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Abstract

Technical logbooks are a challenging and under-explored text type in automated event identifica-

tion. These texts are typically short and written in non-standard yet technical language, posing

challenges to off-the-shelf NLP pipelines. These datasets typically represent a domain (a technical

field such as automotive) and an application (e.g., maintenance). The granularity of issue types

described in these datasets additionally leads to class imbalance, making it challenging for mod-

els to accurately predict which issue each logbook entry describes. In this research, we focus on

the problem of technical issue pre-processing, clustering, and classification by considering logbook

datasets from the automotive, aviation, and facility maintenance domains. We developed Maint-

Net, a collaborative open source library including logbook datasets from various domains and a

pre-processing pipeline to clean unstructured datasets. Additionally, we adapted a feedback loop

strategy from computer vision for handling extreme class imbalance, which resamples the training

data based on its error in the prediction process. We further investigated the benefits of using

transfer learning from sources within the same domain (but different applications), from within the

same application (but different domains), and from all available data to improve the performance

of the classification models. Finally, we evaluated several data augmentation approaches including

synonym replacement, random swap, and random deletion to address the issue of data scarcity in

technical logbooks.
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Chapter 1

Introduction

Estimating downtime and performing timely maintenance is a key step to reducing costs and im-

proving operational efficiency in various branches of engineering. Performing proper and timely

maintenance is not only necessary to extend the life of machinery systems but also would further

help to increase safety as well. Predictive maintenance techniques are applied to engineering sys-

tems to estimate when maintenance should be performed to minimize costs and expand machinery

system’s performance [20, 44], as well as mitigate risk and increase safety. Furthermore, predic-

tive maintenance is a particularly relevant application used to mitigate problems ahead of fixed

maintenance schedules [51].

A fixed maintenance schedule is a form of maintenance that experts (e.g., mechanics, or engineers)

perform in a scheduled format. Performing a fixed maintenance schedule has some drawbacks and

may result in developing risks [92]. For instance, an expert may introduce unnecessary maintenance

costs to other components (e.g., engine) during the scheduled maintenance for fixing another specific

part. So, the main purpose of predictive maintenance is to perform maintenance only when needed,

which means performing maintenance should only be done after models predict specific problems

or issues [108].

Predictive maintenance systems use machine learning to estimate maintenance operations using

many sources of information such as historical maintenance records in the form of event log-

books [20]. Maintenance records are an important source of information for predictive mainte-

nance [78]. These records are often stored in the form of technical logbooks in which each entry

contains fields that identify and describe a maintenance issue (or problems) or a solution taken to

address a safety problem (e.g., replacing a part) written in non-standard language [5]. They are

1



CHAPTER 1. INTRODUCTION 2

collected in many domains such as aviation, transportation, and healthcare [9, 113]. Being able to

classify these technical events is an important step in the development of predictive maintenance

systems. Figure 1.1 provides an overview of the process of utilizing various historical data such as

technical logbooks to develop a predictive maintenance system to predict and further alert mainte-

nance problems and failures before they happen. This consists of processing historical data (such

as logbooks) to extract important event information, training event prediction models to monitor

the condition of the equipment to identify certain failures prior to happening, and then providing

alerts so that timely maintenance can be performed.

Figure 1.1: Process of utilizing historical data for performing predictive maintenance process.

In most technical logbooks, issues are manually labeled (assigned) by domain experts (e.g., me-

chanics) making it possible to train systems to classify or cluster events by semantic similarity [78].

The issue type and descriptions include domain-specific technical language, abbreviations, and non-

standard orthography, which off-the-shelf Natural Language Processing (NLP) models are unable

to process as they are designed to work on standard data and are less effective on this data.

Furthermore, maintenance record data is typically proprietary and not made public. To the best

of our knowledge, when we started the research that led to this Ph.D. thesis there was no avia-

tion maintenance record dataset labeled with information such as issue and action codes or cate-

gories, requiring domain experts to manually annotate data for supervised document analysis and

classification, an expensive and time-consuming process [1]. This has led to the development of

domain-specific text pre-processing pipelines for logbook entries [6, 31].

1.1 Properties of Technical Logbooks

Classifying events in technical logbooks is a challenging problem for the NLP community for several

reasons:

(a) The technical logbooks are written by various domain experts and contain short text entries
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with non-standard language including domain-specific abbreviated words (see Table 1.1 for

examples), which makes them distinct from other short non-standard text corpora (e.g., social

media);

(b) Off-the-shelf NLP tools struggle to perform well on this type of data as they tend to be trained

on standard contemporary corpora such as newspaper texts;

(c) Outside of the clinical and biomedical sciences, there is a lack of domain-specific, expert-

based datasets for studying expert-based event classification, and in particular few resources

are available for technical problem domains;

(d) Technical logbooks tend to be characterized by a large number of event classes that are highly

imbalanced.

Original Entry Pre-processed Entry

fwd eng baff seeal needs resecured forward engine baffle seal needs resecured

both engs, all rocker coveers loose both engines all rocker covers loose

r/h eng #3 intake gsk leaking right engine number 3 intake gasket leaking

ck plow frame, bolts missing & adj brakes check plow frame bolts missing adjust brakes

bird struck on p/w at twy. bird rmvd bird struck on pilot window at taxiway. bird removed

diesel fuel leak under cab, l/r packer piston leaks diesel fuel leak under cab lower right packer piston leaks

location rptd as nm from rwy aprch end location reported as new mexico from runway approach end

cylinder #1 baff cracked at screw support cylinder 1 baffle cracked at screw support

Table 1.1: Original and text-normalized example data instances illustrating that domain-specific

terms (baffle, engine), abbreviations (gsk - gasket, eng - engine, rwy - runway), and misspellings

(seeal - seal) are abundant in logbook data.

1.2 Research Goals

The research in this doctoral dissertation addresses these following research questions to overcome

the discussed challenges:

RQ1: How well do state-of-the-art pre-processing techniques clean unstructured maintenance data?

Can we develop better techniques to handle this type of data?
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Figure 1.2: Number of instances in 39 unbalanced classes of the aviation maintenance (Avi-Main)

dataset. (Published in [4])

RQ2: Using the proposed methods in this research work, which techniques are robust and the

most effective in clustering/mining aviation maintenance textual data?

We addressed the aforementioned challenges (RQ1 and RQ2) with a special focus on clustering and

annotating the logbook dataset using the developed domain-specific text pre-processing pipelines.

We used various clustering algorithms to empirically compare the clustering outcome and evaluated

them with the aid of a domain expert.

RQ3: To which extent does the class granularity and class imbalance present in technical logbooks

impact technical event classification performance, and can a feedback loop for training data selection

effectively address this issue?

We explored strategies to address the class imbalance in technical datasets. There is wide variation

in the number of instances among the technical event classes examined in this research work, as

shown in Figure 1.2 and Table 3.1. This extreme class imbalance is an obstacle when processing

logbooks as it causes most learning algorithms to become biased, where they mainly predict the

large classes [53]. To overcome this issue, we introduced a feedback loop strategy, which is a

repurposing of a method used to address the extreme class imbalance in computer vision [19], and

examined it for the classification of textual technical event descriptions. This technique is applied
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in the training of a suite of common classification models on seven predictive maintenance datasets

representing the aviation, automotive, and facility maintenance domains [5].

RQ3.a: Which classification models are better suited to classify technical events for predictive

maintenance across logbook datasets representing different technical domains?

We empirically compared the performance of different classification algorithms on seven logbook

datasets from the aviation, automotive, and facilities domains.

RQ4: Which transfer learning approaches are better suited for classifying technical events for

predictive maintenance across heterogeneous logbook datasets?

We explored transfer learning for domain adaptation in technical event classification to circumvent

the limitation discussed regrading data scarcity which making it difficult to train robust predictive

maintenance systems that require large amounts of data, for example, when using deep neural

networks. Transfer learning techniques have been applied with great success to non-standard (e.g.,

social media posts) text-based classification tasks such as sentiment analysis and offensive language

identification [98,114].

RQ4.a: How does the level of similarity between corpora impact the performance of transfer

learning approaches for technical event classification?

We employed corpus similarity techniques to investigate the shared characteristics among these

technical datasets, using multiple similarity methods.

RQ5: How well data augmentation techniques can impact classification models’ performance while

preserving the label information in logbook datasets?

We empirically examined the performance of various data augmentation methods on technical

logbook data in the event classification task as well as evaluated the performance of utilized aug-

mentation techniques using various metric-based methods.

1.3 Contributions

The main contributions of this doctoral thesis include:

1. The exploration of NLP methods for maintenance data (aviation maintenance in particular),

which is an under-explored application:
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1.a) The development of novel state-of-the art pre-processing techniques to clean unstructured

maintenance data;

1.b) A comparison of clustering methods and similarity metrics for maintenance text mining;

1.c) The development of a collaborative open-source library for technical language resources

(MaintNet) with a special focus on predictive maintenance;

2. Experimental results showing strong performance of the feedback loop in addressing the class

imbalance problem in technical event classification across all datasets and models;

3. A thorough empirical evaluation of the performance of the technical event classifier considering

multiple models and seven logbook datasets from three different domains;

4. A comprehensive study of domain adaptation under three conditions: (1) transfer within the

domain, (2) transfer within the application, and (3) transfer over the global dataset;

5. The exploration of various data augmentation approaches for technical logbook dataset.

1.4 Publications

The following publications were produced as part of this doctoral research:

• Farhad Akhbardeh, Travis Desell, and Marcos Zampieri, “MaintNet: A Collaborative Open-

Source Library for Predictive Maintenance Language Resources”, In Proceedings of the 28th

International Conference on Computational Linguistics (COLING), 2020.

• Farhad Akhbardeh, Travis Desell, and Marcos Zampieri, “NLP Tools for Predictive Mainte-

nance Records in MaintNet”, In Proceedings of the 1st Conference of the Asia-Pacific Chapter

of the Association for Computational Linguistics and the 10th International Joint Conference

on Natural Language Processing (AACL), 2020.

• Farhad Akhbardeh, Cecilia Alm, Marcos Zampieri, and Travis Desell “Handling Extreme

Class Imbalance in Technical Logbook Datasets”, In Proceedings of the 59th Annual Meeting

of the Association for Computational Linguistics and the 11th International Joint Conference

on Natural Language Processing (ACL-IJCNLP), 2021.

• Farhad Akhbardeh, Marcos Zampieri, Cecilia Alm, and Travis Desell “Transfer Learning

Methods for Domain Adaptation in Technical Logbook Dataset”, In Proceedings of the Lan-

guage Resources and Evaluation Conference (LREC), 2022.
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1.5 Overview of Dissertation Chapters

The remainder of this dissertation is organized as follows: Chapter 2 provides an overview on related

work on technical logbooks, clustering, and classification in various NLP tasks. It further provides

a summary of the research works in transformer language models, transfer learning, and data

augmentation as well. Chapter 3 provides an overview of the datasets utilized in this research as

well as the development of an open-source repository of language resources (MaintNet) for predictive

maintenance and further discussion of the dataset challenges and pre-processing methods. Chapter

4 presents the details of the methods and results for text clustering (e.g., DBSCAN, LDA) that

are used to help in the process of grouping instances into categories and classification to handle

the problem of class imbalance in technical data. Chapter 5 further investigated the benefits of

using transfer learning methods (e.g., transferring within a domain) for technical logbook datasets.

Furthermore, Chapter 6 provides the details regarding the methods, experiments, and evaluations

for various data augmentation techniques (e.g., rule-based augmentation) that are examined in this

thesis work. Finally, Chapter 7 provides a summary of the research performed in this dissertation

and discusses the future direction of this research.



Chapter 2

Related Work

Chapter Introduction: This chapter reviews the literature regarding pre-processing and text

normalization methods for domain-specific language. Furthermore, it includes various reviews of the

existing methodologies to handle unstructured expert-based datasets (Section 2.1). Since most tech-

nical logbook datasets lack annotation, various relevant research works in text clustering methods

and similarity metrics are investigated to help in the process of creating annotations. Furthermore,

we study contemporary works on text classification and handling class imbalance problems (Section

2.2), followed by an overview of the domain adaptation, transformer-based language models and

transfer learning approaches in various domains and datasets (Sections 2.3 and 2.4). Finally, recent

works in data augmentation approaches are studied as well (Section 2.5).

2.1 Technical Logbook Datasets

Logbook data is gathered in many domains such as law enforcement, web information extraction,

systems maintenance (e.g., wind turbines [11], aviation [15], automobiles [96]), and electronic health

to analyze critical factors in postoperative outcomes. However, the contents of logbooks are pre-

dominantly free text, and it is not straightforward to extract required information or which text

normalization techniques are effective.

Text normalization techniques are used in various non-expert domain datasets such as social media

to standardize unstructured data to process important events. Ritter et al. [101] proposed a novel

open-source event extraction and supervised tagger for noisy microblogs (Twitter data). They used

8



CHAPTER 2. RELATED WORK 9

the Stanford Named Entity Recognizer (NER) and a Part of Speech Tagger (POS) to label word

sequences and developed topic modeling techniques called linkLDA to extract events from the data.

To identify events in the dataset, they used annotated data for training a tagger.

Cherry and Gue [26] applied word embedding-based modeling for information extraction on news-

wire and tweets, comparing named entity taggers and similarity techniques to improve their word

embedding method. A major finding was that the cosine similarity metric was not sufficient for

short sentences.

As dealing with non-standard expert textual data is also a difficult task in the medical domain,

Deléger et al. [31] applied information extraction techniques on clinical reports to extract medication

information. They used semantic extraction rule-based techniques to identify drug names and

further drug-related information (e.g., drug dosage) that was prescribed to patients. They analyzed

reports using a sentence segmentation technique to divide them into meaningful parts, identifying

the important topics per segment. Based on their findings, proper pre-processing techniques such

as lexicon filtering improved performance.

Tixier et al. [117] developed a system to analyze injury reports by applying POS tagging and term

frequency to extract keywords regarding injuries creating a dictionary of events to improve future

safety management. Savova et al. [106] utilized (off-the-shelf) natural language processing toolkit

(NLTK) libraries on free-text electronic medical records for information extraction purposes. They

designed an architecture for clinical text analysis knowledge extraction (cTAKES), specific to the

clinical domain, as it creates semantic annotations from patient records.

In the aviation domain, Tanguy et al. [113] studied various available NLP methods such as topic

modeling to process aviation incident reports and extract useful information. They used standard

NLP libraries to pre-process the data and then applied the Talisman NLP toolkit for incident

feature extraction and training.

As to the problem of non-standard spelling, Siklosi et al. [109] proposed a method of correcting

misspelled words in clinical records by mapping spelling errors to a large database of correction

candidates. However, due to a large number of abbreviations in medical records, they were limited

to specific terms and the normalization had to be performed separately.

Amorim et al. [30] proposed a dictionary-based spell correction algorithm utilizing a clustering

approach by comparing various distance metrics to lower the number of distance calculations while

finding or matching target words for misspellings. With this in mind, we developed a tool to deal

with domain-specific misspellings and abbreviations (described in Section 3.2).
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A major challenge in obtaining coherent document clusters from unlabeled data is determining a

metric to quantify their accuracy, which involves calculating the difference between documents.

Santhisree et al. [105] applied Cosine and Euclidean distance to measure the intra- and inter-

cluster similarity generated from web usage data. Their goal was to achieve high intra-cluster

and low inter-cluster similarity and they indicated that these similarity measurements helped to

identify promising results. Amigó et al. [10] also analyzed various evaluation metrics to compare

the quality of clusters generated with different text clustering techniques, and they suggested purity

as the most popular evaluation metric.

Research Work Dataset(s) Method(s) and Model(s)

Ritter et al. [101] Microblogs linkLDA, POS, Stanford Named Entity Recognizer

Cherry and Gue [26] News-wire and Tweets Named Entity Tagger, Similarity

Deléger et al. [31] Clinical Reports Semantic Extraction Rule-based, Sentence Segmentation

Tixier et al. [117] Injury Reports POS Tagging, Term Frequency

Savova et al. [106] Medical Records Natural Language Processing Toolkit, cTAKES

Tanguy et al. [113] Aviation Incident Reports Topic Modeling, Talisman NLP Toolkit

Siklosi et al. [109] Clinical Records Misspelled Word Correction, Normalization

Amorim et al. [30] Birkbeck Corpus Dictionary-based Spell Correction

Santhisree et al. [105] Web Usage Cosine and Euclidean Distance

Table 2.1: Overview of related studies and developed method for various NLP techncial datasets.

As discussed and also outlined in Table 2.1, various studies developed techniques to process the

standard or non-expert dataset. However, investigating NLP methods for pre-processing technical

logbooks is less explored. Our developed pre-processing pipeline (described in Section 3.2) in this

work addresses this important limitation.

2.2 Event Text Classification

Most expert-domain datasets containing events have focused on healthcare. For instance, Altuncu

et al. [9] analyzed patient incidents in unstructured electronic health records provided by the U.K.

National Health Service. They evaluated a deep artificial neural network model on the expert-

annotated textual dataset of a safety incident to identify similar events that occurred.

Patrick et al. [91] proposed the cascade method of extracting the medication records such as treat-

ment duration or reason, obtained from patient’s historical records. Their approach for event
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extraction includes text normalization, tokenization, and context identification. A system using

multiple features outperformed a baseline method using a bag of words model.

Yetisgen et al. [128] proposed a lung disease phenotypes identification method to prevent the use of a

hand-operated identification strategy. They employed NLP pipelines including text pre-processing

and further text classification on the textual reports to identify the patients with a positive diagnosis

for the disease. Based on the outcome, they achieved notable performance by using n-gram features

with a Maximum Entropy (MaxEnt) classifier.

There is also relevant research on event classification in social media. Hammer et al. [46] performed

experimental work on Instagram text using weakly supervised text classification. Their approaches

used word embeddings trained on an unstructured Instagram dataset to extract clothing brands

based on the description that the users provided on the post. They used 200k Instagram posts with

a total of 9 million comments, which were unlabeled and contained many special characters and

informal words. To generate training data, they developed an unsupervised information extraction

technique called “SemCluster” to pre-process this corpus, remove unnecessary data, and extract

fashion attributes. They experimented with different similarity metrics such as Levenshtein to

increase the accuracy of label extraction. In their approach, they used images that users posted

on Instagram to validate the annotation process and then train a supervised generative model for

text classification.

The problem of class imbalance has been studied in recent years for numerous NLP tasks. Mad-

abushi et al. [115] studied automatic propaganda event detection from a news dataset using a

pre-trained BERT model. They recognized that the BERT model had issues in generalizing. To

overcome this issue, they proposed a cost-weighting method. Al-Azani et al. [8] analyzed polarity

measurement in imbalanced tweet datasets utilizing features learned with word embeddings. Li et

al. [65] studied the class imbalance problem in the task of discourse relation identification by com-

paring the accuracy of multiple classifiers. They showed that utilizing a unified method and further

downsampling the negative instances can significantly enhance the performance of the prediction

model on unbalanced binary and multi-class datasets.

Dealing with unbalanced classes is also well studied in sentiment classification. Li et al. [66] in-

troduced an active learning method that overcomes the problem of class unbalance by choosing

a significant sample of the minority class for manual annotation and majority class for automatic

annotation to lower the amount of human annotation required. Furthermore, Damaschk et al. [28]

examined techniques to overcome the problem of dealing with high-class imbalance in classifying a

collection of song lyrics. They employed neural network models including a multi-layer perceptron
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and a Doc2Vec model in their experiments where their finding was that undersampling the majority

class can be a reasonable approach to remove data sparsity and further improve the classification

performance.

Li et al. [67] also explored the problem of high data imbalance using cross-entropy criteria as well

as standard performance metrics. They proposed a loss function called Dice Loss that assigns equal

importance to false negatives and false positives. In computer vision, Bowley et al. [19] developed

an automated feedback loop method to identify and classify wildlife species from Unmanned Aerial

Systems imagery, for training CNNs to overcome the unbalanced class issue. On their expert

imagery dataset, the error rate decreased substantially from 0.88 to 0.05. So as shown in following

Table 2.2, there are various methods developed to improve the classification models’ performance

as well as overcome the problem of class imbalance. This research work adapts the feedback loop

strategy to the NLP problem of classifying technical events.

Research Work Dataset(s) Method(s) and Model(s)

Altuncu et al. [9] Electronic Health Records Deep Artificial Neural Network

Patrick et al. [91] Patient’s Historical Records Cascade, Text Normalization, Context Identification

Yetisgen et al. [128] Medical Reports Phenotypes Identification, Maximum Entropy Classifier

Hammer et al. [46] Instagram Text Weakly Supervised Classification, Levenshtein, Generative Model

Madabushi et al. [115] News Automatic Event Detection, Pre-trained BERT, Cost-Weighting

Al-Azani et al. [8] Tweet Polarity Measurement, Word Embeddings

Li et al. [65, 66,67] Penn Discourse Treebank Discourse Relation Identification, Unified, Downsampling, Dice Loss

Damaschk et al. [28] Song Lyrics Multi-layer Perceptron, Doc2Vec, Undersampling

Bowley et al. [19] Wildlife Species Automated Feedback Loop

Table 2.2: Overview of related studies of event classification and developed techniques and models.

2.3 Domain-specific Transfer Learning

2.3.1 Transfer Learning for NLP

Transfer learning strategies have been applied in various NLP tasks such as sentiment analysis to

address key problems such as a deficit of labeled data. Studies have shown that training a model

on one task or dataset (the source) and using transfer learning methods to transfer the knowledge

to another task or dataset (the target) can improve performance compared to the model trained

only on the target task with less data [88].



CHAPTER 2. RELATED WORK 13

Tao et al. [114] proposed a transfer learning approach to overcome limited annotated data for aspect-

based sentiment analysis tasks. Their analysis includes applying sentiment datasets from different

domains to evaluate performance on sentence-level multi-label classification using the XLNet [127]

and BERT [33] models, improving over baseline methods.

Terechshenko et al. [116] took advantage of transfer learning in political data analysis to overcome

a limited dataset. They employed the XLNet [127] model to transfer learned knowledge to political

science texts. Their experiment identified improvement on using a small source of a labeled dataset

for transfer learning.

Zoph et al. [132] proposed utilizing the transfer learning method in the neural machine translation

(NMT) task to improve the BLEU [89] score on multiple low-resource language datasets. Their

approach consists of training the model on a large-scale French–English language source dataset

and then transferring the learned parameters to the low-resource dataset including Uzbek–English

for further training of the model. Their approach showed the overall performance improved by 5.6

points on BLEU score for the NMT task on 4 various low-resource pairs of datasets.

Transfer learning has also been used in healthcare to address the bottleneck of large labeled datasets

and enable generalization capability. Romanov et al. [102] proposed a transfer learning technique

to utilize the open-source Stanford Natural Language Inference dataset and medical terminologies

in expert-annotated clinical data. They experimented with sequential inference using an LSTM in

multiple layers. Their approach improved over previously reported methods on Natural Language

Inference benchmarks.

Sun et al. [111] developed a BERT-based benchmark to evaluate PharmaCoNER biomedical dataset

(target domain) using the transfer learning method. They examined two models of Multilingual-

BERT and BioBERT. Their experiment showed a performance improvement in both models indi-

cating that transferring learned knowledge from a large-scale trained domain to the target domain

provides a useful approach for improving models’ performance.

Dirkson et al. [34] proposed a transfer learning method to Twitter data associated with health

to classify drug effects. They utilized a recurrent neural network architecture by Flair [3] having

512 hidden layers, yielding performance improvements over a baseline support vector classifier

(SVC). Their finding was further that it can be beneficial to apply various domain-specific domain

adaptation strategies.
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2.3.2 Domain Adaptation

Employing domain adaptation to transfer learned knowledge of a source domain and improve

performance in a target domain has also shown success in NLP problems. Axelrod et al. [13]

investigated domain adaptation in statistical machine translation by utilizing instances from a

general domain translation corpus of English and Chinese. They employed Moore and Lewis’s [84]

domain-specific models. The approach was successful with just a small subset of in-domain data.

Heilman et al. [47] utilized Daumé III’s [29] domain adaptation in automatic short answer scoring

and combined n-gram features and corpus similarity measures in the educational domain. Their

results had high accuracy which approached human scores on the Beetle dataset that consists of

student short answers to numerous questions.

Furthermore, several cross-domain adaptation approaches have been developed to leverage the

knowledge learned in one domain to another. Peng and Dredze [94] studied transferring multi-task

learning representations for sequence tagging using news and social media texts. They proposed

a multi-task framework based on the BiLSTM model, which was capable of sharing the learner

representation across tasks or domain datasets. The proposed framework achieved higher accuracy

when applied to social media.

El Mekki et al. [35] proposed an unsupervised domain adaption approach utilizing pre-trained

language models for cross-dialect sentiment analysis. They examined incorporating the Arabic

dialects’ fine- and coarse-grained taxonomies. In comparison to the zero-shot transfer using the

BERT model, their approach showed roughly 20% performance improvement using the cross-dialect

domain adaptation approach.

Bose et al. [18] proposed the unsupervised domain adaptation approach for cross-domain sentiment

classification tasks by adapting the BERT variant model to the abusive language detection dataset.

Their experiment utilizes the HateBERT model from Caselli et al. [21]’s work as well as further

training with Reddit’s large abusive language resource dataset using the Masked-Language Mod-

eling (MLM) [33] approach. By analyzing the model outcome, they confirmed improvement in the

model’s performance on the target abusive language dataset in contrast to solely fine-tuning the

HateBERT model on this dataset.

The many applications of transfer learning in NLP (as outlined in Table 2.3) confirm that transfer

learning approaches are a promising strategy to overcome data scarcity. However, the use of
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Research Work Dataset(s) Method(s) and Model(s)

Tao et al. [114] Social Media Aspect-based Sentiment Analysis, XLNet

Terechshenko et al. [116] Political Science XLNet

Zoph et al. [132] French–, Uzbek–English Neural Machine Translation, BLEU

Romanov et al. [102] Natural Language Inference Sequential Inference, LSTM

Sun et al. [111] PharmaCoNER Biomedical Multilingual-BERT, BioBERT

Dirkson et al. [34] Twitter Recurrent Neural Network Architecture (Flair)

Axelrod et al. [13] English and Chinese Statistical Machine Translation

Heilman et al. [47] Beetle Daumé III’s Domain Adaptation

Peng and Dredze [94] Social Media Multi-task Learning, Sequence Tagging, BiLSTM

El Mekki et al. [35] Arabic Dialects Cross-dialect Sentiment Analysis

Bose et al. [18] Reddit’s Abusive Language Cross-domain Sentiment Classification, HateBERT [21]

Table 2.3: Overview of various research studies of transfer learning and domain adaptation methods

for NLP using various dataset types.

transfer learning to predictive maintenance datasets has not yet been explored. Our work fills this

important gap providing empirical evidence of the feasibility of these methods when applied to

technical logbook data.

2.4 Transformer-based Language Models

Since the transformer architecture proposed by Vaswani et al. [121] has shown significant model

performance on machine translation tasks, several pre-trained language models (as shown in Sec-

tions 2.3.1 and 2.3.2) have been developed which achieve state-of-the-art results on various NLP

tasks such as machine translation, named entity recognition, or sentiment analysis.

Background The transformer architecture (based on employing the attention mechanism) is

composed of encoder and decoder blocks, as shown in Figure 2.1. The encoder element processes

the input instance to transform it to the abstract representation and then passes it to the decoder

element to generate an output instance. Further, the transformer architecture can be utilized

in three various methods of encoder-decoder, encoder only, or decoder only, depending on the

downstream task.
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Figure 2.1: Original transformer-based encoder-decoder architecture [121].

The encoder block of the transformer as shown in Figure 2.2, is comprised of multi-head attention,

residual and normalization, and a position-wise feed-forward network. Using the encoder-only

model is employed in various state-of-the-art architectures such as BERT [33], where the given

output of the encoder block is used as an input representation to various models for downstream

tasks such as sentiment analysis, classification, or named entity recognition.

Figure 2.2: Overview of transformer architecture’s encoder block [121].

The advantage of using the encoder element of the transformer architecture is to extract the contex-

tual representation of the input instances where the various attention head and layer sizes also can

be used. As also discussed in Section 2.3.2, various transformer-based models (e.g., BERT) that

use an encoder-only architecture achieved significant results while being applied to standard corpus

datasets as these models are pre-trained on large standard datasets (e.g., Wikipedia), and also fur-

ther successfully adapted to other similar domains (e.g., abusive language detection dataset [18])

and achieved better model performance for several NLP tasks [49] as well.

Also, pre-trained language models such as BERT [33] or XLNet [127] have shown notable perfor-

mance improvement in other NLP tasks such as question answering, or next sentence prediction.

Fine-tuning these language models on downstream tasks for instance sentiment analysis is a well-

known method of improving model performance. However, these language models (e.g., BERT) are

initially pre-trained on large standard corpus (e.g., English Wikipedia text), and fine-tuning them

on expert or domain-specific datasets does not improve the performance significantly. Therefore,

several adaptations of these language models [24,48] have been developed by various researchers.

The variants of BERT also showed a comparable outcome by utilizing either less computational

power or by having an optimized architecture. RoBERTa [70] has a modified training method that
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improves on the performance of the standard BERT model by increasing the number of iterations

and data. DistilBERT [104] also achieved comparable performance to the BERT base model with

40% fewer parameters. ALBERT (architecture variant of BERT) [61] addressed the longer training

time and memory limitations of BERT as well as enhanced training speed by utilizing factorized

embedding parameterization and a cross-layer parameter sharing method.

ELECTRA [27] developed a new approach of pre-training instead of Masked-Language Modeling

by replacing some tokens of instances with possible choices and showed comparable performance

of the RoBERTa model with less computation time. A study of existing developed state-of-the-art

transformer models also indicates how generalizable these pre-trained transformer models would

be for technical language datasets and if their contextualized representation could improve the

downstream task of event identification.

Chalkidis et al. [24] investigated various NLP approaches to adapt the BERT model to legal domain

datasets and developed a variation of the BERT model called LEGAL-BERT. Their proposed

approach relies on three distinct systematic analyses of utilizing BERT on various domain tasks.

These methods include further pre-training BERT, pre-training BERT from the scratch, and using

an off-the-shelf pre-trained BERT for a domain-specific legal dataset to examine performance. Their

investigation showed an accuracy improvement by pre-training the BERT model.

Huang et al. [48] proposed ClinicalBERT where they adapted the original BERT to domain-specific

clinical text by pre-training the model and further fine-tuning it to their clinical prediction task.

Their proposed model showed performance improvements in multiple prediction tasks on clinical

datasets such as intensive care unit notes and discharge reports, also evaluated by clinical domain

metrics.

Pre-trained language models also showed remarkable performance on challenging downstream tasks

such as online hate speech detection. Isaksen et al. [49] examines the impacts of transferring

knowledge from the BERT model on identifying hateful, offensive, and common language. They

fine-tuned the pre-trained BERT model with hateful and offensive language datasets such as those

from Twitter. They also investigated the effect of further training the pre-trained BERT model

with unlabeled domain-specific data. Their experiments showed an insignificant overall performance

improvement in the natural language understanding task. Their key finding was that the standard

BERT model pre-trained on standard English Wikipedia text where the language is formal does

not relate well to the terms and words used in the hate speech dataset.

Further, there are various studies to improve transformer-based models. In a document-level con-
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text, Zhang et al. [129] extended a transformer model with a new context encoder approach. They

employed a two-stage training approach that considered abundant sentence-level parallel text. They

employed the NIST Chinese English dataset for the training process. Their approach showed sig-

nificant model performance improvement over the baseline pre-trained transformer models.

There are various lighter transformer-based architectures that use lower computation resources than

an original transformer architecture. Mehta et al. [79] developed a lightweight transformer-based

architecture called DeLighT which utilizes fewer parameters but a deeper network compared to the

standard transformer architecture developed by Vaswani et al. [121]. This architecture is capable

of properly allocating the parameters within and also across the transformer block. The authors

examined this model with various benchmarks (such as machine translation) and results show

performance improvement compared to the standard transformer model by Vaswani et al. [121].

Research Work Dataset(s) Method(s) and Model(s)

Vaswani et al. [121] WMT14 English-to-German Transformer, Machine Translation, Encoder, Decoder

BERT [33] GLUE Benchmark Bidirectional, Encoder-only

Chalkidis et al. [24] Legal Domain LEGAL-BERT

Huang et al. [48] Clinical Text (ICU) ClinicalBERT

Isaksen et al. [49] Twitter Hateful and Offensive Pre-trained BERT, Natural Language Understanding

Zhang et al. [129] NIST Chinese English Two-stage Training, Pre-trained Transformers

Mehta et al. [79] WMT14, WMT16 DeLighT Transformer

Table 2.4: Overview of multiple research that developed various transformer-based language models.

Many studies have shown notable performance of transformer-based models on various NLP tasks

such as machine translation, named entity recognition, or sentiment analysis. The majority of these

state-of-the-art models as summarized in Table 2.4, are pre-trained on standard language datasets

(e.g., Wikipedia) or adapted to other domains such as legal domain datasets (LEGAL-BERT).

However, pre-training transformer-based language models for logbooks has not yet been explored.

2.5 Domain-specific Data Augmentation

As a common approach to dealing with limited labeled data, various methods have been studied

over the years such as data augmentation to improve the performance of machine learning models.

Data augmentation is a well-studied approach in computer vision and recently has been applied in

various NLP tasks as well.
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Kobayashi [56] proposed a contextual data augmentation approach using various given words by a

bidirectional LSTM language model where the model was initially pre-trained on WikiText from a

Wikipedia article. The approach is carried out by stochastically replacing the words in the instances

with different words that are predicted by the language model. The author utilized instances from

the Stanford Sentiment Treebank in their study and experimented on various text classification

tasks. The proposed approach showed performance improvements for convolutional and recurrent

neural network classifiers.

Wei et al. [125] developed the easy data augmentation technique for improving the performance of a

text classification model using 4 operations consisting of random swap, random deletion, synonym

substitution, and random addition. They examined this approach using recurrent neural networks

on benchmark datasets such as Stanford Sentiment Treebank as well as customer reviews. This

showed performance improvement on text classification tasks.

Furthermore, utilizing language models (e.g., pre-trained models) for data augmentation has shown

a significant performance increase in various NLP tasks. Kumar et al. [58] proposed a unified data

augmentation approach using multiple pre-trained transformer models including BERT [33], GPT-

2 [97], and BART [64]. Their approach consists of using the two techniques of prepending and

expanding as a common way to condition a pre-trained language model on the dataset’s class label

information. They examined the approach on three various NLP tasks of question, intent, and

sentiment classification utilizing a low-resource dataset. Their experiments showed an improved

performance over pre-trained BART (Seq2Seq) compared to other data augmentation approaches.

The key limitation of their approach was that the proposed method only works for a dataset that

the model was already pre-trained on, where it may not work for other dataset types.

Zhou et al. [131] also proposed a data augmentation approach for cross-lingual Named Entity

Recognition task based on Masked-Entity Language Modeling instead of using the standard Masked

Language Modeling (MLM) [33] to efficiently preserve the label information. This approach is

performed by masking the entity of training instances and then fine-tuning the standard Masked

Language Model to produce new instances with swapped entities. They examined the proposed

method on CoNLL dataset [118] and their results showed a significant performance improvement.

Based on the studied related work on data augmentation, various methods (as outlined in Table 2.5)

have been developed to further improve machine learning model performance on various NLP tasks.

However, per the discussion provided in Chapter 1 regarding the nature of the technical logbook

data, data augmentation using pre-trained transformer models (which are most often trained on

general (or standard) corpora (e.g., Wikipedia)) may not be useful. The limitation of current
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Research Work Dataset(s) Method(s) and Model(s)

Kobayashi [56] SST Contextual Data Augmentation, Bidirectional LSTM

Wei et al. [125] SST, Social Media Easy Data Augmentation

Kumar et al. [58] SST-2, SNIPS, TREC Unified Data Augmentation, BART, GPT-2, BERT

Zhou et al. [131] CoNLL Cross-lingual NER, Masked-Entity Language Modeling

Table 2.5: Overview of recent studies of developed data augmentation methods and strategies for

various NLP tasks.

studies motivated us as a potential research to combine state-of-the-art knowledge and techniques

and utilize optimal approach for augmenting the logbook data.

2.6 Chapter Summary

Technical logbooks dataset are an important source of information collected in various domains,

however, processing these datasets is a challenging task. To investigate the methods and models

that are proposed for processing various forms of domain-specific technical datasets, we studied

the research works that aimed to develop techniques for handling technical datasets in domains

such as healthcare, aviation, and social media. We presented recent methodologies developed for

pre-processing and classification of domain-specific data. These studies show that investigating

NLP methods for pre-processing technical logbooks is under-explored. Furthermore, we presented

various studies on transfer learning approaches that were proposed for dealing with limited data

in various domains, and we identified that the use of transfer learning to predictive maintenance

datasets has not yet been explored. Additionally, we analyzed multiple research papers on pre-

training transformer-based language models that previously showed notable performance on various

NLP tasks. Finally, based on the current limitation of examining data augmentation techniques on

technical logbooks, we investigated various suitable data augmentation approaches related to this

work as well.



Chapter 3

MaintNet: Datasets and Tools for

Predictive Maintenance

Chapter Introduction: This chapter introduces the technical datasets and tools utilized in

this research work. As technical logbooks are an important source of information for predictive

maintenance, Section 3.1 provides detail on technical logbooks and the developed open-source

library for technical language resources (MaintNet). Sections 3.1.2 and 3.1.3 also provide discussion

regarding technical logbook datasets’ main features, challenges, and key characteristics. Finally,

in Section 3.2, the details of handling unstructured technical logbook datasets using a developed

pre-processing pipeline are provided as well.

3.1 Technical Event Datasets

As discussed in Chapter 1, maintenance record data is typically proprietary and to the best of our

knowledge, until the start of this research project, there were no freely available tools and libraries

developed to process technical logbook data. This challenge motivated us to provide an open-

source repository to help encourage further study in this area, where we developed MaintNet1, a

collaborative, open-source library for technical language resources with a special focus on predictive

maintenance data [5]. MaintNet is an exception. It is a unique open repository of predictive main-

tenance datasets from multiple domains, such as automotive, aviation and facility. As evidenced in

1https://people.rit.edu/fa3019/MaintNet/

21
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Table 3.1, the datasets in MaintNet are, nonetheless, small – ranging from a few hundred instances

for automotive maintenance to nearly 75, 000 instances for facilities maintenance.

Figure 3.1: Overview of MaintNet language resources that include technical data, domain-specific

abbreviation dictionaries, morphosyntactic annotation, and term banks.

MaintNet Features: Predictive maintenance datasets are hard to obtain due to the sensitive

information they contain. Therefore, we worked closely with the data providers to ensure that

any confidential and sensitive information in the datasets remained anonymous. In addition to the

datasets as shown in Figure 3.1, MaintNet further provides its users with domain-specific abbre-

viation dictionaries, morphosyntactic annotation, and term banks. The abbreviation dictionaries

contain abbreviations validated by domain experts. The morphosyntactic annotations contain a

part of speech (POS) tag, compound, lemma, and word stems. Finally, the domain term banks

contain a collected list of terms that are used in each domain along with a sample of usage in the

corpus. MaintNet also provides a webpage tool for users to communicate with each other and the

project developers; as well as providing resources to share with the community (shown in Figure

3.3). We hope this will help further facilitate discussion and research contribution in this important

and under-explored area of research. Furthermore, MaintNet provides users with corpora and a

search feature (shown in Figure 3.2) that helps to identify domain terms or information through

the platform.
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Figure 3.2: Overview of MaintNet technical language dataset.

Figure 3.3: Overview of MaintNet discussion forum that helps the research community to collabo-

rate regarding technical language resources.
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In this work, we used a set of 7 logbook datasets (as shown in Table 3.1) from the aviation,

automotive, and facility domains (available at MaintNet [5]). These datasets were: 1) Aviation

maintenance (Avi-Main) which contains seven years of maintenance logbook reports describing

problems and actions collected by the University of North Dakota aviation program on aircraft

maintenance that were reported by the mechanic or pilot; 2) Aviation accident (Avi-Acc) which

contains four years of aviation accident and reported damages; 3) Aviation safety (Avi-Safe) which

contains eleven years of aviation safety and incident reports; Accidents were caused by foreign

objects/birds during the flights which led to safety inspection and maintenance, where safety crews

indicated the damage (safety) level for further analysis; 4) Automotive maintenance (Auto-Main)

is a single year report with maintenance records for cars; 5) Automotive accident (Auto-Acc) which

contains twelve years of car accidents and crash reports describing the related car maintenance

issue and property damaged in the accident; 6) Automotive safety (Auto-Safe) which contains four

years of noted hazards and incidents on the roadway from the driver; and 7) Facility maintenance

(Faci-Main) which contains six years of logbook reports collected for building maintenance.

Dataset Instance N. of Cls
Class Size Distribution

Minimum Median Average Maximum

Avi-Main 6,169 39 21 56 158 1,674

Avi-Acc 4,130 5 179 966 826 1,595

Avi-Safe 17,718 2 2,134 8,859 8,859 15,584

Auto-Main 617 5 23 48 123 268

Auto-Acc 52,707 3 1,085 11,060 17,569 40,562

Auto-Safe 4,824 17 86 213 284 678

Faci-Main 74,360 70 25 303 1,062 10,748

Table 3.1: The overview of number of classes (N. of Cls), and class size statistics: minimum,

average, median, and maximum for each dataset. (published in [5])

3.1.1 Dataset Description

These technical logbooks consist of short, compact, and descriptive domain-specific English texts

(for instance ranging between 2 and 20 tokens on aviation maintenance) including abbreviations,

terminologies and domain-specific words. An example instance from Table 3.3, r/h fwd upper

baff seal needs to be resecured, shows how the instances for a specific issue class are comprised

from specific vocabulary (less ambiguity), and therefore contain a high level of granularity (level
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of description for an event from multiple words) [85]. Also, the instances such as “eng light on,

remoev hyd lines, leak note” in aviation maintenance data (Avi-Main) or “ckd fire ext throughout

bldg” in facility maintenance (Faci-Main) contains domain-specific abbreviations (eng, hyd, bldg),

or misspelling (remoev) that briefly forms the description regarding specific event type.

Dataset
Token Size Distribution

Minimum Median Average Maximum

Avi-Main 2 11 13 19

Avi-Acc 4 12 14 80

Avi-Safe 1 14 19 56

Auto-Main 2 4 7 32

Auto-Acc 2 4 5 6

Auto-Safe 1 24 25 55

Faci-Main 1 17 30 459

Table 3.2: Token size distribution: minimum, average, median, and maximum for each dataset.

Further, technical logbook datasets in these different domains contain terms and abbreviations that

are similar or identical but with different meanings when appearing in a different domain, and are

non-standard to typical pre-processing pipeline packages. For example, in the instance “while in

fl, after performing a few high power man” where fl refers to the flight level and man refers to

manual, rather than to their typical expansion (Florida) or lexical sense (male individual). Further

highlighting the non-standard lexicon of these datasets, Figure 3.4 and 3.5 provides the top 10 most

frequent words in the domains of aviation, automotive and facility on maintenance, accident and

safety datasets.

An instance in the logbook can be formed as a complete description of the technical event (such

as a safety or maintenance inspection) like: #2 & #4 cyl rocker cover gsk are leaking, or it might

contain an incomplete description by solely referring to the damaged part/section of machinery

(hyd cap chck eng light on) using few domain words. In either form of the problem description,

the given annotation (label) is at the issue type-level, e.g., baffle damage. Table 3.3 shows multiple

examples with associated instances.

Table 3.1 and Table 3.2 present statistics for each dataset, in terms of the number of instances, num-

ber of classes, and the minimum, average, median and maximum class and token size distribution

to represent how imbalanced the datasets are.
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Example Instance of Technical Logbook Entry Tech. Issue Label Abbr., Misspelling, Term.

(1) AFT ON TAXI, WING STRUECK FUEL TRUCK, CHANDLER, AZ SUBSTANTIAL DAMAGE AFT, WING, STRUECK, FUEL

(1) AIRCRAFT ON ROLLOUT, GEAR COLLAPSED, MURFREESBORO, TN UNKNOWN ROLLOUT, GEAR, TN

(1) AIRCCRAFT ON LANDING, GEAR COLLAPSED, ABILENE, TX MINOR DAMAGE AIRCCRAFT, GEAR, TX

(1) LANDING AIRCRAFT LOST ALTITUDE WHILE TURNING BASE TO FINAL SUBSTANTIAL DAMAGE ALTITUDE

(1) AIRCRAFT RIGHT GEAR CATCH FIRE ON RWY DALLAS TX MINOR DAMAGE GEAR, RWY, TX

(2) R/H FWD UPPER BAFF SEAL NEEDS TO BE RESECURED BAFFLE DAMAGE R/H, FWD, BAFL

(2) BOTH ENGS, ALL ROCKER COVEERS LOOSE ROCKER COVER LEAK ENGS, ROCKER, COVEERS

(2) WHEN RPM SET IN IDLE RANGE, ENG KICKS & SPUTTERS AS IF FU ENGINE FAILURE RPM,ENG

(2) SMALL CRACK NOTED ON RIGHT AFT BAFFL OF RIGHT ENG ON IB SID BAFFLE CRACK BAFFL, ENG, IB, SID

(2) LEFT ENG, LEFT AFT BAFFLE ANGLE BRACKET IS CRACKED BAFFLE BRACKET ENG, AFT, ANGLE, BRACKET

(2) LEFT ENG I/B BAFFLE INTERCONNECT ROD BROKEN BAFFLE LOOSE ENG, I/B, BAFFLE, ROD

(2) OVERSPEED ENGINE BY 20 RPM FOR NO MORE THAN 10 SEC ENGINE OVERSPEED ENGINE, RPM

(2) CYLINDER #1 BAFF CRACKED AT SCREW SUPPORT BAFFLE DAMAGE BAFF, CYLINDER, SCREW

(3) PM SERVICES CHECK TIRES FOR LEAKS CHECK PLOW BATT PM SERVICE PM,TIRES, PLOW, BATT

(3) DIESEL FUEL LEAK UNDER CAB, L/R PACKER PISTON LEAKS DRIVER REPORTED DIESEL, CAB, L/R, PACKER

(3) CHECK OIL OR TRANS LEAK SPINNER LIGHT ADJ CONV CHAIN PLOW DRIVER REPORTED OIL, SPINNER,CONV

(3) CHECK L/R OUTER TIRE, AND GAS PADDLE PM SERVICE L/R, GAS, PADDLE

(3) PLOW DONT WORK ROAD CALL CK BATTERY BREAKDOWN PLOW,CK, BATTERY

(4) FAILURE TO YIELD RIGHT, OVE CORRECTING OVER STEERING DRIVING ISSUE OVE, STEERING

(4) MOTORISTS REGULARLY ILLEGAL U-TURNS IN R/HOUR STOP SIGN RUNNING U-TURNS, R/HOUR

(4) PRETTY CONSISTENT SPEEDING ALL HOURS OF THE DAY SPEEDING SPEEDING

(4) CARS TRYING TO GET TO THIS INTERSECTION ON THE REGULAR BLOCKING CROSSWALK CARS

(4) EXCESSIVE SPEEDING ALONG ARKANSAS SPEEDING SPEEDING

(5) THE A/C UNIT IN THE KITCHEN ON 3TH FLOOR DMG/LEAK BUILDING PM A/C, DMG

(5) RESET BOILER #2 TMER, CHECKED BLDG. THROUGHOUT PREVENTIVE MAINT BOILER, BLDG

(5) CLEANED AROUND THE EXTERIOR OF THE BLDG SERVICE BLDG

(5) REPL LEAKING THREE SECTION HOT WATER BOILER BOILER REPL, BOILER

(5) REPL DOOR CLOSER ON HALLWAY LEADING INTO THE FORENSIC BAY DOOR REPL, DOOR

(6) DISREGARDED THE SIGNAL OR REGISTRAR SIGN UNKNOWN SIGNAL, SIGN

(6) BRAKE FAILURE OR DEFECTIVE NON-INCAPACITATING BRAKE

(6) IMPROPER LANE USAGE UNKNOWN LANE

(7) ABNORMALITES NOTE FAN BLAD BEND OUTWARD POST FLIGHT INSP CAUSED DAMAGE FAN, BLAD,INSP

(7) ENG PARAMETERS NORMAL, BUT NEEDS INSP NO DAMAGE ENG, INSP

(7) ANGLE OF ATTACK INDICATOR BROKEN RT SIDE OF A/C CAUSED DAMAGE INDICATOR, RT, A/C

Table 3.3: Example instances of technical logbook entries spanning the aviation accident (1),

aviation maintenance (2), automotive maintenance (3), automotive safety (4), facility maintenance

(5), automotive accident (6), and aviation safety (7) datasets. Each instance shows how domain-

specific terminology (Term.), abbreviations (Abbr.), and misspelled words (in bold font) are used

by the domain expert, and also illustrates some of the event types covered.
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Figure 3.4: Top 10 frequency of words used in the aviation maintenance (Avi-Main), aviation safety

(Avi-Safe), automotive maintenance (Auto-Main), and automotive safety (Auto-Safe) datasets rep-

resenting the nature of such technical logbook data.
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Figure 3.5: Top 10 frequency of words used in the aviation accident (Avi-Acc), automotive accident

(Auto-Acc), and facility maintenance (Faci-Main) datasets representing the nature of such technical

logbook data.
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3.1.2 Dataset Characteristics

Further characteristics of these log entries include compound words (antifreeze, engine-holder, drif-

tangle, dashboard). Many of these words (e.g., a compound word: dashboard) essentially represent

the items, or domain-specific parts used in the descriptions. Additionally, function words (e.g.,

prepositions) are important and removing them could alter the meaning of the entry. The logbook

datasets also have both the following shared and distinct characteristics:

Shared Characteristics: Each instance contains a descriptive observation of the issue and/or

the suggested action that should be taken (eng inspection panel missing screw). Each instance

also refers to maintaining a single event, which means the recognized problem applies to the only

single-issue type. As an example, the instance cyl #1 baff cracked at screw support & forward baff

below #1 includes a combination of sequences that refers to the location and/or specific part of the

machinery.

Distinct Characteristics: In each domain, terminologies, a list of terms, and abbreviations are

distinct, and an abbreviation can have different expansion depending on the domain context [110],

e.g., a/c can mean aircraft in aviation and in the automotive domain air conditioner. However, the

abbreviations and acronyms of the domain words (e.g., atc - air traffic control) in these technical

datasets should not be approached as a word sense disambiguation problem as they require character

level expansion.

3.1.3 Technical Logbook Challenges

There are various key challenges related to technical logbook data that make it difficult for off-the-

shelf NLP pipelines to handle, where most of these problems regarding the nature of the logbook

data are discussed in Sections 3.1.1 and 3.1.2 in detail. In general language corpus (e.g., news text,

Wikipedia text), the instance usually follows standard formatting and structure that current NLP

models (e.g., pre-trained language models) can process properly. However, the written description

in the technical logbook lacks such a standardized structure due to the different writing formats

that domain experts use while describing the observed issue during an inspection.

Furthermore, the aforementioned non-standard format of technical logbooks poses various chal-

lenges to the model that we are developing where following is a list of the main challenges that

need to be considered:
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1. Utilizing various domain-specific abbreviations and acronyms that might be specific to each

domain (e.g., AGL – Above Ground Level) and dropping or substituting any character can

alter the meaning (e.g., AGL to AL – Approach Lights or ALS – Approach Lighting System);

2. Using uncommon syntax and parts of speech sequences (e.g., tires, lights testing showed

multiple issues) or contractions (e.g., needn’t – need not);

3. Using misspelling or dropped words in the description which can be inaccurately seen as

abbreviations (e.g., fast where dropped to: fas – final approach segment);

4. Using problem descriptions of varying length that can consist of a few tokens that describe

the same issue (e.g., engine failed, engine not working properly);

3.2 Technical Logbook Pre-processing

One of the bottlenecks of automatically processing logbooks for predictive maintenance systems is

that most of these datasets are not annotated with the reason for maintenance or a categorization

of the issue type. Furthermore, as discussed in Section 1.1, most standard NLP pipelines for pre-

processing and annotation are trained on standard contemporary corpora (e.g., newspaper texts,

novels) struggle to address most domain-specific terminology, abbreviations, and non-standard

spelling present in logbook datasets. To address this issue, we implemented several pre-processing

steps to clean and extract as much information from logbooks as possible. The pipeline is shown

in Figure 3.6.

The process starts with text normalization, including lowercasing, stop word and punctuation

removal, and treating special characters with NLTK’s [17] regular expression library, followed by

tokenization (NLTK tokenizer), stemming (Snowball Stemmer), and lemmatization (WordNet [83]).

With the use of collected morphosyntactic information, POS annotation is carried out with the

NLTK POS tagger. Term frequency-inverse document frequency (TF-IDF) is obtained using the

gensim tfidf model [99].

Our analysis of the logbooks found that many of the misspellings and abbreviations lead to incorrect

or non-existent dictionary look ups. To overcome this issue, we explored various state-of-the-art
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Figure 3.6: The components in MaintNet’s processing and information extraction pipeline: pre-

processing, document clustering, and evaluation. (published in [6])

spellcheckers including Enchant2, Pyspellchecker3, Symspellpy4, and Autocorrect5.

Given the inaccuracy of existing techniques, we developed methods of correcting syntactic errors,

typos, and abbreviated words using a Levenshtein distance algorithm [63]. This method uses a

dictionary of domain-specific words and maps the various possible misspelled words into the correct

format by selecting the most similar word in the dictionary. The Levenshtein algorithm was chosen

over other distance metrics (e.g., Euclidian, Cosine) as it allows us to control the minimum number

of string edits and it is widely used in spell checking [30].

WordNet was used to lemmatize the document, however, it requires defining a POS tagger param-

eter which we want to lemmatize (the WordNet default is “noun”). As the maintenance instances

typically consist of verb, noun, adverb and adjective words that define a problem, action and oc-

currence, by using “verb” as the POS parameter, there is an issue of mapping important noun

words such as “left” (e.g., left engine) to “leave” or “ground” to “grind”. To resolve this issue, we

created an exception list using developed morphosyntactic information for the WordNet lemmatizer

to ignore mapping words which could be multiple parts of speech.

2https://www.abisource.com/projects/enchant/
3https://github.com/barrust/pyspellchecker
4https://github.com/wolfgarbe/SymSpell
5https://github.com/fsondej/autocorrect
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Finally, we have performed an extrinsic evaluation of the developed pre-processing pipeline by

evaluating its impact on POS tagging. To carry out this evaluation, we randomly selected 500

instances of the aviation maintenance (Avi-Main) dataset to serve as our gold standard. A North-

American English native speaker working for the project annotated the 500 instances using the

Penn Treebank tagset. We made this gold standard available to the community in MaintNet 6. We

compared the performance of three available POS taggers: NLTK [17], Stanford CoreNLP [74] and

TextBlob 7 trained on the raw and pre-processed versions of the Avi-Main dataset and evaluated

on raw and pre-processed versions of the gold standard.

3.2.1 Results of Pre-processing

Table 3.4 presents the results of our proposed Levenshtein spellchecking method compared to other

techniques in random samples of 500 instances from each of the 5 datasets. The results are reported

in terms of success rate showing that the Levenshtein (Leven) algorithm outperforms the Enchant

(Ench), Pyspellchecker (Spell), and Autocorrect (Auto) spell checkers.

Code Token Miss Ench Spell Auto Leven

Avi-Main 3299 289 86% 61% 73% 98%

Avi-Safe 6059 828 84% 56% 68% 91%

Auto-Main 2599 266 69% 27% 49% 95%

Auto-Acc 2422 169 87% 59% 77% 97%

Faci-Main 7758 926 83% 63% 59% 93%

Table 3.4: Success rate of spell checkers on 500 instances per dataset. Token stands for total tokens

and Miss stands for misspelled tokens. (published in [6])

Table 3.5 presents the results of the performance comparison of the three available POS taggers in

terms of accuracy. Stanford CoreNLP obtained the best results among the three POS taggers with

91% and 87% accuracy on the processed and raw versions of the data respectively. The results

show an improvement of 4 percentage points in the performance of each of the three POS taggers

when annotating MaintNet’s pre-processed data confirming the importance of these pre-processing

methods.

6https://people.rit.edu/fa3019/MaintNet/datasets
7https://textblob.readthedocs.io/en/dev/
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POS Tagger Raw Processed Difference

NLTK 77% 81% +4%

Stanford 87% 91% +4%

TextBlob 77% 81% +4%

Table 3.5: Results of three POS taggers annotating raw and pre-processed versions of the gold

standard. (published in [6])

3.3 Chapter Summary

As discussed in Chapter 1, technical logbooks are proprietary and very hard to obtain due to the

unique nature and structure of these datasets. In this work, we developed an open-source repos-

itory of technical language resources (MaintNet) with a special focus on predictive maintenance

data to address this challenge. MaintNet is an open repository that contains resources from various

domains of aviation, automotive, and facility. MaintNet provides the user with several features

such as domain-specific abbreviation dictionaries, morphosyntactic annotation, term banks, and a

webpage tool for communicating with researchers about further discussion and research contribu-

tion. We also discussed the shared and distinct characteristics of these technical datasets. Based

on the description provided in Section 3.1.3, technical logbooks contain non-standard languages

and grammar that challenge off-the-shelf NLP pipelines to process. Therefore, we developed a

new pre-processing pipeline to handle these unstructured technical datasets and extract as much

information as possible from these datasets and utilize them in various NLP tasks (which answers

RQ1). We further compared the performance of various POS taggers (NLTK, Stanford CoreNLP,

and TextBlob) on the technical logbook dataset (Avi-Main) and the outcome indicated outperfor-

mance of Stanford CoreNLP compared to the other POS taggers.



Chapter 4

Technical Logbook Clustering and

Classification

Chapter Introduction: This chapter provides details of methods and specific techniques used in

this doctoral research work to extract important information from historical maintenance data and

utilized in various methods. This includes implementing various text clustering techniques applied

to technical logbooks to address the problem of lack of annotation in these datasets (Section 4.1).

Furthermore, examining various strategies to address the extreme class imbalance in these technical

datasets and comparing the performance of various event classification models that are discussed

in Section 4.2.1 as well.

4.1 Technical Logbook Clustering

By employing the pre-processing pipeline discussed in Section 3.2, we cleaned the technical logbook

datasets by converting non-standards to a standard format and then further implemented popular

clustering algorithms and applied them to the datasets. The motivation behind this is that most

logbook data available is not annotated, which requires a domain expert to group instances into

categories and text clustering techniques were used to help in this process. Furthermore, it should be

noted that evaluations of text clustering outcomes were performed as well to provide a comparison

for which techniques could properly group these technical event descriptions in logbooks based on

their similar semantic information. For instance, the desired outcome of clusters that could group

problem/event descriptions such as “cylinder cover leak”, “cylinder intake leak” and “cylinder

34
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gasket leak” together would be considered a suitable clustering technique’s outcome.

We first converted the terms and words into a numerical representation using libraries such as

tfidfvectorizer [93] resulting in a large matrix of document terms (DT). We used truncated singular

value decomposition (SVD) [72] known as latent semantic analysis (LSA), to perform a linear

dimensionality reduction. We chose truncated SVD (LSA) over principal component analysis (PCA)

[36] in our system, due to the fact LSA can directly be applied to our tfidf DT matrix and it

focuses on document and term relationships where PCA focuses on a term covariance matrix

(eigendecomposition of the correlation).

We experimented with different 4 clustering techniques: k-means [50], Density-Based Spatial Clus-

tering of Applications with Noise (DBSCAN) [37], Latent Dirichlet Analysis (LDA) [122], and

hierarchical clustering [2]. For comparison of the results, the silhouette and inertia metrics [40]

were used to determine the number of clusters for k-means (both provided similar results), and

perplexity [40] and coherence [122] scores were used for LDA. DBSCAN and hierarchical clustering

do not require a predetermined number of clusters.

For evaluation, we used a standard measurement of cluster cohesion including high intra-cluster

similarity and low inter-cluster similarity. We chose 3 different similarity algorithms including

Levenshtein [57], Jaro-Winkler [124] , and Cosine [40] to calculate intra- and inter-cluster similarity.

The cosine similarity metric is commonly used and is independent of the length of document, while

Jaro-Winkler is more flexible by providing a rating of matching strings. We collected human

annotated instances by a domain expert to serve as our gold standard, and these are provided on

MaintNet to encourage research into improving unsupervised clustering of maintenance logbooks.

We further utilized the purity metric for measuring the quality of the clusters by calculating the

given number of accurately assigned documents divided by the total number of documents [75].

4.1.1 Results of Logbook Clustering

Figure 4.1 shows the empirical analysis of the four clustering techniques with and without our ad-

ditional data pre-processing steps (Levenshtein-based dictionary spellchecking and the lemmatizer

list previously discussed in Section 3.2) on the Avi-Main dataset. We examined the distribution of

cluster sizes, the number of clusters, and the number of outliers (in the case of DBSCAN). Using

a domain-based spellchecker and the modified lemmatizer list improved the purity and overall ac-

curacy of the clusters by increasing the means of intra-cluster similarity and decreasing the means

of inter-cluster similarity.
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Figure 4.1: Results of the clustering methods. From left to right, calculated mean and standard

deviation of intra- and inter-cluster similarity, cluster size distribution, number of clusters generated

by each method and purity on Avi-Main dataset. (published in [6])

DBSCAN provided more accurate clusters in comparison to other algorithms while also detecting

outliers, which could help identify if any new issues are introduced to the maintenance logs or if

there are safety issues reported by the pilot during flight operation. K-means provided somewhat

comparable results to DBSCAN, but it was not able to detect outliers and determining the number

of clusters (K) is challenging, especially as this number may change over time as more issues

are reported. Hierarchical clustering performed poorly, where similar issues were found to be

distributed across different clusters. It was also more computationally expensive than the other

methods. Clusters generated with LDA were better than hierarchical clustering, however LDA

clustered some of the documents that contain the same equipment with different types of issues

description together, resulting in clusters with a mixture of issue types.
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4.2 Technical Event Classification

4.2.1 Handling Class Imbalance

Collecting additional data to augment datasets is a common approach for tackling the problem

of skewed class distributions. However, as discussed earlier in Chapter 1, technical logbooks are

proprietary and very hard to obtain. In addition, each domain captures domain-specific lexical

semantics, preventing the use of techniques such as domain adaption [73] to apply a large class

data from one technical domain to another. For example, instances that describe an engine failure

in the aviation domain are distinct from engine failure instances reported in the automotive domain.

In this research work, we applied five different methods for selecting training data for the models

to analyze their effects on classification performance: (1) under(down)- and (2) over-sampling, (3)

random down-sampling, (4) a feedback loop strategy, and (5) a baseline strategy which simply uses

all available data.

Re-sampling Under- and over-sampling are re-sampling techniques [76] that were used to create

balanced class sizes for model training. For over-sampling, instances of the minority classes are

randomly copied so that all classes would have the same number of instances as the largest class. For

under-sampling, observations are randomly removed from the majority classes, so that all classes

have the same number of instances as the smallest class. For both approaches, we first divided our

datasets into test and training sets before performing over-sampling to prevent contamination of

the test set by having the same observations in both the training and test data.

Feedback Loop To address class imbalances in text classification, this work adapted the ap-

proach in Bowley et al. [19] from the computer vision domain. The goal of this approach is not

only to alleviate the bias towards majority classes but also to adjust the training data instances

such that the models are always being trained on the instances that was performing the worst on.

It should be noted that this approach is very similar to adaptive learning strategies which have

been shown to aid in human learning [52,81].

Algorithm 1 presents pseudocode for the feedback loop. In this process, the active training data (the

data used to actually train the models in each iteration of the loop) is continually resampled from

the training data. The model is first initially trained with an undersampled number of random

instances from each class, which becomes the initial active training data. The model M then
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Algorithm 1 Feedback Loop Pseudocode

▷ GetsMCS random instances from each class

function SampleRandom(C,MCS)
Array A
for i← 1 to size(C) do

shuffle(Ci)
A ← A∪ getFirstN(MCS, Ci)

return A

▷ GetsMCS instances from each class with the worst error

function Resample(C,M,MCS)
Array A
for i← 1 to size(C) do

calculateError(Ci)
sortByError(Ci)
A ← A∪ getFirstN(MCS, Ci)

return A

Input: Training Data D = Instance(1, 2, . . . , N)

Input: Feedback Loop Iterations FLI
Input: Epochs Per Loop Iteration FLE
Input: Minimum Class SizeMCS

▷ Divide training data by class

Array C ← splitByClass(D)

▷ Get initial active training data A randomly

Array A ← SampleRandom(C,MCS)
ModelM
for l← 1 to FLI do

▷ Train the model for the number of epochs per iteration

M← train(M, FLE, A)
▷ Update the active training data

A ← Resample(D,M,MCS)

Output: M

performs inference over the entire training set, and then selects MCS instances from each class Ci

which had the worst error during inference, where MCS is the minority (smallest) class size. The

model is then retrained with this new active training data and the process of training, inference

and selection of the MCS worst instances repeats for a fixed number of feedback loop iterations,

FLI. In this way the model is always being trained on the instances it has classified the worst.

To measure the effect of resampling the worst performing instances, the feedback loop approach

was also compared to a random downsampling (DS) loop, where instead of evaluating the model

over each instance and selecting the worst performing instances, MCS instances from each class
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are instead randomly sampled. As performing inference over the entire training set adds overhead,

a comparison to the random DS loop method would show if performing this inference is worth the

performance cost over simple random resampling. This approach is the same as Algorithm 1 except

that SampleRandom is used instead of Resample in the feedback loop. Section 4.2.3 describes how

the number of training epochs and loop iterations were determined such that all the training data

selection methods are given a fair evaluation with the same amount of computational time.

Evaluation Metrics For imbalanced datasets, simply using precision, recall or F1 score metrics

for the entire datasets would not accurately reflect how well a model or method performs, as they

emphasize the majority classes. To overcome this, alternative evaluation metrics to handle the

class imbalance problem were used, as recommended by [14]. Specifically, we report the models

performance based on precision, recall, and F1 score by utilizing a macro-average over all classes,

as this gives every class equal weight, and hence reveals how well the models and training data

selection strategies perform.

4.2.2 Model Architecture and Training

Different machine learning methods were considered for technical event/issue classification (e.g.,

engine failure, turbine failure). Each instance is an individual short logbook entry (approximately 12

words on average per instance including function words), as shown in Table 3.2. The methods used

in this study were a deep neural network (DNN) [32], a Long Short-Term Memory (LSTM) [112], a

recurrent neural network (RNN) [90], a convolutional neural network (CNN) [54], and BERT [33].

Deep Neural Network A deep artificial neural network (DNN), as described by Dernoncourt

et al. [32], can learn abstract representation and features of the input instances that would help to

achieve better performance on predicting the issue type in the logbook dataset. The DNN used was

a 3 layer, fully connected feed forward neural network with an input embedding layer of dimension

300 and equal size number of words followed by 2 dense layers with 512 hidden units with ReLU

activation functions followed by a dropout layer. Finally, we added a fully connected dense layer

with size equal to the number of classes, with a SoftMax activation function.

Long Short-Term Memory An LSTM RNN was also used to perform a sequence-to-label

classification. As described by Suzgun et al. [112] LSTM RNNs utilize several vector gates at each
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state to regulate the passing of data by the sequence which enhances the modeling of the long-term

dependencies. We used a 3 layer LSTM model with a word embedding layer of dimension 300 and

the equal size number of words followed by an LSTM layer with setting the number of hidden units

equal to the embedding dimension, followed by a dropout layer. Finally, we added a fully connected

layer with size equal to the number of classes, with a SoftMax activation function.

Convolutional Neural Network Convolutional neural networks (CNNs) have demonstrated

exceptional success in NLP tasks such as document classification, language modeling, or machine

translation [69,107]. As Xu et al. [126] described, CNN models can produce consistent performance

when applied to the various text types such as short sequences. We evaluated a CNN architecture

[54] with a convolutional layer, followed by batch normalization, ReLU, and a dropout layer, which

was followed by a max-pooling layer. The model contained 300 convolutional filters with the size

of 1 by n-gram length pooling with the size of 1 by the length of the input sequence, followed by

concatenation layer, then finally connected to a fully connected dense layer, and an output layer

equal to the size of the dataset class using a SoftMax activation function.

Bidirectional Encoder Representations We also evaluated using pre-trained uncased Bidi-

rectional Encoder Representations (BERT) for English [33]. We fine-tuned the model, and used a

word piece based BERT tokenizer for the tokenization process and the RandomSampler and Se-

quentialSampler for training and testing respectively. To better optimize this model, a schedule

was created for the learning rate that decayed linearly from the initial learning rate we set in the

optimizer to 0.

4.2.3 Experimental Settings

Datasets and Baselines First, the technical text pre-processing pipeline [6] (discussed in Sec-

tion 3.2) was applied, which comprises domain-specific noise entity removal, dictionary-based stan-

dardization, lexical normalization, part of speech tagging, and domain-specific lemmatization. We

divided the datasets selecting randomly from each class independently to maintain a similar class

size distribution, using 80% of the instances for training and 20% of the instances for testing data.

For feature extraction, two methods were considered: a bag-of-word model (n-grams:1) [93] and

pre-trained 300 dimensional GloVe word embeddings [95].
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Hyperparameter and Tuning The coarse to fine learning (CFL) approach [62] was used to set

parameters and hyperparameters for the DNN, LSTM, and CNN models. Experiments considered

batch sizes of 32, 64, and 128, an initial learning rate ranging from 0.01 to 0.001 with a learning

decay rate of 0.9, and dropout regularization in the range from 0.2 to 0.5 in all models, as well as

ReLU and SoftMax activation functions [86], categorical cross-entropy [130] as the loss function,

and the Adam optimizer [55] in the DNN, LSTM, CNN and BERT models. Based on experiments

and network training accuracy, a batch size of 64 and drop out regularization of 0.3 was selected

for model training.

Each model with each training data selection strategy was trained 20 times to generate results

for each dataset. To ensure each training data selection strategy was fairly compared with a

similar computational budget, the number of training epochs and loop iterations (if the strategy

had a feedback or random downsampling loop) were adjusted so that the total number of training

instances evaluations each model performed was the same. For each dataset, the number of forward

and backward passes, ‘T’ for 100 epochs of the baseline strategy was used as the standard. As an

example, Table 4.1 shows how many loop iterations, epochs per loop, and inference passes were

done for each training data selection strategy on the Auto-Safe dataset. Given the differences

between the min and max class sizes it was not possible to get exact matches but the strategies

came as close as possible. We counted each inference pass for the feedback loop the same as a

forward and backward training pass, which actually was a slight computational disadvantage for

the feedback loop, as a forward and backward pass in training takes approximately 1x to 2x the

time as an inference pass.

Dataset L EPL LTI INM T

Baseline 1 100 3,859 0 385,900

Downsampling 1 329 1,173 0 385,917

Oversampling 1 42 9,214 0 386,988

Random DS Loop 33 10 1,173 0 387,090

Feedback Loop 25 10 1,173 3,859 389,725

Table 4.1: Details regarding different training process using the various methods for handling the

unbalanced class in automotive safety (Auto-Safe) dataset with 17 total classes. Loop (L), Epochs

Per Loop (EPL), Active Training instance Size (LTI), Inference for New Misclassified (INM) and

Total Instances Evaluated (T). (Published in [4])
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4.2.4 Results of Handling Class Imbalance

Table 4.2 shows a comparison between the baseline and the four different class balancing methods

(over-sampling, under-sampling, the random down-sampling (DS) loop and the feedback loop).

Based on these outcomes, the feedback loop strategy almost entirely outperforms the other methods

over all datasets and models, showing that performing inference over the training set and reselecting

the training data from the worst performing instances does provide a benefit to the learning process.

A plausible explanation is that this strategy does not introduce bias into the larger class and also

does not effect the minority class size distribution. It also does not waste training time on instances

the model has already well learned.

Table 4.2 also shows the empirical analysis of the four classification models, with the model and

training data selection strategy providing the overall best results shown in bold and italics. Using

technical text pre-processing techniques described in Section 4.2.3, and the feedback loop strategy

described in Section 4.2.1, the precision, recall, and F1 score improved compared to the baseline

performance. The CNN model outperformed the other algorithms with improved precision, recall,

and F1 score for almost all datasets except for Avi-Main, where BERT had the similar results, and

Auto-Main where CNN and BERT tied. This is interesting, given the current popularity of the

BERT model, however it may be due to the substantial lexical, topical, and structural linguistic

differences between the technical logbook data and the English corpus that BERT was pre-trained

on.

Furthermore, we conducted the Mann-Whitney U-test of statistical significance by using the F1

scores of each of the 20 repeated experiments of the classification models, using the baseline and

the feedback loop approach as the two different populations. The outcomes are shown in Table 4.3,

with the differences being highly statistically significant.

4.2.5 Discussion of Handling Class Imbalance

To investigate the optimal strategies for dealing with these imbalanced technical datasets, we stud-

ied various methods on how to process the data, extract features, and classify the type of event.

Regarding the discussion provided in Chapter 3 about the nature of such a dataset, there are key

challenges that effect the performance of employed algorithms. As discussed in Chapter 1, the

extreme class imbalance observed in these technical datasets substantially affects learning algo-

rithms’ performance. To overcome this issue, we first explored oversampling and undersampling,
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Down Over Random Feedback

Dataset Model Baseline (%) Sampling (%) Sampling (%) DS Loop (%) Loop (%)

Pre Rec F1 Pre Rec F1 Pre Rec F1 Pre Rec F1 Pre Rec F1

Avi-Main

DNN 0.90 0.89 0.89 0.67 0.78 0.70 0.90 0.90 0.90 0.90 0.90 0.90 0.93 0.91 0.91

LSTM 0.84 0.85 0.84 0.81 0.83 0.81 0.85 0.84 0.84 0.84 0.84 0.84 0.86 0.88 0.87

CNN 0.93 0.92 0.92 0.89 0.88 0.88 0.94 0.92 0.92 0.93 0.91 0.91 0.95 0.94 0.94

BERT 0.93 0.93 0.93 0.85 0.86 0.85 0.94 0.94 0.94 0.94 0.93 0.93 0.95 0.96 0.95

Avi-Acc

DNN 0.47 0.44 0.43 0.35 0.45 0.35 0.48 0.47 0.47 0.50 0.44 0.46 0.52 0.45 0.48

LSTM 0.38 0.37 0.37 0.35 0.35 0.35 0.39 0.39 0.39 0.38 0.39 0.38 0.40 0.39 0.39

CNN 0.50 0.49 0.49 0.43 0.42 0.42 0.52 0.44 0.47 0.51 0.44 0.47 0.52 0.46 0.48

BERT 0.48 0.42 0.44 0.41 0.40 0.40 0.50 0.44 0.46 0.50 0.44 0.46 0.51 0.45 0.47

Avi-Safe

DNN 0.43 0.41 0.41 0.36 0.36 0.36 0.50 0.50 0.50 0.50 0.49 0.49 0.53 0.51 0.51

LSTM 0.47 0.46 0.46 0.43 0.42 0.42 0.49 0.50 0.49 0.48 0.46 0.47 0.49 0.50 0.49

CNN 0.59 0.57 0.57 0.50 0.50 0.50 0.60 0.59 0.59 0.59 0.59 0.59 0.62 0.61 0.61

BERT 0.50 0.50 0.50 0.44 0.46 0.44 0.54 0.54 0.54 0.53 0.53 0.53 0.56 0.57 0.56

Auto-Main

DNN 0.58 0.45 0.49 0.33 0.49 0.39 0.60 0.55 0.56 0.58 0.54 0.55 0.61 0.55 0.57

LSTM 0.49 0.55 0.51 0.41 0.42 0.41 0.50 0.60 0.54 0.51 0.58 0.54 0.53 0.61 0.55

CNN 0.61 0.61 0.61 0.53 0.53 0.53 0.64 0.64 0.64 0.63 0.64 0.63 0.65 0.64 0.64

BERT 0.60 0.60 0.60 0.54 0.53 0.53 0.63 0.64 0.63 0.63 0.63 0.63 0.64 0.64 0.64

Auto-Acc

DNN 0.43 0.34 0.30 0.35 0.42 0.27 0.39 0.42 0.31 0.40 0.39 0.39 0.48 0.40 0.40

LSTM 0.45 0.39 0.41 0.40 0.40 0.40 0.42 0.41 0.41 0.42 0.40 0.40 0.48 0.41 0.44

CNN 0.46 0.43 0.44 0.44 0.41 0.42 0.49 0.50 0.49 0.50 0.51 0.50 0.51 0.53 0.52

BERT 0.50 0.49 0.49 0.47 0.47 0.47 0.50 0.50 0.50 0.51 0.49 0.50 0.52 0.51 0.51

Auto-Safe

DNN 0.52 0.46 0.48 0.40 0.47 0.41 0.54 0.51 0.51 0.54 0.51 0.51 0.55 0.52 0.53

LSTM 0.40 0.40 0.40 0.38 0.39 0.38 0.41 0.42 0.41 0.41 0.41 0.41 0.43 0.42 0.42

CNN 0.59 0.58 0.58 0.52 0.51 0.51 0.59 0.60 0.59 0.59 0.59 0.59 0.62 0.60 0.61

BERT 0.57 0.56 0.56 0.52 0.50 0.50 0.58 0.56 0.56 0.57 0.57 0.57 0.58 0.59 0.59

Faci-Main

DNN 0.57 0.48 0.50 0.33 0.40 0.34 0.56 0.48 0.50 0.57 0.50 0.53 0.59 0.51 0.54

LSTM 0.56 0.56 0.56 0.53 0.52 0.52 0.59 0.55 0.56 0.59 0.56 0.57 0.63 0.56 0.60

CNN 0.64 0.64 0.64 0.61 0.60 0.60 0.66 0.66 0.66 0.65 0.65 0.65 0.69 0.67 0.68

BERT 0.63 0.64 0.63 0.60 0.60 0.60 0.65 0.64 0.64 0.64 0.65 0.64 0.68 0.67 0.67

Table 4.2: Comparison of handling class imbalance results for the 7 datasets, for the baseline and

four methods to address class imbalance for the four evaluated models (DNN, LSTM, CNN and

BERT). Each model’s macro average performance is shown as precision (Pre), recall (Rec) and F1

score. The best results over the training data selection strategies are shown in bold, and the best

results over all models are additionally in italics. (Published in [4])
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Dataset DNN LSTM CNN BERT

Avi-Main 0.0020 0.0043 0.0002 0.0004

Avi-Acc 0.0011 0.0399 0.0103 0.0015

Avi-Safe 0.0000 0.0023 0.0059 0.0012

Auto-Main 0.0001 0.0181 0.0009 0.0004

Auto-Acc 0.0000 0.0055 0.0001 0.0161

Auto-Safe 0.0003 0.0106 0.0011 0.0083

Faci-Main 0.0002 0.0001 0.0003 0.0005

Table 4.3: Statistical significance of the various classification models between the Baseline approach

and Feedback Loop approach F1 scores using the Mann-Whitney U test. Experiments indicate

statistical significance with a p value of 0.05. (Published in [4])

which both result in balanced class sizes. Undersampling removed portions of dataset that could

be important for certain technical events or issues, which resulted in underfitting and weak gen-

eralization for important classes. On the other hand, oversampling may introduce overfitting in

the minority class, as some of the event types are very short tokens containing domain-specific

words. Following this, to minimize the possibility of overfitting and underfitting, a random down-

sampling loop and a feedback loop were investigated to minimize bias in the training process. It was

found that the added computational cost of the feedback loop inference was worth the reduction

in training time it caused over the random downsampling loop.

The scarce data available in a dataset such as Auto-Main is certainly an issue for deep learning

methods. Examining the accuracy improvement by using the proposed feedback loop strategy,

requires incorporating more instances to the event classes. Similar to any supervised learning

models, we noticed some limitations that could be addressed in future work. As shown in the

previous Chapter (such as Table 3.3), logbook instances contain short text, and utilizing recurrent

deep learning algorithms such as LSTM RNNs which are heavily based on the context leads to

weak performance compared to other algorithms. One possible explanation is that logbooks with

short instances (sequences) are not providing sufficient context for the algorithm to make better

predictions. Another could be that RNNs are notoriously difficult to train [90], and the LSTM

models may simply require more training time to achieve similar results. There is some evidence

for this, as the dataset with the most instances, which also had the second largest number of tokens
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per instance on average was Faci-Main, which is the dataset which the LSTM model had the closest

performance to the CNN and BERT models, and was also the only one which the LSTM model

outperformed the DNN model.

The pre-trained BERT model provided a reasonable classification performance compared to the

other deep learning models, however as BERT is pre-trained on standard language, the performance

when applying to logbook data was not optimal. Training or fine-tunning BERT to technical

logbook data is likely to improve performance as observed in the legal and scientific domains [16,24].

As training or fine-tuning BERT requires large amounts of data, a limitation for fine-tuning a

domain-specific BERT is the amount of logbook data available.

4.3 Chapter Summary

This chapter focused on predictive maintenance and importance of logbook datasets for the tech-

nical event classification task. Technical logbook datasets contain important information regarding

events that occurred and were reported by domain experts, however, most of these datasets are

not annotated with the reason for maintenance or categorization of issue type to utilize for the

development of predictive maintenance systems. To address this challenge, we implemented pop-

ular clustering algorithms including LDA, DBSCAN, Hierarchy, and K-means and applied them

to the logbook datasets. We empirically compared the clustering techniques with various forms of

pre-processing methods and we calculated the intra- and inter-cluster similarity to compare their

accuracy. Based on our analysis, DBSCAN produced high quality of cluster while also detecting

outliers which could be used to identify new issues when becomes available to the system (which

answers RQ2). We further evaluated multiple strategies to address the extreme class imbalance in

these datasets to address RQ3 and we showed that the feedback loop strategy performs best, almost

entirely providing the best results for the 7 different datasets and 4 different models investigated.

We empirically compared different classification algorithms (DNN, LSTM, CNN, and pre-tuned

BERT) to address RQ3.a and the outcomes showed CNN model outperformance compared to the

other classifiers. The methodology presented in this research could be applied to other maintenance

corpora from a variety of technical domains.



Chapter 5

Transfer Learning of Technical

Logbooks

Chapter Introduction: As discussed in Section 2.3, transfer learning approaches have been

applied in various NLP tasks to address key problems such as limited data. As such, this chapter

aims to provide details of exploring the use of transfer learning methods for domain adaptation in

technical event classification to handle the problem of data scarcity, using a variety of technical

logbook datasets. Further details of examining various transfer learning techniques as well as the

experiments and strategies utilized in this research work are also provided in Sections 5.1 and 5.2.

Furthermore, details of exploring multiple similarity measurement techniques to identify the key

relationships in the technical logbook dataset and investigating the impact of similarity of these

corpora on the performance of the event classification model are provided in Section 5.3 as well.

5.1 Transfer Learning Techniques

Text using a modest, small technical dataset, such as the automotive maintenance data, can limit

a model’s generalization capacity and performance. One potential solution could be to utilize a

data augmentation approach to increase the dataset size by generating synthetic data. However,

domain-specific datasets where each domain captures domain-specific lexical semantics – the case

for technical logbooks as illustrated previously – prevents the use of techniques such as domain-

discriminative data selection applied to the smaller domain data class [73]. Furthermore, these

technical datasets are highly imbalanced.

46
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Therefore, we studied four different methods of transfer learning (domain adaptation) using the

seven domain-specific datasets and analyzed their effects on the performance of technical event

classification on the target datasets: (1) a baseline strategy which simply trains the model on a

single dataset, and then also strategies that (2) transfer to a dataset from other sources within the

domain (but different applications), (3) transfer to a dataset from sources with the same application

(but different domains), and (4) transfer from all other sources in the global dataset. Figure 5.1

provides an overview of the process of transferring from the source to the target dataset utilizing

three transfer learning methods in this research work.

Figure 5.1: Process of transfer learning methods for technical logbooks by representing the three

various approaches of transferring within the domain, transferring within an application, and trans-

ferring over the global dataset. The black color (A) represents to application, blue (D) represents

the domain, and brown (G) represents the global transferring method. As an example of transfer-

ring within an application, we train the model on aviation maintenance (Avi-Main) and automotive

maintenance (Auto-Main) source datasets and then take the trained model and transfer it to the

facility maintenance (Faci-Main) data as the target dataset to perform further training and classi-

fication. (Published in [7])

Transferring within a Domain Transferring a learned model within a domain dataset can

benefit the target domain dataset by utilizing knowledge learned from various domain datasets, as

these corpora should have similar vocabularies. In this approach, we train the model on selected

datasets within the domain, and then transfer the model to a different target dataset, where we

continue to train the model to perform event classification. As an example, we can train the model

on the aviation maintenance (Avi-Main) and aviation safety (Avi-Safe) source datasets and then
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take the trained model and transfer it to the aviation accident (Avi-Acc) data as the target dataset,

to perform further training and classification.

Transferring within an Application While datasets within a domain stand to share similari-

ties between their corpora, datasets that share an application may also stand to benefit in a similar

manner, however with a different set of potential vocabulary. This strategy evaluates the impact of

the shared knowledge within an application, where the model is first trained on source datasets from

other domains which share the same application, and then transferred to the target dataset. For

example, the model can be first trained on source dataset of aviation accidents (Avi-Acc) and then

transfer to target domain of automotive accidents (Auto-Acc) for further training and classification.

Transferring over the Global Dataset Finally, to provide another option to address the

potential that transfer learning may be improving performance simply because the model had more

data to train on [80], a global transfer strategy is investigated. In this strategy, given the seven

datasets available, we considered every single dataset as a target, and then initially train the model

on every other dataset available.

5.2 Model Architecture and Training

For the event identification task, we considered a supervised machine learning method to classify the

issue type (e.g., cylinder damage, intake gasket leak). As mentioned above, the event description

in a dataset contains short text and has a single event category. The machine learning model

used in this study is a convolutional neural network (CNN) [54] model that has shown success

in several NLP tasks such as question classification [107] or sentiment analysis [123], and that

further is capable of providing suitable performance while applying it on various sequence types.

Furthermore, we also evaluated it using pre-trained ALBERT [61] for English and we fine-tuned the

model on the downstream task of event identification. We used the ALBERT transformer model

in this work as has previously been shown to achieve high performance in various NLP tasks and

benchmarks using less parameters than other transformers models, and that it also benefits from a

cross-layer parameter sharing property [60].

We trained the CNN architecture proposed by Kim et al. [54] which consists of 100 one-dimensional

convolutional filters with the size of multi n-gram lengths followed by ReLU activation, dropout
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layer, max-pooling layer with a size of 2 by the length of the input sequence and followed by a fully

connected dense layer and output layer set to class size with SoftMax activation function.

As discussed in Chapter 1, the technical dataset classes are highly imbalanced in general. Figure 1.2

shows the Avi-Main dataset’ imbalance classes as an example. These characteristics can cause

the classification model to overgeneralize the majority class. To address this issue, we utilized

the feedback loop strategy (discussed in Section 4.2.1) initially proposed by Bowley et al. [19] in

computer vision and which has since been successfully adapted to the NLP domain. This approach

not only mitigates the problem of the classifier preferring larger majority classes but also adjusts

the training data such that the model keeps training on the worst performing training instances.

5.3 Datasets and Baselines

To address the issues with technical logbook datasets noted in Section 3.1.1, we utilized the text

pre-processing pipeline [6] (discussed in Section 3.2) which is capable of domain-based abbreviation

expansion, noise entity removal, lexical normalization, dictionary-based standardization, part of

speech tagging, and domain-specific lemmatization. The dataset is divided into 80% for training

and 20% for testing, and 100 dimensional word embeddings [82] were used for feature extraction.

Baseline The baseline strategy for training the models consisted of training the model on a single

dataset (e.g., Auto-Safe), and then performing the classification task on the 7 datasets. The baseline

strategy does not contain any transfer learning approaches and solely uses the source dataset.

Technical Logbook Similarity Technical logbooks contain different instance sizes and token

sizes, however as described in Section 3.1.1, they contain usually short instances, as well as specific

words, terms, and abbreviations, where they have less ambiguity. These instances in the logbook

dataset also share similar or dissimilar characteristics that would be used in specific terms or abbre-

viations. Each domain dataset has similar terminologies that are shared with other domains (e.g.,

ft - feet), however, some can share similar abbreviations by different semantics (a/c - in aviation

domain: aircraft, in automotive and facility domain: air-conditioner). These shared similarities

and features in the datasets could bring useful information when training the model on a specific

dataset(s) and transferring the learned knowledge between within domains or dataset(s).

Instances in datasets such as those in the aviation domain, contain descriptions regarding problem
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types that are semantically similar to other domain’s dataset such as the automotive domain (e.g.,

engine not start, cylinder compression issue). Evaluation of instance similarity within the logbook

dataset can help to interpret how data are semantically similar in either a word or sentence level.

This can be done by measuring the inter-corpus similarity and identifying corpus homogeneity [22].

We experimented with applying four similarity measures including Levenshtein [57], Jaro-Winkler

[124], Universal Sentence Encoder [23], Gensim Word2vec [100] to compare and extract key relations

between instances in the dataset. In both the Universal Sentence Encoder and Word2vec model,

we utilized the cosine similarity [75] for computations.

Figure 5.2: Heat maps of similarity scores for 4 algorithm including Levenshtein, Jaro-Winkler,

Universal Sentence Encoder, and Word2vec applied on 500 random instances from each domain.

The various color types shown in these figures describe when the similarities between a pair of

datasets are lower or higher where the higher value (with lighter color) defines higher similarity,

and lower value (with darker color) define low similarity. (Published in [7])

The corpus similarity experiment in this study has been done using random sets of 500 instances

from each of seven dataset and we calculated the similarity measurements between instances in

an inter-document form. This means every instance from a selected dataset was compared to the

instances in the other remaining selected datasets to compute the distance. Figure 5.2 shows the
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findings of these analyses in heat maps and further discussion regarding the relationship between

corpus similarity and domain adaptation is provided in Section 5.4.

5.4 Results of Transfer Learning of Technical Logbooks

This section provides a performance analysis of transfer learning between varying dataset types

using the previously described CNN and ALBERT (transformer-based) model. Table 5.1 presents

an evaluation of training only on the source dataset to transferring models trained on other datasets

(either within the domain, within the application, or all other datasets) to that source dataset.

Dataset Model Baseline (%) Domain (%) Application (%) Global (%)

P R F1 P R F1 S P R F1 S P R F1 S

Avi-Main CNN 0.91 0.89 0.89 0.92 0.89 0.90 0.0003 0.89 0.88 0.88 0.1510 0.87 0.87 0.87 0.0472

ALBERT 0.89 0.87 0.88 0.90 0.91 0.90 0.0014 0.88 0.87 0.87 0.1918 0.86 0.85 0.85 0.0040

Avi-Safe CNN 0.88 0.85 0.86 0.89 0.87 0.88 0.0336 0.89 0.82 0.85 0.0066 0.88 0.82 0.85 0.0028

ALBERT 0.87 0.84 0.85 0.88 0.86 0.87 0.0124 0.86 0.82 0.84 0.0092 0.85 0.85 0.84 0.0163

Avi-Acc CNN 0.49 0.51 0.49 0.50 0.51 0.50 0.0056 0.48 0.51 0.48 0.0293 0.48 0.50 0.49 0.2982

ALBERT 0.44 0.48 0.46 0.45 0.50 0.47 0.0094 0.42 0.48 0.45 0.0187 0.41 0.47 0.44 0.0170

Auto-Main CNN 0.64 0.70 0.67 0.67 0.71 0.69 0.0344 0.64 0.68 0.66 0.0246 0.65 0.68 0.67 0.4548

ALBERT 0.59 0.64 0.62 0.61 0.67 0.64 0.0077 0.58 0.61 0.60 0.0170 0.59 0.62 0.60 0.0169

Auto-Safe CNN 0.50 0.45 0.46 0.53 0.49 0.50 0.0002 0.42 0.39 0.40 0.0011 0.44 0.40 0.41 0.0171

ALBERT 0.48 0.46 0.46 0.50 0.48 0.48 0.0026 0.46 0.44 0.44 0.0104 0.47 0.42 0.43 0.0029

Auto-Acc CNN 0.48 0.67 0.49 0.47 0.69 0.50 0.0242 0.47 0.68 0.50 0.0372 0.49 0.69 0.52 0.0084

ALBERT 0.45 0.65 0.47 0.45 0.68 0.47 0.0513 0.46 0.67 0.48 0.0291 0.48 0.67 0.48 0.0285

Faci-Main CNN 0.5 0.70 0.56 - - - - 0.47 0.66 0.51 0.0001 0.45 0.65 0.49 0.0001

ALBERT 0.55 0.69 0.57 - - - - 0.51 0.67 0.54 0.0187 0.49 0.68 0.53 0.0016

Table 5.1: A performance comparison of the various transfer learning experiments. The average

of the final models’ performance across 10 repeated experiments is shown as precision (P), recall

(R), F1 score, as well as statistical significance (S) using the Mann-Whitney U test. Results which

outperform only training on the source dataset are in bold, and the best for a dataset are in bold

and italics. Experiments which showed statistical significance with a p value of 0.05 are also in

bold. (Published in [7])
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Experimental Settings In the experimental process, we used the coarse to fine learning ap-

proach for optimizing parameters and hyperparameters [62]. Hyperparameters for training were

determined by investigating batch sizes of 32, 64, and 128 [77], with an initial learning rate of 0.01

for CNN and 1e-5 for fine-tuning ALBERT model. Further, dropout regularization ranging from

0.2 to 0.4, and ReLU and SoftMax as an activation function [86], and Adam optimizer [55], and

categorical cross-entropy [130] for the loss function were selected. Based on the experiment and

model performance, dropout regulation with a rate of 0.2 and batch size of 32 were selected for the

training.

Experimental Design First, the CNN and ALBERT (fine-tuned) models were trained 10 times

on each source dataset, with the baseline (source) column reporting the average precision (P), recall

(R) and F1 scores of those runs. Following this, 10 CNN and ALBERT (fine-tuned) models were

trained on the other domains, and then each of those 10 models were transferred to the source

dataset for further training (layer freezing was not used). These results are reported in the domain,

application and global columns. Additionally, Mann-Whitney U-Tests of statistical significance

were performed comparing the populations of final losses across the 10 repeated experiments of the

source data, to the final losses of the 10 repeated experiments for each of the transferred runs, which

are reported in the S columns. Based on these experiments, we observed performance improvements

for each dataset.

5.5 Discussion of Transfer Learning of Technical Logbooks

All the datasets in the aviation domain had improved performance when being transferred to

from within the domain with statistical significance, while their performance was degraded when

transfer learning was performed across applications and from the global dataset. Similar results

were found in the automotive domain, where the model performance improved across all datasets

when using the within-domain transfer learning approach, however, interestingly, the automotive

accident (Auto-Acc) dataset also achieved better model performance while transferring over the

application and global datasets, with the best performance coming from the global dataset. For

the other two datasets, within-domain transfer learning found the best results, also with statistical

significance (which answers RQ4). For the facilities maintenance dataset (Faci-Main), within-

domain transfer learning was not possible as there were no other datasets in the domain, and

similar to the aviation dataset, transferring from the application and global datasets also reduced

performance with statistical significance.
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The transfer learning results provide some interesting insights into how transfer learning can be

performed across varying technical logbook datasets. While in all cases, keeping the training

data within a domain provided a statistically significant improvement, in the automotive accident

dataset, utilizing all other training data provided the overall best results. This suggests that while

for the majority of our datasets, adding in additional training data from outside of the domain only

served to confuse the models, but that this is not always the case. Some datasets may still benefit

from simply having more training data due to the nature of that particular classification problem,

or perhaps due to a wider variety of tokens allowing for more similarity to other datasets.

Furthermore, to address RQ4.a, we examined similarity measurement techniques to identify the

key relationships in the aviation, automotive, and facilities domains, as well as investigating the

similarity of these corpora that might lead to lowering or improving the performance of event clas-

sification model. For this reason, we applied the Levenshtein and Jaro-Winkler similarity methods

to compare the similarity of these corpora. However, to further extract the key attributes between

these datasets, we employed the Universal Sentence Encoder and Word2vec model to semantically

evaluate the instances based on their semantic meanings.

Based on the outcomes, we noticed high inter-corpus similarity within the aviation safety (Avi-Safe)

and aviation maintenance (Avi-Main) datasets. The reason for this high inter-corpus similarity

score could be the common domain terms and abbreviations that have been used in these datasets

for instance “eng was shut down and noticed slight vibration” and “right eng vibration with in-

creasing power” where the domain abbreviated word “eng” appeared in both aviation safety and

aviation maintenance dataset respectively. Additionally, this could be related to the performance

of transfer learning outcomes where sharing similar information within the domain leading per-

formance improvement, however, this could require additional analysis of including more similar

domain datasets (e.g., additional aviation safety data) in the future, as well as a further evaluation

of how models’ performance can be further improved by transferring from more similar datasets.

Furthermore, in comparison of the evaluated similarity methods, the Universal Sentence Encoder

method provided outcomes which were more representative of the performance of transfer learning

compared to the other methods.

5.6 Chapter Summary

As discussed in Section 2.3, transfer learning approaches have been applied in various NLP tasks

(e.g., machine translation, sentiment analysis) and achieved a model performance improvement in
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various studies. Therefore this research work compared transfer learning approaches for domain

adaptation for event classification in logbook datasets. We acquired seven logbook datasets from

three technical domains containing short instances with non-standard grammar and spelling, and

many abbreviations.

To answer RQ4, we evaluated three domain adaption methods including (1) transferring within

the domain, (2) transferring within the application, and (3) transferring over the global dataset

compared to the baseline approach of training classification model on the single (source) domain

dataset. Our results indicate that transferring within the domain dataset delivers the best per-

formance across both CNN and ALBERT (transformer-based) models. Finally, to address RQ4.a

we applied corpus similarity techniques to investigate shared characteristics among these technical

datasets, using Levenshtein, Jaro-Winkler, Universal Sentence Encoder, and the Gensim Word2vec

models. The outcome of similarities indicated high inter-corpus similarity within the domain dataset

of aviation safety and aviation maintenance, which could also correlate to the performance of trans-

fer learning. A comparison of the aforementioned similarity techniques also indicated that Universal

Sentence Encoder provided outcomes more relates to the performance of transfer learning.



Chapter 6

Domain-specific Technical Logbook

Augmentation

Chapter Introduction: The following chapter evaluates data augmentation techniques for tech-

nical logbook datasets to address the problem of data scarcity while further improving the event

classification models’ performance. Section 6.2 provides details of the various data augmentation

techniques evaluated in this research work. As analyzing the performance of data augmentation

techniques and identifying the proper method for technical logbook is important, and Section 6.3

provides the detail of various metric-based evaluation techniques examined in this research work.

Additionally, a discussion of utilized event classification methods and experiments performed for

augmentation of technical logbook datasets are provided in Sections 6.4 and 6.6.

6.1 Data Augmentation for NLP

Data augmentation is a known technique to introduce a modified version of the original data

to the models in order to improve the generalization and further the model performance. Data

augmentation techniques are also an important method known to cope with data scarcity [87,

103]. Data augmentation is also a widely used and known approach in various computer vision

applications such as image cropping, rotation, or flipping and has been recently adapted to various

NLP problems and tasks as well [38].

Based on the overview of current research works discussed in Section 2.5, these data augmentation

55



CHAPTER 6. DOMAIN-SPECIFIC TECHNICAL LOGBOOK AUGMENTATION 56

techniques were developed to further improve machine learning model performance on various

challenging NLP tasks such as question and answering. However, the nature of the technical

logbook data prevents us from using data augmentation methods that were recently proposed

based on pre-trained transformer models (which are most often trained on general (or standard)

corpora (e.g., Wikipedia)) [71] that may not be useful on applying to the technical logbook data.

Given the unique and proprietary nature of technical logbook data (which is a key issue related to

the performance of the classification models), the augmentation techniques that we are choosing

should be investigated properly for the nature of these datasets. Regarding the provided discussion

in Section 2.5, rule-based data augmentation techniques such as easy data augmentation [125] were

developed to properly augment the text data in the various NLP tasks [12,120]. However, employing

these techniques requires making sure that they are not altering the actual problem definition in the

logbook entries (e.g., deletion of “noun”), and as well as preserving the semantics of the problem

definition without removing domain-specific terms. These consist of replacing the domain keywords

with proper and close meaning (e.g., engine choked briefly - engine blocked shortly).

6.2 Data Augmentation Methods

There are several data augmentation techniques proposed in various research studies which have

shown great success in NLP tasks such as text classification, sentiment analysis, and question

answering [25, 42]. In these various studies, data augmentation methods are utilized to create

further synthetic examples which help the model learn to generalize better. The following section

provides the details of the augmentation techniques utilized in this research work.

Rule-based Augmentation Techniques A rule-based technique includes various text-based

augmentation approaches to help perform certain operations on either word or characters to gener-

ate new augmented outputs. These operations include “Synonym Replacement”, “Random Swap”,

or “Random Deletion” [39] and have been utilized in various NLP tasks. In this work, we employed

the aforementioned rule-based augmentation strategies at the word level to augment technical log-

book datasets for event identification tasks.

As shown in Algorithm 2, in the process after technical logbook datasets is divided into training

and testing, for each augmentation strategy the instance of training data (DM) were split into

tokens (Ts), and for instances that have a minimum specified number (P) of tokens (tokens ≥ 2), a
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Algorithm 2 Data Augmentation Pseudocode

Input: Training Data D = Instance (1, 2, . . . , N)

Operation Type: DA = Synonym Replacement (SR), Random Swap (RS), Random Deletion (RD)

function PerformAugment(Ts, DA)
for i← every(Ts) do

if DA is SR then

A ← ReplaceSynonym(Ts)
else if DA is RS then

A ← RandomSwap(Ts)
else if DA is RD then

A ← RandomDelete(Ts)

return A

▷ Gets DM instance from training data (D)
function EventAugmentation(DM, P, DA)

Array A, Token T
for i← every(DM) do

Ts ← Split(DMi)

if Ts is ≥ P then

A ← PerformAugment(Ts, DA)
elseTs is < P

pass

return A

rule-based augmentation operation (PerformAugment) performed (using tokens and defined certain

operation type) and used to train the models. In augmentation operations, the synonym replace-

ment (ReplaceSynonym) approach consists of randomly replacing the synonym of the instances

with the similar synonym from the lexical (English) database (e.g., input instances of “both engines

not working” in aviation domain would augmented as “both engines not operating”). The random

swap (RandomSwap) approach performs by randomly replacing the position of the tokens in the

instances (e.g., input instances of “excessive speeding along arkansas” in automotive domain would

augmented as “along arkansas excessive speeding”), where the Random deletion (RandomDelete)

consists of removing the random set(s) of tokens from the input instances (e.g., input instances of

“car rear bumper cover paint need coating” in automotive domain would augmented as “car rear

bumper paint need coating”).
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6.3 Evaluation of Data Augmentation Methods

Due to the unique nature of the technical logbook compared to standard corpora, the quality

and properties of instances generated by the various data augmentation methods/operations may

vary. This can also impact a model’s performance on the downstream task of classification. To

assess the efficiency of data augmentation methods and investigate the quality of the problem and

label information adjustments, various qualitative evaluation approaches were considered in this

research. Our evaluation process is composed of utilizing various metric-based evaluations which

are known as standard NLP measurements. The following section provide the details of these

evaluation methods.

Metric-based Evaluation Utilizing metric-based evaluations provides a cheap and efficient way

to assess the quality of the generated instances, as compared to collecting human evaluations, which

is an expensive process. There are various popular metrics that are available for Natural Language

Generation (NLG) tasks including the BLUE [89], and ROUGE [68] to calculate the score of the

generated/augmented instances. These two aforementioned approaches require two input instances

of reference and candidate and will return a score that indicates how the candidate instance matches

the input reference instance. The BLUE score (bilingual evaluation understudy) as initially was

proposed for automatic evaluation of the quality of machine translation texts, recommended to be

utilized in the data augmentation evaluation process by various research works as shown to perform

well.

For additional comparison to these popular scores, utilizing the similarity-based methods including

Levenshtein [57], Jaro-Winkler [124], Universal Sentence Encoder [23], and Gensim Word2vec [100]

also considered to capture the word-level and sentence-level similarity of the augmented instance

(candidate) to the original reference instances. For this form of evaluation, random samples of the

generated datasets per method with their reference input instances were selected for calculating

and comparison of the scores.

Finally, the outcomes obtained from these different metric-based evaluation approaches provide a

reasonable assessment on which data augmentation method(s) is suitable for the nature of technical

logbook data representing the various domain-specific abbreviations and terminologies.
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6.4 Model Architecture and Training

Per discussion provided in Section 2.5, data augmentation techniques are used in various NLP

downstream tasks such as Neural Machine Translation (NMT) to improve the performance of

models. Therefore to further examine the performance of data augmentation methods on event

identification tasks for the technical logbook datasets consisting of short text with a single event

category, we considered a supervised machine learning method to classify the issue type in the

technical logbook datasets (such as baffle crack) and further analyze the outcomes.

The machine learning models used in this study are a transformer-based BERT-Tiny, BERT-Small,

and BERT-Medium [33] which have previously shown success in various NLP studies by properly

identifying the context of the instances. Furthermore, based on the discussion provided in Chapter

1, as technical dataset classes are highly imbalanced, we utilized the feedback loop strategy [19]

(discussed in Section 4.2.1) to overcome this problem. Further discussion regarding the pre-training

process of these models using technical language data is provided in Section 6.5.1.

6.5 Datasets and Baselines

Regarding the descriptions provided in Sections 1.1 and 3.1.3, technical logbook datasets con-

tain non-standard language, and to address this issue we used the text pre-processing pipeline [6]

(discussed in Section 3.2) on logbook data that consists of domain-based abbreviation expansion,

domain-based noise entity removal, lexical normalization, dictionary-based standardization, part

of speech tagging, and domain-specific lemmatization. Furthermore, the dataset was divided into

80% for training and 20% for testing to prevent contamination of the test set. The augmentation

techniques were only applied to the training set, with the augmentation technique being applied

to each instance, which kept the training data size constant. For example, the 3,859 training in-

stances in automotive safety (Auto-Safe) were replaced with modified versions of after performing

the specified augmentation technique (e.g., synonym replacement) on each instance, resulting in

3,859 modified instances.

6.5.1 Pre-training Transformer-based Language Models

As previously discussed in Section 2.4, various transformer-based language models using encoder-

only architectures such as BERT achieved significant results on various downstream tasks while
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being applied to standard corpus datasets as well as their successful performance while being

adapted to other domains (e.g., ClinicalBERT [48]). Therefore in this research, we experimented

with pre-training three transformer-based BERT models including BERT-Tiny, BERT-Small, and

BERT-Medium [119] as these models have previously shown comparable outcomes on various NLP

benchmarks such as GLUE while using less parameters. The number of layers for the BERT-Tiny

model is 2, for the BERT-Small is 4, and for BERT-Medium is 8. The pre-training process was

performed using the Masked Language Modeling objective on technical logbook datasets with the

original BERT [33] network configuration.

Baseline The baseline approach consists of training the models on each technical logbook dataset

(e.g., Avi-Acc) without utilizing any data augmentation techniques (only using the source dataset)

and then further performing the event classification task.

6.5.2 Technical Logbook Evaluation Setup

In the evaluation process, 100 random samples of original instances from domain-specific logbook

data were selected as references and used for the input to data augmentation methods to compare

their performance. Following this, three data augmentation techniques were utilized including

synonym replacement, random swap, and random deletion, where 100 instances per technique were

generated.

To perform the evaluation, input reference instances and generated output instances from each

data augmentation method were used as evaluation references and candidates respectively. The

following Table 6.1 provides the overview of the sample of input reference data shown in the instance

column and their augmented instances from three data augmentation methods as shown in column

operation.

The outcome of the evaluation using four various metric-based evaluation methods (also discussed in

Section 6.3) including BLUE, Levenshtein, Jaro-Winkler, and Universal Sentence Encoder provided

in the following Table 6.2. This evaluation outcome indicates how well the new augmented instance

from each method is semantically similar to the original input instance. Also, it can help to identify

more suitable data augmentation techniques to utilize in event identification tasks for technical

logbooks.
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Instance Operation Augmented

aircraft on taxi gear collapsed and ground looped Synon. Repl. aircraft on hack gear collapsed and ground looped

Rand. Swap aircraft on gear taxi ground and collapsed looped

Rand. Delete. aircraft on taxi collapsed and looped

exhust air leak check light Synon. Repl. exhust breeze leak check light

Rand. Swap exhust leak air check light

Rand. Delete. exhust air check light

Table 6.1: Example instances of technical logbook entries and their augmented form produced by

domain-specific data augmentation techniques utilizing various approaches of synonym replacement

(Synon. Repl.), random deletion (Rand. Delete.), and random swap.

Evaluation Method Synon. Repl (%) Rand. Swap (%) Rand. Delete(%)

BLUE 0.45 0.40 0.38

Levenshtein 0.79 0.74 0.73

Jaro-Winkler 0.82 0.91 0.78

Universal Sentence Encoder 0.90 0.94 0.88

Gensim Word2vec 0.84 0.92 0.80

Table 6.2: Evaluation of domain-specific data augmentation techniques of synonym replacement

(Synon. Repl.), and random deletion (Rand. Delete.) and swap using various metrics.

Based on the evaluation of similarity-based outcomes, including the Universal Sentence Encoder, we

determined that the random swap technique produces outcomes semantically similar to the original

input compared to the other techniques, however when evaluated with BLUE and Levenshtein, the

outcomes are varied and shows high similarity for the synonym replacement method. This could

be related to the fact that similarity methods such as Levenshtein consider the position of token

when comparing two instances.

6.6 Results of Data Augmentation of Technical Logbooks

This section provides evaluation outcomes for examining the impact of data augmentation tech-

niques on model performance utilizing various transformer-based language models including BERT-
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Tiny, BERT-Small, and BERT-Medium (as discussed in Section 6.4). Table 6.3 presents these

evaluations that include event identification using the baseline approach (solely trained on source

data) and three data augmentation techniques of synonym replacement, random swaps, and random

deletion. A further discussion of the experiment outcomes is provided in Section 6.7.

Dataset Model Baseline (%) Synonym Repl. (%) Random Swap (%) Random Delete. (%)

P R F1 P R F1 S P R F1 S P R F1 S

Avi-Main BERT-Tiny 0.90 0.89 0.89 0.88 0.87 0.87 0.0423 0.90 0.90 0.89 0.1043 0.86 0.84 0.84 0.0022

BERT-Small 0.90 0.90 0.89 0.89 0.88 0.88 0.0342 0.90 0.91 0.90 0.0198 0.87 0.84 0.84 0.0013

BERT-Medium 0.90 0.91 0.90 0.89 0.90 0.88 0.0437 0.91 0.92 0.91 0.0288 0.88 0.85 0.86 0.0025

Avi-Safe BERT-Tiny 0.87 0.84 0.84 0.90 0.74 0.80 0.0153 0.91 0.82 0.86 0.0405 0.81 0.83 0.82 0.0242

BERT-Small 0.89 0.85 0.86 0.83 0.88 0.84 0.0268 0.87 0.88 0.87 0.0478 0.83 0.83 0.82 0.0094

BERT-Medium 0.89 0.87 0.87 0.90 0.86 0.86 0.0441 0.88 0.88 0.88 0.0202 0.84 0.83 0.83 0.0056

Avi-Acc BERT-Tiny 0.51 0.47 0.48 0.53 0.46 0.47 0.0651 0.50 0.46 0.48 0.3087 0.57 0.43 0.43 0.0267

BERT-Small 0.53 0.46 0.48 0.53 0.47 0.48 0.3387 0.51 0.49 0.49 0.0378 0.54 0.43 0.46 0.0293

BERT-Medium 0.53 0.49 0.50 0.50 0.50 0.49 0.0410 0.52 0.51 0.51 0.0319 0.53 0.48 0.48 0.0867

Auto-Main BERT-Tiny 0.60 0.65 0.61 0.62 0.64 0.62 0.0285 0.56 0.64 0.60 0.0137 0.55 0.58 0.55 0.0087

BERT-Small 0.64 0.67 0.63 0.62 0.66 0.62 0.0319 0.60 0.66 0.62 0.0269 0.56 0.60 0.57 0.0156

BERT-Medium 0.66 0.69 0.65 0.61 0.68 0.63 0.0225 0.66 0.71 0.67 0.0205 0.64 0.63 0.62 0.0187

Auto-Safe BERT-Tiny 0.54 0.48 0.50 0.57 0.50 0.52 0.0104 0.57 0.52 0.53 0.0045 0.58 0.49 0.51 0.0093

BERT-Small 0.56 0.50 0.52 0.58 0.53 0.54 0.0268 0.57 0.53 0.53 0.0316 0.57 0.51 0.53 0.0436

BERT-Medium 0.56 0.52 0.53 0.58 0.52 0.54 0.0376 0.59 0.51 0.55 0.0095 0.58 0.52 0.53 0.0750

Auto-Acc BERT-Tiny 0.55 0.54 0.50 0.51 0.55 0.49 0.0433 0.52 0.54 0.49 0.0594 0.43 0.52 0.39 0.0020

BERT-Small 0.65 0.52 0.52 0.73 0.53 0.54 0.0246 0.73 0.54 0.54 0.0205 0.47 0.50 0.40 0.0019

BERT-Medium 0.61 0.54 0.54 0.74 0.54 0.55 0.0203 0.74 0.55 0.56 0.0186 0.48 0.52 0.42 0.0051

Faci-Main BERT-Tiny 0.67 0.61 0.62 0.68 0.64 0.65 0.0115 0.69 0.64 0.65 0.0094 0.70 0.59 0.60 0.0141

BERT-Small 0.66 0.65 0.64 0.67 0.66 0.66 0.0287 0.70 0.63 0.65 0.0310 0.67 0.62 0.63 0.0428

BERT-Medium 0.70 0.63 0.65 0.71 0.64 0.66 0.0311 0.70 0.65 0.66 0.0433 0.68 0.63 0.64 0.0475

Table 6.3: A performance comparison of the various text data augmentation methods. The average

of the final models’ performance is shown as precision (P), recall (R), F1 score, as well as statistical

significance (S) using the Mann-Whitney U test with a p value of 0.05 are also in bold. The best

outcome for a dataset are in bold and italics.
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Experimental Settings The experimental process in this study was performed by utilizing

the coarse to fine learning approach [62] to set parameters and hyperparameters for fine-tuning

the BERT-tiny, BERT-Small, and BERT-Medium models. This experiment was considered by

examining batch sizes of 32, and 64, with an initial learning rate of 1e-5 for fine-tuning all models

where based on the experiment and model performance batch size of 32 was selected for training.

Furthermore, ReLU and SoftMax as an activation function [86], Adam optimizer [55], as well as

categorical cross-entropy [130] for the loss function, were selected for training the models.

Experimental Design In the training process, each model was trained 10 times using each

specific data augmentation technique as well as a baseline approach (using only the source dataset)

to generate results for each dataset. The training process of each augmentation technique was also

consists of keeping the training data size constant and perform certain augmentation operations

during the training of each model to provide a fair computation budget for each approach. The

outcome of these experiments is reported by average precision (P), recall (R), and F1 scores of the

runs in the Baseline, Synonym Replacement (Synonym Repl), Random Swap, and Random Deletion

(Random Delete.) columns of Table 6.3. Furthermore, the S column in this Table indicates the

outcome of Mann-Whitney U-Tests of statistical significance conducted by comparing the set of

final losses of 10 repeated experiments of a baseline approach to the final losses of 10 repeated

experiments of each data augmentation technique.

6.7 Discussion of Data Augmentation of Technical Logbooks

In order to examine the performance of data augmentation techniques on technical logbook data,

we used three rule-based methods of synonym replacement, random swap, and random deletion.

Based on the experiments and outcomes shown in Table 6.3, and also using the baseline approach

which solely relies on source (original) data and other three augmentation approaches, we identified

the various impacts on the event identification task.

We observed performance improvement with statistical significance on datasets such as aviation

maintenance (Avi-Main), aviation safety (Avi-Safe) and automotive safety (Auto-Safe) utilizing

the BERT-Medium model while applying the random swap techniques. However, we noticed that

the logbook datasets such as automotive safety (Auto-Safe) and automotive accident (Auto-Acc)

with BERT-Small model, their performance improved with the synonym replacement technique

and in some cases, achieved an outcome similar to the baseline such as aviation accident (Avi-
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Acc) with BERT-Tiny model. On the other hand, random deletion in some cases performed worst

by achieving a lower performance with statistical significance, whereas only in automotive safety

(Auto-Safe) performed similar results to baseline with BERT-Medium. This could be the reason

that deletion of domain words could lead to loss of context in the instance which is important for

the event descriptions.

Furthermore, to evaluate the quality of the generated instances from the aforementioned augmen-

tation techniques, we performed the metric-based evaluation (also discussed in Section 6.3) where

the outcomes are shown in Table 6.2 and indicate the overall high similarity of the augmented

text specially in the case of random swap compared to the other methods (excluding the BLUE

and Levenshtein). This could also refer to the question of whether modification of the instance

could alter or preserve the problem definition. However, for further examining the evaluation, an

expert-based (human) evaluation of these methods could help to identify if the semantics of the

technical logbook data with various domain-specific terminologies changes or remain semantically

similar to the original problem definition.

6.8 Chapter Summary

Data augmentation is known as an important approach to improving model performance and gen-

eralization in various NLP tasks. To answer RQ5, we explored three data augmentation techniques

including synonym replacement, random swap, and random deletion to improve the event iden-

tification task using technical logbook datasets from three domains of aviation, automotive, and

facility. Furthermore, to properly determine the optimal data augmentation techniques for technical

logbooks containing domain-specific event descriptions with non-standard grammar and spelling,

we computed four metric-based evaluations (BLUE, Levenshtein, Jaro-Winkler, and Universal Sen-

tence Encoder) from original input data as a reference and augmented instances as a candidate.

The outcome of a metric-based evaluation and empirical analysis of the event identification task

indicated the random swap technique is a more suitable augmentation method compared to the

other two utilized augmentation techniques of synonym replacement and random deletion.



Chapter 7

Conclusion and Future Work

7.1 Conclusion

This doctoral research focuses on the problem of pre-processing, clustering, and technical issue

classification by considering technical logbook datasets from the automotive, aviation, and facilities

maintenance domains. Technical logbook datasets are written by domain experts (e.g., engineers)

and contain short text entries with non-standard language (including domain-specific abbreviated

words and terminologies), which makes it challenging for off-the-shelf NLP tools trained on standard

contemporary data to process them. The problem description in technical logbooks consists of

important information that requires to be processed for the development of an effective predictive

maintenance system. To overcome the aforementioned challenge and further develop the methods

to handle technical logbook datasets and perform event identification tasks, we addressed various

research questions (RQ) in this thesis work.

To overcome the problem of non-standard language in technical logbooks, we addressed the pro-

posed RQ1 (“How well do state-of-the-art pre-processing techniques clean unstructured mainte-

nance data? Can we develop better techniques to handle this type of data?”) by developing the

pre-processing pipeline to clean these unstructured maintenance data. We further performed an

intrinsic evaluation comparing the performance of various spell-checkers for the technical logbook

dataset to convert the non-standard language to a standard format (Published in [6]).

Furthermore, as discussed in Section 3.2, most technical logbook datasets are not annotated with

the reason for maintenance or categorization of the issue type. To address this challenge and answer
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the proposed RQ2 (“Using the proposed methods in this research work, which techniques are robust

and the most effective in clustering/mining aviation maintenance textual data?”), various clustering

methods and similarity metrics for maintenance text mining are compared as well to provide the

annotation in the technical logbook datasets (Published in [6]).

As technical logbooks tend to be characterized by a large number of event classes that are highly

imbalanced, we evaluated multiple strategies to address the extreme class imbalance in these tech-

nical datasets. We adapted the feedback loop approach in Bowley et al. [19] from the computer

vision domain to address RQ3 (“To which extent does the class granularity and class imbalance

present in technical logbooks impact technical event classification performance, and can a feedback

loop for training data selection effectively address this issue?”) and we showed that a feedback loop

strategy performs the best (Published in [4]).

We also compared transfer learning approaches for domain adaptation for event classification in

logbook datasets. We evaluated three-domain adaption methods including (1) transferring within

the domain, (2) transferring within the application, and (3) transferring over the global dataset

compared to the baseline approach of training classification model on the single (source) domain

dataset to answer our RQ4 (“Which transfer learning approaches are better suited for classify-

ing technical events for predictive maintenance across heterogeneous logbook datasets?”). Our

results indicate that transferring within the domain dataset usually delivers the best performance

(Published in [7]).

To further examine the transfer learning approaches and answer RQ4.a (“How does the level of

similarity between corpora impact the performance of transfer learning approaches for technical

event classification?”), we applied corpus similarity techniques to investigate shared characteristics

among these technical datasets. We used four similarity methods including Levenshtein, Jaro-

Winkler, Universal Sentence Encoder, and the Gensim Word2vec. Based on the outcome of these

methods, we noticed the high inter-corpus similarity for within-domain datasets of aviation safety

and aviation maintenance. Furthermore, the outcomes achieved by Universal Sentence Encoder

were more relates to the performance of transfer learning compared to the other utilized methods

(Published in [7]).

Furthermore, to answer RQ5 (“How well data augmentation techniques can impact classification

models’ performance while preserving the label information in logbook datasets?”), we examined the

various data augmentation approaches including synonym replacement, random swap, and random

deletion to improve the event identification task by utilizing technical logbook datasets. We further

used three pre-trained machine learning models of BERT-Tiny, BERT-Small, and BERT-Medium.
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We pre-trained these models using the Masked Language Modeling objective and fine-tuned them

on the downstream task of event classification. To examine the quality of data augmentation tech-

niques, we also computed four metric-based evaluations methods including BLUE, Levenshtein,

Jaro-Winkler, and Universal Sentence Encoder. Based on the outcome of three utilized augmen-

tation techniques, four metric-based evaluations and three models, we observed the performance

improvement of classification models using random swap in most cases such as aviation safety

(Avi-Safe) and aviation accident (Avi-Acc) data.

7.2 Future Work

The research work in this dissertation provides essential phases of processing technical language

datasets as well as performing the downstream task of event identification. There are also additional

approaches that could help provide a future direction to improving the various research limitations

such as logbook data scarcity. The following sections provide an overview of these possible research

directions:

7.2.1 Zero- and Few-Shot Learning for Technical Logbook

One of the suitable approaches as a future direction of this research that could be explored is

zero-shot and few-shot learning classification approaches for technical logbooks that contain non-

standard languages with domain-specific abbreviations and terminologies. A zero-shot and few-shot

learning is a known technique in computer vision [45] and recently has been employed in various

NLP research work [43, 59] to improve the model performance in downstream tasks with limited

training data available. As technical logbook datasets are proprietary, utilizing zero-shot and few-

shot learning methods would help to analyze if the models can perform well with the limited logbook

data available.

Furthermore, as discussed in Section 3.1.3, technical logbooks also contain varying lengths of prob-

lem descriptions that can consist of a few or more tokens that describe the same issue (or may con-

tain various domain terms in instances but are semantically similar). An investigation of zero-shot

or few-shot learning with this nature of technical data would help to analyze how the performance

of the model could improve when dealing with these challenging structures of data.
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7.2.2 Domain Knowledge Fusion for Data Augmentation

An investigation of the benefit of incorporating the domain adaptation methods with data augmen-

tation techniques would provide a proper comparison if this strategy can help the model in better

generalization. The process in this approach includes utilizing unsupervised data from other related

domains for augmenting the technical logbook dataset and further examining the performance of

the approach on event identification tasks. Further, various data augmentation techniques such as

rule-based, or model-based could be employed to construct new instances.

Alternatively, incorporating other rule-based textual augmentation approaches such as combining

the multiple rule-based techniques (e.g., “Synonym Replacement” with “Random Deletion”) can

be examined to compare how this approach would further benefit the model in better generalizing

by improving the event classification performance. It should be noted that new instances that are

generated using the aforementioned techniques (e.g., combining two rule-based methods) should

not alter the label information. To make sure these new instances are still semantically similar to

input (source) data with the same label information, employing a similarity method is required to

compare the output of every augmented instance with the original input instance.

7.2.3 Human Evaluation of Data Augmentation

As discussed in Section 6.3, the quality of instances generated by data augmentation techniques

may vary and this can impact models’ performance in various downstream NLP tasks. To assess

the efficiency of data augmentation approaches, we employed various qualitative evaluation ap-

proaches and compared their outcomes (Section 6.5.2). However to further evaluate the utilized

data augmentation methods (including the aforementioned methods in Section 7.2.2 as well), and

examine how far the augmented instances varied from original input resources, an additional qual-

itative approach of human evaluation needs to be investigated for each technique that considers

human-in-the-loop for evaluation.

This form of evaluation would be composed of collecting evaluations based on expert and nonexpert-

based (English only) assessment categories: (Domain experts) for evaluation purposes needs to be

chosen based on their expertise in the domain. The process would consist of providing them with

a task that includes the questions (quality assessment based on fluency and adequacy [41]) and

then collecting the final evaluation outcome. As technical logbook data are written by domain

experts (e.g., mechanics), this form of evaluation can be considered as a gold standard as this is a
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significant way to analyze if any specific data augmentation operation (e.g., random deletion) can

alter the semantic of the problem description and event label. In (Nonexpert-based) evaluation,

all human annotators need to be chosen based on their expertise with the minimum of a master’s

degree in natural language processing, computer science, or other related fields.

Experimental Setup for Human Evaluation The annotation process would consist of giv-

ing the set of randomly generated instances and asking them (human evaluators) to evaluate the

instances. In each evaluation (expert and nonexpert), random samples of augmented (generated)

datasets (e.g., 100) would be selected to assess the augmentation methods’ performance. These

random selections would consist of original reference instances from domain-specific logbook data

that are used for the input of data augmentation methods, and every output of generated instances

from each data augmentation method. To better quantify the performance of the data augmenta-

tion methods and reduce the annotator’s bias, the given random sample of instances in each task

needs to be randomized.

For both expert and nonexpert-based evaluation methods, three common task-based questions

need to be asked (with one possible answer to choose out of two answers): 1) Does the instance

grammatically sound correct? This question will define the fluency of the new augmented instances.

2) Does the instance accurately define the given problem (issue) type(s)? (e.g., engine failure,

speeding), and 3) Does the given instance represent augmented or real format?. To further assess

human annotation and reliability of the rating (for more than 2 human evaluations), calculating

intraclass correlation (for the inter-rater reliability) and as well as Cohen’s kappa coefficient where

the scores range between 0 with no agreement and 1 with the high agreement in both methods

required.

7.3 Concluding Remarks

Predictive maintenance is a technique applied to engineering systems to estimate when maintenance

should be performed to maintain equipment or software, and to be an enhancement to or even

prevent the need for traditional scheduled maintenance. Performing maintenance only as needed

can not only save costs but additionally improve safety as scheduled maintenance tasks do pose

a risk of causing issues as routine maintenance is performed. Technical logbook datasets are a

important source of information for developing predictive maintenance systems. These datasets

contain descriptions regarding maintenance problems and actions performed to address these issues.
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However, these datasets are typically written by domain experts in non-standard language and

grammar. The nature of these datasets makes them challenging for off-the-shelf Natural Language

Processing (NLP) models to process. These challenges includes using various domain-specific ab-

breviations, acronyms, and misspelling or dropped words in the description by domain experts

(e.g., mechanics). Furthermore, characteristics of these datasets make them distinct from other

domain-specific datasets (e.g., biomedical [31]) as well.

Therefore the research in this dissertation aimed to address these challenges by developing pre-

processing tools and further examining various clustering and classification methods to extract

information for predictive maintenance. The evaluated strategies such as transfer learning methods,

or data augmentation techniques for this research showed how domain-specific data is different in

nature compared to other natural language data. The methodologies evaluated in this research

provided an important assessment of which methods are suitable to apply to domain-specific data

containing similar nature and structures. Furthermore, the methodologies discussed as a future

direction such as “domain knowledge fusion for data augmentation” could also apply to other

domains that have limited available data to perform certain NLP downstream tasks such as event

classification to improve model performance.
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