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Abstract

Deep Neural Networks (DNN), specifically Convolutional Neural Networks (CNNs)

are often associated with a large number of data-parallel computations. Therefore,

data-centric computing paradigms, such as Processing in Memory (PIM), are being

widely explored for CNN acceleration applications. A recent PIM architecture, de-

veloped and commercialized by the UPMEM company, has demonstrated impressive

performance boost over traditional CPU-based systems for a wide range of data-

parallel applications. However, the application domain of CNN acceleration is yet

to be explored on this PIM platform. In this work, successful implementations of

CNNs on the UPMEM PIM system are presented. Furthermore, multiple operation

mapping schemes with different optimization goals are explored. Based on the data

achieved from the physical implementation of the CNNs on the UPMEM system,

key-takeaways for future implementations and further UPMEM improvements are

presented. Finally, to compare UPMEM’s performance with other PIMs, a model is

proposed that is capable of producing estimated performance results of PIMs given

architectural parameters. The creation and usage of the model is covered in this work.
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Chapter 1

Introduction

The physical separation between the processing unit and the memory unit inside a

von Neumann computing architecture makes the memory accesses expensive, both

in terms of latency and power consumption [5, 6]. This issue is further aggravated

when the application is data-centric. Consequently, data-intensive Machine Learning

Applications, especially Deep Neural Networks (DNN) are met with inefficiency and

bottlenecked performance when implemented in the von Neumann computing devices

such as CPUs and GPUs [7].

Processing in Memory (PIM), a novel computing paradigm, addresses the ineffi-

cient data-movement issue of the Von Neumann model by placing the processing units

inside the memory chip itself [8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20]. This

essentially restricts the circulation of the data within the memory chip and thereby

dramatically minimizes the power dissipation and latency from the data movements.

Moreover, a PIM can further capitalize on the data locality by processing the data

in a processing element nearest to the data [21, 22]. This provides the PIM devices

with massively parallel processing capability within the memory chip at very low

operational latency and power consumption [12, 13, 14].

UPMEM PIM, a commercially available memory-centric processing hardware, in-

tegrates small-scale traditional processors within standard DRAM chips. This allows

it to offer up to 15 × better performance than Intel x86-based servers on a wide range
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Chapter 1. Introduction

of data-centric applications [1]. Designed primarily for data-parallel applications (i.e.

graph processing, genomic sequencing, etc.), the domains of machine learning, deep

learning and AI acceleration are yet to be explored.

There are several challenges to implementing the mainstream AI algorithms in the

UPMEM processing hardware. First, UPMEM only supports fixed-point operations

which requires standard CNNs implementations to be quantized accordingly. Second,

UPMEM requires programs to be compiled for its RISC based PIM processors using

a custom Clang based compiler. Finally, UPMEM requires the size of any data (i.e

CNN input and weight data) sent from the host to the PIM be divisible by 8.

This work investigates the implementation of CNN algorithms on the UPMEM

PIM environment by working around the aforementioned limitations and challenges.

First, CNNs algorithms (i.e. YOLOv3 [4] and eBNN [23]) are adapted to UPMEM

PIM’s computational limitations by using quantized versions and restructuring con-

flicting parts of the applications. Second, to comply with the UPMEM’s compiler,

the data-centric portions of an application is separated and compiled insteads of an

entire CNN application. Third, to comply with the memory size restrictions for the

input/output matrices, padding is used and the size of the actual data is communi-

cated to the PIM prior to processing.

Alongside, this work also demonstrates how the applications are mapped onto UP-

MEM processing elements to capitalize on UPMEM’s multiple parallel layers in their

architecture. Furthermore, the CNN functions compiled for the PIM are synchronized

with the host in order to preserve the integrity and flow of the application. This al-

lows the presentation of a standardized framework for adapting and implementing

any CNN application within the UPMEM PIM system.

Apart from the commercially available UPMEM PIM solutions, a number of

promising PIM solutions have been proposed for AI acceleration applications [12, 13,

17, 14]. In order to evaluate the merit of UPMEM PIM as an AI accelerator, CNN-

3



Chapter 1. Introduction

implementations on UPMEM are compared with with several other high-performance

PIM architectures. To facilitate the comparison, a model is created that can estimate

the latency of an application given a few parameters: number of operations, operand

length, scale function, number of processing elements, etc. This model is generated

for both computations and memory access in PIM.

Thesis contributions:

1. A verified methodology for supporting CNN acceleration is presented on the

UPMEMPIM solution that does not support this application domain by default.

2. A model for estimating the performance of PIMs is proposed. This model is

used to perform comparative evaluation of UPMEM PIM’s performance along

with several other PIM architecture.

The rest of the document is organized in the following manner: Chapter 2 covers

some necessary background information regarding general Processing-in-Memory as

well as UPMEM specifically. Chapter 3 covers an indepth exploration of general

application specific information for programs running on UPMEM’s system. Chap-

ter 4 covers, the implementation of CNNs in the UPMEM system and presents the

findings. Chapter 5 covers the creation of a model that can be used to estimate the

performance of a PIM for comparison with other PIMs. Chapter 6 concludes this

work by presenting key points and provides acknowledgements.
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Chapter 2

Background

Before getting started with the specific contributions in this work, some necessary

background material needs to be covered first. This chapter covers the topic of

Processing-in-Memory (PIM) by describing what they are: accelerators. Various de-

signs of PIMs exist that boast higher and higher accelerations and this chapter covers

some theoretical designs. Unlike these designs, there now also exists a commercially

available PIM by UPMEM and so the architecture of this PIM is also explored in

detail as well.

2.1 Processing in Memory

Von-Neumann computer architectures contain a memory hierarchy alongside a Cen-

tral Processing Unit (CPU). The closest and smallest memory is the register. Regis-

ters are located in the CPU die and often take one cycle. Cache is the next biggest

memory and is further from the CPU but is still in the die. Main system memory is

off-die and, while much larger, suffers from the largest access penalties. For applica-

tions that contain a large amount of memory access, cache misses lead to performance

degradation.

Processing-in-Memory (PIM) is a concept that alters the Von-Neumann model

and places data-centric processing in main memory. These designs, in contrast to the

Von-Neumann model, follow the Harvard architecture in regards to memory location

5



Chapter 2. Background

and access. The general idea is the removal of the necessity to go off die/chip for data

when dealing with data-centric applications. This reduces the power consumption

necessary per memory access and reduces the wait time for processing elements.

2.1.1 Theoretical PIM Architectures

PIM itself is not a novel concept, the idea is first introduced in 1970 by Stone et al.[9].

However, in recent years, a wide range of theoretical designs have been proposed for

PIM, mostly in DRAM technology. These designs vary in granularity. For exam-

ple, there are bit-wise accelerators that operate on memory sub-array rows such as

DRISA[12], Ambit [24], and SCOPE [13]. Computations in these bitwise-accelerators

are done using traditional logic gates that are implemented by Boolean bitline logic

and more complex logic is ran by serially executing multiple Boolean logic gates.

A more recent design is based around using Look-Up-Tables (LUTs) for compu-

tation acceleration. LUT designs fundamentally function by breaking down operands

into supported input sizes and accessing a register file using these operands to pro-

duce a pre-programmed result. Specific implementations such as LAcc [17] and pPIM

[14] have shown higher performance ratings than Bitwise implementations.

Finally, there are designs, such as ISAAC [25], XNOR-SRAM [26] and MRAM-

DIMA [27], that utilize analog crossbar array architecture to perform program specific

computations.

2.1.2 UPMEM PIM Architecture

UPMEM is, to the best of the author’s knowledge, the first and the only commer-

cially manufactured PIM hardware solution based on Dynamic random-access mem-

ory (DRAM). UPMEM integrates multiple Processing Elements (PEs) within each

DRAM chip, referred to as the DRAM Processing Units (DPU). Figure 2.1 shows

an overview of the UPMEM DPU architecture. The DPU features a patented pro-

6



Chapter 2. Background

Rank
Rank
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PIM CHIP
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DMA
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Common DRAM
Interface

Common
Control

Interface
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Figure 2.1: Overview of the architecture of the UPMEM DPU. Each DRAM chip contains
multiple DPUs, each of which consists of a reduced instruction set (RISC) pipeline, two
internal memories (IRAM and WRAM) and an external MRAM [1, 2]

cessing architecture, featuring a pipeline, accompanied by a novel data/instruction

memory organization [2]. The architecture and the micro-architecture of the DPU

is inpired by the Reduced Instruction Set Computing architecture (RISC). The goal

of the DPUs is to support small/large-precision fixed-point computations with high

energy-efficiency. The DPU has access to three dedicated physical hierarchies of mem-

ory: a) the relatively larger Main RAM (MRAM), b) the internal Instruction RAM

(IRAM), and c) Working RAM (WRAM) of the DPUs, with the latter two being

located inside the DPUs for a significantly lower access latency compared to MRAM.

The capacities of each of these memory hierarchies are listed in Table 2.1. Although

the DRAM chips on which the UPMEM PIM system is implemented are in the 25nm

technology node, the DPUs themselves are developed in the 65nm technology node.

Based on Figure 2.1, it can be observed that the internal DPU follows the Harvard

approach where both instructions and data can be accessed through different medi-

ums. However, the separation of the MRAM to outside the DPU with only DMA

follows the Von-Neumman model. Thus, UPMEM’s DPU system can be seen as a

7



Chapter 2. Background

Table 2.1: UPMEM PIM Attributes

No. of DPUs 2560 (20 DIMM)
No. of DPUs/ DIMM 128

DPU/ Chip 8
Available Memory/ Chip 512 MB

DPU Area 3.75 mm2

DPU Power Consumption 120 mW
DPU Operating Frequency 350 MHz

DPU Hardware Threads (i.e Tasklets) 1-24
DPU Pipeline Stages 11

DPU Registers/ Thread 32
DPU MRAM Size 64 MB
DPU WRAM Size 64 KB
DPU IRAM Size 24 KB

hybrid approach compared to other PIMs that strictly follow the Harvard approach.
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Chapter 3

UPMEM PIM Programming

Running any application in a new system requires understanding of the programming

infrastructure the system uses. This chapter covers, in more depth, analysis of general

programming aspects of the UPMEM PIM system. Topics that are not specific to

CNNs but are just as important are covered in this chapter.

3.1 Programming Interface

The programming interface for UPMEM’s PIM is developed based on the LLVM com-

piler infrastructure and therefore only supports a C-based programming environment.

Therefore, all CNN algorithms running inside a DPU need to be implemented in the

C programming environment. However, it is possible for the host application to be

written in Python/C/C++/Java and have the host run C-only DPU programs.

The compiler called, ”dpu-clang”, has default built-in optimization capabilities

of the UPMEM compiling infrastructure (referred to as the ”O 0-3” optimization

settings). The O0 optimization is no optimization at all. With this optimization

parameter the compilation is quickest and most debuggable. The O3 optimization is

the highest standard optimization that enables all compiler optimizations disregarding

program size and compilation time.

UPMEM’s system is interfaced to the host CPU as a memory-centric accelera-

tor. In this configuration, the host CPU delegates the memory intensive compu-
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Chapter 3. UPMEM PIM Programming

tational workloads to the DPUs. In order to perform this delegation, application

profiling is used to identify the specific set of tasks that are to be processed within

the DPUs. These operations are characterized by highly data-parallel nature. The

created program schedules these tasks to the DPUs, followed by initialization and

data/instruction orchestration within the DIMMs to execute the tasks. Meanwhile,

the host processor is assigned the remaining tasks as well as the monitoring of the

data-communications and operating of the DPUs.

Each DPU in the UPMEM system is capable of processing multiple concurrent

threads at a time. These are software-level abstraction of the hardware threads and

are referred to as the ‘Tasklets’. The execution of each program is further accelerated

within the DPU via the concurrent execution of multiple Tasklets in the pipeline.

Each tasklet runs the same program and thereby essentially implements a single

instruction multiple thread (SIMT) execution environment. Furthermore, multiple

DPUs on the system can execute the same program on different parallel data, and

therefore implement a single instruction multiple data (SIMD) processing architecture

across the DIMMs.

3.2 DPU Memory

The memory shown as MRAM, WRAM and IRAM in figure 2.1 can be accessed via

library functions. The memory transfer from the host to the DPUs consists of looping

through the input values, weights and output labels and copying the memory to the

DPUs MRAM. UPMEM memory transfer functions such as equation 3.1 exist to copy

the same data to multiple DPUs at once [1, 2]. However, to transfer different data

to different DPUs, a combination of equation 3.2 and equation 3.3 is needed. Using

a for each macro, a set of DPUs could have a different memory address given as the

start of the buffer using dpu prepare xfer, even though it is the same buffer. Then,

the dpu push xfer would “push” the buffers to the DPUs. The length parameter in
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Chapter 3. UPMEM PIM Programming

dpu push xfer makes sure only the specific buffer size get sent. The symbol name

is the name of the MRAM variable in the DPU that would receive the data. For a

WRAM variable the attribute “ host” would be needed as extra. The offset is 0 and

the rest are predefined macros [1].

dpu copy to(struct dpu set t set,

const char∗ symbol name,

uint32 t symbol offset,

const void∗ src, size t length)

(3.1)

dpu prepare xfer(struct dpu set t dpu set,

void∗ buffer)

(3.2)

dpu push xfer(struct dpu set t

dpu set, dpu xfer t xfer,

const char∗ symbol name,

uint32 t symbol offset,

size t length, dpu xfer flags t flags)

(3.3)

The DPU’s internal program is written to have access to the MRAM data via

symbols pointing at the specific buffers for input and output data. The DPU’s main

function loops through all data and copies the data from MRAM to WRAM and

executes the main functionality. Since the DPUs are simpler processing architectures

with limited data allocating capabilities, proper data orchestration within the DPU
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Chapter 3. UPMEM PIM Programming

memory (i.e. MRAM, WRAM and IRAM) has to be enforced by the compiler. Mem-

ory orchestration between the host and DPUs must ensure that the memory being

orchestrated is aligned on 8 bytes and divisible by 8 bytes when being allocated to the

MRAM. For implementations where the size of the data is not aligned, padding to the

sent/received memory buffers from the DPUs needs to be added. In order to make

sure the DPU does not mistakenly include these padded bytes in its computations,

the size of the non-padded buffer must be sent from the host to the DPU.

3.2.1 Results

The internal MRAM and WRAM discussed in Sections 2.1.2 and 3.2 contain different

access timings. With WRAM located inside the DPU the number of cycles needed

for a WRAM access is 1 Cycle. However, with MRAM located outside of the DPU,

the DMA shown in 2.1 is activated for every MRAM transfer to the WRAM. The

very usage of the DMA incurs a 25 cycle penalty. Furthermore, for every 2 bytes

necessary for the transfer, there is a 1 cycle penalty. For example, a transfer of 2048

bytes from MRAM to WRAM takes 1049 cycles as shown in equation 3.4.

MRAM Access (Cycles) = DMA Cycles + (Total Bytes/2)

= 25 + (2048/2)

= 1049

(3.4)

3.3 High Precision Computation

While the UPMEM DPU is a 32-bit processor, there does not exist hardware for all

possible computation sizes. There is no hardware support for 32-bit fixed point multi-

plication/division and for any floating point operation. For these high precision com-
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Figure 3.1: Sample program used to profile and measure the number of cycles per in-
struction for a operation. Here two floating point operations are multiplied together.
The perfcounter functions measure the amount of cycles from perfcounter config() to perf-
counter get()

putations, UPMEM’s compiler calls subroutines that break down the operations into

multiple smaller operations. For example, mulsi3, muldf3, addsf3, and dddf3

[28] are some routines frequently called in applications. Another aspect of the UP-

MEM compiler is that 16-bit multiplication operations also use software subroutines

under no-optimization but collapse into regular instructions under full optimization.

3.3.1 Results

The aforementioned subroutines carry a large cost in terms of computational cycles.

UPMEM does not suggest the usage of any high precision computations in their

DPUs due to this cost. To observe the quantifiable effect of using such routines, a

program, shown in figure 3.1, is written that prints the number of cycles different

instructions take in a single DPU. The resulting data for a program with no compiler

optimization operating on the maximum type values for operands is shown in Table

3.1. As seen in Table 3.1, fixed point addition/subtraction takes the same amount

of cycles for all precision. Division performs similarly but with a relatively higher

13
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Table 3.1: Number of cycles for different operations in a single DPU
Precision Addition (Cycles) Multiplication (Cycles) Subtraction (Cycles) Division (Cycles)

8-bit fixed point 272 272 272 368
16-bit fixed point 272 608 272 368
32-bit fixed point 272 800 272 368

32-bit floating point 896 2528 928 12064

Figure 3.2: Profiling of DPU application with high precision computations. ltsf2 is a
comparison routine, divsf3 is a division routine, floatsisf is a conversion routine, addsf3
is a addition routine and muldi3 is a multiplication routine, all for floating point operations.
The #occ value is the number of times this subroutine is called in the program

count. Compared to 32-bit fixed point addition, 32-bit fixed point multiplication is

about ×2.9 slower. Floating point operations performs relatively the poorest inside

the DPUs. Compared to 32-bit fixed point addition, 32-bit floating point addition

is about ×3.3 slower. Compared to 32-bit fixed point multiplication, 32-bit floating

point multiplication is about ×3.2 slower. Compared to 32-bit floating point addition,

32-bit floating point multiplication is about ×2.3 slower. Floating point division has

the worst value in comparison to other operations. The actual cycle count includes

cycles needed for profiling and thus is better seen in a comparative point of view.

Figure 3.2 shows a sample output of profiling a DPU application that includes

high precision computations. The number of occurrences (#occ) shows how many

times subroutines used to handle floating point operations are called. Given the large

cycle penalty for using high precision computations and the number of times these

operations get called, it is suggested for any applications running on the UPMEM

system to use low precision computations.
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Chapter 4

Analysis of Neural Networks in UPMEM PIM

Convolutions Neural Networks (CNNs) are characterized by a large amount of data-

parallel computations such as the Multiply and Accumalate (MAC) operations. Con-

veniently, the UPMEM PIM system is highly optimized for supporting massively

parallel computations. However, the baseline UPMEM system does not offer support

for CNN acceleration applications. It’s observed that with carefully developed oper-

ation mapping and orchestration schemes, it is possible to implement the CNNs in

the UPMEM PIM environment with promising performance gains.

In order to achieve the most optimized resource utilization, the CNN acceler-

ation workload is also partially shared by the host. Profiling steps are utilized

i.e.implementation algorithms are modified in order to separate the data-centric func-

tions, which is usually the convolutional portion, from the rest of the application. This

is followed by the deployment of the Convolutional layer/functions to the DPUs while

the other layers are executed by the host. The compilation of the non-convolutional

layer, and the input/output data orchestration is carried out by the host itself.

Two different mapping schemes for the CNNs in the UPMEM system is presented

in this chapter. In the first scheme, multiple images are ran per DPU, for which

eBNN [23] is chosen as the target CNN architecture. eBNN is chosen due to its

minimalistic architecture consisting of a relatively low number of computations. The

second scheme uses multiple DPUs dynamically for operating on a each single image.
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For this purpose a relatively larger CNN algorithm of YOLOv3 is chosen. Alongside

featuring a relatively deeper network architecture and consequently a significantly

larger computational workload, the YOLOv3 implementation also has larger input

dimensions. These make it a relatively more challenging computing task compared

to the eBNN when it comes to performing multiple images per DPU. The choice

of dynamic DPU assignment to this task enables the programming model to use an

optimum number of DPUs for processing each layer of the network.

4.1 Implementation of eBNN

4.1.1 eBNN Architecture

Embedded Binary Neural Network (eBNN) [23] presents an advanced form of the

Binary Neural Network architecture, introduced in the work BinaryNet[29], which

aims to achieve a higher level of optimization and compatibility for embedded pro-

cessing devices. This architecture focuses on reducing the required memory footprint

of temporaries (i.e. the intermediate results between layers). This is carried out by

using binary quantization of the weights, the temporaries and the inputs, instead of

retaining floating-point precision in all the intermediate buffers. To this end, eBNN

is chosen since it contains minimal high precision computational workload and there-

fore allows an easier integration within the DPUs. A custom architecture for eBNN

is adopted that consists of one Convolutional-Pooling block, followed by a Softmax

layer. One of the key advantages of the BNN architecture is its exclusive utilization

of binarized weights that essentially simplify the convolutions to a stream of bitwise

computation, followed by accumulations (additions). This significantly reduces the

complexity and overhead associated with performing convolutions in the UPMEM

DPUs.

16



Chapter 4. Analysis of Neural Networks in UPMEM PIM

4.1.2 Dataset Specification

The data that is used for inference testing is the MNIST Dataset. This is a collection

of handwritten digits from 0 to 9. Each digit is represented by an array with 28 rows

and columns with each cell represented by a byte. An example is shown in Figure

4.1.

Figure 4.1: MNIST Dataset Example Images [3]

4.1.3 Mapping of Images to DPU

To take advantage of the hardware threading available per DPU, the DPU’s convo-

lutional code is adapted to accept multiple input data. This means a single DPU is

allowed to work on multiple images concurrently. The images data is copied from

the MRAM to WRAM and then delegated to the threads. The number of threads

chosen to run in the DPU is 16 because a maximum of 16 images are allowed to be

transferred from the MRAM to WRAM. The image limit is due to the size of the

image transfer being limited by a maximum of 2048 bytes per transfer.

To further the image throughput, the multiple DPUs available per system is taken

advantage of. The input image data buffer for many images is divided by the number
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of images per DPU to get the number of DPUs needed. This number of DPUs are

run in parallel to finish their batch of images at the max time for one DPU.

After all DPUs complete their convolutional computations for all images, each

DPU’s temporary result is parsed. This temporary result from a DPU is multiple

convolution results for all images sent to the DPU. The host takes this temporary

result buffer and serially sends a single image’s processed result to the softmax layer

for inference. After all temporary results for all images in a single DPU are inferred,

the next DPU’s result is read.

4.1.4 eBNN Floating-Point Removal

Figure 4.2: Look up table based update to the eBNN architecture to fit DPU usage. (a)
shows the default eBNN model that contain floating point operations in the DPU and (b)
shows the updated model where the host is responsible for the floating point operations
instead

The eBNN implementation, while having quantized inputs, weights and tempo-

raries, still contains floating point operations in its Batch Normalization (BN) and

Binary Activation (BinAct) blocks within the Convolutonal-Pool block. As shown in

Figre 4.2, in order to replace these floating point operations, a look up table based

solution is created that contains the output of the BN-BinAct block as a function of

the input of the block.
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Figure 4.2(a) is the default flow of the eBNN program if placed inside the DPU.

This flow happens for each convolutional-pool. In the eBNN model, the pool result

is passed to a Batch Normalization function that uses given floating point values

for a specific filter to normalize the value. Then the result is passed through a

Binary Activation block to quantize the result. Both functions result in floating

point operations for the DPU.

Algorithm 1 LUT Creation

1: procedure LUT Creation
2: x← smallest conv. result
3: y← largest conv. result
4: z← number of filters

5: LUT ←
0.0 . . . 0.0
...

. . .
...

0.0 . . . 0.0︸ ︷︷ ︸
|z|

|y−x|

6: for i ← x ... y do
7: for j ← 1 ... z - 1 do
8: tmp← i
9: tmp← tmp+W0[j]
10: tmp← tmp−W1[j]
11: tmp← tmp/W2[j]
12: tmp← tmp ∗W3[j]
13: tmp← tmp+W4[j]
14: if tmp ≥ 0 then
15: res← 1
16: else
17: res← 0
18: LUT[(i-x)*z + y]← res

Figure 4.2(b) is the novel methodology to circumvent the DPU’s floating point

issues. The BN-BinAct block is moved from the DPU to the host. The host runs

all possible input values or all possible convolutional-pool results, through the BN-

BinAct block and stores them into an 2D array LUT. Psuedocode for this LUT

creation is shown in Algorithm 1 where lines 9 through 13 is the BN block and lines

14 through 17 is the BinAct block. The size of the array is dependant on the range
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of the input values and the number of filters. The range of the input values are

dependant on only the filter size. The host only needs access to the weights that the

BN block uses, the filter size and the number of filters to perform the LUT creation.

The LUT is created by a nested for loop where the outer loop goes through the range

of the input values and the internal loop goes through the filter count. The row index

of the 2D array is the input value and column index is the filter number. However,

since the input value can be negative and the index cannot be, all values are stored

in with an offset. This means that the largest negative value is the first index in the

array and the largest possible value is the last index in the array. The Host sends this

LUT to the DPU and the DPU copies it to from MRAM to WRAM before accessing

it instead of running the two floating point blocks. The access of the array inside the

DPU is the same as the access in the host.
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4.1.4.1 Results

Figure 4.3: Comparison of the number of floating point subroutines in the same program
(a) without and (b) with the LUT based architecture. The number of floating point sub-
routine calls are reduced from 11+ subroutines, in (a), to 2 subroutines in (b)

The removal of the BN-BinAct blocks results in the reduction of high-precision sub-

routines, discussed in 3.3, from the eBNN application. Figure 4.3 shows the effect of

the removal. The number of floating point subroutine calls are reduced to where there

is only the mulsi3 subroutine is left. This routine could not be removed because it

is tied to a dependent part of the program.

21



Chapter 4. Analysis of Neural Networks in UPMEM PIM

Figure 4.4: Completion time performance comparison of the same eBNN application
running 16 images with and without the LUT architecture

Figure 4.4 shows the effect of this new model on the overall timing for 16 images.

The new model results in a 1.4x speedup compared to the floating-point inclusive

model.

4.2 Implementation of YOLOv3

4.2.1 YOLOv3 Architecture

YOLOv3 [4] is a state of the art object oriented detection CNN with outstanding

accuracy and powerful realtime capabilities. YOLOv3 features the Darknet-53 net-

work architecture, characterized by a feature extraction block followed by a feature

detector block. As suggested by the name Darknet-53, both of these blocks contain

fifty-three convolutional layers. These convolutional layers are heavily data-centric

in nature and therefore can benefit from data-centric acceleration in the PIM envi-

ronment. Since the UPMEM DPUs only supports limited fixed-point/floating-point

precision computations, a quantized version of YOLOv3 for this implementation is

chosen.
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4.2.2 Dataset Specification

The implemented YOLOv3 input dataset is a standard example image with a size of

416x416 pixels. The most common image used in this work is the picture of a dog

seen in Figure 4.5.

Figure 4.5: Example sample YOLOv3 image, 416x416 [4]. Classification boxes are not in
input but are placed as a result of network completion

4.2.3 Mapping of Convolution to DPU

The General Matrix Multiply (GEMM) function is leveraged to implement convolu-

tions within the DPUs. The GEMM function performs convolutions of the input and

the weight matrices via a triple nested for-loop. Since quantization/de-quantization

is not supported by the DPUs, the GEMM functions are only delegated to the DPUs

instead of mapping the entire convolutional layers.

The nested for-loops of the GEMM function, shown in algorithm 2, that forms

the convolutional blocks of the YOLOv3 implementation were unrolled. Under this

scheme, the number of iterations of the external loop (algorithm line 3), i.e. the

number of filters for the layer, are spread among a specific amount of DPUs. As

demonstrated in Figure 4.6, the mapping is performed such that each DPU receives

one row from the weights array (i.e. A) as well as the the entire input array (i.e. B).
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Algorithm 2 GEMM Function

1: procedure GEMM Function(M, N, K, ALPHA, array A, array B, array C)
2: ctmp← array(4*N)
3: for i ← 0 ... M-1 do
4: for k ← 0 ... K-1 do
5: APART← ALPHA*A[i*K + k]
6: for j ← 0 ... N-1 do
7: ctmp[j]← APART*B[k*N + j]+ ctmp[j]

8: for j ← 0 ... N-1 do
9: C[i*N+j]← absolutemax(ctmp[j] / 32, 32767)
10: ctmp[j]← 0

The output are returned to one row of the output array (i.e. C). Since, each DPUs

works on one row of A and C at a time, the number of DPUs required for executing

a YOLOv3 layer is also the number of rows in A and C (M). As shown in Figure 4.6,

this is also the number of filters for that layer. Internal parallelization for the DPU

Figure 4.6: Distribution of the YOLOv3 GEMM function matrices A (i.e Input), B (i.e
Weights), C (i.e Output) in available DPUs in the UPMEM System. The portion of the
matrices that each DPU recieves is one row of A, the entirety of B and one row of C. The
row index is dependant on the DPU index in the system.

is done again with tasklets, as introduced previously in section 2.1.2. For the GEMM

function, there are dependencies within the second-most outer loop that force the

parallelization to be done with the inner-most loop. Each tasklet is responsible for

one column index or algorithm variable j of the input and output arrays (i.e B and

C) and subsequent multiples of that column index of the N sized row.
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The host is responsible for dividing up the arrays based on the mapping shown

in Figure 4.6 and sending the data to the DPUs. Once the DPUs finished the convo-

lution, the host would read each output row into the memory location of the layer’s

output.
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4.3 Results

This section covers the performance of the UPMEM system running the eBNN and

YOLOv3 applications. The section is divided into 4 parts: single DPU performance,

multi-dpu performance, implementation takeaways and improvements.

Figure 4.7: Evaluation of the implementation of eBNN and YOLOv3 CNNs on the UP-
MEM PIM system, including (a) speed-up achieved from multi-threading of execution with
respect to no threading in each DPU for both eBNN and YOLOv3, (b) YOLOv3 perfor-
mance for various combinations of multi-threading and compiler-level optimizations, and
(c) speed-up of eBNN inference performance with respect to the CPU (i.e. Intel Xeon) for
different degrees of operational parallelism.

4.3.1 Single DPU Performance

Each UPMEM DPU is capable of processing multiple concurrent threads or Tasklets

on the same processing pipeline. In the context of CNN implementation, each thread
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or tasklet may represent one single frame of inference (i.e. image) or a portion of a

single frame of inference. For eBNN implementation, because each image is so small,

multiple images are assigned to each DPU to be processed concurrently. For YOLOv3

a single image is distributed across multiple DPUs because of the difficulty of fitting

one image into a DPU. In either case, thread/tasklet concurrency results in higher

parallel performance and therefore increased processing throughput. Figure 4.7(a)

demonstrates the performance speedup achieved by adopting thread level parallelism

compared to the single thread performance for both eBNN and YOLOv3 implemen-

tations. It can be observed that the DPU offers increasing speedup for higher number

of parallel tasklets, which saturates at around 16 tasklets for eBNN and 11 tasklets

for YOLOv3, which aligns with DPUs behaviour observed by the prior works [30].

The reason for saturation at 11 tasklets is because there are 11 stages in the pipeline

for a thread to use. At 11 tasklets/threads the pipeline is filled. eBNN does show a

drop at 11 tasklets but the speedup increases again because the number of threads

match the number of images available to be worked on.

Figure 4.7(b) which depicts the performance of the YOLOv3 for two different

optimization criteria. These two criteria allows choices between multi-threading and

compiler optimization. The relatively poorest performance is obtained for a combina-

tion of no compiler optimization (i.e. Optimization Mode O0) and no multi-threading

of execution. On the other end of the spectrum, maximum optimization (i.e. Opti-

mization Mode O3) is utilized, accompanied by multi-threading of execution, which

can be observed to result in the relatively maximum increase in throughput and

minimization of execution latency.

With threading and optimization used, the lowest possible single image latency

for YOLOv3, using the mapping discussed in section 4.2.3, is found to be 65 seconds.

Each layer averages about .9 seconds with a maximum of 6 seconds in one layer. The

single image latency for eBNN running on a single DPU is found to be .00148 seconds.
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4.3.2 Multi-DPU Performance

Figure 4.7(c) shows the comparison of a fully parallel DPU system and a Intel Xeon

CPU running the eBNN application. The parallel nature of the DPUs allows for a

linear increase in performance gain for increasingly large workloads. Each DPU is able

to run 316800 images with 28×28 dimensions. With a total of 2560 DPUs working

in parallel, this essentially means that up to 316800×2560 images can be processed

for the latency of a single inference. When compared to a single Intel Xeon CPU, a

linear increase speedup of the UPMEM system is observed with respect to the CPU

as more DPUs are utilized. The maximum speedup is achieved when the maximum

number of DPUs in the UPMEM system is used.

4.3.3 CNN Implementation Takeaways

Based on Figure 4.4 and Section 3.3, the best performance is achieved when the

program contains minimal high precision computations. CNN specific alterations like

the one done in Section 4.1.4 can be done to mitigate functions needed to be ran

inside DPUs. A CNN wide mitigation is to use quantized versions of the CNNs.

Based on Figure 4.7(b), the lowest latency is achieved with multi-threading per

DPUs and the highest compiler optimization. The biggest jump is seen when multi-

threading is used but using compiler optimization helps as well. Thus, it is recom-

mended that CNN applications use the highest multi-threading and compiler opti-

mization setting possible.

The YOLOv3 implementation suffered in performance because it is difficult to

alter the program to use mostly WRAM accesses. This is because there is a large

internal buffer which would conflict with having multiple threads and leave almost

no space for any other temporary storage. With space difficulties, the program had

almost all of its memory accesses go to MRAM. This coupled with the MRAM and

WRAM access statistics given in Section 3.2.1, is the main reason why the YOLOv3
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implementation did relatively poorly compared to the eBNN implementation that

had more WRAM accesses than MRAM accesses. Thus, it is recommended that

CNN applications be carefully programmed in the DPU to increase the number of

WRAM accesses vs. MRAM ones.

4.3.4 Improvements

After implementation and analysis of running CNNs in the UPMEM system, it is

observed that there can be a few improvements to the UPMEM system to help support

CNNs better.

Since threading internally in the DPUs is paramount for performance, it can

be understood that all CNNs implementations should include DPU threading. As

normal, every thread in the DPU system has its own stack. With a WRAM size of 64

KB, the maximum stack size for a DPU program using 11 threads is 5.8 KB. Modern C

programmed CNN applications do not contain any internal buffers this small. For the

implemented quantized YOLOv3 case, using 11 threads, the internal buffer can reach

up to 160 KB. With the UPMEM system following a traditional RISC architecture,

supporting modern C based applications, there needs to be an understanding that

C based programmed CNNs contain various buffers that are frequently accessed but

are larger than 5.8 KB. Thus, an improvement to the system could be to increase the

WRAM size to a greater value so as to fit these necessary internal buffers. If this is

not doable, then the penalty for accessing MRAM needs to be decreased by a greater

extent. This could mean using a different transfer system than DMA.

UPMEM had initially stated in their whitepaper that the DPU frequency would

be 600 MHz [1]. Currently, it is at 350 MHz. An increase in DPU frequency would

help boost single DPU performance.
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Modeling of Various PIMs

Currently PIM designs exist in varying forms of maturity. Furthermore, these designs

vary in granularity in terms of computation unit size. Thus, for any comparison

between these PIM designs there must be a general baseline that covers all PIM.

This baseline can exist in the form of a performance model. This chapter covers

the creation of a model that describes the performance of PIMs based on several

architectural parameters such as dataflow and application operand size. This model

is then used to estimate several other PIMs in order to allow performative comparison.

5.1 Generic Model

Processing-in-Memory can be observed to fall into some patterns in terms of design

and architecture. These patterns exist for PIMs in a range of fundamental design

ideas. This spectrum of PIMs, as shown in figure 5.1, is categorized into three cate-

gories: bitwise, LUT and pipelined-CPU, where bitwise is fine-grained and pipelined-

Figure 5.1: PIM chip design granularity spectrum
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CPU is coarse-grained.

DRISA can be viewed from a bitwise perspective because it does not create DRAM

process logic that incurs large overhead but instead uses simple and serially-computing

bitline logic [12]. The bitline logic is mostly Boolean (i.e NOR gates) and more

complex logic is ran by serially executing multiple Boolean logic gates. These gates

are directly connected to the subarray rows and thus reading/writing occurs to and

from rows.

pPIM [14] represents the LUT usage case because every processing element or

”cluster” in pPIM consists of ”cores”. These ”cores” are just LUTs that, based on 2

4-bit inputs, return a 8-bit output result that is pre-programmed in each latch/register

file [16]. Unlike DRISA, pPIM does not use boolean logic gate combination to create

outputs but instead chooses a result from a pre-generated list of possible outputs.

Thus, these ”cores” are of a coarser granularity than DRISA’s bitwise logic.

UPMEM [1, 2] is the only PIM at the writing of this work that implements a

pipelined RISC based processor as its processing element, as discussed in previous

chapters. UPMEM’s processing element is coarser in granularity than that of pPIM’s

LUT implementation because a pipeline is made output multiple stages where each

stage could host a ”cluster”.

All three designs share similarities. Currently, these similarities have not been

captured into a model that can describe the performance of these PIMs in a general

sense. This chapter focuses on the creation of a model that, given a few architectural

parameters, produce an estimated value for the latency of MAC operations in any PIM

design. The multiply and accumlate operations are chosen as the default fundamental

operation for this work.

The basis for this model is Figure 5.2. The model describes what must occur for an

operation, such as a multiplication operation, to execute in the PIMs. There must be

time spent on some sort of memory transfer from a location away from the processing
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Figure 5.2: Generic Model for PIM Designs

elements in the PIM to a local memory space before computation can occur on the

data. Then there must be time spent doing the actual computation. This time spent

is represented in equation 5.1 where Ttot represents the total time for any number of

operations and Tmem is the time spent transferring necessary data from a external

location to a local location before being processed on and Tcomp represents the time

taken to finish processing computations. This model assumes an unoptomized, worst

case PIM solution that does not contain any overlap between memory transfer time

and computation time. Furthermore, this model also does not account for direct

connections between the main memory space and computation space.

Ttot = Tmem + Tcomp (5.1)

5.2 Computation Model

Tcomp =
Ccomp

Freq (5.2)

The computational model breaks down the Tcomp portion of equation 5.1. Tcomp

is equivalent to the cycles necessary for computation, Ccomp divided by the frequency

of the PIM as depicted in equation 5.2.

Ccomp = Cop ∗ ⌈TOPs
PEs ⌉ (5.3)
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Ccomp is the number of total cycles for all operations running through the system.

As shown in equation 5.3, Ccomp is broken down into two parts: the number of cycles

for one operation in the system, Cop, and a parallelization factor. This parallelization

factor is denoted by the ceil function,⌈ ⌉, of dividing the total number of operations,

TOPs, by the number of processing elements available, PEs. The division returns

the number of times all PEs must execute serially given each PE working on one

operation. This also covers the fact that all PEs work in parallel and take the same

number of cycles. The ceil function exists because uneven division requires an extra

wave of PEs running serially.

Cop = f (x) ∗ CBB ∗Dp (5.4)

Cop, or the cycles for one operation in a PIM, as shown in equation 5.4, is depen-

dent on 3 things: the number of pipeline stages in the architecture, Dp; the number

of cycles for a building block of the architecture to complete its execution, CBB; and

a scale function that depending on the input operand size, x, increases the number

of cycles necessary for the operation, f(x). Dp exists because if the architecture has

multiple stages to complete one operation, then the latency of one operation is mul-

tiplied by the number of stages. This model does not account for any optimization

done within the pipeline for simplicity. CBB exists because at the most fundamen-

tal level, the number of cycles needed for an operation is dependent on the number

of cycles for a building block i.e logic gate, LUT or ALU to complete. f(x) exists

because in all PIMs studied, the number of cycles to complete an operation changes

with the size of the operands. This is because a building block in any design can

only support a fixed number of input operand length and anything bigger will result

in more building blocks used. Thus, f(x) is a parameter that is dependant on the

dataflow/architecture of a PIM system.
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Cop =

 g(x) ∗ CBB ∗Dp, x < n

f (x) ∗ CBB ∗Dp, x ≥ n
(5.5)

Variations of equation 5.4 can exist and thus, more generic equations are created

to account for them. For example, an aspect of PIMs noted is that sometimes the

scale function is not the same for all input operand lengths. To take account for this,

equation 5.5 divides the Cop calculation into a piecewise function. Until a certain

number of bits, n, there is single function but for any bits higher the scale function

changes because a different design is used.

Cop =


{

Z∑
k=0

gk(x) ∗ CBBk

}
∗Dp, x < n{

Z∑
k=0

fk(x) ∗ CBBk

}
∗Dp, x ≥ n

(5.6)

Another aspect noted is that there might not always be one building block used

to execute an operation. This is reflected in equation 5.6 where the final number of

cycles is the result of a combination of different building blocks that each have their

own scaling up functions. Here the number of different building blocks is Z with

k used to index each building block in the summation. Equation 5.6 collapses into

equation 5.5 with only 1 building block and collapses into equation 5.4 with only one

scale function.

5.2.1 DRISA

Cmult =

 g(x) ∗ Cxnor ∗ 1, x < 4

f0(x) ∗ CBShift + f1(x) ∗ Csel + f2(x) ∗ CCSA + log(x) ∗ CFA ∗ 1, x ≥ 4

(5.7)

DRISA’s architecture best fits equation 5.6 because it is bitwise and thus uses logic
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gates as its building block. As shown in equation 5.7, the model requires 2 scaling

functions because DRISA uses XNOR gates for operations on bits less than 4. For

operands of 4 bits and higher shift, select and adder blocks are used instead. Each

block has a different scale function as denoted by f0−2(x). f0−2(x) and g(x) are not

known but the function for the full adder, CFA, is known to be log(x). The addition

of all blocks fits the DRISA architecture because each block is executed serially with

other blocks. Dp is shown to be 1 because there are no pipeline stages in DRISA.

5.2.2 UPMEM

Cmult =

 g(x) ∗ 1 ∗ 11, x < 16

f(x) ∗ 1 ∗ 11, x ≥ 16
(5.8)

The UPMEM system fits best with equation 5.5. This is because, as noted in

section 3.3, subroutines are called for multiplication operations using operands lengths

of 16 bits and greater. Note, compiler optimized programs change the n value from

16 to 32. UPMEM’s DPU does contain a pipeline and thus Dp here is 11. CBB is

shown to be 1 because it is modeled that a building block is an instruction and a

instruction takes 1 cycle per stage. Here g(x) refers to the number of instructions

necessary for a multiplication instruction given bit sizes less than 32. Here f(x) refers

to the number of instructions given a subroutine call. While specific values for f(x)

is not known, it is known that g(4) and g(8) is 4 for a multiplication operation [31].

5.2.3 pPIM

Cmult = f(x) ∗ 1 ∗ 1 (5.9)

pPIM’s architecture best fits equation 5.4 because there is only one scale function

for the LUT method and it only uses LUT’s for any operation. The resulting equation

is shown in 5.9. Dp is shown to be 1 because it is known that there are no pipeline
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Figure 5.3: Worst case block by block LUT multiplication for 8 bit operands in the pPIM
architecture. The orange and red blocks are operands and are divided into 4 bit blocks.
Each multiplication of 4 bit blocks result is shown in green blocks. The addition of each
column for the green blocks is shown in blue carry blocks

stages in pPIM. CBB is shown to be 1 because it known that a single LUT takes one

cycle to execute. f(x) is not known for pPIM because the dataflow for operations is

handcrafted and optimized. Thus, how the system performs for large operand sizes

is not known. This work provides an estimation of f(x) for a worst case implementa-

tion of multiplication where the multiplication and internal carry addition is serially

computed.

The basis for the estimation function is shown in figure 5.3 where 2 8 bit operands

are being multiplied. The first operand is broken down into a1 and a0 which are 4

bit nibbles and the second operand is broken down into b1 and b0, similarly. Each

nibble of a operand multiply with nibbles of the other operand resulting in 4 partial

multiplication results. The addition of these partial terms happen with a specific

configuration in columns as shown in the figure. Starting from the right each column’s

partial term carry out is passed as another addition to the column to the left. Thus

as shown, the total number of adds increases as you go from the right to the left in

a recursive manner and is only dependent on the number of adds without carry.

The number of adds without carry follows a pattern for this sort of multiplication.

The pattern is shown in figure 5.4. This pattern increases by 2 until a halfway point
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Figure 5.4: Pattern for number of internal adds without carry for pPIM’s LUT based
multiplication with different operand sizes

where it then falls back down by two.

Algorithm 3 pPIM Multiplication Scale Estimation Function

1: Global total
2: procedure Estimation Function(n,k,temp)
3: if n = 0 then
4: return 0
5: else if n > k/2 then
6: g← (-2*n)+(k*2)
7: else if n ≤ k/2 then
8: g← (2*n)-2

9: temp← temp+g
10: total← total+temp
11: return Estimation Function(n− 1, k, temp)

The pattern in figure 5.4 plus the recursive nature of getting the total additions can

be used to generate an function that returns the number of internal additions needed

for an worst case-multiplication LUT design. This function is shown in algorithm 3.

The pattern is captured in lines 5 to 8, the keeping track of the rolling addition is kept

track using lines 9 and 10, and recursively going from the left most column of figure

5.3 to the right most is done using lines 3,4, and 11. The summation of the number of

additions returned from this algorithm plus the number of 4-bit multiplications done

is the total number of times an LUT has to execute to accomplish a multiplication.

Given an LUT takes one cycle for 4-bit operations, then this value is also the number

of cycles necessary for multiplication.
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Table 5.1: Example usage of computational model for different PIMs. The operand size
is 8-bit, the application is AlexNet

pPIM DRISA UPMEM
1 Dp 1 1 11
2 CBB 1 1 1
3 x 8 8 8
4 Accum.-f(x) 2 11 4
5 Mult.-f(x) 6 200 4
6 Cop 8 211 88
7 PEs 256 32768 2560
8 Freq. (Hz) 1.25E+09 1.19E+08 3.50E+08
9 TOPs (Alexnet) 2.59E+09 2.59E+09 2.59E+09
10 Ccomp (1 MAC) 8 211 88
11 Tcomp (1 MAC) (s) 6.40E-09 1.69E-06 2.51E-07
12 Ccomp (TOPs) 8.0938E+07 1.6678E+07 8.9031E+07
13 Tcomp (TOPs) (s) 6.48E-02 1.40E-01 2.54E-01
14 Literature Alexnet Latency (s) 6.48E-02 1.40E-01 8.79E-01

5.2.4 Results

The usage of the computational model starting from equations 5.4-5.6 and building

up to 5.2 is shown in Table 5.1. Characteristics of all three PIMs are plugged into

the equation. The parameters of equation 5.4 are rows 1-5. The result of equation

5.4 is row 6. The parameters of equation 5.3 are rows 7-9. The result of equation

5.3 for one MAC operation is row 10-11. The result of equation 5.3 for AlexNet’s

MAC operation count is row 12-13. Row 14 is the value gained from using literature

provided MAC latency to calculate the AlexNet latency. Since, the fundamental

parameters in rows 1-5 and 7-8 are taken from literature as well, the MAC latencies

match up and thus the AlexNet latencies match up as well. Data regarding actual

AlexNet implementations in these PIMs is not used because data is not available for

all PIMs. The UPMEM latency is different because the non-model value uses cycles

that include profiling instructions as well.

To use the model described by equation 5.3 for different operand lengths, the

number of cycles for a multiplication operation needs to be generated. Table 5.2
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Table 5.2: Number of cycles, Cop for multiplication given operand size. * denote estimated
values

pPIM DRISA UPMEM
4 bit Multiplication 1 110 44
8 bit Multiplication 6 200 44
16 bit Multiplication 124* 380 370*
32 bit Multiplication 1016* 740* 570*
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Figure 5.5: Effect of Parameter changes on Equation 5.3. (a) - (c) show cycle effect as
total operations increase while number of PEs stays constant, (d) - (f) show cycle effect as
number of PEs increase while total operations stays constant. (a) and (d) is DRISA, (b)
and (e) is pPIM, (c) and (f) is UPMEM. For (a) - (c) the number of PEs is 32768, 256 and
2560 respectively. For (d) - (f) the number of total operations is 10000, 100000 and 100000
respectively

shows exact and estimated values for the number of cycles or Cop for a multiplication

operation. Exact values for pPIM and DRISA is taken from their respective literature.

The estimated value for DRISA is taken from curve fitting the non-estimated values.

Estimated values for pPIM is taken from the result of algorithm 3. The estimated

value for UPMEM is taken from estimating the number of cycles a multiplication

subroutine takes for the specific operand size[28]. The exact values for UPMEM is

taken from counting the number of instructions when observing assembly output of

a C-based multiplication program.
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Figure 5.6: Performance comparison of DRISA, pPIM and UPMEM on a multiplication
operation using Equation 5.3. The number of PEs is 2560 for all, the TOPs is 100000 for
all

Using the Cop’s in table 5.2, the other parameters of equation 5.3 are varied for

different operand sizes as shown in Figure 5.5. Graphs (a) - (c) show cycle effect as

total operations increase while number of PEs stays constant, (d) - (f) shows cycle

effect as number of PEs increase while total operations stays constant. (a) and (d) is

DRISA, (b) and (e) is pPIM, (c) and (f) is UPMEM. For (a) - (c) the number of PEs

is 32768, 256 and 2560 respectively. For (d) - (f) the number of total operations is

10000, 100000 and 100000 respectively. The trend observed for the total operations

sweep is a step function, due to the ceil function in equation 5.3. The trend observed

for the PE sweep, is a steep drop the moment parallelization is introduced and then

a logarithmic negative slope as more parallelization is added. pPIM’s graphs include

the estimated data using the model described in section 5.2.3 as well as the exact

value taken from literature [16]. DRISA’s and pPIM have even seperation between

precision cycles. UPMEM’s does not because of the introduction of subroutines.

Figure 5.6 compares how each PIM architectures does against each other for a
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multiplication operation at different operand sizes. The number of PEs and the total

number of operations is constant at 2560 and 100000, respectively. This figure, thus,

shows how each PIM scales using the model proposed. The number of cycles for each

precision is taken from table 5.2. pPIM’s cycle numbers are all estimated values while

the other are a combination as discussed prior. Figure 5.6 argues that pPIM is best

for both 8-bit and 16-bit multiplication but UPMEM does the best for 32-bit.

5.3 Memory Model

Tmem = Ttransfer ∗ ⌈ TOPs

PEs∗
(

sizebuf
2∗Lenop

)⌉ (5.10)

Equation 5.10 shows the memory model for the time spent accessing an external

memory space to get data ready for computation. The equation is broken down

into two parts: the time for a memory transfer between an external memory space,

Ttransfer and a local space and the number of transfers necessary.

The idea is that the number of times that the memory space is accessed is depen-

dent on the number of total operations necessary to be processed, TOPs, divided by

the number of operations that can be stored locally and processed on. This requires

the processing to start once the maximum number of operations is stored locally. For

the entire system, the number of operations that can be stored locally is dependent

on number of operations that can be stored in a local buffer times the number of local

buffers available. This model assumes that there is only one local buffer per process-

ing element and thus the number of local buffers is the number of PEs. Finally, the

number of operations that can be stored locally is dependant on the size of the local

buffer in bits, sizebuf divided by the number of bits per operand, Lenop times 2. The

times 2 is placed there because each operation requires 2 operands.

The memory transfer time, Ttransfer, is not broken down further because PIMs

usually use different DRAM based features to execute the transfer. For example,
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DRISA uses the Rowclone [32] methodology for transfering data between subarrays

that is not common in other PIMs.

5.3.1 Results

Table 5.3: Memory model analysis with parameters plugged in from equation 5.10

pPIM DRISA UPMEM
Ttransfer (s) 6.70E-09 9.00E-08 9.60E-05
TOPs (Alexnet) 2.59E+09 2.59E+09 2.59E+09
PEs 256 32768 2560
sizebuf (bits) 256 1048576 512000
Lenop (bits) 8 8 8
OPs per PE 16 65536 32000
Local Ops 4096 2147483648 81920000
Tmem (s) 4.24E-03 1.80E-07 3.07E-03

Table 5.3 captures the analysis of the memory model being used to estimate the

time necessary for memory transfer attempts for pPIM, DRISA and UPMEM running

an 8-bit AlexNet program. pPIM’s Ttransfer is the tRCD time to copy data from a

subarray to a local buffer, DRISA’s is the time for a rowclone between subarrays, and

UPMEM’s is the time for DMA transfes between MRAM and WRAM. The TOPs

value is the number of multiply and accumalate instructions for the AlexNet program.

DRISA’s local buffer is modeled here to be the subarray area that a PE has access to

in its design. The size of this buffer sizebuf is calculated by multiplying the number

of rows, columns and lane width in the subarray. UPMEM’s local buffer is WRAM,

with sizebuf being 64KB.

Using the Tmem taken from table 5.3 and Tcomp from table 5.1 in equation 5.1

results in the total time for Alexnet. The total time for pPIM is 6.90E-02 s; the total

time for DRISA is 1.40E-01 s; and the total time for UPMEM is 2.57E-01 s.
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5.4 Model Usage

In this section, the performance of several DRAM-based AI accelerators (i.e. PIMs)

is compared in terms of CNN (i.e. eBNN and YOLOv3) inference performances. The

PIMs in discussion feature a wide range of technological maturity. For example, the

UPMEM PIM system is fully-developed and a commercially available for use while

PIMs such as DRISA [12] and SCOPE [13] are physically prototyped. On the other

hand, LACC [17] and pPIM [16, 14] feature synthesized implementations. Therefore,

a combination of both in-device implementation and analytical benchmarking is used

for comparative evaluations of these devices. The CNN algorithms in discussion

are implemented on the UPMEM PIM servers, as discussed previously in Section 4.

On the other hand, the other PIM devices are evaluated using the model described

in section 5.2 using performance parameters, like total PEs and cycles per MAC

operation, of the respective devices reported in the literature [17, 18] on the same

algorithms. The fundamental operation measured for all PIM’s is the MAC operation.

5.4.1 Results

Table 5.4 shows the performance parameters as well as performance benchmarks of the

aforementioned PIM devices for eBNN and YOLOv3 inferences in terms of frames of

inferences per second for unit power consumption and frames of inferences per second

for unit processing area. With only 120mW power consumption per DPU, UPMEM

PIM is the most low-power device (<1W/chip) among the PIMs in comparison. This

makes it highly suitable for the adoption in the commercially available DRAM archi-

tecture which features a low power rating. At the same time, the UPMEM chips are

relatively small and therefore contribute a relatively lower area overhead (i.e. 45 %)

to the DRAM chip. In comparison, PIMs such as DRISA and SCOPE re-purpose the

whole DRAM chip organization for in-memory computing. In fact, SCOPE features
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Table 5.4: Hardware Performance Parameters and Performance Benchmarking of various
PIM architectures for eBNN and YOLOv3 inferences with 8-bit fixed-point precision

UPMEM pPIM DRISA-3T1C DRISA-1T1C-NOR SCOPE-Vanilla SCOPE-H2d LACC

[33] [14] [12] [12] [13] [13] [17]

Power Consumption/Chip (W) 0.96 3.5 98 98 176.4 176.4 5.3

Area/Chip (mm2) 30 25.75 65.2 65.2 273 273 54.8

eBNN Latency/Frame (s) 1.48E-03 3.80E-07 8.21E-07 1.96E-06 1.30E-08 4.64E-08 2.14E-07

eBNN Throughput/Power 5.63E+03 7.52E+05 1.24E+04 5.21E+03 4.36E+05 1.22E+05 8.82E+05

(Frames/s-W)

eBNN Throughput/Area 1.80E+02 1.02E+05 1.87E+04 7.83E+03 2.82E+05 7.89E+04 8.53E+04

(Frames/s-mms)

YOLOv3 Latency/Frame (s) 65 0.68 1.47 3.51 0.0233 0.0831 0.384

YOLOv3 Throughput/Power 1.25E-04 4.20E-01 6.94E-03 2.91E-03 2.43E-01 6.82E-02 4.91E-01

(Frames/s-W)

YOLOv3 Throughput/Area 1.10E-05 5.71E-02 1.04E-02 4.37E-03 1.57E-01 4.41E-02 4.75E-02

(Frames/s-mms)

a customized DRAM chip with roughly 4 × larger area than a standard DRAM chip.

Although the per chip area overhead is relatively smaller, the UPMEM DPUs

themselves are large processing units. This is because, the DPU features a modified

reduced instruction set processing architecture with multiple pipeline stages. Along-

side, although the DRAM chips on which the UPMEM PIM system is implemented

are in the 25nm technology node, the DPUs themselves are developed in the 65nm

technology node. Thus, each chip while smaller can only hold 8 DPUs. As a result,

the DPUs have a significantly higher footprint for an equivalent circuit overhead as

other PIM architectures such as DRISA, LACC, SCOPE, pPIM which are developed

in the range of 22-28nm technology node.

Figure 5.7 shows the graphical representation of this data as well. DRISA’s

frames/power and frames/area is the poorest out of the analytical models. pPIM and

LAcc perform the best in terms of frames/power and SCOPE performs the best in

terms of frames/area. The relative performances of all analytical models fit literature

results, arguing for the validity of the proposed model. UPMEM’s actual performance
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Figure 5.7: Graphical representation of Hardware Performance Parameters and Perfor-
mance Benchmarking of various PIM architectures for eBNN and YOLOv3 inferences with
8-bit fixed-point precision. (a) shows latency values for both CNNs on PIMs, (b) shows the
power/area for PIMs, (c) shows energy throughput and area throughput for PIMs running
eBNN, and (d) shows energy throughput and area throughput for PIMs running YOLOv3

in comparison with other analytical PIMs is very poor. With one of the lowest area

per chip and the lowest power per chip, the low frames/area or frames/power results

stem from the poor latencies of the implementations. Given the most optimal map-

ping and programming of a CNN application on the UPMEM system, along with the

increase in DPU frequency to initially stated values by UPMEM [1], the latencies

might decrease enough to allow UPMEM to do better.
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Conclusion

In this work, successful mapping and implementation of Deep Neural Networks (DNN)

is presented on the UPMEMPIM system. This work demonstrates the mapping of two

Convolutional Neural Networks (CNN) with different sizes, depths, and complexities

on the UPMEM PIM using respective mapping and optimization techniques. The

results of this implementation show that removal of floating point operations, usage of

internal threading and compiler optimization is crucial to getting comparable data. It

is observed that its is essential to adopt a proper operation mapping scheme to obtain

optimum performance and resource utilization from the UPMEMProcessing Elements

distributed across many DRAM chips. Furthermore, improvements are presented for

the PIM revolving around the memory size and access time inside each DPU to help

alleviate programming issues. Nevertheless, it is also observed that the performance

speed-up with respect to traditional CPU-based system scales up linearly as more

parallel Processing Elements (DPU) are incorporated in the UPMEM system.

This work also presents a model to estimate the performance of bitwise, LUT and

pipelined-CPU PIM architectures given several design parameters such as dataflow

scaling based on input operand size, number of processing elements (PEs), total op-

erations etc. It is observed that as input precision increases, with number of PEs

and total operations staying constant, bitwise and pipelined-CPU designs overtake

LUT designs in performance marks. This model is used to generate estimated perfor-
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mance marks of several other recently proposed PIM architectures in order to perform

comparative evaluations with UPMEM’s PIM. It is observed that although UPMEM

PIM currently does not offer the highest degree of raw throughput, it is a relatively

energy-efficient, low-power PIM solution for CNN acceleration applications.

6.1 Future Work

First, given more time, more work regarding YOLOv3 mapping would be done to find

the most optimal implementation methodology. This mapping would try to squeeze

as many YOLOv3 image inferences into a single DPU as possible in order to emulate

the eBNN implementation multi-image per DPU method. Then the performance of

this mapping would be compared to the current mapping to establish which mapping

is better. Furthermore, alternative CNNs would be employed and analysed as well.

The more CNNs are tested in UPMEM’s system the more conclusions could be made

in general for CNNs.

Currently, there is a large performance gap between the implementations of eBNN

and YOLOv3. This originates from how easy it was to fit eBNN’s image convolution

within a DPU versus YOLOv3. eBNN’s image sizes were so small, there was plenty

of memory space within the DPUs. YOLOv3 contained large convolution buffers

and internal buffers that made it difficult to the same. However, YOLOv3 is a very

complex CNN. Future work can be done to find exact depth or size of a CNN that

is best for UPMEM’s system. This work can parametrically show when UPMEM’s

system starts losing performance and for what network size. CNNs from Alexnet to

Resnet or choosing a CNN such as eBNN and going from small image sizes to larger

sizes can determine how large of an image is supported as well.

It took a large amount of programming trial/error and question and answering

between UPMEM to properly insert a CNN within the UPMEM system. Further-

more, the separation of the data-centric portion of the code from the application,
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compilation and debugging of the DPU program, and sending of memory between

the host and DPUs is all done manually. For an expert of this system, this might

not take long but for a scientist or a novice, this may hinder their work. There needs

to be a programming standard/methodology or tool that takes care of the program-

ming side of using UPMEM’s PIM system or any other future PIMs on the market.

For example, the seperation of the data-centric portion of the code requires profil-

ing. Which profiler to use and how to use it is very important to identify memory

bound and acceleratable functions. The manual seperation, compilation and memory

tansfer can be handled as well with tools. OPENCL, a parallel system standard,

tackles heterogenous systems such as PIM-host systems and provides a framework

to offload accelerable code. OPENCL can optimize the usage of a parallel system.

Using this framework, mapping of images or convolution layers could be delegated

autonomously to DPUs. Multiple images could be grouped and sent for accelerated

inference in batches. This could be beneficial for systems with multiple ranks of

DPUs. Furthermore, more complex synchronization could be done between the host

and the DPUs. The usage of OPENCL or any other tool is necessary to be detailed

in a future work.
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