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Predicting Hepatotoxicity in Patients Receiving

T-DM1 Treatment using ALT Blood

Concentrations

Nick Fidalgo, Chris Gatesman, Phillip Lee,

Brett Peters, Samantha Sandwick, Alex Shetler

April 2022

Introduction

During cancer treatments, it is imperative to keep a close eye on the side effects
of whatever drug you are using to target the infected cells. For example, many
drugs will target cancerous cells by attaching themselves onto different receptors
on the membranes of the cells. However, these treatments are not always exact
in affecting only the cancerous cells. One of the major side effects of these drugs
is that different types of non-cancerous cells are accidentally killed during the
process of cancer treatments when the drug latches onto the similar receptors of
those cells. For example, when the antibody-drug conjugate trastuzumab em-
tansine (T-DM1) is administered into the bloodstream it will accidentally target
and kill liver cells in the patient’s body due to the liver cells’ CKAP5 receptors
attaching to T-DM1 molecules. When these healthy liver cells die, they release
alanine aminotransferase (ALT) as well as aspartate aminotransferase (AST).
There is a silver lining to this, however, as these enzymes can be used to track
liver cell death. So that raises the question: can we quantify the amount of liver
cell damage from T-DM1 treatment by studying the relationship between the
dosage of T-DM1 and the concentration of ALT in the bloodstream? We chose
to focus on ALT rather than AST due to ALT primarily being released by liver
cells, whereas AST can be released by the liver, brain, lungs, and other organs
in the body [1]. Thus by modeling the concentration of ALT released by specific
dosages of T-DM1, the patients’ recorded ALT levels can be referenced to find
an optimal dosage to lower ALT levels while still being considered an efficient
treatment.

Antibody-drug conjugates (ADCs) are a class of chemotherapeutics that
links monoclonal antibodies to a cytotoxic agent via a linker [2]. These thera-
peutics can target specific cancer cells based on their possession of certain anti-
gens and then release toxins to kill the cell [2]. One such ADC is trastuzumab
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emtansine (T-DM1), where trastuzumab (T) is the antibody and emtansine
(DM1) is the cytotoxin [3]. DM1 disrupts the polymerization of a key struc-
tural element called microtubules [3, 4]. Trastuzumab targets the growth factor
receptor HER2, a protein over-expressed in about 20-25 percent of breast cancers
[2, 3]. This property makes T-DM1 especially useful in treating breast cancer
[2]. When T-DM1 binds with HER2, DM1 is released which disorganizes the
microtubules and leads to cell death [2]. However, T-DM1 has been known to
impact unintended cells [4]. One significant instance of this is in hepatocytes, or
liver cells. When T-DM1 binds with CKAP5, an extracellular protein involved
in microtubule stabilization, calcium rushes into the cell [2, 4]. These conditions
disrupt the stabilization of microtubules and ultimately cause hepatocyte death
[2, 4]. A key marker of hepatotoxicity is the presence of alanine aminotrans-
ferase (ALT) and aspartate aminotransferase (AST), enzymes released due to
hepatocyte death [2].

Mathematical Model

The model we create will predict the ALT concentration in a blood sample
after injecting T-DM1 throughout a 3-week regimen. Our primary objective
is to accurately characterize the relationship between a serum concentration of
T-DM1 and hepatotoxicity.

A few assumptions are made within our model that helped guide the devel-
opment process. We assume the patient has no abnormal conditions or previous
treatments that would affect ALT levels. The dosage of T-DM1 is the first
dosage during treatment. The patient’s characteristics, such as age, gender,
economic status, prior treatment, etc., do not alter their respective levels of
ALT. The total number of hepatocytes at any given time does not affect the
rate at which T-DM1 binds to CKAP5. This assumption was made due to
the number of healthy hepatocytes vastly outnumbering the concentration of
T-DM1 that can bind to those cells. We additionally assume that the birth and
natural death rates of hepatocytes do not significantly affect the rate at which
T-DM1 binds to CKAP5. However these assumptions will be relaxed and will be
discussed later when we introduce the second version of the model. In addition,
hepatotoxicity does not contribute to additional hepatocyte death. This means
that past hepatocyte death does not affect the rate at which future hepatocytes
die. Since we want to focus solely on ALT levels from liver cells, we can lump
together the clearance of T-DM1 when the drug either targets cancer cells or
when it dissipates in the bloodstream together. In order to model the serum
concentration of T-DM1 we will take it to be a known function derived from
Figure 1. We fit an exponential function, A(t), to the data. A(t) represents the
serum concentration of T-DM1 and has the form:

A(t) = A0e
−αt. (1)

We assume that ALT is only released when the cell is completely dead and
is not produced simply as a result of cell damage. We are assuming that ALT
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Figure 1: Mean serum T-DM1 concentration by dose level over a 21 day period
in µg/ml [3].

is released instantaneously once the liver cell is completely dead even though
the process of cell death is not instantaneous. Another important assumption is
that there is already ALT that is seen in the bloodstream unrelated to T-DM1
treatments. When the hepatocytes naturally die, they still do release ALT. The
total amount of ALT in a patient’s bloodstream is approximately 84,000 IU [5].
This is a baseline value, we are interested in the event that this ALT baseline
increases above normal due to hepatoxicity. However, it is also possible for ALT
to be elevated due to other conditions, such as the brain damage and skeletal
muscle diseases [6, 7]. When we look at ALT levels in the body, only looking
at ALT that has been released from liver injury is of interest. Since we have
already established that the patient has no such conditions that would affect
ALT levels, we can safely assume that ALT elevation is coming only from the
hepatocyte damage. This model will allow the client to measure toxicity levels
based on the dosage of T-DM1 given to the patient. Additionally, another model
describing the relationship between dosage of T-DM1 and effectiveness could be
established by the client. This other model would give an optimum range of
dosages that will maximize the effectiveness at combating the cancerous cells
while minimizing the risk of harming the patient.
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Initial Condition Dimension Unit Value Source

A0 C µ/ml Drug Concentration [3]

B0 N Billions of cells 174 [8]

D0 N Billions of cells 0 Model assumption

E0 N IU 45 [5]

F0 N IU 1** -

Table 1: Initial conditions. “*” denotes that the value was used in similar study
of a different but similar drug.

Parameter Definition Dimension Value Source

α Rate T-DM1 binds to liver cells 1
T 0.1712-0.7124 [3]

β Rate healthy liver cells become damaged N
CT 0.00237254167 -

σ Rate damaged liver cells die 1
T 5* [5]

ν Rate healthy liver cells regenerate 1
T 1*** [5]

ξ Rate healthy liver cells die 1
T 1.8741 · 10−4 [5]

µ Clearance rate of ALT into the bloodstream 1
T 15.75** -

ϕ Clearance rate of ALT out of the bloodstream 1
T 0.35 [5]

γ ALT produced from liver cells C
N 483 [5]

Kmax Maximum rate at which T-DM1 causes cell death 1
T 0.0003502 -

K50 50% of the drug concentration associated with Kmax N 55.33 [3]

Bss Carrying capacity modifier - 1.000188*** -

Table 2: Model parameters. “*” denotes that the value was used in similar
study of a different but similar drug.

Model v1.

This is our basic compartmental model which will take a T-DM1 dosage and
determine the damage done to the liver using ALT serum concentration as a
marker. We have established the mean T-DM1 serum concentration as a known
function, A(t), as shown in Equation (1). We developed a set of differential equa-
tions to model the change in the amount of healthy hepatocytes, the amount of
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Figure 2: Flow Diagram of Model v1 and v2.

damaged hepatocytes, and the ALT serum concentration using the relationships
depicted in Figure 2. For all of our equations, including Equation (1), t is in
days.

dB

dt
= −βA (2)

dD

dt
= βA− σD (3)

dE

dt
= γσD + γξB − ϕE. (4)

Equation (2) describes the change in the number of healthy hepatocytes that
are affected by T-DM1 over time t. Variable B represents the total number
of healthy hepatocytes, and β is rate at which T-DM1 binds with hepatocytes.
Equation (3) describes the change in number of damaged hepatocytes at the rate
T-DM1 binds to liver cells, β, minus the rate of damaged hepatocyte death, σ.
Variable D represents the total number of damaged hepatocytes. Equation (4)
describes how the ALT serum concentration is changing over time t, where E
is the total number of ALT molecules. γσD describes ALT being produced
from T-DM1 effected cells, where σ refers to the rate at which T-DM1 effected
hepatocytes die and γ refers to the number of ALT molecules produced from
the total number of hepatocytes. γξB describes healthy liver cells producing
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ALT at a rate ξγ through natural cell death. ϕE describes the clearance rate
of ALT. Values for each of the parameters are listed in Table 2.

Nondimensionalization

Due to our very large initial condition values displayed in Table 1, we nondimen-
sionalized our system of equations. To start, we chose our characteristic time
scale to be a fraction of the rate at which hepatocytes die. Each of the vari-
ables are scaled by their initial conditions. Each variable’s characteristic scale
is denoted with a superscript of “*”. For example, we set Ẽ = E

E∗ . Ẽ is the
nondimensional amount of ALT molecules. We decided to scale time by the rate
damaged liver cells die as this is the most significant physiological process in our
models. We scaled initial conditions for healthy livers cells and ALT molecules
in the serum by themselves. In order to avoid a zero in the denominator of the
scale for damaged hepatocytes we chose to scale D0 by B0.

t = t∗t̃, t∗ = 1
σ

A = A∗Ã A∗ = A0

B = B∗B̃ B∗ = B0

D = D∗D̃ D∗ = B0

E = E∗Ẽ E∗ = E0.

To demonstrate how we nondimensionalized, we will take a closer look with
Equation 3.

dE

dt
= γσD + γξB − ϕE

d(E∗Ẽ)

d(t∗t̃)
= γσD∗D̃ + γξB∗B̃ − ϕE∗Ẽ

dẼ

dt̃
=

t∗

E∗ (γσD
∗D̃ + γξB∗B̃ − ϕE∗Ẽ)

dẼ

dt̃
=

σt∗D∗D̃

E∗ +
γξt∗B∗B̃

E∗ − ϕt∗Ẽ.

By the nondimensionalization of Equation (3), the scales of each variable are
now relative to their initial conditions and therefore dimensionless. We followed
this procedure to derive the following nondimensionalized model:

dB̃

dt̃
= −β̂Ã, B̃(0) = 1 (5)

dD̃

dt̃
= β̂Ã− D̃, D̃(0) = 0. (6)

dẼ

dt̃
= γ̂D̃ + γ̂ξB̃ − ϕ̂Ẽ, Ẽ(0) = 1. (7)
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The scaled parameters, which are denoted with a “ˆ”, are defined in Table 3.
For the remainder of the paper, when referring to version 1 of our model it will
be this nondimensional model.

Scaled Parameter Value

α̂ α
σ

β̂ βA0

σB0

γ̂ γB0

E0

γ̂ξ
ξγB0

σE0

ϕ̂ ϕ
σ

ˆKmax KmaxA
ω
0

K̂50 σKω
50

Â0 σAω
0

ν̂ ν
σ

ξ̂ ξ
σ

µ̂ µF0

σB0

ˆµF0
µF0

σE0

Table 3: Scaled Parameters from nondimensionalization.

Model v2.

For this version of our model, we introduce a Hill function to encode the magni-
tude of T-DM1’s effect on the liver. This model allows further control over the
extent of T-DM1’s affect on the liver. As before, A(t) is a known function, given
in Equation 1 describing serum T-DM1 concentration over time t in days. We
developed the following differential equations to model the change in amount
of healthy hepatocytes, the amount of damaged hepatocytes, and ALT serum
concentration using the relationships depicted in Figure 2:

dB

dt
=

−KmaxA
ω

Kω
50 +Aω

B (8)

dD

dt
=

KmaxA
ω

Kω
50 +Aω

B − σD (9)

dE

dt
= γσD + γξB − ϕE. (10)
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Equations (8) and (9) make use of a Hill function, which is the primary difference
between model 1 and 2. Kmax denotes the maximum rate T-DM1 damages
hepatocytes and K50 denotes to the serum T-DM1 concentration associated
with 50% of Kmax. ω is the Hill coefficient which is used to encode the degree
of binding cooperativity between T-DM1 and CKAP5.
The second key difference between this model and out first version pertains to
our assumptions. Here we are relaxing the assumption that the total number of
hepatocytes does not significantly impact the rate of cell damage. Equation (8)
encodes the change in the number of healthy hepatocytes, B, over t days. The
Hill function term encodes the magnitude of the affect of T-DM1 on the liver.
And reflecting our relaxed assumption, Equation (8) multiplies this magnitude
by the number of healthy hepatocytes. Equation (9) encodes the change in
damaged hepatocytes, D. This is encoded by adding the the number of damaged
cells as determined in Equation (8) and subtracting the number of dead cells,
σD, at the rate damaged cells die, σ. Equation (10) remains the same as
Equation (4) from version 1 of our model.

Nondimensionalization

To, again, minimize the size of our initial conditions, displayed in Table 1, we
nondimensionalized the model. The procedure described in version 1’s nondi-
mensionalization is followed. All choices of notation and scale are identical. As
a result, we have the following nondimensional model:

dB̃

dt̃
=

− ˆKmaxÃ
ω

K̂50 + Â0Ãω
B̃, B̃(0) = 1 (11)

dD̃

dt̃
=

ˆKmaxÃ
ω

K̂50 + Â0Ãω
B̃ − D̃, D̃(0) = 0 (12)

dẼ

dt̃
= γ̂D̃ + γ̂ξB̃ − ϕ̂Ẽ, Ẽ(0) = 1. (13)

Table 3 defines our scaled parameters. For the remainder of the paper, when
referring to version 2 of our model it will be this nondimensional model.

Model v3.

In order to add further complexity, by considering hepatocyte birth and death,
we introduce this new model. Thus, we can gain a better understanding of the
system as a whole. Figure 3 illustrates these two new relationships.
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Figure 3: Flow Diagram of Model v3.

We have only modified the equation for the change in healthy hepatocytes
for this model.

dB

dt
=

−KmaxA
ω

Kω
50 +Aω

B +

(
ν
(
1− B

B0Bss

)
− ξ

)
B (14)

dD

dt
=

KmaxA
ω

Kω
50 +Aω

B − σD (15)

dE

dt
= γσD + γξB − ϕE. (16)

The new term in Equation (14) is the number of healthy hepatocytes multiplied
by the difference in birth and death rates of those hepatocytes. The birth
rate term incorporates a carrying capacity equivalent to the initial value of the
healthy hepatocytes, as listed in Table 2. There is only new parameters called
ν which denotes the regeneration rate of healthy hepatocytes.

Nondimensionalization

The same procedure used earlier to nondimensionalize model 1 and 2 is used
here. All notation and characteristic time scale choices remain the same. We
now have the following nondimensional model:
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dB̃

dt̃
=

− ˆKmaxÃ
ω

K̂50 + Â0Ãω
B̃ + (ν̂(1− B̃

Bss
)− ξ̂)B̃, B̃(0) = 1 (17)

dD̃

dt̃
=

ˆKmaxÃ
ω

K̂50 + Â0Ãω
B̃ − D̃, D̃(0) = 0 (18)

dẼ

dt̃
= γ̂D̃ + γ̂ξB̃ − ϕ̂Ẽ, Ẽ(0) = 1. (19)

Table 3 defines our scaled parameters. For the remainder of the paper, when
referring to version 3 of our model it will be this nondimensional model.

Model v4.

For this version of the model, we further develop the physiology of our system.
Figure 4 shows an additional compartment in our model, this represents a delay
in the movement of ALT. This represents ALT existing in the liver after being
released from damaged cells and then that ALT moving from the liver into the
bloodstream.

Mean

T-DM1

Serum

Concentration

A(t)

Healthy

Hepatocytes

B(t)

Damaged

Liver

Cells

D(t)

D.ALT

F(t)

ALT

E(t)

νB
(
1− B

B0

)

σD

γσD
µF ϕE

γξB

ξB

βAB

Figure 4: Flow Diagram of Model v4.

The equations for healthy and damaged hepatocytes remain the same as in
version 3 of our model. We have introduced an additional equation for ALT in
the liver and altered our equation for ALT in the bloodstream.
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dB

dt
=

−KmaxA
ω

Kω
50 +Aω

B +B

(
ν
(
1− B

B0Bss

)
− ξ

)
(20)

dD

dt
=

KmaxA
ω

Kω
50 +Aω

B − σD (21)

dF

dt
= γσD + γξB − µF (22)

dE

dt
= µF − ϕE. (23)

Equation (22) is the change in ALT in the liver. This includes ALT from T-DM1
affected cells and ALT from normal cell death and damage. The last term in this
equation denotes the clearance of ALT from the liver into the bloodstream at
rate µ. Equation (23) is the change in ALT concentration in the bloodstream.
This includes the difference between the ALT cleared from the liver into the
bloodstream and the ALT cleared from the bloodstream at rate ϕ.

Nondimensionalization

Equation (23) adds the following characteristic scale to our nondimensionaliza-
tion procedure:

F = F ∗F̃ , F ∗ = F0.

We now have the following nondimensional model:

dB̃

dt̃
=

− ˆKmaxÃ
ω

K̂50 + Â0Ãω
B̃ + (ν̂(1− B̃

Bss
)− ξ̂)B̃, B̃(0) = 1 (24)

dD̃

dt̃
=

ˆKmaxÃ
ω

K̂50 + Â0Ãω
B̃ − D̃, D̃(0) = 0 (25)

dF̃

dt̃
= γ̂D̃ + γ̂ξB̃ − µ̂F̃ , F̃ (0) = 1 (26)

dẼ

dt̃
= µ̂F̃ − ϕ̂Ẽ, Ẽ(0) = 1. (27)

Table 3 defines our scaled parameters, with the following exceptions:

γ̂ =
γB0

F0

γ̂ξ =
γξB0

σF0

ϕ̂ =
ϕE0

σB0
.

For the remainder of the paper, when referring to version 4 of our model it will
be this nondimensional model.
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Parameterization

Mean Serum Concentration

The parameters for Equation (1) are fit according to the data displayed in Figure
1 using the curve fit function from the Scipy library in Python. The curve was
fit using the curvefit function in the library which looks to minimize the sum of
the squared residuals. The results are displayed in Table 4.

Dosing Regimen Number of Data Points A0 ± standard error α ± standard error

.3 mg/kg 4 11.29081 ± 1.0907 0.8224 ± 0.1309

.6 mg/kg 6 14.2862 ± 2.2042 0.5743 ± 0.0922

1.2 mg/kg 6 22.4405 ± 0.9311 0.5797 ± 0.0249

2.4 mg/kg 9 69.4441 ± 1.2836 0.2036 ± 0.0048

3.6 mg/kg 9 76.5372 ± 4.6088 0.3023 ± 0.0402

4.8 mg/kg 9 110.6609 ± 2.0688 0.1685 ± 0.0041

Table 4: Parameters for A(t) using mean serum concentration data in Figure 1
for 6 dosages of T-DM1.

We also found it useful to fit the data in Figure 5, in particular the data asso-
ciated with the serum T-DM1. This was done in the same manner as before.
The results are displayed in Table 5 and Figure 6.

Figure 5: Mean concentration of three metrics related to T-DM1, combining
three phase two studies [3].
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Equation Units Number of Data Points A0 ± standard error α ± standard error

ng/mL 4 46511.1720 ± 763.3310 0.2349 ± 0.0092

Table 5: Parameter values for A(t) using mean serum T-DM1 concentration
data from Figure 5.

Figure 6: The curve fit to data where the original data is the red points on the
graph and the blue smooth line is the function fit

Parameter Verification

We determined β by examining the properties of the results for model version
1. From Equation (33),

γ̂ξβ̂

α̂
− γ̂ξ < 0

γ̂ξβ̂

α̂
< γ̂ξ

β̂ < α̂.

So we take minimum α̂, using the minimum α value from Table 4, and determine
the upper bound for β̂ to be 0.0337. Thus,

β < 0.1685.

Furthermore, using the data described in Figure 7a, we chose the value of β to
be such that the results for the elevation of ALT molecules to be by a factor of
2 at its maximum. This was done by testing a range of β values in MATLAB.
We approximated,

β = 0.00237254167.
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Parameter values for Equation (4) were verified by observing the steady
states of our model. We set the drug concentration and time to 0, as well as
each derivative. We get the following relationship as a result:

γ̂ξ = ϕ̂.

By substituting in known parameters into this equation, we were able to verify
this relationship between γ, ϕ, and ξ.

Hill Function Parameters

In order to assign values to Kmax and K50 we used Figure 7a. This figure shows
that the ALT elevation in the bloodstream was between 0 and 2 times the initial
value for the ninety-fifth percentile of data points collected for a 3.6 mg/kg dose
[3]. We used this as a bound for the maximum in the solution for the ALT blood
levels. In MATLAB, we created a range of values for each of the parameters
and solved version 2 of the model for each range. As a result of this process, we
obtained Figure 7b. Figure 7b shows that K50 did not have much of an effect
on the ALT in the bloodstream. So we chose K50 to be 50% of A0 associated
with the largest dose from Table 4, which is 55.33 µg/kg. Using the maximum
value of 2 for ALT blood levels and taking K50 to be 55.33, we used Figure 7b
to find that the value of Kmax was 0.0003502.

(a) ALT blood concentration for 3.6
mg/kg T-DM1 dosage over a 3-week
regime. The red bars are 95% confidence
intervals and the blue circles are patients
outside of the confidence interval [3].

(b) A contour map of Kmax,K50 and max-
imum ALT blood level solutions. Kmax

is varied between 10−5 and .0015 for 50
points. K50 is varied between 30 and 65
for 50 points.

Figure 7: ALT blood concentration confidence intervals and contour map.

Results

Model 1 could be solved analytically, while Models 2, 3 and 4 had to be solved
numerically. The nondimensionalized form of each of these models were used
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in the solution in order to minimize error. However, we did provide solutions
in terms of dimensional numbers as well in order to better contextualize our
results. The procedure to solve Model 1 is described below. For the numerical
solutions, MATLAB’s ode45 integrator was used. Each set of results displayed
in Figures 8, 9, 10, and 12 were created using the parameters in Table 2, initial
conditions in Table 1, and the varied values for initial drug concentration and its
respective rate of decay displayed in Table 4. Each graph shows the respective
solutions for six different dosages of T-DM1 over a 21 day regimen. We have
also included baseline results representing the system with no dosage of T-DM1.

Model v1.

We begin the solution of this model by solving Equation (1):

Ã(t̃) = e−α̂t̃. (28)

By substitution, Equation (2) becomes:

dB̃

dt̃
= −β̂e−α̂t̃.

Integrating and solving with our initial condition, B̃(0) = 1, the solution is:

B̃(t̃) =
β̂

α̂
(e−α̂t̃ − 1) + 1. (29)

By substitution, Equation (3) becomes:

dD̃

dt̃
= β̂e

−αt̃
σ − D̃.

Solving with initial condition D̃(0) = 0:

D̃(t̃) =
β̂

(1− α̂)
(e−α̂t̃ − e−t̃). (30)

By substitution, Equation (4) becomes:

dẼ

dt̃
=

γ̂β̂

1− α̂
(e−α̂t̃ − e−t̃) +

γ̂ξβ̂

α̂
(e−α̂t̃ − 1) + γ̂ξ − ϕ̂Ẽ.

Rearranging the terms to match exponential terms:

d

dt̃
[eϕ̂t̃Ẽ] =

[
γ̂β̂

1− α̂
+

γ̂ξβ̂

α̂

]
eϕ−α̂t̃ − γ̂β̂

1− α̂
e(ϕ̂−1)t̃ −

(
γ̂ξβ̂

α̂
− γ̂ξ

)
eϕ̂t̃.

We introduce parameters C1, C2, and C3, and define them to be:

C1 =
γ̂β̂

1− α̂
+

γ̂ξβ̂

α̂
, (31)
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C2 =
γ̂β̂

1− α̂
, (32)

C3 =
γ̂ξβ̂

α̂
− γ̂ξ. (33)

Integrating the equation:

Ẽ(t̃) =
C1

ϕ̂− α̂
e−α̂t̃ − C2

ϕ̂− 1
e−t̃ − C3

ϕ̂
+ Ce−ϕ̂t̃, C3 < 0 (34)

and solving for C with the initial condition Ẽ(0) = 1

C = 1− C1

ϕ̂− α̂
+

C2

ϕ̂− 1
+

C3

ϕ̂
, C3 < 0.

(a) Healthy hepatocytes.

(b) Damaged hepatocytes.
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(c) ALT molecules.

Figure 8: Nondimensionalized Plots for Model 1 over 21 days for 6 doses.

Figure 8 displays the solutions of Model 1. This model is the most basic
of the four in terms of complexity, it also upholds the assumption that the
number of healthy hepatocytes does not affect the future rate that T-DM1
damages hepatocytes. As a result, the number of healthy hepatocytes decreases
exponentially, as displayed in Figure 8a. The damaged hepatocytes increase
quickly in the beginning of treatment, and reach a steady state that the count
remains at, as shown in Figure 8b. Finally, the number of ALT molecules
increases fairly close to linearly throughout the 21 day regimen, as shown in
Figure 8c. The ALT does not return back to the initial value.

Model v2.

Figure 9 displays the results for Model 2. This model incorporated the Hill
function in order to account for the magnitude of T-DM1 damage. The effect of
this can mostly be seen manifest as steady states in each of the solutions. Unlike
the results from Model 1, as in Figure 8, the healthy hepatocytes eventually do
stop decreasing, and the amount of ALT molecules stop increasing. As for the
results for the damaged hepatocytes, Figure 8b shows the damaged hepatocytes
stop increasing which is also seen in Figure 9c. However, the damaged hepato-
cytes do decrease back to zero in the Model 2, unlike in Model 1. This is due to
relaxation of our assumption in Model 2 that the number of healthy hepatocytes
does not affect the rate that future hepatocytes become damaged.
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(a) Healthy hepatocytes. (b) Healthy hepatocytes.

(c) Damaged hepatocytes. (d) Damaged hepatocytes.

(e) ALT molecules. (f) ALT Molecules.

Figure 9: Nondimensional and dimensional Plots for Model 2 over 21 days for
6 doses.
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Model v3.

(a) Healthy hepatocytes. (b) Healthy hepatocytes.

(c) Damaged hepatocytes. (d) Damaged hepatocytes.

(e) ALT molecules. (f) ALT molecules.

Figure 10: Nondimensional and dimensional plots for Model 3 over 21 days for
6 doses.

Model 3 introduces hepatocyte regeneration and their natural decay for healthy
hepatocytes. This addition significantly changed the results for healthy hep-
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atocytes, shown in Figure 10a. Each solution rapidly decreases initially until
the regeneration rate outpaces the rate healthy hepatocytes are damaged. At
which point, the healthy hepatocyte count begins increase back towards initial
amount. The modifications to this model did not however change the solutions
for damaged hepatocytes and ALT serum molecules, shown in Figures 10c, and
10e, in comparison to Model 2.

Observing the Nature of ω in the Hill Function

For all the solutions to the different models, we assumed the Hill coefficient,
ω, to be equal to 1 when finding the results for the varying dosages. When
ω is equal to 1, the system undergoes noncooperative binding (NB), which is
completely independent binding. This means that the binding between T-DM1
and CKAP5 is not affected by whether or not binding has already occurred in
the system. However, when ω > 1, this represents positive cooperative binding
(PCB), where when T-DM1 has bonded to CKAP5, the affinity of binding in the
future increases, making binding occur much more frequently over time. When
ω < 1, it represents negative cooperative binding (NCB). This is essentially the
opposite of positive cooperative binding where when T-DM1 has bonded to the
CKAP5, its affinity for binding decreases over time. Thus, we can see what
different values of ω would do to our models while also using these ideas to
verify the Hill function and check to see if it is behaving properly.

We decided to look at how varying the values of ω would change the solutions
to B(t), D(t), and E(t) with a specific dosage. Three values were chosen with
ω1 = 0.5, ω2 = 1.0, and ω3 = 1.5 with our third model, with natural birth and
death parameters, used to observe the behavior of the varying Hill coefficients.
When looking at Figure 11a, we see that ω1 binds to less hepatocytes than ω2.
NCB causes the binding of the T-DM1 to CKAP5 to happen less frequently over
time, which we see in the results where there are healthy cells being attacked
by T-DM1. The exact opposite is occurring for ω3, where PCB is causing more
cells to be targeted earlier on into the treatment, causing a much more dramatic
decrease in healthy liver cells. Also, an interesting observation of the different
Hill coefficients is that the higher the Hill coefficient value is, the faster the
system will return to the original carrying capacity, even though it has causes
a greater magnitude of healthy liver cells to become damaged.

In Figure 11c, we still see the consequences of the different types of cooper-
ation, with ω3 having a larger magnitude of damaged cells. The majority of the
damaged cells occur during the first few days, but after it reaches its apex, there
is a sharp decline in damaged cells in the system. This correlates to the ”heal-
ing period” in Figure 11a, where they begin to approach the carrying capacity.
However, with ω1, the total damaged cells is much lower than ω3, but due to
the slope after the apex, it shows that there is still binding going on much later
than both ω2 and ω3. Then finally for Figure 11e, the rates at which ALT is
produced is what was to be expected with the trends that are shown in Figure
11c, more damaged hepatocytes will produce higher levels of ALT.
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(a) Healthy hepatocytes with varying ω. (b) Healthy hepatocytes with varying ω.

(c) Damaged hepatocytes with varying ω. (d) Damaged hepatocytes with varying ω.

(e) ALT molecules with varying ω. (f) ALT molecules with varying ω.

Figure 11: Nondimensional and dimensional plots for model 3 over 21 days for
6 doses.

Model v4.

Figure 12 displays the solutions for Model 4. This variation includes the modi-
fication for healthy hepatocyte birth and death, this affected the results in the

21



same manner as described for Model 3. In addition, this model includes the
addition of a delay function seen in Figure 12e. This delay refers to a period
for which ALT molecules are within the liver and have not yet entered the
bloodstream. The delayed ALT graph in Figure 12e shows ALT that has been
produced, but is not measurable in the serum. Due to how the models were
nondimensionalized, this figure follows a very close path to previous models
ALT solutions, as seen in figure 9e. This is expected, as for ALT levels to be
stable in the control, the rate at which ALT enters the serum must be the same
as it exiting, thus our previous ALT equation and our delay equation equal each
other. Thus as seen in the previous figures, the ALT delay for the lower doses
plateau quickly and slowly fall back to 1, while the larger doses quickly climb,
and slowly taper off near the 21 day mark.

(a) Healthy hepatocytes. (b) Healthy hepatocytes.

(c) Damaged hepatocytes. (d) Damaged hepatocytes.
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(e) ALT molecules in the liver. (f) ALT molecules in the liver.

(g) ALT molecules in the serum. (h) ALT molecules in the serum.

Figure 12: Nondimensional and dimensional plots for Model 4 over 21 days for
6 doses.

The new function for ALT seen in Figure 12g shows a decrease in maximum
levels compared to our previous models as well as a slower increase of ALT
overall. This is expected as we specifically delayed the increase of ALT in the
serum with our equations. The control stays at 1 as no dosage was given, and
as such nothing has changed over time. Since we knew that the control should
not move, the delay had to have the same entrance rate as the clearance rate
of ALT, being 0.35. The three lower dosages are tightly packed staying much
lower than the three higher dosages, which are also tightly packed. Expanded
past what is shown, we see that all of the ALT levels slowly make their way
back to 1, and that the maximums are about half of previous figures.

Summary of All Model Versions

There are some notable similarities between the results for each of the models.
Firstly, for each of the solutions, you can see a behavior that is similar to
a behavior displayed in Figure 1. That is that the higher three dosages of T-
DM1 cluster closer together and the lower three dosages of T-DM1 cluster closer
together. There is a notable unexpected behavior associated with the 2.4 mg/kg
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dosage. In general, as displayed in Figure 1, a higher dosage of T-DM1 will be
associated with a relatively higher serum T-DM1 concentration with respect to
a lower dosage throughout a 21 day period. However, the 2.4 mg/kg dosage is
associated with a higher serum T-DM1 concentration for 10 our of the 21 days
relative to the 3.6 mg/kg dosage. This anomaly can be observed in all of our
results.

Figures 9c, 10c, and 12c show the results for damaged hepatocytes in Models
2, 3, and 4. These results are exactly the same. This is as expected since the way
damaged hepatocytes are calculated is the same in each of these models. These
figures show that the damaged hepatocytes quickly increase at the beginning
of treatment, level off at a peak, and then return towards zero as death rate
of these cells overtakes the rate at which new hepatocytes are being damaged.
As expected, the controls show that with no T-DM1, the damaged hepatocytes
stay at zero.

Figures 10a, and 12a also display the same results for healthy hepatocytes
for Models 3 and 4. This is also expected as each of the models introduce
birth and death rates of hepatocytes and use the same differential equation to
describe the population of healthy hepatocytes. Due to the regeneration of the
hepatocytes, we see that the three lower dosages are going back to the starting
cell count, which was set as the carrying capacity. The three higher dosages
took a while longer to bounce back, but seem to be quickly returning to the
carrying capacity after the initial dose. The controls here shows that without a
dose, the body stays at the carrying capacity of healthy hepatocytes.

Discussion

We have developed four distinct models, with varying levels of complexity. This
was in an effort to assess the relevant physiology that should be taken into
account when determining the extent to which T-DM1 causes liver injury. We,
in addition, sought to develop a model that adequately described the existing
data pertaining to ALT blood levels related to T-DM1 treatment.

Model 1 was our simplest, it was helpful as a baseline for adding complexity
to our system. However, it did not accurately describe the existing data. Figure
8c shows an increase in ALT levels by a factor of 2 for a 3.6 mg/kg dose. While
this falls within the range of data described in Figure 7a, the shape of its curve
does not match our expectations [3]. Model 1 does not depict a steady state
or a decrease in ALT elevation, though ALT does clear from the system and
Figure 8b shows the amount of damaged hepatocytes stops growing in roughly
the first 10 days of treatment. Thus, the results of this model are impractical.
The remainder of the models do satisfy this condition of keeping the increase in
ALT molecules in the blood for a 3.6 mg/kg dose, or lower, between a factor of
0 and 2. The remaining models also more closely align with our expectations
for the behavior of ALT in the blood.

The only significant difference between Models 2 and 3 is pertaining to re-
sults for the number of healthy hepatocytes. Model 3 does create a more real-
istic description of how healthy hepatocytes are damaged quickly initially, but
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regeneration eventually overcomes the damage caused by T-DM1 as it leaves the
body, as displayed in Figure 10a. However, this complexity is not necessarily as
relevant as complexity developed in the results for ALT molecules in the blood.
Thus, Models 2 and 3 have similar levels of value to our problem.

Model 4 does affect the ALT levels detected in the blood. Figure 12g shows
a much slower and lower estimated increase in ALT molecules. For a 3.6 mg/kg
dose, Model 4 estimate about a 8% increase in ALT levels, and the curve ap-
peared as if the level would increase past a 21 day period. This value falls in the
range of reasonable values as discussed earlier. This model does also include the
more physiologically accurate description of healthy hepatocytes as in Model
3. Model 2 and 4 could be viewed as upper and lower bounds of the range of
responses patients could have to T-DM1 treatment.

A significant limitation of our work is that each model describes just one
definite response a patient could have. This is unrealistic, there is a range of
responses patients may have to T-DM1 treatment. Just for one dosage level, 3.6
mg/kg, patients had an ALT serum level increase anywhere between a factor
of 0 and 6, the 95th percentile being under a factor of 2 [3]. For context, an
increase by a factor of 5 is considered a grade 3, or severe, liver event [3]. While
our models serve as bounds for this range of reactions, they do not exhaustively
describe the probabilities associated with a well tolerated or fatal level of liver
damage. This limiting characteristic could be improved would be to consider
Kmax to be a patient-specific parameter. This would allow for varying levels of
magnitude of T-DM1 damage.

Conclusion

In predicting hepatotoxicity in patients that have received TDM-1 treatment,
we decided on using ALT measurements as our main indicator. As such our
model takes in a concentration of TDM-1 and using clinical data of ALT levels
at specific concentrations, allowing us to find not only the ALT levels, but also
see how much of the liver gets are damaged over the course of the treatment.

Our models can be simplified down to three, and later in model version 4, four
compartments that signify different aspects of ALT production after a patient
is given TDM-1. The model has a solid backbone of how these compartments
interact with each other. In addition, most parameters within the model have
clinical backing which allows us to be confident that besides a few parameters
the model is correct.

Our later models show a rather quick recovery and low amounts of cell death
within the liver for lower dosages. For higher dosages, as in previous models, the
liver damage is much higher mathematically speaking, however it still accounts
for a rather small amount of the liver. As such, our models depicts a rather
weak correlation between TDM-1 and liver damage.

The models themselves are only a basic framework of what happens inside
of the body. As such, there are many mechanisms that are not included within
the models, such as previous damage or resistance to the drug over time. In
addition, some of the parameters used don’t have clinical trial backing and as
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such we cannot attest to their validity past the final result being close to a
clinical trial. In that sense, more data backing the parameters, as well as data
supporting the final conclusion will be helpful in finalizing any errors within the
model.
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Appendix

The following script encodes the solutions for Model version 1 and then plots
the solutions for 6 dosages of T-DM1.

%% Model 1 solutions and plot

beta = 0.00237254167;
sigma = 5;
xi = 1.8741*10ˆ-4;
phi = 0.35;
gamma = 483;
B 0 = 174;
%D 0 = 0;
E 0 = 45;

% A(t) parameters and dosages
P = [10ˆ-10 .3 .6 1.2 2.4 3.6 4.8; 10ˆ-10 11.29 14.29 22.44 69.44 76.54 110.66; 10ˆ-10 .82 .57
.58 .2 .3 .17];
[m,n] = size(P);

for i = 1:n
%B(t)
p = P(:,i);
dose = p(1);
A 0 = p(2);
alpha = p(3);
t = [0:21];
plot(t, eq(alpha, A 0, beta, sigma, xi, phi, gamma, t, B 0, E 0),'Linewidth',1.3);
hold on

end

title('$$\hat{B(t)}$$: Healthy Heptatocytes', 'FontSize', 18, 'Interpreter','Latex')
legend('0 mg/kg','0.3 mg/kg','0.6 mg/kg','1.2 mg/kg','2.4 mg/kg', '3.6 mg/kg',
'4.8 mg/kg', 'FontSize', 15,'Interpreter','Latex')
xlabel('Days', 'FontSize',12,'Interpreter','Latex')
figure

for i = 1:n
%D(t)
p = P(:,i);
dose = p(1);
A 0 = p(2);
alpha = p(3);
t = [0:21];
plot(t, ew(alpha, A 0, beta, sigma, xi, phi, gamma, t, B 0, E 0),'Linewidth',1.3);
hold on

end

title('$$\hat{D(t)}$$: Damaged Hepatocytes', 'FontSize', 18,'Interpreter','Latex')
legend('0 mg/kg','0.3 mg/kg','0.6 mg/kg','1.2 mg/kg','2.4 mg/kg','3.6 mg/kg',
'4.8 mg/kg', 'FontSize', 15,'Interpreter','Latex')
xlabel('Days', 'FontSize',12)
figure

for i = 1:n
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%E(t)
p = P(:,i);
dose = p(1);
A 0 = p(2);
%alpha = p(3);
t = [0:21];
plot(t, e(alpha, A 0, beta, sigma, xi, phi, gamma, t, B 0, E 0),'Linewidth',1.3);
hold on

end

title('$$\hat{E(t)}$$: Molecules of ALT in the Serum', 'FontSize', 18,'Interpreter','Latex')
legend('0 mg/kg','0.3 mg/kg','0.6 mg/kg','1.2 mg/kg','2.4 mg/kg','3.6 mg/kg',
'4.8 mg/kg', 'FontSize', 15, 'Interpreter','Latex')
xlabel('Days', 'FontSize',12, 'Interpreter','Latex')

%This is B(t)
function etq = eq(alpha, A 0, beta, sigma, xi, phi, gamma, t, B 0, E 0)

t = t/sigma;
beta h = (beta*A 0)/(sigma*B 0);
gamma h = (gamma*B 0)/E 0;
%xi h = (xi*B 0)/(sigma*E 0);
%D h = D 0/B 0;
phi h = phi/sigma;
xigamma h = xi*gamma*B 0/(sigma*E 0);
alpha h = alpha/sigma;

if (beta h > (alpha/sigma))
disp("beta h > alpha/sigma");

end
d1 = exp((-alpha/sigma)*t);

etq = ((beta h/alpha h)*(d1-1))+1;
end

%This is D(t)
function etw = ew(alpha, A 0, beta, sigma, xi, phi, gamma, t, B 0, E 0)

t = t/sigma;
beta h = (beta*A 0)/(sigma*B 0);
gamma h = (gamma*B 0)/E 0;
%xi h = (xi*B 0)/(sigma*E 0);
%D h = D 0/B 0;
phi h = phi/sigma;
xigamma h = xi*gamma*B 0/(sigma*E 0);

c1 = ((sigma*beta h)/(sigma-alpha));
d1 = exp((-alpha/sigma)*t);
c2 = ((-((sigma*beta h)/(sigma-alpha))));
d2 = exp(-t);

etw = c1*d1 + c2*d2;

if (beta h > (alpha/sigma))
disp("beta h > alpha/sigma");

end
end

%This is for E(t)
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function et = e(alpha, A 0, beta, sigma, xi, phi, gamma, t, B 0, E 0)
t = t/sigma;
beta h = (beta*A 0)/(sigma*B 0);
gamma h = (gamma*B 0)/E 0;
xi h = (xi*B 0)/(sigma*E 0);
%D h = D 0/B 0;
phi h = phi/sigma;
xigamma h = xi*gamma*B 0/(sigma*E 0);

c1 = ((gamma h*sigma*beta h)/(sigma-alpha)) + ((xigamma h*sigma*beta h)/alpha);
d1 = exp((-alpha/sigma)*t);
c2 = ((gamma h*sigma*beta h/(sigma-alpha)));
d2 = exp(-t);
c3 = ((xigamma h*sigma*beta h)/alpha) - xigamma h;

c = 1 - (c1/(phi h-(alpha/sigma))) + c2/(phi h-1) + c3/(phi h);
et = (c1/(phi h-(alpha/sigma)))*d1 - (c2/(phi h-1))*d2 - c3/(phi h) + c*exp(-phi h*t);

if (beta h > (alpha/sigma))
disp("beta h > alpha/sigma");

end

end

Included is the MATLAB code used to numerically solve model version 1, 2,
3, and 4. This includes a hill call which calls the hill M2, hill M3, and hill M4
functions. This code was also used to compute the varying omega results as
seen in 11. Directions for this are included in the code. In order to create
those graphs we used Model 3. In addition this code can be used to create out
dimensional plots by uncommenting the appropriate plot calls and ylabel calls
for each solution.

%% hill call
%% Numerical Solution - This code calls function hill solve then uses ode45 to
%% Nondimensional solutions and plot
%% Dimensional plots are commented out

% Hill function parameters
K m = .0003502;
K 5 = 55.33;
om = 1;

% Parameters
sig = 5;
gam = 483;
phi = .35;
xi = 1.8741*10ˆ-4;
nu = 1;
mu = 15.75;

% Initial Conditions
B 0 = 1;
D 0 = 0;

30



E 0 = 1;
F 0 = 1;

% B D = 174;
% E D = 45;

tspan = linspace(0,21);
S0 = [B 0;(D 0/B 0);E 0];
S1 = [B 0;(D 0/B 0);E 0;F 0];

% A(t) parameters and dosages
P = [0 .3 .6 1.2 2.4 3.6 4.8;0 11.29 14.29 22.44 69.44 76.54 110.66;0 .82 .57 .58 .2 .3 .17];
[m,n] = size(P);

% Model Version 2
figure('Name', 'Model 2')
for i = 1:n

% B(t)
p = P(:,i);
dose = p(1);
A 0 = p(2);
a = p(3);
[t,H] = ode45(@(t,s) hill M2(t,s,K m,K 5,om,sig,gam,xi,phi,A 0,a),tspan,S0);
A = A 0*exp(-a*t);
plot(t, H(:,1),'Linewidth',1.3)
% plot(t, B D*H(:,1),'Linewidth',1.3)
hold on

end
title('$$\hat{B(t)}$$: Healthy Hepatocytes', 'FontSize', 18,'Interpreter','Latex')
legend('0 mg/kg', '0.3 mg/kg','0.6 mg/kg','1.2 mg/kg','2.4 mg/kg','3.6 mg/kg','4.8 mg/kg',
'FontSize', 12,'Interpreter','Latex')
xlabel('Days', 'FontSize', 15,'Interpreter','Latex')
% ylabel('Healthy Cells (Billions)')

figure('Name', 'Model 2')
for i = 1:n

% D(t)
p = P(:,i);
dose = p(1);
A 0 = p(2);
a = p(3);
[t,H] = ode45(@(t,s) hill M2(t,s,K m,K 5,om,sig,gam,xi,phi,A 0,a),tspan,S0);
A = A 0*exp(-a*t);
plot(t,H(:,2),'Linewidth',1.3)
% plot(t,B D*H(:,2),'Linewidth',1.3)
hold on

end
title('$$\hat{D(t)}$$: Damaged Hepatocytes', 'FontSize', 18,'Interpreter','Latex')
legend('0 mg/kg','0.3 mg/kg','0.6 mg/kg','1.2 mg/kg','2.4 mg/kg','3.6 mg/kg','4.8 mg/kg',
'FontSize',12,'Interpreter','Latex')
xlabel('Days', 'FontSize', 15,'Interpreter','Latex')
% ylabel('Damaged Cells (Billions)')

figure('Name', 'Model 2')
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for i = 1:n
%E(t)
p = P(:,i);
dose = p(1);
A 0 = p(2);
a = p(3);
[t,H] = ode45(@(t,s) hill M2(t,s,K m,K 5,om,sig,gam,xi,phi,A 0,a),tspan,S0);
A = A 0*exp(-a*t);
plot(t,H(:,3),'Linewidth',1.3)
% plot(t,E D*H(:,3),'Linewidth',1.3)
hold on

end
title('$$\hat{E(t)}$$: Molecules of ALT in the Serum', 'FontSize', 18,'Interpreter','Latex')
legend('0 mg/kg','0.3 mg/kg','0.6 mg/kg','1.2 mg/kg','2.4 mg/kg','3.6 mg/kg','4.8 mg/kg',
'FontSize', 12,'Interpreter','Latex')
xlabel('Days', 'FontSize',15,'Interpreter','Latex')
% ylabel('ALT Molecules (IU)')

% Model version 3
% To recreate omega varation results:
% Uncomment fixed A 0 and a, comment out dose specific A 0, a, and p.
% Change n to be equal to 3
% Uncomment new om and the appropriate legend

figure('Name', 'Model 3')
% om = [0.5, 1, 1.5]
for i = 1:n

% B(t)
p = P(:,i);
dose = p(1);
A 0 = p(2);
a = p(3);
% A 0 = 76.54;
%a = .3;
[t,H] = ode45(@(t,s) hill m3(t,s,K m,K 5,om,sig,gam,xi,phi,A 0,a,nu),tspan,S0);
A = A 0*exp(-a*t);
plot(t,H(:,1),'-','Linewidth',1.3)
% plot(t,B D*H(:,1),'-','Linewidth',1.3)
hold on

end
title('$$\hat{B(t)}$$: Healthy Hepatocytes', 'FontSize', 18,'Interpreter','Latex')
legend('0 mg/kg', '0.3 mg/kg','0.6 mg/kg','1.2 mg/kg','2.4 mg/kg','3.6 mg/kg','4.8 mg/kg',
'FontSize', 12,'Interpreter','Latex')
xlabel('Days', 'FontSize', 15,'Interpreter','Latex')
%legend(' = 0.5',' = 1.0',' = 1.5', 'FontSize', 12)
% ylabel('Healthy Cells (Billions)')

figure('Name', 'Model 3')
for i = 1:n

% D(t)
p = P(:,i);
dose = p(1);
%dose = 3.6;
A 0 = p(2);
%A 0 = 76.54;
a = p(3);
%a = .3;
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[t,H] = ode45(@(t,s) hill m3(t,s,K m,K 5,om,sig,gam,xi,phi,A 0,a,nu),tspan,S0);
A = A 0*exp(-a*t);
plot(t,H(:,2),'-','Linewidth',1.3)
% plot(t,B D*H(:,2),'-','Linewidth',1.3)
hold on

end
title('$$\hat{D(t)}$$: Damaged Hepatocytes', 'FontSize', 18,'Interpreter','Latex')
legend('0 mg/kg','0.3 mg/kg','0.6 mg/kg','1.2 mg/kg','2.4 mg/kg','3.6 mg/kg','4.8 mg/kg',
'FontSize',12,'Interpreter','Latex')
xlabel('Days', 'FontSize', 15,'Interpreter','Latex')
%legend(' = 0.5',' = 1.0',' = 1.5', 'FontSize', 12)
% ylabel('Damaged Cells (Billions)')

figure('Name', 'Model 3')
for i = 1:n

%E(t)
p = P(:,i);
dose = p(1);
A 0 = p(2);
a = p(3);
%A 0 = 76.54;
%a = .3;
[t,H] = ode45(@(t,s) hill m3(t,s,K m,K 5,om,sig,gam,xi,phi,A 0,a,nu),tspan,S0);
A = A 0*exp(-a*t);
plot(t,H(:,3),'-','Linewidth',1.3)
% plot(t,E D*H(:,3),'-','Linewidth',1.3)
hold on

end
title('$$\hat{E(t)}$$: Molecules of ALT in the Serum', 'FontSize', 18,'Interpreter','Latex')
legend('0 mg/kg','0.3 mg/kg','0.6 mg/kg','1.2 mg/kg','2.4 mg/kg','3.6 mg/kg','4.8 mg/kg',
'FontSize', 12,'Interpreter','Latex')
xlabel('Days', 'FontSize',15,'Interpreter','Latex')
%legend(' = 0.5',' = 1.0',' = 1.5', 'FontSize', 12)
%ylabel('ALT Molecules (IU)')

% Model Version 4
om = 1;
figure('Name', 'Model 4')
for i = 1:n

% B(t)
p = P(:,i);
dose = p(1);
A 0 = p(2);
a = p(3);
[t,H] = ode45(@(t,s) hill m4(t,s,K m,K 5,om,sig,gam,xi,phi,nu,mu,A 0,a),tspan,S1);
A = A 0*exp(-a*t);
plot(t,H(:,1),'Linewidth',1.3)
%plot(t,B D*H(:,1),'Linewidth',1.3)
hold on

end
title('$$\hat{B(t)}$$: Healthy Hepatocytes', 'FontSize', 18, 'Interpreter','Latex')
legend('0 mg/kg','0.3 mg/kg','0.6 mg/kg','1.2 mg/kg','2.4 mg/kg','3.6 mg/kg','4.8 mg/kg',
'FontSize', 12,'Interpreter','Latex')
xlabel('Days', 'FontSize', 15,'Interpreter','Latex')
%ylabel('Healthy Cells (Billions)')
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figure('Name', 'Model 4')
for i = 1:n

% D(t)
p = P(:,i);
dose = p(1);
A 0 = p(2);
a = p(3);
[t,H] = ode45(@(t,s) hill m4(t,s,K m,K 5,om,sig,gam,xi,phi,nu,mu,A 0,a),tspan,S1);
A = A 0*exp(-a*t);
plot(t,H(:,2),'Linewidth',1.3)
%plot(t,B D*H(:,2),'Linewidth',1.3)
hold on

end
title('$$\hat{D(t)}$$: Damaged Hepatocytes', 'FontSize', 18,'Interpreter','Latex')
legend('0 mg/kg','0.3 mg/kg','0.6 mg/kg','1.2 mg/kg','2.4 mg/kg','3.6 mg/kg','4.8 mg/kg',
'FontSize', 12,'Interpreter','Latex')
xlabel('Days', 'FontSize', 15)
%ylabel('Damaged Cells (Billions)')

figure('Name', 'Model 4')
for i = 1:n

%F(t)
p = P(:,i);
dose = p(1);
A 0 = p(2);
a = p(3);
[t,H] = ode45(@(t,s) hill BDm4(t,s,K m,K 5,om,sig,gam,xi,phi,nu,mu,A 0,a),tspan,S1);
A = A 0*exp(-a*t);
% nondim and dim are the same for F(t)
plot(t,H(:,3),'Linewidth',1.3)
hold on

end
title('$$\hat{F(t)}$$: Delay', 'FontSize', 18,'Interpreter','Latex')
legend('0 mg/kg','0.3 mg/kg','0.6 mg/kg','1.2 mg/kg','2.4 mg/kg','3.6 mg/kg','4.8 mg/kg',
'FontSize', 12,'Interpreter','Latex')
xlabel('Days', 'FontSize',15,'Interpreter','Latex')
%ylabel('ALT Moleclues (IU)')

figure('Name', 'Model 4')
for i = 1:n

%E(t)
p = P(:,i);
dose = p(1);
A 0 = p(2);
a = p(3);
[t,H] = ode45(@(t,s) hill m4(t,s,K m,K 5,om,sig,gam,xi,phi,nu,mu,A 0,a),tspan,S1);
A = A 0*exp(-a*t);
plot(t,H(:,4),'Linewidth',1.3)
%plot(t,E D*H(:,4),'Linewidth',1.3)
hold on

end
title('$$\hat{E(t)}$$: Molecules of ALT in the Serum', 'FontSize', 18,'Interpreter','Latex')
legend('0 mg/kg','0.3 mg/kg','0.6 mg/kg','1.2 mg/kg','2.4 mg/kg','3.6 mg/kg','4.8 mg/kg',
'FontSize', 12,'Interpreter','Latex')
xlabel('Days', 'FontSize',15,'Interpreter','Latex')
%ylabel('ALT Molecules (IU)')

The following three functions set up the differential equations for Model 2, 3,
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and 4 respectively. Each is called on by hill call in order to produce our results.

function dydt = hill M2(t,s,K m,K 5,om,sig,gam,xi,phi,A 0,a)
%ODE45
B = s(1);
D = s(2);
E = s(3);
B 0 = 174;
E 0 = 45;
A = A 0*exp(-a*t);
dydt = zeros(3,1);
dydt(1) = -K m*(A*A 0).ˆ(om)/(sig*(K 5ˆ(om) + (A*A 0).ˆom))*B;
dydt(2) = K m*(A*A 0).ˆ(om)/(sig*(K 5ˆ(om) + (A*A 0).ˆom))*B - D;
dydt(3) = (gam*D*B 0)/E 0 + (xi*gam*B*B 0)/(sig*E 0) - (phi*E)/(sig);
end

function dydt = hill m3(t,s,K m,K 5,om,sig,gam,xi,phi,A 0,a,v)
%ODE45
B = s(1);
D = s(2);
E = s(3);
B SS = 1.000188;
B 0 = 174;
E 0 = 45;
A = A 0*exp(-a*t);
dydt = zeros(3,1);
dydt(1) = (B/sig)*((-K m*(A*A 0).ˆ(om))/(K 5ˆ(om) + (A*A 0).ˆom)) + (v*(1-(B/B SS))-xi)*(B/sig);
dydt(2) = (K m*(A*A 0).ˆ(om)/(sig*(K 5ˆ(om) + (A*A 0).ˆom)))*B - D;
dydt(3) = (gam*D*B 0)/E 0 + (gam*xi*B*B 0)/(sig*E 0) - (phi*E)/sig;
end

function dydt = hill m4(t,s,K m,K 5,om,sig,gam,xi,phi,nu,mu,A 0,a)
%ODE45
B = s(1);
D = s(2);
F = s(3);
E = s(4);
B ss = 1.000188;
B 0 = 174;
E 0 = 45;
F 0 = 1;
A = A 0*exp(-a*t);
dydt = zeros(3,1);
dydt(1) = -K m*(A*A 0).ˆ(om)/(sig*(K 5ˆ(om) + (A*A 0).ˆom))*B + B*(nu*(1-(B/B ss))-xi)/(sig);
dydt(2) = K m*(A*A 0).ˆ(om)/(sig*(K 5ˆ(om) + (A*A 0).ˆom))*B - D;
dydt(3) = (gam*D)/F 0 + (xi*B*gam)/(sig*F 0) - (mu*F*F 0)/(sig*B ss*B 0);
dydt(4) = (mu*F*F 0)/(sig*B ss*B 0)-(phi*E*E 0)/(sig*B ss*B 0);
end

The following MATLAB code also calls on the hill M2 function. This code varies
values of Kmax and K50 and then solves version 2 of our model. The max of
the E(t) solution is then calculated and generates the contour graph displayed
in Figure 7b.
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%% Determining hill function parameters
%initializing range for K 5 and K m
n = 50;
k m = linspace(1*10ˆ-5,.0015,n);
k 5 = linspace(30,65,n);
[K 5, K m] = meshgrid(k 5, k m);
om = 1;
% Parameters
sig = 5;
gam = 483;
phi = .35;
nu = 1;
mu = .2;
% Initial Conditions
B 0 = 1;
D 0 = 0;
E 0 = 1;
F 0 = 1;
xi = 1.8741*10ˆ-4;

tspan = linspace(0,21);
S0 = [B 0;(D 0/B 0);E 0];
% A(t) parameters and dosages
%P = [.3 .6 1.2 2.4 3.6 4.8; 11.29 14.29 22.44 69.44 76.54 110.66; .82 .57 .58 .2 .3 .17];
%[m,n] = size(P);
A 0 = 76.54;
a = .3;

for i = 1:n
for j = 1:n

[t,H] = ode45(@(t,s) hill M2(t,s,K m(i,j),K 5(i,j),om,sig,gam,xi,phi,A 0,a),tspan,S0);
E(i,j) = max(H(:,3));
%E n(i,j) = max(H n(:,4));

end
end
V = [1.5 ,2, 3, 4, 5];
%surf(K 5,K m, E)
contour(K 5,K m,E, V, 'ShowText', 'on','Linewidth',1.3)
xlabel('K 5 0')
ylabel('K m a x')
title('Contour Map of E m a x (3.6 mg/kg)')

%zlabel('E max')
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