, rely on detecting and suggesting identifier rename opportunities

in the source code, using machine learning techniques [88, 89, 159]. However, as these approaches

are dependent on the existing code, pre-existing poor identifier names in the source code will neg-

atively influence the generated name’s quality; they may even result in the injection of quality

issues into the system under maintenance. Thus, their fully automated, big-data-driven nature

may work against them. A stronger understanding of naming structures from the code-behavior

and linguistic-semantics perspectives can help us correctly train these tools to not only leverage

historical data but also pay attention to a human-derived understanding of name meaning based on

both linguistic and program-oriented information. In other words, we can use human-derived em-

pirical data to direct these tools to better solutions than if we only rely on algorithmically derived

patterns.

My work leverages manually, partially-automated data which is then used to train and direct fully-

automated techniques to understand the meaningful structures and semantics behind identifier

names and their evolution. My studies leading up to my dissertation examine the evolution of

names in the source code to identify linguistic patterns around the semantic and part-of-speech

changes a name undergoes alongside the co-occurrence of renames with changes to the surrounding

code. These findings take the form of rules that are incorporated into productivity tools to check
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for naming violations/anti-patterns and assist developers with not only crafting identifier names

but also helping them better manage the identifiers in the source code of their projects.

1.2 Goal

In my work, I study the quality of identifier names with the goal of supporting developers in

appraising, structuring/improving, and maintaining identifier names. The tangible outcome of my

Ph.D. program is a framework of tools that are constructed based on empirical, scientific data that,

when integrated into the developer workflow, evaluates the quality of existing identifier names

and provides high-quality name and naming structure recommendations. The framework consists

of an IDE plugin and a command-line tool. The IDE plugin provides developers with real-time

recommendations for which word type (e.g., verb, noun) and structure developers should utilize for

high-quality name replacements. The offline tool, which supports integration into a build system,

reports on linguistic anti-patterns (i.e., deviations from well-established lexical naming practices)

in the source code.

1.3 Research Questions

To this extent, my dissertation answers the following research questions:

• RQ1: How effectively, in terms of correctness, can we generate identifier name

structure recommendations? This RQ examines the relationships between an identifier’s

grammar pattern and its surrounding code to determine the extent to which the relationship

can assist with appraising and recommending the semantic structure of the name.

• RQ2: To what extent does the proposed automated recommendation approach,

based on the semantic structure of a name, positively or negatively influence

naming practices? This RQ involves evaluating an automated identifier name structure

appraisal and recommendation technique to understand its effectiveness and overall usability.

• RQ3: What are the primary challenges in appraising and recommending the

semantic structure of identifier names, and how can these be improved? This

RQ performs an error analysis to identify and understand the weaknesses in the proposed

name structure appraisal and recommendation approach and determine a course of action to

address these challenges.
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1.4 Research Focus Areas

In this section, I elaborate on the research areas that I have focused on to achieve my end goal. In

brief, there are three areas– (1) identifier name evolution, (2) tool development, and (3) developer

workflow integration.

1.4.1 Identifier Name Evolution

This area involves the study of how names evolve over time. This includes analyzing how words are

changed (e.g., hyponym, synonym relationships), how code changes influence these name changes,

and how development activities also trigger name changes. This analysis provides me with historical

data about identifier name evolution and the causes/reasoning behind this evolution, which will

be essential for constructing a tool that needs to integrate into a developer’s workflow and provide

well-motivated advice.

1.4.2 Tool Development

This research area involves incrementally (i.e., as needed) improving basic technologies used to

analyze and transform words. This includes improving the accuracy of part-of-speech taggers on

source code. Many existing natural language processing technologies are not built to work on

source code, or are still inaccurate even when they work. As these are challenging problems to

solve, improvements will be made incrementally. Thus, it allows me to make progress in studying

how to provide helpful feedback to developers, which will become better as basic technologies

improve.

1.4.3 Developer Workflow Integration

This area involves integrating my tools into the developer workflow. The suggestions made by

my IDE plugin and console application need to integrate into a developer’s workflow smoothly. It

cannot be distracting and should not provide the developer with useless suggestions. Thus, it is

essential to study the effectiveness of the tools in a developer setting.

1.5 Contribution

The contributions from my dissertation range from multiple large-scale empirical studies that ex-

amine developer naming practices to tools that assist developers with constructing and maintaining



CHAPTER 1. INTRODUCTION 6

high-quality identifier names in the source code. More specifically, the findings from my empirical

studies lead to the formation of heuristics incorporated into tools, which are in the form of an IDE

plugin and console application that can be integrated with a build, continuous integration, or code

review system.

Furthermore, through my research studies, I have released datasets of identifier names and name

evolution in open-source systems and a catalog of linguistic anti-patterns. I envision that these

artifacts will spur more research in the field and support improved rigor in the renaming process.

Finally, my completed studies have been published in peer-reviewed, high-quality software engi-

neering research venues (refer to Appendix A for the complete listing of publications).

1.6 Organization

This dissertation is organized as follows:

• Chapter 2 provides a background around the lexical-semantic concepts utilized in the studies

within this dissertation.

• Chapter 3 presents related work around identifier names, including studies that examine the

quality of an identifier’s name and rename suggestions.

• Chapters 4 to 11 provide more in-depth details about the completed studies in this area.

The work performed in these studies feeds into answering the RQs of my dissertation. These

studies include empirical studies and tool development papers. To be specific:

– Chapters 4,5 6, 7 and 8 are the empirical studies I conducted on large and diverse

datasets.

– Chapters 9 and 10 provide details on the identifier naming tools I have implemented.

– Chapters 11 are details of a user study conducted on an IDE plugin for appraising and

recommending the semantic structure of identifier names in the code.

• Chapter 12 provides a discussion on how my completed studies answer my proposed research

questions.

• Finally, in Chapter 13, I summarize my dissertation and provide insight into my future work

in this area.



Chapter 2

Lexicosemantics

Lexicosemantics (or lexico-semantics or lexical semantics) is a branch of linguistics that is con-

cerned with the study of word meanings, such as the internal semantic structure of words and the

relationship between the different senses of a word [122]. In this chapter, I discuss the different

concepts utilized in my studies to determine the quality of an identifier’s name.

2.1 Taxonomy for Rename Refactorings

The research studies in this dissertation use a rename-specific taxonomy originally established by

Arnaoudova et al. [101] to assess rename refactorings and group them into different kinds based on

their semantics. The taxonomy is briefly discussed in this section.

Entity Kind: Entity kind records the source code entity that a given identifier represents. For

example, the identifier may be the name of a type, class, getter, setter, etc.

Form of Renaming: The identifier’s lexical change is reflected in this category and consists of

four subcategories: Simple, Complex, Reordering, and Formatting. Simple identifier changes are

ones that just add, remove, or replace one term. Multiple terms are added, removed, or changed in

Complex alterations. Reordering occurs when two or more terms in an identifier change positions

(for example, NameEmployee becomes EmployeeName), while formatting changes occur when a

letter in a term changes case or a separator (for example, an underscore) is added or removed.

Semantic Changes: These are modifications to the meaning of the identifier as a result of

adding/removing terms or modifying terms (e.g., using a term that is a synonym or antonym of

the original). To determine if the semantics of an identifier have been preserved or modified, the

following heuristics are utilized.

7
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An identifier’s meaning is preserved if one of the following holds: 1) the change added/removed

a separator, 2) the change expanded an abbreviation, 3) the change collapsed a term into an

abbreviation, 4) the old term was changed to a new term which is a synonym of the old term, 5)

multiple old terms were changed to multiple new terms which are synonyms OR use or removal of

negation preserves the meaning of the identifier (i.e., ItemNotVisible becomes ItemHidden).

An identifier’s meaning is modified if one of the following holds: 1) Broaden meaning– the old

term is renamed to a hypernym of itself OR a term (i.e., adjective or noun) was removed which

generalizes the identifier (e.g., GetEmployeeFirstName becomes GetEmployeeName). 2) Narrowing

meaning– the old term is renamed to a hyponym of itself OR a term was removed which narrows the

meaning of the identifier (e.g., GetEmployeeName becomes GetEmployeeFirstName). 3) Meaning

changed (i.e., not narrowed or broadened)– when an old term is changed to a new term that is

unrelated to the old; when a new term is the old term’s meronym/holonym, or antonym; OR when

multiple terms are changed AND a negation reverses a synonym of the old term. 4) Add meaning–

one or more new terms were added to the identifier AND the addition does not fall into one of the

categories above (e.g., narrow meaning). 5) Remove meaning– one or more terms removed from the

identifier AND the removal does not fall into one of the categories above (e.g., broaden meaning).

2.1.1 Contextualizing Rename Refactorings

Identifiers are renamed by developers for a variety of reasons. One can acquire insight into how

developers chose their words, why they prefer some sorts of words over others, and how to automate

this process by carefully analyzing rename refactorings. This subsection shows examples of how

developer activity, recorded in commit messages and refactoring operations, is reflected in their

renaming choices.

By analyzing the following method rename: setDisableBinLogCache → setEnableReplicationCache,

it is observed that the meaning of the name has changed; the developer has modified the name by

changing disable to enable. This change is reflected in the commit message entered by the developer:

“Changes replication caching to be disabled by default” [20]. Similarly, the renaming of a class from

Key → EntityKey demonstrates an act of narrowing the meaning of the identifier. Once again, the

purpose of this rename is reflected in the commit message: “Rename Key to EntityKey to prepare

specialized caches” [26].

Developers may also rename identifiers to: 1) better represent the existing functionality and not

when they are changing or narrowing it, or 2) adhere to naming standards or correct a spelling/-

grammatical mistake. For example, here the developer renamed the class TestProxyController
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→ ProxyControllerTest by reordering the term names to “...fixed names that were not in stan-

dards” [15]. In the next example, the developer preserves the meaning of a method by renaming

it from inactivate → deactivate, through the use of a synonym. This is, again, reflected in the

commit message: “Renaming method to proper English...” [9], where renaming to ‘proper English’

indicates that the meaning has not been modified but should now be easier to comprehend.

Finally, commit messages are not the only way to contextualize rename refactorings. Changes to

the code surrounding a name also help in understanding the developer’s intention. Unfortunately,

most types of changes to the code are not part of a pre-defined taxonomy. That is, it is difficult

to understand the abstract, domain-level goal of individual changes. Luckily, some types of code

changes are taxonomized. Specifically, refactorings are a taxonomy of changes made to the code

for a specific goal; typically to optimize non-functional attributes of the code [133]. We can look

at refactorings that happen just before and right after a given rename to help us understand what

the developer was doing before and after they applied a rename refactoring.

For example, in commit [30] the developers applied an Extract Method refactoring with the following

comment: “using the Jangaroo parsing infrastructure; all tests green; getters inherited”, before

applying rename: getCompilationsUnit → getCompilationUnit. This preserves the meaning of the

name but puts the name more in-line with its type, as stated by the commit message for this

change: “Corrected type in internal method name” [31].

Another example comes from a move class refactoring, where a class was moved from one pack-

age to another [48]. This refactoring commit had the following comment: “Incremental changes,

some package refactorings etc”. Further, a rename was performed after this commit: JsonViewRe-

sult→JsonView [47]. This rename broadens the meaning of the name by removing result, mak-

ing the identifier more general in meaning. The commit message associated with the rename is:

“Cleaned up some file names for easier usage...”, meaning the developer was likely going through

and renaming things after the move class refactoring.

In addition to surrounding code changes, a change in the data type associated with an identifier

can also help contextualize a rename of an identifier. For example, in commit [53], the developer

performs the following Rename Variable: Date sqlDate → Timestamp timestamp with the commit

message “fixes issue #29. java.util.Date and jodatime.Datetime instances would loose time infor-

mation...” From this example, we see that reason for the rename is to fix a bug by utilizing the

Timestamp data structure instead of Date.
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Table 2.1: Examples of grammar patterns

Identifier Example Grammar Pattern

1. GList* tile list head = NULL; adjective adjective noun

2. GList* tile list tail = NULL; adjective adjective noun

3. Gulong max tile size = 0; adjective adjective noun

4. GimpWireMessage msg; noun

5. g list remove link (tile list head, list) preamble noun verb noun

6. g list last (list) preamble adjective noun

7. g assert (tile list head != tile list tail); preamble verb

2.2 Grammar Patterns

To understand the relationship between groups of identifiers, I use grammar patterns in my research.

The sequence of part-of-speech tags (also known as annotations) assigned to individual words within

an identifier’s name is known as a grammar pattern. For example, an identifier called GetUserToken

is assigned a grammar pattern by splitting the identifier into its three constituent words: Get,

User, and Token. The split-sequence (Get Employee Name) is then passed through a part-of-

speech tagger to determine the grammar pattern: Verb Noun Noun. This grammar pattern is

not unique to this identifier; it is shared by many other potential identifiers who utilize similar

terms. Thus, a grammar pattern can be used to connect identifiers that contain different terms;

GetEmployeeName, SetUserId, and WriteEmployeeAddress all have the same grammar pattern,

and while they do not express the same semantics, their grammatical patterns indicate similarities

in their semantics. Specifically, a verb (get, set, write) that is applied to a noun (name, id, address)

that has a specified role or context (employee, user). Table 2.1 shows a set of identifiers on the left

and the corresponding grammar pattern on the right.

2.2.1 Noun, Verb, and Prepositional phrases

A few linguistic concepts emerge when studying the output of a part-of-speech tagger, specifically

when dealing with noun phrases, verb phrases, and prepositional phrases. A Noun Phrase (NP)

is a sequence of noun modifiers, such as noun-adjuncts and adjectives, followed by a noun, and

optionally followed by other modifiers or prepositional phrases [163]. The noun in a noun phrase is

typically referred to as a head-noun; the entity which is being modified/described by the words to

its left [125] (or, for programmers, sometimes surrounding it) in the phrase. A Verb Phrase (VP) is

a verb followed by an NP and optionally a Prepositional Phrase (PP). A PP is a preposition plus
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Figure 2.1: Examples of noun, verb, and prepositional phrases

an NP and can be part of a VP or NP.

Figure 2.1 presents an example NP, VP, and VP with PP for three method name identifiers. The

phrase structure nodes are NP, VP, and PP, while the other nodes (i.e., N, NM, V, P) are part-of-

speech annotations. The leaf nodes are the individual words split from within the identifier. Each

word in the identifier is assigned a part-of-speech, which can then be used to derive the identifier’s

phrase structure. A phrase structure cannot be built without part-of-speech information. One

important thing to note about these phrases is how the words in the phrases work together. For

example, in noun phrases, noun modifiers (e.g., other nouns or adjectives) work to modify (i.e.,

specify) the concept represented by the head-noun that is part of the same phrase. In Figure 2.1,

contentBorder is a noun phrase where content modifies the understanding of the noun border. This

example shows that border refers to a content border as opposed to another type of border; a window

border, for example. When converted into a verb phrase by adding draw to get drawContentBorder ;

an action is added (i.e., draw) that will be applied to the particular type of border (i.e., the content

border) represented by the identifier.

2.3 Linguistic Anti-Patterns

Linguistic anti-patterns are deviations from well-established lexical naming conventions in source

code that serve as indicators of poor name quality [103]. This loss of quality causes inconsistencies in

the source code, which leads to misinterpretations and an increase in developer cognitive effort [129].

Detecting naming violations in source code is a time-consuming and error-prone operation for

developers that necessitates a thorough grasp of the system as well as a manual analysis of the

entire source code. As a result, tool support is required.



Chapter 3

Related Work

Since the choice of adequate naming for identifiers is critical for code understandability, there have

been many studies that analyze the quality of identifiers and how identifier quality affects compre-

hension and developer efficiency. In this chapter, I divide my reporting of related work into three

areas– studies that explore the naming of test methods, studies that investigate identifier quality

attributes, grammar patterns in identifier names, and studies around the renaming of identifiers in

source code.

3.1 Identifier Name Quality

There are several recent approaches to appraising identifier names for variables, methods, and

classes. Liu et al. [161] propose an automated approach based on deep learning to debug method

names based on consistency between the method’s name and its implementation. Kashiwabara et

al. [152] use association rule mining to identify verbs that might be good candidates for use in

method names; this work focuses on word co-occurrence to find any emergent relationships. Abebe

and Tonella [84] use an ontology that models the word relationships within a piece of software.

They then generate suggestions for new identifier names using different schemes for how to choose

sequences of words to put together to form the identifier.

Liblit et al. [157] discuss naming in several programming languages and make observations about

how natural language influences the use of words in these languages. Schankin et al. [206] focus on

investigating the impact of more informative identifiers on code comprehension. Their findings show

an advantage of descriptive identifiers over non-descriptive ones. Hofmeister et al. [144] compare

comprehension of identifiers containing words against identifiers containing letters and/or abbre-

viations. Their results show that identifier names containing only words instead of abbreviations

12
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or letters, increase developer comprehension speed by 19% on average. Lawrie et al. [155] study

100+ programmers, asking them to describe twelve different functions. These functions use three

different levels of identifiers: single letters, abbreviations, and full words. The results show that

full word identifiers lead to the best comprehension, though there were cases where there was no

statistical difference between full words and abbreviations. Butler et al. [118] extend their previous

work on java class identifiers [114] to show that method identifiers with flaws are also (i.e., along

with class identifiers) associated with low-quality code according to static analysis-based metrics.

Høst and Østvold [145] design automated naming rules using method signature elements, i.e.,

return type, parameter names, and types, and control flow. They call this technique method

phrase refinement, which takes a sequence of part-of-speech tags (i.e., phrases) and concretizes

them by substituting real words. (e.g., the phrase <verb>-<adjective> might refine to is-empty).

Additionally, they use static analysis to group method names (in phrase form) together by behavior.

Arnaoudova et al. [102] define a catalog of linguistic anti-patterns that are found to deteriorate the

quality of code understanding. The authors show the negative impact of linguistic anti-patterns

by conducting two studies with software developers and finding that the majority of programmers

perceive anti-patterns as poor naming practices. In their study of readability metrics, Fakhoury

et al. [130] show that current metrics may not be effective at capturing readability improvements;

highlighting the importance of further research into the quality of naming and how names evolve

over time.

3.2 Identifier Grammar Patterns

In an empirical study on 5,000 open-source projects, Zhang et al. [227] observe that nouns, verbs,

and adjectives are three of the most common part-of-speech tags developers utilize in crafting

identifier names. The authors utilize Standford Parser to parse the part-of-speech tags from an

identifier’s name automatically. Binkley et al. [106] investigate the effectiveness of the Stanford

log-linear part-of-speech tagger on field names. Through this study, the authors propose four

rules, based on part-of-speech tags, for improving field names. A study of naming in multiple

programming languages by Liblit et al. [157] shows how natural language influences the use of

words in these languages. Høst and Østvold [145] examine unusual method names and propose a

set of naming rules to uncover issues in method names. The authors utilize part-of-speech tags

along with the return type, control flow, and parameters of the method to detect naming violations

based on a set of rules.
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3.3 Identifier Renaming

Allamanis et al. [88] introduce a model, NATURALIZE, that utilizes statistical natural language

processing to mine and learn the style (i.e., coding conventions) of a codebase and provides re-

naming suggestions. NATURALIZE learns syntactic restrictions, or sub-grammars, on identifier

names like camelcase or underscore and to unify names used in similar contexts. The authors

also propose a neural probabilistic language model to suggest descriptive, idiomatic method and

class names automatically [89]. Suzuki et al. [212] introduce an n-gram based model for evaluating

the comprehensibility of method names and suggesting comprehensible method names. In their

approach, the authors collect and learn method names from open-source Java systems. As part of

their analysis strategy, the authors utilize a threshold to determine the comprehensibility score of

a method’s name and use the n-gram model to make suggestions to the developer. Research by

Liu et al. [159] looks at recommending renames based on the prior rename activities developers

perform on the source code. Additionally, by studying the relationship between argument and pa-

rameter names, the authors develop an approach to detect naming anomalies and suggest renames

to developers [160]. In their study, Jiang et al. [147] observe that the effectiveness of code2vec, a

machine learning-based approach for method name recommendations, fails in a realistic setting.

The authors also propose a heuristic-based approach that outperforms code2vec. Liu et al. [161]

utilize deep learning techniques to identify inconsistent method names. Their approach extracts ex-

tract deep representations of method names and bodies. The authors train the model using a large

number of methods from real-world projects. The name suggestion approach involves a comparison

of overlap between the closeness of method names in the method name vector space and the set of

methods names whose bodies are close in the method body vector space. Arnoudova et al. [101]

present an approach to analyze and classify identifier renamings. The authors show the impact of

proper naming on minimizing software development effort and find that 68% of developers think

recommending identifier names would be useful.
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Chapter 4

An Empirical Investigation of How and Why Developers

Rename Identifiers

The contents of this chapter are part of the study “An Empirical Investigation of How and

Why Developers Rename Identifiers” published in the Proceedings of the 2nd International

Workshop on Refactoring [191].

4.1 Introduction

The majority of software life-cycle resources are allocated to program maintenance [110,128]. Main-

tenance heavily relies on program comprehension since developers typically spend a significant

portion of their time in understanding the code they are maintaining before applying changes,

debugging, documenting, etc. It is clear that making it easier to comprehend code will ease many

maintenance activities and improve developer productivity. One of the primary ways for a devel-

oper to come to terms with what a body of code is doing is through the identifiers in the code.

It has been stated that identifiers make up an estimated 70% of characters within a software sys-

tem [125]. Because of this, their meaningful naming is critical to the program’s comprehension.

When an identifier’s name no longer appropriately describes the role of the identifier in the software

system, a developer will change the name. This change is called the rename refactoring. Rename

refactorings are a common type of refactoring and are part of Fowler’s taxonomy [133]. Rename

refactorings modify non-functional attributes of a software system (i.e., the name of the identifier).

In renaming an identifier, the new name should be better suited to describe the identifier’s role in

the current state of the system than the old name. The study of rename refactorings is gaining

more attention in research; it is well understood that we need a stronger understanding of how

natural language is used to support comprehension and how it evolves with the software.

16
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Many techniques to support comprehension rely on the analysis of identifiers [138, 141, 211, 226].

Furthermore, many previous studies have investigated naming practices, patterns, and how to

improve analysis of identifier names [103, 106, 143, 154, 175]. In particular, a number of papers

explore the idea of debugging, appraising, and generating identifier names [84, 89, 145]. These

have a direct, positive impact on approaches that synthesize programs [97, 166, 203], which must

understand how developers describe code elements (e.g., name identifiers, comment on methods) in

order to generate natural language that developers will accept (i.e., text that optimizes developer

comprehension). Thus, there is a need in the research community for analyzing identifier naming

practices, especially when performed by developers in real-world scenarios.

In this study, we present an analysis on the evolution of method, class, and package identifiers

using rename refactorings over the history of 3,795 Java systems and a total of 524,113 identifiers.

The goal of this study is to extend a portion of the work done by Arnaoudova et al. [101] to

a much larger number of systems and combine analysis based on their taxonomy with commit

messages to investigate why developers rename identifiers in particular ways. We aim to begin

understanding why, for example, a developer chooses to narrow or generalize the meaning of an

identifier. To do so, we address 5 research questions. Similar to Arnaoudova et al. [101], the first

three research questions are primarily defined to explore our findings on rename practices. The last

two questions analyze the rename refactorings we have collected to classify the developer’s rename

practices using the context of their development efforts as well as to provide preliminary results for

our future research.

RQ1: What Types of Lexical Changes Are Typically Applied By a Rename Refactor-

ing? What proportion of renames are just a change to a single or to multiple terms in an identifier,

what proportion are changes to the order of terms, changes in plurality, changes in capitalization,

or addition of separators. For this research question, we want to know at a high-level what renames

look like. This will give us an idea of how complex renames tend to be and give us some measure

of how much (in terms of constituent words) identifiers tend to change.

RQ2: What Kinds of Semantic Changes Occur to Terms Composing Identifiers When

They Are Renamed? What types of changes to an identifier’s meaning are most frequent? The

goal of this question will be to explore how often an identifier’s meaning is broadened, narrowed,

preserved, completely changed, added to, or removed from. The answer to this question will help

us determine typical renaming behavior and help provide finer-grain insight into rename activity.

RQ3: What Kinds of Grammar Changes Occur to Terms Composing Identifiers When

They Are Renamed? We want to know when there is a change in the part of speech tag for
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any individual term in an identifier. The answer to this question helps complete our view of what

changed. A change in part of speech does not always mean the term completely changed; some

part of speech changes are due to a change in the original term’s conjugation. Most importantly,

we want to know if it can help us determine when a semantic change has occurred.

RQ4: To What Extent Can Commit Messages Be Used to Contextualize Different

Types of Semantic Change Rename Refactorings? If we use topic modeling on a corpus of

commit messages grouped by semantic change category, can we begin reasoning about what types

of activities are undertaken by developers when they make different types of semantic changes?

RQ5: What Trends Do We See in the Way Identifiers Are Renamed? Finally, taking

all of the data we have gathered, can we identify any development activities that correlate with

different types of semantic changes made to identifiers? This question uses the data we gathered

and uses it to help us understand what causes different types of semantic changes made to identifiers

during software evolution.

The results help gain an understanding of the causes and consequences of rename refactorings. In

particular, we see the results as the first step towards better supporting tools that try to understand

developer behavior when it comes to naming. This will eventually help increase the adoption of

technology that supports identifier name evolution and the creation of better guidelines for how

renames should be applied and supported during maintenance.

4.2 Methodology

We conduct a two-phased approach to answer our research questions. The initial phase consists

of the retrieval of open-source Java projects and the detection of refactoring operations that occur

throughout the development history of each retrieved project. The second phase of the experiment

involves the analysis of the detected renaming operations as a means of understanding the type of

approaches utilized by developers when changing identifier names. Figure 4.1 depicts the flow of

steps involved in this experiment. Described below are details of each phase.

4.2.1 Data Collection & Refactoring Detection

To ensure that our study accurately captures real-world identifier renaming operations it was im-

perative that our research be based on a representative dataset. To this extent, our study utilizes

the list of GitHub based Java projects made available by [90]. To identify refactoring operations

performed by developers on these projects, we use RefactoringMiner [208] on each project. By
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Figure 4.1: Overview of Experiment Methodology

enumerating through the commit history of each project, RefactoringMiner is able to detect over

1,000,000 refactoring operations in 3,795 projects. As shown in Table 4.1, from the detected refac-

toring types, 43.36% refactoring operations are related to renaming operations (i.e., Package, Class

and Method renaming). Furthermore, developers tend to perform more rename operations on

method names when compared to class or package names; with projects, on average, containing

approximately 9 package, 47 class, and 122 method renames. Hence, not surprisingly, the number

of commits associated with method renames is also significantly higher. However, the occurrences

of the different types of rename refactorings in the projects, contained in our dataset, have similar

distributions.

4.2.2 Rename Analysis

To understand the renaming changes made by developers, we perform a tool-based taxonomy

analysis on the original and renamed identifier names. Since we were unable to obtain a copy

of REPENT, we attempt to stick as close to the tools and technologies they report using in the

original study [101]. To this end, we utilize the Natural Language Toolkit (NLTK, https://www.

nltk.org/), which has an implementation of Wordnet [168], to obtain semantic and part of speech

details about the identifier names.

Prior to performing our analysis, we perform preprocessing on the original and new names of the

renamed identifiers. Given that most identifier are composed of multiple terms, our approach

involved splitting each name into a list of terms (i.e., tokenization). To perform the splitting, we

utilize the Ronin splitter algorithm implemented in the Spiral package [146]. Table 4.2 provides

an overview of the most frequent number of terms that constitute the name of the identifier for

https://www.nltk.org/
https://www.nltk.org/
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Table 4.1: Detected Refactorings - Data Overview

Refactoring Operation Count Percentage

Refactoring operation occurrences

Rename Package 18,372 1.52%

Rename Class 129,206 10.69%

Rename Method 376,535 31.15%

Others 684,857 56.65%

Projects containing refactoring operations

Rename Package 1,875 16.32%

Rename Class 2,735 23.80%

Rename Method 3,086 26.86%

Others 3,795 33.03%

Commits containing refactoring operations

Rename Package 12,516 2.44%

Rename Class 54,590 10.66%

Rename Method 122,600 23.94%

Others 322,479 62.96%
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Table 4.2: Most Frequent Number of Terms Forming an Identifier Name

Identifier

type

Terms in

orig. name

Terms in

new name

Total

occ
Percentage

Package 1 1 12,672 68.97%

Class 3 3 17,387 13.46%

Method 3 3 66,080 17.55%

packages, classes, and methods.

Our semantic analysis follows the approach presented in [101]. We compare each term of the original

and new identifier for semantic relationships such as synonyms, hyponym, hypernym, antonym,

meronyms, and holonyms. If a relationship does not exist, we perform a stem-based check between

the two identifiers and re-compare them. We utilize the Porter, Lancaster, and Snowball stemming

algorithms for this purpose. We also perform a lemmatization check using NLTK’s algorithm. We

used multiple stemming/lemmatization techniques to try and find as many matches as possible.

For every detected match, each of which we call a matched term, we also derive the part of speech

associated with the new and original terms. Additionally, we use their heuristics [101] to determine

semantic changes and fully described in the original work. Specifically, we identify renames that

preserve, change, narrow, broaden, adds, or removes meaning from the old to the new identifier. We

also detect the complexity of the rename (# terms changed), term reordering, formatting changes,

and addition/removal of terms.

4.3 Experimental Results

4.3.1 RQ1: What Types of Lexical Changes Are Typically Applied By a Rename

Refactoring?

As shown in Table 4.3, the majority of renamings fall under the Simple category, meaning devel-

opers change only one term via rename. Furthermore, a breakdown of Simple renamings shows

that approximately 57% of the renamings involved replacing a single term in the name (e.g., core

→ engine) while 24% involve the addition of a term (e.g., QueueFactory → TaskQueueFactory)

and 19% involve the removal of a term (e.g., RewriteEventBase → RewriteBase). Complex renam-

ings are the next most frequent categorization at 35% of detected renamings. We observe that

the two most common types of complex renaming patterns are the addition of two terms along

with the removal of a single term (e.g., RecentURLEvent → RecentResourceNamesEvent) and the
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Table 4.3: Forms of Identifier Renamings

Form Package Class Method Total %

Formatting 210 3,271 24,236 27,717 5.29%

Reordering 3 2,479 2,223 4,705 0.90%

Simple 14,072 77,722 21,5651 307,445 58.66%

Complex 4,087 45,734 134,425 184,246 35.15%

Total 18,372 129,206 376,535 524,113 100.00%

Percentage 3.51% 24.65% 71.84% 100.00%

removal of two terms along with the addition of a single term (e.g., FormOpenIdLoginServlet →
FormAuthLoginServlet) occurring at 18% and 17% respectively in the dataset. Formatting and

reordering are the least frequent, indicating that most renames are not just changes to the format

(e.g., adding separator or change capitalization). All in all, while simple renamings are the most

common, complex renamings are very common as well; both should be high priority for study.

4.3.2 RQ2: What Kinds of Semantic Changes Occur to Terms Composing Identifiers

When They Are Renamed?

Table 4.4 contains the distribution of different categories of semantic changes made by rename

refactorings. We observe from this table that developers most frequently narrow the meaning of

identifiers (44.8%) when performing a rename. One reason for this may be that developers initially

construct identifier names that reflect a generalized or incomplete understanding of the ultimate

functionality, and through updates they specialize the name of the identifier to reflect increasing

understanding or specialization of the entity (i.e., class, method). Another reason may be that the

system evolves and functionality specializes as a part of this evolution. Conversely, renamings that

broadened the meaning of the word accounted for approximately 11% of matches; significantly less

than narrow meaning.

Looking at the preserved meaning category, approximately 42% of matches in this category are

synonym based. For example, when the developer renames the class from DefaultLocationProvider

→ DefaultLocationSupplier, the developer replaces the term Provider with a synonym, Supplier.

Another 36% of the term matches are only after stemming (comprising of 20%, 16%, and 0.07%

Porter, Lancaster and Snowball matches respectively). For example, renaming a method name from

checkInitialize → checkInitialized results in a stem match for the terms Initialize and Initialized

using the Porter stemming algorithm. Moreover, the last 22% of the term matches are detected
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Table 4.4: Frequency of Semantic Change Rename Refactorings

Category Package Class Method Total %

Preserve 1,091 9,659 30,054 40,804 7.8%

Change 4 112 1,140 1,256 0.2%

Narrow 744 77,606 156,804 235,154 44.9%

Broaden 467 16,489 41,283 58,239 11.1%

Add 310 11,910 74,657 86,877 16.6%

Remove 131 2,045 12,158 14,334 2.7%

None 15,625 11,385 60,439 87,449 16.7%

Total 18,372 129,206 376,535 524,113 100%

Percentage 3.51% 24.65% 71.84% 100%

only after using the NLTK WordNet Lemmatizer. Conversely, we find remarkably few instances

where a rename changes the meaning of an identifier (0.24%) according to the heuristics we use.

Finally, we also detect occurrences of identifier renamings that either added or removed a mean-

ing to the identifier name. For example, a developer renaming of a method from targetNode →
getTargetNode adds the term get to the new name to better describe the purpose of the method.

Similarly, renaming a method name from applyTo → apply removes the term To from the new

name. Add meaning is more common (16.6%) than remove meaning (2.73%). This lends support

to the idea that identifiers generally narrow in meaning over time.

4.3.3 RQ3: What Kinds of Grammar Changes Occur to Terms Composing Identifiers

When They Are Renamed?

As depicted in Figure 4.2, the majority of matched terms in the renamed identifiers demonstrate

grammar (i.e., part of speech) changes. For example, a part of speech change occurs when renaming

the class from ProfilingDataSource → ProfiledDataSource. The term Profiling in the original name

is a present participle verb. This term is replaced with a past participle verb, Profiled, in the new

name.

The most common grammar changes are depicted in Table 4.6, where we see that verb → noun,

noun (singular)→ noun (plural), and verb (present)→ verb (past) make up the bulk of all grammar

changes. Given this, an important follow up question is whether these actually indicate a change

or modification of the identifier’s meaning with respect to the heuristics we use. While changing
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Figure 4.2: Part of Speech Changes for 42,060 Matched Terms

Table 4.5: Total Number of Grammar Changes Detected Correlated with Semantic Change

Semantic change type Total Percentage

Grammar change preserved meaning 29,110 99.13%

Grammar change changed meaning 256 0.87%

from singular → plural or past → present are not likely candidates, changing from verb → noun

may correlate with some modification in meaning.

We investigated this question, and while verb→ noun changes are very common, there is very little

evidence that the grammar change is indicative of a change or modification in the meaning of the

identifier. In fact, there is a significant amount of evidence that any grammar change indicates

preservation of the identifier’s meaning after a rename. As reported in Table 4.5, the majority of

the part of speech changes fall under the preserve meaning semantic category. A breakdown on

the preserve meaning-based changes shows that synonym-based matches contributed to most of

the part of the speech changes, closely followed by lemmatized matches; an overview is provided

in Table 4.6. This suggests that the grammar changes are primarily caused when a term in an

identifier is changed to a closely related term (i.e., synonym) or a different inflection of the term

(i.e., lemma or stem).

4.3.4 RQ4: To What Extent Can Commit Messages Be Used to Contextualize Dif-

ferent Types of Semantic Change Rename Refactorings?

To begin understanding more about why identifier meanings change in different ways (e.g., narrow

in meaning), we use commit message text associated with a refactoring based rename. Our ap-

proach involves the use of Latent Dirichlet Allocation (LDA) [109] to discover and generate topics

contained within the commit messages automatically. To this end, we utilize the LDA imple-
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Table 4.6: Most Frequent Preserve-Meaning Part of Speech Changes

Preserve meaning

match type

Original term

part of speech

New term

part of speech
Total Percentage

Synonym Verb Noun (singular) 13,178 45.27%

WordNet Lemmatizer Noun (singular) Noun (plural) 8,752 30.07%

Porter Stemmer Verb (present) Verb (past) 5,226 17.95%

Lancaster Stemmer Verb (past) Noun (singular) 1,927 6.62%

Snowball Stemmer Noun (singular) Adverb 27 0.09%

mentation contained within gensim [201], a Python-based topic modeling library. To ensure the

generation of reliable topics, the commit messages are first pre-processed before the generation of

the LDA model. The pre-processing task includes the removal of stopwords (via NLTK’s corpus of

stopwords), removal of numeric values and stemming of individual words. We then agglomerate all

commit messages into seven corpora; one for each of the semantic change categories (i.e., preserve,

change, narrow, broaden, etc) and run LDA on each corpus independently.

We show an overview of the topics generated by LDA in Table 4.7 for each of the seven types of

semantic change classifications described in this study including the none category. Next to each

word in parenthesis is the probability score assigned by LDA. While we generate five words and

five topics for each semantic change category, Table 4.7 only presents the top 2 topics (labeled A

and B) for each category. Lastly, it is worth noting that for each topic we present the number of

words processed to show how many words LDA uses to form these topics. Almost every category

has more than 100k words with the exception of Remove meaning and Change meaning. Change

meaning, in particular, containes very few words and the quality of the output from LDA suffers

as a result.

The first observation we note in Table 4.7 is that the words test, rename, and fix have a relatively

higher score according to LDA. This indicates that developers perform renames in test- or fix-related

commits very often. In the case of fix, it seems likely that the renames occurr after a developer

addressed some issue and felt that identifier names need to be modified in light of the changed

code. It also seems relatively frequent for developers to explicitly state that they are performing

a rename within the commit message, since the term rename appears as the most relevant word

frequently.

Examining the rest of the table, there is more variance in the words that appear. Words like

ad and add (where ad is a stemmed version of add) appear relatively frequently in the narrow,

broaden, and add meaning categories. This may indicate that adding code correlates with these



CHAPTER 4. HOW AND WHY DEVELOPERS RENAME IDENTIFIERS 26

types of renames. Because narrow meaning is the most common semantic change type (Table 4.4),

it could be that as code evolves and grows, identifier names tend to narrow in meaning overall

and, failing that, they become longer. That is, they specialize as code specializes. This does not

hold in all cases, seeing as how add and ad occur with a broaden meaning, which makes up 58k

(11%) of semantic change renamings we detected. Change meaning has too few words in its corpora

compared to the other categories. The results from LDA are weaker relative to other categories

and the terms that appear in its topics are not exclusively unique to it.

Preserve and Remove meaning lack ad or add in their commit messages at the topic level, which is

not surprising. If we assume adding tends to modify meaning somehow (i.e., narrow, broaden, add)

then Preserve and Remove should not include these terms. Instead, terms like rename and refactor

are more common in these and Add meaning than in others. Interestingly, Remove meaning does

not include terms like remove, delete, etc. It is also the category with the second least number

of terms LDA has to work with after Change meaning. Thus, like Change meaning, results here

are less likely to generalize well compared to some of the other categories. The only other term in

Remove meaning that is relatively significant compared to other topics is method.

Finally, the None category contains a number of terms that are linked with package renamings. This

may indicate that the heuristics we use from the taxonomy underperform on package renamings.

Regardless, package renamings are more likely to end up in the None category. In this regard, this

preliminary observation is subject of investigation in our future work in order to correctly categorize

package renamings.

To summarize, there are interesting trends in the way identifiers are renamed and the types of

activities developers are undertaking according to commit messages. While it is difficult to pinpoint

the developer’s intention by only analyzing at the level of code, our findings do provide avenues for

future research.

4.3.5 RQ5: What Trends Do We See in the Way Identifiers Are Renamed?

In RQ1, using Table 4.3, we find that most changes are simple; they only change one term (59% are

simple). However, a significant number of them change multiple terms (35% are complex). This is

to say that a large number of renames modify two or more terms, which is the majority of terms

with respect to the most frequent size of identifiers in method and classes (Table 4.2). Additionally,

from RQ2, using Table 4.4, we know that a significant portion of these narrow, broaden, or add

(45%, 17%, and 11% respectively) to the meaning of the identifier. To get a better handle on this

data, we turn to Table 4.8, which shows how many simple and complex renamings are categorized
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Table 4.7: LDA Generated Topics for Semantic-Based Renamings

Topic Word #1 Word #2 Word #3 Word #4

Classification Type: Preserve Words Processed: 101,378

A
renam

(0.073)

method

(0.023)

clean

(0.013)

refactor

(0.012)

B
test

(0.067)

fix

(0.060)

refactor

(0.027)

issu

(0.019)

Classification Type: Change Words Processed: 3,274

A
test

(0.027)

fix

(0.015)

ad

(0.014)

chang

(0.013)

B
name

(0.022)

chang

0.019)

fix

(0.016)

class

(0.014)

Classification Type: Narrow Words Processed: 473,541

A
test

(0.081)

fix

(0.030)

ad

(0.022)

add

(0.014)

B
fix

(0.049)

ad

(0.029)

add

(0.026)

support

(0.024)

Classification Type: Broaden Words Processed: 99,163

A
test

(0.086)

ad

(0.032)

fix

(0.023)

chang

(0.016)

B
add

(0.034)

support

(0.022)

ad

(0.015)

api

(0.013)

Classification Type: Add Words Processed: 141,678

A
test

(0.090)

ad

(0.034)

fix

(0.023)

class

(0.012)

B
fix

(0.086)

renam

(0.046)

issu

(0.034)

method

(0.029)

Classification Type: Remove Words Processed: 30,373

A
test

(0.082)

chang

(0.017)

fix

(0.015)

name

(0.015)

B
renam

(0.029)

method

(0.029)

refactor

(0.025)

chang

(0.016)

Classification Type: None Words Processed: 187,878

A
test

(0.066)

fix

(0.062)

name

(0.026)

packag

(0.019)

B
renam

(0.049)

java

(0.017)

core

(0.016)

org

(0.013)
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Table 4.8: Renaming-Complexity for Semantic Changes

Category Simple Complex Total Percentage

Preserve 18,577 21,853 40,430 8.22%

Change 616 612 1,228 0.25%

Narrow 146,391 86,512 232,903 47.37%

Broaden 48,934 9,297 58,231 11.84%

Add 58,428 28,082 86,510 17.59%

Remove 9,459 4,875 14,334 2.92%

None 25,040 33,015 58,055 11.81%

Total 307,445 184,246 491,691 100.00%

Percentage 62.53% 37.47% 100.00%

under each category of semantic changes. The table shows that the majority of both complex and

simple renamings narrow the meaning of their identifiers, with Add meaning and Broaden meaning

being the next two most common. We also know from RQ4 that commit messages most frequently

reference adding, fixing, tests in reference to these three categories.

We can surmise from this that future work should take a closer look at all categories, but these

three in particular (at least, at the level of methods, classes, and packages). While analyzing the

commit message gives us a high-level view of why different types of renames are applied in practice,

a more fine grain analysis is required to understand what is going on at the level of source code.

We can use data from these commit message trends to begin exploring the relationship between, for

example, adding code and narrowing the meaning of identifiers. Additionally, in RQ3 we observe

that grammar changes are strongly correlated with preservation of identifier meaning. While more

study is required, this result is interesting and can be used to model grammar changes that indicate

preservation versus those which require further investigation.

The conclusion we draw for this research question is that rename refactorings (whether simple or

complex) clearly narrow the meaning of identifiers more often than not. More research is required

to fully understand why and what types of changes or activities preface different types of semantic

changes, but having identified the most prolific categories and gained some high-level understanding

of what developers report when performing these changes, we can now focus on these activities to

help us understand how changes to (and particularly addition of) code affect the decision to rename

and how to differentiate between source code level additions that cause, for example, a narrowing

of identifier meaning.



Chapter 5

Contextualizing Rename Decisions using Refactorings,

Commit Messages, and Data Types

The contents of this chapter are part of the study “Contextualizing rename decisions using

refactorings, commit messages, and data types” published in the Journal of Systems and

Software [192].

5.1 Introduction

Program comprehension is the pillar of a developer’s everyday development tasks; almost every

programming task requires a certain degree of understanding of the existing codebase. In this

way, software maintenance and evolution critically rely on the degree to which developers compre-

hend their codebases. Many studies demonstrate the significance of the effort, in terms of time,

undertaken by developers when comprehending code [121, 164]. For instance, the time spent by

developers in reading and comprehending code is significantly longer than the time spent in writing

new instructions [164]. Therefore, developers’ productivity can be optimized by decreasing the time

needed for them to understand the existing code [144,155,206,213].

One of the most atomic activities in source code development is the naming of code elements (e.g.,

class names, function/method names, etc.) collectively referred to as identifiers. Identifier names

are the basic building blocks of program comprehension. Choices made when constructing identifier

names directly impacts productivity [118,144,155,206]. For example, abbreviated terms may hinder

comprehension for both tools and humans. In response, studies search for ways to standardize

and normalize identifier names to support both developers and tools [107, 176] and many research

projects, both recent and otherwise, aim to enhance identifier naming using machine learning, static

analysis, and by studying naming inconsistencies [84,89,145,152,161,179].

29
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One way to improve identifiers is to apply a rename refactoring [133]. Rename refactorings are de-

fined as refactorings that modify the name of an identifier without modifying the intended behavior

of the code for which the identifier is a part. Many Integrated Developer Environments (IDEs) offer

a built-in rename refactoring functionality. Most of these IDEs only support the mechanical act of

renaming; they allow a developer to choose what identifier they want to rename, what new name

should be used, and then perform checks to ensure that the new name will not introduce name

collisions and that the new name is applied in all appropriate locations. There is little or no sup-

port to help inform developers of when to rename an identifier (e.g., when a name is of sub-optimal

quality), and how to rename them (i.e., what words to use within the name). Instead, renames

are typically performed when a developer notices that an identifier does not accurately reflect the

behavior it represents. This causes renaming to be applied in a manner that is not always wholly

systematic. Further, a developer is free to come up with whatever name they like (i.e., within the

limits of naming conventions defined for the project). This new name may be even worse than the

original, but there is no formal method to determine when this is the case.

Because naming heavily affects comprehension for both tools and humans, it is important to fully

support developers when they must modify identifier names. That is, research must support de-

velopers in applying rename refactorings. Recent research on naming focuses heavily on suggesting

identifier names [84,89,152,161], studying how names correlate with behavior [103,145], and analyz-

ing names to reveal interesting properties [94,101,106,137,175]. We focus this work on investigating

how names evolve [101,159,160,185,191] (i.e., are changed via rename) and how these changes af-

fect/are affected by: 1) other changes made to the code (i.e., behavior preserving or not) as part of

2) a larger development plan/context. This information is critical if we are to support the evolution

of identifier names by recommending when and how to rename an identifier.

In this study, we study renames in two ways. 1) This study utilizes a taxonomy of rename types

published by Arnoudova et al. [101] to understand the types of changes applied to identifier names

within our dataset. That is, we study how individual terms within an identifier are modified both

syntactically and semantically when a rename refactoring is applied. 2) The study contextualizes

these rename types by analyzing changes to data types, commit log data, and refactorings that

co-occur with renames. This allows us to understand how changes, to the code surrounding an

identifier, affect changes to the identifier’s name and, likewise, how development activities (i.e.,

written in a commit log) affect changes to the identifier’s name.

This study is an extension of two prior works. Our initial work on renames investigated how

method, class, and package identifier names evolve and how this evolution was described in commit
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messages. Our aim was to understand how names evolve and how this evolution is documented. Our

assumption was that the choice of wording used during a rename is influenced by external factors

which may appear in commit messages [191]. Through this work, we determined some preliminary

trends in how development activities, such as adding features, influenced the terminology used

during a rename. However, due to the limitations of natural language analysis techniques, and

the occasionally information-light nature of commit messages, the results we found were not as

actionable as we wanted. The trends we detected were nevertheless instructive and helped guide

us toward ways to improve our approach. Thus, we extended [191] by taking into account the

types of refactorings which occur before, or after, a rename refactoring while performing commit

message analysis on these surrounding operations [185]. This allowed us to more clearly identify

how names are influenced by their surrounding changes (e.g., Extract Method and Move Attribute

frequently occur before certain types of renames) and how these influences are documented in

commit messages. It also highlighted further challenges, which we discussed as research directions

for ourselves and the larger software engineering research community.

In this study, we extend our recent work [185] by additionally considering the situation where a

rename is applied to an identifier, and that identifier’s corresponding data type is changed. Data

type changes are interesting because, unlike refactorings, they may change the external behavior of

their associated identifier. Data types tell us what data and behavior an identifier represents (i.e.,

the data type tells us what attributes and methods can be used with this identifier). Therefore, when

an identifier and its data type both change, this indicates a potential shift in behavior (e.g., added

methods, new API), a shift in the data represented by an identifier (e.g., added attribute), or shift

in the representation of data and behavior in a system (e.g., a change to improve comprehension).

By studying this situation, we can gain a more acute understanding of name evolution using a type

of code change (i.e., data type changes) that has a stronger, direct influence on the behavior of

a given identifier, and provide means for previous rename recommendation techniques to consider

type migration as another dimension to learn a more suitable name.

The goal of this extension is to understand the influence that data type changes have on the

structure and meaning of a rename. We emphasize data type changes for three reasons: 1) Changes

to an identifier’s type are relatively easy to detect in many programming languages. Therefore,

making suggestions to developers on the fly when a type change is performed is already feasible

in modern IDEs. 2) Types have a strong influence over the data and behavior represented by an

identifier, so changes to the type can have heavy significance on their associated identifier. 3) Type

changes are a simple way for us to explore some non-refactoring code changes related to renames.

These results will provide insight into our long-term goals. In the long term, the outcomes of this
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study will be used to support research into: 1) recommending when a rename should be applied

(e.g., after specific types of refactorings), 2) recommending how to rename an identifier (e.g., what

words to use), and 3) developing a model that describes how developers mentally synergize names

using domain and project knowledge. We provide insights into how our data can support future

recommendations. Additionally, we expand our reflection on the significant challenges for future

research in recommending renames. Hence, we answer the following research questions:

RQ1: What is the distribution of experience among developers that apply renames?

We want to know how much experience developers who apply renames typically have. We use this

question to understand the population from which our data has been obtained; contextualizing our

data with respect to the level of experience of the developers it was generated by. This is important

for future comparison with our dataset.

RQ2: What are the refactorings that occur more frequently with identifier renames?

With this question, we aim to understand which types of refactorings tend to occur before or after

a rename. Our assumption is that the changes made to code immediately before or after a rename

have a relationship with the rename itself.

RQ3: To what extent can we use refactoring occurrence and commit message analysis

to understand why different semantic changes were applied during a rename operation?

Using our refactoring co-occurrence data from RQ2, we add in commit message data in an effort

to see how effectively we can pinpoint the development reason for certain changes (e.g., using more

general words) to words in identifier names.

RQ4: What structural changes occur when an identifier and its corresponding type are

changed together? When an identifier is renamed in tandem with its data type, it may indicate

a behavioral or semantic change since modifying the type ultimately may mean that the amount,

or type, of data represented by an identifier has changed. This question explores structural changes

made to an identifier to understand how type names are included in/removed from identifier names

and changes to types affect structural changes made to identifier names.

RQ5: What semantic changes occur when an identifier and its corresponding type

are changed together? When an identifier is renamed in tandem with its data type, it may

indicate a behavioral or semantic change since modifying the type ultimately may mean that the

amount, or type, of data represented by an identifier has changed. We explore how identifier and

type naming semantics evolve together in this question, including how the plurality of identifier

names correlate with collection types and whether there is a covariant or contravariant relationship
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between semantic updates to type names and identifier names.

RQ6: What refactorings most frequently appear before and after an identifier and its

corresponding type are changed together? Are there specific semantic changes which

correlate with these refactorings? This question helps us understand if there is a common set

of refactoring operations applied before or after renames that involve an identifier name and its

corresponding data type. Further, we explore if these refactorings imply different semantic changes

to the identifier name.

5.2 Methodology

Our methodology consists of two stages - Data Collection and Detection. The Data Collection stage

consists of constructing our dataset while the Detection stage consists of examining and querying

the dataset for specific characteristics to help answer our research questions. Figure 5.1 represents

an overview of the approach used to conduct our experiments. In the subsequent subsections,

we explain in detail the approach for each activity. Due to performance requirements associated

with this volume of data mining and data analysis, the activities associated with both phases were

performed on a dedicated virtual machine with 16 GB of RAM, and a 3.40 GHz i7 CPU. With

this configuration, the Data Collection Stage took approximately four weeks to complete, while the

Detection Stage was completed in around 1.5 weeks.

5.2.1 Data Collection Stage

Projects: A key element to an empirical research study is the relevance of the dataset on which

the study is based. To obtain a viable dataset, we select 800 random, open-source Java projects

hosted on GitHub. These projects are part of a curated dataset of engineered software projects

made available by [172]. The authors of this dataset classified engineered software projects based

on the project’s use of software engineering practices such as documentation, testing, and project

management. For each of these 800 projects, after cloning the project repository, we enumerate over

the commit log of each project to extract metadata associated with each commit. The extracted

data includes the author (name and email) who was responsible for the original creation of the

commit, the creation timestamp of the commit, and the names of the files that were part of the

commit.

Refactorings: To obtain the set of refactorings from each project, we utilize RefactoringMiner

[218]. At the time of our study, RefactoringMiner can detect 28 different refactoring operations.
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Figure 5.1: Methodology overview



CHAPTER 5. CONTEXTUALIZING RENAME DECISIONS 35

From this list of operations, seven are rename based operations. At a high-level, we utilize Refactor-

ingMiner to iterate over all commits of a repository in chronological order. During each iteration,

RefactoringMiner compares the changes made to Java source code files in order to detect refac-

torings in the code based on a pre-defined set of refactoring rules. While there are a few other

tools that can mine refactoring operations [214], we selected RefactoringMiner since it represents

state of the art in the field of refactoring detection [219], along with a precision of 98% and a

recall of 87% [208,218]. Therefore, it is well suited for our large-scale mining study. We investigate

the renaming operations on five types of identifiers - classes, attributes (i.e., class-level variables),

methods (including getter and setters), method parameters, and method variables. Furthermore,

we conduct our experiments on the entire commit history of the project (and not on a release-by-

release comparison).

5.2.2 Detection Stage

Rename Forms & Semantics: We utilize the tool from one of our prior studies [191] for the

detection of rename-based form and semantic updates made to an identifier’s name. The tool

follows the rules specified by Arnaoudova et al. [101] to determine the type of form and semantic

change an identifier name undergoes when renamed. Input for the tool is the pair of old and new

names associated with a renamed identifier.

First, from the output provided by RefactoringMiner, we extract all rename-based refactoring

operations. Next, from these operations, we extract: 1) each pair of old and new names, 2) the

name of the source code file containing the renamed identifier, 3) the name of the class containing

the renamed identifier, and 4) the unique ID of the commit associated with the refactoring.

Since most identifier names are composed of multiple terms, a pre-requisite to performing the

form and semantic analysis is the splitting of each name into its constituent terms. Hence, the tool

utilizes the Ronin splitter algorithm implemented in the Spiral package [146] to determine the terms

that form a name. The tool primarily relies on Python’s Natural Language Toolkit (NLTK) [108]

to compare the old and new identifier name to determine the type of semantic change made by

the developer. To determine the relationship between terms in the names, the tool makes use of

WordNet [168], to obtain the semantic and part of speech details about each term.

Renames With Data Type Changes: We built a custom tool to identify data types associ-

ated with identifiers that undergo a rename. Based on Java technical documentation [41], our

experiments consider the following eight data types as primitives: byte, short, int, long, float,

double, boolean, and char. Additionally, we examine the distribution of data types that store a
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group of values/references (i.e., arrays and collections) [16]. For methods, we consider the return

type of the method as the data type. As void is not considered a type in Java [14], we exclude

instances where the return type changed to/from void. This exclusion allowed our analysis on

methods to be consistent with the other identifiers that have types– attributes, method variables,

and method properties; these identifiers must be associated with a data type (either primitive or

non-primitive) and thus cannot have void as their type. However, for all other instances, we apply

the same processing we performed on the other identifiers in our experiment.

Our study of data type changes and their involvement in rename refactorings is limited to attributes,

methods, method parameters, and method variables since classes do not have types. For each

rename instance of these types of identifiers, we extract the name of the data type associated

with the old and new name of the identifier. For example, the Rename Attribute refactoring

long connTimeToLive → TimeValue timeToLive also contains a change in data type. In this

instance, the developer changes the type of the identifier from long to TimeValue when renaming

the attribute from connTimeToLive to timeToLive.

Rename Co-occurrence With Refactorings: We built a custom tool to identify refactorings

that occur before and after rename refactoring. The tool functions by iterating over the commits

which contain refactorings in our dataset. This is done in chronological order (based on the author-

date – the date the commit was originally made). Since our rename refactorings are related to

classes, attributes, methods, method parameters, and method variables, we restrict our detection

to refactorings that are applied to only these types of identifiers. For each renamed identifier

type, we first extract all unique instances. Next, we iterated through all refactorings searching for

refactorings that involved the specific instance. Our process does not take into account the time

duration between commits when looking for surrounding refactoring commits.

To better highlight this process, consider the example where we detect the class stormpot.Counti

ngAllocatorWrapper as being renamed to stormpot.CountingAllocator [75]. We first query our list

of unique attributes, methods, parameters, and variables for identifiers that were part of this class

and had also undergone a refactoring. Our search results in an attribute, counter, belonging to

this class, which had undergone a rename refactoring (prior to the class being renamed) [76]. We

utilize the author-date attribute associated with a commit to determine the order of the commits.

Finally, we record this pair of refactorings in our database. It should be noted that the version of

RefacotringMiner we utilize only supports rename refactoring operations for parameters. Hence,

we did not obtain other types of refactoring operations that developers might apply to parameters.

Rename Co-occurrence With Data Type: The purpose of this activity is to detect and analyze
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the co-occurrence of rename refactorings that also contain a data type change to the renamed

identifier. Hence, we follow an approach similar to the general rename refactoring co-occurrences

described above. However, in this new approach, we limit the dataset to only rename instances with

a data type change; the general approach did not consider data type changes. For example, the

Rename Attribute refactoring HistoryMap historyMap → History history contains a data type

change from HistoryMap to History [10]. However, before performing this rename, the developer

performs a Pull Up Attribute refactoring operation on the attribute [11]. In this instance, the

refactoring operations Rename Attribute and Pull Up Attribute co-occur when the data type of the

attribute changes during its rename.

Commit Log Analysis: To derive the developer’s rationale for performing a rename, we look

at the commit log as a means of contextualizing the rename. Hence, our experiment involves the

performance of a topic modeling and n-gram analysis of commit messages. For our topic modeling

analysis, we utilize the Latent Dirichlet Allocation (LDA) [109] algorithm. Additionally, we use a

combination of topic coherence [202] and manual empirical analysis as a means to determine the

ideal number of topics; past research has shown that the number of topics can vary between studies

and datasets [104]. A prerequisite to these activities was a text preprocessing task where we cleansed

and normalized the commit messages. Normalization is a process of transforming non-standard

words into a standard and convenient format [151]. Some key steps in our preprocessing include:

removal of stopwords, URLs, numeric and alphanumeric characters/words, and non-dictionary

words. Additionally, we also expand contractions (e.g., ‘I'm’ → ‘I am’) and perform stemming

and lemmatizing on words.

Taxonomy: Additionally, we perform a qualitative analysis on the source code changes that

accompany rename refactorings. In this experiment, we manually review the diff of the commit in

order to understand if the rename was made in conjunction with other changes to the code or by

itself. As a setup for this experiment, we select 30 random rename instances from each of the five

types of identifiers. This results in a total of 150 source code files for our manual review. When

performing the review, the reviewers first examine changes made by the developer to surrounding

code elements and the commit message. Next, the reviewers determine the rationale for the rename.

Finally, the reviewers compare their individual taxonomy annotations and agree on a final set. The

reviewed source files were then annotated using this finalized taxonomy.

Developer Experience: The purpose of this activity is to determine the experience of the de-

velopers that refactor the source code in a project. As our study is on renames, we derive the

experience of developers where the developers refactoring operations are limited to only renames,
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developers who perform all refactoring operations, and developers who perform only non-rename

refactoring operations. As this is a large empirical study, obtaining the experience of each devel-

oper, associated with a project, in our dataset is not feasible and can also be subjective. Hence,

to overcome this challenge, we perform a more objective-based experiment where we follow the

approach utilized by [153]. In their approach, the authors use project contribution as a proxy for

developer experience within a project. Hence, for each developer in each project, we calculate the

Developer’s Commit Ratio (DCR). This ratio measures the number of individual commits made

by the developer against all project commits. In other words, DCR = ( IndividualContributorCommits
TotalAppCommits ).

We utilize the project’s commit log along with the output of RefactoringMiner to determine the

developers that belong to each of the three groups. Using details in the commit log, we first calcu-

late the DCR for all developers in a project. Next, using the output of RefactoringMiner, we split

the developers into their respective groups based on the type of refactoring operations they had

performed during the lifetime of the project. To mitigate the threat of misattributing commits due

to the use of GitHub features such as pull requests, we only consider the author of a commit as its

developer.

5.3 Experimental Results

In this section, we discuss the results of our experiments. The discussion is broken down into six

Research Questions (RQs). While RQs 1-3 focus on all rename refactorings, RQs 4-6 focus specifi-

cally on rename refactorings in which the renamed identifiers also had a change in data type. The

RQs are designed to help us understand how data type changes affect the evolution of identifier

names when these changes are applied in tandem. In RQ1, we focus on the experience of developers

that perform rename refactorings versus other types of refactoring operations. In RQ2, we discuss

what types of refactorings occur before or after a rename refactoring. Additionally, we look at

how often rename refactorings are preceded or followed by another refactoring, and what types

of refactorings these preceding or following changes represent. In RQ3, intending to contextualize

identifier renames, we combine and discuss data from RQ2 with commit message information and

the semantic change types. Our end goal is to utilize the commit message and refactoring infor-

mation to contextualize the semantic change types we detected in our set of renames. In RQ4, we

examine the structural changes applied to an identifier name when both it and its corresponding

type are changed together. In RQ5, we apply similar analysis as in RQ4 except we look at seman-

tic, instead of structural, changes; identifying how the meaning of identifier names evolve when

their type is changed in-tandem. Finally, RQ6 is similar to RQ2, but we focus on refactorings

surrounding identifier renames which include a change to the corresponding type.
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Table 5.1: Distribution of the top five refactorings

Refactoring Type Count Percentage

Rename Attribute 137,842 19.37%

Rename Variable 84,010 11.81%

Rename Method 82,206 11.55%

Move Class 76,265 10.72%

Extract Method 47,477 6.67%

Others 283,695 39.87%

5.3.1 Data Summary

For context, we present a summary of our dataset before we discuss our results.

First, with regards to project cloning, in total, we collected 748,001 commits with a project con-

taining 732 commits and 19 developers on average. In terms of recentness, the projects were cloned

in early 2019, and approximately 74.6% of the projects had their most recent commit within the

last four years. Next, looking at the RefactoringMiner output, we identified 711,495 refactoring

operations, with each project in our dataset exhibiting more than one refactoring operation. Af-

ter the removal of outliers (via the Tukey’s fences approach), on average, each project had 450.8

refactoring operations performed by seven developers. Approximately 53.51% of the refactoring

operations in our dataset were rename based. We present the top five refactoring operations, from

our mined dataset, in Table 5.1.

Looking at the form type and semantic updates data, obtained during the Detection stage (Section

5.2), we observed that developers more frequently perform a Simple form type rename compared

to Complex, Formatting, and Reordering. In terms of semantic updates, most identifiers undergo

a change in meaning, with a narrowing in meaning occurring the most. Shown in Table 5.2 is the

distribution of rename form and semantic meaning types that were performed by all developers in

our dataset.

From our analysis of renames with data type changes, approximately 17.39% (53,962) of renames

were performed with a change in data type. From this set, developers frequently change the type of

method variables followed by method parameters. A breakdown into the individual identifier types

is presented in Table 5.3. Out of the 800 projects in our dataset, 769 (≈ 96.13%) of these projects

exhibited rename instances that had a change in data type. Looking at the individual identifier
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Table 5.2: Distribution of rename forms and semantic meaning updates made to identifier names

by developers

Type Count Percentage

Rename form types

Simple 259,754 68.31%

Complex 109,860 28.89%

Formatting 8,916 2.34%

Reordering 1,732 0.46%

Rename semantic meaning updates

Preserve 29,568 7.78%

Change 350,694 92.22%

Change – Narrow 44.21%

Change – Add 37.93%

Change – Broaden 15.09%

Change – Remove 2.58%

Change – Antonym 0.19%
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Table 5.3: Distribution of rename-based type changes

Type Changed Type of Rename Count Percentage

No Rename Attribute 128,486 41.41%

No Rename Variable 61,665 19.87%

No Rename Method 37,923 12.22%

No Rename Parameter 28,086 9.05%

Yes Rename Variable 21,885 7.05%

Yes Rename Parameter 16,285 5.25%

Yes Rename Attribute 9,355 3.01%

Yes Rename Method 6,397 2.06%

No Move And Rename Attribute 187 0.06%

Yes Move And Rename Attribute 40 0.01%

types, approximately 80.25% of all projects in the dataset had an attribute rename with a change

in data type, while approximately 73.65%, 92.25%, and 81% of projects had a rename of a method,

variable, and parameter occurring in tandem with a data type change respectively. Furthermore,

approximately 42.75% of the projects from our dataset of 800 contained a refactoring occurring

either before and/or after a rename refactoring that also contained a data type change.

Finally, we followed [101]’s approach to identify documented renamings in our dataset. From the set

of mined rename refactoring commits, approximately 6.9% (or 4,701 out of 68,121) of the commits

documented the renaming, compared to less than 1% in [101]’s dataset. This means that most

commit messages do not explicitly discuss the rename operation. However, while renames are

not always documented, the motivation behind the rename may still be gleaned from the commit

message (e.g., the commit may discuss clean-up, bug fixing, changing a method’s behavior). Not all

commit messages which document renames specify why the rename is needed (e.g., “renaming some

variables” [21]) and, likewise, some rename motivations can be found in commit messages which do

not mention the rename itself (e.g., “extract method to convert db entity to generic entity” [36]).

This percentage does indicate a potential need for rename documentation support.

5.3.2 RQ1: What is the distribution of experience among developers that apply

renames?

To compare the distributions of DCR for developers who had performed only renames, only non-

renames, and a mix of rename and non-rename refactorings, we follow the same approach as [153].
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Figure 5.2: Distribution of DCR values for developers based on the type of refactoring performed

in their project

Since the number of developers in each project differs, we calculate an adjusted DCR value for

each developer by dividing the developer’s original DCR value by the number of developers in the

project. We also restrict our experiment to projects that had only two or more developers. Figure

5.2 depicts the distribution of DCR values for developers based on the type of refactoring performed

in their project.

Our observation of developers who perform all types of refactorings having a higher DCR than

those that perform only rename refactorings is in line with the research indicating that rename

operations are considered simpler, or more accessible, compared to other refactoring operations.



CHAPTER 5. CONTEXTUALIZING RENAME DECISIONS 43

That is, developers who are less experienced feel more comfortable applying them [156, 170, 224].

However, it is interesting that developers who perform only renames share a similar DCR value as

those that perform only non-rename refactorings. To further validate these findings, we perform a

nonparametric Mann-Whitney-Wilcoxon test on the DCR values for developers that belonged to

these categories. We obtained a statistically significant p-value (< 0.05) when the DCR values of

developers who performed only rename refactorings were compared to developers that perform all

types of refactorings. This value confirms that developers that contribute less to a project are more

likely to perform rename refactorings, which are generally considered easier to apply due to wide

IDE support despite developers also generally agreeing that renaming is a difficult problem [101].

Looking at the different types of identifier rename forms, we observe that there is no significant

difference in the distribution of renaming forms between developers that perform only renames

and those that perform all types of refactorings. Similarly, the types of semantic updates to an

identifier name also showed no significant differences among these two groups of developers. Table

5.4 provides a breakdown of the distribution of rename form and semantic meaning updates based

on developer type. Our experiment on developer experience shows that developers with more

project experience (i.e., contributions) are more accustomed to performing a multitude of different

types of refactoring operations. This is not surprising as these developers have more experience

and knowledge of the codebase (and system) and would be more comfortable in implementing

design/structural changes to the project. Given that rename refactorings have broad IDE support

and are syntactically simple modifications, inexperienced developers will naturally be drawn into

making such refactorings in the project.

Summary for RQ1 : Developers with limited project experience are more inclined to perform only

rename refactorings than other types of refactorings (which may alter the design of the system).

This is an important context for any future recommendation effort and particularly for our data.

Given that many of the developers performing the renames we analyzed have less experience on

average, our results may reflect this lack of experience. Further research is needed to confirm the

connection between the quality, of renames and developer experience.

5.3.3 RQ2: What are the refactorings that occur more frequently with identifier

renames?

To derive the extent to which non-rename refactorings can either influence or be influenced by a

rename, we study the type of refactoring commits that occur just before and after a rename refac-

toring commit. This is based on the idea that renames are likely to occur with other refactorings;
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Table 5.4: Distribution of rename form and semantic meaning updates split by developers who

performed all refactoring operations and those that performed only rename refactoring operations.

Type
Only Renames All Refactorings

Percentage Percentage

Rename form types

Simple 64.65% 67.01%

Complex 30.55% 29.96%

Formatting 4.56% 2.52%

Reordering 0.24% 0.51%

Rename semantic meaning updates

Preserve 9.97% 8.50%

Change 90.03% 91.50%

Change – Narrow 48.99% 48.08%

Change – Add 29.93% 32.68%

Change – Broaden 18.33% 16.46%

Change – Remove 2.58% 2.56%

Change – Antonym 0.17% 0.21%
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Table 5.5: Top 3 refactoring operations that occur before a class, attribute, method and method

variable are renamed

Refactoring

Operation
Count Percentage

Commit Message

Key Terms

Refactoring operations before a class rename

Move Class 3,069 26.96% package, structure, change

Rename Method 2,062 18.12% code, clean, change, fix

Rename Variable 1,376 12.09% add, code, test, support

Others 4,875 42.83% N/A

Refactoring operations before an attribute rename

Move Attribute 1,499 83.32% added, fix, support, test

Pull Up Attribute 220 12.23% added, simplification, extract

Push Down Attribute 73 4.06% separate, remove, added

Others 7 0.39% N/A

Refactoring operations before a method rename

Rename Method 1,760 19.58% revert, implementation, test

Extract Method 1,666 18.53% fix, added, modified, test

Rename Variable 1,364 15.17% added, test, fix, change

Others 4,201 46.72% N/A

Refactoring operations before a method variable rename

Rename Variable 3,067 90.66% revert, added, test, fix

Extract Variable 305 9.02% added, string, test, fix

Inline Variable 6 0.18% fix, working, change

Others 5 0.15% N/A
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an assumption supported by Murphy-Hill et al. [173] who shows that developers perform renames

in batches more so than other refactorings and, most often, that refactorings occur on multiple

related code elements. This part of our study focuses on the renames of classes, attributes, meth-

ods, method parameters, and method variables. For each entity type, we extract the list of unique

instances that underwent a rename and then search for the refactoring that directly precedes and

directly follows (i.e., there may be non-refactoring commits that we skip) the rename for either the

same entity or child entities (as in the case of classes and methods).

Interestingly, we observe that for all elements that are subject to renames, developers frequently

perform the rename in isolation with respect to other refactorings. In other words, approximately

91.97% (or 349,731) of rename commits had no refactorings occur one commit before or one commit

after. However, this does not mean that rename is the only action applied to this element during

its lifetime. Upon the inspection of some cases, there were changes, applied to the element, which

are not considered refactoring (e.g., adding lines of code to a method, adding a given identifier as a

parameter to another method). For scenarios where there are refactorings either before or after a

rename, we noticed that more operations occur before a rename (≈ 6.27%) than after (≈ 1.73%).

In general, the majority of the refactorings that occur before a rename are related to changes/up-

dates to functionality. Additionally, we observe that some of these commits are bug fix related or

due to developers either adding or updating unit test files. For example, in order to include new

functionality, a developer refactors the existing code by creating a new method called getClassURL

by performing an Extract Method operation [50]. Thereafter the developer renames the newly

created method to getClassUrl to ensure that name follows “Google’s style rules” [49].

Even though the number of refactorings occurring after a rename is much smaller, we did notice that

most of these refactorings are associated with some form of code reversal/reverting. As an example,

a developer initially renames a method from getIncludedPublishers to getEnabledSources when

introducing new functionality [51]. However, in a subsequent commit [52], the developer removes

this functionality from the method and also reverts back to the original method name.

As the majority of refactoring operations occur before a rename, in the following subsections, we

drill-down into each element type with the aim of discovering the common types of refactorings that

precede the renaming of the element and also the extent to which the commit log can contextualize

the relationship between these refactorings. Table 5.5 highlights the distribution of the top three

refactoring operations that occur before a class, attribute, method, and method variable is renamed.

Also provided in this table are the common terms we extracted from our topic-modeling and n-gram

analysis of the commit messages that are associated with these refactoring operations.
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Class Rename

Our study of class renames involve identifying the refactorings performed on the class and all

elements within the class (i.e., attribute, methods, method parameters, and method variables)

immediately before and after the developer renames the class. We observe that developers more

frequently performed a Move Class refactoring before renaming the class. Results from our topic

modeling and n-gram analysis coupled with a manual analysis of random messages showed that ac-

tivities related to restructuring project structures and change of package names cause developers to

rename class names. For example, in [24] a developer moves the class BasicAuthLoginCommand from

com.heroku.api.command to com.heroku.api.command.login with the message “reorganized com-

mands into appropriate packages.” The next refactoring operation [25] performed on this class

is renaming the class to BasicAuthLogin. The reason for the rename is “...to simplify some of the

names.”

Looking at the number of non-refactoring commits that separate aMove Class from a Rename Class,

we observe that the majority of renames (≈ 7.15%) occur in the commit immediately following the

move. We also observe that a majority of these pairs of refactoring commits fell within one to five

commits of each other – approximately 27.73% of the time. This lends support to the idea that

they are related; Move Class refactorings are frequently done near the same time as Rename Class.

While further investigation is required to determine when it is appropriate to recommend a rename

in this situation, our data highlights this relationship as a good avenue for future, deeper research

into what indicates that the rename will be performed versus when it will not be.

Attribute Rename

Similar to classes, developers perform move operations on attributes before renaming them. Looking

at the commit messages, change in functionality (specifically adding of new features) is one of

the most common reasons developers move an attribute. As an example, in commit [19], the

developer moves the attribute String jobId with the message “added the jobId to a few more

logs”. The subsequent refactoring commit [18] for this attribute involves a renaming operation in

which the attribute is renamed to context as part of a “cleanup” activity. We observe that around

71% of the renames occur in the commit immediately after the developer moves the attribute.

Additionally, around 82% of rename refactorings take place within five commits after the Move

Attribute operation.



CHAPTER 5. CONTEXTUALIZING RENAME DECISIONS 48

Method Rename

For methods, we investigate the refactorings that are applied to the method and its members (i.e.,

parameters and variables) just prior to and after the method is renamed. Interestingly, we observe

that developers perform a rename to the method before renaming it again more than any other

type of refactoring. Based on the terms in the commit log, we observe that the reason for the

initial rename is due to developers changing the behavior/purpose of the method. Furthermore, we

notice that the second occurrence of the method rename reverts the first rename operation. For

example, in [43], the developer renames the method showDelivery to showOwnDelivery as part of

a functionality change, with the commit message “Minor changes to access controls in instructor

MVC”. In the subsequent commit [44], the developer reverts the name change as part of cleanup

activities with the message “Final tidy of older instructor MVC”.

Looking at the interval between commits, the majority (≈ 15.22%) of the method-rename pairs

of refactorings occur one after another. Further, a gap of between 1 to 5 commits occurs around

37.68% of the time between two method renames.

Method Variable Rename

Like methods, method variables also undergo rename operations in succession. Once again, looking

at the commit messages, we observe that the reason for the initial rename tends to be due to

either refactoring or change (including reversals) in functionality. It is also interesting to note that

the developers revert the variable name of the initial commit in the next rename. For example,

in [54] the developer renames the variable drop to assembledDrop with the message “simplified drop

assembly a bit”. The next commit [55] reverts the variable name when the developer performs a

“misc code cleanup” activity. Finally, a gap of between 1 to 5 commits occurs around 33.94% of

the time between two variable renames.

Summary for RQ2 : We show that in most scenarios, renaming of an element does not generally

seem to be influenced by, nor does itself influence another type of refactoring on the same element.

This indicates that an analysis of non-refactoring operations will be required to understand how

changes to code around a rename affect or are affected by the rename. However, there is a subset of

renames that occur directly before or after another refactoring. Most commonly, the refactorings

occurring before a rename are Extract Method, Move Attribute, Move Class, and Rename. In

particular, we observe that 71% of the time, a rename occurs in the commit directly following a

Move Attribute, and 82% of the time, this rename is within five commits after the Move Attribute
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Table 5.6: An overview of the types of semantic updates an identifier name undergoes
Identifier

Type

Refactoring

Before Rename

Top 3 Types of

Rename Forms

Type of

Semantic Update

Top 3 Semantic

Change Subtypes

Class

Move Class

(Total Count: 3,160)

Simple (57.82%)

Complex (34.68%)

Formatting (5.54%)

Change (84.14%)

Preserve (15.85%)

Narrow (63.56%)

Broaden (28.13%)

Add (3.65%)

Rename Method

(Total Count: 2,179)

Simple (65.26%)

Complex (30.29%)

Formatting (2.98%)

Change (90.0%)

Preserve (10.0%)

Narrow (57.42%)

Broaden (31.56%)

Add (6.78%)

Rename Variable

(Total Count: 1,479)

Simple (61.19%)

Complex (34.69%)

Formatting (2.64%)

Change (100.0%) Narrow (100%)

Attribute

Move Attribute

(Total Count: 1,499)

Simple (67.44%)

Complex (29.75%)

Formatting (2.54%)

Change (94.66%)

Preserve (5.34%)

Add (54.05%)

Narrow (24.59%)

Broaden (16.07%)

Pull Up Attribute

(Total Count: 220)

Simple (55.91%)

Complex (35%)

Formatting (8.18%)

Change (85.0%)

Preserve (15.0%)

Narrow (66.84%)

Broaden (25.67%)

Add (3.21%)

Push Down Attribute

(Total Count: 74)

Simple (62.16%)

Complex (28.57%)

Formatting (6.76%)

Change (63.51%)

Preserve (36.49%)

Narrow (70.21%)

Broaden (23.4%)

Add (2.13%)

Method

Rename Method

(Total Count: 2,158)

Simple (66.22%)

Complex (23.17%)

Formatting (9.87%)

Change (81.19%)

Preserve (18.81%)

Narrow (36.42%)

Broaden (31.16%)

Add (24.14%)

Extract Method

(Total Count: 1,694)

Simple (52.42%)

Complex (43.15%)

Formatting (3.96%)

Change (85.42%)

Preserve (14.58%)

Narrow (64.06%)

Broaden (26.12%)

Add (4.49%)

Rename Variable

(Total Count: 1,387)

Simple (51.62%)

Complex (43.98%)

Formatting (3.89%)

Change (87.41%)

Preserve (12.59%)

Narrow (49.28%)

Broaden (32.86%)

Remove (9.17%)

Variable

Rename Variable

(Total Count: 3,067)

Simple (87.41%)

Complex (12.36%)

Formatting (0.23%)

Change (98.89%)

Preserve (1.11%)

Add(77.35%)

Narrow (14.93%)

Broaden (6.17%)

Extract Variable

(Total Count: 305)

Simple (61.64%)

Complex (36.72%)

Formatting (1.31%)

Change (92.13%)

Preserve (7.87%)

Narrow (71.17%)

Broaden (19.57%)

Add(6.05%)

Inline Variable

(Total Count: 6)

Simple (83.33%)

Complex (16.67%)
Change (100%)

Add (66.67%)

Narrow(33.33%)

operation. In other cases (Move Class, Rename Method), this percentage rests between 15 and

27%. Finally, in situations where a rename follows another rename, we observe that developers

revert to the original name when performing the second rename.
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5.3.4 RQ3: To what extent can we use refactoring occurrence and commit message

analysis to understand why different semantic changes were applied during a

rename operation?

To answer this question, we look at the types of semantic changes applied to identifier names

given that another refactoring was applied in the previous commit. We then analyze this data to

understand whether the refactoring that happened before the rename had any effect on the semantic

change applied during the rename. Additionally, we perform an analysis of commit messages using

LDA and bi/trigrams in an effort to further contextualize the semantic change; using information

about why a given refactoring was applied before the rename to help us understand the semantic

changes observed during renames applied afterward.

The first observation we make is that renames applied after another refactoring most frequently

changed the target name’s meaning somehow; the meaning was less frequently preserved. Therefore,

we will first look at renames that changed the meaning of the identifier they were applied to. Table

5.6 highlights the distribution of these change types for elements that undergo a rename after

another type of refactoring operation.

We observe that the majority of the name changes were related to a narrowing in the meaning of

the name. Generally, a narrowing in the meaning of an identifier name is related to a specialization

of functionality. For example, in commit [35], a developer created the method readImage(width

int, height int) by performing an Extract Method operation in order to add “missing function-

ality”. In a subsequent refactoring operation on this method, the developer renames the method

to readZlibImage(width int, height int) with the message “Added read support for GM8 gmk

files” [40]. As can be seen by the message, the developer specializes the method and hence reflects

this behavior in the new method name by narrowing its meaning.

The next most common type of semantic change was the broadening of the identifier’s name.

Developers perform a broadening of the name when they generalize the behavior of the identifier.

As an example, in commit [29], a developer performs a Pull Up Attribute on idColumn as part

of generalizing change – “Create generic table class” . Thereafter, the developer renames the

attribute to id in order to make it consistent with the earlier generalizing task – “Rename generic

table column fields” [28]. Finally, adding to the identifier name was the third most frequent type

of semantic change.

There are a few interesting things to point out in Table 5.6. The first is that a Rename Variable

followed by another Rename Variable tended to add meaning instead of narrow or broaden. The
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same applies to renames occurring after a Move Attribute refactoring and after an Inline Variable

refactoring. However, these are the only examples of a break from the typical pattern of Narrow

being the most common semantic change type. If we only contextualize using refactorings applied

before renames, there are few significant differences in the types of semantic changes applied after

different types of refactorings. While this data does indicate the popularity of narrowing, adding

to, or broadening the meaning of a name, it does not completely help us understand what the

developers were trying to accomplish; an Extract Method refactoring occurring before a rename

does not serve as a strong indicator of what semantic change will happen if a rename is applied

afterward.

To help us further contextualize these refactorings and the renames occurring afterward, we perform

LDA and n-gram analysis on commit messages associated with the rename refactorings occurring

after a refactoring operation. Our previous work also used LDA in a similar context [191], but it

performed LDA analysis on the commit message associated with the rename without taking into

account if the rename occurred in isolation or immediately after another refactoring. We extend

the topic modeling approach in [191] by incorporating additional text preprocessing and the use of

topic coherence scores in order to improve the quality of our text analysis compared to the original

study. The results of this analysis are in Tables 5.7, 5.8, 5.9, and 5.10. In each table, we show the

two strongest topics from LDA along with either a bigram or trigram analysis. We present either

the bigram or trigram that is the most relevant. Using the data in these tables, we can see some

indication of what development activity caused different types of semantic changes when applying

a rename.

Table 5.7 shows data for all method renames that are preceded by a variable rename, and resulted

in the name of the method broadening in meaning. These preceded a rename which resulted in a

broaden meaning. The data here indicates changes to a model and changes to a factory. An analysis

of the commit messages associated with these topics shows that the updates are due to bug fixes

or code optimizations. For example, in commit [70], the broadening of the name is associated

with the message “...Made the factory generic”, which a broaden meaning rename would logically

follow. Table 5.8 has similar data but for a set of Extract Variable refactorings which preceded

a narrowing of the identifier name meaning via rename. The topics and bigrams here indicate

code related to data binding, code updates, and code fixes. Again, we took a look at the commit

messages associated with this data and found that most of the data bindings were specific to a

certain project in our corpus. In this instance [37], the developer uses a generic message, “Updated

data binding code...”. Ignoring this set of commits, a majority of the remaining messages were

associated with bug fixes.
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Table 5.7: Broadening of a method name after a variable rename

Analysis Output

LDA Topic 1

change (0.090), model (0.086), past (0.068),

discussed (0.068), allow (0.019), lambda(0.019),

route(0.019), work(0.015), early(0.014),

simplified(0.014)

LDA Topic 2

change (0.088), model (0.061), past (0.049),

discussed (0.049), fix (0.028), factory (0.026),

changed (0.023), loader (0.023), add (0.017),

set (0.013)

Trigram

(discussed, past, model), (change, discussed, past),

(model, change, discussed), (past, model, change),

(discussed, past, added), (changed, loader, factory),

(loader, factory, changed), (factory, changed, loader),

(location, model, change), (render, nicely, html)

Table 5.8: Narrowing of a variable name after its extraction

Analysis Output

LDA Topic 1

code (0.091), binding (0.083), data (0.081),

updated (0.074), fix (0.028), add (0.025),

support (0.017), cr (0.009), custom (0.009),

request (0.009)

LDA Topic 2

code (0.067), updated (0.060), binding (0.059),

data (0.058), record (0.013), id (0.010),

custom (0.010), introduced (0.010), remove (0.010),

cr (0.007)

Bigram

(data, binding), (binding, code), (updated, data),

(code, updated), (revamped, hibernate),(added, method),

(array, fix), (attribute, handle), (binding, warning)
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Table 5.9: Narrowing of an attribute name after its pulled-up

Analysis Output

LDA Topic 1

work (0.094), introduce (0.043), security (0.034),

option (0.034), addition (0.034), start (0.018),

add (0.018), took (0.018), thread (0.018),

ongoing (0.018)

LDA Topic 2

symbol (0.077), table (0.077), work (0.061),

unit (0.031), option (0.031), property (0.024),

fixed (0.022), hierarchy (0.016), added (0.016),

implementation (0.016)

Trigram

(hierarchy, option, reduce),

(implemented, hierarchy, option),

(option, reduce, code), (reduce, code, duplication),

(code, duplication, implemented),

(duplication, implemented, hierarchy),

(gross, value, gross), (addition, security, addition),

(code, added, support), (entity, id, field)

Table 5.10: Adding meaning to a class name after moving it

Analysis Output

LDA Topic 1

method (0.189), added (0.083), adding (0.072),

increased (0.071), incremental (0.071), stub (0.071),

anonymous (0.071), truly (0.071), fix (0.013),

subset (0.013)

LDA Topic 2

test (0.198), validation (0.043), removing (0.030),

enable (0.029), mapping (0.029), upgrade (0.029),

failing (0.029), concept (0.029), collection (0.015),

contains (0.015)

Trigram

(added, method, adding), (adding, truly, anonymous),

(incremental, stub, method), (method, added, method),

(method, adding, truly), (stub, method, added),

(truly, anonymous, increased),

(anonymous, increased, incremental),

(cleaned, scorer, removing), (field, tree, context)
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Table 5.9 shows the implementation of options and reduction in code duplication which preceded a

narrowing in meaning. An analysis of the commit messages associated with this table shows that

the removal of duplicate [83] and legacy [38] code is a task associated with code cleanup activities.

These activities can also range from simple identifier renames [42] to more intensive structural

changes [39]. Finally, Table 5.10 indicates the addition of new methods associated with moving

a class to a different location, which preceded an add meaning change. Examining these commit

messages reveals that methods are added in response to enhancing the existing design of the system

after the class is moved and hence contribute to the renaming of the class, such as in the case of [1],

where the developer performs a “...Method grouping” in the newly moved class.

Preserve meaning was the least occurring semantic type, and not surprisingly, the frequently occur-

ring terms in these commit messages were not change related. These terms include ‘fix’, ‘test’ and

‘work’. Generally, such terms are associated with behavior correction. Hence, developers feel that

the update they make to the code does not necessarily deviate from the originally expected behavior

of the identifier. For example, in [7] as part of updates to the user interface, the developer performs

a Pull Up Method operation on the method calcTotal. The next update [6] to this method is to

address an issue, and as part of this task, the developer renames the method to calculateTotal to

better represent its intended behavior. A cursory glance at the method shows no changes to the

functional behavior exhibited by this method.

Summary for RQ3 : Developers frequently change the semantic meaning of an identifier name

when performing a rename after a refactoring, rather than preserving it. Most frequently, a rename

will change this meaning by narrowing (i.e., specializing) the identifier name it is applied to. While

the rationale for some semantic changes can be derived from the commit log in addition to the

actions that occurred just prior to the rename, classical ways of analyzing large numbers of commit

messages provide only a high-level understanding of this rationale and require significant manual

analysis to help us fully understand the rationale. The answer to this RQ is that refactorings,

occurring before and after a rename, and commit messages can give us some high-level insight into

how names semantically change and why. Still, our data shows that further research using additional

software artifacts, and new methods of natural language text analysis for software engineering, are

required to provide us with stronger insights.
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Table 5.11: Distribution of identifier form types when a change in data type occurs

Form Type

Change

Count

(Total: 53, 962)
Percentage

Simple 32,448 60.13%

Complex 21,169 39.23%

Formatting 314 0.58%

Reordering 31 0.06%

5.3.5 RQ4: What structural changes occur when an identifier and its corresponding

type are changed together?

From our analysis of 310,309 identifier rename instances, we observe that 17.39% (or 53,962) of

identifier renames involve a change to their corresponding type. We are interested in understanding

how changes to the type name correlate with modifications to the structure of an identifier name.

A breakdown of renames which included a change in data type is shown in Table 5.3.

First, we look at rename forms (i.e., Simple, Complex, Reordering, and Formatting). A Sim-

ple rename involves a change of a single term between the old and new name of the identifier

(e.g., char[] password → byte[] encodedPassword). The Rename Variable refactoring opera-

tion String moveCoords → Point point, on the other hand, falls under a Complex rename as

more than one term between the old and new identifier name has changed. Reordering involves a

change of position of terms (e.g., RecordId recordId → IdRecord idRecord), while Formatting

is due to change of case or the addition/removal of a special character (e.g., AbstractDropDown

dropdown → DropDown dropDown). Looking at the types of rename forms, as shown in Table 5.11,

we observe that approximately 60.13% of data type changes are associated with Simple changes to

the identifier’s name, while Complex changes account for approximately 39.23%. Formatting and

Reordering changes each account for less than 1%.

Additionally, we investigate the extent to which an identifier’s name contains the name of its

data type to see if the type is generally added or removed as identifiers are changed. Prior work

considers the inclusion of a type name in the associated identifier’s name as an impediment to

software maintenance and code comprehension activities [164]. As some insight into this, it could

be argued that, in strongly typed languages, including the name of a type in an identifier’s name is

redundant due to the type being explicitly present already, and modern IDEs will generally inform

the developer of an identifier’s type using annotations. Another drawback of this naming approach
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is that the developer will be forced to rename the identifier when changing its data type (or risk

the name becoming out of date). This might be a substantial number of instances throughout the

codebase; not just the statement declaring the identifier. For example, when naming the variable

String tupleString, the developer appends the name of the data type, String, to the identifier’s

name. For this specific example, we observe that the developer, in a subsequent commit, renames

the identifier to List<String> tuple. As such, it can be seen that the developer had to adjust

the name of the identifier due to the old data type being present in the name.

For each instance of a rename refactoring in our dataset, we check if the old and new name contains

its respected data type as part of its name (i.e., the identifier name either starts with, ends with,

contains or is an exact case-insensitive match of the name of the data type). First, looking at all

rename instances (i.e., renames with and without a data type change), we observe that approxi-

mately 83.69% (out of 310,309) of the rename refactorings did not contain the name of the data

type as part of the old or new identifier’s name. Within this 83.69% of renames, approximately

10% of these renames had a change in data type, while the remaining 90% retain the same data

type.

Focusing on the remaining 16.31% (or 50,621) of renames on identifier names which contain the

name of their corresponding data-type, we have two groups which are summarized in Table 5.12:

G1) identifiers whose corresponding data type changed (top half of the table with 26,227 rename in-

stances); and G2) identifiers whose corresponding data type did not change (bottom half of the table

with 24,394 rename instances). Identifier names in G1 tended to exactly match the name of their

type even after being renamed (e.g., LocationStrategy locationStrategy → ElementLocator

elementLocator) 34.86% of the time and, when the name of the type was not originally present,

they tended to be changed to exactly match their type during a rename (e.g., BitRateType bitRate

→ BitRateType bitRateType) 18.73% of the time. This indicates that when a data type and iden-

tifier name are changed in-tandem, there is a tendency to include (or keep) the name of the type

within the identifier name.

Identifier names in G2 are similar in that the majority of most frequent cases involve adding (or

keeping) the data type name to (in) the identifier name. The primary difference between G1 and

G2 is that G1 identifiers tend to be exact matches; the identifier name and type name are exactly

the same. In G2, the type names are most frequently appended to the end of the identifier name;

the type name is a substring of the identifier name. An explanation for this difference may be that,

since types in G1 were modified in-tandem with identifier names, the identifier names are more

intricately linked to the type name. Either by already having included it (in the 34.86% case) or
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Table 5.12: Distribution of occurrence for the different scenarios where the name of the data type

is present in the identifier’s name

Old Identifier Name New Identifier Name Count Percentage

Renames with data type changes that contain

the name of the data type in the identifier’s name (Total Count: 26,227)

Exact match Exact match 9,143 34.86%

Does not contain Exact match 4,913 18.73%

Exact match Does not contain 3,746 14.28%

...other combinations 8,425 32.12%

Renames without data type changes that contain

the name of the data type in the identifier’s name (Total Count: 24,394)

Does not contain Exact match 5,470 22.42%

Ends with type name Ends with type name 4,625 18.96%

Does not contain Ends with type name 3,447 14.13%

...other combinations 10,852 44.49%

for some other reason (in the 18.73% case). Next, we look at the data in this set of 18.73% to try

and determine what these other reasons might be. While there was no visibly generalizable trend,

we notice that rename instances in this set contain a mix of primitive and non-primitive data types

associated with the original name of the identifier and, as part of the rename process, all primitive

data types were converted to non-primitive data types (e.g., long timestamp → Clock clock).

This might indicate that one of the trends for the primitives in this data is that these are a case of

broaden-meaning changes, where identifiers with primitive types are made into objects with more

data and behavior.

Summary for RQ4 : Looking at the 53,962 instances of renames applied to both an identifier and

its given type, 60% of these changes are Simple, while 39% are Complex. This contrasts with the

general population of renames in our study (i.e., regardless of whether there was a change to the

type), where 68% are Simple and 29% Complex (Table 5.2). Of the 16.31% of identifiers involved

in this RQ, most added or preserved their type name during a rename refactoring. A minority

removed their type name. We observe that renames which involve a change to the type name

tended to also involve identifiers with names exactly matching their type. Whereas, when there

was not a data type change with the rename, the type name was a substring and tended to be

appended to the end of the corresponding identifier name. Generally, developers tended to add or

keep type names during renames rather than remove them. More research is required to ascertain

the degree to which type names negatively impact the identifier names that they are a part of, but
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Table 5.13: Examples highlighting covariant and contravariant rename instances

Semantic Change Type Rename Instances

Covariant

Identifier Name: Narrow

Data Type Name: Narrow

Mongo mongo → MongoClient mongoClient

Client client → ClientEditor clientEditor

Identifier Name: Broaden

Data Type Name: Broaden

TabComponent childTabComponent → Tab childTab

DateTime availabilityEnd → Duration availability

Identifier Name: Preserve

Data Type Name: Preserve

CsvCreator csvCreator → CsvMaker csvMaker

Log log → Logger logger

Contravariant

Identifier Name: Narrow

Data Type Name: Broaden

SolrConfig solrConfig → String solrConfigFile

GraphRoute graphRoute → Object graphRouteObj

Identifier Name: Broaden

Data Type Name: Narrow

String fileName → File file

Executor workerPool → ExecutorService pool

Identifier Name: Preserve

Data Type Name: Narrow

String validationInformation → Message validationInfo

QueryOption reusable → QueryOptionReuse reuse

it is possible to recommend developers reconsider whether there is a reason the type name should

be part of the identifier during a rename. The trends in Table 5.12 are reported more fully in our

openly available dataset.

5.3.6 RQ5: What semantic changes occur when an identifier and its corresponding

type are changed together?

To answer this research question, we focus our analysis only on rename refactorings that included a

change in data type (i.e., 53,962 or ≈ 17.39% of rename instances) and analyze how modifications

applied to these names are reflected in their data type.

We examine how the semantic meaning of an identifier varies when there is a change to the as-

sociated data type. The majority of semantic updates involved a change in the meaning of the

identifier. A drill-down into the change in meaning types shows that developers change the data

type when Narrowing the meaning of the name approximately 67.91% of the time (e.g., Parse

parse → ParseResult parseResult). A Broadening of the identifier names occurs 20.98% of the

time (e.g., String jobName → Job job), followed by Preserve at 8.80% (e.g., FormulaContext
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formula → ExpressionContext expression), Add and Remove at 1.62%, and 0.64%, respec-

tively. This contrasts somewhat with our findings on general renames (RQ3), because in RQ5 we

find that these renames tend to narrow meaning more often (+23% more often), add meaning less

often (-36% less often), and broaden meaning more often (+5%) compared to general rename se-

mantic changes examined in RQ3. If we look at semantic updates made directly to the type name,

approximately 69% (or 27,298) of the data type changes show a narrow in meaning, while 24%

broadened with the remaining 7% belonging to add and remove.

We also look into how the semantic meaning of types and their corresponding identifier names co-

vary. 71.94% (or 28,341) of the identifier and data type name changes show a covariant relationship;

both the identifier and its associated data type name underwent the same semantic update. From

a more granular view, we observe that the narrowing of an identifier and data type name occur

the most, approximately 56.28% (or 22,171). An example of this type of occurrence is when the

developer performs the following Rename Attribute operation: DateFormat defaultDateFormat

→ DateTimeFormatter defaultDateTimeFormatter. In this example, both the identifier name

and data type undergo a narrowing of its respective original meaning. The next two highest oc-

currences were contravariant: a narrowing of the identifier name and broadening of the data type

name at 12.64%; and covariant: a broadening of both the names at 11.02%. In Table 5.13, we

provide examples of covariant and contravariant instances that occurred in our dataset.

Finally, we look at the relationship between identifier names being changed to/from plural form

and their data type changing to/from a collection. To detect a change in plurality, we compare

the matched terms in the old and new identifier names looking for either a singular to plural or

plural to singular change between the matched terms. For example, when the developer renames

the attribute defaultValue to defaultValues, the part of speech for the term ‘Value’ changes from

singular to plural. At a high level, as shown in Table 5.14, the majority of renames did not undergo

a data type change nor a change in the plurality of their name. However, if we were to focus

on only instances that show a change in plurality, approximately 47.82% (3407/(3407 + 3122)) of

plurality changes also had a change in data type (e.g., List<String> contextNames → String

contextName), while the other 52.18% (3122/(3407 + 3122)) of plurality renames did not have a

change of data type (e.g., String hostName → String hostNames).

We also detect when data types that were part of a rename were changed to or from a collection

type. Table 5.15 provides a breakdown of the various combinations of single-reference and collection-

based data types that underwent a change in data type. Our analysis shows that the majority of

type changes (Table 5.15, ≈ 82.64%) were not group/collection based (i.e., neither the old or new
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Table 5.14: Mapping between identifier name change in plurality and change in data type

Change in

Data Type?

Change in

Plurality?

Count

(Total: 310,309)
Percentage

No No 252,940 81.51%

Yes No 50,840 16.38%

No Yes 3,407 1.10%

Yes Yes 3,122 1.01%

name utilized an array or collection-based data type). Identifiers that did utilize collection based

data types in either the new, old, or both names (e.g., List<String> contextNames → String

contextName) accounted for around 17.36%.

We use the data about plurality and data-type above to study how identifier name plurality and

data-type are connected. We observe that around 69.47% of renames that did not have a change in

plurality (but did have a type change; Table 5.16) also did not utilize collection-based data types

in either the old or new name (e.g., DateTime date → LocalDate day). Additionally, around

3.74% (Table 5.16, (900 + 1120)/53962) of the instances whose data type changed to a collection-

based data type change did not show a change in plurality. For example, even though the Rename

Attribute refactoring: String exportToolCommand → List<String> executableCommand does

not show an overall change in plurality, the developer performs a change in data type by moving

from a non-collection to a collection based data type. When a data-type is modified such that

it becomes a collection, 64.29% (Table 5.16, 1621/(900 + 1621)) of the time there is a change in

plurality for its corresponding identifier name and 35.7% of the time, there is no change in the

plurality of the name. When a data-type is modified such that it ceases to be a collection, 53.02%

(Table 5.16, 1264/(1264 + 1120)) of the time there is a change in plurality for the corresponding

name and 46.98% of the time, there is no change in plurality. One other interesting note about

this table is that 13.17% of the time, when there was a change in type during a rename operation,

the plurality of the identifier changed but we did not detect a collection type. This indicates that

the objects’ class may have internally changed to include some form of collection or collection-like

behavior, which we would not be able to detect since we only look at type signatures without doing

internal analysis on classes.

Summary for RQ5 : From a semantic perspective, consistent with RQ3, we observe that de-

velopers generally narrow the name of the identifier in conjunction with a change in data type as

opposed to other types of semantic change types. However, the data also shows that this frequency
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Table 5.15: Distribution of data type changes with primitive/non-primitive and single/collection

data types for rename instances that changed data type

Old Data Type New Data Type Count Percentage

Primitive vs. Non-Primitive (Total Count: 53,862)

Non-Primitive Non-Primitive 49,380 91.51%

Primitive Non-Primitive 2,532 4.69%

Non-Primitive Primitive 1,157 2.14%

Primitive Primitive 893 1.65%

Single vs. Collection (Total Count: 53,962)

Single Single 44,593 82.64%

Collection Collection 4,464 8.27%

Single Collection 2,521 4.67%

Collection Single 2,384 4.42%

Table 5.16: Mapping between identifier name change in plurality and use of collection-based data

type for rename instances that underwent a change in data type

Is Data Type a Collection? Change in

Plurality?

Count

(Total: 53,962)
%

Old Identifier New Identifier

No No No 37,487 69.47%

No No Yes 7,106 13.17%

No Yes No 900 1.67%

No Yes Yes 1,621 3.00%

Yes No No 1,120 2.08%

Yes No Yes 1,264 2.34%

Yes Yes No 3,556 6.59%

Yes Yes Yes 908 1.68%
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is more pronounced (i.e., higher) for renames which involve type changes. We also note that there

was a decrease in add meaning changes and a slight increase in broaden meaning changes compared

to the general set of renames from RQ3. Additionally, when a data-type is modified such that it

becomes a collection, 64.29% of the time there is a change in plurality for its corresponding identifier

name, and 35.7% of the time, there is no change in the plurality of the name. When a data-type is

modified such that it ceases to be a collection, 53.02% of the time, there is a change in plurality for

the corresponding name, and 46.98% of the time, there is no change in plurality. 1.68% of the time,

the data type is already a collection object, and the identifier is modified to be plural to reflect

this. Finally, we found that most identifier names covariantly evolve with their corresponding type

name, and a minority of the renames we examined showed a contravariant relationship.

5.3.7 RQ6: What refactorings most frequently appear before and after an identifier

and its corresponding type are changed together? Are there specific semantic

changes which correlate with these refactorings?

To answer this question, we look at the refactorings that surround attribute, method, parameter,

and variable rename refactorings that have a change in data type. Hence, the input data for this

research question is a subset of the dataset used in RQ2; specifically the subset of renames which

included a change in type. Except for class, we extract the subset of rename instances for attributes

methods, and method variables that underwent a change in data type while being renamed. In

total, 283 (≈ 15.31%) attribute renames that underwent a data type change also had a refactoring

occurring either before or after the rename. Similarly, we observe 564 (≈ 9.63%) variable, and 734

(≈ 6.78%) method renames under the same criteria.

Similar to RQ2, the majority of the refactorings occurred before a rename refactoring. Hence, we

look at the refactorings that frequently occurred before a rename with a data type change. For

variables, we observe that the majority of variable renames containing a data type change occurred

approximately 42.73% of the time after the same variable was previously renamed. Rename-based

data type changes for methods occurred 20.30% of the time after an Extract Method operation, and

16.89% of the time after a Rename Variable within the same method. This is nearly identical to

RQ2 data (Table 5.5), where Extract Method and Rename Variable occurred 18.53% and 15.17% of

the time, respectively, before a rename. Likewise, renames occurred after Move Attribute ≈ 66.08%

of the time. This relationship is weaker than in Table 5.5, where renames occurred after Move

Attribute 83.32% of the time.

Finally, we investigate the semantic updates made to the identifier’s name, which follows a refac-
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toring operation. Presented in Table 5.17, are the top three refactoring operations that preceded

a rename refactoring that also had a data type change. This table also shows the distribution of

semantic updates that the name undergoes. The trends mirror what we discussed in RQ4 and RQ5,

but are broken down by refactoring which preceded the rename of an identifier name and its type.

Add-meaning changes were much less likely when an identifier and its type are renamed together.

If we compare Table 5.6 and Table 5.17, we can see that general identifier renames with a preceding

Move Attribute refactoring tend to add meaning, but when we narrow to identifier renames which

change the type in-tandem, we see a sharp decline in the relative number of add-meaning changes

(a reduction from 54% to 1.07%) and instead see a majority of narrow and broadening-meaning

changes. A similar drop occurs for identifier renames with a preceding Rename Variable (from 77%

to <3%). This data breaks down some of the trends we note in RQ5; showing us that, for example,

the loss of add-meaning changes has some context (i.e., Move Attribute when an identifier and

its type are renamed) which may be leveraged when understanding, or recommending/suggesting,

renames.

Summary for RQ6 : Comparing the refactoring co-occurrence data from RQ2 with RQ6, our

findings from RQ6 are similar to our RQ2 findings in that the refactorings occurring before the

rename are more or less the same (i.e., Rename Variable, Move Attribute, and Extract Method).

However, we also find that the relationships with these refactorings in RQ6 are generally weaker

or roughly the same as in RQ2. This indicates that a rename in which a data type is changed

may be less likely to have a co-occurring refactoring. In RQ5, we found that narrow- and broaden-

meaning changes are emphasized while add-meaning is de-emphasized when an identifier and its

type change together versus general renames. In RQ6, we further broke this trend down and see

that the reduction, while pervasive, heavily affects refactoring contexts, as we can see if we compare

semantic changes made to renames correlated with Move Attribute in Table 5.6 with the same in

Table 5.17 and note the significant drop in add-meaning changes (a reduction from 54% to 1.07%).

This data indicates that renames which include type changes may need to be treated as special

cases in any future rename recommendation/analysis effort due to the relationship between the

identifier and its corresponding type.
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Table 5.17: An overview of the types of semantic updates an identifier name with a data type

change undergoes when preceded by another refactoring operation

Identifier

Type

Refactoring

Before Rename

Top 3 Types of

Rename Forms

Type of

Semantic Update

Top 3 Semantic

Change Subtypes

Attribute

Move Attribute

(Total Count: 187)

Simple (65.57%)

Complex (36.90)

Formatting (0.54%)

Change (90.37%)

Preserve (9.63%)

Narrow (77.01%)

Broaden (41.71%)

Add (1.07%)

Pull Up Attribute

(Total Count: 61)

Simple (54.1%)

Complex (44.26%)

Formatting (1.64%)

Change (91.80%)

Preserve (8.20%)

Narrow (54.46%)

Broaden (26.23%)

Remove(6.56%)

Push Down Attribute

(Total Count: 16)

Simple (56.25%)

Complex (43.75%)

Change (87.5%)

Preserve (12.5%)

Narrow (68.75%)

Broaden (18.75%)

Method

Extract Method

(Total Count: 149)

Simple (56.38%)

Complex (43%)

Formatting(0.67 %)

Change (91.28%)

Preserve (8.72%)

Narrow (62.42%)

Broaden (24.83)

Add( 0.67%)

Rename Variable

(Total Count: 124)

Complex (50.81%)

Simple (47.58%)

Formatting(0.81%)

Change (91.13%)

Preserve (8.87%)

Narrow (66.94%)

Broaden (21.77%)

Rename Method

(Total Count: 105)

Simple (67.62%)

Complex (32.38%)

Change (83.81%)

Preserve (16.19%)

Narrow (45.71%)

Broaden (34.29%)

Add( 2.86%)

Variable

Rename Variable

(Total Count: 241)

Simple (56.85%)

Complex (43.15%)

Change (97.1%)

Preserve (2.9%)

Narrow (59.75%)

Broaden (32.37%)

Remove (3.73%)

Extract Variable

(Total Count: 95)

Simple (64.2%1)

Complex (33.68%)

Formatting (2.11%)

Change (90.53%)

Preserve (9.47%)

Narrow (70.53%)

Broaden (19.95%)

Remove (1.05%)

Replace Variable

With Attribute

(Total Count: 3)

Complex (66.67%)

Simple (33.33%)
Change (100%)

Narrow (66.67%)

Broaden (33.33%)



Chapter 6

On the generation, structure, and semantics of grammar

patterns in source code identifiers

The contents of this chapter are part of the study “On the generation, structure, and seman-

tics of grammar patterns in source code identifiers” published in the Journal of Systems

and Software [177].

6.1 Introduction

Currently, developers spend a significant amount of time comprehending code [121, 165]; 10 times

the amount they spend writing it by some estimates [165]. Studying comprehension will lead to ways

that not only increase the ability of developers to be productive, but also increase the accessibility

of software development (e.g., by supporting programmers that prefer top-down or bottom-up

comprehension styles [132,221]) as a field. One of the primary ways a developer comprehends code

is by reading identifier names which make up, on average, about 70% of the characters found in a

body of code [125].

Recent studies show how identifier names impact comprehension [118, 144, 155, 206, 213], others

show that normalizing identifier names helps both developers and research tools which leverage

identifiers [107,176]. Thus, many research projects try to improve identifier naming practices. For

example, prior research predicts words that should appear in an identifier name [84, 89, 152, 161];

combines Natural Language (NL) and static analysis to analyze or suggest changes to identifiers

[84, 101, 103, 106, 137, 140, 145, 185, 191]; and groups identifier names by static role in the code

[94,127,175].

One challenge to studying identifiers is the difficulty in understanding how to map the meaning

65
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of natural language phrases to the behavior of the code. For example, when a developer names

a method, the name should reflect the behavior of the method such that another developer can

understand what the method does without the need to read the method body instruction set. Un-

derstanding this connection between name and behavior presents challenges for humans and tools;

both of which use this relationship to comprehend, generate, or critique code. A second challenge

lies in the natural language analysis techniques themselves, many of which are not trained to be

applied to software [107], which introduces significant threats [150]. Addressing these problems is

vital to improving the developer experience and augmenting tools which leverage natural language.

One of the most popular methods for measuring the natural language semantics of identifier names

is part-of-speech (POS) tagging. While some work has been done studying part-of-speech tag

sequences (i.e., grammar patterns) in identifier names [113,115,137,139,145,157], these prior works

either focus on a specific type of identifier, typically method or class names; or discuss grammar

patterns at a conceptual level without showing concrete examples of what they look like in the wild,

where they can be messy, incomplete, ambiguous, or provide unique insights about how developers

express themselves. In this study, we begin addressing these issues. We create a dataset of 1,335

manually-annotated (i.e., POS tagged) identifiers across five identifier categories: class, function,

declaration-statement (i.e., global or function-local variables), parameter, and attribute names. We

use this dataset to study and show concrete grammar patterns as they are found in their natural

environments.

The goal of this study is to study the structure, semantics, diversity, and generation of grammar

patterns. We accomplish this by 1) establishing and exploring the common and diverse gram-

mar pattern structures found in identifiers. 2) Using these structures to investigate the accuracy,

strengths, and weaknesses of approaches which generate grammar patterns with an eye toward

establishing and improving their current ability. Finally, 3) leveraging the grammar patterns we

discover to discuss the ways in which words, as part of a larger identifier, work together to convey

information to the developer. We answer the following Research Questions (RQs):

RQ1: What are the most frequent human-annotated grammar patterns and what are

the semantics of these patterns? This question explores the top 5 frequent patterns generated

by the human annotators and discusses what bearing these patterns have on comprehending the

connection between identifiers and code semantics/behavior.

RQ2: How accurately do the chosen taggers annotate grammar patterns and individual

tags? This question explores the accuracy of the part-of-speech tagger annotations versus human

annotations. We determine which patterns and part-of-speech tags are most often incorrectly
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Table 6.1: Total number per category of identifiers and unique grammar patterns across all systems

Category
Total Identifiers

Across All Systems

# of Unique Grammar

Patterns in Dataset

Decls 920778 45

Classes 37117 40

Functions 428748 96

Parameters 1197047 40

Attributes 159562 53

Total 2743252 277

generated by tools.

RQ3: Are there other grammar patterns that are dissimilar from the most frequent

in our data, but still present in multiple systems? This question explores patterns which

are not as frequent as those discussed in RQ1. We manually pick a set of patterns that are

structurally dissimilar from the top 5 from RQ1, but still appear in multiple systems within the

dataset. Consequently, we identify unique patterns which are not as regularly observed as our top

5 patterns, but are repeatedly represented in the dataset and important to discuss. This question

addresses the diversity of patterns within the dataset.

RQ4: Do grammar patterns or tagger accuracy differ across programming languages?

This question explores how grammar patterns compare when separated by programming language.

We determine how C/C++ and Java grammar patterns are structurally similar and dissimilar from

one another. We also analyze tagger accuracy when we split grammar patterns by programming

language.

6.2 Methodology

Identifiers come in many forms. The most common fall into one of the five following categories: class

names, function names, parameter names, attribute names (i.e., data members), and declaration-

statement names. A declaration-statement name is a name belonging to a function-local or global

variable. We use this terminology as it is consistent with srcML’s terminology [119] for these

variables and we used srcML to collect identifiers. Therefore, to study grammar patterns, we group

a set of identifiers based on which of these five categories they fell into. The purpose of doing this
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is two-fold. 1) We can study grammar pattern frequencies based on their high-level semantic role

(i.e., class names have a different role than function names). 2) We can consider the differences in

accuracy for part-of-speech taggers when given identifiers from different categories.

6.2.1 Setup for the dataset of human-annotated identifiers

We created a gold set of grammar patterns for each of the five categories above by manually

assigning (i.e., annotating) part-of-speech tags to each word within each identifier within each of

the five categories above. We calculate the sample size by counting the total number of identifiers in

each of the five categories (given in Table 6.1) and calculating a sample based on a 95% confidence

level and a confidence interval of 6%. We chose this confidence level and interval as a trade-off

between time (i.e., annotating and validating is a manual effort) and accuracy. Using this confidence

level and interval, we determine that each of our five categories needs to contain 267 samples (i.e.,

267 was the largest number any of the sets required to be statistically representative, some required

less– we went with 267). This totals to 1335 identifiers in the entire set. This sample size is also

similar to the number used in prior studies on part-of-speech tagging [137,180].

Initially, one annotator was assigned to each category and was responsible for assigning grammar

patterns for each of the 267 identifiers in the category. The annotators were given a split identifier

(using Spiral [146]) along with the identifier’s type and, if the identifier represented a function, the

parameters/return types for that function. They were also allowed to look at the source code from

which the identifier originated if needed. The annotators were asked to additionally identify and

correct mistakes made by Spiral.

We did not expand abbreviations. The reason for this is that abbreviation expansion techniques

are not widely available (e.g., cannot be easily integrated into different languages or frameworks,

cannot be readily trained, are not fully or publicly implemented) and still not very accurate [176].

Therefore, a realistic worst-case scenario for developers and researchers is that no abbreviation-

expansion technique available to use; their part-of-speech taggers must work in this worst-case

scenario. We also tried not to split domain-term abbreviations (e.g., Spiral will make IPV4 into

IPV 4; we corrected this back to IPV4). We did this because some taggers may recognize these

domain terms. Furthermore, we are also of the view that these terms should be recognized and

appropriately tagged in their abbreviated (i.e., their most common) form. In the future, we plan

to train a part-of-speech tagger using this dataset.

After completing their individual sets, we traded and reviewed one another’s sets (i.e., performed

cross-validation) twice. Thus, every identifier has been reviewed by two annotators. There was only



CHAPTER 6. GENERATION, STRUCTURE, AND SEMANTICS OF GRAMMAR PATTERNS69

one disagreement that could not be settled due to a particularly disfigured identifier; therefore,

one identifier was randomly re-selected. This identifier is as follows: uint8x16 t a p1 q1 2 ; the

annotators could not ascertain the meaning of the letters and numbers, making it difficult to tag.

Once every identifier was assigned a grammar pattern manually and had been reviewed by at least

two other annotators, we ran each of our three part-of-speech taggers on the set of split identifiers;

providing whatever information was required by the tagger (e.g., some taggers require full function

signature, others only use the identifier name). We used srcML [119] to obtain any additional

information required by the taggers. The grammar pattern output from each tagger was used to

generate frequency counts and compare to the manually-annotated grammar patterns to calculate

accuracy.

6.2.2 Definition of Accuracy

Accuracy in this study is synonymous with agreement; we compare the automatically generated

annotations from the individual part-of-speech taggers with the manual annotations provided by

humans. To be specific, we perform two different accuracy calculations for each tagger. One to

determine the accuracy of each tagger on the individual part-of-speech tags found in Table 6.7 and

one to determine the accuracy of each tagger on full grammar patterns like those in Table 6.2. To

put this into an equation, we first define four sets. Hgp, the set of all human-annotated grammar

patterns. Tgp, the set of all tool-annotated grammar patterns for a single part-of-speech tagger;

there are three of these since we use three tools in this study. Hword, the set of all human annotations

for individual words in our set. Finally, Tword, the set of all tool annotations for individual words.

Again, there are three of these since we use three part-of-speech tools in this study. We then define

grammar pattern level accuracy as the number of patterns which the human and tool sets agreed

on (i.e., intersection) divided by the total number of grammar patterns annotated by humans. The

equation follows:

∣∣∣Hgp ∩ Tgp

∣∣∣÷ ∣∣∣Hgp

∣∣∣ (6.1)

We define word-level accuracy similarly. The number of words whose part-of-speech annotation

was agreed upon by both humans and individual tools divided by the number of word-level human

annotations. The equation follows:

∣∣∣Hword ∩ Tword

∣∣∣÷ ∣∣∣Hword

∣∣∣ (6.2)
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Table 6.2: Top 5 patterns in dataset along with frequency of each pattern and % of the set repre-

sented by that pattern
Attribute Names

Humans Posse Swum Stanford

NM N 78 (29.2%) N N 82 (30.7%) NM N 122 (45.7%) N N 59 (22.1%)

NM NM N 34 (12.7%) N N N 35 (13.1%) NM NM N 63 (23.6%) N N N 26 (9.7%)

NM NPL 26 (9.7%) NM N 31 (11.6%) NM NM NM N 32 (12%) NM N 18 (6.7%)

N 16 (6%) N 26 (9.7%) N 27 (10.1%) V N 16 (6%)

NM NM NM N 11 (4.1%) NM N N 16 (6%) NM NM NM NM N 11 (4.1%) N NPL 16 (6%)

Declaration Names

NM N 116 (43.4%) N N 112 (41.9%) NM N 164 (61.4%) N N 60 (22.5%)

NM NM N 43 (16.1%) NM N 41 (15.4%) NM NM N 69 (25.8%) NM N 33 (12.4%)

NM NPL 30 (11.2%) N N N 30 (11.2%) NM NM NM N 17 (6.4%) V N 24 (9%)

NM NM NPL 8 (3%) NM N N 19 (7.1%) N 6 (2.2%) N N N 21 (7.9%)

NM NM NM N 6 (2.2%) N 6 (2.2%) DT NM N 4 (1.5%) N NPL 15 (5.6%)

Parameter Names

NM N 122 (45.7%) N N 96 (36%) NM N 155 (58.1%) N N 62 (23.2%)

NM NM N 36 (13.5%) NM N 38 (14.2%) NM NM N 63 (23.6%) V N 32 (12%)

N 21 (7.9%) N N N 28 (10.5%) N 30 (11.2%) NM N 31 (11.6%)

NM NPL 20 (7.5%) N 23 (8.6%) NM NM NM N 11 (4.1%) N N N 20 (7.5%)

NM NM NPL 12 (4.5%) NM N N 16 (6%) DT N 4 (1.5%) N 15 (5.6%)

Function Names

V NM N 46 (17.2%) V N N 49 (18.4%) V NM N 66 (24.7%) V N N 42 (15.7%)

V N 26 (9.7%) V N 40 (15%) V N 41 (15.4%) V N 33 (12.4%)

V NM NM N 17 (6.4%) V NM N 20 (7.5%) V NM NM N 33 (12.4%) V N N N 19 (7.1%)

NM N 15 (5.6%) V N N N 15 (5.6%) V NM NM NM N 14 (5.2%) N N N 8 (3%)

V NM NPL 10 (3.7%) V NM N N 10 (3.7%) NM N 13 (4.9%) NM N 8 (3%)

Class Names

NM N 81 (30.3%) N N 76 (28.5%) NM NM N 98 (36.7%) N N 71 (26.6%)

NM NM N 72 (27%) N N N 59 (22.1%) NM N 94 (35.2%) N N N 69 (25.8%)

NM NM NM N 16 (6%) NM N N 23 (8.6%) NM NM NM N 39 (14.6%) N N N N 23 (8.6%)

N 14 (5.2%) NM N 19 (7.1%) N 16 (6%) N 13 (4.9%)

PRE NM N 10 (3.7%) N N N N 15 (5.6%) NM NM NM NM N 8 (3%) NM N 9 (3.4%)
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To calculate Hgp ∩ Tgp, we compare grammar pattern strings for individual identifiers from the

human annotations with the corresponding tool annotations for the same identifier (i.e., using string

matching) and take only exact string matches. To calculate Hword ∩ Tword, we compare grammar

pattern strings for individual identifiers the same way except we only look for exact string matches

in the individual part-of-speech tags (i.e., for corresponding words) within the grammar pattern

instead of requiring the full grammar pattern to match. For example, given two identifiers: get

token string and set factory handle, which have a human annotated grammar pattern of V NM

N, if one tagger gives us the pattern NM NM N then we would say that there is no grammar

pattern intersection; the humans and tool gave different grammar patterns. However, there is an

intersection here if we only look at individual part-of-speech tags. Both the tagger and humans

annotated NM and N in the last two words of each identifier. Thus, these are considered matches

and would be found in Hword ∩ Tword. If a second tagger provided the grammar pattern V NM

N, then this would be found in Hgp ∩ Tgp and the individual annotation matches would be in

Hword ∩ Tword.

6.2.3 Data Collection

We collected our identifier set from twenty open-source systems. We chose these systems to vary

in terms of size and programming language while also being mature and having their own devel-

opment communities. We did this to make sure that the identifiers in these systems have been

seen by multiple contributors and that the identifiers we collected are not biased toward a specific

programming language. There are two reasons for choosing identifiers from multiple languages. 1)

We want to know what patterns cross-cut between languages, such that most Java/C/C++ devel-

opers are familiar with and leverage these patterns. Focusing on just one language might mean the

patterns we find are not common to developers outside of the chosen language. 2) Many systems are

written in more than one language, and it is important to understand how well part-of-speech tag-

ging technologies will work on these systems. Thus, running our study systems written in different

programming languages helps us study part-of-speech tagger results in an environment leveraging

multiple programming languages. This does not mean that none of our patterns are biased to one

language or system, but that the most frequent patterns are less likely to be.

We provide the list of systems and their characteristics in Table 6.3. The systems we picked were

615 KLOC on average with a median of 476 KLOC, a min of 30 KLOC, and a max of 1,800 KLOC.

Further, most of these systems have been in active development for the past ten years or more and

all of them for five years or more. The younger systems in our set are popular, modern programs.

For example, Swift is a well-known programming language supported by Apple, Telegram is a
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Table 6.3: Systems used to create dataset

Name Size (kloc) Age (years) Language(s)

junit4 30 19 Java

mockito 46 9+ Java

okhttp 54 6 Java

antlr4 92 27 Java/C/C++/C#

openFrameworks 130 14 C/C++

jenkins 156 8 Java

irrlicht 250 13 C/C++

kdevelop 260 19 C/C++

ogre 370 14 C/C++

quantlib 370 19 C/C++

coreNLP 582 6 Java

swift 601 5 C++/C

calligra 660 19 C/C++

gimp 777 23 C/C++

telegram 912 6 Java/C/C++

opencv 1000 19 C/C++

elasticsearch 1300 9 Java

bullet3 1300 10+ C/C++/C#

blender 1600 21 C/C++

grpc 1800 5 C++/C/C#
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popular messaging app, and Jenkins is a popular development automation server. Because we

are trying to measure the accuracy of part-of-speech techniques and understand common grammar

patterns, our goal is not necessarily to study only high-quality identifier names, but to study names

that are closely representative of the average name for open-source systems. Additionally, we

remove identifiers that appear in test files, in part because they sometimes have specialized naming

conventions (e.g., include the word ‘test’, ‘assert’, ‘should’, etc). We exclude test-related identifiers

by ignoring annotated test files and directories; any directory, file, class, or function containing

the word test. While it is possible that identifiers in test code have similar grammar patterns

to identifiers outside of test code, it is also possible that they do not. We did not want to risk

introducing divergent grammar patterns. We think it would be appropriate to study test identifier

grammar patterns separately to confirm their similarity, or dissimilarity, to other identifiers.

To collect the 1,335 identifiers, we scanned each of our 20 systems using srcML [119] and collected

both identifier names/types and the category that they fell into (e.g., class, function). Then, for

each category, we randomly selected one identifier from each system using a round-robin algorithm

(i.e., we picked a random identifier from system 1, then randomly selected an identifier from system

2, etc. until we hit 267). This ensured that we got either 13 or 14 identifiers from each system

(267/20 = 13.35) per category and mitigates the threat of differing system size.

6.3 Experimental Results

Our evaluation aims to 1) establish and explore the common and diverse grammar pattern structures

found in identifiers. 2) Use these structures to investigate the accuracy, strengths, and weaknesses

of approaches which generate grammar patterns with an eye toward establishing and improving

their current ability. And 3) leverage the grammar patterns we discover to discuss the ways in

which words, as part of a larger identifier, work together to convey information to the developer.

We address these concerns in the research questions that follow. For the discussion of RQs below,

the + symbol means “one or more” and the * symbol means “zero or more” of the annotation to

the left of the symbol; similar to how they are used in regular expressions.

6.3.1 RQ1: What are the most frequent human-annotated grammar patterns and

what are the semantics of these patterns?

Table 6.2 contains data from the human-annotated set separated into categories based on the

location of the identifier in code. The table shows the top five grammar patterns for each category

and each of the three taggers we used to generate the grammar patterns. In addition, Figure 6.1
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Figure 6.1: Distribution of unique grammar pattern frequency over entire dataset – not all unique

patterns are shown due to space.
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are shown due to space.
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Table 6.4: Grammar patterns from which other grammar patterns are frequently derived.

Grammar Pattern Pattern Semantics

NM+ N

Noun phrase pattern: One or more noun modifiers (adjectives or noun-adjuncts) that modify a single head-noun.

Noun modifiers are used to modify developers’ understanding of the entity referred to by the head-noun. Because

identifier names are typically associated with a single entity (e.g., a list entity, a character entity, a string entity),

the head-noun typically refers to this entity. The noun modifiers, which are typically to the left the head-noun, are

used to specify characteristics, identify a context, or otherwise help the developer gain a stronger, more specific

understanding of what this entity embodies.

V NM+ N

Verb phrase pattern: A verb is followed by a noun phrase. Verb phrases in source code combine the action of a

verb with the descriptiveness of noun phrases; the verb specifies the action and the noun phrase contains both

the entity (i.e., the head-noun) which will be acted upon as well as noun modifiers which specify characteristics,

identify a context, or otherwise help the developer gain a stronger, more specific understanding of what this

entity embodies.

NM+ NPL

Plural noun phrase pattern: Similar to a regular noun phrase category (NM+ N), but the head-noun is plural instead

of singular. This is sometimes purposeful; used to refer to arrays, lists, and other collection types or used

to refer to the multiplicity of heterogeneous data groupings (i.e., classes/objects).

shows the distribution of unique grammar patterns across all identifiers. It shows that a minority

of the total grammar patterns found in the set are repeated frequently, while the majority occur

only once. Due to the fact that functions had the highest number of unique grammar patterns

(Table 6.1), we also show the distribution of unique function grammar patterns in Figure 6.2. The

distribution is largely similar to the prior figure with all unique grammar patterns, but the most

common function grammar patterns are different than the general set due to the semantics being

conveyed by function names (e.g., use of verbs to convey actions) versus other identifiers. There are

three grammar patterns from which most frequent grammar patterns we will discuss are derived.

These are shown and described in Table 6.4. Specifically, they are the verb phrase, noun phrase,

and plural noun phrase patterns. We now discuss the most common grammar patterns found in

our data set.

Grammar Pattern PRE* NM+ N : Looking at Table 6.2, the NM N instance of this pattern

appears in the top five most frequent in each category, and it is the most ubiquitous pattern in

our dataset. Noun modifiers are used to modify developers’ understanding of the entity referred to

by the head-noun (Table 6.4). Examples: factory class, auth result, and previous caption. These

identifiers embody the noun phrase concept. The specific entities that they reference are class,

result, and caption respectively. While the noun modifiers (factory, auth, and previous) specify

some characteristics of the entity they comes before. The class is not just any kind of class; it is a

factory class, the result is specifically the consequence of some form of authentication, the caption

being referred to is the previous in relation to some other caption. Adding more noun modifiers

emphasizes this effect. Examples: max buffer size uses max and buffer to describe characteristics
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Table 6.5: Frequency at which identifiers with a verb in their grammar pattern also have a boolean

type and frequency at which identifiers with a boolean type have a verb in their grammar pattern

Identifier

Contains Verb

Identifier Has

Boolean Type

Identifier Has Boolean

Type & Contains Verb

% of Boolean Identifiers

Containing a Verb

% of Verb Identifiers

With a Boolean Type

Parameters 24 28 22 92% 79%

Declarations 21 21 18 86% 86%

Attributes 23 24 18 78% 75%

of the size, which is the head-noun. The same applies to previous initial value and network security

policy.

This pattern is found in all categories, but it is somewhat out of place in the Function Name

category, since function names tend to contain a verb. We manually investigated these instances

and found that many of them are functions with an implied verb. Examples: deep Stub. It

contains no verb, but its behavior is to return (i.e., get) a deep stub object. Another example is the

lower Boundary Factor function which returns the lower boundary factor based on a parameter.

Many of these functions are getters or setters where the get or set is not in the name of the function.

The PRE* at the front of this pattern is optional, but appears frequently in the Class Name category.

PRE represents preambles. They are important to detect because if we cannot identify preambles

automatically, tools may assume that the preamble somehow augments developer understanding

of the head noun– which it does not. Therefore, preamble detection can help tools avoid making

mistakes in interpreting words in an identifier.

The ubiquity of noun-phrase patterns suggests that part-of-speech taggers should predict NM on

unknown, non-numeric tokens which are not the last token in the identifier– for the last token, N

would be a better prediction.

Grammar Pattern V NM+ N : This pattern and its extensions are most common in functions.

This is a verb phrase pattern, where a verb is followed by a noun phrase (Table 6.4). Examples:

check gl support, resize nearest neighbor, and get max shingle diff. In check gl Support, the noun

phrase specifies what we are interested in (openGL support), check tells us that we are checking a

condition– specifically that gl support is available. The same applies for the other two identifiers;

specifying which neighbor to resize in resize nearest neighbor and the nature of the diff[erence] to

return (i.e., get) in get max shingle diff.

One characteristic we observed about this and other verb-based patterns is that, when it appears
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Table 6.6: Frequency at which identifiers ending with a plural also have a collection type and

frequency at which identifiers with a collection type end with a plural
Identifier has

Collection Type

Identifier Ends

with Plural

Identifier Ends with Plural

& Has Collection Type

% of Identifiers w/Collection

Type & End With Plural

% of Identifiers w/Plural

Ending & Collection Type

Parameters 49 42 21 43% 50%

Decls 56 49 24 43% 49%

Attributes 43 61 31 72% 51%

Functions 21 44 10 48% 23%

outside of function names, it tends to be for an identifier with a boolean type or a type which

can be treated as boolean (e.g., integer). Examples: add bias to embedding, is first frame, and

will return last parameter. This is because boolean variables act like predicates; asking a question

whose answer is true or false (e.g., add bias to [the] embedding?, is [this] the first frame?, will [this]

return [the] last parameter?). Other researchers have made this observation [106, 137], but only

one reports quantity [113]. In Table 6.5, we show two things: 1) the percentage of all identifiers in

the dataset with a at least one verb in their grammar pattern and a type which can be interpreted

as boolean. 2) the percentage of all identifiers in the dataset with a boolean type that also have a

at least one verb in their grammar pattern.

The observation is supported, especially amongst parameter and declaration-statement identifiers

where 92% (22/24) and 86% (18/21) respectively of all identifiers with grammar pattern containing

a verb also have a boolean type. Likewise, of all parameters and declaration-statement identifiers

with a boolean type, 79% (22/28) and 86% (18/21) respectively contain a verb in their grammar

pattern. Given that a part-of-speech tagger can be made aware of a given identifier’s type, this trend

should be useful in helping properly annotate boolean variables as well as suggesting higher-quality

names for boolean variables.

Grammar Pattern V* NM+ NPL: This pattern has two configurations. It is either a plural

noun phrase pattern or a plural verb phrase pattern (Table 6.4). Assuming that the use of a plural

must be significant somehow, since some sources advise using plural identifiers for collections and

certain types of classes [96], we analyzed our dataset to see if identifiers which have a plural head-

noun were more likely to have a type which indicated a collection (e.g., list, array) type. To do

this, we examine the type name for each identifier and record if it contains the words: list, map,

dictionary, collection, array, vector, data, or set. We additionally record if the type name is plural

(e.g., ending in -s) or if the identifier has square brackets (i.e., []) next to it. We then manually

check these to see if they were really collection types. The results of this investigation are in Table

6.6. This table shows two perspectives on the data: 1) how many identifiers with a collection type
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also have a plural head-noun. 2) how many identifiers that have a plural head-noun also have a

collection type.

We found that of all identifiers with a collection type, 43%, 43%, 72%, and 48% of Parameter,

Declaration-statement, Attribute, and Function identifiers, respectively, are also plural. Addition-

ally, of all identifiers that are plural, 50%, 49%, 51%, and 23% of Parameter, Declaration-statement,

Attribute, and Function identifiers, respectively, have a collection type. Similar to booleans, we

find that there is a trend– particularly for attribute identifiers with a collection type, which had

the highest likelihood of also being plural. While this is not always the majority case, it does

suggest an interesting direction for future research into the use of plural names to convey the use of

collections in different types of identifiers. Examples: mkt factors, num cols, and child categories.

The mkt factors identifier is a plural noun phrase that represents a collection entity (e.g., a list or

array) of market factors. The num cols identifier represents the number of columns for some entity

(e.g., a matrix), and the child categories identifier represents a set of categories with a parent-child

relationship to a super-category.

The weakest correlation between use of plural noun phrases and collection type is found in the

Function Name category as part of a plural verb phrase. Instead of representing a collection,

Function identifiers following a plural verb phrase pattern often allude to the multiplicity of the

data being operated on, and not necessarily returned. A few examples from our data set are:

Object getRawArguments(...), void validateClassRules(...), and Object getActualValues(...). In all

three cases, while a collection is not explicitly returned, the functions refer to an entity which

represents multiple heterogeneous data (i.e., an object) that is then returned, part of the calling

object, or incoming data as a parameter. This behavior is not unique to functions, but more

frequent in function identifiers versus other identifiers. Therefore, we should be cautious when

making assumptions.

Grammar Pattern V N : This pattern represents an action applied to or with the support of

an entity represented by the head-noun. This pattern commonly represents function names or

boolean identifiers, similar to the V NM N pattern from which it differs only due to the lack of

a noun-adjunct. Example: read subframe has the grammar pattern V N and names a function

which reads a subframe object.

Grammar Pattern N : A single noun, trivially a head-noun, represents a singular entity and

could be considered a basic case of the noun phrase pattern (i.e., with no NMs). Example: client

and usage. Poorly split, or purposefully not split, abbreviations are automatically tagged as a

single noun. This phenomenon is not necessarily incorrect as it could be considered a collapsed
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noun-phrase pattern (e.g., max buffers abbreviated as mb which then gets annotated as a noun).

Developers familiar with the abbreviations may even prefer this form and certain, extremely well

known, abbreviations may even be treated as singular nouns during comprehension. For example,

IPV4, MP3, HTTP, HTML are common abbreviations which are more common to see/read than

their expansions (e.g., MP3 is rarely expanded).

Summary for RQ1 : Table 6.2 contains the most frequent grammar patterns in the human-

annotated set. We identified five patterns by looking at how frequently they occurred in our

human-annotated dataset. By far, the most ubiquitous pattern we found was the noun phrase

(NM+ N ) pattern as it appears in every category. We also found that verb phrase (V NM+ N)

patterns are most common in function names but also appear in other types of identifiers; specifically

those with a boolean type, and that plural noun phrases (NM+ NPL) have a somewhat heightened

chance of representing collection identifiers. Results indicate that 1) due to the ubiquity of noun

phrase patterns, part-of-speech taggers should predict NM on unknown, non-numeric tokens that

are not the right-most token in the identifier; N is a better prediction for the right-most token, as

it is likely the head-noun. 2) our data supports the observed, heightened appearance of verbs in

boolean variables from prior work. 3) while there is a link between identifier names containing a

plural and collection data types, the plural is sometimes used to reference multiplicity of related,

heterogeneous data (i.e., class member data), particularly for function identifiers. This presents an

opportunity to support developers in how, and when, to use plurals. The grammar patterns we

generated highlight how the name of an identifier is influenced by the semantics of the language

and gives us a glimpse into how developers use words in an identifier to comprehend their code.

6.3.2 RQ2: How accurately do the chosen taggers annotate grammar patterns and

individual tags?

We compare the output of the three part-of-speech taggers in this study with the manually-

annotated grammar patterns in order to calculate the accuracy of each tagger at both the level of

grammar patterns and the level of individual part-of-speech tags. Please refer to Section 6.2.2 for

an explanation of how we calculate accuracy. Starting with Table 6.7, which contains our per-tag

(i.e., word-level) accuracy analysis, we observe that Swum had the highest agreement with the

human annotations with respect to noun modifiers, determiners, and preambles. Stanford had the

highest agreement with respect to everything else. Posse never outperformed both the other two

in a single category, but did perform better than Stanford at annotating noun modifiers and better

than Swum at annotating nouns, prepositions, and verbs. The numbers here indicate that Stanford

has the best all-around performance when we are looking at accuracy on individual part-of-speech
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Table 6.7: Frequency of per-tag agreement between human annotations and tool annotations

Part of

Speech

Human

Annotations
Posse

% Agreement

w/ Humans
Swum

% Agreement

w/ Humans
Stanford

% Agreement

w/ Humans

NM 1604 373 23.25% 1508 94.01% 252 15.71%

N 1141 1025 89.83% 976 85.54% 1064 93.25%

V 305 205 67.21% 171 56.07% 233 76.39%

NPL 238 0 0.00% 0 0.00% 171 71.85%

PRE 105 0 0.00% 2 1.90% 0 0.00%

P 94 59 62.77% 28 29.79% 85 90.43%

D 27 0 0.00% 5 18.52% 27 100.00%

DT 15 6 40.00% 13 86.67% 9 60.00%

VM 13 0 0.00% 0 0.00% 9 69.23%

CJ 8 0 0.00% 0 0.00% 4 50.00%

Total words: 3550 1668 2703 1854

Table 6.8: Percentage of tool-annotated grammar patterns which fully match human-annotated

grammar patterns

Category Posse Swum Stanford (V) Stanford (NM) Stanford+I (V) Stanford+I (NM)

Parameters 58 (21.7%) 181 (67.8%) 63 (23.6%) 71 (26.6%) N/A N/A

Declarations 47 (17.6%) 163 (61%) 51 (19.1%) 54 (20.2%) N/A N/A

Attributes 45 (16.9%) 135 (50.6%) 45 (16.9%) 51 (19.1%) N/A N/A

Functions 66 (24.7%) 134 (50.2%) 60 (22.5%) 58 (21.7%) 68 (25.5%) 67 (25.1%)

Classes 35 (13.1%) 180 (67.4%) 26 (9.7%) 31 (11.6%) N/A N/A

annotations, as it is able to detect a broader range of them more accurately than either Swum or

Posse. However, while Stanford had the highest accuracy on the largest number of part-of-speech

tag types, Swum tagged the highest number of raw words correctly with 2,703 correct annotations

versus Stanford’s 1,854. The results indicate areas of strength for each tagger; their combined

output may increase their overall accuracy.

With this context in mind, we will now look at the agreement between the tagger-annotated and

human-annotated grammar patterns (i.e., identifier-level accuracy analysis). This is shown in

Table 6.8. We broke Stanford down into several columns in this table to see how its accuracy

changes when we configure it differently. The configurations are as follows: We add an I before
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function names before applying Stanford tagger. Additionally, some types of verbs can be considered

adjectives in different contexts. Thus, we test the accuracy of Stanford under either assumption;

the verb being used as a verb or being used as an adjective.

This data shows that Swum had the highest agreement with the human-provided annotations at

the level of grammar patterns. Stanford had the second-highest agreement on average when we

assume its best configuration– though, Posse has a higher agreement with the human annotations

in the Classes category regardless of Stanford’s configuration. Swum’s accuracy ranged between

50.2% and 67.4% while Posse and Stanford’s ranged between 13.1% - 24.7% and 9.7% - 26.6%

respectively. The difference in the results between Tables 6.7 and 6.8 are interesting in that Stanford

has the best performance in Table 6.7 but under-performs Swum by a large margin in Table 6.8.

The reason for this difference is the ubiquity of noun modifiers in identifier names. Even though

Stanford is more accurate on a larger set of part-of-speech tag categories, it under-performs on

noun modifiers compared to Swum (15.71% accuracy for Stanford vs 94.01% for Swum), which

consistently annotates noun modifiers correctly. Noun modifier is the most frequent annotation

(with a frequency of 1,604 per Table 6.7); Swum gets 1508 of these correct while Stanford gets 252,

meaning Stanford missed 1256 words that Swum got correct. If we combine this with the fact that

Swum’s performance on the second-most-common annotation, nouns, is much closer to Stanford’s

(85.54% accuracy for Swum vs 93.25% for Stanford) than Stanford’s performance is to Swum’s on

noun modifiers, it makes sense that, when looking at accuracy on annotating full identifier name

grammar patterns (i.e., Table 6.8), Swum outperforms Stanford despite Stanford’s high annotation

accuracy on most other part-of-speech tag types. In short, Stanford is more likely to get the very

common NM+ N pattern incorrect due to mis-annotating NM compared to Swum, which will

occasionally mis-annotate N, but not as frequently as Stanford will mis-annotate NM.

Using this data, we can also confirm that Stanford’s accuracy is increased in method names when

appending and I to the beginning of the name. This causes it to more accurately identify verbs.

Additionally, Stanford’s accuracy increases in methods when the verb specialization are assumed

to be verbs and increases in every other category when they are assumed to be noun modifiers.

To understand more about the differences in agreement between the humans and taggers, we

identified which patterns were most frequently incorrectly generated for each tagger, in part to

understand each tagger’s weaknesses. These patterns represent paths toward significantly improving

the accuracy of part-of-speech taggers for source code identifiers. Table 6.9 gives the top five most

frequently mis-annotated grammar patterns per category for each tagger used in our study.

To contextualize the details we discuss below, we quickly summarize some of the core problems
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found in the part-of-speech tagger output using the data in Table 6.9. Posse has trouble generating

noun phrase and verb phrase patterns (i.e., NM+ N and V NM+ N respectively), including plural

noun phrases such as NM+ NPL. The reason for this is that Posse does not generally identify noun

modifiers in sequences greater than 1 (i.e., it may annotate NM N, but never NM NM N ). Even

on sequences with only one noun modifier, it tends to prefer annotating noun modifiers as a noun.

This problem is more pronounced in Stanford, which generally missed more noun phrase and verb

phrase patterns than Posse. This makes sense as Stanford did not annotate noun modifiers very well

(Table 6.7). However, Stanford is very good at identifying plurals; Swum and Posse never identified

plural words correctly in the dataset (Table 6.7). This is why plural noun and verb phrase patterns

are both frequently mis-annotated by both Swum and Posse. We will now focus our discussion

around specific, commonly mis-annotated grammar patterns and discuss tagger annotations in the

context of each.

Grammar Pattern NM+ N : Swum was the best tagger at identifying noun phrase patterns

because it very accurately recognized noun modifiers. It did overestimate noun phrase patterns due

to over-annotating noun modifiers where they do not belong. Example: rotation Per Second has

a pattern N P N. Swum mis-annotates two out of three words by annotating this identifier as NM

NM N ; failing to recognize the fact that Per is a preposition in this context.

Posse and Stanford have a harder time with noun phrase patterns and tend to use a noun instead of

a noun modifier. Example: cache entity and root ptr are both given an N N pattern by Stanford

and Posse. While annotating using noun is not wholly inappropriate, these nouns play a double

role of both identifying an external concept which exists as its own object (the root, the cache; both

of which are nouns) and using this concept to modify the head-noun-of-interest (e.g., the entity, the

pointer) so the developer fully understands what they are dealing with; root and cache are nouns

being used as noun modifiers and not pure nouns. An easy way to see this adjectival relationship

is to add a dash between the words; root-pointer, cache-entity. Root describes the pointer, cache

describes the entity.

Grammar Pattern NM* NPL: Posse and Swum do not detect plurals, while Stanford is very

good at detecting them (see Table 6.7). Stanford tends to get noun plurals individually correct

even when it would mistakenly annotate a noun modifier as a noun, which is why NM NPL was still

one of the most common patterns for Stanford to mis-annotate. Example: num active contexts

has a pattern NM NM NPL due to the plural at the end. Swum does not recognize the plural and

gives it a NM NM N pattern. Posse gave it an N NM N pattern and Stanford gave it a N NM NPL

pattern. Thus, Stanford and Swum were both nearest to the correct solution despite both being
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Table 6.9: Top 5 Most frequently mis-annotated grammar patterns
Attribute Names

Posse Swum Stanford

NM N 58 (26.1%) NM NPL 26 (19.7%) NM N 61 (28.4%)

NM NM N 31 (14.%) NM NM NPL 9 (6.8%) NM NM N 33 (15.3%)

NM NPL 26 (11.7%) NPL 9 (6.8%) NM NPL 19 (8.8%)

NM NM NM N 11 (5%) PRE NM N 8 (6.1%) NM NM NM N 11 (5.1%)

NM NM NPL 9 (4.1%) PRE N 7 (5.3%) NM NM NPL 9 (4.2%)

Declaration Names

NM N 84 (38.2%) NM NPL 30 (28.8%) NM N 88 (41.3%)

NM NM N 39 (17.7%) NM NM NPL 8 (7.7%) NM NM N 42 (19.7%)

NM NPL 30 (13.6%) N D 5 (4.8%) NM NPL 26 (12.2%)

NM NM NPL 8 (3.6%) V N 5 (4.8%) NM NM NPL 8 (3.8%)

NM NM NM N 6 (2.7%) N P N 4 (3.8%) NM NM NM N 6 (2.8%)

Parameter Names

NM N 92 (44%) NM NPL 20 (23.3%) NM N 92 (46.9%)

NM NM N 35 (16.7%) NM NM NPL 12 (14.%) NM NM N 35 (17.9%)

NM NPL 20 (9.6%) V N 6 (7%) NM NPL 15 (7.7%)

NM NM NPL 12 (5.7%) NPL 5 (5.8%) NM NM NPL 12 (6.1%)

NPL 5 (2.4%) NM N 3 (3.5%) N 6 (3.1%)

Function Names

V NM N 33 (16.4%) V NM NPL 10 (7.5%) V NM N 42 (21.1%)

V NM NM N 15 (7.5%) NM N 6 (4.5%) V NM NM N 17 (8.5%)

V NM NPL 10 (5%) V NM NM NPL 6 (4.5%) NM NM N 10 (5%)

NM NM N 10 (5%) N V 5 (3.8%) NM N 8 (4%)

NM N 9 (4.5%) V NPL 4 (3%) V NM NPL 8 (4%)

Class Names

NM NM N 70 (30.2%) PRE NM N 10 (11.5%) NM N 72 (30.5%)

NM N 63 (27.2%) NM NPL 8 (9.2%) NM NM N 69 (29.2%)

NM NM NM N 16 (6.9%) NM N NM 7 (8%) NM NM NM N 16 (6.8%)

PRE NM N 10 (4.3%) NM NM N 5 (5.7%) PRE NM N 10 (4.2%)

NM NPL 8 (3.4%) PRE NM NM N 5 (5.7%) NM N NM 7 (3%)
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incorrect. Stanford did not have trouble with NPL patterns when there were no noun modifiers.

This suggests a very good way that tagger annotations may be combined; Stanford can identify

noun plurals accurately and Swum can identify noun-modifiers accurately. In general, this was the

hardest, frequently observed pattern for any individual tagger to annotate completely correctly.

Grammar Pattern V NM+ N : The deciding factor in mis-annotating verb phrase patterns

tended to be noun modifiers and plural nouns. Generally speaking, the taggers agreed with the

human annotators on the position of the verb in method names between 56% and 76% of the

time. This contrasts with how often they agreed on the full human annotation in function names

(Table 6.8); 24.7% of the time for Posse, 50.2% of the time for Swum, 25.5% of the time for Stanford.

All taggers still have problems determining the correct verb, but detecting noun modifiers is the

bigger issue.

Posse and Stanford had the most trouble with this pattern; it is not in Swum’s top 5. Examples:

reset meta class cache and set project naming strategy ; both with a human-annotated grammar

pattern of V NM NM N. Swum agreed with the human annotators on both; Stanford annotated

both with V N N N ; and Posse annotated these as V N N N and V N NM N respectively.

Grammar Pattern V N : This pattern tends to be mis-annotated when the part-of-speech taggers

could not determine which (if any) word in the identifier was a verb. One of the most common

situations for this was identifiers with a boolean type. Posse and Swum tend to expect that there is

a verb when they know that they are looking at a function name, but in non-function identifiers they

are less likely annotate using verb. For example, the write root identifier has a human-annotated

pattern of V N. Stanford agrees with the human-annotated pattern, but Swum mis-annotates it as

NM N and Posse as N N.

Grammar Pattern V NM* NPL: This pattern is similar to V N in that one of the biggest

problems the taggers had was annotating the verb. However, this pattern was more trouble for

Posse and Swum than Stanford due to the inclusion of a plural– Stanford detects plurals well, but

neither Swum or Posse are able to determine when a word is in a plural form.

Grammar Pattern PRE...: We will discuss all patterns with a preamble here (i.e., the ... could

be any other pattern, such as noun phrase or verb phrase). Preambles were difficult for all taggers

to deal with. Swum rarely detects preambles while Posse and Stanford do not detect them at

all. Generally, a preamble is mis-annotated as noun for Posse and Stanford or noun modifier for

Swum. The problem with detecting preambles is that some prior information is required– a tagger

needs to scan the code and/or be able to recognize naming conventions such as Hungarian [209],
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to determine which character sequences are being used as preambles. There are also cases where

it is not clear that a frequent character sequence is a preamble. Examples: the GRPC project

tends to append grpc before many of its identifiers– grpc json writer value string has a grammar

pattern of PRE NM NM NM N. A scan of GRPCs code could identify this as a preamble. XML

is sometimes used frequently at the beginning of function names such as xmlWriter, xmlReader. It

may look like a preamble in some systems due to how frequently it appears at the beginning of an

identifier, but is not a preamble because it specializes our understanding of the words reader and

writer. This suggests that some domain knowledge is additionally required to correctly determine

when a character sequence is a preamble.

Grammar Pattern N P N : This is a prepositional phrase grammar pattern. Swum and Posse

had difficulty identifying prepositions while Stanford was effective at it. Stanford tends to do well

on this pattern; it usually annotated the preposition correctly but would occasionally mistake noun

for verb. This pattern is one of the less common ones in our dataset, but is an example of a pattern

on which Stanford is more accurate than Swum or Posse.

Grammar Pattern N D: This pattern is a noun followed by a number. Swum and Posse cannot

detect digits, thus Stanford is the only tagger that correctly identifies this pattern. Stanford had

high accuracy on digits; agreeing with all digits identified by human annotators. It occasionally is

unable to annotate the noun correctly; many of these cases are when there is an abbreviation or a

word which is colloquial (or domain-specific) to programmers.

Summary for RQ2 : The highest amount of agreement was between Swum and the human

annotators; Swum’s accuracy ranged between 50.2% and 67.8% while Posse and Stanford’s ranged

between 13.1% - 24.7% and 9.7% - 26.6% respectively. The most frequently incorrectly annotated

patterns were: 1) singular noun phrases for Stanford, plural noun phrases for Swum and both

for Posse. 2) plural verb phrases for Swum, singular verb phrases for Stanford, and both for

Posse. 3) grammar patterns which include a preamble for all three taggers. Our results 1) indicate

that it is possible to correctly annotate abbreviations without expanding them in some cases,

particularly in noun phrases; this is supported by Swum’s accuracy. 2) indicate that these taggers

have complementary strengths and weaknesses, meaning that their output can be combined into

a more accurate result than they are able to obtain individually. As a simple example, Stanford

annotates noun plurals fairly accurately; this could be used to improve Swum or Posse’s output on

NM NPL, while Swum/Posse can improve Stanford’s NM detection; causing all three taggers to

get NM NPL correct more frequently. 3) confirm that Stanford’s accuracy on functions is improved

by adding I and that certain verb forms are more likely to be verbs when found in function names
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but adjectives when found in other types of identifiers. This also shows that Swum and Posse

need to detect specialized verb forms in order to correctly identify when these verbs are used as

verbs or adjectives. 4) show that code context and domain-specific information are very important

for annotating words correctly; preambles are one of the categories that would most benefit from

taggers which are able to leverage surrounding code structure, naming conventions, and domain

information.

6.3.3 RQ3: Are there other grammar patterns that are dissimilar from the most

frequent in our data, but still present in multiple systems?

We observed a number of grammar patterns that were not frequent enough to be in the top 5, but

nevertheless appear in multiple systems. The question is: What are these patterns? What types

of identifiers do they represent? To answer these questions, we manually looked through the set of

human-annotated grammar patterns and picked patterns which occurred two or more times in any

single category (i.e., function, class, etc.) and are not similar to the patterns we discussed in RQ1.

This resulted in the following grammar patterns:

Grammar Pattern NM* N P N : This pattern is a noun phrase and a prepositional phrase

combined. Examples: depth stencil as texture and scroll id for node. Identifiers with this pattern

describe the relationship between a noun phrase on the left of the preposition and a noun phrase

on the right. The noun phrase on the right and left both contain a head-noun. In this case, stencil

and id are the left head-nouns (lhn) while texture and node are the right head-nouns (rhn). The

preposition tells us how these head-nouns are related to one another and how this relationship

defines the identifier. In depth stencil as texture we are told that this identifier represents the

texture version of a stencil– or a conversion from stencil to texture. In scroll id for node we are

told that this identifier represents an id for a specific node.

An example which does not include a noun modifier is angle in radian with a grammar pattern of

N P N. The same concepts above apply– angle is the lhn and radian is the rhn. The preposition

in helps us understand how their relationship defines this identifier. In this case, the identifier

represents an angle using radians as the unit of measurement.

Grammar Pattern P N : This pattern is a preposition followed by a noun. An example of

this pattern is the identifier on connect, which specifies an event to be fired when a connection is

made. Other instances of this pattern include with charset and from server. The former is a function

which takes a charset as its parameter, and the latter is a boolean which tells the developer whether

certain data was obtained from a server. Identifiers in event-driven systems likely use this pattern,
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or its derivatives, often (e.g., onButtonPress, onEnter). This suggests that more unique grammar

patterns may be obtained by studying identifiers found in systems using certain architectural, or

programming, patterns.

Grammar Pattern DT NM* NPL: this pattern is a determiner followed by a plural noun

phrase. Example: all invocation matchers. Determiners like all are called quantifiers. They

indicate how much or how little of the head-noun is being represented. So in this case, the identifier

represents a list of every invocation matcher. This pattern is familiar in that it contains a plural

noun phrase, but the inclusion of the determiner quantifies the plural noun phrase more formally

than if it did not include it; invocation matchers without all indicates a list of invocation matchers,

but all invocation matchers tells us the specific population matchers included in the list. The word

all was the most common determiner used for the identifiers that fit this pattern in our dataset.

This pattern may show up more in code that deals with querying– databases or other query-able

structures, where words like all and any might be useful. Further study is required to determine

common contexts for determiners in source code.

Grammar Pattern V+: Like the other patterns derived from verbs above, this one is typically

used with Boolean variables and functions. One interesting thing about this pattern is that there

there is no noun for the verb to act on. When this happens in a function name, it is because

the noun is contained within the function’s arguments or is the calling object itself (i.e., this).

Examples: delete, do forward, parsing, and sort. A delete function could either be applied to an

argument to delete that argument, or to the calling object to delete some internal memory. The do

forward function in our dataset redirects a user (i.e., forward is being used as synonym for the verb

redirect), and the system it is from uses do to prefix methods which perform, for example, HTTP

actions. The V+ pattern can also represent Boolean variables that are not function names. The

parsing identifier is a Boolean variable in our dataset which is annotated as verb since it is asking

a true or false in reference to an action– specifically, a parsing action. Sort represents a function

where the user can supply a predicate to influence how elements are sorted by the function. This

pattern may appear more often in generic libraries, where the head-noun is not supplied by the

library creators due to the generic nature of the solution. Instead, the user will supply a head-noun

when they use the library.

Grammar Pattern V P NM N: This pattern is a verb followed by a prepositional phrase. This

was found only among function identifier names. Examples: convert to php namespace and register

with volatility spread. This pattern uses a verb to specify an action on an unknown entity (e.g.,

the identifiers above do not specify what to convert or what to register) and uses the noun phrase
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Table 6.10: Grammar patterns broken down by language
C Language Patterns C++ Patterns Java Patterns

NM N 76 (33%) NM N 175 (30.5%) NM N 154 (30.1%)

NM NM N 17 (7.4%) NM NM N 93 (16.2%) NM NM N 81 (15.8%)

NM NPL 14 (6.1%) NM NPL 31 (5.4%) NM NPL 42 (8.2%)

N 11 (4.8%) N 28 (4.9%) V NM N 21 (4.1%)

V N 9 (3.9%) V N 27 (4.7%) NM NM NPL 20 (3.9%)

V NM N 7 (3%) V NM N 25 (4.4%) NM NM NM N 18 (3.5%)

NM NM NPL 6 (2.6%) NM NM NM N 14 (2.4%) N 16 (3.1%)

NM NM NM N 5 (2.2%) PRE NM N 12 (2.1%) V NM NPL 10 (2%)

NM V NM N 4 (1.7%) V NM NM N 9 (1.6%) V NM NM N 9 (1.8%)

PRE NM N V N 3 (1.3%) NPL 9 (1.6%) PRE NM N 7 (1.4%)

on the right side of the preposition as a reference point; the specific thing to which this unknown

entity will be related. The nature of this relationship is specified by the verb and preposition (i.e.,

convert to, register with).

While there are other grammar patterns which we do not discuss, many of them occur only once

or are very similar in structure to grammar patterns that we have already discussed above.

Summary for RQ3 : There are many ways to describe interesting types of program behavior and

semantics. In RQ3 we have discussed less frequent, yet legitimate, grammar patterns. This adds

diversity to the group of grammar patterns discussed previously, and highlights the need for further

research to uncover new grammar patterns. This will help ensure that we obtain an understanding

of both the breadth and depth of grammar patterns used to describe different forms of program

semantics and behavior. Grammar patterns which include prepositional phrases and determiners

are less frequent than other patterns in our dataset. Yet, as we have pointed out, some of these

patterns are copacetic with certain domains. Prepositional phrase grammar patterns are used in

event-driven programming very frequently, for example. The patterns presented in RQ3 represent

future directions for research; there are not enough examples of the patterns we presented in this

research question to draw strong conclusions, but their existence is evidence that these grammar

patterns may be common in other contexts (e.g., different architecture and design patterns). We

argue that studying grammar patterns in these other contexts will result in more semantics belying

those patterns than what we have discussed, or perhaps even new patterns. These domain-specific

patterns would be very useful for suggesting and appraising identifier names within those contexts.
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6.3.4 RQ4: Do grammar patterns or tagger accuracy differ across programming lan-

guages?

Programming languages have their own individual characteristics. To give a few (i.e., non-exhaustive)

examples: C is a procedural language that does not support objected oriented programming, Java

is an object oriented language, and C++ supports facets of object orientated programming and

generic programming. Given this, we grouped grammar patterns in our data set by programming

language with a goal varying the language to see if certain grammar patterns were more common

to a specific language. This data is shown in Table 6.10, where we show the top 10 patterns C,

C++, and Java. We note that most of the identifiers in our set were either C++ (573) or Java

(511) identifiers; a smaller number were C (229) and C-sharp (22). We leave C-sharp out of our

analysis due to the very small number of them. We include C in our analysis, but note that the

results for C may not generalize as well as for C++ and Java.

The results in this table show that the identifiers found in individual languages are largely similar

to one another. Most patterns that occurred more than once in any language also occurred in the

other languages. To get a better look at language-specific patterns, we looked for any pattern which

occurred multiple times but only in a specific language. After finding these patterns, we manually

examined and picked patterns which were not reflective of system-specific naming conventions

(i.e., only occurs in a single system). In general, the language-specific patterns tended to include

determiners (DT), prepositions (P), or digits (D). For example, identifiers with grammar patterns

including these annotations are: all action roots (DT NM* N, Java), group by context (N P N,

Java), and event 0 (N D, C++). We discussed the former two patterns in RQ3. The last pattern,

N D is used typically as a way to distinguish two identifiers which otherwise have the same name

(i.e., event0, event1, etc). We did not find any patterns which were significantly programming

language-specific.

However, this result is not a definitive answer on the differences (or lack thereof) in grammar

patterns between programming languages. While it does show us that there is a lot of similarity in

grammar patterns between languages, another way to interpret this data is that these differences

are unlikely to be found without controlling for other factors. For example, the programming

paradigms, architectural/design patterns, and problem domain of the systems in the dataset. If

controlled for, these factors could reveal differences in the grammar patterns between different

programming languages.

We then looked at the distribution of abbreviations and dictionary words between Java and C/C++

to provide more insight about the differences in identifier structure between languages. Since
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Table 6.11: Distribution of abbreviations and dictionary terms between different languages in the

data set

Word Type C C++ Java C#
Total in

Dataset

Abbreviations 114 (22.6%) 223 (17.4%) 173 (14.5%) 9 (17.3%) 519

Dictionary Terms 505 1282 1192 52 3031

Table 6.12: Accuracy of taggers on abbreviated and non-abbreviated terms

Word Type Posse Swum Stanford
Total in

Dataset

Abbreviations 183 (35.3%) 345 (66.5%) 230 (44.3%) 519

Dictionary Terms 1484 (49%) 2321 (76.6%) 1624 (53.6%) 3031

abbreviations may make it difficult to obtain the meaning of a word, part-of-speech taggers might

annotate these words less accurately. Table 6.11 shows the distribution. We include C# in this

table for completeness despite its low number of identifiers. To determine if a token is a full word

or an abbreviation, we used Wordnet [168]. If Wordnet recognized the word, we considered it a full

word. Otherwise, it is an abbreviation. The results indicate that C and C++ tend to contain more

abbreviated terms.

Given this, we then looked at the accuracy of each part-of-speech tagger on identifiers from different

languages. This data is found in Table 6.12. All taggers had decreased performance on abbreviated

terms, but Posse was the least accurate and saw the most significant decrease in performance (-14%

from its full word accuracy). Finally, given this data about tagger performance on abbreviations

and the distribution of abbreviations in different languages, we looked at tagger accuracy per

programming language. This data is in Table 6.13. While Posse/Stanford performed better on

Java than C/C++ systems, their performance degraded a total of 3.4% and 1.4% respectively.

Swum, however, was nearly 12% less accurate on C identifiers compared to C++ identifiers. Swum

also performed better on C++ identifiers versus Java, unlike the other two taggers.

Summary for RQ4 : At the level of grammar patterns, while only controlling for identifier cat-

egory (e.g., function name) and programming language, there does not appear to be a significant

difference in the grammar patterns for Java and C/C++ identifiers. It may be the case that sig-

nificant grammar pattern differences appear when controlling for more confounding factors and
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Table 6.13: Accuracy of part-of-speech taggers split by programming language

Posse Swum Stanford

C 37 (16.2%) 116 (50.7%) 45 (19.7%)

C++ 107 (18.7%) 357 (62.3%) 116 (20.2%)

Java 100 (19.6%) 305 (59.7%) 108 (21.1%)

we believe this would be a strong direction for future work. We do note a difference in the use of

abbreviations between C/C++ and Java identifiers, where Java identifiers tend to have fewer abbre-

viations than the former two languages. Abbreviations can hinder the accuracy of part-of-speech

taggers, which we confirmed by examining the annotations given to abbreviations by the three

taggers in this study; all taggers performed worse on abbreviations than on full words. However,

difficulty with abbreviations did not significantly reduce Posse/Stanford’s performance between

programming languages, indicating that abbreviations are not the biggest problem these taggers

face, while expanding abbreviations may significantly (up to 10%) improve Swum’s performance.



Chapter 7

Using Grammar Patterns to Interpret Test Method Name

Evolution

The contents of this chapter are part of the study “Using Grammar Patterns to Interpret Test

Method Name Evolution” published in the Proceedings of the 29th International Conference on

Program Comprehension [190].

7.1 Introduction

In software, test methods names are constructed to describe both the entity that is being tested as

well as actions taken by the test [225]. The name of a test is important for the same reason pro-

duction method names are important; they help developers understand the purpose of the method.

Further, these names can be used by automated approaches to analyze/understand test methods

and automatically generate code for the test methods. Prior research indicates that test method

names have a different structure than production method names [222,225], but understanding how

they are similar or different is still a problem that has not been sufficiently addressed. Prior studies

on method naming focus on detecting linguistic anti-patterns [102], method naming bugs [145],

and a multitude of naming/renaming practices [101,161,177,182,185,191], but do not differentiate

between production and test method naming structures. For this reason, the concepts discussed

in these papers may not fully generalize to test method names. This will hinder our ability to

improve and support test method name quality both in the case where they are manually written

by developers or automatically generated by tools. It is important to consider the unique structure

of test method names to complement and increase the impact of prior work by taking into account

the unique structure and purpose of test method names.

We begin addressing this problem by studying the evolution of method name structure and se-

92
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mantics in test suites by, primarily, analyzing the sequence of part-of-speech (POS) tags, called

grammar patterns [177], associated with the method’s name. The purpose of this type of analysis

is to understand how the semantics behind the test method name change and how these semantics

correlate with changes to the actual testing behavior, as defined in the code. POS tags are obtained

by splitting an identifier name into its constituent words and then annotating the split identifier

manually. A grammar pattern provides us with a template-like sequence of POS tags, which are

an abstract representation of an identifier’s meaning.

One problem with analyzing identifier names is that it is difficult to automatically determine the

meaning of words in an identifier and how these words interact with one another. It is even more

challenging to take this meaning and use it to understand how it influences, or is influenced by,

the behavior of the code. Grammar patterns allow us to perform this analysis more efficiently by

broadly categorizing words into their corresponding POS; this allows us to relate words together

and, also, we can relate different POS tags with certain types of code behavior [177]. The goal of

this study is to understand how test method names are structured, how they evolve in structure and

meaning, and how the structure/meaning of these names relate to statically-verifiable code behavior.

The data obtained in this study will be used to facilitate test name recommendation and appraisal.

We answer the following research questions:

RQ1: Based on the grammar patterns, how are test methods typically structured,

how does this structure evolve, and how does it compare to previously-defined naming

patterns? This question helps us understand the common grammar patterns latent in test method

names, how they change over time, and how they are related to the code’s behavior. We use this data

to 1) understand the relationship between code behavior and grammar patterns, 2) compare our

findings with prior work that taxonomizes test names at a coarser level; allowing us to determine

whether our finer-grain analysis creates more and/or different patterns, and 3) compare against

production name grammar patterns to help us pinpoint the differences between test and production

naming structures.

RQ2: How are changes to the grammar pattern related to changes in the semantic

meaning of the corresponding method name? Grammar patterns provide a way for us

to learn the relationship between words, which is more granular than prior approaches, without

comparing their specific definitions. This question explores how changes to the grammar pattern

relate to changes in the meaning of a method name using a taxonomy, first defined by Arnaoudova

et al. [101].

RQ3: What are the most common term changes, and what is the relationship between
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Figure 7.1: Overview of our experiment design.

the added term and removed term? In this research question, we look at the most frequent,

concrete changes to words when a test method is renamed without using grammar patterns. The

purpose of this is to give us an understanding of how these concrete changes are related to the

changes we identify when using grammar patterns and to provide us more information about how

these concrete names, and their evolution, relate to code behavior.

7.2 Methodology

Depicted in Figure 7.1 is an overview of our experiment design. We explain, in detail, each activity

of our study in the subsequent subsections.

Projects: The projects in our study consist of 800 open-source Java projects hosted on GitHub.

These projects belong to a curated dataset of engineered software projects, synthesized by the

Reaper tool [172]. The projects in this dataset utilize software engineering practices such as doc-

umentation, testing, and project management. Not only do we clone each repository, but we also

extract commit-level metadata by enumerating over the commit log of each project. The metadata

we extract includes the timestamp of the commit, the author of the commit, and the files associated

with each commit.

Refactorings: We utilize RefactoringMiner [218] for mining the rename refactoring operations

from each project in our dataset. RefactoringMiner iterates over the entire commit history of a

project in chronological order and compares the changes made to Java source code files in order to

detect refactorings. RefactoringMiner is a state-of-the-art tool with a precision of 98% and a recall

of 87% [208, 219]. Furthermore, we conduct our experiments on the entire commit history of the

project (and not on a release-by-release comparison).

Test Suites: To identify test suites in the projects, we follow an approach similar to [187]. We first

extract all Java source files (i.e., files with extension ‘.java’) that underwent a refactoring. In this
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study, we focus on projects utilizing the JUnit testing framework [34]. Next, using JavaParser [33],

we parse the Java files by building an abstract syntax tree for each source file. We mark a file as a

unit test file if the file contains JUnit import statements (i.e., org.junit.* or junit.*) and a test

method. For a file to contain a unit test method, the method should have an annotation called @Test

(JUnit 4), or the method name should start with ‘test’ (JUnit 3). In total, we detected 319,108

unit test files, out of which only 12,010 test files had undergone a Rename Method refactoring.

Research Question Analysis: For our research questions, we make use of the data mined/ex-

tracted by the prior activities. The activities involved in answering each research question involve a

combination of manual analysis (including data annotation) and quantitative analysis using custom-

built tools/scripts. We detail our activities when addressing each research question when reporting

our results.

7.3 Experimental Results

In this section, we report on the findings of our experiments.

7.3.1 RQ1: Based on the grammar patterns, how are test methods typically struc-

tured, how does this structure evolve, and how does it compare to previously-

defined naming patterns?

In this RQ, we examine the POS associated with the old and new names to identify grammar

patterns that are specific to test methods. We answer this research question with three sub-RQs.

The first sub-RQ looks at the frequently occurring grammar patterns that occur in test method

names, while the second sub-RQ compares common grammar prefix patterns reported by prior

studies, on test ( [222]) and production ( [177]) method names, with findings from our dataset.

Finally, the third sub-RQ examines how the POS changes when the method is renamed. The goal

of this RQ, and therefore the sub-RQs, is to identify patterns in the way test method identifiers

and their grammar patterns evolve through renames to understand how we can take advantage of

this evolution in future research to provide developers with useful feedback about their renaming

practices.

Approach: To understand the POS tags that constitute a method name in a unit test file, we

manually annotated a statistically significant sample of renamed methods. In total, 632 test method

rename instances (i.e., the old and new names) were manually analyzed. The analyzed sample

represents the original set of 12,010 renamed methods, with a 99% confidence level and a 5%
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confidence interval. Similar to prior research [177], our annotation process considered 10 English

POS tags– noun (N), determiner (DT), conjunction (CJ), preposition (P), noun plural (NPL),

noun modifier/adjectives (NM), verb (V), verb modifier/adverbs (VM), pronoun (PR), and digit

(D). Our annotation process consisted of three stages– the annotation stage, the review stage,

and the discussion stage. In the first stage, each annotator annotated a set of 316 rename pairs of

method names. The annotator would first split the old and new method names into their individual

terms before annotating each term in the old and new names. Following the annotation process,

we conducted a review stage. In this stage, the annotated datasets were exchanged between the

annotators for review. If the reviewer did not agree with a specific annotation, the instance was

marked for discussion. Finally, in the discussion stage, the annotator and reviewer discussed and

looked at resolving conflicts. Instances where there was no consensus were discarded. During the

entire process, the annotators had access to the source code and commit diff of the file containing

the renamed method to refer. In total, we discarded 17 instances, leaving us with 615 annotated

instances for our analysis.

RQ 1.1: What are the most common grammar patterns before and after a rename?

For this sub-RQ, we look at the frequently occurring grammar patterns for test methods in the

annotated dataset (i.e., 615 method renames). These patterns are the complete/full grammar

patterns for the names of test methods. Table 7.1 shows the top five patterns for old and new

names, independent of one another. Below, we elaborate on common grammar patterns.

V NM+ N is also known as a verb phrase pattern; a phrase composed of a verb followed by a

noun phrase. Typically, the verb represents the action to be applied to a head-noun that exists

within the same phrase; typically the rightmost noun. In test methods, we observe that the term

‘test’ frequently represents the verb. Developers utilize the noun modifier (i.e., adjective) to specify

characteristics or context around the entity being tested (i.e., the entity under test). An example

of this pattern is the test method testStringEncryption [8]. The term ‘test’ represents the verb

or action of the method. The term ‘Encryption’ is the head-noun or the entity under test, while

the term ‘String’ represents the noun-modifier; descriptive of the entity under test.

The next two patterns: V N and V V NM N are both derivative verb phrases, where V N is

a verb phrase with no adjectives and V V NM N is a verb phrase with an extra verb. Again,

the first V is typically the word ’test’ or a related term (e.g., can, should; we discuss this later).

An example of the V N pattern is testParser [73], the action is ‘test’, while the term ‘Parser’

represents the object the action is applied to.
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Table 7.1: Top five frequent grammar patterns for old and new names.

Grammar Pattern Count Percentage

Old name grammar pattern

V NM N 41 6.67%

V N 27 4.39%

V NM NM N 25 4.07%

V V NM N 22 3.58%

V 20 3.25%

Others 480 78.05%

New name grammar pattern

V NM N 44 7.15%

V N 29 4.72%

V NM NM N 29 4.72%

V 17 2.76%

NM N 14 2.28%

Others 482 78.37%

The last pattern is V: This pattern occurs more frequently in test methods than in production

methods. In production code, these methods have generic names (e.g., ‘sort’) [177] since they tend

to represent generic functionality. However, in test code, the methods falling in this category are

part of a test fixture1 (i.e., a setup or teardown method). For example, the setup method is utilized

by developers to initialize the environment for the test methods in the test suite [56].

As part of our analysis, we also look for patterns between the terms in the method’s name and state-

ments in the method’s body. These observations we encounter can be beneficial to static analyzer-

based code quality tools. These include using the ‘Assert.fail’ method when the method name

contains the term ‘fail’ or ‘failure’ (e.g., failPrefixMissing in [22]). Further, the use of the terms

‘true’ and ‘false’ in the method’s name is very likely to be associated with using the methods ‘assert-

True’ and ‘assertFalse’ in the method’s body, respectively (e.g. testUntilTrueDefinitionOnReducedPath

in [82]).

Based on results of our prior study [177] and our study, verb phrases (e.g., V NM+ N) are

the most common grammar pattern for method names regardless of whether they are test or

production names. Thus, in this sub-RQ, we find no significant difference in the most frequent test

1A test fixture is utilized by developers to eliminate duplicate code and ensure a fixed environment for the tests.
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Table 7.2: Occurrence of test naming patterns in test and production code.

Wu and Clause’s

Test Pattern Name

Grammar

Pattern

# of Old & New

Test Method

Instances

% of Test Method

Instances Preserved

After Rename

# of Production

Method

Instances

Example

Is and Past Principle Phrase V V+ 353 62% 6
testGetActions [46]

‘test’ and ‘Get’ are verbs

Dual Verb Phrase V V N+ 52 46% 0
testFindResourceByName [72]

‘test’ and ‘Find’ are verbs, while ‘Resource’ is a noun

Verb Phrases

With(out) Prepended Test
V N V+ 29 67% 3

testFormUploadLargerFile [60]

‘test’ is a verb, while ‘Form’ is a noun and‘Upload’ is a verb

Divided Duel Verb Phrase V N V N+ 2 0 0
testUidFetchBodyPeek [81]

‘test’ and ‘Fetch’ are verbs, while ‘Uid’ and ‘Body’ are nouns

Noun Phrase N 5 0 3
main [66]

‘main’ is a noun

Verb With Multiple Nouns Phrase V N N N – – 0 Not observed in our dataset of annotated test methods

and production method grammar patterns. However, we also found that approximately 39.29% of

test method grammar patterns are unique (i.e., they only occur once); in contrast to 24.72% of

unique production method grammar patterns [177]. This difference implies that there may be a

more diverse population of patterns in test methods. We address this in the next sub-RQ.

RQ 1.2: How do grammar patterns in test methods compare to defined naming pat-

terns for test and production methods?

While our findings from the first sub-RQ show us that there are a small number of very frequent

grammar patterns which are common to both test and production methods, it also indicates that

there may be a difference in the diversity of these patterns. Because we want to understand what

grammar patterns tell us about the similarity and differences in test and production methods, we

use this sub-RQ to explore common grammar pattern prefixes for test methods; instead of only

looking at the full grammar pattern as we did in the prior sub-RQ. By loosening the constraint

to allow partial (i.e., prefix) grammar patterns, we aim to understand the diversity of grammar

patterns in test methods.

To this end, we compare the catalog of test method name patterns formulated by Wu and Clause

[222] against our annotated dataset, and also examine the occurrence of these patterns in production

method names discussed in our prior study. [177]. While we compare to Wu and Clause’s work,

their goals were somewhat different. Their patterns are primarily prescriptive; creating templates

that developers should use to improve test names. Our work is descriptive; attempting to examine

the structures latent in test names while not prescribing what developers should use. Even so, the

patterns Wu and Clause create are based on testing patterns they observed, and so it is appropriate

to relate our patterns to theirs. The difference between our patterns and theirs can be seen in
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Table 7.2. The leftmost column contains Wu and Clause’s pattern names. To its right is another

column showing the grammar pattern that corresponds with Wu and Clause’s named patterns. Wu

and Clause abstract away some detail (i.e., the tail of our grammar patterns) to necessarily and

effectively discuss general naming patterns and their semantics. In this study, we keep these details,

which causes several of our patterns to fit into a single one of Wu and Clause’s patterns due to

being derivative of a high-level pattern they already identified. However, this helps us understand

how some of the granular differences that do not appear in Wu and Clause’s work affect test name

semantics.

In Table 7.2, we also show the frequency of Wu and Clause’s patterns in our data, the number of

production methods with the corresponding pattern, and the percentage of these patterns, which

were conserved after a rename was applied. Where applicable, the ‘+’ symbol, in Table 7.2, indicates

that other POS tags precede and/or follow the pattern. One thing to highlight about this table is

that we did not find the ‘Verb With Multiple Phrases’ pattern in our dataset, which corresponds

to a grammar pattern of V N N N. Part of the reason for this is likely because we used a different

tagset than Wu and Clause, who do not appear to use noun modifiers (NM). However, we did not

want to assume their tagset and did not find a definition for the tagset they used in their study.

Based on our understanding of their patterns, V N N N for them is the same as V NM NM

N for our grammar patterns. Also, though we report the frequency at which our patterns match

Wu and Clause’s, it is important to remember that the tagsets in our studies may not completely

match up. This does not matter for our study; we are not trying to determine the legitimacy or

frequency of their test patterns. Instead, our work is aiming to find patterns that Wu and Clause

may have overlooked and to add further legitimacy to their findings.

The grammar pattern prefixes we find are mostly derivatives of those found by Wu and Clause.

However, there are several grammar patterns in our dataset that differ in interesting ways. We

discuss these now.

V V N P+: This pattern is similar to Wu and Clause’s ‘Dual Verb Phrase’ pattern. The primary

difference is the presence of a preposition. For example, in the name testReadFileFromClasspath,

‘test’ and ‘Read’ are verbs, ‘File’ is a noun, and ‘From’ is a preposition [61]. Approximately 43%

of the renames contained the prefix in the old and new names. Some of the common prepositions

utilized by developers include ‘of’, ‘with’, and ‘to’. Prepositions show a relationship between

words, such as when and where things are related to each other. The preposition in this pattern is

important because it identifies the relationship between the noun phrases on either side of it. We

can use the preposition to assess the quality of a name based on which preposition is used, and
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whether the behavior of the test supports the use of the provided preposition. For the example

above, using static analysis, we can check for the use of a file read operation that leverages the

classpath. Normally, this might be difficult, but there is a finite number of prepositions in English

(i.e., developers do not create new prepositions on the fly), meaning the behavior they describe is

generally well-defined and finite.

N V+: This pattern consists of a noun followed by a verb (e.g., in projectClosed, ‘project’

is a noun, and ‘Closed’ is a verb [17]). Looking at the set of production methods, we observe

ten instances of methods with this prefix pattern. From our annotated dataset of test methods,

we observe 22 rename instances of this prefix. Additionally, approximately 64% of the renames

contained the prefix in the old and new names.

+VM+: While not strictly a prefix grammar pattern, we include this observation in our findings

since 1) verb modifiers have not been discussed at length in prior literature, 2) we found several

patterns containing adverbs in our dataset, and 3) it is possible to use some of our observations

about naming and implementation practices based on the presence or absence of certain adverbs.

We start with an example: in the name test get NotExisting, ‘Not’ is an adverb [62]). We

encounter 86 rename instances containing one or more adverbs in the name. Furthermore, we no-

tice that developers utilize the same adverb from the old name in the new name when performing

a rename of the method 78% of the time. Additionally, the top three terms associated with an

adverb are ‘not’ (26 instances), ‘when’ (25 instances), and ‘exactly’ (5 instances). When com-

bined with static code analysis, our observation becomes useful as it helps in appraising the name

of an identifier. For instance, when examining the source code, we observe that method names

containing the adverb ‘not’ are typically associated with some form of null based checking (e.g.

use of ‘assertNull’ in the method test get NotExisting [62] and the use of ‘assertNotNull’ in the

method deleteindexNotExists [27]). Finally, looking at production methods, we encountered

seven instances of methods using this POS within its name.

+DT+ : Our rationale for the analysis of determiners is similar to our analysis of the +VM+

pattern. Our dataset contains 72 instances that contain determiners in either the old or new

name. From this set, there are 42 instances where the developer uses the same determiner in

the old and new name (e.g., the term ‘All’ is preserved in the rename findAllWithGivenIds →
findAllWithIds [45]). Regarding terms, the top three popular determiners are ‘the’, ‘no’, and

‘all’. In terms of static code analysis, we observe that the term ‘all’ frequently co-occurs with

collection-based data types in the method body (e.g., the use of ‘List<Long>’ in the method

testExecuteAll [23]). The static analysis accuracy can be further improved by incorporating
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Table 7.3: Top five frequently occurring pairs of complete grammar patterns for renamed unit test

methods.

Rename Grammar Pattern
Count Percentage

Old Pattern New Pattern

V NM N V NM N 14 2.28%

V NM NM N V NM NM N 9 1.46%

V V 7 1.14%

V N V N 7 1.14%

V NM N V NM NM N 7 1.14%

Other Patterns 486 92.85%

findings from our prior study [192], specifically the findings on collection-based data types and

singular/plural term changes.

Using grammar patterns, we have confirmed the existence of several naming patterns introduced

by Wu and Clause. In addition, we identify patterns that were not identified in Wu and Clause’s

original set of patterns. The patterns we present are not frequent in production method names

based on prior research, indicating that they are specific to test method names.

RQ 1.3: What are the most common grammar patterns before and after a rename?

In this sub-RQ, we examine the evolution of grammar patterns (i.e., the change in the grammar

pattern when a method is renamed). In summary, our annotated dataset of 615 rename instances

contained 168 (or approximately 27.32%) rename instances that did not show a change in grammar

(i.e., the old and new grammar patterns were the same). Represented in Table 7.3 are the top five

frequently occurring complete grammar pattern pairs. However, looking at the number of instances

associated with each pair, we observe a low count (the most being 14 instances). Furthermore,

our dataset contained 446 instances of grammar pattern pairs that occurred only once. This

phenomenon (i.e., a wide variety of grammar patterns) highlights the diversity of our dataset and,

therefore, impacts our analysis of rename pairs. Therefore, for the same purpose as RQ 1.2 we use

prefix patterns to perform our analysis. We extracted frequently occurring pairs of rename prefixes

for patterns where either the old or new name consists of prefixes of length two, three, four, or five.

From this data, we show the top three frequently occurring pairs in Table 7.4.

From these tables, we make a couple of observations. The first is that renames do not typically
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change the POS tag of a word. Even when a word is changed, it is still the same type (i.e., at the POS

level). Further, these renames follow the typical verb phrase method naming grammar pattern V

NM N → V NM N. For example, in commit [8], when renaming the method testStringEncryption

→ testStrongEncryption, the POS is preserved even though terms in the name are changed; the

terms ‘String’ and ‘Strong’ are considered as noun modifiers in this instance.

The second observation comes from Table 7.4. As the prefixes in this table increase, the original

set of grammar prefixes remains the same. For instance, consider the two prefix pattern V V →
V V, when the prefix pattern increases to three, the new pattern still retains the original prefix

pattern: V V NM → V V NM. This observation remains consistent as prefixes increase to five

prefixes. This shows that grammar pattern prefixes for test method names are consistent across

renames. The primary takeaway from this sub-RQ is that grammar patterns are stable.

Summary. Using prefix grammar patterns of method renames, we obtained many interesting

pattern changes to analyze. We performed this analysis in the context of prior work on test name

templates. Our analysis confirms a number of the test name templates and also shows the existence

of a few patterns that do not match up to any template provided in prior work. Particularly,

patterns that include determiners, prepositions, and adverbs. We find that they have special,

oftentimes implementation-oriented meaning in test method names. Finally, in RQ 1.3, we find

that grammar pattern prefixes are stable; they do not change very often during rename activities.

7.3.2 RQ2: How are changes to the grammar pattern related to changes in the

semantic meaning of the corresponding method name?

Approach: To determine the semantic change a name undergoes during a rename, we utilize

a rename taxonomy defined by Arnaoudova et al. [101] and utilized in prior identifier rename

studies [185,191,192] on our annotated dataset. This taxonomy helps us categorize renames into two

categories– renaming form and semantic change. The renaming form looks at the terms added and

removed to determine the complexity of the rename– simple, complex, reordering, and formatting.

A rename is simple if only one term is added or removed. A complex change occurs if more than

one term is added or removed. Reordering is when two or more terms switch positions. Finally, a

formatting change occurs if the developer only makes a change in case or adds/removes a separator

or number. In terms of semantic change categories, a rename can either preserve or modify the

meaning of the name. A modification to a name can change, narrow, broaden, add or remove the

meaning of the name.

From our set of 615 annotated instances, we observe that 291 (or approximately 47%) of the
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Table 7.4: Top two frequently occurring pairs of two, three, four and five prefix grammar patterns

for renamed unit test methods.

Rename Prefix Grammar Pattern
Count Percentage

Old Pattern New Pattern

Two Prefix Pattern

V V V V 142 23.51%

V NM V NM 103 17.05%

V N V N 39 6.46%

Other Patterns 320 52.98%

Three Prefix Pattern

V V NM V V NM 55 9.79%

V NM N V NM N 36 6.41%

V NM NM V NM NM 29 5.16%

Other Patterns 442 78.65%

Four Prefix Pattern

V V NM N V V NM N 24 4.96%

V NM NM N V NM NM N 19 3.93%

V V NM NM V V NM NM 14 2.89%

Other Patterns 427 88.22%

Five Prefix Pattern

V V NM NM N V V NM NM N 10 2.75%

V V NM N P V V NM N P 9 2.48%

V V NM NM N V NM NM N 4 1.10%

Other Patterns 340 93.66%
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Figure 7.2: Proportion of semantic updates to 615 annotated test methods.

Table 7.5: Top five frequently occurring rename semantic updates for pairs of complete grammar

patterns.

Rename Grammar Pattern
Result Count Percentage

Old Pattern New Pattern

V NM N V NM N Change 10 2%

V D D D V D D D Preserve 6 1%

V NM NM N V NM NM N Change 6 1%

V N V NM N Narrow 5 1%

V NM N NM N Broaden 5 1%

Other Patterns 583 95%

instances had a simple change, while 261 instances (or approximately 42%) had a complex change.

From the semantic category, as depicted in Figure 7.2, we observe 255 (or approximately 41%)

of instances had a change in meaning, while the narrowing and broadening categories each had

approximately 18%. These findings are in contrast to prior research [185, 191], which shows that

the majority of renames are of simple form and narrow in meaning. The prior studies utilize datasets

comprising of mined rename refactoring operations of test and production source code files in Java

projects. Looking at the set of renames categorized under preserve, we observe that the majority

of these renames are due to developers either adding or removing numbers or underscore characters

to/from the old name or performing a change of case (e.g., test 13 → test13 [65]).

Examining the change in meaning instances, 208 (or 33.82%) of the instances show an unrelated rela-

tionship between the old and new names. For example, in renaming testLog→ testEigenSingularValues

[77], there is no semantic relationship between the swapped terms. Approximately 7.15% instances
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Table 7.6: Frequently occurring rename pairs of prefix patterns for different semantic categories.
Rename Grammar Pattern Semantic

Type
Count Percentage

Old Pattern New Pattern

Two Prefix Pattern

V V V V Change 70 28.46%

V NM V NM Change 50 20.33%

V N V N Change 15 6.10%

Other Change Patterns 111 45.12%

V V V V Preserve 20 22.99%

V NM V NM Preserve 14 16.09%

V N V N Preserve 13 14.94%

Other Preserve Patterns 40 45.98%

V V V V Add 7 30.43%

V NM V NM Add 4 17.39%

N V N V Add 2 8.70%

Other Add Patterns 10 43.48%

V V V NM Remove 7 23.33%

V V V V Remove 4 13.33%

V N V N Remove 2 6.67%

Other Remove Patterns 17 56.67%

V V V NM Broaden 19 17.27%

V NM NM N Broaden 9 8.18%

V NM V NM Broaden 9 8.18%

Other Broaden Patterns 73 66.36%

V V V V Narrow 32 29.63%

V NM V NM Narrow 24 22.22%

V N V NM Narrow 8 7.41%

Other Narrow Patterns 44 40.74%

Three Prefix Pattern

V V NM V V NM Change 30 13.16%

V NM N V NM N Change 21 9.21%

V NM NM V NM NM Change 17 7.46%

Other Change Patterns 160 70.18%

V V NM V V NM Preserve 11 14.67%

V NM N V NM N Preserve 7 9.33%

V D D V D D Preserve 6 8.00%

Other Preserve Patterns 51 68.00%

V NM N V NM N Add 2 8.70%

V NM N V NM NM Add 2 8.70%

N NM N NM P Add 1 4.35%

Other Add Patterns 18 78.26%

V V NM V NM NPL Remove 3 10.00%

V V NM V NM N Remove 2 6.67%

DT NM NM NM NM N Remove 1 3.33%

Other Remove Patterns 24 80.00%

V NM NM V NM N Broaden 8 7.69%

V V NM V NM N Broaden 7 6.73%

V V NM V NM NM Broaden 7 6.73%

Other Broaden Patterns 82 78.85%

V V NM V V NM Narrow 11 10.78%

V NM N V NM NM Narrow 6 5.88%

V N V NM N Narrow 5 4.90%

Other Narrow Patterns 80 78.43%
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contained more than one type of relationship between the old and new names. For example, in

renaming testDeserializeExpandCharge → testDeserializeWithExpansions [58], we observe

an addition and removal of terms as well as a change in plurality. Finally, three (or 0.49%) instances

exhibited an antonym relationship as in case of renaming the method shouldAcceptRaxProtocols

→ shouldRejectRaxProtocols [13]; here we see the term ‘Reject’ replacing ‘Accept’.

In Table 7.5, we provide the top five rename forms and semantic updates associated with a complete

grammar pattern pair. From this table, we observe that the most frequent grammar pair, V NM N

→ V NM N is mostly associated with a change in meaning. For example, in the rename commit [8],

testStringEncryption → testStrongEncryption, a single term is replaced making it a Simple

form type change and since there is no semantic relationship between the terms ‘String’ and ‘Strong’

it is categorized as a general change in meaning. However, from this table, we observe a low volume

of instances of grammar patterns associated with the semantic categories; this behavior is similar

to what is observed in RQ 1.3. Hence, similar to RQ 1.3, going forward, we look at the relationship

between prefix grammar patterns and name semantics. Presented in Table 7.6, we provide the top

three frequently occurring prefix patterns for each semantic category.

From Table 7.6, we observe that the rename prefix pattern V V → V V is associated with all

semantic categories. However, it is more prevalent with the change in meaning category. This same

prefix pattern is also the most common rename pattern, as reported in RQ 1.3. From the table,

we observe that remove and broaden meaning shows a divergence in the prefix pattern; the most

frequently occurring prefix pattern for these two categories is V V → V NM. For the broadening

pattern, we observed that in the majority of developers tend to remove the term ‘test’ from the old

name (e.g., testPinnedExternals → pinnedExternals [59]).

As the number of prefixes increases, the volume of these instances being associated with a semantic

category decreases. Again, similar to RQ 1.3, this phenomenon will help determine the quality of

a test method’s name either when a developer performs a rename or during static analysis of code.

However, as these are prefix patterns, it should be noted that terms associated with the POS tags

in the prefix might not always be the terms contributing to the semantic transformation of the

method name. Hence, the findings from this RQ should be used in conjunction with findings from

other RQs and also prior work, such as [192] study of identifier renaming using data types and

co-occurring refactorings.

Summary. Our analysis of test methods shows that developers frequently change the meaning of

a test method’s name when performing a rename. This contrasts with prior research, which studied

production and test names together, finding that these tend to narrow in meaning. One conclusion
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we may draw from this is that test methods more frequently change in meaning than the general

population of methods. Another potential explanation is that it is more challenging to analyze

the relationship between words in test methods. If word relationships in test methods are heavily

domain-driven, then some of the underlying technology, such as WordNet, used to analyze these

may not work well. More research is needed to conclude which case is valid. However, whichever

case we are in, it is clear that the relationship between words in test methods as they evolve is

different from the general population of methods. Thus, recommending test name structures or

words will potentially require specialized approaches trained specifically on test naming structures.

7.3.3 RQ3: What are the most common term changes, and what is the relationship

between the added term and removed term?

Approach: In this RQ, we examine the frequent terms added to and removed from test meth-

ods due to a rename. The experiment in this RQ utilizes the complete dataset of test method

names. We first utilize the heuristic splitter algorithm implemented in the Spiral package [146] to

determine the terms that form a name. Next, for each rename instance, we extract only the terms

that were added and removed. Finally, for each added and removed pair of terms, we count the

number of times the pair exists in the dataset. For example, when getEmployeeName is renamed

to testEmployeeLastName, the added terms are ‘test’ and ‘Last’, while the removed term is ‘get’.

We search our dataset for the occurrence of ‘test’ & ‘get’ and ‘Last’ & ‘get’. Additionally, as part

of our qualitative approach, we manually analyzed a statistically significant sample that comprises

of the top 646 frequently occurring pairs. The sample represents a 99% confidence level and a 5%

confidence interval from our population of 21,615 pairs of added and removed terms. As part of

this analysis, we annotated the semantic relationships between the added and removed terms. The

semantic annotations include: synonyms, antonyms, specializations, and generalizations.

Analyzing the list of 646 removed-added pairs, we observe instances where the developer either

adds or removes numerical digits to or from the replacement term. An in-depth look at these

identifiers shows that a vast majority of such names usually do not contain any other terms that

describe the behavior of the test method (e.g., test15 6 5 → test16 9 5 [71]). Most likely, these

are auto-generated tests or tests utilized for debugging purposes. To facilitate the use of English

semantic rules to determine the relationship between the term pairs, our analysis of term pairs

will be limited to only pairs that do not have numerical digits. Looking at the top five frequently

occurring term pairs, we observe developers replace ‘has’ with ‘contains’ (94 instances), ‘test’ with

‘can’ (58 instances), ‘all of’ with ‘at least’ (46 instances), ‘with’ with ‘when’ (40 instances), and

‘test’ with ‘should’ (38 instances). Additionally, we also observe that developers frequently replace
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the term ‘test’ with a term associated with a Boolean return type (e.g., ‘can’, ‘is’, ‘should’).

Next, we look at the different types of semantic relationships between the removed-added pairs.

From our dataset, we observe that 294 of the removed terms were replaced with terms of the

same POS. For example, in renaming testFilterBaseNice → testSelectBaseNice [69] the de-

veloper replaces the term ‘Select’ with ‘Filter’, both of which are verbs. The majority of re-

placement terms were added in the same position as the removed term in the name. Looking

at the types of semantic relationships in the dataset, we observe 36 pairs of terms as synonyms

(e.g., boundingCube → boundingBox [80]) and 22 pairs having an antonym relationship (e.g.,

genericExtension→ specificExtension [78]). We also identified 12 instances each of specializa-

tion (e.g., testPredictions→ validatePredictions [79]) and generalization (e.g., listContains

→ collectionContains [68]).

Looking at the root (i.e., stem) of the removed-added term pairs, we observe that 70 pair in-

stances have the same stem. For example, in the following rename testTwippleUploader →
testTwippleUpload [79], the terms ‘Uploader’ and ‘Upload’ have the same stem– ‘upload’. We

also observe 17 instances of tense change (e.g., isOrderedFailure→ isInOrderFailure [57]) and

nine instances of plurality changes (e.g., enqueueJob→ enqueueJobs [64]), and spelling corrections

(e.g., projectVisitorIsInkvoked → projectVisitorIsInvoked [32]) each.

Our manual analysis shows that determining the relationship between terms is a challenging task

due to the diverse ways in which developers rename identifiers. We made the following observations

during our qualitative analysis: (1) although proper naming helps understand what the test verifies

and how the underlying system behaves, some terms are ambiguous, which makes it challenging to

determine the semantic relationship between the pair due to the use of domain terminology (e.g.,

‘LBDevice’ is replaced with ‘Zeus’ [12]), (2) multiple terms can replace a single term and vice versa;

this type of change is done due to specialization/generalization of behavior or in situations where

the names are synonyms (e.g., the terms ‘not started’ are replaced by ‘closed’ [67]), and (3) the

terms are unrelated (e.g., ‘Latency’ is replaced with ‘Metrics’ [74]).

Finally, when examining the code, we observe that specific terms in a method’s name can indicate

the presence of specific statements in the body of the method. For instance, we observe that the

presence of the terms ‘at least’, ‘all of’, or ‘all’ acts as a sign that a method performs tests on

collection-based objects such as List, Map, or custom collection types. For example, the method

findAllWithGivenIds contains a collection object that is subject to a series of tests (i.e., assertion

statements). Similarly, the occurrence of the term ‘exception’ indicates that the purpose of such

methods is to verify that an exception occurs as part of the execution of the test. In such instances,
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developers either utilize the ‘expected’ parameter as part of the Test annotation or places an

assertion statement in the catch section of the try-catch block that handles the exception that the

developer expects to be thrown (e.g., invokingStaticMethodQuietlyShouldWrapIllegalArgume

ntException [63]). These observations show how static analysis combined with NLP techniques

can support the automation of identifier name appraisal algorithms.

Summary. When replacing terms in a method’s name, developers frequently preserve the overall

meaning of the method name by utilizing a synonym of the removed term. In addition, there

are some interesting common word and phrase substitutions we observed in this set. Including

‘has’ ←→ ‘contains’ and ‘all of’ ←→ ‘at least’. Many of these can be linked with code semantics.

For example, ‘all of’ changing to ‘at least’ indicates a shift in testing behavior; instead of testing

for the presence of all entities, they are testing for a subset. We manually confirmed that some

of this behavior can be directly mapped to code changes, and thus we may be able to provide

some naming recommendations in the future based on these trends. In addition, the term ‘test’

is frequently swapped with terms such as ‘can’, ‘is’, and ‘should’. The relationship between these

terms and the term ‘test’ range from synonyms to metonyms.



Chapter 8

Understanding Digits in Identifier Names: An Exploratory

Study

The contents of this chapter are part of the study “Understanding Digits in Identifier Names:

An Exploratory Study” published in the Proceedings of the 1st International Workshop on

Natural Language-based Software Engineering [194].

8.1 Introduction

As lexical tokens that uniquely identify entities in the code (such as classes, methods, variables,

etc.), identifier names play an essential part in program comprehension activities, with well-

constructed names improving comprehension activities by an estimated 19% [144]. Ideally, for

identifier names to assist developers with understanding the code, the name must be unambiguous,

and intent-revealing in communicating the purpose and behavior of its associated source code [116].

However, with developers having the ability to craft names using a variety of terms [131,177,190], it

is challenging to ensure consistent quality of the identifiers in the source code. This is exacerbated

by the fact that around 70% [124] of the characters in the code base are dedicated to identifier

names. Ignorance of the quality of identifier names is ignorance of the quality of a large portion of

the code.

To correct low quality identifiers, developers rename [133] them. Rename refactorings are defined

as refactorings that modify the name of an identifier without modifying the intended behavior of

the code. Many Integrated Developer Environments (IDEs) offer a built-in rename refactoring

functionality. Most of these IDEs only support the mechanical act of renaming; they allow a

developer to choose what identifier they want to rename, accept the new name should be used, and

then perform checks to avoid name collisions. There is little or no support beyond this to assist

110
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developers in determining when and how (e.g., help them pick terms). This is in spite of the fact

that renaming is one of the most common refactorings [184,191]; further highlighting that naming

is a severe problem in software maintenance.

To understand the characteristics associated with high-quality names, past work in this area has

focused on both empirical and developer-centric studies. To this extent, research studies have

surveyed professional developers [95], examined the presence, significance, and influence of abbrevi-

ations [148,149,174,176], acronyms [117], the comprehensibility [105,144,206] of different types of

names, and investigated the semantic evolution of the identifiers [101,192]. However, these existing

studies focused on the words that make up identifiers, not digits. Therefore, this study expands

our understanding of identifier names by studying the digits that appear within them. Our work

aims to help lay the foundation in this area of research by conducting an exploratory study on the

presence and purpose of digits in an identifier’s name.

The goal of this study is to understand the structure of identifier names containing digits and the

semantics expressed by digits in identifier names. To this extent, we study the part played by digits

in identifier names by examining the name’s evolution and the meaning conveyed by the digit to the

overall purpose of the identifier. We envision findings from our study supporting the development

of tools and techniques in identifier name recommendation and appraisal and the auto-generation

of comprehension-friendly source code. We answer the following research questions (RQs):

RQ1: How does identifier renaming operations in the source code impact the existence

of digits in an identifier’s name? This question explores the extent to which digits are present

in identifier names and how they change over time. Findings from this RQ inform us of the volume

and characteristics of such identifiers; including if digits are generally preserved after a rename has

been applied, and the number of digits that typically occur in a name.

RQ2: How do developers utilize digits in an identifier’s name to convey meaning? In

this RQ, we perform a qualitative examination of the terms in an identifier’s name and its related

code to determine the rationale behind the presence of digits in an identifier’s name. Through our

analysis, we establish a taxonomy for the presence of digits in an identifier’s name.

8.2 Methodology

This section provides details about the methodology of our study. Depicted in Figure 8.1 is an

outline of our experiment design. We perform a series of natural language-based processing activities

on the source dataset before answering our RQs. In the below subsections, we describe these
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Figure 8.1: Overview of our experiment design.

activities.

8.2.1 Source Dataset

In this study, we utilize the dataset of rename refactorings made available from a prior study of

ours [190]. The dataset contains the commit history and refactoring operations of 800 open-source

Java systems. The refactoring operations were mined at the commit level using RefactoringMiner

[218], a state-of-the-art tool with a precision of 98% and a recall of 87% [208, 219], and contain

the rename operations performed on classes, attributes, methods, parameters, and local-variables.

As shown in Table 8.1, in total, the dataset contains 428,079 rename operations and 926,948 non-

rename operations. The dataset also indicates if a source code file is a JUnit-based unit test file or

not by following an approach similar to [187].

8.2.2 Extract Identifiers With Digits

As our study is limited to analyzing only renames that involve digits in the identifier’s name, our

initial step is to extract such rename operations from the source dataset. We achieve this by using
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Table 8.1: Volume of rename and non-rename refactoring operations in the source dataset.

Refactoring Operation Count Percentage

Rename Attribute 140,306 10.35%

Rename Method 91,235 6.73%

Rename Variable 89,032 6.57%

Rename Parameter 75,042 5.54%

Rename Class 24,556 1.81%

Move And Rename Class 7,676 0.57%

Move And Rename Attribute 232 0.02%

Non-Rename Operations 926,948 68.41%

Total 1,355,027 100%

a regular expression to detect the presence of a digit in either the old or new name of the rename

operation; the results of this activity yield 149,980 rename operations.

8.2.3 Identifier Name Splitting

A prerequisite to analyzing identifier names is to split the name into its constituent terms. To

perform this activity, we utilize the Ronin splitter algorithm implemented in Spiral, a specialized

open-source identifier name splitting Python package [146]. The splitter utilizes heuristic rules,

English terms, and token frequencies to determine the individual terms in an identifier’s name.

Furthermore, prior studies have utilized this package to split identifier names [190,191,192]. As an

example, the name ‘service2WsdlResource’ is split into‘service’, ‘2’, ‘Wsdl’, and ‘Resource’.

8.2.4 Rename Exclusion

Domain Terms:

As part of the identifier name splitting activity, the splitter considers standard domain terms

that contain digits and refrains from splitting such terms. For example, the splitter splits the name

‘testi18nGetAll’ into the terms ‘test’, ‘i18n’, ‘Get’, and ‘All’ since ‘i18n’ is an established computing

abbreviation associated with internationalization and localization. Hence, we exclude such rename

operations from our analysis.
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Table 8.2: Renames distribution by identifier type.

Identifier Type Count Percentage

Variable 4,319 28.00%

Method 3,545 22.98%

Parameter 2,878 18.66%

Class 2,779 18.02%

Attribute 1,903 12.34%

Total 15,424 100%

Auto-Generated Code:

A manual examination of the rename instances in our dataset showed the excessive presence of

automatically generated code. For example, we encountered identifiers like ‘LA642 0’ and ‘FOL-

LOW EOF in entryRuleCodeRef1107’. Such code occurs in projects that utilize parser generator

frameworks like ANTLR. Identifier names generated automatically are a significant portion of iden-

tifiers with numbers in them. Because we wanted to get a good sample of identifiers that included

digits but were written by humans, we used heuristics to remove many auto-generated identifiers

from our set. To determine how to exclude such source code, we analyzed a statistically significant

sample of 383 rename instances (confidence level of 95% and an interval of 5%) and determined

some common traits we could use to remove them. This helped us get a better, more equal sample

that included all identifiers, including some auto-generated identifiers that we were unable to easily

exclude.

8.2.5 RQ Analysis

To answer our RQs, we analyze 15,424 rename operations. This value comprises of 2,683 renames

in unit test files and 12,741 renames in non-test files. Furthermore, as shown in Table 8.2, method

variables accounted for most digit-based renames with 28% instances, followed by method names

at 22.98%. We follow a mixed-methods [215] approach to answer our RQs. In this approach,

we utilize well-established statistical measures and custom code to report trends and patterns in

our dataset and manually analyze the data to present representative examples to complement our

quantitative findings. We created these research questions with the purpose of understanding both

a quantitative and qualitative perspective on the appearance, and purpose, of digits when they

appear in identifiers.
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Table 8.3: Top five distribution of the number of digits in the old and new names.

Number of digits

in the old name

Number of digits

in the new name
Count Percentage

1 1 5,370 79.93%

2 2 518 7.71%

3 3 207 3.08%

1 2 185 2.75%

2 1 92 1.37%

Other combinations 346 5.15%

Total 6,718 100%

Table 8.4: Top five distribution of the position of digits in the old and new names.

Position of digits

in old name

Position of digits

in new name
Count Percentage

2nd 2nd 1,930 28.73%

3rd 3rd 757 11.27%

4th 4th 432 6.43%

5th 5th 328 4.88%

2nd 3rd 283 4.21%

Other combinations 2,988 44.48%

Total 6,718 100%

8.3 Experimental Results

In this section, we report on the findings of our experiments by answering our RQs. The first RQ

is primarily quantitative and examines the structural evolution of the name with respect to the

digits in the name. The second RQ examines how digits convey meaning in an identifier’s name.

The tables in the RQs show only the most frequently occurring instances.
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Table 8.5: The most frequently occurring instance of digit position and count in test and non-test

files.

Number of digits

in the old name

Number of digits

in the new name
Count Percentage

Test Files

1 1 1,126 82.73%

Non-Test Files

1 1 4,244 79.22%

Position of digits

in old name

Position of digits

in new name
Count Percentage

Test Files

2nd 2nd 283 20.79%

Non-Test Files

2nd 2nd 1647 30.74%

Table 8.6: Top five distribution of the position of digits and the number of digits in the old and

new names.
Position of digits in old name Position of digits in new name Number of digits in the old name Number of digits in the new name Count Percentage

2nd 2nd 1 1 1,930 28.73%

3rd 3rd 1 1 757 11.27%

4th 4th 1 1 432 6.43%

5th 5th 1 1 328 4.88%

2nd 3rd 1 1 283 4.21%

Other Combinations 2,988 44.48%

Total 6,718 100%
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8.3.1 RQ1: How does identifier renaming operations in the source code impact the

existence of digits in an identifier’s name?

In this RQ, we take a quantitative approach to study the treatment of names with digits over time.

To this extent, we examine the presence and/or absence of digits in an identifier’s name before and

after a rename operation. Findings from this RQ will give insight into the prevalence of digits, the

digits frequently utilized in an identifier’s name, and the action taken on these identifiers.

From the set of 15,424 renames with digits, we observe that 6,718 (or 43.56%) instances have a

digit present in the old and new name (e.g., ‘h1’ → ‘gain1’). Renames where all digits are removed

from the name account for 5,135 (or 33.29%) instances (e.g., ‘arg1’→ ‘id’), while 3, 571 (or 23.15%)

instances show the adding of digits to a name that did not contain digits (e.g., ‘log’ → ‘log1’).

Our analysis now focuses on the instances where digits are preserved in a rename. First, when

comparing the number of digits in the old and new name, we observe that 6,170 or 91.35% instances

have an equal number of digits in the old and new name. Additionally, from this list, we observe

that most instances (5,370, or 79.93%) contain only one digit in the old and new names. The next

highest set of names contains two digits in the old and new name with 518 or 7.71% instances (e.g.,

‘april7th2011’ → ‘april8th2011’). Table 8.3 shows the distribution of the top five combinations of

the number of digits in old and new names. Our subsequent analysis looks at the position of the

digits occurring in the names. Findings show that most renames (i.e., 4,402 or 65.53% instances)

preserve the position of the digits in the new name. Furthermore, a digit will likely appear in the

second position of the old and new names (e.g., ‘node2’ → ‘node3’).

Table 8.4 shows the distribution of the top five combinations of the positioning of digits in the

old and new names. Furthermore, when comparing renames in test and non-test files, the most

occurring rename combination regarding the number of digits and digit position is the same for

both file types. Table 8.5, shows the frequently occurring instance for each file type. Finally, a

combination of digit count and position (refer Table 8.6) shows that identifier names typically use

a single digit that appears as the second term in the old and new name; we observe 1,930 or 28.73%

instances of this pattern combination. We also observe that the single-digit occurrence in the names

frequently happens regardless of the position of the digit.

Our final analysis, in this RQ, looks at the value of the digit appearing in the name. Looking

at renames with digits in both names, our observations show that in most rename instances, the

value ‘2’ is present in the old and new names and is the only digit present in both names (e.g.,

‘slave2Index’ → ‘channel2Index’). This specific occurrence accounts for 1,052 or 15.56% instances.
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The next highest occurrence is the value ‘1’ in 851 rename instances as the only digit in the old and

new name. Next, examining rename instances where at least one name contains a digit, we observe

that the value ‘1’ is either removed from the old name (e.g., ‘arg1’ → ‘id’) or added to the new

name (e.g., ‘oldDelta’ → ‘delta1’) frequently with 1,563 and 1,512 instances, respectively. Finally,

our observations show a diverse set of numeric values utilized in naming identifiers, resulting in a

long tail when examining the frequency occurrence.

Summary for RQ1 : When renaming identifiers containing digits, a frequent activity is preserving

digits in the new name and usually using the same number of digits in the new name and preserving

the position of the digits in the name. Furthermore, a single digit in the old and new name is the

most commonly occurring pattern, with the digit usually occurring as the second term in the old and

new name; a phenomenon common to test and non-test identifier names. Additionally, identifiers

utilize a diverse set of digits in their name, with the number ‘2’ being a common digit in the old

and new name.

8.3.2 RQ2: How do developers utilize digits in an identifier’s name to convey mean-

ing?

The prior RQ was primarily quantitative-based, showing how digits evolve in an identifier’s name.

However, while the findings can contribute to the appraisal of identifier names, we do not know

why developers utilize digits in identifiers and how these digits contribute to the overall meaning

of the identifier. Hence, in this RQ, we manually examine the semantics of identifiers that include

digits, and their surrounding source code, to determine the rationale for the presence of digits.

This RQ aims to produce a taxonomy showing how digits convey meaning in an identifier’s name.

Our analysis is constrained to 375 rename instances, where either the old, new, or both names

contain a digit. Furthermore, this dataset represents a stratified statistically significant sample; we

utilized a confidence level of 95% and an interval of 5% for each identifier type (i.e., class, attribute,

method, local-variable, and parameter). In the annotation process, we annotated the dataset with

the rationale for the presence of the digit in the name. This was done by reading the identifier

name and looking at the code associated with the identifier. Once this was complete, we compared

their annotations and resolved any conflicts through discussion. Additionally, in specific instances

where we encounter interesting phenomena, we perform a snowballing activity to locate examples

of additional instances in the original dataset. We discuss taxonomy below and provide specific

definitions in Table 8.7.
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Table 8.7: Taxonomy showing how digits convey meaning in an identifiers name.
Category Definition Example

Auto-Generated

Identifier names in this category are generated by a code generation tool, framework, or IDE. The

number in these identifiers may have significant meaning to the technique that was used to generate

them. However, it is difficult to understand this meaning (if it exists) without a thorough understanding

of the technique used to generate them. These identifiers are also typically not written in a way to

support comprehension, since they are not typically maintained by developers directly but, instead,

regenerated by the technique that created them in the first place.

LA18 6

Distinguisher

Identifier names in this category differ only by a digit, which is typically appended as the rightmost token.

There should be at least two identifiers having a lexically identical name. The purpose of the digit is to avoid

name collision at compile/parse time. The digit has no other significant meaning relating to the purpose of

the identifier. Thus, the digit primarily operates to distinguish the identifier it is part of from other

identifiers that are lexically identical other than their own digit.

auditLog3

Synonym

Identifier names in this category contain at least one digit utilized in place of a word. Sometimes digits

are used to represent the meaning typically associated with certain words. The numbers 2 and 4 are very

common examples of this, with 2 being associated with words like ’to’ and ’too’ while 4 is associated with

words like ’for’. In this way, they function as a type of shorthand.

convert2RList

Version Number

Identifier names in this category contain at least one digit used to signify a version number. This typically

means that the identifier represents an entity whose version is significant to its capabilities and limitations

Version numbers were often used in the dataset to inform developers of what version of a framework,

tool, protocol, etc, an identifier represented. This could, for example, be an identifier that represents an

HTTP 1.0 request having the number 1 0 appended to it.

V1DozerTransformModel

Specification

Identifier names in this category contain at least one digit that represents a known specification. In many

cases, this is a number that acts as a way to uniquely identify concepts, behaviors, or characteristics. These

can be mathematical concepts, such as using 3D in identifiers that deal with 3-dimensional data;

documented, project-specific behavior like in filter1 2, where the 1 2 in the identifier tells us which

specific filter (i.e., 1 2) this identifier represents; and data characteristics such as 9 in arialRegular9Dark

which gives us the size of the font data associated with the identifier.

arialRegular9Dark

Domain/Technology
Identifier names in this category have a digit that is part of the name of a domain term or technology. The

digits themselves have no individual meaning besides the meaning endowed by the technology/domain that they are a reference to.
resultDoubleExp4j

Auto-Generated:

Identifiers falling under this classification are of two types - 1) part of a source file that is entirely

auto-generated by a tool/framework (e.g., ANTLR) and 2) specific identifiers generated by the IDE

in a source file containing developer-defined identifiers. The identifier names in tool/framework

generated source files sometimes have the name of the data type or expression statement. However,

like the integer variable ‘LA18 6’, this is not always the case. In the case of the latter, these

identifiers are typically user interface (UI) controls. When a developer utilizes the IDE to drag-

and-drop a UI control, such as a textbox, the IDE generates the code associated with the UI

control (i.e., properties and event handler). The name of such identifiers starts with the type of

control and ends with an incrementing digit. For example, ‘jComboBox2’ is the IDE generated

name for a JComboBox UI control; the value ‘2’ indicates that this is the second JComboBox

control in the class. We also observe instances where developers rename auto-generated identifier

names to more meaningful names, like ‘jScrollPane4’→‘scrollCompilerDescription’. The fact that

some of these auto-generated names eventually received a higher-quality name indicates that auto-

generated identifiers should not necessarily be discarded when performing this kind of research. In

some cases, despite being auto-generated, they provide additional insight. The presence of these
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identifiers represents an opportunity for future research to study how developers use and modify

auto-generated identifiers and how they differ, in terms of how they evolve, from other types of

identifiers that originated from humans instead of code-generation technologies.

Distinguisher:

These types of identifier names are prevalent in our dataset. Developers create multiple identifiers

in the source file with the same name, but each has a unique digit to avoid name collision at compile-

time. Hence, the purpose of digits in these names is to distinguish them, lexically, from one another–

hence their name. These types of names were noted but not studied in other research [174]. In

most cases, the digit is the last term in the name, and developers increment the value of the digit

with each new lexically-identical iteration of the identifier. An example of such an instance is the

declaration of the variables ‘auditLog1’, ‘auditLog2’, and ‘auditLog3’, within the same method,

where the digit is a distinguisher. A variant of this category is the use of generic names (and

sometimes abbreviations) for identifiers. For example, we encounter method parameters named

‘arg0’ and ‘arg1’.

Synonym

Developers utilize digits as synonyms for prepositions, with the value ‘2’ frequently used as a sub-

stitute for the ‘to’ preposition. One such use of this digit is to indicate the result of an action or a

process, such as naming transformation-based identifiers. Such identifiers either convert data from

one format to another or hold the transformation results. For example, the method ‘convert2RList’

converts a table-based object, passed as a parameter, to a list-based object which it returns. An-

other use of the digit ‘2’ is to indicate purpose or intention. For example, an attribute with the

name ‘mb2use’ is utilized to hold the cache size that the program intends to use. We also encounter

the use of the value ‘4’ as a synonym for the preposition ‘for’ as in the method ‘populate4Test’,

which instantiates a variable for use in test cases. Furthermore, such digits are contained within

the name and not at the end of the name.

Version Number

Developers utilize identifiers to signify the version number the code supports. For example, looking

at the comments in the class ‘V1DozerTransformModel’, the term ‘V1’ represents “A version 1

DozerTransformModel”. A drawback of such an approach is the continual update of the identifier’s

name with new versions of the system, as shown by the renaming of the variable ‘pg75’ → ‘pg80’.
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However, certain developers also acknowledge this overhead and remove such dependencies as in

the renaming of the identifier ‘DROID SIGNATURE FILE V45’ → ‘DROID SIGNATURE FILE’

with the commit message “Changed variable name so that it is more generic than previously”

Specification

The digits in a name can relate to specifications of the system, such as size or dimensions, or

provide details about the system’s behavior. For instance, the value ‘9’ in the attribute name

‘arialRegular9Dark’ indicates the size of the font object associated with the attribute. In another

example, the comments for the class ‘Geographic3DTo2DConversion’ show that this class “Converts

between a Geographic 3D and a 2D system”. Though rare, we also encounter the use of digits to

specify a specific use case, as in the name ‘testUC 3 EraseFacetClassifier NoSource’; this is a

unique traceability mechanism, especially for test cases

Domain/Technology

The presence of digits is also due to developers using domain or technology names that contain

digits. For instance, we observe developers utilizing API/library names as a term in the identifier’s

name, like ‘Twitter4J’, ‘Neo4J’, ‘Slf4j’, ‘Log4j’ , ‘Args4j’, Exp4j, and ‘Junit4’, such as in naming

the attribute‘resultDoubleExp4j’. The use of standards/formats in the name also results in digits

in the name. For example, in the method name ‘testCP437FileRoundtrip’, the term ‘CP437’ is a

standard for character encoding. Likewise, the value ‘1516’ in ‘parseInvalidHla1516eFomWithUnd

efinedTransportForAttribute’ corresponds to an IEEE standard (i.e., IEEE-1516e).

Summary for RQ2 : There are multiple reasons why an identifier name contains digits. Digits

are frequently utilized to create unique identifier names; this is true for both auto-generated and

developer-written source code. Developers also name identifiers based on domain and technology

terms such as the API/library associated with the identifier, resulting in digits if the API/library

name contains such values. Additionally, digits are also utilized to convey size, standards, versions,

and words like ’to’ and ’for’.
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Chapter 9

IDEAL: An Open-Source Identifier Name Appraisal Tool

The contents of this chapter are part of the study “IDEAL: An Open-Source Identifier Name

Appraisal Tool” published in the Proceedings of the 2021 International Conference on Software

Maintenance and Evolution [189].

9.1 Introduction

Program comprehension is a precursor to all software maintenance task [200]; it is essential that

a developer understands the code they will be modifying. Therefore, maintaining the internal

quality of the code over its lifetime is of paramount importance. As fundamental elements in the

source code, identifier names account, on average, for almost 70% of the characters in a software

system’s codebase [124] and play a significant part in code comprehension [121, 164]. Low quality

identifiers can hinder developers’ ability to understand the code [155,206]; well-constructed names

can improve comprehension activities by an estimated 19% [144].

However, there is still very little support for developers in terms of helping them craft high-quality

identifier names. Research has examined the terms or structure of names [85,124,144,191,207] and

produced readability metrics and models [112,130,205] to try and address this problem. However,

they still fall short of providing tangible advice for improving naming practices in developers’ day-

to-day activities. The work we present in this study is designed to operate within an IDE, or a

CLI, setting and provide real-time advice to developers about their naming practices.

Our work aims to provide the research and developer community with an open-source tool, IDEAL,

that detects and reports violations in identifier names for multiple programming languages using

static analysis techniques. In addition to identifying the identifier(s) exhibiting naming issues in

the source code, IDEAL also provides necessary information for each reported violation so that
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appropriate action(s) can be taken to correct the issue. We envision IDEAL utilized by developers

in crafting and maintaining high-quality identifier names in their projects and also by the research

community to study the distribution and effect that various poor naming practices have in the field.

IDEAL is a multi-language platform for identifier name analysis. It is context-aware; treating

test and production names differently since they have different characteristics [177, 190]. It allows

for project-specific configurations and is based on srcML [120], allowing it to support multiple

programming languages (specifically, Java and C#). IDEAL is publicly available as an open-source

tool to facilitate extension and use within the researcher and developer communities.

Table 9.1 summarizes the linguistic anti-patterns currently detected by IDEAL. Anti-Patterns A.*

to F.* are the set of original anti-patterns defined by Arnaoudova et al. [103], while the anti-patterns

G.* are anti-patterns unique to IDEAL. We should also note that as an open-source tool IDEAL

provides the necessary infrastructure for the inclusion of additional anti-patterns.

9.2 IDEAL Architecture

Implemented as a command-line/console-based tool in Python, IDEAL integrates with some well-

known open-source libraries and tools in analyzing source code to detect identifier name violations.

Depicted in Figure 9.1 is a view of the conceptual architecture of IDEAL. Broadly, IDEAL is

composed of three layers– Platform, Modules, and Interface. It utilizes well-known tools and

libraries used for natural language and static analysis, including Spiral [146], NLTK [108], Wordnet

[168], Stanford POS tagging [216], and srcML [120].

9.3 Evaluation

To understand the effectiveness of IDEAL in correctly detecting identifier naming violations, we

subjected IDEAL to two types of evaluation activities. First, we analyzed four popular open-source

systems using IDEAL and manually validated the detection results of a statistically significant

sample. Our next evaluation strategy involved assessing IDEAL on the sample dataset utilized

to evaluate LAPD by comparing the detection results. In the following subsections, we provide

details on these two evaluation activities, including numbers around the correctness of IDEAL and

qualitative findings based on our manual analysis of source code.
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Table 9.1: Summary of the linguistic anti-pattern detection rules IDEAL utilizes.
Id Pattern Detection Strategy

A.1
“Get” more than

accessor

Impacted Identifiers: Method Names (excludes test methods)

The name starts with ‘get’, the access specifier is public/protected, the name contains the name of an attribute,

the return type is the same as the attribute type, and the body contains conditional statements

A.2
“Is” returns more than

a Boolean
Impacted Identifiers: Method Names (excludes test methods)

The name starts with a predicate/affirmation related term and the return type is not boolean

A.3 “Set” method returns Impacted Identifiers: Method Names

The name starts with ‘set’ and the return type is not void

A.4
Expecting but not

getting single instance

Impacted Identifiers: Method Names (excludes test methods)

The last term in the name is singular and the name does not contain terms that are a collection type and the

return type is a collection

B.1
Not implemented

condition
Impacted Identifiers: Method Names

The name contains conditional related terms in the name or comment and body does not conditional statements

B.2
Validation method does

not confirm
Impacted Identifiers: Method Names (excludes test methods)

The name starts with a validation-related term, does not have a return type and does not throw an exception

B.3
“Get” method does not

return
Impacted Identifiers: Method Names (excludes test methods)

The name starts with a ‘get’ related term and the return type is void

B.4 Not answered question Impacted Identifiers: Method Names (excludes test methods)

The name starts with a predicate/affirmation related term and the return type is void

B.5
Transform method does

not return
Impacted Identifiers: Method Names (excludes test methods)

The name starts with or an inner term constains a transformation term and the return type is void

B.6
Expecting but not

getting a collection

Impacted Identifiers: Method Names (excludes test methods)

The name starts with a ‘get’ related term, the name contains a term that is either plural or a collection type and

the return type is not a collection-based type

C.1
Method name and

return type are opposite
Impacted Identifiers: Method Names (excludes test methods)

An antonym relationship exists between terms in an identifiers name and data type

C.2
Method signature and

comment are opposite
Impacted Identifiers: Method Names (excludes test methods)

An antonym relationship exists between either terms in an identifiers name or data type and comments

D.1
Says one but contains

many
Impacted Identifiers: Attributes, Method Variables and Parameters

The last term in the name is singular and the data type is a collection

D.2
Name suggests Boolean

but type does not
Impacted Identifiers: Attributes, Method Variables and Parameters

The starting term should be predicate/affirmation related and the data type is not boolean

E.1
Says many but contains

one
Impacted Identifiers: Attributes, Method Variables and Parameters

The last term in the name is plural and the data type is not a collection

F.1
Attribute name and

type are opposite
Impacted Identifiers: Attributes, Method Variables and Parameters

An antonym relationship exists between terms in an identifiers name and data type

F.2
Attribute signature and

comment are opposite
Impacted Identifiers: Attributes, Method Variables and Parameters

An antonym relationship exists between either terms in an identifiers name or data type and comments

G.1
Name contains only

special characters
Impacted Identifiers: Attributes, Method, Method Variables and Parameters

The name of the identifier is composed of only non-alphanumeric characters

G.2
Redundant use of “test”

in method name
Impacted Identifiers: Methods (excludes non-test methods)

The name starts with the term ‘test’
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Figure 9.1: Conceptual architectural view of IDEAL.
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Table 9.2: Summary of the systems in our evaluation process.

System Language Version
Release

Date

Files

Analyzed

Issues

Detected

Retrofit Java 2.9.0 May-2020 282 192

Jenkins Java 2.293 May-2021 1,688 4,818

Shadowsocks C# 4.4.0.0 Dec-2020 88 275

PowerShell C# 7.1.3 Mar-2021 1,290 8,455

9.3.1 Evaluation on open-source systems

IDEAL can analyze systems implemented in any language supported by srcML. However, currently,

it has only been evaluated using Java and C#. Thus, we selected two popular open-source systems

for each of these programming languages. To this extent, Retrofit [2] and Jenkins [3] were the two

Java systems, while Shadowsocks [4] and PowerShell [5] were the C# systems; Table 9.2 summarizes

the release of each system that was part of our evaluation analysis.

For each of the four systems, we manually analyzed a random stratified statistically significant (i.e.,

confidence level of 95% and confidence interval of 10%) set of detected violations for each category.

In total, we manually verified 2,019 instances of naming violations spread across the four systems.

Table 9.3 provides a breakdown of the number of violation instances for each category. As part

of the manual analysis process and to mitigate bias, we had discussions around specific violation

instances that were subjective and, at times, referenced literature (grey and reviewed) to aid in the

decision-making process. IDEAL reports an average precision of 75.27%, with 14 out of 19 violation

types reporting a precision of over 50%. Though LAPD reports an average precision of 72%, we

manually validate 1,267 more instances than LAPD. Furthermore, even though IDEAL supports

customization per project (e.g., specifying custom collection data types and terms), our evaluation

strategy did not utilize this feature in order to maintain consistency in violation detection across

the four systems.

From Table 9.3, we observe that while IDEAL performs notably well in detecting all A.*, D.*, and

E.* violations (precision score of over 80%). These are anti-patterns where the identifier either

does or contains more than what is required. In most instances, IDEAL can accurately process the

return/data type of the identifier to determine violations. However, there are also violations that

are challenging for IDEAL to analyze and hence result in a large volume of false positives (e.g.,

C.2). Our manual analysis of these false-positive instances shows patterns that, in most cases, are

causing IDEAL to report them as issues. First, since developers utilize custom data/return types for
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identifiers in their code, IDEAL fails in identifying their intended purpose. For instance, ‘EnvVars’

is a custom type created by a developer to hold a collection of specific items. The developer returns

this type in a method called ‘getEnvironmentVariables2’. Since IDEAL is unaware that ‘EnvVars’

is a collection-based type, it flags this as a violation since the method is supposed to return a

collection (i.e., this get method name contains a plural term– ‘Variables’). We are confident that

once developers configure IDEAL to handle custom types, false positives, similar to this, will reduce.

Our next observation is on how IDEAL analyzes lexical relationships between words; specifically,

concerning antonyms (i.e., C.* and F.*). While IDEAL correctly recognizes antonyms, the context

around how these terms are used, either in the identifier’s name or comment, is not considered,

resulting in false positives. Additionally, we also observe that naming habits/conventions also cause

the emergence of antonyms. For instance, consider the method ‘GetCompletionResult’ with a return

type called ‘CompletionResult’. IDEAL determines that ‘Get’ and ‘Result’ are antonyms, which

are lexically valid, but a false positive due to naming conventions. Similar to the last challenge,

context around the use of transformation terms (i.e., B.5) and conditional terms (i.e., B.1) cause

the reporting of a high volume of false positives. While IDEAL correctly detects these terms in the

source code, how the developer utilizes the term in a name or comment is currently a challenge.

Finally, our manual review of the source code also allowed us to observe other poor naming/coding

practices, which can be future linguistic anti-patterns. For example, the generic terms ‘data’ and

‘result’ are subjective. When used as part of an identifier’s name, it is unknown if the identifier

handles a single item or collection of items. Likewise, the use of the type ‘var’ (in C#) and

‘object’ also does not indicate the type of data the identifier handles. Ideally, to convey the

purpose/behavior of the identifier correctly, developers need to be specific in naming identifiers and

data types when possible.

9.3.2 Comparison with LAPD

In this part of our evaluation we compare the correctness of IDEAL with LAPD. To this extent,

we analyze a sample of the source files that were utilized to evaluate the effectiveness of LAPD

and compare the results. Since IDEAL implements the anti-patterns available in LAPD, it is

essential to understand the areas where IDEAL under- and overperforms. In total, we analyzed

209 Java files and detected 294 violations. From this, both IDEAL and LAPD matched 199 true

positive instances and 19 false positive instances. Furthermore, 47 instances identified as LAPD

false positives were not detected by IDEAL, highlighting where IDEAL outperforms LAPD. Most

of these instances were associated with C.2, D.1, and E.1. Finally, we also encounter instances

where IDEAL does not detect LAPD true positives. While some of these issues are due to custom
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Table 9.3: Summary of the detection correctness of IDEAL.

Id.
Detected

Instances

Validated

Samples

True

Positives

False

Positives
Precision

A.1 53 34 34 0 100.00%

A.2 45 37 37 0 100.00%

A.3 129 64 63 1 98.44%

A.4 341 127 102 25 80.31%

B.1 912 171 73 98 42.69%

B.2 446 166 165 1 99.40%

B.3 260 101 101 0 100.00%

B.4 18 16 5 11 31.25%

B.5 271 107 46 61 42.99%

B.6 827 159 128 31 80.50%

C.1 139 74 54 20 72.97%

C.2 294 112 13 99 11.61%

D.1 3,359 262 261 1 99.62%

D.2 83 53 53 0 100.00%

E.1 5,506 268 253 15 94.40%

F.1 38 32 19 13 59.38%

F.2 165 91 15 76 16.48%

G.1 1 1 1 0 100.00%

G.2 853 144 144 0 100.00%

Overall 13,740 2,019 1,567 452 75.27%
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data types, we also encounter subjective instances, most of which (10 instances) fall under D.2.



Chapter 10

An Ensemble Approach for Annotating Source Code

Identifiers with Part-of-speech Tags

The contents of this chapter are part of the study “An Ensemble Approach for Annotat-

ing Source Code Identifiers with Part-of-speech Tags” published in IEEE Transactions on

Software Engineering [178].

10.1 Introduction

Program comprehension is a significant factor in the time it takes to develop and maintain soft-

ware [121,165]. Developers spend much more time reading code than they spend writing; 10 times

more by some estimates [165]. Increased understanding of developer comprehension will lead to

approaches that not only augment the ability of developers and program analysis tools to be produc-

tive, but also improve the accessibility of software development (e.g., by supporting programmers

that prefer top-down or bottom-up comprehension styles [132,221]) and help developers avoid stress

stemming from code that is hard to understand. One of the primary ways a developer comprehends

code is by reading identifier names, which make up on average about 70% of the characters found

in a body of code [125]. Therefore, improving identifier naming practices can have a significant,

positive impact on comprehension.

One challenge to studying identifiers is the difficulty in understanding how to map the meaning

of natural language phrases to the behavior of the code. For example, when a developer names

a method, the name should reflect the behavior of the method such that another developer can

understand what the method does without the need to read the method body. Understanding this

connection between name and behavior presents challenges for humans and tools; both of which

use this relationship to comprehend, generate, or critique code. A second challenge lies in the
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natural language analysis techniques themselves, many of which are not trained to be applied to

software [107]; introducing significant threats [150]. Addressing these problems is vital to improving

the developer experience and augmenting tools which leverage natural language.

Analysis of identifier names can be done in many ways, including word frequency analysis [163]

(e.g., ngrams) or semantic analysis using lexical ontologies like wordnet [168]. These are applied

to a large number of problems, including rename refactoring analysis [101, 161, 185, 192], linguistic

anti-patterns [103], identifier splitting [142], and part-of-speech tagging [137, 141, 180]. In this

paper, we focus on part-of-speech tagging (POS); a technique whereby words in a sentence, or

in an identifier in this case, are annotated based on the role they play within the context of the

words surrounding them or based on their typical usage in the case where we are dealing with a

single-word identifier. Part-of-speech tagging is one of the most popular methods for measuring

the natural language semantics of identifier names and has been used in numerous other research

[103, 113, 115, 137, 139, 145, 157, 183, 192]. Unfortunately, part-of-speech taggers for identifiers are

still inaccurate [177,180], making it difficult to trust their output.

The goal of this study is to discuss and present an ensemble tagging technique that improves the

accuracy of part-of-speech taggers, and supports a larger variety of POS tags than other software

engineering based POS taggers, specifically SWUM and POSSE [137,141]. The ensemble approach

uses machine-learning algorithms such as Decision Tree [171] and Random Forest [111], which are

common in other software research tasks [91,204] and have been used for part-of-speech tagging of

standard English documents [126].

In addition to advancing the state-of-the-art of part-of-speech tagging, we also discuss where our

approach is still weak; highlighting situations to which it may not sufficiently generalize due to

potential limitations in our technique and our dataset. We answer the following Research Questions

(RQs):

RQ1: How accurate is the ensemble part-of-speech tagger at the individual word level

and how does this compare to the independent taggers? In prior research [177], we found

that the output of three part-of-speech taggers complemented one another by applying them all to

a manually-curated dataset of grammar patterns. This question will address just how much we can

improve the accuracy of part-of-speech taggers on source code by combining the output of these

taggers using machine learning.

RQ2: How accurate is the ensemble part-of-speech tagger at the identifier level and

how does this compare to the independent taggers? In RQ1, we explore word-level accuracy.
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In RQ2, we will look at how accurate our ensemble is when it must annotate the entire identifier

correctly, since, as shown in prior work [177], even if a tagger has high accuracy on individual

words, it may have low accuracy on full identifiers.

RQ3: What are the most frequently mis-used part-of-speech tags and grammar pat-

terns? This question investigates whether there are patterns in the way our approach mis-annotates

identifiers. We explore these cases and discuss what further information the ensemble requires in

order to handle these cases properly. For example, in prior work [177], we found that implementa-

tion details have an effect on the correct tag sequence for certain identifiers and are thus required

to properly tag these identifiers. In this question, we take a deeper look at this problem among

others.

10.2 Methodology

In prior work [177], we constructed a dataset of 1,335 identifiers from 20 systems and manually

annotated these identifiers with part-of-speech tags. For our evaluation of the ensemble tagger, we

needed to create both a test set and a training set. We wanted the test set to contain identifiers

from systems that were not present in the training set. Thus, we removed 5 systems and all

corresponding identifiers from the original 20 system dataset and used these to create a test set.

Since we wanted to maintain the same size as the original dataset, we collected additional identifiers

from the remaining 15 systems so that the size of the dataset continued to be 1,335 identifiers. Thus,

the training set used for our ensemble is derived from our original dataset [177] but is not the exact

same.

Below, we explain our steps as if we collected and annotated the full 15 system dataset from scratch,

as opposed to deriving it from prior work and expanding it, since these are all the steps used on

all identifiers in our training and test sets. Explaining it this way simplifies the discussion. One

thing to note is that we assess the quality of our model in multiple ways, meaning we have multiple

test sets. We name these differently to ease the burden of reading. One set is called the ”unseen

test set” which is made up of identifiers from systems that were not in the training set. The other

test set(s) are constructed using 5-fold cross validation, which splits the 15 system training set into

smaller train-test sets. We call this the ”5-fold test set”. We will stick to this terminology for

clarity throughout this section.
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Table 10.1: Distribution of Annotations in Training and Test Sets

Annotation Training Set Unseen Test Set

CJ 11 1

D 20 7

DT 13 5

N 1149 321

NM 1520 414

NPL 220 78

P 91 32

PRE 83 33

V 330 81

VM 12 3

Total 3449 977

10.2.1 Training Set Construction

We grouped identifiers into five categories: class names, function names, parameter names, attribute

names (i.e., data members), and declaration-statement names. A declaration-statement name is a

name belonging to a function-local or global variable. We use this terminology as it is consistent

with srcML’s terminology [119] for these variables and we used srcML to collect identifiers.

This dataset includes 1,335 identifiers which break down into 3,449 words (Table 10.1). The number

was chosen by taking a sample from the total number of identifiers at 95 confidence level and 6

confidence interval from each of the five categories we support, meaning that we sampled 267

identifiers from each category (5*267=1,335). We collected our identifier set from 15 open-source

systems. We chose these systems to vary in terms of size and programming language while also

being mature and having their own development communities. We did this to make sure that

the identifiers in these systems have been seen by multiple contributors and that the identifiers

we collected are not biased toward a specific programming language. There are two reasons for

choosing identifiers from multiple languages. 1) We want to know what patterns cross-cut between

languages, such that most Java/C/C++ developers are familiar with and leverage these patterns.
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Focusing on just one language might mean the patterns we find are not common to developers

outside of the chosen language. 2) Many systems are written in more than one language, and it is

important to understand how well part-of-speech tagging technologies will work on these systems.

Thus, running our study on systems written in different programming languages helps us study

part-of-speech tagger results in an environment leveraging multiple programming languages.

We provide the list of systems and their characteristics in Table 10.2. The systems we picked

were 615 KLOC on average with a median of 476 KLOC, a min of 30 KLOC, and a max of 1,800

KLOC. Further, most of these systems have been in active development for the past ten years

or more and all of them for five years or more. The younger systems in our set are popular,

modern programs. For example, Swift is a well-known programming language supported by Apple,

Telegram is a popular messaging app, and Jenkins is a popular development automation server.

Because we are trying to train an ensemble part-of-speech tagger to work well on as much code as

possible, our goal is not necessarily to include only high-quality identifier names, but to include

names that are closely representative of the average name for open-source systems. Additionally, we

remove identifiers that appear in test files, in part because they sometimes have specialized naming

conventions (e.g., include the word ‘test’, ‘assert’, ‘should’, etc). This is supported by other research

on test names [222, 225, 226]. We exclude test-related identifiers by ignoring annotated test files

and directories; any directory, file, class, or function containing the word test. While it is possible

that identifiers in test code have similar grammar patterns to identifiers outside of test code, it is

also possible that they do not. We did not want to risk introducing divergent grammar patterns.

We think it would be appropriate to create a separate dataset of test identifier grammar patterns.

To collect the 1,335 identifiers, we scanned each of our 15 systems using srcML [119] and collected

both identifier names/types and the category that they fell into (e.g., class, function). Then, for

each category, we randomly selected one identifier from each system using a round-robin algorithm

(i.e., we picked a random identifier from system 1, then randomly selected an identifier from system

2, etc. until we hit 267). This ensured that we got either 17 or 18 identifiers from each system

(267/15 = 17.8) per category and mitigates the threat of differing system size.

The dataset is balanced in terms of system (i.e., equal number of observations from each system) and

in terms of code category (i.e., equal number of function names, parameter names, etc). However,

the dataset is not balanced in terms of annotation. As shown in Table 10.1, there are a different

number of observations for each annotation we support in our tag set. We do not balance it

for 3 reasons: 1) the unbalanced nature of the dataset mirrors reality more accurately; some

annotations are much less common than others in English. 2) Balancing it would cause our data
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Table 10.2: Systems used to create training (unbolded) and unseen test (bolded) sets.

Name Size (kloc) Age (years) Language(s)

junit4 30 19 Java

mockito 46 9+ Java

okhttp 54 6 Java

antlr4 92 27 Java/C/C++/C#

openFrameworks 130 14 C/C++

jenkins 156 8 Java

irrlicht 250 13 C/C++

kdevelop 260 19 C/C++

ogre 370 14 C/C++

quantlib 370 19 C/C++

coreNLP 582 6 Java

swift 601 5 C++/C

calligra 660 19 C/C++

gimp 777 23 C/C++

telegram 912 6 Java/C/C++

opencv 1000 19 C/C++

elasticsearch 1300 9 Java

bullet3 1300 10+ C/C++/C#

blender 1600 21 C/C++

grpc 1800 5 C++/C/C#
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to be significantly different from the average distribution of identifier names [177]. 3) Because no

automated tagger is 100% accurate, it would not be possible to automatically balance the dataset.

We did not expand abbreviations. The reason for this is that abbreviation expansion techniques

are not widely available (e.g., cannot be easily integrated into different languages or frameworks,

cannot be readily trained, are not fully or publicly implemented) and still not very accurate [176].

Therefore, a realistic worst-case scenario for developers and researchers is that no abbreviation-

expansion technique is available to use; their part-of-speech taggers must work in this worst-case

scenario. We also tried not to split domain-term abbreviations (e.g., some splitters will make IPV4

into IPV 4; we corrected this back to IPV4). We did this because some taggers may recognize these

domain terms. Furthermore, we are also of the view that these terms should be recognized and

appropriately tagged in their abbreviated (i.e., their most common) form.

Some verb forms are used as either adjectives or verbs. Stanford tagger is the only tagger that

recognizes derivative verb forms such as past-tense or modal. Thus, it is the only one we need to

configure. In prior work [177] that verbs are being used as adjectives or verbs. In short, Stanford’s

accuracy increases when we assume that verb conjugations are adjectives in every context except

function names. For function names, it is better to assume that its verb annotations are verbs.

Thus, our training set reflects this reality.

Finally, when we apply the Stanford tagger to function names, we append the letter I to the

beginning of the name. This is a known technique– the Stanford+I technique, used to help Stanford

tag identifiers that represent actions more accurately. It was used in previous studies applying

part-of-speech tags to method identifier names [86, 106, 177, 180] to increase Stanford’s accuracy

and confirmed to increase Stanford’s accuracy on function names [177].

10.2.2 Unseen Systems Test Set

Our test set is made up of 384 identifiers that break down into 977 words (Table 10.1) grouped

by the same five categories used for the training set. It is constructed from identifiers contained

in 5 systems that were removed from the original dataset [177], as explained at the beginning of

Section 10.2 and shown bolded in Table 10.2. We based the number, 384, on a sample at 95

confidence level and 5 confidence interval. The population from which the sample was derived

is the full set of identifiers across all categories. The size and breakdown of the full population,

2,743,252 identifiers, is found in Table 6.1. Given this sample size, we collected 76 or 77 (384/5 =

76.8) identifiers from each category. These were balanced for category as well as system (i.e., an

equal number of identifiers from each system). Like the training set, we manually annotated these
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Table 10.3: Part-of-speech categories in dataset and supported by ensemble

Abbreviation Expanded Form Examples

N noun Disneyland, shoe, faucet, mother

DT determiner the, this, that, these, those, which

CJ conjunction and, for, nor, but, or, yet, so

P preposition behind, in front of, at, under, above

NPL noun plural Streets, cities, cars, people, lists

NM

noun modifier

(adjectives,

noun-adjuncts)

red, cold, hot, scary, beautiful, small

V verb Run, jump, spin

VM
verb modifier

(adverb)
Very, loudly, seriously, impatiently

PR pronoun she, he, her, him, it,we,they,them

D digit 1, 2, 10, 4.12, 0xAF

PRE preamble Gimp, GLEW, GL, G, p, m, b
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identifiers with part-of-speech tags, with each annotator taking a set to annotate on their own and

cross-validated by swapping sets to confirm (i.e., agree or disagree) that the manual annotation is

correct. The annotators came to a complete agreement on each identifier.

There are multiple versions of this dataset. All of them have the same identifiers, but the annota-

tions change based on which configuration was used to generate the set. The configurations come in

pairs. One pair is normalized or conjugated and the other pair is augmented or plain. Normalized

datasets are those which convert all verb conjugations detected by standford to standard verbs (V

in Table 10.3). Conjugated datasets are the opposite; they used all Stanford’s verb conjugations.

Augmented datasets remove all annotations that have a frequency less than 25 and replaced them

with an OTHER category. We use this to study whether rarely-seen part-of-speech tags have a

negative effect on the overall quality of the tagger. Plain datasets include all annotations shown in

Table 10.3.

10.2.3 5-fold test set

In addition to the unseen test set, we use k-fold cross validation to help us understand the generality

of our ensemble tagging model. Typically, when using k-fold cross validation, prior researchers

choose k as either 5 or 10. In this work, we choose 5 since it is most appropriate considering the

distribution of annotations and the size of our dataset. The 5-fold test set is constructed from the

training set of 1,335 identifiers. Effectively, the training set is split into five smaller sets. 30% of

these is chosen as a testing set and the other 70% are used as training. Then, after training on four

and testing on one, following typical 5-fold cross validation procedure, other sets are chosen as the

test sets and the rest (now including some data that was just used as testing) are used to train.

At each train-test step, we collect metrics about the effectiveness of our model as discussed in the

next subsection.

10.2.4 Measuring Model Quality

We measure the quality of our ensemble using typical metrics for categorization problems. That is,

we use Accuracy, Precision, Recall, and F1 Score. In addition to the metrics above, we also report

balanced accuracy in our 5-fold results, which is similar to accuracy except we calculate the average

proportion of correct predictions for each individual annotation (i.e., N, NM, CJ, etc.) first and

then divide by the number of annotations. Balanced accuracy helps when dealing with unbalanced

datasets by giving more weight to annotations with lower frequency in the dataset.
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Table 10.4: Optimal parameter values for the classification algorithms.

Algorithm Parameter Value

Random Forest

max depth 83

n estimators 250

criterion gini

bootstrap True

Decision Tree
criterion entropy

max depth 9

10.2.5 Choosing and training machine learning approaches

For the evaluation of our ensemble, we chose to use Random Forest and Decision Tree as our pri-

mary machine learning approaches. Initially, we considered Support Vector Classification, Logistic

Regression, K-Nearest Neighbors, and Multinomial Naive Bayes. However, our preliminary analy-

sis shows that Random Forest and Decision Tree outperforms the other classifiers in terms of our

model quality metrics. Hence, we focus on evaluating the quality of our approach to using these

two algorithms. To build our optimized model, we first split the dataset into a training and test

set. The training set contains 70% of the observations, while the remaining 30% of the observations

were part of the test set as validation data. To ensure that we are constructing an optimized model,

we perform a hyperparameter optimization process. The purpose of this process is to evaluate a

series of parameter values associated with the model to determine the set of values that result in

the best performance of the model [87]. Our hyperparameter tuning process involved an exhaustive

grid search [123] and 5-fold cross-validation on the training dataset. Grid search utilizes a brute

force technique to evaluate all combinations of hyperparameters to obtain the best performance.

Provided in Table 10.4, are the optimal hyperparameter values for the classification algorithms in

our study.

10.2.6 Dataset preparation and Features

To prepare the datasets for annotation by the ensemble, we run SWUM [141], POSSE [137], and

Stanford [217] on each identifier to obtain their individual annotations. We provide any information

required by the three taggers above (e.g., SWUM requires function signatures). Since the dataset

is pre-split from prior work [177], we do not have to worry about splitting. In addition, as stated

prior, the correct annotation is already provided. After we have run these three taggers on the
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data, we vectorize the data by splitting all identifiers into their individual words along with the

part-of-speech provided to them by SWUM, POSSE, Stanford, and the human annotators. In

addition, we collect several data characteristics to serve as features to help the ensemble correctly

annotate the data. We explain these characteristics now.

Machine learning algorithms use characteristics of the data they are trained on to learn the nuances

of that data such that they are able to use these characteristics to categorize unseen data. These

characteristics are typically called Features. Our ensemble uses several features to annotate (i.e.,

categorize) identifiers with part of speech tags. The features that we considered for our model

are based on empirical results from a prior study we performed on the grammar patterns latent

in source code identifiers [177]. To summarize, we found that certain annotations are heavily

correlated with 1) words that appear in certain positions. For example, nouns appear at the end

of an identifier, noun-adjuncts appear at the beginning or middle; 2) with the type of an identifier.

For example, verbs are more common in boolean-type identifiers; and 3) certain contexts. For

example, verb phrases are more common in function names. We also noticed that certain taggers are

better at recognizing certain annotations than others. For example, SWUM is great at recognizing

noun-adjuncts, Stanford is great at recognizing conjunctions and prepositions. Therefore, we chose

features that will help our ensemble take advantage of these patterns. Most of these features are also

very easy to obtain using static analysis, making them very accessible in different environments and,

thus, helping guarantee ease of integrating our approach into another applications. The features

that we considered for our model are as follows:

1. Word - The word itself.

2. Data Type - the type (or return type) of an identifier (or function identifier).

3. SWUM annotation - The annotation that the SWUM POS tagger applied to a given word.

4. POSSE annotation - The annotation that the POSSE POS tagger applied to a given word.

5. Stanford annotation - The annotation that the Stanford POS tagger applied to a given

word.

6. Position - The position of a given word within its original identifier. For example, given an

identifier: GetXMLReaderHandler, Get is in position 1, XML is in position 2, Reader is in

position 3 and Handler is in position 4.

7. Identifier size - The length, in words, of the identifier of which the word was originally part.
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8. Normalized position - We normalized the position metric described above such that the

first word in the identifier is in position 1, all middle words are in position 2, and the last

word is in position 3. For example, given an identifier: GetXMLReaderHandler, Get is in

position 1, XML is in position 2, Reader is in position 2 and Handler is in position 3. The

reason for this feature is to mitigate the sometimes-negative effect of very long identifiers.

9. Context - The dataset contains five categories of identifier name: function, parameter, at-

tribute, declaration, and class. We provide the category to which the given identifier belongs

as one of the features to allow the ensemble to learn patterns that are more pervasive for

certain identifier types versus others. For example, function identifiers contain verbs at a

higher rate [137,141,145,177] than other types of identifiers.

We tested all of these features using 5-fold cross validation and the metrics Described in Section

10.2.4. Specifically, we were trying to determine what set of features maximized F1, Accuracy,

and Balanced accuracy. To do this, we used 2 techniques: Drop-column feature importance

and permutation importance. Drop-column feature importance can by calculated by creating

a power set (i.e., all subsets) of the full set of features and then retraining your model with each

subset. In this way, we can consider every possible subset of features for our feature set and

determine which subset gives us the best performance with respect to F1, Accuracy, and Balanced

Accuracy. While performing Drop-column feature importance, we also performed permutation

importance. Permutation importance is done after a model has been fitted. It is defined as the

decrease in a model score (i.e., our metrics) when a single feature’s value is randomly shuffled. In

essence, it measures how our metrics change when a feature is shuffled. Thus, for each subset of

features in our ensemble, we also measure permutation importance.

Since there are a lot of subsets (i.e., power set of our 9 features is 29 = 512), we only present data

about the best feature set: SWUM, POSSE, and Stanford annotations, Normalized position,

and Context. In addition, we present the permutation importances for these features in Tables

10.5 and 10.6. These tables correspond to permutation importances for our best Random-Forest-

based ensemble and our best Decision-Tree-based ensemble. In each table, you can see how each of

the best features influenced F1, Balanced Accuracy, and Accuracy. Since we used 5-fold validation,

there are 5 values in each row followed by an average of those values. A higher number means a

feature is more important. In general, out of our three taggers, SWUM had the highest influence

on F1 and Accuracy, while Stanford had the highest influence on Balanced Accuracy. Of the

non-tagger features (i.e., Normalized Position and Context), Normalized Position had the highest

influence on all three metrics.
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Finally, the features that were removed: Word, data type, position, and identifier size degraded

our model performance. Our prior work [177] gives us some insight as to why this might be.

Starting with position and max position, we found that verb and noun phrases tended to begin

with a particular annotation; a verb or noun modifier respectively. They also ended with a specific

annotation: a Noun (i.e., a head-noun). Between the starting verb/noun modifier and the ending

head-noun are a sequence of Noun Modifiers. Notice that this correlates to a beginning, middle,

end structure where the first word has a specific tag, all the middle words have the same tag,

and the final word has a specific tag. Position and Max position confuse the ensemble because

identifiers have varying lengths. Normalized position categorizes position as beginning, middle,

or end. Thus, it improves the performance of the ensemble whereas position and max position

hurt the performance. Word and data type can help the model recognize certain words and their

correlation to different tags. However, on unseen data this may cause the ensemble to become

confused because it sees words that it has not seen before. Thus, the ensemble will tag common

words more accurately with these features turned on but uncommon/unseen words less accurately.

10.3 Evaluation Setup

The dataset described in Section 10.2 has several configurations that we use during evaluation.

These configurations are as follows:

1. The type of machine learning approach used; either Decision Tree or Random forest. They

have the codes DT and RF respectively.

2. The version of the dataset being used; either the plain dataset or the augmented dataset.

These have the codes P and A respectively.

3. Whether or not the Stanford data within the dataset is using verb conjugations or is normal-

ized. These have the codes C and N respectively.

To determine which configuration you are looking at when reading our results, look at the code

present in each table. For example, if some data in a table has the code RFCP, then it used

random forest with conjugated stanford identifiers and the plain dataset.
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Table 10.5: Decision Tree feature importances for best features

Feature Set F1 Weighted Importances Average

SWUM 0.26 0.26 0.25 0.26 0.26 0.26

POSSE 0.15 0.14 0.15 0.15 0.15 0.15

Stanford 0.23 0.23 0.23 0.23 0.23 0.23

Context 0.02 0.02 0.02 0.02 0.02 0.02

Nomalized Position 0.13 0.13 0.12 0.13 0.13 0.13

Feature Set Balanced Accuracy Importances Average

SWUM 0.29 0.27 0.25 0.28 0.27 0.27

POSSE 0.21 0.21 0.21 0.24 0.21 0.22

Stanford 0.51 0.51 0.49 0.53 0.51 0.51

Context 0.05 0.07 0.05 0.07 0.07 0.06

Nomalized Position 0.10 0.10 0.08 0.10 0.08 0.09

Feature Set Accuracy Importances Average

SWUM 0.26 0.26 0.26 0.26 0.26 0.26

POSSE 0.14 0.13 0.13 0.13 0.13 0.13

Stanford 0.22 0.21 0.20 0.20 0.21 0.21

Context 0.02 0.02 0.02 0.02 0.02 0.02

Nomalized Position 0.13 0.13 0.14 0.13 0.14 0.13
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Table 10.6: Random Forest feature importances for best features

Feature Set F1 Weighted Importances Average

SWUM 0.22 0.22 0.21 0.21 0.22 0.21

POSSE 0.14 0.15 0.15 0.14 0.15 0.14

Stanford 0.21 0.21 0.22 0.21 0.21 0.21

Context 0.03 0.03 0.03 0.03 0.03 0.03

Nomalized Position 0.17 0.16 0.15 0.16 0.15 0.16

Feature Set Balanced Accuracy Importances Average

SWUM 0.22 0.22 0.21 0.26 0.25 0.23

POSSE 0.23 0.23 0.20 0.23 0.21 0.22

Stanford 0.47 0.47 0.50 0.50 0.49 0.48

Context 0.05 0.04 0.07 0.06 0.06 0.06

Nomalized Position 0.15 0.12 0.15 0.19 0.21 0.17

Feature Set Accuracy Importances Average

SWUM 0.23 0.22 0.21 0.22 0.22 0.22

POSSE 0.14 0.13 0.13 0.13 0.13 0.13

Stanford 0.19 0.18 0.19 0.19 0.19 0.19

Context 0.03 0.03 0.03 0.02 0.02 0.03

Nomalized Position 0.16 0.16 0.15 0.16 0.16 0.16

Table 10.7: Five-fold validation results for each machine learning approach and configuration using

the augmented dataset

DTNA Average RFNA Average

Accuracy 0.80 0.84 0.79 0.84 0.82 0.82 0.81 0.83 0.79 0.84 0.84 0.82

Balanced Accuracy 0.54 0.68 0.65 0.66 0.59 0.62 0.57 0.66 0.71 0.65 0.75 0.67

Weighted F1 0.79 0.83 0.79 0.83 0.81 0.81 0.80 0.82 0.79 0.84 0.84 0.82

Weighted Precision 0.80 0.82 0.80 0.83 0.82 0.81 0.81 0.82 0.80 0.84 0.84 0.82

Weighted Recall 0.80 0.84 0.79 0.84 0.82 0.82 0.81 0.83 0.79 0.84 0.84 0.82

DTCA Average RFCA Average

Accuracy 0.82 0.85 0.81 0.84 0.84 0.83 0.84 0.86 0.81 0.85 0.86 0.84

Balanced Accuracy 0.51 0.62 0.55 0.53 0.58 0.56 0.52 0.69 0.62 0.48 0.65 0.59

Weighted F1 0.82 0.84 0.80 0.82 0.82 0.82 0.83 0.86 0.80 0.84 0.86 0.84

Weighted Precision 0.83 0.84 0.81 0.82 0.82 0.82 0.83 0.87 0.80 0.85 0.86 0.84

Weighted Recall 0.82 0.85 0.81 0.84 0.84 0.83 0.84 0.86 0.81 0.85 0.86 0.84
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Table 10.8: Five-fold validation results for each machine learning approach and configuration using

the plain dataset

DTNP Average RFNP Average

Accuracy 0.81 0.81 0.86 0.82 0.82 0.82 0.84 0.82 0.87 0.82 0.85 0.84

Balanced Accuracy 0.54 0.59 0.71 0.75 0.53 0.62 0.61 0.60 0.76 0.74 0.60 0.66

Weighted F1 0.79 0.80 0.86 0.81 0.80 0.81 0.82 0.82 0.87 0.81 0.84 0.83

Weighted Precision 0.80 0.80 0.87 0.82 0.79 0.82 0.82 0.82 0.87 0.81 0.85 0.83

Weighted Recall 0.81 0.81 0.86 0.82 0.82 0.82 0.84 0.82 0.87 0.82 0.85 0.84

DTCP Average RFCP Average

Accuracy 0.85 0.82 0.83 0.84 0.85 0.84 0.86 0.83 0.83 0.85 0.85 0.84

Balanced Accuracy 0.58 0.67 0.73 0.60 0.63 0.64 0.51 0.59 0.54 0.50 0.63 0.55

Weighted F1 0.85 0.82 0.83 0.84 0.84 0.83 0.86 0.82 0.82 0.84 0.84 0.84

Weighted Precision 0.85 0.81 0.83 0.83 0.83 0.83 0.86 0.82 0.82 0.83 0.83 0.83

Weighted Recall 0.85 0.82 0.83 0.84 0.85 0.84 0.86 0.83 0.83 0.85 0.85 0.84

Table 10.9: Per-annotation and Overall Accuracy of Ensemble Tagger on Augmented Dataset
DTNA RFNA DTCA RFCA

Annotation Total Precision Recall F1 Total Precision Recall F1 Total Precision Recall F1 Total Precision Recall F1 Total

N 322 0.87 0.89 0.88 329 0.86 0.89 0.88 331 0.84 0.89 0.87 340 0.87 0.90 0.88 332

NM 415 0.85 0.92 0.89 448 0.85 0.92 0.89 446 0.87 0.91 0.89 435 0.86 0.92 0.89 447

NPL 78 0.90 0.68 0.77 59 0.93 0.67 0.78 56 0.89 0.72 0.79 63 0.96 0.69 0.81 56

OTHER 16 0.69 0.56 0.62 13 0.73 0.69 0.71 15 0.56 0.31 0.40 9 0.50 0.25 0.33 8

P 32 0.70 0.81 0.75 37 0.71 0.84 0.77 38 0.68 0.78 0.72 37 0.72 0.88 0.79 39

PRE 33 0.64 0.21 0.32 11 0.64 0.21 0.32 11 0.78 0.21 0.33 9 0.77 0.30 0.43 13

V 81 0.79 0.78 0.78 80 0.79 0.78 0.78 80 0.79 0.81 0.80 84 0.80 0.81 0.81 82

Accuracy 0.84 0.85 0.84 0.85

Table 10.10: Per-annotation and Overall Accuracy of Ensemble Tagger on Plain Dataset
DTNP RFNP DTCP RFCP

Annotation Total Precision Recall F1 Total Precision Recall F1 Total Precision Recall F1 Total Precision Recall F1 Total

CJ 1 0.50 1.00 0.67 2 1.00 1.00 1.00 1 1.00 1.00 1.00 1 1.00 1.00 1.00 1

D 7 0.88 1.00 0.93 8 0.88 1.00 0.93 8 0.88 1.00 0.93 8 0.88 1.00 0.93 8

DT 5 1.00 0.20 0.33 1 1.00 0.40 0.57 2 1.00 0.60 0.75 3 1.00 0.60 0.75 3

N 322 0.86 0.90 0.88 338 0.87 0.89 0.88 328 0.85 0.90 0.88 340 0.88 0.89 0.89 327

NM 415 0.85 0.93 0.89 452 0.85 0.93 0.89 453 0.88 0.91 0.89 430 0.87 0.92 0.89 438

NPL 78 0.98 0.65 0.78 52 0.93 0.67 0.78 56 0.90 0.72 0.80 62 0.93 0.69 0.79 58

P 32 0.65 0.81 0.72 40 0.72 0.88 0.79 39 0.68 0.84 0.75 40 0.70 0.88 0.78 40

PRE 33 0.70 0.21 0.33 10 0.64 0.21 0.32 11 0.78 0.21 0.33 9 0.77 0.30 0.43 13

V 81 0.85 0.77 0.81 73 0.81 0.77 0.78 77 0.80 0.81 0.81 82 0.79 0.83 0.81 85

VM 3 0.00 0.00 0.00 1 0.50 0.33 0.40 2 0.50 0.33 0.40 2 0.50 0.67 0.57 4

Accuracy 0.85 0.85 0.85 0.86
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Table 10.11: Per-annotation and Overall Accuracy of the Independent Taggers on Plain Dataset -

N/A = annotation not supported by tagger
SWUM POSSE Stanford

Annotation Total Precision Recall F1 Total Precision Recall F1 Total Precision Recall F1 Total

CJ 1 N/A N/A N/A N/A N/A N/A N/A N/A 1.00 1.00 1.00 1

D 7 0.33 0.14 0.20 3 N/A N/A N/A N/A 0.78 1.00 0.88 9

DT 5 0.50 0.60 0.55 6 N/A N/A N/A N/A 1.00 0.40 0.57 2

N 322 0.74 0.89 0.81 384 0.42 0.90 0.57 692 0.47 0.93 0.62 647

NM 415 0.78 0.94 0.85 500 0.82 0.21 0.33 106 0.83 0.09 0.17 47

NPL 78 N/A N/A N/A N/A N/A N/A N/A N/A 0.86 0.73 0.79 66

P 32 0.88 0.44 0.58 16 0.61 0.63 0.62 33 0.58 0.91 0.71 50

PRE 33 0.50 0.03 0.06 2 N/A N/A N/A N/A N/A N/A N/A N/A

V 81 0.89 0.72 0.79 65 0.77 0.75 0.76 79 0.51 0.90 0.65 44

VM 3 N/A N/A N/A N/A N/A N/A N/A N/A 0.30 1.00 0.46 10

Accuracy 0.77 0.47 0.52

Table 10.12: Accuracy of independent taggers and best two ensemble taggers in different contexts

at the word-level

Total DTCP RFCP SWUM POSSE Stanford

Attribute 194 0.82 0.83 0.72 0.42 0.45

Class 200 0.87 0.89 0.84 0.43 0.40

Declaration 184 0.83 0.84 0.79 0.48 0.45

Function 231 0.85 0.85 0.74 0.55 0.75

Parameter 168 0.90 0.89 0.77 0.45 0.53

Overall 977 0.86 0.86 0.77 0.47 0.52

Table 10.13: Average Accuracy at the identifier-level

Category Total DTNA RFNA DTCA RFCA DTNP RFNP DTCP RFCP

Attribute 76 0.70 0.70 0.72 0.72 0.68 0.70 0.72 0.72

Class 77 0.78 0.78 0.77 0.82 0.77 0.78 0.77 0.82

Declaration 77 0.66 0.71 0.66 0.73 0.74 0.71 0.69 0.71

Function 77 0.62 0.62 0.68 0.65 0.64 0.64 0.71 0.69

Parameter 77 0.79 0.79 0.78 0.79 0.81 0.81 0.81 0.79

Overall 384 0.71 0.72 0.72 0.74 0.73 0.73 0.74 0.75
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Table 10.14: Average accuracy at the identifier-level for state-of-the-art POS taggers

Category Total SWUM POSSE Stanford

Attribute 76 0.54 0.17 0.17

Class 77 0.61 0.13 0.19

Declaration 77 0.65 0.27 0.22

Function 77 0.48 0.30 0.29

Parameter 77 0.61 0.14 0.32

Overall 384 0.58 0.20 0.24

10.4 Experimental Results

10.4.1 RQ1: How accurate is the ensemble part-of-speech tagger at the individual

word level and how does this compare to the independent taggers?

We evaluate accuracy in two ways. The first way is by running 5-fold cross validation using the

manually-curated set of 1,335 identifiers. The second way is by running our model on an unseen test

set of 384 identifiers. We will split our discussion of RQ1 results into these individual evaluations.

5-fold test results

The results from this evaluation are found in Table 10.7 and Table 10.8. These tables give the 5-fold

results for five different metrics: accuracy, balanced accuracy, weighted f1, weighted precision, and

weighted recall. We ran this 5-fold evaluation on 8 different configurations of our ensemble tagger.

Overall, our results indicate that Random Forest gives the best results regardless of configuration;

achieving the highest average in all five metrics used to gauge the quality of our ensemble when

compared to decision tree. There is one exception, which is DTCP vs RFCP in Table 10.8. DTCP

achieves the same averages compared with RFCP except with respect to balanced accuracy and

weighted f1, where DTCP has better balanced accuracy and RFCP has a better weighted f1. If we

look across both tables, then the best configurations that maximize all quality metrics are: DTCP,

RFCP, RFNP, and RFCA. Out of those configurations, we would advise that the best configuration

is DTCP or RFCP. The reason for this is that these configurations 1) are the most accurate on

average; 2) use Stanford’s conjugations instead of normalizing them away, meaning that they require

less dataset preparation; and 3) they use the plain dataset, meaning that they are operating on
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the full tagset instead of grouping low-frequency annotations together under the OTHER category.

This allows them to provide these annotations when they are used to tag identifiers.

Unseen test set results

The results from this evaluation are found in Table 10.9 and Table 10.10. Each table shows the

precision, recall, f1, and accuracy of each ensemble configuration on each individual annotation

supported by the ensemble. Table 10.9 has fewer annotations since less-frequent annotations are

grouped under the OTHER category. Whereas Table 10.10 contains all annotations supported in

our tagset even if they were very infrequent in the dataset. In addition, these tables show the

overall accuracy for each ensemble tagger configuration on the unseen test set. This accuracy is

obtained by measuring how many words the ensemble tagger annotated correctly when compared

to the manual annotations. One thing to note about these results is that the total column on the

leftmost side of each table is the total of each annotations in the manually-annotated (i.e., gold)

set. Therefore, each configuration would have a different distribution since they each incorrectly

annotated some words.

The overall results agree with our 5-fold results. That is, the best taggers tend to be random forest

based ensembles. Again, with the exception of DTCP, which is competitive with the other random

forest ensembles. RFCP does marginally better than DTCP on the unseen test set, achieving an

accuracy of .86 versus DTCP’s .85. In addition, since they are trained on the plain dataset, they

could be used to annotate tags that are less frequent in production code: DT, CJ, VM, and D;

each of which were grouped into the OTHER category in the dataset that RFCA was trained on.

It is also notable that the most accurate ensemble configurations were trained on the plain dataset,

indicating that the greater tag granularity helped improve the ensemble’s output. We come to the

same conclusion in this analysis as we did in the 5-fold analysis; DTCP and RFCP are the best

ensemble for all of the same advantages explained above alongside retaining the best average values

on our metrics. However, RFCP is marginally the better of the two based on our results. One of

the primary reasons we still include DTCP as a competitive alternative to RFCP is that DTCP is

faster and would scale better for large datasets.

Comparison with independent taggers

Table 10.11 shows the accuracy of the independent taggers at the word-level. Comparing the data

in this table to Table 10.10, both DTCP and RFCP outperform or match the other taggers in every

individual category. In addition, from Table 10.12, we see that DTCP and RFCP maintain their
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performance advantage at the context level as well.

Discussion of Feature Importance

In prior work [177], we noticed that the individual taggers had strengths and weaknesses that

complemented one another. Specifically, Stanford was able to annotate Conjunctions, Digits, De-

terminers, Noun Plurals, Prepositions, and Verb Modifiers with high accuracy. Meanwhile, SWUM

and POSSE tended to outperform Stanford in annotating Noun Modifiers and Verbs. Thus, Stan-

ford’s higher balanced accuracy makes perfect sense; it is very complementary to SWUM and

POSSE. In addition, we also noticed that word position is important to annotating certain tags,

such as Noun Modifiers. This is because, in a noun phrase, the leftmost words tend to be Noun

Modifiers while the right-most word is a Noun (i.e., specifically, a head-noun). Another example is

that Verbs tend to be in the first position in a function name.

Providing the normalized position helps the ensemble learn these patterns. Normalized position

tends to be more effective at this than plain position because normalized position identifies the

beginning, middle, and end of an identifier specifically. In contrast, raw position confuses the

ensemble since identifiers can be of varying length, making it difficult to identify where the middle

and end of an identifier are. Context is, surprisingly, not as important as normalized position.

However, it is still part of the best feature set, meaning that it performs better than the subset

of features that excludes context but includes normalized position. Thus, knowing whether an

identifier is a function name, parameter, etc is still important for annotating with part-of-speech

using our approach.

In summary, we have used two different approaches to evaluate our ensemble tagger. In addi-

tion, each of these approaches evaluated the ensemble using a set of unseen data to ensure that

the ensemble is as general as possible; that the results from its evaluation will translate well to

other unseen situations. Based on our data, DTCP and RFCP are equivalent in terms of average

performance and have some minor differences between them when we look at which annotations

they are most effective on. There is one advantage that DTCP has over RFCP that may be worth

mentioning: it is faster. Since decision trees tend to be simpler models than random forests, DTCP

generally annotates more rapidly than RFCP.
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10.4.2 RQ2: How accurate is the ensemble part-of-speech tagger at the identifier

level and how does this compare to the independent taggers?

In RQ1, we explore the accuracy of our ensemble tagger at the level of individual words. That is,

we want to know how many words it correctly annotates in our dataset. However, the number of

correctly annotated words does not give us the full picture. Since most identifiers in the code are

made up of multiple words, it is also important to understand how accurate our ensemble tagger

is on full identifiers. For this reason, we took the unseen test set and analyzed how effective our

ensemble was on full identifier names.

The results of this analysis are given in Table 10.13 and Table 10.14. Table 10.13 shows the

accuracy of our individual ensemble configurations, broken down by the five categories we used in

our training set: attribute, class, declaration, function, and parameter. In addition, it shows the

total number of each type of identifier in the dataset. Table 10.14 shows the individual accuracy

of the three state-of-the-art part-of-speech taggers used to construct our ensemble. The numbers

here are lower than in the prior tables from RQ1 because we are measuring full identifier names; if

even a single word in the identifier name is mis-annotated, then we consider it incorrect.

Our results show that the overall accuracy of our ensemble on full identifier names is unsurprisingly

lower than on individual words; about 11-13% lower in general. However, the ensemble still performs

better than its closest competition according to both prior work [177] and our own analysis shown

in Table 10.14, where we show the accuracy of individual part-of-speech taggers on the same

unseen test set on which we ran our ensemble. Comparing the performance of the ensemble and

the individual part-of-speech taggers, we can see that the best configuration of our ensemble (i.e.,

RFCP) outperforms the best tagger, SWUM, by around +17% on average while it outperforms

POSSE and Stanford by 55% and 51% respectively.

In summary, these results are promising, but not surprising. Our ensemble is trained using the

output of these approaches, so we would expect that it is able to learn their mistakes and produce

output at a higher accuracy than its constituent taggers. We have shown that we can use an

ensemble approach to improve upon part-of-speech tagging approaches on source code identifiers

at both the individual word level and the full identifier level.
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Table 10.15: Top 5 most frequently mis-annotated grammar patterns for each ensemble configura-

tion
DTCA DTCP

Grammar Pattern # Incorrect Actual Proportion Grammar Pattern # Incorrect Actual Proportion

NM NM NM NM N 6 8 0.75 NM NM NM NM N 6 8 0.75

NM NM NM N 24 38 0.63 NM NM NM N 25 38 0.66

PRE N 5 9 0.56 PRE N 5 9 0.56

V NM NM N 9 22 0.41 V NM NM N 9 22 0.41

V NM NPL 4 12 0.33 NM 2 6 0.33

RFCA RFCP

Grammar Pattern # Incorrect Actual Proportion Grammar Pattern # Incorrect Actual Proportion

PRE N 6 9 0.67 PRE N 6 9 0.67

NM NM NM NM N 5 8 0.63 NM NM NM N 21 38 0.55

NM NM NM N 20 38 0.53 NM NM NM NM N 4 8 0.50

NM NM NM NPL 2 4 0.50 V NM NM N 9 22 0.41

V NM NM N 9 22 0.41 PRE NM N 4 12 0.33

DTNA DTNP

Grammar Pattern # Incorrect Actual Proportion Grammar Pattern # Incorrect Actual Proportion

NM NM NM NM N 7 8 0.88 NM NM NM NM N 7 8 0.88

NM NM NM N 29 38 0.76 NM NM NM N 31 38 0.82

PRE N 6 9 0.67 PRE N 5 9 0.56

V NM NM N 10 22 0.45 V NM NM N 9 22 0.41

PRE NM N 4 12 0.33 V N P N 2 5 0.40

RFNA RFNP

Grammar Pattern # Incorrect Actual Proportion Grammar Pattern # Incorrect Actual Proportion

NM NM NM NM N 6 8 0.75 NM NM NM NM N 7 8 0.88

NM NM NM N 28 38 0.74 NM NM NM N 29 38 0.76

PRE N 6 9 0.67 PRE N 6 9 0.67

V NM NM N 9 22 0.41 V NM NM N 9 22 0.41

PRE NM N 4 12 0.33 PRE NM N 4 12 0.33
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10.4.3 RQ3: What are the most frequently mis-used part-of-speech tags and grammar

patterns?

We have shown the effectiveness of the ensemble tagger at the level of both individual words and

full identifier names. In this research question, we are interested in understanding the weaknesses

of our ensemble; where can it be improved in future work and what types of identifiers is it more

likely to get wrong? To answer this question, we calculated the patterns that were most frequently

mis-annotated by our ensemble along with the frequency of these patterns in our data. We then

divided the number of mis-annotations by the pattern frequency to get the proportion and sorted

from largest to smallest. Table 10.15 shows the top five mis-annotated grammar patterns per

ensemble configuration along with the frequency and proportion information discussed above.

The data in this table shows some consistently mis-annotated patterns. In particular, NM NM NM+

N, PRE NM* N, and V NM NM N are all in the top 5 for each ensemble configuration. Where ’+’

means ”one or more” of the annotation to its left and ’*’ means ”zero or more” of the annotation

to its left. A high frequency of mis-annotating PRE NM* N is unsurprising due to the fact that

most ensemble configurations had trouble with annotating PRE; the best ensemble configuration

achieving only .043 F1. Note that this low F1 score means that it both mis-annotates some NM+

N patterns by annotating PRE where it should have annotated NM as well as mis-annotating PRE

NM+ N patterns as NM+ N; not recognizing the first word as a PRE and instead annotating NM.

This fact helps explain one of the other patterns it frequently mis-annotates– the elongated noun-

phrase patterns (NM NM NM+ N ), since it is typically mis-annotating the leftmost NM as PRE.

The other pattern it gets wrong frequently is the elongated verb phrase pattern. The ensemble

seems to get shorter verb phrase patterns correct but the longer they become the harder it becomes

for the ensemble to annotate them. One reason for this is likely the lack of verb phrases that are

greater than four and five words in the training set. This may also have something to do with the

fact that we use normalized position as one of our features, as discussed in Section10.2.6. This

feature normalizes the length of an identifier by considering words to one be in one of three places:

the beginning, the middle, or the end. This helps recognize the fact that the first and last words

in an identifier are more likely to be a specific annotation (e.g., the last noun in an identifier is

usually a head-noun, whereas middle-nouns are typically noun-adjuncts).

We manually looked at examples of each of these commonly mis-annotated patterns to understand

the characteristics of these types of identifiers that the ensemble finds confusing. To make this

analysis simpler, we will focus on the best ensemble configurations: DTCP and RFCP. Our manual

analysis of the data shows that the most confusing factor in most of these patterns for both RFCP
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and DTCP is PRE. That is, when these are mis-annotated, it is because the correct annotation

contains a preamble. For example, eglewAndroidFrameBufferTarget and mRemoveUserDataRe-

sponseArgs both have a grammar pattern that begins with a Preamble but they are mis-annotated

as NM NM NM NM+ N. The one exception is the V NM NM N pattern, which tended to be mis-

annotated because the correct pattern does not follow a standard verb-phrase pattern. These are

function names like clampFixMaxcolor (fix is an abbreviation for fixpoint) and ActionViewShow-

MasterPages, which have non-standard function naming structure; V N NM N and NM N V NM

NPL respectively. This does follow results from prior work [177], as we found that functions have

the largest number of unique grammar patterns; many function names may follow a non-standard

format, and the further they are from a standard verb phrase, the more difficult it may be for our

tagger to annotate it correctly. If the reader is interested in common mis-annotations made by

POS taggers, please refer to prior work for more information on the types of mistakes they make

frequently [177].

Discussion of Feature Importance

The results to this RQ show us that more context, in the form of features, is likely required to

increase the accuracy of the ensemble. Specifically, context that can 1) help identify Preambles, such

as word frequency or system naming conventions. And 2) identify stereotype-like [127] information

that could tell the ensemble when it might see a function name that does not follow verb phrase

patterns. Of course, other types of context may also be helpful, but these are two types of context

that, based on our observations, would highly-likely increase the accuracy of our ensemble.

In summary, our ensemble has more trouble with longer identifier names; particularly longer verb-

phrase identifiers in general and longer noun-phrase identifiers which contain a preamble. We found

that the mis-annotated verb phrase identifiers are typically function names that do not follow a

standard verb-phrase structure, while the mis-annotated noun phrases tended to be elongated and

contain a preamble. By far, the most confounding factor for our ensemble is when an identifier

contains a preamble. Improved Preamble detection is possible, and we plan to address it in the near

future, but it requires an analysis of the system-to-be annotated before commencing annotations.
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Chapter 11

IDE Identifier Name Appraisal and Recommendation

Plugin

11.1 Overview

The findings from my empirical studies show patterns in how developers craft identifier names and

what they consider a strong or high-quality name. As my studies show, automatically determining

the meaning of terms (or words) in an identifier is challenging. However, the grammar pattern

of the name provides a more feasible mechanism to analyze the quality of the name. To this

extent, I worked with my advisor in sponsoring and leading a team of undergraduate software

engineering students1 in implementing an IntelliJ IDEA plugin that incorporates heuristics to

provide developers with real-time appraisals and recommendations. The plugin utilizes my custom

part-of-speech tagger to determine the grammar pattern of the selected identifier and then based

on heuristics. These heuristics include valid grammar patterns and the identifier’s relationship to

the surrounding code (e.g., data type) to determine if the developer needs to alter the name of

the identifier. If the name is of poor quality, the tool recommends an alternate grammar pattern,

including highlighting terms in the name that should be removed. The plugin also explains the

proposed recommendation.

Figure 11.1 shows a screenshot of the plugin in use. If an identifier’s name violates a naming rule,

the plugin underlines the name using a green squiggly line.Additionally, on clicking/selecting the

name, the UI of the plugin updates to show the current grammar pattern of the name and the

recommended grammar pattern, if any. Terms in the name that should be removed appear in red

font, while part-of-speech tags that should be added to the name appear in green font. Furthermore,

1https://lll.maxkipust.com/
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the plugin also provides an example and an explanation for the proposed recommendation. Finally,

from Figure 11.2, it can be seen that the plugin also provides developers with a summary of all

naming violations in the source file.

11.1.1 Technical Design

Figure 11.3 provides a high-level view of the architecture of the name appraisal and recommendation

plugin. The plugin comprises of four main parts– (1) Grammar Pattern Appraisal, (2) Grammar

Pattern Recommendation, (3) Examples & Explanations, and (4) Identifier Exclusion. The plugin

utilizes the ensemble tagger to generate the part-of-speech tags for each term in the identifier’s

name. The ensemble tagger is made available as a python-based web service. Furthermore, to

promote portability, the web service and ensemble tagger are contained within a Docker container.

11.1.2 Grammar Patterns & Rules

Findings from my empirical studies have shown the existence of a set of common grammar patterns

that developers utilize when crafting an identifier’s name. Furthermore, these patterns are also

associated with specific types of identifiers and contexts. These heuristics are incorporated into the

plugin to perform appraisals and recommendations on an identifier’s name structure. Table 11.1

discusses common identifier naming patterns and their meaning.

11.2 Plugin Evaluation

To understand the effectiveness and usability of the tool in a real-world setting, I conducted a

user study with undergraduate and graduate students. The participants were Golisano College of

Computing and Information Sciences students at Rochester Institute of Technology. In total, I

recruited 20 participants. I divided the participants into two groups of equal size– Group A and

Group B. Participants in each group were given the same Java code snippets, which they had to

review in IntelliJ IDEA and make necessary corrections to the identifier names. Participants in

Group A had access to the plugin, while participants in Group B (our control group) did not have

access to the plugin. Participants in both groups had to complete a pre- and post-questionnaire

(the templates are attached in Appendix B).

11.2.1 Methodology

The workflow of the activity consisted of four main parts:
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Figure 11.1: The user interface of the IDE name appraisal and recommendation plugin.
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Summary of All Naming Problems 

Figure 11.2: Summary of all naming problems in the currently open file.
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Figure 11.3: High-Level architectural view of the IDE name appraisal and recommendation plugin.
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Table 11.1: Common grammar patterns utilized in structuring identifier names.
Grammar Pattern Sequences Definition

NM* N

Noun Phrase: Zero or more noun-modifiers appear to the left of a head-noun.

Noun-modifiers that appear before the head-noun act as a way to specialize our

understanding of the head-noun by taking the general concept the head-noun represents

and reducing it to a more concise, specific concept. For example, in the identifier

’issueDescription’ the head-noun is ’Description’, which is the general concept. The

noun-adjunct, ’issue’, specializes our understanding of the ’Description’ by specifying

what kind of ’Description’ we are talking about.

It is good practice to be careful in the choice, and number, of noun-modifiers to use

before the head-noun. A good identifier will include only enough noun-modifiers to

concisely define the concept represented by the head-noun.

This is the most common naming pattern for identifiers that are not function names.

NM* NPL

Plural Noun Phrase: This is identical to Noun Phrase (NM* N), except the head-noun

is plural. The plural is often purposeful in that the head-noun’s plurality expresses the

multiplicity of the data. That is, these identifiers (when they are not function names) are

more likely to have a collection data type.

Some naming conventions (e.g., the Java naming standard) generally consider it good

practice to match the plurality of the identifier with whether its type represents a

singular or collection object.

Identifiers that follow this pattern are usually not function names.

V NM* (N—NPL)

Verb Phrase: The addition of a verb to a noun phrase creates a verb phrase. The verb

in a verb phrase is an action being applied to (or with) the concept embodied by the noun

phrase that follows. In some cases, instead of being an action, the verb is an existential

quantifier. In this case, the identifier’s data type is probably (interpretable as) Boolean.

These are typically either function identifiers or identifiers with a boolean type.

NM* N P NM* (N—NPL)

Prepositional Phrase With Leading Noun Phrase: Sometimes a noun phrase is

explicitly present on both the left and right of the preposition. When the left-hand-side

noun-phrase is specified, there is an explicit relationship between the left- and right-hand

side noun-phrases. This relationship is expressed through the preposition. The

preposition helps us understand how the entity (or entities) represented by both

noun-phrases are related in terms of order, space, time (e.g.,

generated token on creation), ownership (e.g., scroll id for node), causality, or

representation (e.g., url from json, query timeout in milliseconds).

This pattern is used in many types of identifiers whether they are function names or

otherwise.

V P NM* (N—NPL)

Prepositional Phrase With A Leading Verb: Same as prepositional phrase pattern

but the leading verb, or verb phrase, is specified this time. As before, the preposition

helps us understand how the entity (or entities) represented by the verb- and

noun-phrases are related in terms of order, space, time, ownership, causality (e.g.,

destroy with parent), or representation (e.g., save as quadratic png, tessellate to mesh,

convert to php namespace).

The usage of this pattern is similar to when the verb is implicit. There may still be an

implicit noun phrase to the right of the verb and to the left of the preposition.

This pattern is used in many types of identifiers whether they are function names or

otherwise.

V* DT NM* (N—NPL)

Noun Phrase With A Leading Determiner: The addition of a determiner tells us

how much of the population, which is specified by the noun-phrase, is represented, or

acted on, by the identifier.

Typically, the determiner will tell us that we are interested in ALL, ANY, ONE, A, THE,

SEVERAL, etc., of the population of objects specified by the noun phrase. If there is a

leading verb, the verb specifies an action to take on the population or it represents

existential quantification (e.g., matchesAnyParentCategories).

This pattern is used in many types of identifiers whether they are function names or

otherwise.

V+

Verb Sequence: One or more verbs with no noun phrase. Because these are missing a

noun phrase to act upon (in contrast to the Verb Phrase pattern above), a larger

population of these are likely generic functions like Sort (though more data/research is

needed), which can act upon many different types of data and have different behaviors

depending on the data being acted upon.

The noun phrase that this action (i.e., the verb) is applied to is implicit. That is, it is

not present in the identifier name. Instead, the noun phrase is implied by the program

context (e.g., it is represented by a this-pointer) or it is present in the function

parameters. In some cases, these are boolean-type variables that may be missing an

existential quantifier (e.g., add ’is’ before ’parsing’ to make it explicit).

These are typically function names or identifiers with a boolean type.
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1. Each participant was given a 5-minute explanation about part-of-speech tags.

2. The participant had to complete a pre-questionnaire.

3. The participant then conducted the identifier naming evaluation activity using IntelliJ IDEA.

4. Finally, the participant completed a post-questionnaire. While completing the post-questionnaire,

the participant could refer to the code snippets but could not make any changes to them.

Details of each stage are described below.

Pre-Questionnaire.

This questionnaire captured the skill and experience level of the participant. Group A participants

were also asked about the usefulness of a real-time grammar pattern-based naming suggestion tool.

Identifier Name Evaluation Activity.

In this activity, the participants utilized IntelliJ IDEA to comprehend two working programs.

As part of the activity, the participants updated the identifier names in instances where they

felt the name did not reflect its intended behavior. One program contained methods for string

manipulation, while the other program was a simple object-oriented program. In both instances,

there exist identifiers with poor or low-quality names. The participants were permitted to run the

code if it helped them better understand the program’s functionality. However, the participants

were not allowed to ask the investigator to explain the workings of the programs.

Post-Questionnaire.

This questionnaire solicited feedback regarding the naming activity. Both groups were asked ques-

tions about certain identifier names in the code and general questions about the importance of

part-of-speech tags. Additionally, Group A participants were asked about the usefulness and effec-

tiveness of the plugin as well as areas for improvement.
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Figure 11.4: Boxplot showing the programming experience of participants that utilized the IDE

plugin.
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Figure 11.5: Boxplot showing the programming experience of participants that did not utilize the

IDE plugin.
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Table 11.2: Participant’s hands-on familiarity with IntelliJ IDEA

IntelliJ IDEA Hands-on Familiarity

Extremely Very Moderately Slightly Not at all

Plugin Participants

1 3 4 1 1

Non-Plugin Participants

0 3 6 1 0

11.2.2 Results

Skill and Experience

Figure 11.4 and 11.5 show a boxplot distribution of the programming experience of participants

that did and did not utilize the IDE plugin, respectively. On average, participants in Group A

had 7.2 years of general programming experience and 3.9 years of Java programming experience.

Participants in Group B had an average of 5.6 and 3.5 years of general and Java programming

experience, respectively. Regarding familiarity with IntelliJ IDEA, as shown in Table 11.2, most

participants in both groups rated their familiarity from very to moderately.

Quantitative Feedback

In the post-questionnaire, the participants were asked general questions about crafting identifier

names. The majority of participants in both groups seriously consider the part-of-speech tags

when crafting identifier names. To be more precise, the priority ranges from medium to high

priority, as shown in Table 11.3. Looking at the responses provided, it is clear that the participants

consider part-of-speech tags an essential part in comprehension activities as it helps in convening

the meaning of the identifier. Specifically, approximately 80% of the participants rated their priority

on part-of-speech tags as either High Priority or Essential.

In addition to the general questions, Group A participants were asked questions specific to the

plugin. From Table 11.4, 80% of the participants rated the convenience of having a grammar

pattern recommendation tool as either Convenient or Very Convenient. Furthermore, as shown in

Table 11.5,70% of the Group A participants rated their ability to interpret the recommendations

as either Easy or Very Easy. Finally, an overwhelming majority (i.e.,90%) of the plugin users rated

the accuracy of the plugin’s recommendations as either Satisfied or Very Satisfied (refer to Table
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Table 11.3: Priority a participant places on part-of-speech tags when crafting an intensifier’s name.

Priority on part-of-speech tags of a name

Not a priority Low priority Medium priority High priority Essential

Plugin Participants

0 1 3 5 1

Non-Plugin Participants

0 0 0 6 4

Table 11.4: Participants who utilized the plugin rate the convenience of a real-time grammar

pattern-based name suggestion tool before and after the naming activity.

Convenience of a real-time grammar pattern-based name suggestion tool

Very convenient Convenient Neutral Inconvenient Very inconvenient

Before Naming Activity

2 6 2 0 0

After Naming Activity

1 7 2 0 0

11.6).

Qualitative Feedback

In addition to capturing Likert-based quantitative data, the post-questionnaire also captured qual-

itative feedback from the participants. A thematic analysis was performed on the user feedback,

which was then grouped into one of three categories – (1) Positive Feedback, (2) Negative Feedback,

and (3) Enhancements.

Positive Feedback: While the participants found that the recommendations were satisfactory,

they also felt that the tool would be beneficial for novice developers to ensure adherence to consis-

Table 11.5: The rating a participant provides on the ease of interpreting the recommendations

proposed by the plugin.

Ease of interpreting the recommendations proposed by the plugin

Very difficult Difficult Neutral Easy Very easy

0 2 1 6 1
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Table 11.6: The satisfaction the participant places on the accuracy of the plugin’s recommendations.

Satisfaction with the accuracy of the recommendations

Very dissatisfied Dissatisfied Unsure Satisfied Very satisfied

0 0 1 7 2

tency in identifier names. Furthermore, the participants also feel that the plugin forces the user to

think about the quality of the identifier’s name, and the examples and explanations help understand

the problems with names.

Negative Feedback: As this plugin is still in the prototype stage, some participants encountered

noticeable performance issues with the IDE behaving sluggishly and hanging at times. As the

plugin’s purpose is to appraise and recommend grammar patterns, the developer would require an

understanding of part-of-speech tags. However, this is not always the case and requires additional

effort for developers to learn or ramp-up on part-of-speech concepts. Finally, not all grammar

pattern recommendations were accurate.

Enhancements: While the participants appreciated the examples and explanations provided by

the plugin, most of the participants suggested that the plugin should provide more examples to

help understand the naming problem. Participants also suggested that the UI include definitions

of part-of-speech tags as not everyone is familiar with the concepts. Lastly, the participants also

requested improvements to the UI to make it easier to navigate to identifiers in the code.
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Discussion

Through multiple studies, I have constructed a novel approach to assist developers with real-time

identifier name appraisal and recommendation. Through empirical studies, I have accumulated and

analyzed data on how developers craft and evolve the name of an identifier. Using the findings

from these studies, I have constructed tools that can be utilized by the developer and research

communities to aid in the research and maintenance of identifier names. In this section, I summarize

the research I have conducted for my dissertation, the contributions these studies make to the field,

and how they help answer my proposed research questions.

12.1 Overall Findings

12.1.1 Identifier Name Evolution

Rename Prevalence

A prelude to studying identifier names is first to understand the extent to which developers per-

form rename operations on identifiers (i.e., rename refactorings). To this end, I have analyzed

an extensive set of open-source Java systems. These systems include Android applications and

well-engineered non-mobile systems.

Key Findings: My studies confirm prior work showing that rename refactorings are highly preva-

lent in mobile applications [184, 195] and traditional systems [91, 191, 192]; with developers fre-

quently applying renames to attributes. These findings show that the simple task of performing a

rename is also one of the most frequent areas of rework faced by developers– in most cases, rename

refactorings contribute to over 40% of the refactorings applied by developers.

168
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Contribution: Renaming is the most common refactoring operation applied by developers and

available in IDEs, and yet there is very little support to help developers use high-quality wording

and identifier structure. These studies, and others, function as motivation for my work; they show

the ubiquity of renaming operations. My publicly available datasets contain refactoring operations

applied to hundreds of Android apps and well-engineered traditional Java systems.

Semantic Evolution

Once I determined that renames are indeed prevalent in source code, I examined the semantic change

a name undergoes during a rename [190,191,192]. Studying the semantics of a name is essential as

it shows how the name changes and thereby assists me in understanding mechanisms/factors I need

to consider when evaluating term replacements or suggesting term replacements for an identifier

name. In these studies, I examine each rename refactoring and categorize them into the different

types prescribed by rename-specific taxonomy. The taxonomy includes three high-level categories:

rename form, semantic change, and grammar change.

Key Findings: In two of my studies [191, 192], I show that developers frequently narrow the

meaning of identifier names when renaming. I also show that most of the renames are simple (i.e.,

only a single term changes in the rename operation). In these two studies, I looked at identifiers

irrespective if they were production code or part of the test suite. However, in a study focussing on

methods of test cases [190], I observed that developers prefer to perform a change in the meaning

of the identifier’s name. I also encounter challenges utilizing standard natural language processing

techniques to analyze terms in an identifier’s name. These challenges include the presence of domain

terms, misspellings, and preambles, among others.

Contribution: In addition to multiple datasets containing the semantic analysis of a large volume

of identifier names, my findings act as the first step toward better supporting tools for identifier

name appraisal and evolution.

Contextualizing Renames

To understand the decision-making process behind applying a rename, I contextualized the semantic

change made to an identifier’s name using the semantic meaning of an identifier’s name, commit log

data, co-occurring refactorings, and the associated data type [185,191,192]. I used the commit log

to understand why a rename was applied, while co-occurring refactorings and data type changes

helped me understand how well-defined code changes affect name evolution.



CHAPTER 12. DISCUSSION 170

Key Findings: Developers generally narrow the name of the identifier in conjunction with a

change in data type. Furthermore, when a data type is modified such that it becomes a collection,

there is a change in plurality for its corresponding identifier name. Furthermore, in most scenar-

ios, renaming of an element does not generally seem to be influenced by, nor does itself influence

another type of refactoring on the same element. However, for the subset of refactorings, a rename

occurs in the commit directly following a Move Attribute. In my studies, I also highlighted chal-

lenges encountered analyzing commit logs to derive the motivations behind rename operations. For

instance, while the commit message does indicate a modification occurred to the source code, the

message does not indicate the rationale for the change. Additionally, the application of standard

topic modeling techniques to commit logs does not yield adequate topics.

Contribution: These studies identify how the context surrounding a rename affect the rename

itself. In particular, this work shows that data type changes influence the plurality of identifier

names, that renames typically specialize in the meaning of an identifier instead of generalizing or

removing meaning, and that renames are more highly likely to follow certain types of refactorings

versus others.

Identifier Grammar Patterns

In studies on grammar patterns, I investigated the part-of-speech tags in identifier names for test

[190] and production files [177]. These studies involved the manual annotation of part-of-speech

tags in identifier names. The study of test suites involved looking at how the grammar patterns

of test methods evolve (i.e., comparing the part-of-speech tags before and after the rename). I

also compared the detected grammar patterns, in test suites, against other known patterns and

production patterns. The study also looked at the frequent terms that are replaced in a rename.

Key Findings: There is a difference in structure between test and production method names.

Further, test method name refactorings tend to change the meaning of terms in the name. I

also identified additional grammar patterns developers utilize to craft test method names and

relationships between specific part-of-speech tags and source code statements. This work also

identified common words and phrases which are synonymous in test method renames.

Contribution: Two datasets are made publicly available. The first is a gold set of 1,335 manually-

annotated (and validated) grammar patterns for five identifier categories: class, function, declaration-

statement, parameter, and attribute names. The second dataset is a manual annotation of part-

of-speech tags for 615 test method names. It augments our understanding of common and diverse

grammar patterns found in identifier names. My work leverages these patterns to improve part-
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of-speech tagging and assist in renaming by, in part, recognizing when names deviate from these

patterns.

12.1.2 Tool Development

Rename Semantics Detection Tool

To facilitate my research on semantic changes identifier names undergo, I constructed a tool that

automates the detection of the semantic and form changes a name undergoes when renamed. I

utilize this tool in several of my studies [185,190,191,192] to understand how the name of an iden-

tifier evolves throughout the lifetime of the system. The tool determines the semantic relationship

(e.g., synonyms, hypernyms, etc.) between the old and the new name of the identifier using natural

language-based techniques.

Contribution: While this tool is primarily suited for studying renames after they have been

applied, some aspects of this tool are utilized in my name appraisal and recommendation plugin.

Specifically, this contribution is useful for producing historical data about how names evolve, which

is important for understanding how renames have been applied historically. This provides me with

data I can use to make data-driven wording and structure recommendations during a rename.

Linguistic Anti-Pattern Detection Tool

My research has also led to the construction of a tool that utilizes static analysis to detect linguistic

anti-patterns in the source code of Java and C# systems [189]. The tool outperforms an existing

tool and detects more linguistic anti-patterns than the existing tool. In addition to detecting these

anti-patterns, this command-line tool also provides an explanation of the problem to help developers

understand the mistakes that they are making when naming identifiers.

Contribution: An open-source identifier naming violation appraisal tool that developers can

integrate into their workflow, such as the build process, to detect the presence of linguistic anti-

patterns in their code and explanations of the problem.

Ensemble Part-of-Speech Tagger

As highlighted in my research on identifier evolution, standard natural language processing tech-

niques are not adequate to analyze source code. To this extent, I have contributed to the construc-

tion of an ensemble part-of-speech tagger that analyzes identifier names. The tagger uses machine



CHAPTER 12. DISCUSSION 172

learning and the output from multiple part-of-speech taggers to annotate natural language text.

The ensemble uses three state-of-the-art part-of-speech taggers: SWUM, POSSE, and Stanford.

Finally, the ensemble achieves 75% accuracy at the identifier level and 84-86% accuracy at the

word level.

Contribution: A part-of-speech tagger specifically oriented for source code, than any other ap-

proach currently available, will improve research involving linguistic-based analysis of source code,

such as identifier name appraisal and recommendation. This ensemble tagger can be integrated

into other tools to support identifier naming research and maintenance.

12.1.3 Developer Workflow Integration

IntelliJ IDE Identifier Name Appraisal and Recommendation Plugin

Based on my prior empirical and tool studies, I have worked on constructing an IDE plugin that

provides developers with real-time appraisals and recommendations of identifier name structures

(Chapter 11). The plugin utilizes the ensemble part-of-speech tagger to determine the grammar

pattern associated with the identifier’s name and, based on heuristics, determines if the name needs

improvement. The plugin recommends grammar patterns along with examples and an explanation

for the recommendation.

Key Findings: A user study showing that the recommendations provided by the plugin are mostly

acceptable to users and the examples and explanations helped in understanding the problem with

the original name and how it could be improved. Furthermore, the plugin is useful for novice

developers as it will help them to ensure consistency in identifier naming in the source code.

12.2 Research Question Analysis

12.2.1 RQ1: How effectively, in terms of correctness, can we generate identifier name

structure recommendations?

Along with prior work in this area, my studies show that while there is a possibility to determine the

quality of an identifier’s name by evaluating the words that make up the name, there are challenges

with automatically determining the meaning of these words and how they interact with one another.

Words are diverse and subjective; for example, a single word can have multiple meanings and would

require a human to determine the correct meaning based on usage (i.e., context). In English prose,

the context is specified in natural language, but this is not always the case in code, where the
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context may be within the code’s behavior. For instance, the identifier named “do forward” can

be used as a synonym for “redirect” (as in redirecting an HTTP request) or can also be used to

mean “advance” (as in moving a figure on the screen). The exact meaning of the name can only

be known by analyzing the code, such as by examining the API in use.

Part-of-speech tags, on the other hand, are more constrained, and so is determining the words

that are part of each category. Furthermore, similar to English prose, there is consistency in how

developers structure names with regards to their semantics. For instance, methods are usually

structured using the verb phrase, as in the case of the method name “setEmployeeName”, which

has a V NM N structure. Now, coupled with static analysis techniques, it becomes feasible to

determine if the grammar pattern is utilized in the proper context. For instance, collection types

are associated with a plural noun phrase, such as with “String[] tv channel frequencies” that has

the NM NM NPL grammar pattern.

In my studies, I have shown that existing state-of-the-art, off-the-shelf part-of-speech taggers are

unsuitable for source code. The correctness of these taggers performs poorly on identifier names.

To this extent, I have worked on implementing a specialized ensemble part-of-speech tagger for

identifier names. With an accuracy of 75% at the identifier level and 86% accuracy at the word

level, the ensemble tagger outperforms the state-of-the-art taggers. That said, further improvements

can be made to the tagger to improve its effectiveness in generating accurate tags.

Through my user study, I have shown that the heuristics incorporated into the IDE plugin does in

fact align with the concepts developers associate with high-quality names, such as names associated

with a collection data type having a plural noun phrase grammar pattern.

In summary, this novel approach of exploiting the relationship between an identifier’s grammar

pattern and the surrounding code makes it possible to provide accurate name appraisals and rec-

ommendations without relying on the meaning of the words in an identifier’s name.

12.2.2 RQ2: To what extent does an automated mechanism, based on the semantic

structure of a name, positively or negatively influence naming practices?

To determine the usability of my proposed approach, I have worked on constructing an IntelliJ

plugin that provides developers with real-time appraisals and recommendations on the semantic

structure of identifier names. The plugin employs a static analysis approach that utilizes the

specialized ensemble tagger and heuristics, defined in my empirical studies, to assist developers

with crafting and maintaining identifier names in the source code. To understand the effectiveness
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of the plugin from correctness to usability, graduate and undergraduate students in computing were

recruited to participate in a user study.

In general, of the 20 participants enrolled in the study, 80% of them believe it is either a high

priority or essential for the consideration of part-of-speech tags when composing an identifier’s

name. This finding shows that my novel approach of using grammar patterns to assist developers

with maintaining high-quality identifier names is indeed a viable approach and deserves further

research.

The user study shows that the participants welcome the plugin as it ensures consistency in identifier

naming within the project and feel it would immensely help novice developers. This ties in with

findings from my empirical studies that show novice developers tend to perform more rename

refactorings than other refactoring operations. Furthermore, 80% of the participants agreed that

having a grammar pattern recommendation tool in their toolbox is convenient when coding and

were satisfied with the plugin’s recommendations. However, at the same time, they also observe

instances for tagger improvements, such as the method “stringToTest()”, where “Test” is tagged as a

noun instead of a verb. Finally, while most participants appreciated the examples and explanations,

they suggested that the plugin should show more examples as not all developers are knowledgeable

about part-of-speech tags.

In summary, by incorporating my empirical findings into a real-time name appraisal and recommen-

dation plugin, I have established a mechanism to integrate my work into the developer workflow.

Without having to leave the IDE or switch between tools, the developer can craft and maintain

high-quality identifier names in their project to a high degree of accuracy.

12.2.3 RQ3: What are the primary challenges in appraising and recommending the

semantic structure of identifier names, and how can these be improved?

As stated in my empirical studies, identifier names are both, diverse and subjective. Furthermore,

with diverse sets of technologies, domains, developers, and projects, it becomes challenging to arrive

at a one-stop solution for recommending and appraising high-quality identifier names. To further

complicate matters, standard natural language processing techniques are not specialized to handle

software engineering artifacts, including identifier names in the source code.

To this extent, the tools I have constructed, specifically the ensemble part-of-speech-tagger and IDE

plugin, while improving the developer code comprehension experience, do not provide a complete

solution to the problem of identifier naming.



CHAPTER 12. DISCUSSION 175

With an F1 score of .043, preamble detection by the ensemble tagger is one area for improvement.

This tag is difficult for the trained taggers within the ensemble to recognize, thereby impacting the

ensemble. The taggers annotate the first word as a noun modifier instead of a preamble; this, in

turn, results in the following consistently misannotated patterns: PRE NM* N and NM NM NM+

N. One possible approach to address this issue is to analyze the system to be annotated before

commencing annotations. Specifically, to detect preambles, we have to detect frequently-occurring

identifier prefixes and then determine whether those prefixes follow the preamble rules.

The other pattern it gets wrong frequently is the elongated verb phrase pattern (i.e., V NM NM

N ). The ensemble gets shorter verb phrase patterns correct, but the longer they become, the harder

it becomes for the ensemble to annotate them. One reason for this is likely due to the lack of verb

phrases greater than four and five words in the training set.

Abbreviations and acronyms are also a pain point for the tagger. For instance, in the identifier

name “clampFixMaxcolor”, the word Fix is tagged as a verb; this word is an abbreviation for

“fixpoint” and should be a noun modifier. The system will need to be analyzed in advance to

expand abbreviations and acronyms in the code to handle this challenge.

When conducting our user study, one observation we encountered was the tag generated for the

word “test”. For instance, in the name of the parameter “stringsToTest”, the tagger annotates this

word as a noun instead of a verb. However the method “testEmployeeName()” is correctly tagged.

Additionally, the plugin treats a constructor as a method and incorrectly informs the developer

that the name should begin with a verb when it should not. Finally, transformation methods that

start with a preposition are marked as an issue. For example, the plugin incorrectly recommends

the method “toSummaryString” to start with a verb.

Furthermore, when conducting my empirical studies, I have encountered challenges with analyzing

identifier names. These challenges range from either lack of tools or shortcomings in existing tools

to analyze the semantics of identifier names. For instance, current NLP tools and technologies such

as WordNet and the Standford Part-of-Speech Tagger have been built for and evaluated against

general English prose. While such technologies can be used for analyzing software engineering

artifacts, their accuracy is low. Hence, there is a need for specialized technologies, which I have

contributed to with the ensemble tagger; however, more work is needed in this area. The dearth

of developer-oriented studies also impacts research into identifier names. Since developers are

diverse in terms of experience and skills, their concept of a high-quality name can vary. Hence,

recommendation tools need to account for the type of developer when making the recommendation.

However, studies that correlate developer experience with identifier name quality are lacking.
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12.2.4 Novelty

To conclude this Chapter, my work shows the novel contributions I make to the field in my dis-

sertation. From RQ1, I show that using grammar patterns, it is possible, at a conceptual level,

that when identifiers follow a well-established naming pattern, they reflect both the linguistic and

program behavior. Through RQ2, I show the possibility of incorporating my grammar pattern

and heuristic analysis into an IDE plugin to automate the appraisals and recommendations. I

show that developers find this seamless integration into the developer workflow both valuable and

useable. Finally, through my numerous empirical studies, I have encountered multiple types of

challenges involved with analyzing and recommending identifier names. The novelty of RQ3 are

these conceptual challenges that range from lack/shortcomings in quality tools to the shortage of

existing research to understand the internal comprehension that developers perform when trying

to understand the behavior of the code they are reading.
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Conclusion

Being the atoms of program comprehension, it is essential that developers craft high-quality iden-

tifier names to ensure cost-effective maintenance of software systems. To this extent, the research

community has proposed multiple approaches to assist developers with crafting and maintaining

high-quality names. However, these approaches focus on the semantics or the styling of the name.

The work in my dissertation takes a novel approach to the problem of identifier name quality by

focusing on the semantic structure of the identifier’s name and its relation to the surrounding code.

Through empirical studies, I have outlined a series of grammar patterns developers frequently

utilize and heuristics to determine if the patterns are valid based on code behavior. Furthermore,

I have also worked on constructing tools, such as a naming violation detector and an ensemble

part-of-speech tagger that specializes in annotating identifier names.

To achieve my goal of improving the developer code comprehension experience, I have worked on

constructing an IDE plugin that seamlessly integrates into the developer workflow to assist with

identifier name maintenance in the project. This IntelliJ plugin incorporates the findings from

my empirical studies and the ensemble part-of-speech tagger to provide developers with real-time

appraisals and recommendations about the semantic structure of identifiers in the code. Further-

more, to help developers understand their mistakes, the plugin provides examples and explanations

about the recommendations. A user study shows the plugin’s effectiveness in structuring names

with correct grammar patterns, but also highlights room for improvement.

13.1 Future Work

The work I have performed in my dissertation is moving me in the right direction towards achieving

my goal of providing developers with the best program comprehension experience possible.
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While my completed studies have highlighted heuristics for identifier name appraisals and recom-

mendations, much still needs to be known about the relationship between a name and its surround-

ing code. I plan on continuing my empirical studies by studying different types of systems and

code, such as auto-generated code, to determine how, for instance, a specific domain influences the

meaning and structure of a name.

Even though my tools assist developers with maintaining identifier names in the code, they are

not a complete one-stop solution to the problem of identifier naming quality. I will continue to

work on enhancing the shortcomings of these tools based on user studies with developers of varying

experiences, to improve their accuracy and usability.

Finally, a crucial part of my future work is combining static analysis and artificial intelligence

(AI) to detect low-quality identifier names. While AI understands trends in the data, it finds it

a challenge to determine the context of data usage. My empirical research, on the other hand,

provides insight into how terminology changes based on context. Hence, by synergizing my human-

curated data with AI, I will be in a position to improve the accuracy of my name evaluation and

recommendation plugin and, at the same time, provide developers with a detailed explanation

about naming violations.
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[183] Profir-Petru Pârtachi, Santanu Kumar Dash, Christoph Treude, and Earl T. Barr. Posit: Si-

multaneously tagging natural and programming languages. In Proceedings of the ACM/IEEE

42nd International Conference on Software Engineering, ICSE ’20, page 1348–1358, New

York, NY, USA, 2020. Association for Computing Machinery.

[184] A. Peruma. A preliminary study of android refactorings. In 2019 IEEE/ACM 6th Interna-

tional Conference on Mobile Software Engineering and Systems (MOBILESoft), pages 148–

149, 2019.

[185] A. Peruma, M. W. Mkaouer, M. J. Decker, and C. D. Newman. Contextualizing rename

decisions using refactorings and commit messages. In 2019 19th International Working Con-

ference on Source Code Analysis and Manipulation (SCAM), 2019.

[186] Anthony Peruma. Towards a model to appraise and suggest identifier names. In 2019 IEEE

International Conference on Software Maintenance and Evolution (ICSME), pages 639–643,

09 2019.

[187] Anthony Peruma, Khalid Almalki, Christian D. Newman, Mohamed Wiem Mkaouer, Ali

Ouni, and Fabio Palomba. On the distribution of test smells in open source android applica-

tions: An exploratory study. In Proceedings of the 29th Annual International Conference on

Computer Science and Software Engineering, CASCON ’19, page 193–202, USA, 2019. IBM

Corp.

[188] Anthony Peruma, Eman Abdullah AlOmar, Christian D. Newman, MohamedWiemMkaouer,

and Ali Ouni. Refactoring debt: Myth or reality? an exploratory study on the relationship

between technical debt and refactoring. In 2022 IEEE/ACM 19th International Conference

on Mining Software Repositories (MSR), MSR ’22, 5 2022.

[189] Anthony Peruma, Venera Arnaoudova, and Christian D. Newman. Ideal: An open-source

identifier name appraisal tool. In 2021 IEEE International Conference on Software Mainte-

nance and Evolution (ICSME), pages 599–603, 2021.

[190] Anthony Peruma, Emily Hu, Jiajun Chen, Eman Abdullah Alomar, Mohamed Wiem

Mkaouer, and Christian D. Newman. Using grammar patterns to interpret test method name

evolution. In Proceedings of the 29th International Conference on Program Comprehension,

ICPC ’21, New York, NY, USA, 2021. Association for Computing Machinery.

[191] Anthony Peruma, Mohamed Wiem Mkaouer, Michael J. Decker, and Christian D. Newman.

An empirical investigation of how and why developers rename identifiers. In Proceedings of

the 2nd International Workshop on Refactoring, IWoR, 2018.



BIBLIOGRAPHY 195

[192] Anthony Peruma, Mohamed Wiem Mkaouer, Michael J. Decker, and Christian D. Newman.

Contextualizing rename decisions using refactorings, commit messages, and data types. Jour-

nal of Systems and Software, 169, 2020.

[193] Anthony Peruma and Christian D. Newman. On the distribution of ”simple stupid bugs” in

unit test files: An exploratory study. In 2021 IEEE/ACM 18th International Conference on

Mining Software Repositories (MSR), pages 525–529, 2021.

[194] Anthony Peruma and Christian D. Newman. Understanding digits in identifier names: An

exploratory study. In The 1st International Workshop on Natural Language-based Software

Engineering (NLBSE), NLBSE ’22, 5 2022.

[195] Anthony Peruma, Christian D. Newman, Mohamed Wiem Mkaouer, Ali. Ouni, and Fabio

Palomba. An exploratory study on the refactoring of unit test files in android applications.

In Proceedings of the 4th International Workshop on Refactoring, New York, NY, USA, 06

2020.

[196] Anthony Peruma, Steven Simmons, Eman Abdullah AlOmar, Christian D. Newman, Mo-

hamed Wiem Mkaouer, and Ali Ouni. How do i refactor this? an empirical study on refac-

toring trends and topics in stack overflow. Empirical Software Engineering, 27(1):11, Oct

2021.

[197] Daryl Posnett, Abram Hindle, and Premkumar Devanbu. A simpler model of software read-

ability. In Proceedings of the 8th Working Conference on Mining Software Repositories, MSR

’11, page 73–82, New York, NY, USA, 2011. Association for Computing Machinery.

[198] R.S. Pressman. Software Engineering: A Practitioner’s Approach. McGraw-Hill higher edu-

cation. McGraw-Hill Education, 2010.

[199] V. Rajich. Program comprehension as a learning process. In Proceedings First IEEE Inter-

national Conference on Cognitive Informatics, pages 343–347, 2002.

[200] V. Rajlich and N. Wilde. The role of concepts in program comprehension. In Proceedings

10th International Workshop on Program Comprehension, pages 271–278, 2002.
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Appendix B

User Study Questionnaires

The contents of this appendix are the questionnaires that were completed by the participants in

the user study for the IDE name recommendation and appraisal plugin (refer to Chapter 11).

Participants had to complete a pre- and post-questionnaire.

B.1 Plugin Participant’s Questionnaire

This section contains the pre- and post-questionnaire provided to participants who utilized the

plugin.
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PRE QUESTIONNAIRE
1. Academic Program:

[select one] Bachelor ; Master ; PhD ; Other____

2. Academic Major:

3. General Programming Experience (Years):

4. Java Programming Experience (Years):

5. IntelliJ IDEA Hands-on Familiarity:

[select one] Extremely ; Very ; Moderately ; Slightly ; Not at all

6. A tool providing me with real-time grammar pattern-based naming suggestions for
identifier names would be _________:
[select one] Very convenient ; Convenient ; Neutral ; Inconvenient ; Very inconvenient

———end———



POST QUESTIONNAIRE

1. Did you execute/run the code snippets to better understand the purpose of the
program?
[select one] Yes ; No

a. What code snippets did you run?

2. What is the purpose of the following functions in the file “StringUtilities.java”:
a. public static boolean letters(String stringsToTest)
b. public static int counter(String words)

3. In the file “StringUtilities.java”, you were explicitly asked to rename two identifiers
(line 5 & line 20). What rationale did you use in selecting the replacement names?

a. Line 5:

b. Line 20:

4. What were some common naming violations you experienced in the code
snippets?

5. When crafting identifier names, how much of a priority did you place on the
part-of-speech tags of the name?
[select one] Not a priority ; Low priority ; Medium priority ; High priority ; Essential

a. Please let us know why you selected the above option:



6. A tool providing me with real-time grammar pattern-based naming suggestions for
identifier names was _______:
[select one] Very convenient ; Convenient ; Neutral ; Inconvenient ; Very inconvenient

a. Please let us know why you selected the above option:

7. Is the sidebar with naming recommendations easy to locate?
[select one] Yes ; No

a. If you selected “No” please let us know why:

8. Interpreting the primary recommendations proposed by the plugin was:
[select one] Very difficult ; Difficult ; Neutral ; Easy ; Very easy

b. Please let us know why you selected the above option:

9. Interpreting the other possible patterns proposed by the plugin was:
[select one] Very difficult ; Difficult ; Neutral ; Easy ; Very easy

a. Please let us know why you selected the above option:

10. Please rate your level of satisfaction with the accuracy of the recommendations:
[select one] Very dissatisfied ; Dissatisfied ; Unsure ; Satisfied ; Very satisfied

a. Please let us know why you selected the above option:

11. What existing functionality or new features would you like to see
improved/incorporated into the plugin? This includes features that enhance the
user experience and correctness/accuracy. Please elaborate on specific issues;
examples would be helpful.



12. Is there anything else you would like to let us know about this study?

———end———
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B.2 Non-Plugin Participant’s Questionnaire

This section contains the pre- and post-questionnaire provided to participants who did not utilize

the plugin.



PRE QUESTIONNAIRE
1. Academic Program:

[select one] Bachelor ; Master ; PhD ; Other____

2. Academic Major:

3. General Programming Experience (Years):

4. Java Programming Experience (Years):

5. IntelliJ IDEA Hands-on Familiarity:

[select one] Extremely ; Very ; Moderately ; Slightly ; Not at all

———end———



POST QUESTIONNAIRE

1. Did you execute/run the code snippets to better understand the purpose of the
program?
[select one] Yes ; No

a. What code snippets did you run?

2. What is the purpose of the following functions in the file “StringUtilities.java”:
a. public static boolean letters(String stringsToTest)
b. public static int counter(String words)

3. In the file “StringUtilities.java”, you were explicitly asked to rename two identifiers
(line 5 & line 20). What rationale did you use in selecting the replacement names?

a. Line 5:

b. Line 20:

4. What were some common naming violations you experienced in the code
snippets?

5. When crafting identifier names, how much of a priority do you place on the
part-of-speech tags of the name?
[select one] Not a priority ; Low priority ; Medium priority ; High priority ; Essential

a. Please let us know why you selected the above option:



6. How do you rate the difficulty level of creating better identifier names?
[select one] Very difficult ; Difficult ; Neutral ; Easy ; Very easy

7. Would you have liked to have a tool to recommend changes to make to identifier
names?
[select one] Yes ; No

a. If you selected “No” please let us know why:
b. If you selected “Yes” please let us know what key features the tool should

have:

8. Is there anything else you would like to let us know about this study?

———end———
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