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Abstract 
Android is the world's most popular and widely used operating system for mobile smartphones today. One 

of the reasons for this popularity is the free third-party applications that are downloaded and installed and 

provide various types of benefits to the user. Unfortunately, this flexibility of installing any application 

created by third parties has also led to an endless stream of constantly evolving malware applications that 

are intended to cause harm to the user in many ways.  
In this project, different approaches for tackling the problem of Android malware detection are presented 

and demonstrated. The data analytics of a real-time detection system is developed. The detection system 

can be used to scan through installed applications to identify potentially harmful ones so that they can be 

uninstalled. This is achieved through machine learning models.  
The effectiveness of the models using two different types of features, namely permissions and signatures, 

is explored. Exploratory data analysis and feature engineering are first implemented on each dataset to 

reduce a large number of features available. Then, different data mining supervised classification models 

are used to classify whether a given app is malware or benign. The performance metrics of different models 

are then compared to identify the technique that offers the best results for this purpose of malware detection.  
It is observed in the end that the signatures-based approach is more effective than the permissions-based 

approach. The kNN classifier and Random Forest classifier are both equally effective in terms of the 

classification models. 

 Keywords: Android, malware, benign, permissions-based, signatures-based.  



iii 

Table of Contents 
 

Acknowledgments ......................................................................................................................................... i 

Abstract ........................................................................................................................................................ ii 

List of Figures .............................................................................................................................................. v 

Chapter 1 ...................................................................................................................................................... 1 

1.1 Background Information ................................................................................................................ 1 

1.2 Project Definition and Goals .......................................................................................................... 2 

1.3 Analysis Methodology ..................................................................................................................... 3 

1.4 Limitations of the Study ................................................................................................................. 5 

1.5 Sources of Data ................................................................................................................................ 6 

Chapter 2 ...................................................................................................................................................... 7 

2.1 Literature Review ............................................................................................................................ 7 

Chapter 3 .................................................................................................................................................... 11 

3.1 Analysis Structure ......................................................................................................................... 11 

3.2 Detailed Analysis ........................................................................................................................... 11 

3.2.1 Descriptive Analysis and Feature Selection ........................................................................ 12 

3.2.1.1 Permissions Data ........................................................................................................... 12 

Data Description ........................................................................................................................ 12 

Data Cleaning ............................................................................................................................ 13 

� Feature Selection ................................................................................................................... 13 

Frequency Counts ..................................................................................................................... 14 

Chi-Square Test ......................................................................................................................... 14 

� Exploratory Analysis ............................................................................................................. 15 

3.2.1.2 Signatures Data ............................................................................................................. 18 

Data Description ........................................................................................................................ 18 

Data Cleaning ............................................................................................................................ 19 

� Feature Selection ................................................................................................................... 19 

Correlation ................................................................................................................................. 20 

Chi-Square Test ......................................................................................................................... 21 

� Exploratory Analysis ............................................................................................................. 22 

3.2.2 Predictive Modelling ............................................................................................................. 25 

3.2.2.1 Data Mining Introduction ................................................................................................. 25 

� kNN Algorithm ...................................................................................................................... 26 



iv 

� Logistic Regression ................................................................................................................ 26 

� Random Forest ...................................................................................................................... 28 

� Performance Measurement .................................................................................................. 28 

Confusion Matrix ...................................................................................................................... 28 

Performance Metrics ................................................................................................................. 29 

3.2.2.2 Permissions-based Approach ............................................................................................ 30 

kNN Classifier ............................................................................................................................ 31 

Logistic Regression Classifier .................................................................................................. 32 

Random Forest Classifier ......................................................................................................... 32 

Feature Importance ................................................................................................................... 33 

3.2.2.3 Signatures-based Approach .............................................................................................. 34 

kNN Classifier ............................................................................................................................ 35 

Logistic Regression Classifier .................................................................................................. 35 

Random Forest Classifier ......................................................................................................... 36 

Feature Importance ................................................................................................................... 37 

3.2.3 Comparison of Results .......................................................................................................... 38 

Chapter 4 .................................................................................................................................................... 40 

4.1 Conclusion ...................................................................................................................................... 40 

4.2 Recommendations ......................................................................................................................... 40 

References .................................................................................................................................................. 41 

 

 

 



v 

List of Figures 
Figure 1: Number of Android Malwares Per Year ........................................................................................ 1 
Figure 2: Android Malware Detection Techniques ....................................................................................... 2 
Figure 3: Project Methodology ..................................................................................................................... 3 
Figure 4: Supervised Classification Algorithms ........................................................................................... 4 
Figure 5: Confusion Matrix Illustration ........................................................................................................ 5 
Figure 6: Structure of the Analysis ............................................................................................................. 11 
Figure 7: Chi-Square Test Illustration ......................................................................................................... 14 
Figure 8: Class Distribution of Permissions Data ....................................................................................... 16 
Figure 9: Permissions Data Exploratory Analysis Results .......................................................................... 17 
Figure 10: Signatures Data Correlation Heatmap ....................................................................................... 21 
Figure 11: Class Distribution of Signatures Data ........................................................................................ 22 
Figure 12: Signatures Data Exploratory Analysis Results .......................................................................... 23 
Figure 13: Types of Classification .............................................................................................................. 25 
Figure 14: kNN Algorithm Concept ............................................................................................................ 26 
Figure 15: Logistic Regression Concept ..................................................................................................... 27 
Figure 16: Random Forest Concept ............................................................................................................ 28 
Figure 17: Confusion Matrix Illustration .................................................................................................... 28 
Figure 18: Feature Importance of Permissions Data Model ....................................................................... 33 
Figure 19: Feature Importance of Signatures Data Model .......................................................................... 37 
List of Tables 

Table 1: Examples of Permissions-related features .................................................................................... 13 

Table 2: Examples of Signatures related features ....................................................................................... 19 

Table 3: Summary of Results ...................................................................................................................... 38 

 



1 

Chapter 1 
1.1 Background Information 
The first Android smartphone was launched in September 2008, and shortly thereafter, smartphones 

powered by the new open-source operating system were everywhere. In 2021, almost 12 new enhanced 

versions of Android were released, and it is the most widely used mobile operating system in the world, 

with an 84% share of the global smartphone market [1].  

With this level of adoption coupled with the open-source nature of Android applications, security attacks 

are becoming more and more ubiquitous and seriously threaten the integrity of Android applications. 

Statistics show that more than 50 million malware and potentially unwanted applications (PUA) have been 

identified for Android [2]. 
Figure 1: Number of Android Malwares Per Year 

 

Researchers have been studying the nature of malware applications for many years and have categorized 

them into different families [3]  

• Trojans: These appear as benign apps and aim to steal the user's confidential information without 

the user's knowledge. 

• Backdoors: These exploit root grant privileges and aim to gain control over the device and 

perform any operation without the user's knowledge. 

• Worms: This malware creates copies of itself and distributes them over the mobile device's 

networks. 

• Spyware: These appear as benign apps designed to monitor the user's confidential information, 

such as messages, contacts, location, bank information, etc., for undesirable consequences. 
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• Botnets: A botnet is a network of compromised Android devices controlled by a remote server. 

• Ransomware: This malware prevents users from accessing their data by locking the mobile phone 

until a ransom amount is paid. 

• Riskwares: These are legitimate that malicious authors exploit to reduce the device's performance 

or harm their data. 

Standard approaches to detecting malware can be of two types – Static and Dynamic. 

• Static Approach:  

In this approach, the functionalities and maliciousness of an application can be checked by 

disassembling and analyzing its source code without actually executing the application.  

• Dynamic Approach: 

In this approach, the application is examined during execution and can help identify undetected 

malware by static analysis techniques due to code obfuscation and encryption of the malware. 

These approaches can be further sub-divided based on the method of anomaly detection. Some of these 

sub-divisions are shown in the diagram below – 
Figure 2: Android Malware Detection Techniques 

 

1.2 Project Definition and Goals 
The goals and objectives of the project are two-fold:  

1. to achieve good accuracy in detecting malware from samples of benign and malware applications 

using multiple approaches, and 

2. to compare the results of different approaches and algorithms and provide recommendations on 

the best strategy for malware detection 

Specifically, I focused on two static approach methods – the Signature-based and Permission-based 

detection methods. These two methods are described below. 

• Permission-based malware detection: 

In Android smartphones, the permissions granted to an application are essential in governing the 

access rights given to that application. E.g., At the time of installation, the user can grant an 
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application the permission to send information over the internet or access contacts. These 

permissions are assumed to be needed for the application to perform its designed functions. 

However, many times, applications request permissions that are not required for their 

functionality.  

By analyzing the combinations of permissions requested by benign and malware applications, it is 

possible to identify whether an application is malware or not. This can be achieved by training 

machine learning classification models with data from known malware and benign applications. 

• Signature-based malware detection: 

This is a method that is commonly used by commercial antimalware products. In this method, 

signatures are generated for the various API calls that the application will make. By identifying 

patterns of such signatures and comparing these signatures with existing malware families’ 

signatures, it is possible to detect whether an application is benign or malware. 

Project Definition: 
In this project, I demonstrate both permission-based and signature-based methods using two different 

datasets.  
By using publicly available labeled data sources, different classification models are built to distinguish 

between malware and benign applications. The first data source contains information on permissions 

granted to the applications, while the second data source contains information on API call signatures of 

the applications.  
Various data mining models are trained, and their performance metrics, such as precision and recall, are 

analyzed and compared. This comparison is first made for different classification models within an 

approach. Then, the best results for each approach are compared to understand which of the two systems 

is better for detecting malware. 

1.3 Analysis Methodology 
The step-by-step methodology followed in this project is illustrated below. 
Figure 3: Project Methodology 

 
Dimensionality Reduction: 
The datasets used in the project had a large number of features, so it was necessary to reduce the 

dimensions before using classification algorithms.  

The dimensions are reduced using a combination of three methods –  

• Frequency Counts: 
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Features that contain only one unique value are removed because they cannot help differentiate 

between the classes 

• Correlations: 

If there are any features that are highly correlated to each other, then only one of those features is 

retained. 

• Chi-Square Test: 
This statistical test for categorical variables is conducted to check which of the features are more 

associated with the class variable. The top 20 of such highly associated features are selected. 

Exploratory Analysis: 
In this step, visualizations are used to deep dive into the data.  

• The data is split into two classes – malware and benign.  

• Each feature is explored individually, and I try to see the distribution of values of the feature 

when split by the class variable.  

• This step helps in identifying the potentially differentiating features. The features whose 

distributions differ significantly between malware and benign classes will likely be the most 

important features. 

Modeling using Supervised Classification Algorithms: 

• The dataset is first broken up into training and testing datasets. 

• The training set is used to train the classification algorithm, while the testing set is used to 

validate the results seen on the training set and address overfitting issues. 

• Three different supervised classification algorithms are used for each approach to perform the 

classification into benign and malware classes. 

• These algorithms are – kNN, Logistic Regression, and Random Forest. 
Figure 4: Supervised Classification Algorithms 

 
Model Performance Measurement: 

• Performance measurement of the classification process is first done using the confusion matrix. 
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Figure 5: Confusion Matrix Illustration 

 
• Additional performance measures are also calculated and used as the basis for comparison.  

o Precision: measures how many of the applications the model classifies as malware are 

true malware – should be as high as possible 
o Recall: measures how many of the malware samples in the dataset are correctly classified 

as malware – should be as high as possible 

o F1-score: It is the harmonic mean between precision and recall and measures the overall 

accuracy of the model – it should be as high as possible. 

Performance Comparison: 

After all the models are built, results are compared to identify the best model and approach. 

• A recall score is selected for comparison.  

• In a malware detection problem, it is more important to identify all the true malware correctly 

than to ensure that all the malware identified is actually true malware. Therefore, recall is more 

important than precision.  

• A comparison of recall scores is made first between the three classification algorithms within 

each approach. This helped in identifying the best algorithm for each approach.  

• A comparison of recall scores is then made between the two approaches. This helped in 

identifying the best approach for the purpose of malware detection. 

1.4 Limitations of the Study 
Limitations of using the permission-based method: 

o Differences between permissions requested by benign applications and malware applications are 

small, and thus challenging to get excellent performance 

Limitations of using the signature-based method: 
o Since the signature-based method compares the signature of an application with that of existing 

malware, it cannot detect unknown malware types 

o This method can be evaded by code obfuscation, method renaming, string encryption techniques, 

etc., because it can only identify existing malware and fails against unseen variants. 
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Limitations of the overall project: 
o Due to limited resources, only 20 features are finally used in modeling. Although possibly the 

best 20 features are selected through feature selection methods, it is possible that a few important 

may have been missed. 

o The project is highly dependent on the datasets created by external researchers. The authenticity 

and robustness of the data are not verified. Consequently, we should be careful when generalizing 

the results of the project.  

o The project is limited to the two Android malware detection approaches – permissions-based and 

signatures-based. There could be other approaches that will give better performance than the ones 

considered in this project.  

1.5 Sources of Data 
The raw permissions dataset is obtained from the following source -  

Mahindru, Arvind (2018), "Android Malware and Normal permissions dataset," Mendeley Data, V5, doi: 

10.17632/958wvr38gy.5 

The signatures data is obtained from Malgenome - Android Malware Genome Project, which is a 

repository of thousands of Android applications pre-classified into Malware and Benign. 

Overview and descriptions of these datasets are further provided in Chapter 3.  

 

  



7 

Chapter 2 
2.1 Literature Review 

After conducting a thorough literature review of the research in the area of Android malware 

detection, I observed different types of objectives of such research. Many research articles are focused on 

surveying existing methods of solving the malware detection problem. These articles do a systematic 

review of different techniques that other researchers have used for this purpose and compare the results.  

Liu et al. (2020) review in detail different approaches and research status from different 

perspectives like sample acquisition, data preprocessing, feature selection, machine learning algorithms, 

and performance evaluation. Finally, Odusami et al. (2018) review existing malware detection methods, 

including static and dynamic analysis approaches, describe the strengths and weaknesses of each 

approach, and conclude that machine learning-based methods show the best detection accuracy and thus 

are promising for the future.  

Some studies are focused on choosing the correct feature set. The features used are just as crucial 

to the end outcome of the malware detection exercise as the techniques and algorithms used to perform 

the detection. So, these studies provide valuable insight into the right feature set to use. Wen et al. (2017) 

use a combination of features from both static and dynamic analysis, then apply PCA to reduce the 

dimensionality of data and use SVM to perform the classification of applications into benign and malware 

classes. Roy et al. (2020) build a feature extraction module that performs static analysis to map each API 

call to certain features. Then, feature vectors are generated, and dimensionality is reduced, following 

which classification algorithms are used to differentiate between benign and malicious applications. 

Daoudi et al. (2021) convert the bytecode of the application into grey-scale vector images and use 1-

dimensional Convolutional Neural Networks to detect malware. This approach circumvents the need for 

creating comprehensive hand-crafted features and uses the raw bytecode of the application for analysis. 

Jiang et al. (2020) study the permissions frequently used by malicious applications and identify 

permissions they call dangerous fine-grained permissions, which better differentiate benign and malicious 

applications. These features are then used in machine learning models to perform the classification. 

Other studies focus more on optimizing the detection algorithm than the feature set. These studies 

are focused on improving the detection performance by choosing the right machine learning algorithm 

and/or using various techniques to enhance the performance of traditional algorithms. Rathore et al., 2021 

use multiple types of static analysis features and compare the performance of different machine learning 

and deep learning techniques, both supervised and unsupervised. They found that the baseline Random 

Forest model without any feature reduction achieved the best performance. Shao et al., 2021 extract 

features from the Android application package, use the relief feature selection method to select features, 
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use different sampling strategies to address the class imbalance, and improve traditional ensemble 

bagging algorithms to achieve the best performance.  

There are also studies in the literature that use a combination of multiple techniques instead of 

applying one technique to improve results. These studies tend to develop a complex approach but can 

possibly lead to better results. Yerima et al. (2018) use a combination of machine learning algorithms for 

increased the performance of the detection system. They first perform classification using base classifiers 

and then re-classify the base classifier predictions using ranking-based algorithms to achieve the final 

prediction. Almin et al. (2015) analyze permissions requested by applications at the time of installation 

and perform a combination of clustering and classification to detect malware.  

In a study conducted by Syrris and Geneiatakis (2021), the authors start by appreciating how much 

the Android operating system has, over the years, been advancing in enhancing its robustness. The 

robustness is associated with the advanced technologies, significant community support, and availability of 

tons of resources on the internet. However, all these privileges come at a cost on source platforms in which 

security is compromised. In this regard, malicious applications find a way to bypass some security 

protocols. In addressing this problem, Syrris and Geneiatakis (2021) state that there are several approaches 

that can be used to leverage machine learning to detect malware through the help of static analysis data. 

According to Kumar et al., 2018 statistical analysis and feature extraction are the two main methodologies 

that support machine learning in malware detection processes. 

In research that was conducted by Li et al. (2018), the authors indicated that new malicious Android 

applications are introduced into the mobile ecosystem every ten seconds. This statistic is worrying, and 

there are chances of interfering with the mobile ecosystem growth globally if something is not done. 

Further, the authors acknowledge that there is a need for this problem to be addressed before it affects the 

integrity of the Android software engineering processes. In combating the problem, the authors 

acknowledge the need to have a scalable malware detection approach based on the dynamics of the mobile 

ecosystem and the development of Android applications.  

The advancements in terms of technology in developing android operating systems have created 

more opportunities like the existence of e-commerce, among others. However, it has led to more challenges 

like cyber-attacks. Among the challenges posed by android devices and the mobile ecosystem as a whole, 

malicious applications have undoubtedly taken the lead (Christiana et al., 2020). The malware has also 

continued to advance in terms of sophistication and intelligence such that it has become hard for them to 

be easily detected through the existing systems. For instance, signature-based systems used for malware 

detection have become inefficient in detecting advanced malware applications (Christiana et al., 2020). As 

a result, machine learning techniques are now at the top in dealing with this challenge. 
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Cybercrimes are rapidly increasing on Android-based devices because of their wide usage across 

the globe. This increase has made it possible for malicious individuals to engineer malicious applications 

for their gains and at the expense of the users. In this research, the authors concur with Christiana et al. 

(2020) that the deployment of machine learning techniques is the option needed for curbing malicious 

android applications. Malicious applications can be classified using machine learning models to 

differentiate between benign and malicious android applications (Sharma et al., 2020). Additionally, a 

comparative analysis aimed at calculating the computational time necessary to detect malicious applications 

is a requirement necessary in machine learning techniques.  

The challenge posed by this mechanism is based on the fact that some large bundle applications 

cannot be easily scaled hence creating the need for Significant Permission IDentification (SigPID). This 

approach has an efficiency of about 93.62 percent of malware detection in a particular dataset, making it 

the best method to detect malware. SigPID uses permission usage to analyze the increasing number of 

humanoid malware. It is not necessary for the engineers to analyze all humanoid permissions for them to 

detect the existence of malware (Assisi et al., n.d). Instead, mining the permission information is critical in 

determining the most important permissions that can easily lead to the classification of malicious and benign 

applications, hence complementing machine learning in malware detection. Kyaw and Kham (2019) 

reiterate that a scalable malware detection method that yields optimum results is the use of permission 

analysis through the SigPID approach. Malware applications are thus identifiable through the analysis of 

the permission behavior. Additionally, pruning procedures are therefore necessary for identifying the most 

significant permissions that will provide the desired results through the multilevel pruning methodology.     

Android applications are readily available because of the comprehensive community support and 

other open sources that make it easier for malware engineers to develop more malicious applications. 

Android devices have been the target for malware applications because of the worldwide reception of the 

android devices (Kumar et al., 2018). For the purpose of reaching high levels of accuracy when detecting 

malware, a small subset of specific features should be considered. Furthermore, Android is actively 

implementing new security controls, including the use of a unique user ID (UID) and system permissions 

for every application (Rana et al., 2018). Therefore, the use of machine learning classifiers has become one 

of the best approaches for detecting any android malware in the mobile ecosystem and other android 

devices.  

Fallah and Bidgoly (2019) research demonstrated the need to benchmark machine learning 

algorithms before the associated techniques can achieve the required level of efficacy. The basis of this 

approach is identifying the family of particular malicious applications. Moreover, the authors demonstrate 

the need to use combined techniques to get optimum results that are consistent across the platforms based 

on the selected datasets or classifications of the malware. In this context, the authors recommend using 
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machine learning and network-based detection techniques. In the case of machine learning, the detection 

process should work in both the unsupervised and supervised machine learning methods to get viable results 

that will be used in the decision-making process. However, this research does not clearly demonstrate how 

machine learning algorithms will handle the new variants of malware that have not been tested through the 

existing algorithms. This means that for the machine learning techniques to be effective, the algorithms 

have to be updated every often to capture and detect new families of malware.              

The rising attacks on smartphones result from Android being the most used OS. In this context, the 

authors give a reason why it has been so easy for attackers to use malicious Android applications to launch 

attacks. The prompts posed to the user when installing the applications that require them to accept all sorts 

of necessary permissions before the installation are the main issue. Before a user gives the needed 

permissions, some applications fail to install, leaving the user with no option but to provide the permissions 

(Singh et al., 2022). Consequently, some Android applications are not approved by the associated 

organizations and might be misused in collecting user data that might eventually be misused. For this 

reason, the application of machine learning algorithms has increasingly been used in detecting Android 

malware. Android classification algorithms like decision trees, vector machines, and random forests form 

the basis of machine learning success in detecting malware on Android devices.   

Considering the above types of literature available, I try to combine two types of studies in this 

project. The project's goal is to determine which feature set works best and explore different detection 

algorithms to determine which works best. It should be noted that the combination of multiple detection 

techniques is not in the scope of this project.   
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Chapter 3 

3.1 Analysis Structure 
The detailed analysis is described in the next section. A step-by-step explanation is systematically 

provided, and the code is also shown along with outputs and results.  

The analysis is split into three main sections – Descriptive Analysis, Predictive Modelling, and 

Comparison of Results. These sections are described briefly in the diagram below.  
Figure 6: Structure of the Analysis 

 

3.2 Detailed Analysis 
This section describes each analysis and includes the python codes that were used to generate these 

analyses. As mentioned in the previous section, it is split into two sub-sections – one for Descriptive 

Analysis and one for Predictive Modelling.  

Before deep-diving into the analyses and results, let us first load the libraries required for analysis, 

visualization, and predictive modeling. 

The panda's library is used to access the datasets, and visualization libraries like matplotlib and seaborn 

are used to generate graphs. The sklearn library will be used for predictive modeling and related 

operations. 
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3.2.1 Descriptive Analysis and Feature Selection 
In the following sections, the permissions dataset and the signatures dataset are explored separately. 

Descriptive analysis is conducted, the number of features in each dataset is reduced through feature 

selection techniques, and the datasets are prepared for running classification algorithms. 

3.2.1.1 Permissions Data 
Let's read the permissions data. 

 

Data Description 

Let’s start by seeing how many rows and columns the permissions data has.  

 
There are 176 columns in the dataset. The vast majority of these are permissions-related columns.  

Let's see the first few rows of the data. 

 
We can see above that each dataset row is identified by the package name ('Package'). Information on the 

category of the app ('Category') is also available. The last column of the dataset ('class') indicates 

whether the app is malware or benign. 

The remaining columns are all permissions related, and they are binary variables - 1 represents the app 

requests for that permission, and 0 illustrates that the app does not request that permission. 
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Some permissions column names are shown below. 
Table 1: Examples of Permissions-related features 

Examples of permissions-related features 

default_access_all_system_downloads 

default_modify_google_settings 

default_change_screen_orientation 

default_directly_install_applications 

default_read_phone_state_and_identity 

default_write_contact_data 

hardware_controls_take_pictures_and_videos 

your_messages_receive_sms 

your_personal_information_read_contact_data 

Data Cleaning 

• Missing Values Check: 

The data should not contain any missing values. If it does, either the missing data should be 

removed, or some type of missing value imputation needs to be performed.  

This is checked as follows -  

 
Therefore, there are no missing values in the data, so no further action is needed. 

• Type Conversion: 

The data types of the columns should be appropriate for the analysis that will be conducted.  

All variables in the permissions data, except for app identifiers like 'Package' and 'Category,' are 

read as categorical variables. For performing classification operations, it is necessary for the class 

variable to be binary (1 and 0). This type of conversion is done as follows -  

 

• Feature Selection 

Since the dataset has 176 columns, not all can be used in predictive modeling. The law of parsimony 

suggests that the best solution to a problem is the one that uses the least number of features. More features 

will also cause performance issues with many data mining algorithms. So, some ways of reducing the 

number of features should be implemented. 

 



14 

Frequency Counts 

One way of reducing the number of features is to identify the ones that will not impact the results. There 

could be some variables that have only one unique value and thus will not help distinguish between malware 

and benign. That is, these features are 0 for all rows or 1 for all rows.  

In the following chunk, the value counts of each column in the dataset are calculated, and identify the 

columns that are all 0 or all 1.  

 
These columns cannot be removed from the original dataset.  

 
Only ten columns were removed, and thus there are still too many features in the data.  

Chi-Square Test 

The goal of feature selection is to retain the features that differentiate the classes with the most features 

using a chi-square test analysis.  

The Chi-square test is used for categorical features in a dataset. By calculating Chi-square scores between 

each feature and the target ‘class’ variable, it is possible to identify the top differentiating features. For 

this project, the top 20 features with the best Chi-square scores were selected. 

The Chi-square test of independence works by comparing the combined frequency table of the two 

categorical variables. A chi-square score is calculated using the following methodology -    
Figure 7: Chi-Square Test Illustration 

 
If the chi-square score is greater than the critical chi-square value for the chosen significance level, we 

can say that the feature has some association with the class variable.  



15 

By applying this to all the features, the top 20 features were selected as per their chi-square score with the 

class variable. The following code achieves this. 

 
The top 20 features chosen through this process are as follows –  

 
Only the above features are used for further modeling and analysis. 

• Exploratory Analysis 

In this section, I first check the split between malware samples and benign samples in the data. There 

should be a sufficient number of each type of samples to run data mining algorithms. This is checked as 

follows. 
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Figure 8: Class Distribution of Permissions Data 

 
Therefore, 65% of the data is in the 'Benign' class, and 35% is in the 'Malware' class. There are sufficient 

samples in each class to proceed with the analysis. 

Now, I look at the split of 'Yes' and 'No' for each feature when broken down by Benign and Malware 

samples. This will help visually identify features that most differentiate malware and benign apps. 

 
The results are shown below. 
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Figure 9: Permissions Data Exploratory Analysis Results 
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From the above plots, it can be observed that in terms of absolute difference in percentages, the features 

'read_phone_state_and_identity' and 'write_contact_data' differentiate between malware and benign 

samples the most.  

This means that 23% of malware apps request 'read_phone_state_and_identity' permission and 0% of 

benign apps do so. Therefore, if an app requests this permission, we can predict that it is malware. 

In subsequent sections, when we do predictive modeling, we can expect that these features with high 

differences will be the key drivers of prediction. 

3.2.1.2 Signatures Data 

For the predictive modeling, the signatures data was used to test the effectiveness of the signatures-based 

method. The original dataset contained hundreds of different types of features. For this project, only the 

API signatures related features were selected. Similar to the permissions data exploration, I first read this 

dataset and then conducted the descriptive analysis as well as applied feature selection methods. 

 

Data Description 

Let’s see how many rows and columns the signatures dataset has.  

 
The first few rows of the data are shown below –  

 
Therefore, the dataset contains 73 columns, of which 72 are API signature related, whereas 1 is the class 

variable that indicates whether the record is malware or benign. 

API signatures are basically parts of the source code of the Android application. These signatures for a 

particular app will contain all the possible operations and interactions of the app with the Android phone. 

Each column in this dataset represents one such function in the app source code. 

As can be seen in the first few rows above, all the signature-related variables are binary. 1 indicates that 

the source code of the app contains that signature function, and 0 indicates that it does not have that 

signature function. 
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Similar to earlier, some names of signature columns are shown below to get a sense of the type of features 

available. 
Table 2: Examples of Signatures related features 

Examples of signatures-related features 

transact 

android.content.pm.PackageInfo 

android.telephony.SmsManager 

TelephonyManager.getSimSerialNumber 

HttpPost.init 

Ljava.lang.Class.getCanonicalName 

System.loadLibrary 

Ljava.net.URLDecoder 

sendMultipartTextMessage 

As these column names show, these signatures are part of the android app code and are used to perform 

specific operations. There could be some signatures that are not common in benign apps but are common 

in malware apps. Thus, these signatures provide a way of detecting whether an app is malware or benign.  

Data Cleaning 

• Missing Values Check: 

Like with the permissions data, the number of missing values in the dataset is checked as follows: 

 
 

Therefore, there are no missing values, and the data appears to be clean. No action is needed. 

• Type Conversion: 

Like earlier, let's convert the 'class' variable into a binary variable instead of a categorical 

variable. This will help later in performing the classification. 

Unlike the permissions data, the class variable in the signatures data contains categories 'S,' and 

'B.' 'S' stands for Suspect and 'B' stands for Benign. So, I convert them to binary accordingly. 

 

• Feature Selection 

As seen above, the data has 72 features. The aim of this section is to reduce this number to 20 features 

like in the permissions data analysis. 
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I first calculate the value counts of each column in the dataset to see which the top 10 most frequently 

occurring features are for malware apps.  

 

 
Correlation 

It can be observed above that some of the features are similarly named, for example, 'Binder' and 

'IBinder.' We can look for correlations in the data to see if any features that are highly correlated to others 

can be removed. 

Below is a correlation heatmap of all the features in the dataset. Lighter colors in the grid indicate a 

higher correlation. 
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Figure 10: Signatures Data Correlation Heatmap 

 
It can be observed above that there are many variables that are highly correlated to other variables.  

For this project, a threshold of 0.8 is set up in order to represent high correlation and remove all variables 

that have a correlation coefficient with any other variables greater than 0.8. This is done below. 

 
After the execution of the above chunk, the dataset features have been reduced from 72 to 59. 

 

Chi-Square Test 

The chi-square test for independence can be applied to choose the best 20 features in the signatures 

dataset as well as presented in the following chunk. 
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The top 20 features chosen through this process are as follows. 

 
 

The dataset is now subsetted for only these columns, which will be used for analysis. 

 

• Exploratory Analysis 

In this section, exploratory analysis is performed for the permissions dataset. 

First, check the split between malware samples and benign samples in the data. It is required a sufficient 

number of each type of samples to run data mining algorithms. 

 
Figure 11: Class Distribution of Signatures Data 
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Therefore, 67% of records in the data belong to the 'Benign' class, and 33% belong to the 'Malware' class. 

There is a sufficient number of records in each class to proceed further. 

We can now look at the split of 'Yes' and 'No' for each feature when broken down by Benign and Malware 

samples. These plots are shown below. 

 
Figure 12: Signatures Data Exploratory Analysis Results 
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We can visually identify that the features that appear to differentiate Malware samples from Benign 

samples the most are 'transact,' 'getCanonicalName,' 'getSubscriberId,' etc. These may be important 

predictors in the next step. 

With the above analyses, the exploratory analysis and feature selection phase is concluded. The next step 

is to build classification models to compare the performance measures within and across the two types of 

malware detection methods.  
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3.2.2 Predictive Modelling 

3.2.2.1 Data Mining Introduction 

The two datasets have been subsetted, and variables that best differentiate malware and benign applications 

have been identified. The subsetted datasets are used in this Predictive Modelling section. 

Data mining techniques can be categorized into three main types -  

• Association Rule Learning - systemically searching for relationships (or associations) between 

variables 

• Classification - categorizing data into discrete classes 

• Regression - mathematically modeling numerical data to predict the next value in the sequence 

The objective of this project is Malware Detection. In this problem, we need to categorize the data into 

'Malware' and 'Benign' classes. Therefore, the best-suited technique for this purpose is Classification. 

Machine Learning methods can be supervised and unsupervised. Supervised classification is used when 

knowledge of the classes for samples in the training data is known. So, if we already know whether the 

applications we are training the model with are malware or benign, we can use supervised classification.  

Unsupervised classification is used with unlabeled data. Clustering is a typical example of unsupervised 

classification where we group uncategorized samples into clusters based on their attributes. 
Figure 13: Types of Classification 

 
In our case, we have prior knowledge of the classes for samples in the training data. Thus, we will use 

supervised classification techniques. 

There are many different types of supervised classification methods, each with its benefits. Some 

classification methods are rudimentary, while others are more complex. Usually, the performance results 

we can observe from different data mining methods will be different. So, we will experiment with three 

different supervised classification methods to identify the one that gives the best results.  
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The classification algorithms selected for this study are as follows:  

• k-Nearest Neighbour 

• Logistic Regression 

• Random Forest 

The logic behind each of these algorithms is explained below. 

• kNN Algorithm 

The k-nearest neighbor algorithm works by comparing the proximity of a new sample to known samples. 

Proximity is usually measured using the Euclidean distance.  

The value of k represents the number of closest known samples considered to determine the class of the 

new unknown sample. This is an input to the kNN algorithm, and the final result of the classification is 

dependent on this input value.  

First, k samples from the existing known set that is closest to the new unknown sample are identified using 

a proximity measure. The values of the features of each sample are used to calculate the proximity measure. 

Once the k nearest neighbors are identified, the split of classes among these k samples is determined. The 

class that occurs most frequently among these k nearest samples is assigned to the new unknown point.  

An example is shown below where the star point represents the new unknown sample, and the circles 

represent existing known samples. The color as shown represents the class of the existing samples.  

If we choose a k of 3, two of the three closest neighbors belong to Class B, whereas one of the three closest 

neighbors belongs to Class A. So, the class assigned to the new point will be Class B. If we choose a k of 

6, two of the six closest neighbors belong to Class B whereas four of the six closest neighbors belong to 

Class A. So, class assigned to the new point will be Class A. 
Figure 14: kNN Algorithm Concept 

 

• Logistic Regression 
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The Logistic Regression technique works by using a special function called the 'Logistic (or Sigmoid) 

function' to model the binary dependent variable.  

It essentially models the log-odds of the binary dependent variable using a linear regression model. The log 

odds are then converted to probabilities which vary from 0 to 1 for each class. Depending on the value of 

this predicted probability, classification can be made. 

For example, if the predicted probability is greater than a certain threshold (usually 0.5), the sample is 

classified as Class A, and if it is less than the threshold, the sample is classified as Class B. 

The below diagram demonstrates how this classification is done using the Sigmoid curve. 

Probability is shown on the Y-axis, and the threshold value is highlighted. Depending on whether the new 

sample lies above or below this threshold value, classification is done. 
Figure 15: Logistic Regression Concept 

 
The equation of the logistic curve is shown below. This equation is solved similarly to a linear regression 

model.  

Here,  

Xi  features are used to make the prediction 

βi are the coefficients that are obtained by solving the equation 

P is the probability of the sample belonging to the positive class 

The left-hand side term is typically called the 'Log-likelihood.' 
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• Random Forest 

The third model used in the project is the Random Forest algorithm.  

Random Forest is an extension of the decision tree algorithm. It works by building many decision trees 

using a random subset of samples and a random subset of features for each tree. This process of selecting 

only a subset of the samples and features is called bagging. 

An example is illustrated below. Individual decision trees are constructed, each with a different random 

subset of samples and features. Then, the output classes from each of the individual decision trees are 

considered, and the majority class is allocated as the final class to the unknown sample. 
Figure 16: Random Forest Concept 

 

• Performance Measurement 

It is essential to visualize the confusion matrix and calculate specific performance metrics to evaluate any 

data mining classification algorithm. These will help in analyzing the performance of each method and 

comparing the performance of different methods. 

Confusion Matrix 

Confusion Matrix is the tabular representation of the actual classes vs. predicted classes. It indicates the 

number of samples in each quadrant. It helps in understanding the True Positives, False Positives, True 

Negatives, and False Negatives predicted by the model. Thus, it helps in assessing how best the model 

has performed the classification. A confusion matrix is shown below. 
Figure 17: Confusion Matrix Illustration 



29 

 
Whereas: 

TP - True Positive: Refers to the positive tuples that were correctly labeled by the classifier.  

FP - False Positive: Refers to the positive tuples that were incorrectly labeled by the classifier. 

FN - False Negative: Refers to the negative tuples that were incorrectly labeled by the classifier. 

TN - True Negative: Refers to the negative tuples that were correctly labeled by the classifier. 

Performance Metrics 

In addition to the Confusion Matrix, I calculate the following performance metrics and compare these 

across models to determine which model works best. 

• Precision: 

Precision measures how frequently a sample app is malware when the model predicts that it is 

malware. In other words, it is the True Positive Rate of the model. It is calculated by dividing the 

True Positives by the total number of Positive predictions. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

• Recall: 

Recall measures how much of the actual malware in the data is correctly predicted as malware by 

the model. This measure helps in ensuring that the model accurately detects as much malware as 

possible to prevent harm. It is calculated by dividing the True Positive by the total number of 

actual Positive samples. 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃
𝑃

 

• F1-score: 

The F1 score is the harmonic mean of the precision and the recall. It is a measure of the overall 

accuracy of the classification model. 

The highest possible F1 score is 100, and the lowest possible is 0. Higher the F1 score, the better 

the accuracy of the model. 
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𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙

 

 

The below function written in python will be used to visualize the confusion matrix and calculate 

performance metrics in subsequent sections. 

 
Now that we understand how each of the data mining techniques works and how to use the performance 

metrics to decide which technique is better, we can proceed with applying these to the malware detection 

datasets. 

In the following sections, the results of each type of classifier are described first on the permissions 

dataset and then on the signatures dataset. 

3.2.2.2 Permissions-based Approach 

First, read the cleaned dataset that was generated in the Descriptive Analysis section. 

 
It is necessary to separate the feature variables and class variables. The feature variables are the 

independent variables that will help with the prediction, and the class variable is the dependent variable 

that indicates whether the sample is malware or benign. 

 
Next, I split the whole dataset into train and test sets. The train set will be used to train the data mining 

models, and the test set will be used to measure their performance. I randomly select 70% of the samples 

as the train set and the remaining 30% as the test set. 
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Now, let’s initialize the models.  

For the purpose of model evaluation and to compare models, I use the recall score. This is because it is 

crucial for a malware detector to detect as much malware as possible to minimize harm accurately.  

I also do a 5-fold cross-validation that will split the train set into five equal parts and run the model 5 

times, each time considering one of the five parts as the validation set. This way, I calculate the average 

recall score, which is a more robust value than if the model is run only once. 

 

kNN Classifier 

Let's start with the results of the kNN classifier. Select k=3 and run the model. 

 
The confusion matrix and performance metrics for the test set can be viewed as follows –  

Test Data: 

 
Results  

Recall of ~78% indicates that the model is able to correctly capture 78% of all the malware in the testing 

set.  

Now, we should see if the other models give better performance metrics than the kNN algorithm. 
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Logistic Regression Classifier 

The Logistic Regression performance is calculated for the testing dataset. 

 
The confusion matrix and performance metrics for the test set are as follows –  

Test Data: 

 
Logistic Regression has a recall score of ~77%, which is not an improvement over the 78% we saw with 

kNN. Therefore, we can say that Logistic Regression is not the best model.   

Random Forest Classifier 

The Random Forest model is selected as the classifier. 

 
Test Data: 
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Therefore, the Random Forest model has a recall score of ~79%, which is slightly higher than the recall 

score of the kNN model. 

There is no single model that is best in the case of the Permissions dataset. All perform similarly, giving a 

recall score of ~78-79%. However, the Random Forest seems to be only slightly better than the others, so 

it is recommended the Random Forest model for the purpose of malware detection with permissions data. 

Feature Importance 

Let's now see which of the features used in the permissions dataset are the best predictors of malware. I 

plot the importance of features below in decreasing order; the taller the bars, the more important the 

feature for the final prediction. 

 
Figure 18: Feature Importance of Permissions Data Model 
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Therefore, it can be seen that the two most important features are - Permission to write contact data and 

Permission to read phone state and identity. 

This is an interesting finding and makes intuitive sense. Not many apps will need to write contact data or 

read the phone's identity. If an app is requesting these permissions, the likelihood that the app is malware 

is higher. 

In summary, the best model for the Permissions-based approach is Random Forest, with a recall score of 

~79%. I now move on to the Signatures-based approach and see if a different set of features helps give 

better results. 

3.2.2.3 Signatures-based Approach 
Similar to the permissions-based approach, the cleaned dataset is loaded that was generated in the 

descriptive analysis section. 

 
I now separate the X and y variables and split the dataset into train and test sets. I follow the same 70-30 

split as in the permissions approach. 
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Let’s initialize the same models as earlier. 

 

kNN Classifier 

Let's see how the kNN classifier performs with the signatures dataset. 

 
The confusion matrix and performance metrics of the test datasets are as follows: 

Test Data: 

 
Therefore, the kNN classifier with a k=3 gives a recall score of ~94% with signatures relate features. This 

is a significant improvement from the permissions-related features. 

Let's now run similar analyses with the other models. 

Logistic Regression Classifier 

The average performance of the Logistic Regression Classifier across the cross-validation sets is as 

follows –  
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The confusion matrix and performance metrics of the test datasets are shown below –  

Test Data: 

 
Logistic Regression gives a recall score of ~93%, which is comparable to what we saw with the kNN 

algorithm. 

Random Forest Classifier 

In this section, the Random Forest model is selected as the classifier. 

 
The confusion matrix and performance metrics of the testing dataset are as follows – 

Test Data: 
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Random Forest also gives a recall score of ~93%. We further observe that the F1 scores of the three 

models are also similar.  

Therefore, there is no single algorithm that performs much better than the others for the application of 

malware detection using signatures-based features. We can use either of the three we experimented with 

above. 

For the purpose of comparison, I proceed with choosing the Random Forest model as with the 

permissions approach. 

Feature Importance 

Similar to the permissions-based approach, let's now view which of the signatures-based features are most 

important. 

A similar plot as earlier is shown below. 

 
Figure 19: Feature Importance of Signatures Data Model 
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Therefore, the three most important features when it comes to API signatures built into the app are –  

Get Subscriber ID, Transact and Get Device ID 

These are similar to the most important features we noted with the permissions approach. If the app has 

built-in functionality to retrieve identification information about the device and the functionality to call 

the Transact API, then it is usually not a benign app and is more likely to be malware. 

With the above results, we can conclude that the signatures-based approach (recall=93%) is much better 

than the permissions-based approach (recall=79%) for detecting malware.  

There is no single model that performs much better than the other models. We could use the Random 

Forest and the kNN algorithms with equal impact. 

3.2.3 Comparison of Results 
To summarize, the performances of all models tested in both approaches are shown below –  
Table 3: Summary of Results 

  kNN Classifier Logistic Regression Random Forest 

Permissions- 

based 

Precision 96.97% 94.65% 97.34% 

Recall 78.43% 77.22% 78.5% 

F1-Score 86.72 85.05 86.91 

     

Signatures- 

based 

Precision 97.23% 93.4% 97.45% 

Recall 94.38% 93.4% 93.4% 

F1-Score 95.78 93.4 95.38 
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The best models for each approach are highlighted above.  

As we can see by comparing the numbers, the best model for the permissions-based approach is Random 

Forest, and the best model for the signatures-based approach is kNN Classifier. However, for all practical 

purposes, we can assume that both Random Forest and kNN Classifier perform similarly.  

Further, if we compare the two approaches, it can be seen that the signatures-based approach gives much 

better recall than the permissions-based approach indicating that using signatures-based features is better 

for malware detection.   
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Chapter 4 
4.1 Conclusion 
In this project, my goal was to use data mining techniques to solve the problem of detecting malware 

applications on Android phones. I solved this problem using two different approaches and, through 

comparison, identified the best approach. I experimented with three different supervised classification 

techniques and identified the best technique for each approach.  

During the study, the signatures-based approach provides high-quality results. The signatures-based 

approach uses features related to API signatures available in the source code of the application. Codes of 

different applications are written differently. Thus there are markers in the code that will help in 

differentiating malware applications from benign applications.  

In addition, Random Forest and kNN Classifier provide the best results in both approaches. Precision and 

Recall scores of 95%-97% were achieved in the project. This means that we can identify 95%-97% of 

malware through this technique.  

In conclusion, I successfully developed a framework for detecting Android-related malware, which is a 

major concern for law enforcement agencies around the world. This type of framework will help cyber 

security departments of law enforcement agencies in Dubai and across the world to swiftly identify malware 

that could be potentially harmful to mobile users. 

4.2 Recommendations 
As a direct result of the work done on this project, the following recommendations are: 

• Select the signatures-based data approach when attempting to detect malware  

• Use kNN or Random Forest algorithms trained using data mentioned in this project to perform 

the classification. 

The following research is required to improve the project further:  

• Explore alternative approaches in addition to permissions and signatures described in the project 

• Explore the possibility of expanding the types of malware that can be detected by combining both 

permissions and signatures datasets 

• Experiment with more advanced classification techniques such as Neural Networks to check if 

they improve the results further. 

Additionally, to create a practical implementation of the work done in this project, an Android 

background application can be developed that will automatically scan any newly installed app and detect 

whether it is malware or benign. This app would run in the background and provide security to the mobile 

phone, just like how antivirus software offers security to a computer.  
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