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Abstract

In recent years, subspace clustering has found many practical use cases which include, for

example, image segmentation, motion segmentation, and facial clustering. The image and

video data that is common to these types of applications often has high dimensionality.

Rather than viewing high dimensionality as a drawback, we propose a novel algorithm for

subspace clustering that takes advantage of the high dimensional nature of such data. We

call this algorithm LP1-PCA Spectral Clustering. Specifically, we introduce a concept that

we call cluster-ID sparsity, and we propose an algorithm called LP1-PCA to attain this in

low data dimensions. Our novel LP1-PCA algorithm is simple to implement and typically

converges after only a few iterations. Conditions for which our algorithm performs well are

discussed both theoretically and empirically, and we show that our method often attains

superior clustering performance when compared to other common clustering algorithms on

synthetic and real world datasets.
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1 Introduction

Modern big data typically reside in very high ambient dimensions, e.g., images and videos.

It is well known however that such data often have low-rank structure that can be utilized.

This structure can be exploited by using methods such as Principal Component Analysis

(PCA) and Fisher’s Linear Discriminant (LDA) to pre-process data. The PCA problem

attempts to find a projection onto a lower dimensional subspace that best represents the

data in the squared error sense. Methods like LDA also try to project the data onto a lower

dimensional subspace, but do so by maximizing the ratio of between class variance and inter-

class variance to maximize class separation in the new low-rank space. Such techniques have

made processing high dimensional data feasible for many applications in signal processing,

statistics, pattern recognition, etc.

The low-rank structure hidden in high dimensional data can also be used in unsupervised

clustering. For example, if given an image, one might want to segment the image into

categories or clusters. Such problems are solved by subspace clustering techniques. The idea

is that images, and other high dimensional data, are often well described by affine subspaces

present in the data. Therefore, a subspace clustering algorithm aims to find the parameters

of each subspace along with the subspace memberships of each data sample. As described

earlier, one common method of processing high dimensional data in a machine learning model

is to perform dimensionality reduction using PCA before solving the problem at hand. In

this work, we will show that it is possible to utilize the high-dimensional nature of the data

in subspace clustering problems.

There are many approaches to developing subspace clustering algorithms. One approach

is to use matrix factorization methods as in the algorithms of Boult and Brown [1], Costeira

and Kanade [2], and Gear [3]. Algebraic methods like Generalized Principal Component

Analysis (GPCA) [4] also exist. Another approach to subspace clustering is to use statistical

based methods. Some examples of such algorithms are PPCA [5], ALC [6], and RANSAC

[7]. Our work focuses on forming subspace affinities that can used in spectral clustering. The
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spectral clustering framework as described in the work of Ng et al. [8] has a foundational

role in many existing subspace clustering algorithms, e.g., in Sparse Subspace Clustering

(SSC) [9], Spectral Curvature Clustering (SCC) [10], Local Subspace Affinity (LSA) [11],

Spectral Local Best-Fit Flats (SLBF), Locally Linear Manifold Clustering (LLMC) [12], and

Low-Rank Representation (LRR) [13]. For a more extensive survey of subspace clustering

algorithms, we direct the reader to the work of Vidal [14].

In our work, we are inspired by the observation that high dimensional low-rank data

tends to promote orthogonality. We therefore introduce a property that we call cluster-ID

sparsity and propose a novel algorithm called LP1-PCA to obtain this in low data dimension.

In addition, we propose a novel subspace clustering algorithm called LP1-PCA Spectral

Clustering that utilizes cluster-ID sparsity to form subspace affinities when the data has

low-rank and high dimension. Our novel LP1-PCA Spectral Clustering algorithm is simple

to implement, converges quickly, and often attains superior clustering performance when

compared to other common clustering algorithms on synthetic and real world datasets.

In summary, the contributions that we make in this work are as follows:

• We show empirical evidence that uncorrelated low-rank data from different subspaces

tend to be nearly orthogonal when the ambient dimension is high.

• We show empirical evidence that uncorrelated low-rank data from different subspaces

can be used to form subspace affinities that will achieve perfect clustering via spectral

clustering via spectral clustering.

• We formulate the LP1-PCA problem as a novel sparsity promoting PCA variant and

we solve it exactly for rank-1 analysis and any p ≥ 1.

• We propose an approximate iterative algorithm for LP1-PCA for general rank and any

p ≥ 1.

• We propose a method of forming sparse subspace affinities using LP1-PCA when the

data is high dimensional and predominantly low-rank.
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• We show empirical evidence over an array of synthetic and real-world data that the pro-

posed sparse subspace affinities obtained by means of the proposed LP1-PCA method

often outperform standard clustering algorithms.

2 Background

2.1 Notation

This section will clarify the notation used throughout the rest of this paper. The script letter

R denotes the set of real numbers and the script letter N denotes the set of natural numbers

excluding zero. Accordingly, the set of real valued m× n matrices is denoted by Rm×n and

the set of real valued n× 1 column vectors is denoted by Rn. Matrices and column vectors

are notated using bold upper and lower case letters, respectively. To simplify notation, we

will find it useful to use the hadamard product of two matrices and the hadamard power of

a matrix. For any two matrices A,B ∈ Rm×n the hadamard product of A and B is defined

as A ◦ B = C ∈ Rm×n where Ci,j = Ai,jBi,j. For any matrix A ∈ Rm×n and x ∈ R the

hadamard power of a matrix A is defined as A◦x = Y ∈ Rm×n where Yi,j = Ax
i,j. In this

work, we will frequently utilize matrices in the d × k Steifel manifold which is defined as

Sd×k =
{
Q ∈ Rd×k : QTQ = Ik

}
.

2.2 Norms and Hölder’s Inequality

A norm is a measure of the size of a vector or matrix containing elements in R. Accordingly,

norms also induce a measure of distance between two pairs of vectors or matrices. In this

work, we will make heavy use of the family of Lp-norms, which are generalizations of the

euclidean norm. For our purposes, we will utilize the Lp-norm family for their sparsity and

density inducing effects. We say that a matrix or vector is sparse if most of its entries are

zero. Conversely, we say that a matrix or vector is dense if most of its entries are non-zero.
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Definition 2.1 (Vector Lp-norm). For any vector y ∈ Rn and p ∈ R ≥ 1, the Lp-norm of y

is defined as

∥y∥p =

(
m∑
i=1

|yi|p
)1/p

. (1)

Fig. 1 shows the boundaries of the Lp-norm unit ball, i.e., the set Bd
p = {x ∈ Rd : ∥x∥p ≤ 1}

with d = 2, and different values of p.

Figure 1: Lp-norm unit ball for different values of p.

From Fig. 1, the circular shape of the L2-norm corresponds directly to that of the standard

euclidean norm. In addition, we observe that limp→∞ ∥x∥p = max1≤i≤d |xi|, which results in

a box shape. The L1-norm results in a diamond shape.

When working on mathematical problems that involve vectors, it is common to encounter

a need for the Cauchy-Schwartz Inequality. However, for general Lp-norms, the Cauchy-

Schwartz Inequality is not usable. Fortunately, there is an alternative inequality that is

valid for the entire family of Lp-norms.
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Theorem 2.1 (Hölder’s Inequality). Let v,w ∈ Rn and p, q ∈ R ≥ 1. If 1
p
+ 1

q
= 1, then

∣∣vTw
∣∣ ≤ ∥w∥p ∥v∥q . (2)

Proof. A proof of Hölder’s Inequality can be found in most functional analysis textbooks,

e.g., the work in [15].

Without loss of generality, in Theorem 2.1, it suffices to fix p ≥ 1 and set q = p/(p − 1).

It is easy to verify that setting p = 2 implies that q = 2, which reduces Theorem 2.1 to

the Cauchy-Schwartz Inequality. Furthermore, setting p = 1 implies that q = ∞, and so

on. This relationship suggests that there is a dualistic nature between p and q, and for this

reason, p and q are sometimes referred to as dual exponents. Before we explore the nature

of this duality, we will discuss a few consequences of Theorem 2.1 that we will make use of

in this work.

Corollary 2.1.1. For any x ∈ Rn and q ≥ p ≥ 1 we have ∥x∥q ≤ ∥x∥p.

Proof. This result is proven in most functional analysis textbooks, e.g., the work in [15].

Corollary 2.1.2. Suppose that v,w ∈ Rn and p ∈ R ≥ 1, then the inequality in Theorem

2.1 can achieve equality when vi = sgn(wi) |wi|p−1 for all i ∈ {1, 2, . . . , n}.

Proof. By Theorem 2.1, it holds that

∣∣vTw
∣∣ ≤ ∥w∥p ∥v∥p/(p−1) . (3)

Next, we expand the norms, which results in

∣∣∣∣∣
n∑

i=1

viwi

∣∣∣∣∣ ≤
(

n∑
i=1

|wi|p
)1/p( n∑

i=1

|vi|p/(p−1)

)(p−1)/p

. (4)
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Replacing vi with sgn (wi) |wi|p−1 yields,

∣∣∣∣∣
n∑

i=1

sgn (wi) |wi|(p−1)wi

∣∣∣∣∣ ≤
(

n∑
i=1

|wi|p
)1/p( n∑

i=1

∣∣∣sgn (wi) |wi|(p−1)
∣∣∣p/(p−1)

)(p−1)/p

(5)∣∣∣∣∣
n∑

i=1

|wi| |wi|(p−1)

∣∣∣∣∣ ≤
(

n∑
i=1

|wi|p
)1/p( n∑

i=1

|wi|p
)(p−1)/p

(6)∣∣∣∣∣
n∑

i=1

|wi|p
∣∣∣∣∣ ≤

n∑
i=1

|wi|p . (7)

The outermost absolute value on the left hand side is redundant, so we have

n∑
i=1

|wi|p =
n∑

i=1

|wi|p , (8)

which gives us the desired result.

Corollary 2.1.2 shows that the upper bound of the inequality in Theorem 2.1 is achievable.

As a consequence, we can derive another useful result.

Corollary 2.1.3. For any p ∈ R ≥ 1 and w ∈ Rn, the Lp-norm of w can be expressed as

∥w∥p = max
v

vTw

∥v∥q
, (9)

where q = p/(p− 1). Furthermore, an optimal v is given by Corollary 2.1.2.

Proof. This is a direct result of Theorem 2.1 and Corollary 2.1.2.

Corollary 2.1.3 gives us just one example of the dualistic nature between p and q. Another

example of the dualistic nature between p and q can be shown by considering the following

pair of optimization problems

argmax
∥x∥2=1

∥x∥p (10)

and

argmin
∥x∥2=1

∥x∥p. (11)

6



Fig. 2 shows the image of the feasibility set under the objective function for both (10) and

(11) in two dimensions, which is expressed as ∥x(θ)∥p with x(θ) =

[
cos θ sin θ

]T
.

Figure 2: Image of the two-dimensional L2 unit circle under different Lp-norms.

From Fig. 2, we can make the following observations:

i. When 1 ≤ p < 2, the maximization problem in (10) is solved by
[
±

√
2
2
±

√
2
2

]T
.

ii. When 1 ≤ p < 2, the minimization problem in (11) is solved by
[
±1 0

]T
or
[
0 ±1

]T
.

iii. When 2 < p <∞, the maximization problem in (10) is solved by
[
±1 0

]T
or
[
0 ±1

]T
.

iv. When 2 < p <∞, the minimization problem in (11) is solved by
[
±

√
2
2
±

√
2
2

]T
.

These observations suggest that for 1 ≤ p < 2, the solution to (10) is dense and the solution

to (11) is sparse. On the contrary, for p > 2, the solution to (10) is sparse and the solution

to (11) is dense. Furthermore, Fig. 2 suggests that

argmax
∥x∥2=1

∥x∥p = argmin
∥x∥2=1

∥x∥q, (12)

7



for any p ≥ 1 and q = p/(p − 1). This observation is notable since most practitioners in

the fields of signal processing, machine learning, and statistics are accustomed to associating

sparsity with the L1-norm. This is likely because the problems in these fields are most

often structured as minimization problems, e.g., LASSO Regression [16], Basis Pursuit [17],

Compressed Sensing [18], etc. In this work, we consider maximization problems involving

various Lp-norms, which implies that the L1-norm will induce density.

Lastly, we introduce an entry-wise matrix norm that will be utilized in this work.

Definition 2.2 (Matrix Lp,q-norm). For any matrix X ∈ Rm×n and p, q ∈ R ≥ 1, the

Lp,q-norm of X is defined as

∥X∥p,q =

 n∑
j=1

(
m∑
i=1

|Xi,j|p
)q/p

1/q

. (13)

When p = q = 2, one can observe that the norm in Definition 2.2 becomes the familiar

frobenius norm. For consistency, we will refer to the frobenius norm as the L2,2-norm. A

useful alternative form of Definition 2.2 is

∥X∥p,q =

(
n∑

j=1

∥xj∥qp

)1/q

, (14)

where xj are the columns of the matrix X. In other words, the matrix Lp,q-norm can be

thought of as taking the Lq-norm of the vector containing the Lp-norms of the columns of

X. Therefore, when q = 1, it is reasonable to assume that the same sparsity and density

inducing effects of the vector Lp-norms apply here as well.

2.3 Principal Component Analysis

In this section, we will give an overview of principal component analysis (PCA) [19]. Over

the past several decades, PCA has been applied to several different areas of study including

machine learning [20], signal processing [21, 22], and statistics [23]. We begin our overview

8



of PCA by formulating it from a statistical point of view. Let Q ∈ Sd×k where k ≤ d and

let x ∈ Rd be a random vector with some covariance matrix and mean vector. The PCA

problem can be written as

argmax
Q∈Sd×k

Tr
(
cov

(
QTx

))
= argmax

Q∈Sd×k

Tr
(
QTΣQ

)
, (15)

where Σ is the covariance matrix of x. The formulation in (15) indicates that PCA aims to

find a k-dimensional projection that preserves as much variance in the data as possible. For

this reason, the columns of Q are often referred to as the principal directions or components.

Since Σ is positive semi-definite, it admits an eigenvalue decomposition of PDPT , and

argmax
Q∈Sd×k

Tr
(
QTΣQ

)
= argmax

Q∈Sd×k

Tr
(
QTPDPTQ

)
(16)

= argmax
Q∈Sd×k

Tr
(
PTQQTPD

)
(17)

= argmax
Q∈Sd×k

d∑
i=1

λip
T
i QQTpi. (18)

The matrix QQT is an orthogonal projector onto a k-dimensional subspace of Rd and 0 ≤

pT
i QQTpi ≤ 1 for any choice of Q. Since we have pT

i QQTpi = 1 if and only if pi is in the

span of the columns of Q, it is easy to see that a solution to (15) is given when the top k

eigenvectors are in the span of the columns of Q. Hence, solutions to PCA are rotationally

invariant—that is, any Q that satisfies span(Q) = span(P:,1:k) will be a solution to (15).

However, in most practical use cases, it is sufficient to set Q = P:,1:k for convenience.

Now consider a zero-mean data matrix X ∈ Rd×n with n samples of dimension d. The

estimate of the covariance matrix is 1
n
XXT , thus,

argmax
Q∈Sd×k

Tr
(
QTΣQ

)
≈ argmax

Q∈Sd×k

Tr
(
QTXXTQ

)
= argmax

Q∈Sd×k

∥∥QTX
∥∥2
2,2

. (19)
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Furthermore, for any X ∈ Rd×n, it can be shown that

argmin
Q∈Sd×k

∥∥X−QQTX
∥∥2
2,2

= argmax
Q∈Sd×k

∥∥QTX
∥∥2
2,2

. (20)

The left hand side of (20) is the familiar low-rank matrix approximation problem where

QQT represents a projection matrix onto a low-rank subspace [24]. Since (20) involves the

L2,2-norm, we will refer to this type of PCA as L2-PCA. Obtaining the eigenvectors of XXT

is equivalent to obtaining the left hand singular vectors of X. Thus, a solution to (20) is

found whenever Q satisfies span(Q) = span(U:,1:k), where X
SVD→ USVT . Again, in most

practical scenarios, it is sufficient to set Q = U:,1:k. The PCA problem formulation in (15) is

often used interchangeably with (20) despite the subtle condition that the data matrix must

be zero-mean for them to be equivalent. However, in applications such as dimensionality

reduction, no harm is done when using a data matrix with a non-zero mean.

The squared emphasis imposed by the formulations of L2-PCA in (20) via the L2,2-norm

make it sensitive to outlier data points. Depending on the magnitude and orientation of

these outlier data points, the principal components can be severely corrupted—even if only

a few outliers exist in the data. As a result, researchers have focused their efforts on more

robust formulations of PCA that utilize the L1,1-norm [25, 26, 27, 28, 29, 30, 31, 31, 32]

and L2,1-norms [33]. The success of L1,1-norm based PCA is attributed to the fact that

it promotes dense projection components which help to more evenly distribute the effect

of outliers in the data. Other robust methods for PCA include [34, 35]. However, if the

L2,2-norm is swapped for the Lp,q-norm in PCA, in general, the equality in (20) no longer

holds and the problems become much more difficult to solve. At the time of writing, only

special cases of these problems have been solved exactly or approximately. That being said,

these robust formulations of PCA achieve better general outlier rejection if the data has a

low-rank structure.

From Definition 2.2, we observe that q/p places emphasis on the columns of a matrix,
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while p places emphasis on the individual elements of a matrix. This seems to suggest that

setting q = 1 gives more robustness against outlier samples if the outlier samples corrupt the

columns of the matrix under the Lp,q-norm. While some works provide insight into p = 1

[27, 30] and p = 2 [33], not much is known about the usage of p > 2 in PCA. We hope to

provide some insight on this matter in this work.

2.4 Subspace Clustering

2.4.1 Overview

In this section, we will discuss the subspace clustering problem and some common algorithms

that exist in the literature. Subspace clustering techniques have been successfully applied

to real world problems such as face clustering [36], image segmentation [37], and motion

segmentation [38]. Consider a data matrix X ∈ RD×N containing N samples of dimension

D. In subspace clustering, we assume that each xi belongs to an unknown union of affine

subspaces {Ai}ci=1. Subspace clustering algorithms typically aim to find the parameters of

each affine subspace in {Ai}ci=1 and the affine subspace memberships of each sample xi.

In particular, if x ∈ Ai, then there exists a y ∈ Rdi such that x = Uiy + mi, where

Ui ∈ SD×di and mi ∈ RD. Since an affine subspace can be thought of as a translated linear

subspace, the matrix Ui can be interpreted as an orthogonal basis for the corresponding linear

subspace with mi being the translation vector. Accordingly, the set {di}ci=1 corresponds to

the dimension of each affine subspace.

There are several different approaches to solving the subspace clustering problem. One

approach is to use matrix factorizations as in the algorithms of Boult and Brown [1], Costeira

and Kanade [2], and Gear [3]. While these methods are simple to implement, they require

that the subspaces are linear and independent. This often results in poor performance on

real world datasets since these conditions are often violated. In addition, the thresholding

process required by such algorithms has been shown to be very sensitive to noise [39, 40].

Algebraic techniques such as GPCA [4] can also be used. However, the main drawback of
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GPCA is its high computational complexity. Another approach to subspace clustering is to

use statistical based methods. Some examples of such algorithms are PPCA [5], ALC [6],

and RANSAC [7]. Lastly, there are spectral clustering [8] based methods. We will discuss

both spectral clustering and its applications to subspace clustering in the following sections

since it plays an important role in our work. For a more in-depth survey and comparison of

subspace clustering algorithms, we direct the reader to the work of Vidal [14].

2.4.2 Spectral Clustering

The spectral clustering algorithm described in the work of Ng et al. [8] takes as input an

affinity matrix and the desired number of clusters, and returns the segmentation of the data.

An affinity matrix is a symmetric N ×N matrix with positive entries, which we will denote

by W. Each element of W represents a measure of similarity between two samples in our

data matrix X, i.e., Wi,j > 0 if xi and xj are similar, and Wi,j = 0 if xi and xj are dissimilar

for all (i, j) ∈ {1, 2, . . . , N}2. The greater the value of Wi,j, the more similar the two points

xi and xi are to each other. An element of the affinity matrix can also be thought of as

the weight of an edge that connects two vertices in a graph. This interpretation gives way

to the normalized cuts algorithm presented in [41], which is closely related to the spectral

clustering algorithm in [8]. Both of these algorithms rely on the mathematical results of

spectral graph theory. For further reading on spectral graph theory, see the work of Chung

[42].

Algorithm 1 shows the spectral clustering algorithm described in Ng et al. [8]. The

procedure first forms the diagonal matrix D whose entries contain the row sums of W.

Next, the normalized graph laplacian L is formed [42]. The bottom c eigenvectors of L are

then extracted and put into the matrix P. Finally the rows of P are normalized and fed into

the k-means algorithm. The output of the k-means algorithm contains the segmentation of

the data. There are many machine learning textbooks that describe the k-means algorithm.

One such book is Duda and Hart [43]. We use the Python implementation of k-means from
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[44]. At first glance, it is natural to wonder why one wouldn’t just perform k-means on

the original data matrix. The benefit of spectral clustering lies in the observation that it

transforms an affinity into a higher dimensional space where tight centroids are typically

formed. This is somewhat reminiscent to how kernels are used in SVM [43]. So spectral

clustering may work well if the data does form the traditional centroid like clusters that

k-means tends to favor. Of course, it is important to note that good performance depends

heavily on the data and how the affinity matrix is formed.

Algorithm 1 Spectral Clustering
Require: W = WT ∈ RN×N , Wi,j ≥ 0 for all (i, j) ∈ {1, 2, . . . , N}2, c > 1

1: procedure spectralclustering(W, c)

2: D← diag

([∑N
i=1 W1,i

∑N
i=1W2,i . . .

∑N
i=1WN,i

])
3: L← I−D−1/2WD−1/2

4: UΣVT ← svd(L)

5: P← U:,N−c+1:N

6: N← diag

([
∥P1,:∥2 ∥P2,:∥2 . . . ∥PN,:∥2

])
7: Y ← N−1P

8: y← kmeans(Y, c)

9: return y

10: end procedure

Now we consider a data matrix X =

[
X1 X2 . . . Xc

]
∈ RD×N , where N =

∑c
i=1Ni, c

is the number of classes, Ni is the number of samples from a particular class, and Xi ∈ RD×Ni

for all i ∈ {1, 2, . . . , c}. Suppose that we have formed an affinity matrix W from this data

and Wi,j = 0 if xi and xj are not in the same class. Then it is clear that W is block diagonal,

with each block on the diagonal corresponding to a distinct class. Ng et al. [8] show that

Algorithm 1 can obtain perfect clustering under these conditions.
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2.4.3 Subspace Affinities

Now the question becomes: how does one choose to form the affinity matrix? In general,

there is no consensus on this matter since it depends heavily on the structure of the clusters

in the data [45]. In the work of Ng et al. [8], the gaussian kernel is used as a similarity metric

to form the entries of W. In this work, we will focus on methods for forming affinity matrices

for subspace clustering. The gaussian kernel is not suitable for subspace clustering since the

distance between two points does not provide any information about subspace membership.

One general approach to forming affinity matrices for subspace clustering is to assume

that it is often the case that a point and its nearest neighbors belong to the same subspace.

This approach is used in the LSA algorithm described in [11]. For each data sample, the LSA

algorithm uses L2-PCA to find the subspace formed by its nearest neighbors. The principal

angles between these subspaces are used in a similarity metric to determine the entries of the

affinity matrix. One drawback of this approach is that it only can handle linear subspaces.

Another common algorithm used to form affinity matrices for subspace clustering is SSC

[9]. The main idea behind the SSC algorithm is to notice that each point can be written as

an affine combination of other points in the same affine subspace. For this to be feasible,

we must have Ni ≥ di + 2 for i ∈ {1, 2, . . . , c}. This can be written as the following convex

optimization problem,

argmin
C∈RN×N

∥C∥1,1 s.t. X = XC, diag (C) = 0N ,C1N = 1N . (21)

The optimal C can be found using most convex optimization solvers and the affinity matrix

W is formed by |C|+ |C|T . The L1,1-norm in the objective function of (21) induces sparsity

in C which is essential for good clustering performance since the goal is to write each point

only in terms of other points that are on the same affine subspace. In the ideal case, each

column of C should contain di+1 non-zero elements which in turn results in a block diagonal

W. From the previous section, we saw that spectral clustering will achieve perfect clustering
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under these conditions.

The final algorithm that we will discuss is called SCC [10]. Rather than using a 2-way

affinity matrix W, SCC first forms a (d + 2)-way affinity tensor W ∈ RN×N×···×N . Each

element of W is related to the volume of the convex hull formed by the corresponding d+ 2

points. This volume is zero when the points are in the same affine subspace and non-zero

otherwise. However, these volumes are not used alone as the elements of W . The authors

introduce the concept of polar curvature [10], which utilizes the volumes of these convex

hulls. The polar curvature is used over the volumes because it is invariant to data transforms.

Finally, the authors propose a method for reshaping the affinity tensor into a 2-way affinity

matrix so it can be used in spectral clustering. One of the main drawbacks of this algorithm

is the size of the affinity tensor and the complexity of the polar curvature procedure. To

mitigate some of these drawbacks, the authors in [10] propose an iterative sampling method

to partially form the affinity tensor W , which greatly reduces the computation time.

3 Problem Motivation

3.1 Gram Subspace Affinities

Another simple approach to forming subspace affinity matrices is to use a gram matrix. For

a given data matrix X ∈ RD×N , the gram matrix G ∈ RN×N has entries Gi,j = xT
i xj. It can

also be represented as G = XTX. One can observe that the entries of the gram matrix relate

to the angle between the corresponding data points. Hence, for the gram matrix to work as

a subspace affinity matrix, we must have xT
i xj = 0 if xi and xj are not in the same class.

It follows that an equivalent statement would be to require that the classes form orthogonal

linear subspaces of RD. We will now expand on this idea in more detail.

Consider data from c nominal clusters or classes. Suppose that for all i ∈ {1, 2, . . . , c},

we have Ui ∈ SD×ri , mi ∈ RD, Di ∈ Rri×ri , and Zi ∈ Rri×Ni , such that Ni data from clusters
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i are of the form:

Xi = UiDiZi +mi1
T
Ni
∈ RD×Ni . (22)

In addition, we require that the Di are diagonal, and that E
(
[Zi]:,n [Zi]

T
:,n

)
= Iri and

E
(
[Zi]:,n

)
= 0ri for all n ∈ {1, 2, . . . , Ni}. Each column of Xi is a random vector that

belongs the (ri + 1)-dimensional affine subspace defined by the orthogonal basis Ui and

translation vector mi. Also, recall that we have implicitly required that the columns of

each Xi are uncorrelated to each other with respect to the affine subspace that they lie

on. Accordingly, each of the matrices in {Xi}ci=1 represent a subspace clustering or class.

Furthermore, it holds that

E
(
[Xi]:,n

)
= mi (23)

and

E
(
[Xi]:,n [Xi]

T
)
= UiD

2UT
i +mim

T
i = Ti∆iT

T
i , (24)

where

Ti =

[
Ui

mi

βi

]
, (25)

∆i =

D2
i 0ri

0T
ri

β2
i

 , (26)

and βi = ∥mi∥2. This implies that we can write

Xi = TiΦi, (27)

where

Φi =

Di Zi

βi 1T
Ni

 . (28)

If Ni ≥ ri + 1, then it can be seen that (25) will tend to have linearly independent columns.
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This observation coupled with (27) implies that span (Ti) = span (Xi) and rank (Xi) =

rank (Ti) ≤ ri + 1. Now we consider the full data matrix

X =

[
X1 X2 . . . Xc

]
= TΦ ∈ RD×N , (29)

where

T =

[
T1 T2 . . . Tc

]
, (30)

Φ = diag (Φ1,Φ2, . . . ,Φc), (31)

and N =
∑c

m=1Nm. The gram matrix formed by the columns of X is

G = XTX = ΦTTTTΦ, (32)

which leads us to Proposition 3.1.

Proposition 3.1. Consider data in c classes that follows the model of (22) and (29). If

TTT = IN , then G = ΦTΦ = diag
(
ΦT

1Φ1,Φ
T
2Φ2, . . . ,Φ

T
c Φc

)
is block diagonal. In addition,

the affinity matrix W with Wi,j = |Gi,j| is also block diagonal and will be able to achieve

a perfect segmentation of the data via spectral clustering [8]. Furthermore, it can be shown

that TTT = IN ⇐⇒ UT
i Uj = 0∀i ̸= j, UT

i mj = 0∀i, j, and UT
i Ui = Iri ∀i.

Assuming that we now have TTT = IN , we form the block diagonal matrix Y = TTX = Φ.

Some observations about Y are now in order:

i. The column vector yi is sparse with ∥y∥0 ≤ maxℓ (rℓ + 1) for all i. The ∥·∥0 quasi-norm

denotes the number of non-zero elements of its argument.

ii. The sparsity pattern in yi identifies uniquely the cluster of xi. We call will call this

property cluster-ID sparsity.
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iii. If xi and xj come from different clusters, then yT
i yj = 0.

The above statements also hold true for the matrix A where Ai,j = |Yi,j| and remain valid

even after row or column normalization is applied. This is a result of the sparsity and block

diagonal structure of Y.

3.2 Orthogonality in High-Dimensions and Cluster-ID Sparsity

Proposition 3.1 now motivates us to consider scenarios where it is reasonable to assume that

TTT = IN . First, we will consider independently drawn points in RD. Consider a set of

independently drawn points {x1,x2, . . . ,xN} where xi ∼ N (0D, ID) for all i ∈ {1, 2, . . . , N}.

The (i, j)-th entry of the heatmaps in Fig. 3 correspond to the cosine similarity between the

two points xi and xj for one realization of N = 50 points. The cosine similarity is defined as

scos (x,y) =

∣∣xTy
∣∣

∥x∥2 ∥y∥2
, (33)

and is equal to 0 when x and y are orthogonal, and 1 when x and y are collinear.

Figure 3: Independently drawn random vectors tend to be orthogonal as D increases. The (i, j)-th entry of each heatmap shows
the cosine similarity between xi and xj . Here we have N = 50 points and (i, j) ∈ {1, 2, . . . , N}2.

Fig. 3 suggests that zero-mean independent and identically distributed (iid) points tend

to be orthogonal as D increases asymptotically. In a similar manner, independently drawn

subspaces defined by a basis Ui ∈ SD×ri can be compared. For any two matrices Q1 ∈ SD×r1
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and Q2 ∈ SD×r2 with r1, r2 ≤ D, we define the normalized subspace distance as

dnsub (Q1,Q2) =

∥∥Q1Q
T
1 −Q2Q

T
2

∥∥2
2,2

r1 + r2
. (34)

Expanding the frobenius norm in (34) yields

dnsub (Q1,Q2) =

∥∥Q1Q
T
1 −Q2Q

T
2

∥∥2
2,2

r1 + r2
(35)

=
r1 + r2 − 2

∥∥QT
1Q2

∥∥2
2,2

r1 + r2
, (36)

and it becomes clear that

r1 + r2 − 2min (r1, r2)

r1 + r2
≤ dnsub (Q1,Q2) ≤ 1. (37)

Furthermore, we note that r1 + r2 ≤ D is a necessary condition for (34) to be 0. Conversely,

r1 = r2 is a necessary condition for (34) to be 1. When (34) is 1, the subspaces are orthogonal.

The subspaces are identical if (34) is 0. Fig. 4 shows the average normalized subspace error

between Q1,Q1 ∈ SD×r, where

Qi ∈ SD×n s.t. Ri
SVD→ QiΣiV

T
i and [Ri]:,j ∼ N (0D, ID) , (38)

for all i ∈ {1, 2} and j ∈ {1, 2, . . . , r}. Each point in Fig. 4 is the average of 10000 realizations

with r = 8.
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Figure 4: We show the average normalized subspace error versus D. Independent and identically distributed low-rank linear
subspaces tend to be orthogonal as D increases. The rank of both subspaces is r = 8.

Fig. 4 suggests that as r = 8 << D, on average, iid subspaces following the distribution of

(38) tend to be orthogonal.

Fig. 3 and Fig. 4 seem to suggest that TTT = IN might be a viable assumption if

the rank of the data is much smaller than the ambient dimension D. Fig. 5 plots the

average squared error
∥∥IN −TTT

∥∥2
2,2

versus D. Each point in Fig. 5 is the average of 10000

realizations. For each of these realizations, (25) is used to form T =

[
T1 T2

]
using iid

drawn subspaces U1,U1 ∈ SD×r via (38) and m1,m2 ∈ RD that are drawn from the standard

normal distribution with r = 4.
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Figure 5: Here we have plotted the average squared error
∥∥I−TTT

∥∥2
2,2

versus D with r = 4. The matrix T from (25) becomes
orthogonal as D increases.

The results of Fig. 5 suggest that TTT is a viable assumption when given data that follows

the model in (22) and (29), and
∑c

i=1 ri + 1 << D.

In practice, there are many datasets that satisfy our requirement of
∑c

i=1 ri + 1 << D.

Some general categories of datasets that have high dimensionality and low-rank structure

include images, videos, and genomic data. When the clusters form distinct orthogonal sub-

spaces, Proposition 3.1 implies that the subspace affinity matrix formed by taking the gram

matrix of the data matrix X will result in perfect clustering. However, it is unlikely that real

data follow the distributions in (22) and (29). Furthermore, the affine subspaces representing

each cluster in the data will likely be approximately orthogonal to one another. Under such

non-ideal circumstances, one approach is to a find some projection Q ∈ SD×k onto the data

such that the matrix Y = QTX has cluster-ID sparsity. If cluster-ID sparsity is attained,

then the subspace affinity matrix formed via the gram matrix of Y will result in perfect

clustering. Using standard PCA to find such a Q will generally not result in a Y that has

cluster-ID sparsity since the L2-norm does not promote sparsity. We therefore seek at type

of PCA that promotes sparsity in the columns of Y.
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4 Proposed LP1-PCA for Low-Rank Clustering

4.1 Formulation

In response to the discussion in the previous section, we propose a novel sparsity inducing

PCA called LP1-PCA that promotes cluster-ID sparsity. Consider a data matrix X ∈ RD×N

that contains N samples of dimension D. Let p ≥ 1 and k ≤ min (D,N). The LP1-PCA

problem is defined as

max
Q∈SD×k

∥∥QTX
∥∥
p,1

= max
Q∈SD×k

N∑
i=1

∥∥QTxi

∥∥
p
. (39)

Remark. The LP1-PCA problem in (39) is NP-hard.

Proof. First, we begin by considering a special case of (39) where p = 1 and k = 1. The

problem in (39) now becomes the L1-PCA problem discussed in the work of [27] who show

that the L1-PCA problem reduces to the NP-complete equal-partition problem [46]. Thus,

we can conclude that the general LP1-PCA problem in (39) is NP-hard.

The formulation of LP1-PCA in (39) aims to find a projection Q onto the data matrix X

that maximizes the Lp,1-norm. For our purposes, we are interested in p > 2, since it will

induce sparsity in the columns of QTX which helps enforce cluster-ID sparsity. The resulting

QTX can be used to form gram matrix affinities that can be used in spectral clustering.

4.2 Exact Solver for Rank-1 Analysis

Now we will derive an exact solution to (39) when rank (X) = 1. We will also show that the

solution in this special case will yield meaningful insight into the selection of p in LP1-PCA.

Since rank (X) = 1, we know that X
SVD→ uσvT . Thus, the columns of the data matrix X
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can be rewritten as scalar multiples of u, i.e.,

N∑
i=1

∥∥QTxi

∥∥
p
=

N∑
i=1

∥∥QTσviu
∥∥
p

(40)

=

(
N∑
i=1

|σvi|

)∥∥QTu
∥∥
p
. (41)

Given this result, rather than solving (39), it suffices to solve

max
Q∈SD×k

∥∥QTu
∥∥
p
. (42)

Define q = p/(p− 1) and let b ∈ Rk. By Corollary 2.1.3, we have

max
Q∈SD×k

∥∥QTu
∥∥
p
= max

Q∈SD×k

max
∥b∥q≤1

bTQTu (43)

= max
∥b∥q≤1

max
Q∈SD×k

bTQTu (44)

= max
∥b∥q≤1

∥b∥2 . (45)

Since
∥∥QTu

∥∥
2
= 1, equality in (45) is achieved whenever QTu = b/ ∥b∥2.

Lemma 4.1. Suppose that b∗ solves (45), then

Q∗ =

[
u ŨD×k−1

] pT

P̃T
k×k−1

 = upT + ŨP̃T (46)

solves (42), where

ub∗T SVD→
[
u ŨD×k−1

]
diag

([
∥b∗∥2 0T

k−1

]) pT

P̃T
k×k−1

 , (47)

p = b∗/ ∥b∗∥2, Ũ ∈ SD×k−1, P̃ ∈ Sk×k−1, and ŨTu = P̃Tp = 0k−1.
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Next, we focus on identifying the b ∈ Rk that solve (45).

Lemma 4.2. Let (m,n) ∈ {(m,n) ∈ R2 : 1 ≤ m ≤ n}, then for any x ∈ Rd we have

∥x∥n ≤ ∥x∥m ≤ d(1/m−1/n) ∥x∥n . (48)

Furthermore, let (i, j) ∈ {1, 2, . . . , d}2 and suppose that x ̸= 0. Equality on the right in (48)

is achieved when |xi| = |xj| for all (i, j). Equality on the left in (48) is achieved if there

exists an i such that |xi| ≠ 0 and xj = 0 for all j ̸= i.

Lemma 4.2 gives us a set of solutions to (45), i.e.,

b∗ ∈



{
b ∈ Rk : ∃i 0 < |bi| ≤ 1 ∧ bj = 0∀i ̸= j

}
, q < 2{

b ∈ Rk : 0 < ∥b∥2 ≤ 1
}
, q = 2{

b ∈ Rk : |bi| = |bj| ∀i, j ∧ 0 < ∥b∥q ≤ 1
}
, q > 2

. (49)

Accordingly, the set of p = b∗/ ∥b∗∥2 now becomes

p ∈



{
p ∈ Rk : ∃i |pi| = 1 ∧ pj = 0∀i ̸= j

}
, q < 2{

p ∈ Rk : ∥p∥2 = 1
}
, q = 2{

±k−1/2
}k

, q > 2

. (50)

Thus, the result of Lemmas 4.1 and 4.2 give us a set of closed form solutions to (39) when

rank (X) = 1 that can be obtained by first selecting any p according to (50) and then

calculating Q∗ via the steps in Lemma 4.1.

Now we make an important observation. Consider that we have calculated some Q∗ in
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the solution set of (39) for the rank (X) = 1 case, then

Q∗TX =

[
Q∗Tx1 Q∗Tx2 . . . Q∗Txn

]
(51)

=

[
Q∗Tuσv1 Q∗Tuσv2 . . . Q∗Tuσvn

]
(52)

=

[
pσv1 pσv2 . . . pσvn

]
. (53)

The columns of (53) represent the projection components of each sample xi. Considering

again (50), we can clearly see that there are three distinct scenarios, each with their own

respective solution set. First, when 1 ≤ p < 2, we have q = p/(p − 1) > 2, thus the

projection components of each sample in (53) are dense. Secondly, when 2 < p < ∞, we

have q = p/(p − 1) < 2, thus the projection components of each sample in (53) are sparse.

Finally, when p = q = 2, any p satisfying ∥p∥2 = 1 will suffice, so the projection components

of each sample in (53) can range from sparse to dense.

4.3 Approximate Solver for General Rank

We will now present an approximate solution to LP1-PCA in (39) using alternating opti-

mization for the general case of 1 ≤ rank (X) ≤ D. Let Bq
k×N =

{
B ∈ Rk×N : ∥bi∥q ≤ 1 ∀i

}
and q = p/(p− 1). By Corollary 2.1.3, we have

max
Q∈SD×k

N∑
i=1

∥∥QTxi

∥∥
p
= max

Q∈SD×k

max
B∈Bq

k×N

N∑
i=1

bT
i Q

Txi (54)

= max
Q∈SD×k

max
B∈Bq

k×N

Tr
(
BTQTX

)
(55)

= max
B∈Bq

k×N

max
Q∈SD×k

Tr
(
BTQTX

)
(56)

= max
B∈Bq

k×N

max
Q∈SD×k

Tr
(
QTXBT

)
(57)

= max
B∈Bq

k×N

∥∥XBT
∥∥
∗ . (58)
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Equality in (58) is achieved for any Q that solves the inner maximization problem in (57).

However, unlike the rank (X) = 1 case, the problem in (58) is difficult to solve.

Lemma 4.3. Suppose that B∗ solves the outer maximization problem in (57). By Corollary

2.1.3, B∗
:,i = V:,i/ ∥V:,i∥q and V = sgn

(
QTX

)
◦
∣∣QTX

∣∣◦(p−1) for all i. This results in

Tr (B∗TQTX) =
∑N

i=1

∥∥QTxi

∥∥
p
.

Lemma 4.4. Suppose that Q∗ solves the inner maximization problem in (57). For a fixed B,

(57) becomes the orthogonal procrustes problem, and Q∗ = UVT with XBT SVD→ UD×kΣk×kV
T
k×k

[47].

Lemmas 4.3 and 4.4 suggest that we can increase the objective function in (57) by alter-

nating between solving the inner and outer maximization problems until convergence. We

therefore present Algorithm 2. The first step in Algorithm 2 involves generating an arbitrary

Q ∈ SD×k as initialization. Next, Q is fixed and B is set according to Lemma 4.3. Next, B

is fixed and Q is set according to Lemma 4.4. This process of alternating between the outer

and inner maximization of (57) is repeated until the objective function converges in terms of

the metric in (39). We should also note that when p = 1, Algorithm 2 is equivalent to [30].

Additionally, when p = 2, Algorithm 2 is equivalent to [33].

26



Algorithm 2 LP1-PCA
Require: p ≥ 1, Q ∈ SD×k, X ∈ RD×N , 1 ≤ k ≤ D.

1: procedure lp1pca(p, Q, X)

2: q ← p/(p− 1)

3: loop

4: V← sgn
(
QTX

)
◦
∣∣QTX

∣∣◦(p−1)

5: N← diag

([
∥V:,1∥q ∥V:,2∥q . . . ∥V:,N∥q

])
6: B = VN−1

7: M← XBT

8: if the metric has converged then

9: break

10: end if

11: UΣVT ← svd(M)

12: Q← U:,1:kV
T

13: end loop

14: return Q

15: end procedure

Proposition 4.1. Algorithm 2 increases the objective function in (39) after each iteration

count z.

Proof. Lemma 4.4 tells us that for any fixed Qz+1, the optimal B is Bz+1. Thus, we can

deduce that

Tr (QT
z+1XBT

z ) ≤ Tr (QT
z+1XBT

z+1) =
n∑

i=1

∥∥QT
z+1xi

∥∥
p
. (59)

Similarly, Lemma 4.3 tells us that for any fixed Bz, the optimal Q is Qz+1. Thus, we can

deduce that
n∑

i=1

∥∥QT
z xi

∥∥
p
= Tr (QT

z XBT
z ) ≤ Tr (QT

z+1XBT
z ). (60)
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Putting the two inequalities together yields the desired result of

n∑
i=1

∥∥QT
z xi

∥∥
p
≤

n∑
i=1

∥∥QT
z+1xi

∥∥
p
. (61)

Although Proposition 4.1 proves that Algorithm 2 increases the objective function in (39),

it may not converge to a global optima, nor is it guaranteed to converge with respect to the

argument. Therefore, the performance of Algorithm 2 is dependant on the initialization of

Q. To mitigate these drawbacks, we recommend running the algorithm multiple times with

different initializations and choosing the solution that has the maximum value of the metric

in (39).

Fig. 6 shows the convergence of Algorithm 2 with a single arbitrarily initialized Q on a

synthetic data matrix X ∈ R20×100 with rank (X) = 8 and k = 4 for different values of p.

Figure 6: Convergence of Algorithm 2 on a synthetic data matrix X ∈ R20×100 with rank (X) = 8 and k = 4.

Fig. 6 verifies that Algorithm 2 increases the metric in (39) after each iteration. In this case,

convergence occurs after about 9 iterations for most values of p.

28



4.4 LP1-PCA Spectral Clustering

In this section, we propose an algorithm for subspace clustering that utilizes LP1-PCA to

produce subspace affinities. We call this algorithm LP1-PCA Spectral Clustering. Algorithm

3 defines the proposed algorithm. We have utilized LP1-PCA as defined in Algorithm 2 and

spectral clustering as defined in Algorithm 1.

Algorithm 3 LP1-PCA Spectral Clustering
Require: p > 2, Q ∈ SD×k, X ∈ RD×N , 1 ≤ k ≤ D, c > 1.

1: procedure lp1spectral(p, Q, X, c)

2: Q← lp1pca(p,Q,X)

3: Y = QTX

4: N← diag

([
∥Y1,:∥2 ∥Y2,:∥2 . . . ∥Yk,:∥2

])
5: A = |N−1Y|

6: W = ATA

7: y = spectralclustering(W, c)

8: return y

9: end procedure

Algorithm 3 takes as its arguments an arbitrary Q ∈ SD×k to be used in LP1-PCA, a

data matrix X, a value of p for LP1-PCA, and the number of classes c to cluster. First,

Algorithm 3 uses LP1-PCA to find a Q ∈ SD×k that forms a sparse QTX. In order to

achieve such sparsity, we require that p > 2. Next an affinity matrix W ∈ RN×N is formed

by computing the gram matrix of A, where the elements of A are the absolute elements of

a row normalized version of Y = QTX. Finally, the resulting affinity matrix W and the

number of clusters c is using in spectral clustering which returns the segmentation of the

data.

The sparsity induced in the columns of Y as a result of setting p > 2 helps to enforce

cluster-ID sparsity which is needed to create subspace affinities that will perform well in
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spectral clustering. The row normalization and absolute value procedures do not affect

cluster-ID sparsity.

5 Experiments

5.1 LP1-PCA Toy Examples

In this section, we explore how p affects the solutions of Algorithm 2 and the sparsity of the

matrix QTX. First, we will explore some toy examples in R3. Fig. 7 shows Algorithm 2

applied to a synthetic rank one data matrix X ∈ R3×40 with k = 2. Unless otherwise stated,

all experiments in this section use an arbitrary initialization of Q for Algorithm 2. Notice

that the respective solutions shown in Fig. 7 for p ∈ {1, 2, 10} correspond to our theoretical

derivation in (53). Hence, setting p = 1 resulted a basis that promotes density in QTX and

p = 10 resulted in a basis that promotes sparsity in QTX. In this case, p = 2 has arbitrarily

chosen a basis that contains the columns of X in its span.

Figure 7: LP1-PCA solutions for a synthetic rank one data matrix X ∈ R3×40 with k = 2.

Fig. 8 shows Algorithm 2 applied to a synthetic rank one data matrix X ∈ R3×40 with a
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small amount of additive white gaussian noise and k = 2. Even though the corrupted data

matrix is full rank, most of the singular values associated with pure noise are very small, so

it can be thought of as approximately rank one. Therefore, p = 1 is still able to find a dense

solution and p = 10 is still able to find a sparse solution. Setting p = 2 yielded a solution

that is in-between p = 1 and p = 10 in terms of sparsity.

Figure 8: LP1-PCA solutions for a synthetic rank one data matrix X ∈ R3×40 with a small amount of additive white gaussian
noise and k = 2

Fig. 9 shows Algorithm 2 applied to a rank two data matrix X ∈ R3×40 with singular values

σ1 = 1, σ2 = 1/2, and k = 2. We note here that the solutions using p ∈ {1, 2, 10} find

rotated versions of Q that form the same subspace spanned by the columns of X. When

p = 1, the principal directions are oriented to equally capture the direction associated with

σ1. Conversely, when p = 10, one principal direction almost completely captures the direction

associated with σ1. In this case, p = 2 finds an arbitrarily rotated version of Q inside of the

subspace of the data.
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Figure 9: LP1-PCA solutions for a rank two data matrix X ∈ R3×50 with k = 2.

In summary, these results suggest that when k ≥ rank (X), all p will find a Q that captures

the subspace of the data. In this case, the solutions will differ in that Q will be rotated to

induce more sparsity or density depending on the selection of p.

Next, we will quantify the sparsity of QTX versus p. Consider a matrix X ∈ Rm×n.

Define the set of all elements of X to be A and let α ∈ [0, 1]. We can define a measure of

density as

mdensity (X;α) = min
B

|B|
mn

s.t. B ⊆ A and
∑
y∈B

|y| ≥ α
∑
z∈A

|z| , (62)

where |B| is the cardinality of the set B. In other words, (62) is the cardinality of the smallest

subset of elements in X whose absolute sum is greater than α ∥X∥1,1. The later result is

divided by the number of elements of X for normalization. From (62), we can define the

sparsity of a matrix X as

msparsity (X;α) = 1−mdensity (X;α) . (63)

Equations (62) and (63) are normalized and thus take values from 0 to 1. Unless otherwise
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specified, it can be assumed that we set α = 0.9999 in (62) and (63). Fig. 10 shows the

average density and reconstruction error of QTX versus p with the measure of density defined

in (62) for different values of k. The reconstruction error is defined as

eR (X,Q) =

∥∥X−QQTX
∥∥2
2,2

∥X∥22,2
, (64)

which quantifies how well the subspace captures the data. Each point in Fig. 10 is the result

of applying Algorithm 2 to 1000 iid realizations of X ∈ R500×50 with rank (X) = 40. The

matrix X is formed via X = UZ, where

U ∈ S500×40 s.t. R
SVD→ QΣVT and rj ∼ N (0D, ID) , (65)

Z ∈ R40×50, and zi ∼ N (0, I). We use the standard L2-PCA solution from (20) to initialize

Algorithm 2 in this study.

Figure 10: Average sparsity of QTX and reconstruction error for different values of k on a rank 40 data matrix X ∈ R500×50.
The cyan line indicates p = 2 for reference.

Fig. 10 clearly shows a trend that the sparsity increases with p. As expected, p = 1

results in the highest density. We note that this is also the case when choosing a value of

k. When k ≥ rank (X) = 40, the reconstruction error is zero for all p tested which suggests

that Algorithm 2 finds a Q whose span contains the subspace of the data for most values of

p. When k < rank (X) = 40, the sparsity still increases with respect to p, but is overall more
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dense than the k ≥ rank (X) = 40 case. Furthermore, the reconstruction error also increases

with p, which suggests that when setting p > 2, there is a trade off between achieving sparsity

and returning a Q that represents the subspace of the data well.

5.2 Clustering Study 1: Synthetic Data

In this section, we test Algorithm 3 on a random data matrix X ∈ RD×nc that contains c

affine subspaces. Each affine subspace corresponds to a class. The random model of the data

is

Xi = UiZi + 5
mi

∥mi∥2
1T
n ∈ RD×n, (66)

[Zi]:,j ∼ N (0n, 100In) , (67)

mi ∼ N (0D, ID) , (68)

Ui ∈ SD×n s.t. Ri
SVD→ UiΣiV

T
i and [Ri]:,j ∼ N (0D, ID) , (69)

X =

[
X1 X2 . . . Xc

]
, (70)

for all i ∈ {1, 2, . . . , c} and j ∈ {1, 2, . . . , n}. In all of our experimental studies, we use

the Fowlkes Mallows Score (FMS) [48]. The FMS is a measure of clustering accuracy that

takes values from 0 to 1. A value of 1 indicates perfect clustering and a value of 0 indicates

uniformly random labels. The FMS must be used to evaluate clustering performance since the

ground truth class labels are generally different from the labels that the k-means algorithm

will assign to each cluster. We use the Python implementation of the FMS from [44].

Fig. 11 and 12 show the average FMS for various values of p and D over 1000 independent

realizations of X, with k = 20, c = 3, and n = 30. Fig. 11 shows the results of our proposed

clustering method in Algorithm 3. Fig. 12 shows the average FMS of spectral clustering via

the different methods of forming affinities shown in Table 1, applying k-means directly to

the data, and after using L2-PCA to obtain Q instead of LP1-PCA. For all experiments, we
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use the k-means++ [49] method of initialization with a fixed seed of zero.

Affinity Matrix

X W =
∣∣XTX

∣∣
Y = QTX W =

∣∣YTY
∣∣

A =
∣∣QTX

∣∣ W = ATA

Table 1: Different methods of forming the affinity matrix W for spectral clustering. The subscript RN indicates row normal-
ization. The proposed method in Algorithm 3 uses ARN to form the affinity matrix.

Figure 11: Algorithm 3 average FMS versus D and p on synthetic data in 3 classes with k = 20.
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Figure 12: Average FMS score versus D for spectral clustering using affinities from Table 1 and k = 20.

The red line in Fig. 12 shows the average FMS achieved by forming the affinity matrix∣∣XTX
∣∣ followed by spectral clustering. In this case, D only needs to be 128 in order to

achieve nearly perfect clustering. The blue line in Fig. 12 shows the average FMS achieved

when L2-PCA is used to find a Q ∈ SD×k to form the affinity matrix
∣∣YTY

∣∣ where Y = QTX

for spectral clustering. As D increases, the rank of X approaches cn = 90, so k = 20 will

typically be much lower than the rank of the data. However, acceptable performance is

achieved even when D = 512. The trade-off between using a low-rank representation of X

and FMS seems to diminish as D increases asymptotically.

The results of the proposed Algorithm 3 with k = 20 in Fig. 11 show that p = 3

provides the best FMS over the widest ranges of D while also performing better than the

L2-PCA based methods in Fig. 11. Our method achieves perfect clustering when p = 3 and

D ≥ 512, and has the advantage of using a low-rank representation of X when compared to

all methods shown in Fig. 12 for D ≥ 512. The heatmap in Fig. 13 shows one instance of a

row normalized A =
∣∣QTX

∣∣ that resulted from Algorithm 3.
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Figure 13: One instance of ARN from Algorithm 3 that displays cluster-ID sparsity.

The heatmap in Fig. 13 displays that the proposed method in Algorithm 3 enforces

cluster-ID sparsity. The resulting affinity matrix is shown in Fig. 14 and is block diagonal

which achieves a perfect FMS as expected.

Figure 14: The block diagonal affinity formed from the matrix shown in Fig. 13. This affinity results in perfect clustering via
spectral clustering.
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5.3 Clustering Study 2: MNIST Dataset

In this study, we attempt to cluster 4 classes from the MNIST dataset [50]. The MNIST

database contains 70,000 images of handwritten digits. Each image pixel takes discrete values

from 0 to 255. Our data matrix is formed as,

X =

[
X0 X1 X2 X3

]
∈ R784×4N , (71)

where the columns of Xc ∈ R784×N contain vectorized images of digit c for all c ∈ {0, 1, 2, 3}.

Fig. 15 shows the first 4 images of digits 0–3 that were used in this experiment.

Figure 15: MNIST dataset digits 0–3.

In this study, we have arbitrarily chosen the first N = 30 samples of each digit. We

have chosen a smaller N since our method requires that the rank of the data must be small

compared to the ambient dimension. Next, consider the singular value decomposition of each

Xc, i.e., UcΣcVc
SVD← Xc for c ∈ {0, 1, 2, 3}. We also define the singular value decomposition

of the full data matrix X as UΣV
SVD← X. Fig. 16 shows a plot of the nuclear norm versus

rank for each Xc. The nuclear norm is defined as
∑r

i=1 σi, where r is the rank.
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Figure 16: Nuclear norm of each matrix Xc versus rank for MNIST.

The nuclear norm curves in Fig. 16 do not plateau, which indicates that each Xc is

full rank, i.e., rank (Xc) = 30 for c ∈ {0, 1, 2, 3}. We can also compare the subspaces of

each class. The heatmap in Fig. 17 shows the normalized subspace distance defined in (34)

between Ui and Uj for (i, j) ∈ {0, 1, 2, 3}2.
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Figure 17: Normalized subspace distance between classes in MNIST. The (i, j)-th entry of the heatmap shows the normalized
subspace distance defined in (34) between class i and j.

Fig. 17 shows that the subspaces formed by different digits have a small amount of

overlap. Although this overlap is small, it could still have a significant affect on clustering

performance if the intersection of such subspaces contributes heavily to the norms of each

xi. With this in mind, we use the affinity matrix W =
∣∣YTY

∣∣ with Y = UT
:,m:nX as input

to spectral clustering for (m,n) ∈ {1, . . . , cN} and m ≤ n. The value of m controls how

many of the top singular vectors are to be discarded and the value of n−m is the number of

subsequent singular vectors that are kept. The results of such experiment is shown in Fig.

18 where the heatmap shows the FMS. Fig. 18 suggests that the first two singular vectors

of U should be discarded to achieve better clustering performance. Conversely, the third

singular vector of U seems to be essential for good performance.
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Figure 18: How subspace intersection in MNIST affects clustering performance. The (n,m)-th entry of the heatmap shows the
FMS that results from spectral clustering with the affinity matrix W =

∣∣YTY
∣∣ and Y = UT

:,m:nX.

However, in practice, such preprocessing must be done using trial and error which might not

be viable.

Fig. 19 shows a comparison of the FMS resulting from several algorithms applied to X

with k = 10 and p = 3. Several methods of forming the affinity matrix as shown in Table

1 were used in addition to using the QTX from both L2-PCA and LP1-PCA. We have also

compared our results with k-means applied directly to the data and the popular subspace

clustering algorithms LSA [11] and SSC [9].
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Figure 19: FMS of various clustering methods on MNIST which include: spectral clustering with different affinities as described
in Table 1, k-means applied directly to the data, SSC, and LSA. The parameter k = 10 was used for all PCA methods and
p = 3 was used for LP1-PCA.

Fig. 19 shows that the proposed method in Algorithm 3 has superior clustering perfor-

mance with this particular dataset. The row normalized A = QTX resulting from Algorithm

3 is shown in Fig. 20 which mostly exhibits cluster-ID sparsity with the exception of the

first row. The first row likely is the cause of the cluster errors.
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Figure 20: The row normalized A = QTX resulting from Algorithm 3 in Fig. 19.

The affinity matrix formed from Fig. 20 is shown in Fig. 21. This affinity matrix appears

to be able to separate digit 0 and 1, but it has off diagonal blocks associated with the other

digits that cause clustering errors.

Figure 21: The resulting affinity formed from Fig. 20.
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5.4 Clustering Study 3: Cropped Extended Yale Face B Dataset

For this experiment, we attempt to cluster 4 classes from the Cropped Extended Yale Face

B (YALE) dataset [51]. The YALE dataset contains images of 38 human subjects under 64

illumination conditions that are cropped to have a size of 168 by 192. Each pixel takes a

discrete value from 0 to 255. Our data matrix is formed as

X =

[
X0 X1 X2 X3

]
∈ R32256×4N , (72)

where the columns of Xc ∈ R32256×N are the vectorized images of class c for all c ∈ {0, 1, 2, 3}.

In this study, we have arbitrarily chosen subjects 4, 5, 6, and 7 for our classes, and chosen

all N = 64 lighting conditions for each subject as samples. Fig. 22 shows the first 4 images

of each the subjects used in this experiment.

Figure 22: YALE dataset subjects 4–7.

The number of samples N was chosen to be much lower than the ambient dimension.

Once again, consider the singular value decomposition of each Xc, i.e., UcΣcVc
SVD← Xc for

c ∈ {0, 1, 2, 3}. Similarly, we define the singular value decomposition of the full data matrix
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X as UΣV
SVD← X. Fig. 23 shows a plot of the nuclear norm versus rank for each Xc.

Figure 23: Nuclear norm of each matrix Xc versus rank for YALE.

The nuclear norm curves in 23 show that the class data matrices Xc are full rank, i.e.,

rank (Xc) = 30 for c ∈ {0, 1, 2, 3}. This is a result of N << D. Again, we can also compare

the subspaces of each class. The heatmap in Fig. 24 shows the normalized subspace distance

defined in (34) between Ui and Uj for (i, j) ∈ {0, 1, 2, 3}2.
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Figure 24: Normalized subspace distance between classes in YALE. The (i, j)-th entry of the heatmap shows the normalized
subspace distance defined in (34) between class i and j.

Fig. 24 shows that there is some degree of intersection between the different class sub-

spaces. Again, we investigate how this subspace overlap affects clustering performance. The

affinity matrix W =
∣∣YTY

∣∣ with Y = UT
:,m:nX is again used as input to spectral clustering

for (m,n) ∈ {1, . . . , cN} and m ≤ n. The value of m controls how many of the top singular

vectors are to be discarded and the value of n − m is the number of subsequent singular

vectors that are kept. Fig. 25 shows a heatmap of the resulting FMS scores.
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Figure 25: How subspace intersection in YALE affects clustering performance. The (n,m)-th entry of the heatmap shows the
FMS that results from spectral clustering with the affinity matrix W =

∣∣YTY
∣∣ and Y = UT

:,m:nX.

Fig. 25 indicates that the first 5 singular vectors of U make it nearly impossible to perform

clustering. The red regions in Fig. 25 indicate regions of good clustering performance. For

regions of m from 35 to 50, a wide range of n will yield good performance. There is another

small region around m = 20 that gives good performance for a wide range of n. Overall,

this suggests our classes share a subspace that contributes significantly to the norms of each

point which hinders clustering performance.

For the next experiment on YALE, we define the new data matrix

X̃ = U:,20:U
T
:,20:X, (73)

where X̃ is our original data X that has been projected onto the null-space of the first 19

singular vectors of U. Our previous experiments without the null-space projection resulted

in poor performance for most of the methods that we tried. Fig. 26 shows the FMS of several

different clustering methods applied to X̃ with k = 110 and p = 16, which include: spectral

clustering with different affinities as described in Table 1 and k-means applied directly to
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the data.

Figure 26: FMS of various clustering methods on YALE which include: spectral clustering with different affinities as described
in Table 1, k-means applied directly to the data. The parameter k = 110 was used for all PCA methods and p = 16 was used
for LP1-PCA.

The results in Fig. 26 indicate that the proposed method in Algorithm 3 is able to

outperform the other methods tested for this particular data matrix. Fig. 27 shows the row

normalized matrix A =
∣∣QTX

∣∣ with Fig. 28 showing the corresponding affinity matrix.

48



Figure 27: The row normalized A = QTX resulting from Algorithm 3 in Fig. 26.

The matrix in Fig. 27 is extremely sparse. It has cluster-ID sparsity, but also has the

problem that columns of the same class look orthogonal. This results in a disconnected

affinity matrix as shown in Fig. 28. That being said, the affinity in Fig. 28 does show

some degree of block diagonal structure. This could explain why the FMS is still very good

compared to competing methods in this case.
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Figure 28: The resulting affinity formed from Fig. 27.

6 Conclusion

As big data continues to evolve, so does the demand for being able to extract information

from high-dimensional data. In this work, we have shown that for the task of unsupervised

subspace clustering, high-dimensionality can be an advantage given that the data is of low-

rank. To support this claim, we have identified a statistical model of data that can achieve

perfect clustering when the ambient dimension is high compared to the rank of the clusters,

and introduced the concept of cluster-ID sparsity. In order to enforce cluster-ID sparsity on

real datasets, we proposed the method of LP1-PCA Spectral Clustering, which provides a

simple method for performing subspace clustering when compared to other methods such as

SSC, LSA, and SCC. Furthermore, we have shown some examples of datasets formed from

YALE and MNIST where LP1-PCA can outperform such methods.

In addition, we have developed a novel iterative algorithm to approximately solve LP1-

PCA for general p ≥ 1. To the best of our knowledge, no such algorithm exists in the

literature at the time of writing. However, it is worth mentioning that our algorithm corre-
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sponds to the algorithm of Nie et al. [30] when p = 1 and [33] when p = 2. While the general

LP1-PCA problem is NP-hard, we also provide an exact solution for a rank one data matrix

for general k and p. While the rank one solution is not practical for a real-world data, it

gives us insight into how the selection of p changes the solution of LP1-PCA, namely, that

p ∈ [1, 2) induces density and p ∈ (2,∞) induces sparsity in the projection components. We

show extensive empirical evidence to support the later claim.

While our work has shown promise in the areas of subspace clustering, many unanswered

questions remain that deserve more research effort. One of such questions regards to how one

selects the value of p. While we show that p > 2 helps create cluster-ID sparsity, we still do

not fully understand yet how changing p on this interval affects the clustering performance.

In a similar manner, we were able to show that one needs to set k to be less than the rank of

the data to take advantage of cluster-ID sparsity, but we do not yet know how k affects the

clustering performance more generally. Lastly, we lack the theoretical proofs and guarantees

that show how processing the matrix QTX via row or column normalization affects the

general clustering performance. One could also develop different methods of pruning QTX.

In this thesis, we have laid solid foundations of a very promising new research area which

we believe that deserves to be further investigated.
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