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Abstract

In this paper, we attempt to find the most efficient trial design to de-
termine the optimal dose of cancer treatment. The two trial designs be-
ing evaluated are a standard trial design and intra-patient dose-switching
trial. The optimal dose is the lowest dose that still causes a decrease in
the tumor size. The most efficient trial is defined as the trial in which the
distribution of parameters from the data set mostly closely matches the
distribution from a simulated trial. We developed an ordinary differential
equation to model the change in the sum of the length of tumor diameters
over time. This equation takes into account resistance of the tumor to the
drug, the carrying capacity of the tumor, the growth rate of the the tu-
mor and the decay rate of the tumor due to the drug dose. This equation
was used to fit the parameters and run simulations. We determined that
the intra-patients dose switching trial had a parameter distribution that
mostly closely matched the original data in comparison to the standard
trial.

1 Introduction

Standard practice in the field of oncology is to subject cancer patients to the
maximum tolerable dose of chemotherapeutic drugs. The maximum tolerable
dose is the highest dose a patient can tolerate without experiencing unacceptable
levels of toxicity [2]. Chemotherapeutic drugs are highly toxic, and pose serious
risks to the patient, as excessive doses can cause more adverse reactions in cancer
patients. A potential alternative is to find an optimal dose rather than maximum
tolerable dose. An optimal dose is a lower dose that sacrifices drug efficacy in
exchange for a notable reduction in the occurrences of severe adverse events.
Since individual patients respond differently to treatment, it is challenging to
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find an optimal dose. In order to compensate for this high patient variability,
large clinical trials are required. The sample size used in a drug trial is directly
correlated to the cost, which is why the maximum tolerable dose is often used
instead of the optimal dose [4].

One way to remedy the challenges of increased resources needed to find the
optimal dose is to experiment with different trial designs [4]. A commonly used
trial design is a standard steady dosage trial is which dosages are not altered
unless adverse side effects occur. Another trial design is intra-patient dose
switching trial in which dosages are intentionally changed throughout the course
of treatment. In this work, we will explore the hypothesis that the intra-patient
trial design may give us more information about the dose-response relationship.

Through an exploration of dosage efficacy in different trial designs, we seek
to find an optimal dose while using fewer resources. The quantifiable question
we set out to answer is which trial design results in the lowest error among the
fitted growth rate and drug effect term in simulations based on a model fitted
to data. To answer this question, we create a mathematical model to predict
efficacy of treatment with respect to different dosage options. We use this
model to simulate the two different trial designs by drawing from a distribution
of parameters determined from fitting the model to data. For each of the trial
designs, we analyze the efficacy of treatment and the variability between drug
effect in trial simulations. The trial design with lowest error in change in the
fitted decay rate of the lesion due to treatment is the most efficient trial design
which will require the smallest amount of resources to find the optimal dose.

2 Data

We used the data set listed as ”DDMODEL00000198: Tumor growth inhi-
bition model for Sunitinib Treatment in GIST” containing cancer patient data
with tumor sizes, time, treatment, and dosage data [3]. The data set tracks
standard steady-dose treatment of 80 cancer patients with a gastrointestinal
stromal tumor. The data set includes the change in the sum of tumor diame-
ters, with the corresponding treatment the patient was given. The data set is
used to find the parameters for the model, introduced below, by fitting a curve
through each patient’s data. This data set should be sufficient in generating the
distributions of each parameter due to the size of 80 patients over a treatment
period of up to 40 weeks.

3 Mathematical Model

3.1 Assumptions

The biological processes underlying oncology are very complex. Thus, it is
necessary to make simplifying assumptions to streamline model development.
There are three different drug concentrations used, which are 0, 37, and 50
picograms/ mL [3]. We assume the 50 pg/ml dose is 50% as effective as the

2



37 pg/ml. This is because there was a lack of data points to fit the drug effect
parameter for the 37 pg/ml dose. We chose 50% because the trends in the
initial data suggested the 37 pg/ml dose was approximately half as effective as
the 50 pg/ml dose. We also assume there will be no change in body’s ability
to metabolize the drug throughout the trial period. The model applies only
to solid tumor cancers and we assume the tumor will continue to grow until it
reaches a carrying capacity, that is, until the tumor runs out of space to grow.
The carrying capacity is patient dependent. We ignore non-target lesions; that
is, only tumor size will be measured. We assume that the tumor develops
resistance to treatment gradually over time [7]. Finally, patients are removed
from the clinical trial simulations if their tumor increases in size by 50%.

3.2 Model Formulation

Tumor size is characterized by the sum of the diameters of the target lesions
for patient i and represented by the variable Li, which is dependent on time t.
The index i represents a patient number because the model will be fitted to each
patient. We are modeling the change in the sum of the diameters of the target
lesions over time, which can be described simply by the following equation:

dLi

dt
= Growth Rate−Decay Rate. (1)

There are several model types that are frequently used to model tumor
growth. The most commonly used growth models utilize exponential growth,
logistic growth, or a Gompertz equation. Of these common growth curves, the
best practice is for the model type to be decided based upon the specific context
of the tumor you are trying to model [6]. Exponential growth comes with certain
limitations. An exponential growth curve does not account for any slowing in
growth rate due to a natural carrying capacity. In the case of trial designs,
some patients will be placed into a placebo group and receive no treatment for
an extended period of time. In this scenario, the use of an exponential growth
curve would not be appropriate because it would not reflect the slowing in
growth when the patient’s tumor approaches the carrying capacity. Therefore,
with no justification to use a more complex growth curve, we elect to use logistic
growth [7].

The logistic model estimates growth based on a growth rate kig and a max-

imum carrying capacity V i. The logistic growth model accurately reflects the
situation where the tumor size becomes stable over a period of time, as once
the tumor length is getting close to parameter V i, the carrying capacity, the
tumor growth rate will approach zero. Taking these factors into consideration,
we developed the following equation, which can be used to calculate natural
growth of the tumor:

dLi

dt
= kig

(
1− Li

V i

)
Li. (2)
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The effect of the drug on the tumor is represented by a decay rate kid. Pa-
tients are given different dosages D at various times, therefore we must consider
multiple decay rates kidD

for each dosage. The drug effect is given by kid(t) which
is defined by the following piece-wise function:

kid(t) =


0, if D = 0

kid37
, if D = 37

kid50
, if D = 50.

(3)

The decay rate of the tumor is given by

dLi

dt
= −kid(t)L

i. (4)

Equation 2 can be modified by subtracting the decay rate due to drug effect
which causes the tumor size to shrink.

dLi

dt
= kig

(
1− Li

V i

)
Li − kid(t)L

i. (5)

Finally, as the patient is given continued doses of the drug, the cancer builds
up resistance, Ri, to the treatment. Equation 6 can be used to model the change
in resistance to the oncology drug where λi is the parameter that we will fit for
each of the patients.

Ri(t) = eλ
i
∫ t
0
ki
d(s) ds (6)

The resistance Ri is being modeled by using exponential growth with initial
condition of R(0) = 1. The exponent of the function,

∫ t

0
kid(s) ds, was chosen to

represent the accumulation of respective drug dosage over time, multiplied by
the rate, λi; this accounts for the effect of drug dosage on change in resistance.

dLi

dt
=

[
kig

(
1− Li

V i

)
− kid(t)

Ri(t)

]
Li. (7)

Equation 7 shows the extension of the standard logistic tumor growth rate
model after we take into consideration the treatment and resistance. We di-
vide the decay rate due to drug effect by Ri, resistance, because we wanted to
model an inverse relationship between resistance and drug effect. Therefore, as
resistance increases, the drug effect decreases. We note that for the purposes
of fitting to data, the initial condition L(0) is known, and when simulating tri-
als, the initial condition is defined by a log-normal population distribution.The
variables and parameters have been summarized in the Tables 1 and 2:
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Variables Description Units
t Time Days
Li(t) Sum of the length of tu-

mor diameters of patient i
Millimeters

Ri(t) Resistance of the tumor to
the drug of patient i

Dimensionless

Table 1: Variables

Parameter Description Units
V i Carrying capacity of tu-

mor in patient i
Millimeters

kig Growth rate of the tumor
in patient i

1/day

kid37
Decay rate of the tumor
in patient i due to the 37
picograms/mL drug dose

1/day

kid50
Decay rate of the tumor
in patient i due to the 50
picograms/mL drug dose

1/day

λi Resistance growth rate for
patient i

Dimensionless

D Drug dose Picograms/milliliter

Table 2: Parameters

3.3 Assessing Variability

For all of these parameters, we expect values to vary considerably between
patients. To account for this, we generate a set of parameters for each patient i,
by applying a curve fitting algorithm using our data set. For every patient i, we
use their tumor growth data to determine a value for kig, k

i
d37

, kid50
, λi, and V i.

We treat each patient’s response as samples of random variables. We then use
the patient values for each parameter to determine a mean value and a distri-
bution of the parameter. We show that variation in growth and response rates
would be consistent with a normal distribution [1]. To ensure that model param-
eters cannot be negative, we will assume our population parameter distributions
to be log-normal. In Figure 1, we include the distribution for the parameter kig
which you can see is approximately log-normal. The other parameters had a
similar distribution. We sample from these distributions to run simulations of
the trial design. We assess variance by comparing the error amongst the fitted
growth rate and drug effect term in simulations based on a model fitted to data.

Continuing onward, we simulate case-by-case results from both standard
and intra-patient dose switching designs. We sample from the distribution of
parameters to simulate patient data. From the simulated patient data, we fit the
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Figure 1: Histogram of parameter kig which is approximately log-normal

parameters to the simulated patient data set to see which trial design produces
the lowest error between the parameter distribution when comparing the original
fitted parameters to the simulation.

4 Results

4.1 Calculated Parameter Values

The procedure for fitting the parameters to the data and running the simu-
lations is outlined in Figure 2.

Figure 2: Outline of Process of Fitting Parameters
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In order to use Equation 7 to find patient-specific model parameters, we
implement a numerical method. We use MATLAB’s built-in functions to find
the parameters in Equation 7. We implement the function lsqcurvefit and
“ode45” to find the estimated parameters V i, kig, k

i
d37

, kid50
, and λi. The fitted

parameters for five patients can be seen in Table 3.

Id kig kid37
kid50

V i λi Error

1 0.43 None 0.249 150.13 0.0893 0.000236
2 2.22 1.43 1.0893 120.012 0.0001 17480
3 2.29 None 3.438 189.05 0.94 255.20
6 82.55 None 56.17 435 1.3168 24317
7 0.558 None 0.2813 372.876 2.647 0.0048
9 2.706 2.9 1.72 162 0.001 2309

Table 3: Estimated parameters for the first 5 patients

Table 3 includes most, but not all of the patients’ dose response parameters,
as some patients lack data points. For example, patients 4 and 5 only have two
data points for the entire trial, which is not sufficient in obtaining the estimated
parameters. In addition, some of the fits have high error despite a somewhat
simple model. From the table, patients 2 and patients 6 have such error. Figure
3 is the graph fitting of the patient 9 dosage response for dose switching and 4
is the graph fitting of the patient 3 dosage response for standard trial.

Figure 3: The graph of the Patient 9 dosage response
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Figure 4: The graph of the Patient 3 dosage response

For patient 9 in figure 3, the kink at the start of trial was due to the time
step issues with the fitting function and also because the break in between each
of the measurement. In the data set, patients tend to have 2 weeks without
treatment. Patient 3 seems to be reaching the carrying capacity after 3 weeks,
The main cause of such sudden increase is the unusual high measure of the
targeted lesion at week 6. This could be a measurement error since at week 12,
there is a significant decrease in the tumor sizes.

Figure 1 shows an example of the distribution of kig values for all 80 patients.
It can be seen that the distribution is approximately log-normal; the rest of the
parameters had a similar distribution. Table 4 is a summary of the µ and σ
of the distribution for each model parameter. It also includes µ̃ and σ̃ values
for each parameter. The values µ̃ and σ̃ are parameters of the log-normal
distribution for each model parameter which were found by taking the natural
log of each patient’s estimated parameter value and then calculating the mean
and standard deviation. The log-normal parameters µ̃ and σ̃ are used for the
random sampling from the log-normal distribution in the simulations.

Parameter µ σ µ̃ σ̃
kig 1.628 1.933 -1.081 2.729

kid37
0.360 0.713 -7.214 7.354

kid50
1.660 2.778 -0.744 1.877

V i 352.371 473.390 5.329 1.006
λi 1.08 2.903 -5.694 6.813

Table 4: Mean and standard deviation of parameters and their fitted log-normal
distributions
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µ =
k1g + k2g + ...+ kng

n

σ =

√
(k1g − µ)2 + (k2g − µ)2 + ...+ (kng − µ)2

n

µ̃ =
ln k1g + ln k2g + ...+ ln kng

n

σ̃ =

√
(ln k1g − µ̃)2 + (ln k2g − µ̃)2 + ...+ (ln kng − µ̃)2

n

where the lognormal curve in Figure 1 is defined by

f(x) =
1

xσ̃
√
2π

exp
{−(ln(x)− µ̃)2

2σ̃2

}
(8)

4.2 Model Simulation of Treatment

A Python program was written to simulate the model and treatment. Using
the values of the parameters calculated for each patient, a log-normal distribu-
tion was constructed for each parameter. Then, 80 patients were generated by
sampling the parameter values from these distributions. Their treatments were
then simulated in MATLAB by the use of the “ode45” function. Some of the
results of the simulations can be seen in Figures 5 and 9.

Figure 5: Graphs generated from the random simulation of 20 patients in stan-
dard dose trials.

Figure 5 displays the simulation of 20 patients participating in a standard
dose trial. The graphs represent the tumor size in millimeters over 52 weeks.
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The patients receive the 50 ml/pg dose over the entire trial period. Patients
that experience tumor growth in which the tumor size increases by over 50% are
removed from the trial. The dots in the graphs represent each time the tumor
size was measured during the trial. There are some important trends that can
be seen in the graphs surrounded by a red box which are enlarged in Figures 6,
7, and 8 for further examination.

Figure 6: Example of patient in standard simulated trial with logistic growth
that is removed from trial

Figure 7: Example of patient in standard simulated trial with linear growth
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Figure 8: Example of patient in standard simulated trial with drug resistance

In Figure 6 we see a patient with a high growth rate parameter which leads
to logistic growth where the tumor size quickly approaches carrying capacity.
Since the tumor grew by more than 50%, the patient was removed from the
trial period after the first tumor measurement. The next trend is linear growth
of the tumor which can be seen Figure 7. In Figure 8 we see a patient with a
higher tumor decay rate than growth rate as there is exponential decay for the
first 20 weeks, although it is on a small scale of only approximately 0.8 mm.
At week 20, we see the patients tumor size begin to increase again. This is the
result of the patient developing resistance to the tumor.

Figure 9: Graphs generated from the random simulation of 20 patients in dose-
switching trials. The top two rows contain patients that switched from a high
dose to a low dose, while the bottom two rows contain patients that switched
from a low dose to a high dose

11



Figure 9 shows the simulation of 20 patients participating in the dose-
switching trial over six weeks. The patients in the top two rows receive the
50 pg/ml dose for the first 26 weeks and the 37 pg/ml for the last 26 weeks.
The patients in the bottom two rows receive the 37 pg/ml for the first 26 weeks
and then receive the 50 pg/ml for the last 26 weeks. The dots represent the each
time the tumor size was measured during the trial. The two graphs outlined in
red are enlarged in Figures 10 and 11 to show key characteristics.

Figure 10: Example of patient in dose-switching simulated trial that first re-
ceived the 50 ml/pg dose

Figure 11: Example of patient in dose-switching simulated trial that first re-
ceived the 37 ml/pg dose

In Figure 10 the patient initially received the 50 ml/pg dose for the first
26 weeks. During this period the tumor size decayed exponentially, although
it was on a small scale. However, at the 26 week point the patient the patient
switched to the 37 pg/ml treatment which was only 50% as effective and saw a
linear increase in tumor growth over the rest of the trial period. This growth
from the change in drug dose was less gradual than the growth we saw in Figure
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8 due to the development of drug resistance. In Figure 11 the patient initially
received the 37 pg/ml dose for the first 26 weeks and then received the 50
pg/ml dose for the second 26 weeks. It can be seen that the tumor developed
resistance quickly to the 37 pg/ml dose as the tumor size decreased slightly but
then started to increase again. However, the 50 ml/pg dose was highly effective
at the 26 week point and cause a decrease in the tumor size by 15 mm.

After the simulations have been performed, the output of the data from the
simulations will be fit using the lsqcurvefit and “ode45” similar to the original
data.

Figure 12: The graph of the Simulated Patient 35 dosage response
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Figure 13: The graph of the Simulated Patient 10 dosage response

Figure 12 and Figure 13 represent the fit of dose switching patients and
standard dose patients. It’s not a surprise to see that the fit is almost perfect as
the model capture the entire dosage response of the patients since the simulation
does take into account for error in measurement.

Figure 14: Log-normal distribution of the simulated standard trial for kg
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Figure 15: Log-normal distribution of the simulated dose switching trial for kg

Figures 14 and 15 are the distribution of the kg parameters generated from
the standard and simulated trial, respectively. These are compared to Figure 1
which shows the distribution of the parameter from original fitted data set. The
same process was completed for the parameter kd50

. A comparison is between
these distributions is in Section 4.2.1.

4.2.1 Analysis Of Variability In Treatment

Our overall goal of the aforementioned code, generated parameters, and
simulations collectively is to assess the error of projected drug effect between
the two treatment methods. The values of the parameter distributions that were
fitted to the simulated patient data set are given in Tables 5 and 6.

Parameter µ σ µ̃ σ̃
kig 2.065 3.684 -0.8788 1.7762

kid50
1.045 2.061 -2.035 3.334

Table 5: Mean and standard deviation of parameters and their fitted log-normal
distributions for the standard simulation

Parameter µ σ µ̃ σ̃
kig 2.093 2.816 -0.2791 1.6097

kid50
1.660 2.778 -0.744 1.877

Table 6: Mean and standard deviation of parameters and their fitted log-normal
distributions for the dose-switching simulation
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Figure 16: Log-normal distributions of kg for the original and simulated trials.

Figure 17: Log-normal Distribution of kd50 for the original and simulated trials.

To better visualize these values, the lognormal distributions that µ̃ and σ̃
describe for each trial design can be plotted against each other, as well as against
that of the original data, as seen in figure 16 and 17. In these plots, the plots for
the standard and dose-switching parameters can be seen to be similar, though
the dose-switching plot has peaks that are slightly closer to that of the original
data set.
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4.3 Analysis of the Model

Relative Error =
|Simulation Value− Experimental Value|

Experimental Value

To assess the accuracy of the two trial methods, fitted distributions for the pa-
rameters of each trial type can be compared against the actual data to measure
the relative error.

Trial Type kg Error in µ kd50
Error in µ kg Error in σ kd50

Error in σ
Standard 26.84% 37.04% 90.58% 25.81%
Switching 28.56% 30.90% 8.11% 20.81%

Table 7: Relative error among parameters

As seen in Table 7, the dose-switching method resulted in lower error in all
but the mean of the kg distribution, in which it was only slightly higher than the
standard trial. Specifically, it performed significantly better than the standard
trial design with regards to the drug effect. Because of this lower error, the
results point towards the dose-switching method being the better method for
reducing error in calculated drug effect.

5 Discussion

Our model is able to give a clear answer to which trial design will give the
lowest error in the parameter distributions. However, there are limitations in
our model. The data set used is mostly limited to one kind of dosage response
which is kid50

, and not many patients have kid37
. The complexity of the model

with the addition of the resistance term make the fitting of the patients highly
sensitive to the initial guesses. For example, different initial guesses can lead to
multiple possible minimum least square value and in rare occasion the estimated
parameters can be unreasonable compared to a clinical trial. This model never
considered the possibility of measurement error. The kig, k

i
d37

, and kid50
may

not behave as desired in the model. This is due to the data and fitting process
where patients can be given a higher kid than kig or kid37

being greater than kid50
.

The model has room for improvement, where a different fitting function can be
tested or to use a different data set and see how that varies from the result.
Another possible way of improving this model is to reduce the complexity of
the model by picking a different function to model the resistance of the tumor.

6 Conclusion

The motivation of the simulated trials and the underlying mathematical
model are to determine which trial design is the most efficient at determining

17



the optimal dose of cancer treatment; that is the treatment with the lowest
error in simulated model productions from empirical data. The model was
hence developed to capture the growth rate of the tumor in relationship to the
drug effect. It was also designed to account for the biological nature of the
body to have a carrying capacity in the development of a tumor. From the
model and simulated parameters, we obtain that the dose switching trials have
lower error in parameters between the simulated and actual data compared to
the standard trial. Therefore, we conclude that the dose switching trial is more
efficient in finding the optimal dose of cancer treatment for solid tumors such
as a gastrointestinal stromal tumor.
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8 Appendix of Code

8.1 File “Testing.m”

The main code for getting the estimate parameters for the patients who
receives dosage 50. Multiple iteration is needed to be done to get the estimate
parameters by picking a different initial values. (lsqcurve fit function)

The code use “function500.m” and “function500p.m”

8.2 File “function500.m”

The code correspond to the ordinary differential equation.

8.3 File “function500p.m’

The code correspond to the solving of the ordinary differential equation using
ode45 and pass the values.

8.4 File “DoseSwitching.m”

The main code for getting the estimate parameters for the patients who
receives dosage 50 then dosage 37 and who receives dosage 37 then dosage 50.
Multiple iteration is needed to be done to get the estimate parameters by picking
a different initial values. (lsqcurve fit function)

The code use “function50037.m”, “function50037p.m”, “function500372.m”,
and “function500372p.m”

8.5 File “function50037.m”

The code correspond to the ordinary differential equation for dosage 50 and
37.

8.6 File “function50037p.m”

The code correspond to the solving of the ordinary differential equation using
ode45 and pass the values. (Patients who get dose 50, then dose 37)

8.7 File “function500372.m”

The code correspond to the ordinary differential equation for dosage 37 and
50.

8.8 File “function500372p.m”

The code correspond to the solving of the ordinary differential equation using
ode45 and pass the values. (Patients who get dose 37, then dose 50)
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8.9 File “TrialSim.py”

Contains all code related to simulated trials. Samples from log-normal dis-
tributions using scipy.stats.lognorm to generate patients for the purposes of
simulating trials. Differential equations are solved on a per-patient basis using
scipy.integrate.odeint and then graphed using matplotlib.pyplot. Data
output is done using csv in a format mirroring the original data set.
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