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ABSTRACT 

Invasive plants present significant challenges for ecosystem integrity, biodiversity 

preservation, and agricultural production. Continuous surveillance efforts are necessary 

to detect and effectively respond to emerging infestations. However, monitoring methods 

currently available each have their own limits, whether due to cost, time, or sampling bias. 

Computer vision applied to roadside imagery is a previously undeveloped methodological 

synergy that can support existing monitoring efforts. Further, because roadsides are a 

vector of spread, they are an ideal pathway to monitor. In this study, we present research 

and management applications of a dataset generated by a computer vision model for 

Phragmites (Common reed) and knotweed complex species across roadsides in New 

York State. To better understand spread and inform risk assessment, we examined plant 

presence in relation to road size, site, and culvert characteristics. Results indicated that 

Phragmites presence decreased with increasing distance from a culvert and was less 

likely near forested areas and on roadsides with low traffic volume. Results also suggest 

that the risk of invasion relative to road size is species specific: Phragmites was found to 

occur more frequently on highway ramps and primary roads, while the knotweed complex 

was found to occur more often on secondary roads. Additionally, we developed a 

framework in partnership with stakeholders that enables managers and community 

scientists to verify, interpret and act upon the very large datasets resulting from computer 

vision models. Two ArcGIS Dashboards, several GIS layers, and web-based forms were 

created to this end. Through this work, we identified that culverts and highway ramps 

should be monitored given their role as Phragmites hotspots. We also generated a new 

framework that distills a large amount of new data into a form usable by both professionals 
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and the public, expanding upon the capacity of existing monitoring workflows. 

Supplemental tables S1 and S2 detail data sources, filters, and product dependencies.
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1.1 Invasive Plant Impacts and Spread 

Invasive species are “non-native organism[s] whose introduction causes or is likely 

to cause economic or environmental harm, or harm to human, animal, or plant health” in 

the introduced ecosystem (Executive Office of The President, 2016). Invasive species are 

a global threat to biodiversity (Pysek et al., 2012), can damage agriculture, and can 

negatively impact ecosystem services (Pejchar & Mooney, 2009). There are over 5,000 

invasive plant species in the US, leading to documented damages of over $25 billion per 

year, while displacing native plant species and altering ecosystem composition and 

function (Pimentel et al., 2005). Invasive plant impacts may be direct, including 

community effects or the alteration of nutrient dynamics (Pejchar & Mooney, 2009). Other 

impacts are indirect, such as the provision of habitat for novel pests or as vectors of 

disease (Pysek et al., 2012). The cost of these impacts is high; estimated losses from 

invasive plant impacts on agricultural and rangelands total over $33 billion annually 

(Pimentel et al., 2005).  

All non-native species must overcome certain boundaries or environmental 

conditions to successfully establish and spread in a new region. At any point, if a limiting 

factor cannot be overcome, an organism’s propagules will die, and that organism will 

remain in its original location (Vermeij, 1996). Many factors affect invasive plant spread, 

stemming from a plant’s innate characteristics, external forces, or the interactions therein. 

Propagule pressure is an important establishment predictor (Cassey et al., 2018) that is 

both an evolutionary and human phenomenon, with propagule dispersal and success rate 

influenced by human activity (e.g., traffic spreading seeds) and/or species-specific life 

history characteristics (i.e., propagule size, number, and risk-release relationship) 
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(Stringham & Lockwood, 2021). The likelihood of establishment is also moderated by 

inter-related factors of the target area that act predominantly regionally, but can also be 

site-specific and vary greatly among species. Climate, existing biotic communities, land 

use/degradation, and level of disturbance are several common contributors. Climate 

change has the capacity to alter abiotic, biotic, and human behavioral factors, thereby 

accelerating, extending, or shifting the potential range for invasive plants (Hellmann et 

al., 2008). Thus, it is critical to understand the dynamics of invasive plant distribution and 

spread in order to minimize damage.  

1.2 Invasive Plant Monitoring and Management 

Every potential invasive species goes through a sequential process of invasion, 

which is defined by intervals on the invasion curve - prevention, eradication, containment, 

and long-term control (Figure 1.1). Each stage corresponds to a larger area infested, 

greater difficulty of eradication, and higher associated costs. Therefore, identification of 

new invasions ideally happens early, though it is crucial regardless of invasion stage to 

enable appropriate action to mitigate impacts (National Invasive Species Council, 2016). 

Early detection and rapid response (EDRR) is a commonly cited approach to invasive 

species management (Reaser et al., 2020), in line with attempting to prevent 

establishment in new areas. With increased detection of invasive plant presence, the 

benefits are two-fold: landowners aware of a species’ presence are twice as likely to enact 

control efforts (Fischer & Charnley, 2012), and pathways for spread can be contained.  
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Figure 1.1 An illustrative invasion curve recreated based on Victorian Government 
(2010). The curve represents the relationship between area infested and cost of control 
over time. The resulting management strategies for each stage represent the increasing 
difficulty of control, from prevention to mitigation and protecting assets. Roughly 
estimated ranges in New York State for the target species in this study are indicated in 
dark blue. 

Though monitoring is a necessary task to stem emerging infestations, it can be 

costly and time-intensive when relying on physical surveying. For example, a subset of 

nineteen US government agencies spends over $360 million (CPI 2022 dollars) annually 

– one-eighth of their budget – just on early detection and rapid response (US National 

Invasive Species Council, 2014). Six additional departments, including the EPA, also 

have related expenditures not measured by the NISC. These costs and scalability issues 

can be addressed to some degree with community science, though problems are present 

with sampling heterogeneity (Dickinson et al., 2010) and variability of data quality (Crall 

et al., 2011). Aerial or satellite-borne remote sensing methods can address the 

heterogeneity problem of community science, but imagery often suffers from one of three 

problems: insufficient spatial resolution (e.g., Olsson et al., 2011; Porter, 2021), 

insufficient spectral resolution, or high cost of acquisition (Vaz et al., 2018). 

A new surveillance method in the form of computer vision applied to Google Street 

View imagery was proposed by Flores et al. (in prep.). By enabling wide scales of analysis 
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with limited human review, this new method can leverage and strengthen existing 

monitoring workflows. The computer vision model applied in this study was created using 

a convolutional neural network (CNN) architecture developed by Flores et al. (in prep.). 

Google Street View imagery across New York State (NYS) ranging from 2008 to 2021 

was annotated by expert ecologists, then split into training and testing sets (Figure 1.2) 

(Flores et al., in prep.). The imagery includes all seasons, and varied lighting conditions, 

though more images were taken in warmer months (Flores et al., in prep.). Final model 

output takes the form of points with confidence scores that describe the relative probability 

of a species presence for a specific location.  

 
Figure 1.2 Overview of computer vision model training, testing, and application. Test-
train paradigm including location of nearly 7,000 annotated panoramas (reprinted with 
permission from Flores et al., in prep). Humans annotated bounding boxes for invasive 
species presence or marked absence in a panorama across New York State. Bounding 
boxes within training areas (darker stripes) were used for the algorithm to learn. Once 
trained, the algorithm was applied to the test set of panoramas (lighter stripes). The model 
can then be applied to a new set of panoramas to calculate presence probability 
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 The generation of these data sets for target invasive species provides a powerful 

opportunity to answer important ecological questions about the distribution and spread of 

roadside invasive plants over large geographic areas and with respect to time. How does 

the distribution vary with road size and traffic volume? How do documented disturbances 

lead to enhanced spread? In Chapter 2, I present a case study where I evaluate the 

distribution of two high impact invasive plants, Phragmites australis and knotweed 

complex species (Reynoutria japonica, R. sachalinensis, and their hybrid R. x bohemica) 

with respect to the construction of culverts. Culvert construction results in disturbance, 

and thus we test the hypothesis that such construction leads to enhanced invasion along 

roadsides adjacent to the culvert relative to roadsides further from culverts.  

 Simultaneously, such methods for detection of infestations along roadsides will 

lead to the generation of a massive amount of new data. Management, validation, and 

use of these data requires development of an intentional pipeline for making data 

available. To do this, we worked closely with several stakeholders to create a framework 

and workflow for the incorporation of computer vision results into existing workflows. 

Chapter 3 describes this process and the resulting interface to be implemented. 

 In Chapter 4, I summarize this work, highlighting insights and applications. I also 

suggest future research directions, while discussing data limitations. 
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2.1 Introduction 

2.1.1 Invasive Plant Impacts, Spread, and Monitoring 

Across the world, invasive species threaten community integrity and agriculture 

while disrupting ecosystem services (Pejchar & Mooney, 2009; Pysek et al., 2012). In the 

US alone, invasive plants led to documented damages of over $25 billion per year, while 

also displacing native plant species and altering ecosystem composition and function 

(Pimentel et al., 2005). Identification and control of these invaders is paramount to 

mitigate harm (National Invasive Species Council, 2003; 2016). Roadside habitats are 

ideal targets for invasive plant monitoring and control, since they provide disturbed 

conditions amenable to invasive plant establishment and spread (Christen & Matlack, 

2009; Maheu-Giroux & De Blois, 2007), while also increasing propagule dispersal through 

mechanisms including traffic (Lemke et al., 2019; Taylor et al., 2012) and maintenance 

activities as proposed by Gelbard & Belnap (2003). Understanding invasion dynamics in 

these habitats will allow us to better target management efforts. Unfortunately, traditional 

roadside surveys can be time-consuming and labor intensive. Emerging synergies 

between tools and data sources – such as computer vision and Street View Imagery (SVI) 

– provide a fast and cost-effective alternative.  

The role of roadsides in invasive plant spread is well-established. Along roadsides, 

light availability is higher, and stem and canopy densities are lower. Because of this, 

roadsides act as invasion conduits that allow species to spread along the road axis at 

higher rates and to larger extents than in non-roadside environments (Christen & Matlack, 

2009). By facilitating the geographic expansion of invaders (e.g., Maheu-Giroux & De 

Blois, 2007; Ward et al. 2020), roads have the potential to increase the scale of impacts 
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on biodiversity and ecosystem services. In the US, over 80% of land is within 1 km of a 

road (Riiters & Wickham, 2003), illustrating the scale of invasion risk and the complexity 

of monitoring. In some instances, road presence and characteristics are better predictors 

of invasive plant presence than surrounding land use (Joly et al., 2011) or site 

characteristics (Gelbard & Belnap, 2003). Testing the effect of road size and type have 

yielded mixed results, with some studies finding differences (e.g., Gelbard & Belnap, 

2003; Joly et al., 2011) while others (e.g., Deparis et al., 2020) have not. Spread along 

road verge habitat (referred to here as the road-adjacent non-forested land) may be 

exacerbated when combined with construction activities such as for bridges, culverts, or 

road and shoulder widening. 

Consider the role of construction as a vector for invasive species introduction. 

Though likely unintentional, dispersal can result from purposeful planting of ornamental 

species (e.g., Deparis et al., 2022) or accidental spread from other areas (e.g., Barlow et 

al., 2017). Corcos et al. (2020) found that roadside bare soil did not re-vegetate to pre-

disturbance levels even after a growing season, while Ailstock et al. (2001) found that 

Phragmites australis (common reed) seeds only established on unvegetated, non-burned 

soils. These results suggest that construction could create openings for invasive plant 

recruitment. Depending on road type and weather, seeds on vehicles can be transported 

for over 200 kilometers (Taylor et al., 2012), so the possibility of dispersal remains even 

for relatively small construction projects. Together, one would expect increased traffic and 

equipment from off-site to increase invasive plant propagule pressure. Further, when fill 

soil is used in construction, it may be contaminated with seeds, rhizomes, or other plant 

fragments.  
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Existing regulations may be insufficient to prevent spread from construction 

activities. The US Plant Protection Act does require inspection of fill soil to prevent 

noxious weed introduction, but only if it is from other nations, its territories, or areas under 

federal quarantine (Title 7 U.S.C. § 7701). Interstate movement of “plant products” can 

be regulated by the same Act, but regulation of intra-state transit is left to the states 

themselves (Title 7 U.S.C. § 7712). In contrast, the Canadian Ministry of Environment 

dictates that parties receiving soil must create and follow a management plan to prevent 

the introduction of invasive species (Ministry of Environment, Conservation and Parks, 

2019). Before policy decisions are made, the role of construction should be evaluated 

further. 

Given the role of roadsides in invasive plant spread, it is worthwhile to pursue 

efficient methods of roadside detection. Roadside detection allows us to identify 

infestations earlier and monitor those that are ongoing, helping management in myriad 

ways. An emerging technologic application with promise in this regard is computer vision, 

which can be defined broadly as both the discipline and practice of using algorithms to 

automate image interpretation tasks (Huang, 1996). Combined with deep learning 

techniques, computer vision can be used for invasive species identification with potential 

to overcome limitations of current monitoring methods. Applied on Street View Imagery 

(SVI), there is exciting potential for both low-cost invasive plant detection and ongoing 

monitoring over large spatial scales; Google’s imagery alone allows up to ten million miles 

(over 16 million km) of roadside habitat to be assessed globally (Escobar, 2019). Further, 

car-level imagery allows for identification of understory plants and emerging infestations 

that would otherwise remain undetected using at-nadir aerial and satellite imagery.  
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SVI has been used in studies to compare human observation/assessment results 

in the field versus in virtual drive-throughs (e.g., Griew et al., 2013; Rousselet et al., 2013), 

with two (Deus et al., 2016; Kotowska et al., 2021) directly examining SVI’s utility for 

invasive plant identification. In each case, authors found high agreement between 

methods. Another study examined the feasibility of using unsupervised classification 

methods with SVI to identify a set of invasive plants that include our target species, though 

results were not promising (Connell, 2015). Computer vision has also been applied to SVI 

for tasks including estimating demographics (Gebru et al., 2017) and the inventory of 

urban trees (Wegner et al., 2016). However, to our knowledge, computer vision and deep 

learning have not yet been applied to SVI for the purpose of invasive plant identification. 

Given limited time, ability, and resources, managers must prioritize where to monitor and 

intervene such that mitigation efforts are optimal. Understanding the factors that allow 

introduction and facilitate spread are necessary components to a more comprehensive 

approach when managing invasive species.   

In New York State, US, there are at least 284 terrestrial invasive plants (NY 

iMapInvasives, 2021). Of these, Phragmites australis ssp. australis and the knotweed 

complex (Figure 2.1) present significant ecological and economic challenges. These 

invasive plants are ideal target species to study when examining roadside habitat 

conditions and maintenance activities. Both do well in wet areas (such as roadside ditches 

or culverts) and tolerate high salt concentrations (Keller, 2000; Rouifed et al., 2012). 

Further, each can establish via seed or from plant fragments (Albert et al., 2015; Bram & 

McNair, 2004) that might be present in contaminated fill soil. 
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Phragmites australis (common reed) has three recognized subspecies, with both 

the invasive European lineage P. australis ssp. australis (hereafter referred to as 

Phragmites), and the native North American lineage P. ssp. americanus present in the 

Eastern US (Saltonstall, 2002; Saltonstall, 2003). While the native lineage has existed for 

tens of thousands of years in North America, the non-native subspecies were likely 

introduced sometime after the 1800s (Saltonstall, 2002). Phragmites reproduces both 

sexually and asexually (Albert, et al., 2015), though primarily via rhizomes, and has 

expanded across the US since its introduction (Saltonstall, 2002). Upon invasion, 

Phragmites forms tall, dense monocultures that reduce native alpha diversity (Keller, 

2000). The primary mechanism for takeover is density-dependent resource competition 

(Uddin & Robinson, 2017) with a secondary mechanism facilitated by allelopathy 

(Rudrappa, 2009; Uddin et al., 2014; Uddin & Robinson, 2017; Weidenhamer et al., 

2013). Because non-native Phragmites can tolerate higher salt concentrations than its 

native counterpart (Vasquez et al., 2005), roadside conditions are amenable to 

establishment and spread; roadside growth may also present visibility concerns due to its 

tall growth pattern. 

Reynoutria japonica (Japanese knotweed) is one of several in the invasive 

knotweed complex (Reynoutria japonica, R. sachalinensis, and their hybrid R. x 

bohemica) that have similar morphology, growth characteristics, and impacts. R. japonica 

is another species introduced as an ornamental in the late 1800s, originally from Asia. It 

proliferates in wet conditions and is tolerant of salinity up to seawater concentration 

(Rouifed et al., 2012), allowing it to colonize disturbed areas such as roadsides or 

culverts. It forms dense, often clonal vegetation stands that can cut native species density 
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in half and reduce species richness by 2-5 times (Aguilera et al., 2010; Wilson et al. 2017). 

R. japonica exhibits high seed germination rates in addition to extensive growth via 

rhizomes (Bram & McNair, 2004). The primary mechanism for takeover is reducing light 

availability, by plants that may reach 2 m tall and develop biomass 2-5 times that of 

neighboring communities (Aguilera et al., 2010).  

 

Figure 2.1 Example images of the two invasive plants examined in this study. The species 
are a) Phragmites australis ssp. australis (common reed) and b) a member of the 
knotweed complex, Reynoutria x bohemica 

With our species of interest, we do not know to what extent spread is being 

impacted by road characteristics or habitat conditions. Computer vision enables us to 

generate a large amount of data that can be used to examine road, road verge, and 

regional characteristics. By doing so, we can gain a more accurate perception of spread 

risk.  Therefore, in this study, we use data from a convolutional neural network applied to 

SVI (Flores et al., in prep.) to identify two high-priority invasive plants in New York State, 

US.  
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 The objectives of this study were to examine potential reasons for the presence of 

the knotweed complex and Phragmites both within and between culvert sites. We 

hypothesized that the size of culvert construction footprints (width and number of lanes 

crossed) and age would be positively related to invasive plant presence, given larger 

disturbance and longer establishment times. We also hypothesized that roads with higher 

traffic volumes would have increased invasive plant presence due to increased wind-

dispersed propagule spread. Similarly, we hypothesized that roads with larger verges 

(using lanes as a proxy) would be associated with increased plant presence due to 

providing a larger area for establishment. Finally, we had three hypotheses regarding land 

cover types. We expected that adjacent developed area, through disturbance and 

propagule pressure, would be positively related to plant presence. We also expected 

agricultural areas to be positively related to presence, given that higher nutrient loads 

increase growth and competitive ability of our target plants (Kettenring & Whigham, 2018; 

Parepa et al., 2019; Uddin & Robinson, 2018). Finally, adjacent forest cover and 

associated shading was expected to be negatively related to Phragmites presence 

(Kettenring & Whigham 2018; Li et al. 2011) but not for the knotweed complex due to 

shade tolerance and dominance in understories (Wilson et al., 2017). 

  

2.2 Methods 

 To evaluate the relationships among the presence of Phragmites or knotweed 

complex species and road characteristics, we generated the predicted presence/absence 

of each species using a computer vision algorithm applied to Google Street View roadside 

imagery for New York (NY), excluding New York City and Long Island since those areas 
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had no culverts within the date range selected. We then generated a geospatial dataset 

for road culverts (width, built date), road characteristics (number of lanes, traffic volume), 

and generalized land cover (agriculture, developed, forest) for comparison. The presence 

of each species along a transect running parallel to the road away from each culvert was 

evaluated in combination with the other characteristics using a binary logistic model to 

determine the potential interactions among culvert construction, road type and the 

infestation by target species. 

 

2.2.1 Geospatial Data Acquisition and Pre-Processing 

External datasets were accessed from several sources. Large culverts (between 

1.5 and 6.1 m) built before 2019 (latest available at time of analysis) were downloaded 

from the New York State (NYS) GIS Clearinghouse. Estimated average annualized daily 

traffic (AADT) volume data calculated in 2019 were also downloaded from the NYS GIS 

Clearinghouse. These data contain 2019 estimates based on actual traffic counts from 

between 2002-2019. For simplicity, the 2019 estimate was used instead of traffic counts 

at the time of culvert construction. Per-county 2021 road data were downloaded from the 

US Census FTP website. Land cover for 2016 (latest at time of analysis) from the Multi-

Resolution Land Characteristics Consortium (MRLC) National Land Cover Database 

(NLCD LULC) was downloaded via Google Earth Engine. 

Computer vision model prediction point data for the two plants were provided by 

Flores et al. (in prep) for panoramas captured by the Google Street View program 

between 2011 and 2018. These data take the form of panorama locations with a model-

generated confidence score for each target species. If these scores are to be interpreted 
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as predictions of presence and absence, confidence scores below a specific value 

(“threshold”) must be considered absences. At lower thresholds, the model is more 

sensitive, meaning a higher proportion of plants present in the field are captured by the 

model. The trade-off is a frequent occurrence of false positives. The threshold for each 

species was chosen to minimize the mean false detection rate (i.e., the proportion of 

predicted presences that are false) across four test sets. This is equivalent to maximizing 

mean precision. The threshold used for Phragmites was 0.95 while for the knotweed 

complex it was 0.98. The corresponding mean false discovery rate for Phragmites is 5.5% 

and 4.5% for the knotweed complex. These rates are estimated based on validation sets 

of expert-generated annotations for species presence and absence (Flores et al., in 

prep.). When the model was deployed on representative sampling zones, comparisons 

between onscreen and field validation methods yielded high (>90%) agreement (Flores 

et al., in prep.). 

 

2.2.2 Culvert and Road Selection 

A subset of culverts was selected from the entire set of culverts built in the study 

area of NY after 2006 based on the following criteria. Processing was split between UTM 

zones 17N and 18N for more accurate distance calculations when geodesic computation 

was not available. A total of 34 culverts selected in 17N and 93 culverts selected in 18N 

(Figure 2.2).  We set an initial search distance of 13 m as the maximum distance expected 

between culverts and Street View panoramas, given GPS accuracies and panorama 

capture interval (line c in Figure 2.3). Of the 374 culverts built in 2007 or later, 175 were 

within 13 m of model data and were selected. Any culverts farther than 13 m but less than 
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1 km away from model data were manually reviewed to visually assign them to a road, if 

possible. Of the remaining, 176 had no model data within 1 km and thus were not 

considered. Culverts within two km of another culvert on a road with the same NYS 

Department of Transportation identification number were also manually reviewed and 

removed. This was done to avoid confounding effects from overlapping culvert transects. 

In two instances, there were duplicate points recorded for the same culvert, so the 

duplicates farther from model data were removed.  

 

 
Figure 2.2 Locations of the 127 culverts examined. All culverts were built in 2007 or later 
and were farther than 2 km from another culvert. 

The presence of invasive plants was evaluated along two transects running 

bidirectionally away from one another along the primary road associated with each culvert 

(Figure 2.3). To generate the transects, roads in the AADT dataset were manually 
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reviewed and selected to account for irregularly split features when making transects. To 

do this, AADT roads were intersected with 1 km buffers around the culvert features. Then 

every culvert was manually reviewed, selecting all contiguous roads with the same NYS 

Department of Transportation identification number. In one case where a road ended at 

a “T” intersection with neither road sharing the same NYS Department of Transportation 

identification number, a direction was chosen via random number generation in Microsoft 

Excel v16.59. In one case (culvert C081161), the culvert lay between roads on a highway, 

so we selected the road closer to the ESRI Service Area network used for transect point 

assignment (explained in the next section).  
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Figure 2.3 Illustration transects and of the farthest scenario used to derive maximum 
distance threshold between panorama and culvert locations. The 95th percentile of 
distance between panoramas for the dataset is 12.4 m. Google stipulates that at 
minimum, 50% of locations recorded should be within 2.5 m of their true location (Google, 
2018). The culvert data do not have metadata regarding the GPS receiver used to capture 
points, so we can assume the 95th percentile of horizontal accuracy of 9 m reported by 
the US Department of Defense (2008). In this scenario, both panorama locations would 
be selected. 

2.2.3 Creating Transect Points and Joining Data  

Accuracy of the road network was estimated to appropriately select model data 

and culvert points. The metadata for the AADT dataset did not indicate a road geometry 

source or accuracy estimates, so features were compared to the US Census road 

dataset. A total of 31% of AADT line features shared a segment with census roads and 
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97% intersected, indicating a partial match. The most recent study available for US 

Census road feature accuracy was conducted by Zandbergen, et al. (2011) for the 2009 

roads dataset, which indicated that 90% of Census road features should be within 11.3 

m of their true location. 

A search radius of 15 m between transect points and model data was determined 

by road accuracy, panorama accuracy, and panorama interval. Given that transect points 

were located along the AADT line features, 90% of transects should be within 11.3 m of 

the true location of a road (as described above). Google requires that 50% of recorded 

panorama locations be within 2.5 m the true location of a road (Google, 2018). After 

calculating near distance in ArcGIS Pro v2.5.2 (Esri, 2020) and identifying percentiles in 

Microsoft Excel v16.59, it was determined that 95% of panoramas are within 12.4 m of 

one another. Assuming the farthest locations possible, most transect points along the 

census roads should have at least one panorama within 15 m (following the same logic 

as presented in Figure 2.3). This 15 m search distance dictated that the first and closest 

transect point could be no closer than 30 m to the culvert. 

Transect points were created at 30, 60, 120, 240, 480, and 960 m with culverts 

representing distance 0. These distances were chosen to capture a range of distances 

with more granularity closer to the culvert. Transect point location assignment was 

calculated using the Service Area analysis tool. This Service Area approach was chosen 

instead of radial buffers to correctly assign transect distances on curved roads and sharp 

turns. The default ESRI roads were used as the input network. The travel parameters 

selected were “Driving Distance” and “Not Using Time”, since it is irrelevant to consider 

time to reach destination constrained by speed limits and traffic conditions for plant 
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spread. All Network Analyst restrictions on road movement were removed, since factors 

such as road closure at time of analysis were not relevant for invasive plant spread. U-

turns were not allowed, preventing undesired duplicate transect points. The following 

output geometry attributes were used: high precision, overlap, and disks. Output 

geometry was not simplified, and a 25 m polygon trim distance was used. These two 

options avoided odd angles that would have distorted distance assignment. Transect 

points were then created by intersecting the resulting Service Area polygons with the 

manually verified AATV road features (Figure 2.4a). Transect points were merged with 

culvert points for following analyses and are hereafter simply referred to as “transect 

points”. 

Computer vision model-predicted presences for each species were then joined to 

transect points. To do this, thresholded model data within 15 m for each species were 

spatially joined to transect points (Figure 2.4b). For any culverts manually added into the 

dataset, the closest point on a road parallel to the culvert was used as the center for the 

15 m search distance. There was only one culvert manually added that had Phragmites 

present under this condition. A total of 41 transect points in zone 18N did not have model 

data within 15 m and were removed, as was one point in zone 17N. 

There were some discrepancies in transect point generation. In zone 18N, ten 

additional transect points were generated than should be expected based on number of 

culverts and transect points per culvert. In zone 17N, 11 additional were generated. These 

are likely due to the AADT road data geometry and how the Service Area analysis 

operates. These errors were not removed, since it was difficult to numerically determine 
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which points were indeed errors and which were correct. Note that an overpass near 

culvert C081161 caused extra transect points to be added, so they were removed.  

Generalized land cover types including forested, developed, and agricultural land 

were included as site characteristics for analysis (Figure 2.4c). There is evidence that 

Phragmites exhibits some shade intolerance (Kettenring & Whigham 2018; Li et al. 2011), 

which suggests that forest cover may be a predictor of presence. Thus, mixed forest, 

coniferous forest, and deciduous forest were combined for the forest class when 

modelling. Developed (medium and high intensity) were also considered, given a previous 

study (Maheu-Giroux & de Blois 2007) found numerically higher colonization rates in 

industrial and commercial areas compared with others. Agricultural (hay/pasture and 

cultivated crop) areas were also included because of the increased growth and 

competition rates of Phragmites in nutrient-rich settings (Uddin & Robinson, 2018). Each 

of these types were isolated by masking the NLCD 2016 raster, intersected with 30 m 

transect point buffers, and had their areas summarized using a spatial join. 

Finally, road and culvert attributes were added to all transect points. Culvert point 

attributes were spatially joined to a 1 km buffer and then spatially joined to transect points 

within that buffer. The near tool was used to calculate distances between culverts and 

their assigned road features to identify the maximum distance between the two. Road 

attributes were then spatially joined to transect points when within the maximum geodesic 

distance identified (Figure 2.4d).  
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Figure 2.4 Broad steps in the process used to generate transect points and join attributes. 
In (a) ArcGIS Service Areas were intersected with road features to create transect points. 
In (b) computer vision model-predicted presence data within 15 m of points were joined 
to transect points. In (c) generalized land cover areas were summarized to 30 m point 
buffers. Finally, in (d) road and culvert attributes were joined to transect points. 

 A binary logistic model was performed in RStudio 2021.09.1 Build 372 (RStudio 

Team, 2021) using the base R package to predict Phragmites and knotweed complex 

presence based on road, site, and culvert characteristics. The variance inflation factor 

calculated using the car package (Fox & Weisberg, 2019) resulted in no values above 

two, indicating no severe multicollinearity between predictor variables. Cook’s distance 

was calculated using the base R package and indicated numerous outliers for the logistic 

model above (4/n), where n is the number of observations. For the Phragmites model, 

this outlier set included every transect point with a computer vision predicted presence 

plus three additional transect points. For the knotweed complex model, the outlier set only 

included every transect point with a computer vision predicted presence. Each of these 
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data points strongly affect the model fit. Since this is a binary model with less than 5% of 

records being presences, one would expect presences to be outliers of the dataset and 

therefore strongly influence the model fit. The sample size requirement was satisfied for 

the variables included in the refined model for Phragmites that only included significant 

variables. 

 

2.2.4 Entire Dataset Road Size Analysis  

 A follow-up analysis was performed to evaluate road types (primary, secondary, 

tertiary, highway ramp) as predictors of plant presence, since nearly all transect points 

in the culvert analysis were present on two-lane roads. While the culvert analysis used 

over 8,000 panoramas, the 1 km buffers for the 127 culverts studied contained 

computer vision predictions for 94,219 panoramas. Of these, 1,325 were farther away 

than 15 m from a road and thus excluded since road type could not be easily 

identifiable. This 15 m threshold is the same as described in section 2.2.3, accounting 

for panorama capture interval, GPSr accuracy, and US Census road feature accuracy. 

These panoramas came from scenarios such as when road features did not exist for the 

roads where panoramas were captured, or from isolated photospheres that were not 

captured along roadsides.  

Each of these codes was assigned to a road type based on the metadata 

descriptions. Road MTFCC codes were first spatially joined to panorama locations. 

Primary roads (MTFCC = S1100) are major roads such as interstates, secondary roads 

(S1200) are usually state or county highways, ramps (S1630) are roads that enable 

access to primary roads, and tertiary roads (S1400, S1640, S1740, S1780) include all 
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remaining roads intended for automobile traffic (US Census Bureau, 2021a). There 

were no alleys (S1730) in the road dataset studied.  

Spatial autocorrelation in these data can artificially inflate significance so this 

phenomenon was examined. Spatial autocorrelation essentially makes observations 

“pseudo replicates” of one another, which violates independent sampling requirements 

of many statistical tests (including chi square) (Legendre, 1993). Logically, an 

observation close to a known plant presence is also likely to be a plant presence, given 

how plants disperse across the landscape. This phenomenon was identified by varying 

the distance that defined a sufficiently far (i.e., independent) observation. To do this, 

presence data for Phragmites were spatially joined to various grid scales (100, 200, and 

300 m) and analyzed using the Cluster and Outlier (Anselin Local Moran’s I) tool in 

ArcGIS Pro v2.5.2. Then, a 2 km Euclidean distance neighborhood was used to include 

all grid cells within culvert buffers, with inverse distance as the spatial relationship to 

mirror plant dispersal. The false discovery rate correction was applied, to adjust for the 

over 2500 cells being analyzed. All other options were left as default. Ultimately, a 250 

m aggregation size was selected as it was sufficiently large to prevent any significant 

spatial correlation at p<0.05. The same resolution was assumed for the knotweed 

complex, then knotweed complex presences were joined to the grid cells. 

An additional road size analysis was performed to identify the effects of road type 

on plant presence. When grid cells with both presences and absences were included, 

grid cell presence counts were heavily skewed right and median presences were zero 

for both plants and all four road types. Therefore, ANOVAs and Kruskal-Wallis tests 

could not be used. As such, a chi-square test was performed on raw frequencies in 



 

26 

RStudio 2021.09.1 Build 372 (RStudio Team, 2021) using the base R package. It is 

important to note that when using these raw frequencies, any significance found may be 

overstated because of the spatial autocorrelation that remained unaccounted for 

(Legendre, 1993). 

 

2.3 Results and Discussion 

2.3.1 Culverts and Transect Points  

A total of 52 of New York’s 62 counties had culverts built in 2007 or later. None 

were in New York City. Of the 52, 38 counties had panoramas that overlapped with 

culvert locations. One of the 38 counties only had culverts where transects overlapped 

with those of a nearby culvert, so it was not sampled. Of the 127 culverts studied, the 

vast majority were from two-lane roads (Figure 2.5a). All ten culverts predicted by the 

computer vision model to have Phragmites at the location of the culvert had Phragmites 

visible in at least one year of SVI per manual inspection. Notably, only one culvert built 

in 2018 was sampled (Figure 2.5b). The land area sampling distributions (Figure 2.5f-h) 

are somewhat jagged, likely due to buffers overlapping between culvert and the 30 m 

transect points.  

Based on our method, one would expect 127 transect points at distance zero (i.e., 

the culverts themselves), and 254 points for each of the transect distances. However, the 

true number of transect points analyzed differed across the culverts. The effect of the 21 

extra transect points generated by our method and 42 transect points removed are 

illustrated by the distribution in Figure 2.5e. Because of these errors and missing data 

points, the distance of 480 m is slightly oversampled (by 4 points), while the distances 
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between 30 m and 240 m are slightly under sampled (by 8 – 11 points). These are likely 

from instances where the AADT road data had spurs present, or loops in the ESRI 

network caused the Service Area analysis to generate an additional point on the transect 

road. Sampling could be improved by selecting only one transect direction and removing 

artifacts from the Service Area analysis.  

 

 
Figure 2.5 Distribution of road and culvert characteristics in relation to culvert count (a-d) 
and site characteristics by transect point count (e-h). 
 

2.3.2 Predictors of Presence in Transects 

Of the eight variables considered in the binary logistic regression as predictors, 

three were significant at p<0.05 for Phragmites presence, while none were for the 

knotweed complex. The most notable result for the knotweed complex was traffic volume 

(p=0.09). It is likely that sample size was insufficient to establish relationships for the 

knotweed complex, given it was only present in 34 transect points. For Phragmites, 
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distance to culvert, traffic volume, and forest area were significant (Table 2.1). Distance 

to culvert (p<0.03) and forest area (p<0.05) were inversely related to likelihood of 

presence, while traffic was positively related to the likelihood of presence. Insignificant 

variables were then excluded from the final model (Table 2.2). One parameter of the 

binary logistic regression is a series of odds ratios, which can be interpreted as power 

functions modeled by rn, where r is the ratio and n is the number of increases of a specific 

unit (or alternatively, the power function in Figure 2.6b). The likelihood of finding 

Phragmites 1 km away from a culvert, for example, would be 63% lower (0.999^1e3) than 

the likelihood of finding it at the culvert itself (Table 2.2). These results match the true 

trends observed (Figure 2.6a), however the modeled relationship is influenced to some 

degree by the variable number of transect distances sampled. This could be addressed 

by sampling only one transect per culvert instead of two. When comparing coefficients in 

the final model (Table 2.2), distance to culvert is still the factor most influential on 

likelihood of presence, being 10-fold that of traffic volume and nearly 2-fold that of forest 

area.  
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Figure 2.6 Plots of the (a) actual and (b) modeled presence as a function of distance from 
culvert. To account for variance in transect distances sampled, presence values were 
scaled for (a), dividing the number of computer vision predicted presences by x/127, 
where x is the number of transect points at some distance, d. The modeled presence 
likelihood (b) is from the refined binary logistic model.  

These results support the hypothesis that culverts act as “hotspots” for Phragmites 

presence, though there are still at least three potential mechanisms explaining why this 

is the case. The first could indeed be that culvert construction itself is responsible, either 

by aiding spread via creation of a disturbed patch of soil or fill soil directly introducing 

Phragmites propagules. With shale gas pads in Pennsylvania, US, it was found that 

construction resulted in the introduction of an array of invasive species, likely from traffic 

spreading propagules from surrounding areas to newly disturbed ones (Barlow et al., 

2017). There are a couple of key differences in the construction phase of shale gas pads 

and culverts examined here. Namely, shale gas pads have multiple components and 

associated infrastructure (e.g., pipelines) required for their operation (Costa et al., 2018), 

which would logically result in larger construction footprints and a higher volume of 

construction-related traffic compared to culverts. Although the disturbance and propagule 

pressure are likely greater, trends were expected to be similar with culvert construction 
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just at a much lower magnitude. If the expected trend were the case, the size of the 

construction footprint should create a larger disturbance (Corcos et al., 2020), increasing 

the likelihood of establishment given sufficient propagule pressure. Contrary to this 

expectation, culvert width was not a significant predictor. It is possible that the differences 

in culvert sizes examined here were not large enough to identify a difference due to 

footprint size. Further, if culverts themselves were acting as an introduction event, one 

would also expect that older culverts would increase the likelihood of presence in the 

transect given a longer time to spread outward following an introduction, if the introduction 

occurred close in time to the initial construction. However, this was not the case as culvert 

age was not a significant predictor of presence. 

The second mechanism could be that conditions near culverts are amenable to 

establishment from intersecting streams sources, either at the time of construction or 

after. Notably, Maheu-Giroux & de Blois (2007) found that Phragmites first invaded 

transportation corridors (roads & railways), then spread outward. When riparian habitats 

did not intersect road and railroad corridors, they were about 6% as invaded by 

Phragmites compared to riparian habitats that did intersect these corridors (Maheu-

Giroux & de Blois, 2007). Thus, it appears linear wetlands (including roadsides) are acting 

as a primary spread vector while Phragmites is spreading along intersecting riparian 

zones to a lesser degree.  

The third mechanism could be that conditions near the culvert are the most 

amenable to Phragmites establishment compared to the rest of the roadside habitat, 

given their affinity for wet conditions (Keller, 2000; Maheu-Giroux & de Blois 2007). 

However, if the second case were true, one would expect the decay in likelihood to be 
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more extreme (i.e., there would be a high likelihood near the culvert which would then 

immediately drop off). Additionally, Maheu-Giroux & de Blois (2007) found that riparian 

habitats intersecting railroads and roads were about 60% as invaded as linear wetlands 

(road, railroad, agricultural ditch, and riparian habitat) overall, which suggests that these 

riparian habitats are less amenable to Phragmites establishment than other 

anthropogenic linear wetlands.  

Table 2.1 Summary of initial binary logistic model of Phragmites presence. Significance 
is denoted by * (at p<0.05) and *** (at p<0.001). 

Variable 𝛽 (Estimate) S.E. Odds Ratio z p  

Distance -0.00100 0.00046 0.9990 -2.18 0.02950 * 

Lane Count -0.0692 0.1450 0.93 -0.48 0.63  

Culvert Width 0.0089 0.0940 1.01 0.09 0.92  

Built Year 0.0561 0.0375 1.06 1.50 0.13  

Mean Daily 

Traffic Volume 
0.00010 0.00003 1.0001 3.55 0.00038 *** 

Developed Area  0.0003 0.0002 1.00 1.54 0.12  

Forest Area  -0.00052 0.00035 0.9995 -1.98 0.04718 * 

Agricultural Area  -0.0004 0.0004 1.00 -0.98 0.33  

(Intercept) -115.64 75.343     

 
 
Table 2.2 Summary of refined binary logistic model of Phragmites presence. 

Variable 𝛽 (Estimate) S.E. Odds Ratio z p 

Distance -0.00101 0.00045 0.9990 -2.24 0.02524 

Mean Daily 

Traffic Volume 
0.00010 0.00003 1.0001 3.88 0.00010 

Forest Area  -0.00056 0.00024 0.9994 -2.34 0.01905 

(Intercept) -2.96300 0.21748    

 
These results also partially supported the hypothesis that road characteristics 

influence Phragmites presence. Traffic positively influenced presence. For every 1,000 
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cars travelling on a road in a day, the likelihood of Phragmites presence increases by 

nearly 11% (Figure 2.7). This relationship aligned with expectations, agreeing with 

previous studies that examined traffic’s influence on seed dispersal in invasive plant 

species (e.g., Lemke et al., 2018). Lane count was not a significant predictor of plant 

presence, contrary to expectations. It is possible the effect of lane size went unnoticed 

since nearly all culverts sampled were located on two-lane roads (Figure 2.5a). 

Similarly, hypotheses about adjacent landcover were partially supported. Based 

on model results, a 100 m2 increase in forested area within 30m results in about a 5% 

lower likelihood of finding Phragmites (Figure 2.7). Phragmites exhibits shade intolerance 

in microcosm settings (Kettenring & Whigham 2018; Li et al. 2011), which is likely the 

mechanism behind nearby forest cover lowering the likelihood of finding Phragmites. In 

contrast to expectations, developed area was not a predictor of presence. Maheu-Giroux 

& De Blois (2007) found much higher colonization rates in commercial areas and slightly 

higher colonization in industrial areas compared with others, especially as infestations 

became widespread. One possible explanation is an insufficiently sampled development 

gradient, given the relatively small buffer chosen and roads often being classified as the 

selected developed land cover types. It is also possible that the omission of culverts within 

2 km of one another biased sampling against more highly developed areas.  

Also of note is that agricultural areas were not significant predictors of presence. 

Like many invasive plants, Phragmites grows especially well in nitrogen-rich 

environments (Kettenring & Whigham, 2018) and increases in competitive ability under 

fertilized conditions (Uddin & Robinson, 2018). Thus, one would expect nutrient loads 

from adjacent agricultural drainage ditches to promote Phragmites growth. It is possible 
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that this is another issue stemming from the choice of scale, since one study measuring 

proximity in a continuous manner found both agriculture and nitrogen concentration to be 

influential when predicting presence (Carlson-Mazur et al., 2014). On the aggregate, 

proximity to agriculture was still less influential than proximity to developed land, road 

density, and topographic roughness (Carlson-Mazur et al., 2014). The relative importance 

of developed land compared to agricultural land is also supported by Maheu-Giroux & De 

Blois (2007), since they found that agricultural areas on the aggregate were less invaded 

than developed landcover types. With these two studies combined, it appears both factors 

are important, but their relative importance depends on relative abundances of each.  

There are also factors not considered here that may help to explain the presence, 

introduction, and spread of Phragmites and the knotweed complex. Sensitivity to buffer 

size should be tested for agricultural and developed land covers to identify if larger buffers 

better represent dynamics occurring at larger scales. Broad habitat characteristics such 

as those modeled by eco-regions should be examined, since they have been shown to 

influence both invasive plant presence (Carlson-Mazur et al., 2014) and richness (Ward 

et al., 2020). 
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Figure 2.7 Plot of odds for Phragmites presence based on a refined binary logistic model. 
Error bars represent 95% CI.  
 

2.3.3 Road Size Analysis 

 The hypothesis of larger roads increasing the likelihood of invasive plant 

presence was tentatively supported with Phragmites. Larger roads were expected to be 

predictive of presence since amenable conditions are provided by larger verges 

(Christen & Matlack, 2009) and larger roads have been found to greatly increase the 

likelihood of plant presence previously (Joly et al., 2011). Phragmites was much more 

likely to be found on ramps and somewhat more likely to be found on primary roads 

than expected, while it was less likely to be found on secondary and tertiary roads (table 

2.3) (χ2= 3480.3, df = 3, p-value < 0.0001). It is possible that large interchanges create 

ideal open areas for stands of Phragmites to establish. Further, with a relatively high 

density of impervious surfaces, water runoff and its associated salts (e.g., Denby et al., 

2016) may accumulate, creating wet conditions that may enable Phragmites to 

outcompete other species more effectively given its salt tolerance (Albert et al., 2015; 
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Vasquez et al., 2005). These conditions may be especially pronounced at cloverleaf 

interchanges, where rings of roads surround depressions. 

The larger road hypothesis was tentatively rejected with the knotweed complex. 

The knotweed complex was less likely to be found on primary roads and slightly less 

likely on tertiary roads than would be expected but was found on secondary roads and 

ramps more than expected (table 2.3) (χ2= 62.505, df = 3, p-value = <0.0001). Again, it 

is important to note that all significance reported here is somewhat exaggerated given 

spatial autocorrelation (Legendre, 1993). 

 
Table 2.3 Chi-square results for raw frequency presences. Frequencies were calculated 
from the entire dataset of 94,219 points within 15 m of roads and inside 1 km culvert 
buffers. Absence frequencies are excluded from this table. 

 Phragmites Knotweed Complex 

χ2 3480.3 62.505 

df 3 3 

p-value < 0.0001 <0.0001 

 Expected Observed Residual Expected Observed Residual 

Primary 472 620 6.81 135 62 -6.29 

Secondary 1100 840 -8.01 317 389 4.06 

Tertiary 618 267 -14.1 176 167 -0.736 

Ramp 71.5 541 55.5 20.4 31 2.33 

 
 

2.3.4 Insights for Monitoring and Risk of Spread Modeling 

Considering the results presented here, there is potential to improve current risk 

modeling and targeting of monitoring efforts. In New York for example, managers have 

access to a spatial prioritization model developed by Shappell et al. (2016) that 

considers ecologically significant, protected areas, and risk of spread factors (NYNHP, 

2016a). The component weighted the highest in the risk of spread component is a 
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landscape condition assessment, which models the ecological effects of various 

stressors including land use and development types (Feldmann & Howard, 2013). The 

model assumes that rates of road-parallel spread risk is equal for primary and 

secondary roads. There is reason to evaluate traffic volume as a potential addition into 

risk of spread modeling; results here suggest that traffic facilitates Phragmites spread, 

consistent with other studies of the same phenomenon with different species (e.g., 

Lemke et al., 2018). Road type also appears to play a role, though it seems to be 

species-specific. As such, it warrants study with additional species, but perhaps cannot 

be broadly applied to a general risk model. While culverts may not function as hotspots 

for all species, their association with increased Phragmites presence warrants 

consideration as an additional place to prioritize monitoring. This is especially prudent to 

consider since culverts connect road and stream networks together. 

 

2.4 Conclusions 

Here we presented an examination of road, road verge, and culvert 

characteristics in relation to invasive plant presence by applying a novel form of data 

generated from computer vision and roadside imagery. Using results from over 8,000 

roadside panoramas across 127 culverts in 37 counties within New York State, we 

determined that traffic volume, forested area, and culvert presence significantly 

influence the likelihood of Phragmites presence. By adding an additional 80,000 

panoramas, we determined that Phragmites was much more likely to be found on ramps 

and somewhat more likely to be found on primary roads, while the knotweed complex 

was more likely to be found on secondary roads and ramps. 
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Given the results of this study and others, it remains unclear precisely why culverts 

are acting as hotspots. Culvert age and construction footprint were not related to 

presence, and presence of stream feature does not seem to be indicative of Phragmites 

presence (Maheu-Giroux & de Blois, 2007). Therefore, a link between construction of 

culverts and introduction of Phragmites cannot be made conclusively. The dataset used 

here did not include model data from SVI revisits of the same location, though multiple 

dates of imagery may be obtained in the future to update the analysis. Increased temporal 

resolution of computer vision model data would help in identifying how culvert 

construction and introduction dates compare.  

These results can still be used to improve existing spread risk modeling for more 

accurate estimation of the conditions influencing spread. Results also suggest that 

culverts and highway ramps are locations that warrant additional study, monitoring, and 

assessment of preventative measures to efficiently contain the spread of certain 

invasive plants. 

The work here presented a case study of the analytical possibilities of using 

computer vision data from roadside imagery. There are myriad applications for this data, 

given the wide spatial and temporal scales available for study. These future applications 

could include the direct examination of spread over time, or abundance mapping on the 

road network at large.  
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Chapter 3: Computer Vision Monitoring Framework 
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3.1 Introduction 

3.1.1 Invasive Plant Monitoring 

In the US, invasive plants have led to documented damages of over $25 billion 

per year, while causing estimated losses on agricultural and rangelands of over $33 

billion annually (Pimentel et al., 2005). To mitigate or prevent harm from these plants, 

identification and control is crucial (National Invasive Species Council, 2003; 2016). A 

widely recommended framework for invasive species management is early detection 

and rapid response (EDRR), a part of which is constant monitoring for new infestations 

(Reaser et al., 2020). Unfortunately, monitoring is expensive and time-consuming. New 

applications of technologies such as computer vision promise to solve both problems, 

though they pose their own challenges with the generation of massive amounts of data. 

Currently, professional field survey, aerial or satellite-based remote sensing, and 

community science are the primary monitoring methods used, but each come with their 

own limitations.  
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Professional field study of invasive plants is a common method of both 

monitoring and research. Notably, as of September 2011, field observational studies 

comprised nearly half of all studies on invasive species (Lowry et al., 2012). Field 

methods targeted for use by professionals, such as the New York Rapid Assessment 

Model (NYRAM) developed by the New York Natural Heritage Program (NYNHP) 

require both plot- and transect-based surveys of invasive plant abundance and cover 

(Shappel et al., 2016). Compared to surveying on foot, car surveys are a method that 

can be used to monitor invasive plants more quickly, easily, and cost effectively (e.g., 

Catry et al., 2015; Shuster et al., 2005). However, both methods not only require time of 

professionals for travel and survey, but also monetary compensation and lodging costs.  
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Community or citizen science is an approach that leverages non-professionals to 

enable low-cost data collection at both large and site-specific scales (Larson et al., 

2020). Community science programs are numerous and increasing (Bois et al., 2011). 

In NY, the NYNHP’s iMapInvasives Program exists to facilitate data management 

between professionals and community members to inform management decisions. Data 

from these programs are known to vary in quality due to effort or knowledge (Crall et al., 

2011) and in spatial distribution due to over-sampling of residential areas (Dickinson et 

al., 2010). The iMapInvasives Program sources many records from professionals, and 

non-professional record submissions are professionally verified to address data quality 

(NYNHP, 2020). Total reports from community scientists likely still underestimate the 

true number of invasive plants, since volunteers are much more prone to false 

negatives than false positives (Crall et al., 2011). Even with programs such as 

iMapInvasives that source from both professionals and community scientists, many 

times these professional surveys are only occurring where funded projects are ongoing, 

so underestimation and spatially heterogenous reporting are likely to remain 

problematic.  
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Aerial and satellite-based remote sensing can address the heterogeneity problem 

of professional field surveys to a certain extent while also eliminating the community 

science sampling bias. Widely available multispectral satellite imagery such as Landsat-

8 or Sentinel-2 is often not of high enough spatial resolution to detect emerging patches 

of plants (e.g., Olsson et al., 2011). Even freely available sub-meter aerial multispectral 

data such as from the National Agricultural Imagery Program (NAIP) can have an 

insufficient resolution. Porter (2021) performed supervised classification on both NAIP 

and high-resolution drone imagery, finding that patches of their target grassland 

invasive plant frequently went undetected in NAIP. Widely available Hyperspectral 

imagery such as Hyperion is better for discerning invasive plants from other species but 

is currently spatially insufficient for early detection (e.g., Ramsey et al., 2005). 

Hyperspectral mages can be captured at higher spatial resolutions, but this is 

impractical for large areas due to cost (Vaz et al., 2018). With all these platforms, 

understory detection remains a challenge regardless of spatial or spectral resolution.  

 

3.1.2 Leveraging New Technologies for Monitoring 

Given the cost, scale, technical, or labor issues present with current monitoring 

methods, alternative solutions are needed. One solution can be found in a novel 

approach that combines computer vision, ground-level imagery of roadsides, and 

community science. Computer vision is a discipline that uses algorithms to enable a 

computer to identify objects (e.g., plants) in an image (Huang, 1996). Though several 

companies have their own roadside imagery, Google alone has taken over ten million 

miles (over 16 million km) of 360-degree panoramic Street View Imagery (SVI) 
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(Escobar, 2019). Previously, SVI has been used successfully when assessing the 

feasibility of “virtual field studies” (e.g., Kotowska et al. 2021; Deus et al. 2016; Griew et 

al 2013; Rousselet et al. 2013) and unsuccessfully for invasive plant identification using 

unsupervised classification methods (Connell, 2015). Computer vision has been used 

for multiple applications in an ecological context, ranging from identifying wildlife in 

photos from many sources (Berger-Wolf et al., 2017) to inventorying urban trees 

present in SVI (Wegner et al., 2016).  

A proof-of-concept conducted by Flores et al. (in prep.) applied computer vision 

and deep learning on SVI for invasive plant identification. In that study, a computer 

vision model was created for five case study plants: the invasive knotweed complex 

(Reynoutria japonica, R. sachalinensis, and R. x bohemica), Phragmites australis ssp. 

australis (common reed, hereafter referred to as Phragmites), Lythrum salicaria (purple 

loosestrife), Ailanthus altissima (tree-of-heaven), and Pastinaca sativa (wild parsnip). 

They demonstrate the large spatial scales of monitoring (including of the understory) 

possible when leveraging computer vision and SVI. At maximized sensitivity, the overall 

false negative rates were below 6% for both Phragmites and the knotweed complex, but 

had corresponding overall false discovery rates (i.e., proportion of panoramas 

incorrectly classified as presences) of 60% for knotweed and 39% for Phragmites 

(Flores et al., in prep.). However, field verification of screen-validated positive detections 

yielded very high agreement (>90%), where false positives were mostly (69%) attributed 

to mowing (Flores et al., in prep.). These outcomes suggest that on-screen validation 

may be required for positive confirmation of records, but field verification, which is far 

more time and resource intensive, may not necessary. Thus, to achieve highly accurate 
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detection, positive model outcomes must be combined with on-screen validation of 

panoramas in order to remove false positives. 

On-screen validation is beneficial given concerns with safety and legality. Many 

model-generated predictions are along highways, where cars pass by at speeds of 90-

105 kph (N.Y. Comp. Codes R. & Regs. tit. 21 § 103.2; N.Y. VAT tit. 7, art. 30, §1180b). 

Additionally, there were legal concerns both with stopping adjacent to private property 

and along interstate and state highways, where vehicle stopping and standing are 

prohibited (N.Y. VAT tit. 7, art. 32, §1202). 

The verification of predictions derived from computer vision is one of many 

projects for which community scientists can volunteer. Though many projects utilize 

physical on-site verification, there are numerous examples of exclusively virtual 

community science projects. For example, one project existed to facilitate validation of 

land classification via satellite images (Brovelli et al. 2015 as reviewed in Fritz et al. 

2017), while another similar project aimed at a different audience incorporated change 

detection scenes (Fritz et al. 2017). 

Because these computer vision models result in a massive amount of new data 

at very fine resolutions that must be properly managed, verified, and used, a new 

system was developed to harness the distributed power of the community science 

network and more rapidly put results into the hands of managers. We created this 

pipeline by addressing the following objectives: 

1. create a framework and set of recommendations for integrating AI into existing 

monitoring workflows; 

2. create public GIS layers of all species predictions;  
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3. develop method and interface for validation; and 

4. disseminate results to stakeholders. 

Throughout monthly discussions over an 18-month period with PRISM managers, 

community science program staff, and invasive species experts at the NYNHP, a 

prioritization and verification framework was developed using Phragmites and the 

invasive knotweed complex as case study plants. Within this framework, two web-based 

ArcGIS Dashboard interfaces were created to present results and encourage 

community scientist participation (Figure 3.1). Prioritization analyses were embedded in 

these interfaces to help identify under-reported areas and guide human verification 

effort. To make results useable by administrators, managers, and community scientists, 

we created maintenance, access, and tutorial documents. We also held multiple 

webinars to make managers aware of the newly created tools at their disposal. Upon 

completion, all data products, documentation, and both interfaces were sent to be 

hosted by the NYNHP. 

The proposed monitoring workflow process (Figure 3.1 Items 1-4) can be 

conceptualized in multiple “tiers” of review. First, the computer vision model reviews all 

panoramas, resulting in a subset of predictions that are “leads in need of on-screen 

validation” by community scientists. Next, community scientists verify these presences 

and submit an iMapInvasives record. If the species is not found, a “not observed” record 

is submitted and immediately incorporated into the iMapInvasives database. If the 

community scientist believes the record is found, a presence record is submitted for 

confirmation or rejection by the preexisting iMapInvasives network’s taxonomic experts 
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(New York iMapInvasives, n.d.) before being integrated into the iMapInvasives 

database.  

 
 

 
Figure 3.1 An overview of the constituent components and flow of data for the dashboard 
interfaces and associated facilitation products. Priority grid cells (a) and Potential 
Environmental Justice Areas (PEJAs) are a prerequisite for model processing (b), and 
are also displayed directly in the Public Dashboard (1). In the Public Dashboard, users 
can select a grid cell for review (2), verify the presence in Google Street View (GSV) (3), 
and then submit a record to the iMapInvasives database (4). Data are hosted and visible 
as “unconfirmed” records that are then confirmed or denied by professionals (5). Whether 
unconfirmed or confirmed, these records are visible in the Partnership for Regional 
Invasive Species Management (PRISM) Dashboard. 
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3.2 Interface Development 

3.2.1 Geospatial Data Acquisition and Processing 

Computer vision model prediction point data for Phragmites and the invasive 

knotweed complex were provided by Flores et al. (in prep.) then pre-processed via 

thresholding. These data included results for over 300,000 panoramas in Broome County, 

NY (Figure 3.2) captured between August 2011 and November 2018, at a median 

geodesic distance of 2.4 m between panorama centers. Broome County was chosen as 

a candidate region for these analyses given the varied land covers, road types, 

ecologically significant, and potential environmental justice areas present. In broad terms, 

the computer vision model “looks for” patterns recognizable based on training data, then 

calculates a confidence score for each species it was trained on. The output data can 

then be accessed in a tabular format where each row contains panorama metadata and 

confidence scores for all species. Model output was processed by thresholding these 

confidence scores, where the “threshold” is a selected range of probability values that are 

chosen based on desired performance criteria. This performance criteria includes true 

positive (presence) and negative (absence) rates, and/or false positive and negative 

rates. A useful guide for performance criteria is a set that facilitates early detection and 

rapid response (EDRR) approach, widely considered a core tenet of invasive species 

management (U.S. Department of the Interior, 2016). To this end, it is appropriate to “cast 

a wide net” by choosing a threshold that maximizes sensitivity level (i.e., the highest 

detection rate) across multiple test datasets. The threshold chosen for Phragmites was 

0.45 while for the knotweed complex it was 0.12, using the model version “gentle-

snowball-307.”  This criterion presents a maximally sensitive set of results that could then 
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be filtered to higher confidence scores associated with lower false positive rates. This 

choice also allowed higher confidence scores to be set for community scientists, 

proposed in stakeholder meetings to potentially help with volunteer confidence and 

retention.  

 

Figure 3.2 Map of Google Street View panoramas in Broome County, New York 
assessed by the computer vision model from Flores et al. (in prep.) and used for analysis. 

After thresholding, clustering was a prerequisite for assigning spatial priority to 

presence predictions. Cluster assignment was completed via the DBSCAN method in 

ArcGIS Pro v2.5.2 (Esri, 2020). The minimum cluster number was set to two, while a 

maximum distance of 12 m between predictions defined a cluster. This distance is the 

95th percentile of geodesic separation distance and can be conceptualized as the 

threshold for what is considered “contiguous.” Percentiles were derived using Excel 

v16.59 with the output of the Near tool in ArcGIS Pro. The 95th percentile was chosen 
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instead of the maximum since some panoramas were up to 60 m apart, either due to 

being isolated “photospheres” or gaps in imagery data. The Near tool was used again to 

assign the linear ID of the closest US Census roads, to help separate out clusters. 

Model predictions below the thresholds described above are considered “not 

detected” records. These points were selected for each species, then buffered by the 

same geodesic distance as clusters (12 m). The resulting buffers were then intersected 

with the US Census roads to output roads where a specific species was not detected by 

the model.  

Several data products were accessed and displayed directly on the ArcGIS 

Dashboards. The NYNHP spatial prioritization layer was accessed as an ArcGIS Online 

map service from the NYS Department of Environmental Conservation. Confirmed, 

unconfirmed, and not-detected layers for Phragmites and the knotweed complex were 

accessed as ArcGIS Online map service from iMapInvasives. All data products sourced 

are described in greater detail in Table S1. 

3.2.2 Spatial Prioritization 

Stakeholder consensus was used as the primary basis for determining priorities. 

Through these discussions, three main priorities were decided upon. The first was that 

areas with high scores on the NYNHP spatial prioritization model should be ranked with 

higher importance. This spatial prioritization model was developed by Shappell et al. 

(2016) and includes three factors that are aggregated into a comprehensive score: 

ecologically significant areas, high priority preservation areas, and risk of spread 

(NYNHP, 2016a). The second priority was that model predictions in areas with data gaps 

should be verified first since presence or absence in those areas is unknown. The final 
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priority was that smaller, more recent predictions should be investigated first, since they 

would be expected to be easier to eradicate if able to do so. To help achieve these goals, 

a two-dimensional binary classification (i.e., four categories) was devised (Table 3.1). 

To reach the first prioritization goal, the spatial priority dimension of a point 

prioritization framework was partially prepared by selecting grid cells. Grids for UTM 

zones 17N and 18N at a 1 km2 size were sourced from the National Geospatial Agency 

website. The invasive species spatial prioritization model created by the NYNHP in 2016 

was directly provided by the NYNHP. Zonal statistics were completed in ArcGIS Pro 

v2.5.2 (Esri, 2020) on an integer version of the NYNHP comprehensive score raster to 

assign the mean comprehensive score to each 1 km2 grid cell. Then, the 90th percentile 

of the grid cells’ mean comprehensive score was identified for each PRISM jurisdiction in 

Microsoft Excel v16.59. Any cells containing model data that were below the 90th 

percentile of the mean comprehensive score in a specific PRISM jurisdiction were 

excluded.   

To reach the second goal, a second component of the spatial priority dimension 

was considered by removing areas with existing reports. All species presence reports 

were downloaded from the iMapInvasives website on November 6, 2021 for four 

knotweeds and Phragmites australis ssp. australis. The knotweed complex (R. japonica, 

R. sachalinensis, their hybrid R. x bohemica, and “knotweed unspecified”) was chosen 

for two reasons: morphologic similarities exist such that the model does not differentiate 

between them, and for management purposes they are treated the same. Grid cells were 

removed from the set if the species predicted by the model exactly matched existing 

iMapInvasives reports in the cell.  
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A third component was added when assigning the spatial priority dimension of the 

point prioritization framework to incorporate social and economic considerations. 

Potential environmental justice areas (PEJAs) as of 2021 were sourced from the NYS 

Department of Environmental Conservation website. PEJAs are US Census block groups 

defined as having a population with 22.82% below the federal poverty level, and/or are 

comprised of 52.42% (urban) or 26.28% (rural) minoritized groups (New York State 

Department of Environmental Conservation, 2021a). Any model-predicted points within 

PEJAs or cells above the 90th percentile of mean comprehensive score were considered 

to have the first dimension of spatial high priority. Any points that did not match these 

criteria were spatial low priority. 

To reach the third and final prioritization goal, the “emerging” dimension of the point 

prioritization was assigned. This dimension was created to help with rapid response. The 

first condition to be considered “emerging” was that the model-predicted presences were 

on a panorama from within the past three growing seasons. The second was that the 

model-predicted presence must not belong to a cluster, which acts as a proxy for 

infestation size. If both conditions are met, a prediction is considered “emerging.” If not, 

the prediction is considered “not emerging.” The combination of all of these designations 

can be seen in Table 3.1.  

Finally, for additional filtering functionality, model predictions had attributes added. 

Taking the output for each species/complex separately, the geodesic distance to the 

nearest iMapInvasives record (at the time of analysis) of the same target species/complex 

was calculated for every presence prediction. 
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Table 3.1 Mutually exclusive decision criteria for assigning priority levels to model 
predictions. The mean comprehensive score refers to the numeric spatial prioritization 
model. All priority levels were included in the manager dashboard, but only priorities 1-3 
were displayed in the public dashboard. 
 

Single presence, 
w/in last 3 growing 
seasons 

Cluster, and/or 
older than 3 
growing seasons 

1 km2 grid’s mean comprehensive 
score >=90th percentile for PRISM 
jurisdiction or within PEJA 

Emerging: Spatial 
high priority (P1) 

Not emerging: 
Spatial high priority 
(P3)  

1 km2 grid’s mean comprehensive 
score <90th percentile for PRISM 
jurisdiction 

Emerging: Spatial 
low priority (P2)  

Not emerging: 
Spatial low priority 
(P4) 

 

3.2.3 Public Interface 

An ArcGIS Dashboard interface was developed (Figure 3.3) to include individual 

species layers with the goal of targeting citizen scientist verification efforts to high-priority 

computer vision model predictions. Predictions in designated priority levels 1-3 (Table 

3.1) were included in the public interface. Confirmed, unconfirmed, and not-detected 

layers filtered on project submissions for the two target species are also displayed. Any 

predictions on private roads (i.e., where the US Census-designated field MTFCC = 

S1740) were removed for privacy concerns.  

Gamification was implemented when creating this Dashboard to encourage 

greater participation. Deterding et al. (2011) define gamification as the “use of game 

design elements in non-game contexts.” Gamification has been implemented previously 

through displaying leaderboards in online land cover validation and change detection 

interfaces (Fritz et al. 2017). Another example comes from the iNaturalist program 

(https://www.inaturalist.org), which presents leaderboards for picture submissions of 

macro-organisms while simultaneously facilitating biodiversity research. The companion 



 

53 

of iNaturalist, Seek, adds challenges and badges to the submission process (iNaturalist, 

2020).  

 

 

Figure 3.3 Example showing gamified components of the Public Dashboard (with names 
changed). In one pane, submission tallies and recent submissions per-type are shown 
(a). Another pane (b) shows charts of top contributors for each category.  

In this Dashboard, gamified elements include top contributor charts and recent 

contributor lists. Community scientists can filter submitted records by PRISM jurisdiction 

or for the whole state, and by target species. Records displayed on the map, tallies, 

charts, and lists all update accordingly. These features enable community scientists to 

see the magnitude of their contribution and how it compares with others.  

The 1 km2 grid cells described in section 3.2.2 were displayed on the public 

interface to enable community scientists to sign-up for a verification area. Grid cells can 

have three statuses: unverified, in progress, and verified. Community scientists can 

browse the map and filter grid cells based on completion status, reducing irrelevant 
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information. A web based Survey123 form was created in ArcGIS Survey123 Connect 

v3.13.251 (Esri, 2021) and linked within grid cell pop-ups on the dashboard. When a 

volunteer would like to sign up for a cell, they would mark it as “in progress” on the form.  

 

Figure 3.4 Example of Public Dashboard grid selection process. The map view (a) shows 
verification grid cells and model presence predictions and a top ribbon with spatial and 
attribute filters. Individual grid cells (b) link to a form (c) for signing up and marking 
complete.  
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After signing up for a cell, individuals verify model predictions within the cell and 

create iMapInvasives records. Individuals can access individual model prediction points, 

then view linked panoramas with model-predicted presences from a link in a pop-up. If a 

prediction is thought to be correct by the reviewer, they enter a “remotely sensed” 

presence report with a screenshot of the panorama onto the iMapInvasives web 

submission form. If the reviewer believes the prediction is false, the same process can be 

followed, where a not-detected record is submitted instead of a presence. Once all 

predictions in a cell are completed, the community scientist marks a cell as verified, 

locking its status from public editing. Every record submission is hosted and visible as an 

“unconfirmed” record that can then be confirmed or denied by professionals. 
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Figure 3.5 Example of Public Dashboard review and verification process. After signing 
up for a grid cell, users select individual points (a) to visually examine the associated 
panorama (b). After review, the iMapInvasives link can be followed to submit a record (c). 

3.2.4 Manager Interface and Data Products 

A second ArcGIS Online Dashboard interface was built for PRISM staff to view 

records submitted by community scientists, to help prioritize areas of intervention, and to 

highlight areas with a surveillance need.  
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The Dashboard interface has three main components: the top ribbon, the left 

sidebar with tabs, and the main map (Figure 3.4). On the map, model predictions are 

displayed as a heatmap at lower zoom levels, transitioning to color-coded points at higher 

zoom levels. Model-predicted absences are also displayed as contrasting orange lines. 

The first tab on the left sidebar allows managers to see tallies within indicators of model 

predictions broken down by the four priority levels. The second tab on the left sidebar 

enables managers to view summaries of record submissions, similarly to the public 

interface. The top bar allows managers to filter by various attributes, including 

management area (PRISM jurisdiction) boundaries, target species, and distance between 

existing reports and model-predicted presences. When filtered, model-predicted 

presences, model-predicted absences, and iMapInvasives records all update accordingly 

in the various dashboard elements. 

Additional components in the top-right let managers select their desired base map, 

show the legend, or set layer visibility. Within layer visibility, managers have the option to 

show the NYNHP spatial prioritization maps, including comprehensive score, risk of 

spread, protected areas, and areas of ecological significance. Since all model data are 

displayed, managers can use these additional layers to assess the importance of 

individual predictions with deeper information than the prediction priority levels provide 

alone. 
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Figure 3.6 Example of the manager Dashboard showing model prediction points, tallies 
on the left pane, filters on the top ribbon, and legend pop-up on the right. 
   

3.3 Limitations and Future Work 

3.3.1 Spatial Prioritization 

The multi-leveled spatial prioritization framework proposed here offers managers 

an at-a-glance look that encompasses multiple dimensions simultaneously. Given the 

inability to manage all invasive species, prioritization frameworks such as the one here 

are necessary. Myriad considerations are built into the prioritization framework, 

including spread risk, ecological significance, social dimensions, infestation size, and 

recentness of discovery.  

It is notable though that the emerging dimension of the spatial prioritization 

scheme could warrant further examination. There is potential to adjust the timeframe of 

what is considered “recent” for the purposes of the “emerging” definition, in line with the 
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conceptual relationship of spread and cost (Figure 1.1). As built, the “emerging” 

definition dictates that computer vision model-predicted presences must be from the 

past three growing seasons. This choice was made to highlight locations where “rapid” 

response could be possibxle. However, it is important to note that what is considered 

“rapid” for invasive species detection is often not defined explicitly in literature (Reaser 

et al., 2020), and in a case where “rapid” was defined, the recommendation was within 

two years (Lodge, 2006), though that recommendation is for eradication of a species 

newly introduced on a national scale. Therefore, further investigation into risk and 

spread could be useful to help define what a “rapid” timeframe might be for 

management response. 

The approach of using the NYNHP comprehensive score model when 

determining high-priority grid cells warrants review. The current model (Shappell et al., 

2016) does not differ in risk of spread between primary and secondary roads. A study 

from Joly et al., (2011) suggests that primary roads may have faster spread rates, as do 

roads with higher traffic volumes (Lemke et al., 2019). Additionally, managers noted in 

discussion that even though they are aware of the prioritization model, it is often not 

utilized because of site-specific project funding or not being optimally calibrated for 

large, highly important areas such as the Adirondack Park.  

 

3.3.2 Public Interface 

The Public Dashboard developed enables large amounts of new data to be verified 

in an organized, prioritized way. By integrating with existing tools and platforms, the 

workflow proposed here is an extension of current capacity that strengthens early 
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detection and ongoing monitoring capabilities. Simultaneously, the verification workflow 

supported by the Dashboard makes community science accessible to more people that 

may not have the ability or transportation to physically participate in other community 

science efforts.   

There are several opportunities for refinement of the Public Dashboard. Within the 

workflow that community scientists complete, the steps can be somewhat cumbersome. 

The user must manually navigate to the iMapInvasives web interface and enter the same 

information many times, including the observation method, project, and date of panorama. 

Auto-generated URLs or another method to directly link and pre-fill iMapInvasives form 

components would save time and streamline the verification workflow.  

The grid cell sign-up process could be completely removed if spatial filtering was 

incorporated for model-predicted presences. As of the Dashboard’s creation, the grid cell 

sign-up process was enacted to visually show where community science verification effort 

is or will be occurring. With spatial filtering functionality, model predictions would be 

filtered out almost instantaneously upon a record being submitted sufficiently close to it. 

The benefit of this proposed modification is that it would save community scientists time 

and ensure the map is up to date independent of user input.  

3.3.3 Manager Interface 

Widespread monitoring is a vital aspect of invasive species control (Reaser et al., 

2020). This interface enables both ongoing and early monitoring of invasive plants at 

multiple scales and use-cases. Consider a conservation or natural resources professional 

working on the ground at one to several sites. This professional would have a scope of 

work where a finer scale of data is preferable. The professional might want to know if 
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there are any previously un-discovered invasive plant presences either within their site or 

in its buffer. In this scenario, a lower model confidence threshold and short distance to 

existing reports could be used, and all priority levels could be of interest. On a larger 

scale, consider a professional coordinating monitoring and control efforts across multiple 

counties. At this scale, there are invasive plants seemingly everywhere, so it is beneficial 

to have prioritization options. The coordinator might be interested in asset-based 

protection, prioritizing funding and efforts towards highly confident, previously undetected 

presences that would threaten areas of high ecological significance. To this end, stricter 

filtering could be used to locate areas in need of survey. These cases are but two 

examples of possible applications and questions that can be answered when using this 

Dashboard, though there are likely many other use cases that vary in both scale and goal.  

The Manager Dashboard does have multiple limitations that could be improved 

upon. Perhaps the largest limitation is the difficulty of accessing roadside imagery for 

generating results as new panoramas are captured, given both the technical knowledge 

needed access imagery and the paywall for its acquisition. Additional filters could be 

beneficial for managers, especially for computer vision model attributes such as detected 

or not detected date. Currently if a manager wants to identify gaps in current reporting, 

the distance filter is the only item that can be used. A more explicit visualization of 

reporting gaps could be useful, which could take the form of a comparison between 

existing reports and model-predicted reports in a gridded format. 
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3.4 Conclusions 

Here we presented a framework for incorporating computer vision into current 

invasive plant monitoring workflows in a cost- and time-effective manner. An ArcGIS 

Dashboard created for use by community scientists acts a platform to enable the 

verification of computer vision presence predictions. Map products created here distill a 

massive amount of data into a comprehensive format that aids in the prioritization of both 

professional and community scientist monitoring efforts. Further, we show how computer 

vision and Street View Imagery can greatly enhance the scale of current surveillance 

capacity. A second ArcGIS Dashboard displays these data in a way that is applicable to 

managers of varying scopes and areas of work within terrestrial invasive plant 

management. This enables the monitoring of very large areas of roadsides, a known 

vector for invasive plant spread, with little investment of time for field monitoring and 

allows for prioritization of regional efforts towards control and eradication. 

Even though the two target plants of this study are already widespread at regional 

scales, there is value in their continued monitoring to assess continued spread into new 

regions with a changing climate and the efficacy of control efforts. Multiple recaptures of 

SVI allow for study before and after roadside treatment efforts, whether mechanical, 

chemical, or biological. Notably, a psyllid has been approved for release to biologically 

control the knotweed complex (New York Invasive Species Research Institute, 2020), 

while Phragmites has a biocontrol agent in review (Blossey, et al. 2019). By leveraging 

data from before and after the release of these biocontrol agents, their impacts and 

spread may be quantifiable, dependent on spatio-temporal overlap of SVI. There is even 

potential for expansion of this framework, since two of the other species (Ailanthus 
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altissima and Lythrum salicaria) that Flores et al. (in prep.) developed a computer vision 

model for have their own biocontrol agents either disseminated or in review.  

The applications developed here act as a proof-of-concept that can be expanded 

to other species. Flores et al. (in prep.) show that while excellent identification 

performance for Phragmites and the knotweed complex required thousands of training 

and testing panoramas to be annotated, a useful model can be created with only 

hundreds. Given the relatively short annotation time, it is entirely feasible to create 

computer vision models for additional plant species. If a species is not widely present in 

a certain geography but is present in an area with similar image background 

characteristics (e.g., a similar ecoregion), there is potential for model creation. An 

important caveat to note is that while SVI vastly increases the spatial and temporal scales 

of monitoring that is possible, the data are not homogenous so comprehensive detection 

especially for emerging species is not possible. When complete, additional species can 

be incorporated to the interfaces and verification workflow easily, simply by updating 

filters. Any analyses presented here can be replicated with ease for additional species or 

PRISMs, given that the data utilized here is publicly accessible or already hosted by NYS. 

There is even potential to expand the geographic scope of this framework to other states 

in the US or countries, by replicating the spatial prioritization work by Shappell et al. 

(2016) and the New York Natural Heritage Program (2016a), the computer vision model 

by Flores et al. (in prep.), and the environmental justice designations of the NYS DEC 

(New York State Department of Environmental Conservation, 2021a).   
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4. Conclusions 

Through this study, we showed ecological and management applications of a novel 

form of data. Computer vision combined with deep learning and roadside imagery greatly 

enhances our ability to monitor and gain valuable insights from invasive species at wide 

spatial and temporal scales. This holds true despite the spatial and temporal 

heterogeneity of roadside imagery. 

Results presented here help to target interventions, enabling more efficient 

invasive species management efforts. We used computer vision generated results for 

thousands of panoramas to examine characteristics influencing spread and found that 

culverts and traffic are two meaningful additional factors to consider for future risk 

modeling, monitoring, and study. Combined with previous study on road-stream 

connections (e.g., Maheu-Giroux & de Blois, 2007), there is reason to believe culverts are 

acting as a connection between road and riparian spread. Highway ramps and primary 

roads may also be facilitating spread, given the higher rates of Phragmites occurrence. 

Therefore, targeting safe control efforts in these areas may be ideal to slow the spread of 

Phragmites. For the knotweed complex, examining why it appears to be present more 

frequently on secondary roads and ramps would be worthwhile. 

We also showed one way to make computer vision generated data accessible and 

useful to managers through the creation of an organizing framework. This framework 

condenses vast amounts of data into a more interpretable format that weaves into and 

augments existing monitoring capacities. The interfaces developed from this project and 

its partners enable an entirely new, powerful set of hundreds of thousands of datapoints 

to be made useful by managers. Further, these interfaces spatially prioritize computer 
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vision results, allow for various scales of work, and give managers customized control of 

how to view data for decision-making.  

While roadside imagery can address limitations and biases of other monitoring 

methods, it is important to acknowledge the limitations and biases of roadside imagery 

itself. Google’s SVI is captured in a manner that is heterogeneous in spatial and temporal 

distribution. While there are revisits of the same location, not all locations are revisited 

with the same frequency. For example, the Adirondack Park, a region with large natural 

protected areas in northeastern NY, has numerically fewer years of imagery than urban 

areas such as Buffalo, Rochester, or Albany (Flores et al., in prep.). When there are 

revisits, these revisits may also be at inconsistent intervals and/or seasonally biased 

(Flores et al., in prep). There are even roads without SVI captured, easily visible in 

Google’s web map interface (Google, n.d. a). Together, these attributes cause spatial and 

temporal gaps to be present in this data source. Further, because Google publishes revisit 

locations at a county resolution and only for the current year (Google, n.d. b), it may be 

hard to plan how to use SVI for specific, targeted locations. In this sense, the data that 

can be gleaned from SVI is somewhat “opportunistic” in nature.  

When looking towards future applications of these methods and data, the cost of 

SVI (though low) is worth consideration. There is a $5.60 – $7.00 charge per 1,000 

panoramas depending on volume ordered (Google, 2022). Considering the median 

geodesic distance of panoramas being 2.4 m apart in Broome County, NY, regional 

datasets can have tens if not hundreds of thousands of panoramas. One potential cost-

saving measure could include purchasing panoramas at lower intervals since infestations 

are often visible from several panoramas. Flores et al. (in prep.) also designed several 
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computer vision models to be constrained to flowering dates of the target plant, so careful 

selection of capture dates could also make SVI more cost-effective.  

The framework and analyses presented here act as launching points with myriad 

potential future applications. With computer vision model predictions for larger spatial 

extents, results can be shared that are relevant to more managers, and existing reporting 

biases can be examined. Larger spatial scales also enable ecological analyses that are 

more representative of all roadside conditions, without the potential bias of selecting 

locations near streams as was the case in this study. With historical panoramas available, 

temporal resolution could be increased. A higher temporal resolution would allow for 

identifying and comparing spread rate with various road, land use, and habitat 

characteristics. Pre- and post-construction imagery could provide insight into the specific 

timing of culvert introductory events to examine fill soil more directly as an introductory 

medium. There is also potential to monitor biocontrol efficacy, for both the target plants 

studied here and others brought into the detection pipeline.  
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