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Abstract

Quantum computing is a relatively new field starting in the early 1980s when a physi-

cist named Paul Benioff proposed a quantum mechanical model of the Turing machine

introducing quantum computers. Previously, the focus of most quantum computers

is in the study of quantum applications instead of broad applications. This is due to

the fact that quantum technology is a newer field with many technology constraints,

such as limited qubits and noisy environments. However, quantum computers are still

capable of using quantum mechanics to solve specific algorithmns with an exponen-

tial speed-up in comparison to their classical counterparts. One key algorithm is the

the HHL algorithm proposed by Harrow, Hassidim and Lloyd in 2009 [1]. The HHL

algorithm outlines a quantum algorithm to solve a linear systems of equations with

a best case time complexity of O(poly(logN)) [1], in comparison to the best case

time complexity for classical algorithms of O(N3). The HHL algorithm outlines a

use for quantum circuits outside of quantum applications. One such application is in

machine learning, as many networks use linear regression in their training algorithm.

Currently it is not feasible to solve for weight vector of floating point precision on a

quantum computer, but if the weight vector is constrained to binary values 0 or 1

then the problem becomes small enough to implement even on current noisy quan-

tum computers. This work outlines two different circuit designs to solve for 2×2 and

4× 4 systems of equations, so long as the matrices follow the eigenvalue constraint of

having eigenvalues be powers of 2. In addition, the problem of reading data from the

quantum state to classical data is addressed through the use of a swap test between

the solution state |x〉 and an test state |test〉. By using a swap test vector of all 1s it

is possible to find how many ones lay in the solution vector. Once the number of ones

is known, the number of possible solution states is reduced. While it is not possible

to beat classical algorithms with the noise on current quantum circuits, this work

shows it is possible to implement quantum algorithms for non-quantum applications.
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Chapter 1

Introduction

1.1 Motivation

With the advent of machine intelligence and deep learning—in addition to the growth

in computational capabilities and availability of large amounts of labeled data—the

ability of machines in areas such as classification and prediction have grown expo-

nentially. These different deep learning algorithms are computationally intensive due

to the fact that they require multiple numerical calculations and several training it-

erations to arrive at a solution. In, particular, common training algorithms, such as

backpropagation, require a signficant number of computation resources. Backpropa-

gation is a method of training a neural network by fine-tuning its weights based on the

error rate calculated during the previous training iteration. It stands for backward

propagation of errors and calculates the gradient of a loss function with respect to all

the weights in the network. The backpropagation algorithm works by computing the

gradient of the loss function for a single weight using the chain rule and will compute

the gradients one layer at a time.

This operation, while effective, is costly in terms of compute power and memory.

Each weight need to be updated based on a calculated value that propogated from the

loss. In addition, both the weights of the network and the intermediate values need

to be stored in memory, which can be costly depending on the size of the network.
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Chapter 1. Introduction

Due to this compute and memory intensive approach, training neural networks can

be quite time consuming as calculations must be run on large chunks of data. Thus,

a method to decrease training time is needed. With a lowered training time, utilizing

and implementing more complex neural networks becomes more feasible.

One potential method to reduce the overall training time of the network is to

use a specialized accelerator to compute the updated weights for each training batch.

Currently GPUs (graphics processing unit) and TPUs (tensor processing unit) exist

in order to speed up processing time. GPUs decrease training time by performing

parallel calculations while TPUs address the memory-access issue in order to decrease

training time. However, both processing units perform the same intense mathemati-

cal calculations as they are still classical approaches; thus it is worth exploring other

methods of training computation. Quantum computing is an emerging technology

that utilizes quantum properties of entanglement and superposition to implement

quantum algorithms and offer a new method of approach different to classical com-

puters. Due to the fact that these computers use quantum mechanics, they operate

differently than classical computers, such as being able to change multiple states en-

coded in a qubit simultaneously [2]. By showing that a quantum computer can be

used in place of a classical computer for training a network, the potential exists for

quantum computers to be applied to machine intelligence applications.

1.2 Objectives

The goal of this thesis is to establish a proof-of-concept for a potential method of

network training using a hybrid training procedure. The hybrid network will use a

quantum circuit to compute training parameters while a classical approach is used

for supervised training. As the most computationally intense portion of a neural

network is the training portion, by using a quantum computer to speed-up training

calculations there is a possibility to reduce the overall computational time for a net-
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Chapter 1. Introduction

work. In addition, classical computing still possesses many advantages over quantum

computing. Thus, by using classical computers for data pre-processing and overhead

computations one could work-around the limitations of current quantum comput-

ers. Currently, it is not possible for quantum computers to out-perform classical

computers outside of the realm of quantum simulation. However, by establishing a

proof-of-concept, it will show the potential for quantum computers to be applied in

future network training. Towards this goal the following contributions are outlined:

• Implement quantum circuit designs capable of solving specific cases of 2×2 and

4× 4 linear systems of equations.

• Establish accuracy of circuit design by comparing the solution state of the circuit

vs. expected solution state.

• Outline a method of using a swap test, in addition to the quantum circuit for

solving a linear systems of equation, to reduce the search space for weights in a

binary quantized neural network.

• Calculate the error between expected number of 1s in a binary network weight

vector and actual number of 1s

• Outline future directions and further implementations

4



Chapter 2

Background

2.1 Quantized Neural Networks Background

2.1.1 Linear Regression

Linear regression is a method of modeling the scalar relationship between variables.

The relationship model uses linear predictor functions or line of best fit functions in

order to estimate model parameters based on the given data. The linear regression

model can be represented by a general single-equation model. [3]

Y = a+
k∑
i=1

miXi

Where Y is the predicted value and X is parameter representing the relationship

between the independent and dependent variables. a is a constant value and m are

the known data points. The summation adds up the multiplication of a parameter and

its corresponding data value. In the case of just one model parameter the resulting

model will be a straight line of best-fit.

Y = mx+ b

In certain cases, calculating the best-fit line for all the data in the dataset is not the

ideal. Several reasons include datasets being too large, requiring larger amount of
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Chapter 2. Background

memory to store data and a longer processing time, or a need to make the model

more robust to performance with unknown data. In the case of model robustness, a

model may perform well with the given training but may be overfit to that data and

does not do well with unknown data prediction. One way to help mitigate overfitting

to the data is to use a cost function. Cost functions are used in order to calculate the

effectiveness of the prediction model when comparing the calculated values versus the

actual values in a test set. A widely-used cost function is least squares regression,

which adds up the the square of the difference between the actual dependent variable

and calculated expected value. The smaller the value of the calculated cost function,

the higher the accuracy of the model with the test data.

2.1.2 Quantized Neural Networks

A strong argument for neural networks is the fact that neural networks using real

weights are universal approzimators [4]. However, the success of any algorithmn

is its real world applications. In real world applications, theoretical results cannot

be directly compared as real numbers are not as readily available in the real world.

For example, in analog implementation, while they can implement real numbers, their

precision is limited by things such as noise or power dissipation issues [4]. In addition,

the precision of a network is proportional to its cost as a larger VLSI area will need

to be dedicated to storing values. Other technological issues with increased precision

include fabrication limitations, dynamic range problems, defect issues, etc [4]. Thus,

due to limitations present in high precision neural networks such as computation

speed and power usage, an interest was developed in neural networks that utilized

limited precision weights. In the specific case of VLSI implementation, using a limited

range of integer values for weights can translate into reduced storage requirements

and integer computation can be implemented more efficiently than floating point

computation.

6



Chapter 2. Background

When training networks using a low-precision representation of the weights, a

quantized function is used to take a real value number and transform it into a quan-

tized version [5]. Depending on the training routine, quantized optimization can

occur after a training step or during training. The main approaches to training are

currently deterministic versus stochastic. In deterministic rounding, a deterministic

quantization function will round a floating point value to the closest quantized value

as:

Qs(w) = sign(w) ·∆ ·
[
|w|
∆

+
1

2

]
[5]

In the equation above, w is a real-valued number, Q() is a quantization function, and

∆ denotes the quantization step or resolution. One thing to note is that this won’t

be the case for binary weights as all weights will be constrained to one of two values.

In the case of stochastic rounding the quantization function can be defined as:

Qs(w) = ∆ ·


[w
∆

] + 1 for p ≤ w
∆
− [w

∆
],

[w
∆

] otherwise,

p ∈ [0, 1] is produced by a uniform random number generator [5]. The operator is

non-deterministc and will round up with probability w/∆− [w/∆].

However, training quantized models can be difficult. In the case when learning

rates are small, stochastic gradient methods will only make a small update to weight

parameters. Binarization of weights after each training method will round off these

updates and cause training to stagnate [5]. In other cases, rounding procedures can

lead to poor results as information is lost with lower precision. Thus the tradeoff

between training difficulty and resource conservation should be considered during

quantized network application.

7



Chapter 2. Background

2.1.3 Quantized Binary Neural Networks

Of particular interest are quantized binary neural networks, which constrain their

weights to one bit precision. These weights can either have a value of [-1,1] or [0,1].

By constraining the precision of these weights, less dedicated hardware and overall

power use is needed due to the fact that less multiply and accumulates will be neces-

sary during the calculation of updated weights. Generally, multiply and accumulate

components (or MACs) take up the most space in neural network hardware because

many of them are required to calculate the update weights with floating point preci-

sion. In the case of extreme limited precision or quantized binary neural networks,

multiply and accumulate components are no longer necessary during the calculation

of updated weights as the constrained weight values of [-1, 1] will result in subtraction

or addition operations instead of multiply operations.

In the case of binary neural networks, the deterministic and stochastic binarization

methods are slightly different. The deterministic binarization function is

xb = sign(x) =


+1 if x ≥ 0

f − 1 otherwise,

where xb is the binarized weight and x is the real-valued variable. In the case of

stochastic binarization the quantization function is

xb = sign(x− z) =


+1 with probability p = σ(x)

−1 with probability 1− p,

where z ∼ U [−1, 1], a uniform random variable and σ is the sigmoid function [6].

In addition to multiply and accumulate components no longer being necessary

in quantized binary neural networks, they are also interesting in the case of quan-
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Chapter 2. Background

tum computing. Quantum computers are capable of performing certain algorithms

exponentially faster than classical computers; however, due to technological limita-

tions larger quantum circuits are quite noisy and may not compute accurate results.

Using binary weights means the quantum circuit can remain relatively small, taking

advantage of the computational speedup while keeping noise levels in the circuit to a

minimum. In addition, with classical binary quantized training methods there is no

guarantee that the method has found the local minimum or even global minimum of

the function. Yet, in the case of quantum computing, the solution will arrive at the

global minimum of the function.

9



Chapter 2. Background

2.2 Quantum Background

2.2.1 Quantum Computers

In the early 1980s physicist Paul Benioff proposed a quantum mechanical model of

the Turing machine, opening up the field of quantum computers. However it wasn’t

until 1994 when Peter Shor introduced a quantum algorithm for integer factoring

that held the potential for decryption of secure information that quantum computers

became of serious interest.

The major setback with current quantum computers is that quantum systems

cannot be observed without producing disturbance in the system. So, in order to store

and process information in the system, the particular system must be kept isolated

from its surroundings [7]. In addition many of the proposed algorithms, such as Shor’s

algorithm, require that qubits (quantum bits) be as reliable as classical bits [8]. It

is possible to protect quantum systems by using quantum error correction (QEC)

protocols, but the overhead required in terms of the number of qubits is not feasible

with current quantum technology [8]. In response to this, quantum computers called

NISQs or Noisy Intermediate-scale Quantum have become popular. Intermediate-

scale refers to quantum computers with qubits ranging from fifty to a few-hundred.

The significance of the lower bound of 50 qubits is that it is beyond what can be

simulated by the most powerful current digital supercomputers using brute force [7].

These NISQ computers acknowledge that current devices are ”noisy” and attempt to

implement methods to mitigate the effects of noise while also extracting maximum

computational power [8].

The biggest difference between classical computers and most commonly used quan-

tum computers is the usage of qubits instead of classical bits. The smallest unit of

data used by classical machines are binary digits also known as bits. A bit is either

0 or 1 but never both at the same time. In quantum computing, quantum bits are

10



Chapter 2. Background

the smallest unit of data used and are commonly represented as Bloch spheres [2].

Their behavior differs from classical bits since they use the fundamental concept of

superposition. A qubit can be at the state of 1 and 0 at the same time until it’s

wavefunction collapses to a final state that will decide whether it is 0 or 1. The

probability of the qubit being either a 0 or a 1 depends on the state that it is in [2].

Oftentimes the way to represent a qubit is a type of notation called bra-ket which

represents orthogonal vectors making up the amplitudes of the qubit [2]. This allows

for a more accurate representation of the complex states of a qubit as the amplitudes

of a qubit correspond to the likelihood of the final state of the qubit once measured.

Qubits are also very fragile as they are susceptible to environmental surround-

ings. Depending on the technology, they are susceptible to temperature, magnetic

field, sound, light, radiation and frequencies. Some of the current technologies used

to represent qubits include superconducting qubits, quantum dots, trapped ion, pho-

tonice qubits, and more less popular ones. For the purpose of the proposed work, the

quantum technology used is superconducting qubits.

The umbrella of quantum computers covers a range of quantum technologies with

the particular technology of interest being quantum logic gates.

2.2.2 Quantum Logic Gates

Quantum logic gates function similarly to classical logic gates except for the fact

that they use the quantum mechanics of superposition and entanglement. Qubits,

the quantum equivalent of bits, pass through different gates and undergo different

operations based on which gate they pass through. These quantum gates manipulate

the probabilities of the state of the qubit by using linear operators to change their

superposition. In order to measure qubits that have passed though these gates, a

classical register is tied to each qubit to be measured and multiple measurements will

display its state probability.

11



Chapter 2. Background

Quantum logic gates can act on one or multiple qubits, with the basic quantum

gates acting on only singular qubits. Basic logic gates manipulate a qubit’s three

bases: X, Y, and Z-bases. One such gate is the X-gate or not-gate. The X-gate will

switch the amplitudes between the states |0〉 and |1〉. The X-gate is represented by

the Pauli-X matrix [ 0 1
1 0 ]. To see the effect a gate has mathematically, the qubit’s

statevector gets multiplied by the gate.

X|0〉 =

0 1

1 0


1

0

 =

0

1

 = |1〉

Other basic gates include the Y and Z gates which perform rotations by π around

the y and z-axis of the qubit Bloch sphere respectively. The states |0〉 and |1〉 are

eigenstates of the Z gate and makes up what is known as the computational basis.

Another basis is the basis formed by the eigenstates of the X-basis. These two states

are the vectors |+〉 and |−〉. These two states are represented by the following vectors.

|+〉 =
1√
2

(|0〉+ |1〉) =
1√
2

1

1



|−〉 =
1√
2

(|0〉 − |1〉) =
1√
2

 1

−1


The next gate is the Hadamard or H-gate. The significance of the H-gate is that it can

rotate the qubit away from the poles of the Bloch sphere and create a superposition

of |0〉 and |1〉. The H gate is represented by the following matrix.

H =
1√
2

1 1

1 −1


Applying the H gate to the computational basis states will perform the following

12



Chapter 2. Background

transformation:

H|0〉 = |+〉

H|1〉 = |−〉

Other quantum logic gates includes ones that act upon multiple qubits. The controlled

X gate or CNOT gate is a quantum logic gate that acts upon two qubits: the target

qubit and the control qubit. The state of the target qubit will only be flipped if

the state of the control qubit is |1〉. If the control qubit is in the state 0〉 then the

value of the target qubit remains unchanged. More advanced control gates can act

on multiple qubits and only change a qubit’s state if the other qubits are in a certain

state or they can be used to swap the states of two qubits. Quantum circuits can all

be broken down into these basic single qubit logic gates and control gates.

2.2.3 Qiskit

Qiskit is an open-source SDK for interacting with quantum systems and simulators

[2]. It allows you to work with a quantum computer at the circuit level. The appeal of

Qiskit is the ease of integration as the framework utilizes python and allows interaction

with IBM’s quantum simulators and hardware architectures, such as their quantum

computer using superconducting qubits. The several simulators within Qiskit allow

for modeling of the simple circuit and offer information on the predicted states of

the qubits in the circuit throughout simulation without having to measure the final

system state. In addition, it offers several options for noise characterization and

circuit optimization when working with quantum hardware to reduce circuit noise.

2.2.4 Quantum Fourier Transform

Quantum Fourier Transform or QFT is the quantum implementation of the discrete

Fourier transform over the amplitudes of a wavefunction [2]. Several notable algo-
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Chapter 2. Background

rithms that use QFT are quantum phase estimation and Shor’s factoring algorithm.

The discrete Fourier transform acts on a vector (~x) and maps it to a vector (~y).

This process is done with the formula (where ωjkN = e2πijk
N̄ ):

yk =
1√
N

N−1∑
j=0

xjω
jk
N (2.1)

The quantum Fourier transform instead acts on the quantum state |X〉 =
∑N−1

j=0 xjω
jk
N

and maps it to the state |Y 〉 =
∑N−1

k=0 yk|k〉. This process is also done adhering to

the equation shown in 2.1. An important thing to note is that only the amplitudes

of the state are being affected by the formula. This process can also be expressed by

the unitary matrix:

UQFT =
1√
N

N−1∑
j=0

N−1∑
k=0

ωjkN |k〉〈j|

The QFT essentially transforms between the computational basis or Z basis and

the Fourier basis. A single-qubit QFT can be accomplised using the hadamard (H

gate) as it transforms from the Z-basis states |0〉 and |1〉 to the X-basis states |+〉

and |−〉. Similarly, all multi-qubit states in the computational basis will have a

corresponding state in the Fourier basis with quantum Fourier transform and inverse

quantum Fourier transform being the function that transforms qubits between these

two state. States in the Fourier basis are often denoted by a ∼ to differentiate them.

In the computational basis state the numbers are stored in binary, similar to

classical, and are encoded using the state |0〉 and |1〉. If the qubit is considered to be

a bloch sphere than the the up position would correspond to the |0〉 state while the

down position would correspond to the |1〉 state. However when considering the X-

basis states, instead of the up/down Z-axis it is related to the X-axis and manipulating

a qubit’s X-state will entail rotating it on the X-axis in the block sphere. Another

way to think about it would be rotating it around the Z-axis, which is the up/down
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axis.

Storing numbers in the Fourier basis would require dictating the angle in which it is

rotated around the sphere. To encode the state |5̃〉 on four qubits, the least significant

qubit is rotated by 5
2n

= 5
16

turns or 5
16
× 2π radians. The next qubit (going in order

from least significant to most significant) will turn double the previous amount or

10
16
× 2π radians. The angle of rotation will double for the next qubit until all qubits

have been rotated properly.

Figure 2.1: Generic Quantum Fourier Transform as outlined in [2]. The qubit x1 is the
least significant qubit while xn is the most significant qubit.

The generic version of the QFT circuit primarily makes use of two gates: the

Hadamard and the two-qubit controlled rotation or CROTk gate. The first stage of

circuit involves placing a Hadamrd gate on the first qubit transforming the state to

H1|x1x2 . . . xn〉 =
1√
2

[|0〉+ exp(
2πi

2
x1)|1〉]⊗ |x2x3 . . . xn〉

The application of the unitary rotation gate on qubit one and controlled by the

second qubit will move the state of the circuit to

1√
2

[|0〉+ exp(
2πi

22
x2 +

2πi

2
x1)|1〉]⊗ |x2x3 . . . xn〉

Stage three in the circuit is the application of the last UROTn gate on qubit one and

controlled by qubit n, moving the state to:

1√
2

[|0〉+ exp(
2πi

2n
x)|1〉]⊗ |x2x3 . . . xn〉
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After the previously mentioned gate sequence is repeated for all qubits the final state

of the circuit is

1√
2

[|0〉+ exp(
2πi

2n
x)|1〉]⊗ 1√

2
[|0〉+ exp(

2πi

2n−1
x)|1〉]⊗ · · · ⊗ 1√

2
[|0〉+

exp(
2πi

22
x)|1〉]⊗ 1√

2
[|0〉+ exp(

2πi

21
x)|1〉]

However, the order of the qubits is reversed in the output state so swap gates are

neccessary to obtain the correct qubit order. In addition, another thing to note is

that as the QFT circuit becomes large, many gates will only perform slight rotations

upon the circuit so it may be prudent to ignore certain angle changes below a certain

threshold in order to decrease the circuit noise while still obtaining acceptable results.

2.2.5 Quantum Phase Estimation

Quantum Phase Estimation (QPE) is a fundamental subroutine in quantum algo-

rithms. Quantum phase estimation when given a unitary operator U , will estimate θ

in U |ψ〉 = e2πiθ [2]. |ψ〉 is an eigenvector and e2πiθ is the eigenvalue of the vector. In

addition, since U is unitary, all of it’s eigenvalues will have the norm of 1 [2].

The QPE algorithm utilizes phase kickback in order to write the phase of U , which

is in the Fourier basis, to qubits in a counting register. Phase kickback or kickback is

the process in which the eigenvalue being added by a gate for a qubit is “kicked back”

into a different qubit [2]. This is done by using a controlled operation. An example

of this would be the circuit displayed in Fig. 2.2.
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Figure 2.2: Phase Kickback Example

By using the Hadamard gate, the state of the qubit can be transformed from |0〉

to |+〉 or |1〉 to −〉 and wrapping a CNOT gate in H gates results in the previous

circuit.

Once the phase of U is written in the Fourier basis, the inverse Quantum Fourier

Transform moves the qubits from the Fourier basis to the computational basis. The

computational basis state is necessary as it can be measured.

The general quantum circuit for phase estimation is comprised of t qubits for

counting and qubits to hold the state |ψ〉.

Figure 2.3: Generic Quantum Phase Estimation consisting of three main stages: Walsh-
Hadamard transform, Controlled Unitary application, and inverse Quantum Fourier Trans-
form
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The first stage of the circuit is the circuit setup while the second stage includes the

Walsh-Hadamard transform which essentially places a Hadamard gate on the every

qubit in the counting register resulting in:

|ψ1〉 =
1

2
n
2

(|0〉+ |1〉)⊗n|ψ〉 (2.2)

The second stage includes controlled unitary operators to apply the U operator

with eigenvector |ψ〉 on the target register when the control bit is in the state |1〉.

U2j |ψ〉 = U2j−2

U |ψ〉 = U2j−1

e2πiθ = ... = e2πi2jθ|ψ〉 (2.3)

After the n controlled operations are applied, and where k denotes the integer

representation of n-bit binary numbers, the state of the system is now 1

2
n
2

∑2n−1
k=0 |k〉⊗

|ψ〉. The third stage of the circuit uses inverse quantum fourier transform to then

recover the state from the fourier basis. Once this is completed the final state of the

circuit before measurement is:

1

2n

2n−1∑
x=0

2n−1∑
k=0

e−
2πik
2n

(x−2nθ)|x〉 ⊗ |ψ〉 (2.4)

The final stage of the circuit is the measurement stage. The previous equation

will peak near x = 2nθ and for the cases in which 2nθ is an integer, measuring

in the computational basis gives the phase of the control register with the highest

probability: ψ4〉 = |2nθ〉 ⊗ |ψ〉 [2].

2.2.6 HHL Algorithm

In 2009, Harrow et. al published a paper describing a quantum algorithm for solving

linear systems of equations [1]. The problem can be defined as, given a matrix A

and a vector ~b, find a vector ~x such that A~x = ~b. For the purposes of the algorithm

proposed, the case being considered is one in which the solution ~x does not need to
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be known but rather an approximation of the expectation value of some operator

associated with the solution vector [1].

The HHL algorithm estimates the function of the solution vector in running time

complexity O(log(N)s2k2/ε given that the matrix A is s-sparse and well-conditioned

[1]. In contrast, a classical computer will solve a s-sparse system of size N in

O(Nsk log(1/ε)). In both time complexity equations, k denotes the condition number

of the system and ε the accuracy of the approximation [2].

The HHL quantum algorithm first encodes the problem into a quantum state by

mapping the N entries of ~b onto the log2N qubits. By rescaling the linear system, it

is assumed that ~b and ~x are normalized. They can then be mapped to the quantum

states |b〉 and |x〉. The vector is mapped such that the ith component of ~b corresponds

to the amplitude of the ith basis state of the quantum state |b〉. Thus, the problem

is rescaled to A|x〉 = |b〉. Due to the fact that matrix A is Hermitian, it has the

following spectral decomposition.

A =
N−1∑
j=0

λi|uj〉〈uj|, λj ∈ R

|uj〉 is the jth eigenvector of matrix A and has the eigenvalue λj thus:

A−1 =
N−1∑
j=0

λ−1
i |uj〉〈uj|

The right hand side of the system can also be re-written in the eigenbasis of A so

that quantum state |b〉 is equal to the following.

|b〉 =
N−1∑
j=0

bj|uj〉, bj ∈ C

After complete execution of the HHL algorithmn, the goal is to have the state of the

19



Chapter 2. Background

readout register equal to the following equation.

|x〉 = A−1|b〉 =
N−1∑
j=0

λ−1
i bj|uj〉

The HHl algorithm can be broken down into six different circuit stages: loading the

|b〉 input, Quantum Phase Estimation, Eigenvalue Inversion, inverse Quantum Phase

Estimation, ancilla qubit measurement, and F (x) application and measurement. F (x)

can be any linear equation in which some quantum mechanical operator is applied in

order to obtain an estimate of the expectation value.

Figure 2.4: Generic HHL Algorithm with 5 states: state |b〉 preparation, Quantum Phase
Estimation as detailed in 2.2.5, Eigenvalue Inversion, inverse QPE, measurement of the flag
qubit, and application of some function F (x).

The first stage loads the binary representation of b into the input qubit register.

This register will contain the vector solution once the algorithm is finished and is

denoted by nb [2]. Once the data b is encoded into nb the current state of that register

is now |b〉nb . Next Quantum Phase Estimation is applied using the following Unitary

operator U . The qubit register nl is the register used to hold the binary representation

of the eigenvalues of matrix A. The Quantum Phase Estimation process is better

detailed in 2.2.5.

U = eiAt :=
N−1∑
j=0

eiλjt|uj〉〈uj|

By applying QPE, |b〉 is decomposed in the eigenbasis of A and the quantum state of
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the register is now equal to the following equation [1][2].

N−1∑
j=0

bj|λj〉nl |uj〉nb

|λj〉nl is the nl-bit binary representation of λj〉. The eigenvalue inversion step requires

a conditioned Y-basis rotation on |λ〉j. The Y rotation is a controlled rotation acting

upon a ancilla/auxiliary qubit. The ancilla qubit is used to determine whether the

eigenvalue inversion was successful as the inversion step uses a unitary and not a linear

operation [1]. After this step the state of the system is now equal to the following:

N−1∑
j=0

bj|λj〉nl |uj〉nb

(√
1− C2

λ2
j

|0〉+
C

λj
|1〉

)

Here C is a normalization constant that is less than the magnitude of the smallest

matrix eigenvalue λmin. The next stage in the equation is inverse quantum phase

estimation. The application of this stage moves the system stage from the quantum

Fourier basis back to the computational basis [2]. If the inverse quantum phase

estimation was executed without error than the system state is now equal to:

N−1∑
j=0

bj|0〉nl |uj〉nb

(√
1− C2

λ2
j

|0〉+
C

λj
|1〉

)

After inverse quantum phase estimation, the ancilla qubit is measured. If the qubit

is measured to be |1〉 then the state of the system after measurement is

(√
1∑N−1

j=0 |bj|2/|λj|2

)
N−1∑
j=0

bj
λj
|0〉nl |uj〉nb

This state corresponds to the solution vector of the system after accounting for the

normalization constant factor introduced earlier.
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2.2.7 Swap Test

In certain instances it may be of use to compare the overlap between quantum states.

The SWAP-test routine is a quantum algorithm that expresses the scalar product of

two input states [9]. Two input states |φ1〉 and |φ2〉 are compared using SWAP gates

and a control bit. The circuit for a two state comparison is shown in 2.5.

Figure 2.5: 2-state SWAP Test

The ancillary or control qubit is independent of the dimension of the state register

and the application of the first Hadamard gate moves the qubit from |0〉 to the

superposition state |+〉[10]. The CSWAP gates will then exchange the pair of input

states |φ1〉 and |φ2〉 if the control qubit is in state |1〉. The second Hadamard gate

will transform the input pair into a superposition of symmetric and anti-symmetric

state coupled with the state of the ancillary qubit [10]. These states are represented

as follows:

1

2
|0〉(|φ1〉|φ2〉+ |φ2〉|φ1〉) +

1

2
|1〉(|φ1〉|φ2〉 − |φ2〉|φ1〉)

The probability of measuring the the ancillary qubit as |0〉 relates to the inner product

of the two states: |〈φ1|φ2〉|2 [10].

p0 =
1 + |〈φ1|φ2〉|2

2
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Thus the two-state swap test essentially performs the following transformation:

|0〉|φ1〉|φ2〉 →
√
p0|0y〉+

√
1− p0|1ý〉

In the above transformation y and ý are garbage states. The probabilty P (|0〉) = 0.5

means that the states are orthogonal, while the probability P (|0〉) = 1 means the

two states are identical [9]. In addition, the SWAP test can be used to calculate the

Euclidean distance between vectors [9].
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2.3 Related Works

In 2019, Google published a paper establishing quantum supremacy [11]. The chal-

lenge was to prove that quantum computers could perform certain computational

tasks exponentially faster than the same task executed on a classical computer.

A quantum processor with 53 programmable superconducting qubits was con-

structed that corresponded to a computational state-space dimension of 253. The

Sycamore processor was then tasked with sampling the output of a pseudo-random

quantum circuit and then comparing those results to state-of-the-art classical comput-

ers [11]. When sampling the quantum circuit’s output, a set of bitstrings is produced.

However, due to quantum mechanics, the probability distribution of the output bit-

strings resembles a speckled intensity pattern produced by light interference in laser

scatter, so some bitstrings are more likely to occur in the set than others [11]. As

such, using even state-of-the-art classical computers, computing this probablility dis-

tribution becomes more difficult as the width and depth of the testing circuit grows.

In order to verify the quantum processor functions as expected, cross-entropy bench-

marking is used. Cross-entropy benchmarking compares how often each bitsring gets

observed experimentally with its corresponding ideal probability that was computed

through simulation on a classical computer.

For the largest circuit size implemented, 53 qubits and 20 cycles, obtaining a

million samples on the quantum processor took 200 seconds. In the case of the

classical circuit, the simulated sampling would take 10,000 years on a million cores

and verifying the fidelity of the circuit would take millions of years. This shows

that currently even the most powerful classical computers are unable to simulate

quantum effects. While this experiment is not very practical in terms of industry

implementation and is focused on simulating quantum mechanics, it does establish

what has been termed quantum supremacy.
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While the work in [11] provides a baseline for quantum potential, it does not

possess much practical application beyond the world of physics. In, 2009 a paper

published by Harrow, Hassidim, and Lloyd detailed a quantum algorithmn for solving

a linear systems of equations [1]. Their work showed that under certain cases quantum

computers could solve for an approximation of ~x in poly(logN) time, compared to

classical algorithmns which could estimate the same solution in O(Npoly log(N))

time [1]. Note: These cases are for when ~x itself is not needed, but for when the

approximation of the expectation value of an operator associated with ~x is needed,

i.e ~x†M~x. The HHL algorithm outlined an approach for solving a linear systems of

equations but does not implement it.

The work introduced in [12] expanded on the HHL algorithm and proposed a cir-

cuit design for solving a linear systems of equations. The proposed circuit design was

then implemented for a specific 2× 2 matrix. Due to quantum computer constraints,

the main focus of the experimentation was outlining the effects of changing the ac-

curacy of the controlled rotation angle and not finding ~x [12]. Cao et. al did not

provide a method for checking the solution state |x〉.

In [13] the authours outlined a method of implenting Bayesian deep learning on

a quantum computer. The Bayesian approach to deep learning typically includes

learning a direct mapping to probabilistic outputs. Bayes’ Theorem is used to to de-

termine these conditional probabilities. One advantage that Bayesian methods have

over other machine learning methods is that they often provide estimates of the un-

certainty associated with the prediction. Recently, deep feedforward neural networks

have been used in tandem with Gaussian processes, allowing for training without

backpropogation [13]. Zhao et. al [13] leveraged a quantum algorithm designed to

be used for Gaussian processes in order to develop a new algorithm for Bayesian

deep learning on quantum computers. The kernel matrix properties in the Gaussian

processes allowed for efficient execution of the quantum matrix inversion component
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of the algorithm. It was shown that this method provided an a polynomial speedup

when compared to classical algorithms.

The matrix inversion operation performed was performed on quantum computer

using Qiskit. This circuit was an adapted version of the quantum circuit proposed

by [12] and solved a nontrivial linear system of equations. The Bayesian training

implemented in Zhao et. al [13] calculated the mean and variance of the predictive

distribution of the given Gaussian process model by inverting the covariance matrix,

which was done using the previously mentioned quantum circuit.

Recent developments in connection between Bayesian models, Guassian processes,

and deep feedforward neural networks have led to interest in implementing quantum

algorithms for calculations due to its probabilistic nature and O log(N) calculation

time.

While the main focus of the work was to analyze gate and measurement noise and

its effect on the circuit noise, of particular interest is the swap test used to check the

accuracy of the result calculated in the problem-specific quantum circuit for a 2× 2

system.

In, [14] a proposed circuit design using a 7-qubit circuit was implemented us-

ing IBM’s quantum experience Qiskit. The circuit solves a four variable regression

problem utilizing elementary quantum gates. In addition, they used a group leader

optimisation algorithm in order to create a low-cost circuit approximations for the

Hamiltonian simulation. The optimization algorithm was used to decompose a more

complex U gate into elementary gates and then a scipy optimization algorithm was

used to approximate the Rx and Rzz gates rotation values. This circuit was then

tested and compared against a predicted solution with a 0.1666 error (the L2-norm

between calculated and predicted values). The main focus of [14] was an implemen-

tation of quantum circuit that could solve a specific systems of linear equations case

for the purpose of linear regression. The introduced quantum circuit could solve a
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4× 4 system. Once the solution was encoded into the quantum state the information

is then processed into classical data and then the simulated experiment solution was

compared against the predicted solution. While this work proposed a quantum circuit

design for 4 × 4 matrices, it does not provide a subroutine for |b〉 state preparation

or reading out the solution vector.

Other related works include a paper published by Maria Schuld et.al. Maria

Schuld et. al [15] explores the strategy in which data can be encoded into a model

which will influence the expressive power of quantum circuits when used as function

approximators. Quantum computers can be used for supervised learning when treat-

ing quantum circuts as models that map data inputs to predictions [15]. Specifically

in this case, a partial Fourier series is represented by a quantum model in which

the accessible frequencies are determined by the data encoded into the gates in the

circuit. In order to access more complex frequency spectra data, encoding gates are

repeated multiple times in the model. The models considered in this paper consist of

a data encoding (circuit) block and a trainable (circuit) block. It is assumed that all

input features are encoded by gate using Hamiltonian transforms.

It was then concluded that for both integer or non-integer frequencies, how ex-

pressive a quantum model is is determined by the frequency spectrum of the quantum

model and expressivity of the coefficients controlled by the model. In addition, many

quantum machine learning algorithms which use other data encoding strategies al-

ready perform an implicit pre-processing of the data and then use the time-evolution

encoding studied in this paper, meaning the results of this paper are also applicable

with those algorithms. One thing to note is that it is suggested that in comparisons

between classical and quantum models the same pre-processed features should be

passed to both models.

This paper explores the use of models that use a quantum circuit to map data

inputs to predictions [15]. It details data encoding on a quantum circuit and discusses

27



Chapter 2. Background

practical implications for quantum machine learning. While the focus was on data

encoding and prediction for a partial Fourier series, the data encoding method could

be expanded for solving linear systems of equations.

On the side of classical neural networks. A concern for many Deep Neural Net-

works (DNN) is that while they have achieved state-of-the-art results in a wide range

of tasks, this was done with large training sets and models. GPUs are required with

these large training sets and complex models due to their computations speed. How-

ever in most cases, these GPUs are power intensive and not intended to be used for

low-power devices. This gap in application has led to interest and development in

dedicated hardware that could implement these deep learning neural networks with-

out the large models that require GPUs. Courbariaux et. al demonstrated a method

of training deep neural networks with binary weights during propagation [16]. These

binary weights were constrained to either -1 or 1. By implementing this method many

multiply and accumulate operations during training were replaced with simple accu-

mulate operations, decreasing the power and overall size requirements of the device.

This is due to the fact that multipliers are often the most space and power-hungry

components within hardware. The method proposed during this paper is called Bina-

ryConnect and implements a method of training a DNN with binary weights during

forward and back propagation. The precision of the stored weights in which by the

gradients are accumulated remains unchanged. This BinaryConnect method of train-

ing deep neural networks offers a space in which quantum computing algorithms can

be applied. An issue with current quantum computing is that precision can often

be lost in computation due to its probabilistic nature, so using a quantum algorithm

on a multi-precision problem does not seem like a viable option currently. Thus, a

problem domain in which precision is restrained while speed is desired is an ideal

application space for quantum technology.

Draghici [4] presents results which describes the relationship between the difficulty
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of the problem set and the weight range necessary required to ensure a solution. The

difficulty of the problem of a set is described by the minimum distance between the

patterns of the different classes and the weight range specifies the precision range

required, meaning that the the network has the capability to solve the given problem

set using weights within the specified range precision. The networks tested within

this study used integer weights. One thing to note is that how the network is trained

is not addressed, but rather, how well the network performed with the constrained

integer weight values. The purpose of the results obtained in [4] was to be used

in conjunction with a chosen specified training method in order to obtain the best

trade-off between network performance and efficiency.

In [5] three different methods of training quantized neural networks are explored,

Deterministic Rounding, Stochastic Rounding, and Binnary Connect. Binary Con-

nect is a method described in another related work and the algorithm uses gradient

updates with full-precision but binarizes the weights before gradient computation

[16]. Deterministic Rounding will push a floating point value to the nearest specified

quantized value while Stochastic Rounding is non-deterministic and will round its ar-

guments with probability [5]. The Binary Connect and Stochastic Rounding methods

were analyzed analytically under both cases of convergence and non-covergence.

In the case of convergence results both Binary Connect and Stochastic Rounding

had a prediction accuracy that was bound by the coarseness of the discretization. In

the case of non-convergent problem sets, the Stochastic Rounding method was unable

to exploit a greedy local search unlike in the case of conventional stochastic methods.

Both of the previously mentioned training methods were tested with VGG-like and

Residual networks with binarized weights on the problem of image classification [5].

Adam was used as the baseline as it gave better overall results than SGD. The results

of the experiment show that Binary Connect with Adam showed comparable perfor-

mance to the full-precision model. Stochastic Rounding with Adam outperformed
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Deterministic Rounding with ADAM. There was also a performance gap between

the Binary Connect and Stochastic Rounding methods across all the used models

and datasets, showing that keeping track of the real-valued weights (with Binary

Connect) would produce better results.

Li et. al [5] details the different methods in training a quantized neural networks

and the limitations in using such training methods. The analysis of different methods

and the advantages to using a quantized neural networks are also covered in this

work. Yet, the analysis presented in this paper focuses on purely classical methods

and does not include any hybrid training solutions for a quantized neural network.
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Experimentation and Architecture

3.1 Architecture

3.1.1 Circuit Architecture

The HHL algorithmn previously described in 2.2.6 specifies a generic formula for

implementing a linear systems of equations solver using a quantum computer. Given

a Hermitian matrix A, the algorithm transforms the matrix into a unitary operator

eiAt [1]. The transformation is possible if the the matrix A is s-sparse, meaning it

has s nonzero entries per row. In the event that A is not a Hermitian matrix, define

a variable such that

C =

 0 A

A† 0


Since C is Hermitian, the original problem can be written as C~y = ( ~b

0
) and now

y = ( 0
~x ). This transformation is necessary as rest of the HHL algorithm functions

under the assumption the matrix A is necessary [1].

The original algorithm proposed in [1] does not require knowledge of the eigen-

values or eigenvectors of A prior to execution [2] as the matrix A is applied to the

circuit through the use of the controlled unitary U = eiAt on the quantum state |b〉

(which holds the vector ~b) for a superposition of different t values. [12]. After this

applied unitary, as mentioned previously in 2.2.6, the state of the system becomes
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∑
j βj|λj〉|uj〉. Here |λj〉 is state that holds an encoded approximation to the eigen-

value λj of the matrix A. The unitary eiAt shares the same eigenvectors with the

matrix A while its eigenvalues are eiλjt [14].

However, while previous knowledge of the eigenvalues of the matrix is not neces-

sary for the HHL algorithm, having a matrix with eigenvalues that are powers of 2

allows for the phase estimation subroutine to generate states that exactly encode the

eigenvalues [12]. In addition, knowing the matrix has pre-specified eigenvalues sim-

plifies the subroutine to find their reciprocals [12]. Thus, only matrices with specific

eigenvalues are explored in this work.

From the generic HHL design shown in Figure 2.4 two specific cases were imple-

mented in this work in order to solve specific cases of 2× 2 and 4× 4 matrices. The

architecture for the 2× 2 circuit was taken from [12] and is shown in Figure 3.1.

Figure 3.1: Circuit for 2× 2 Solver: the circuit is comprise of one aniclla qubit, two clock
register qubits x2 and x3, and one register b qubit. The controlled unitary exp(iA t0

2 ) is
applied during the phase estimation and has values t0 = 2π. The variable r is detailed
in 3.1.1.4

The 2 × 2 circuit uses one ancilla qubit, two clock register qubits, and one qubit

to hold |~x〉. The U † gate shown in the circuit, represents applying all the gates

previously applied prior to the controlled rotation on the ancilla qubit in reverse

order. The second circuit use one ancilla qubit, four clock register qubits, and two

qubits to hold |~x〉. The first part of the circuit is shown in Figure 3.2 and the second

portion after the controlled rotation gates is shown in Figure 3.3. The circuit design

for the 4× 4 matrix solver originated from [14],[12].
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Figure 3.2: Circuit for 4× 4 Solver

Figure 3.3: Circuit for 4× 4 Solver pt.2

The two previous circuit designs solve the linear systems of equations but do not

extract the solution vector from the state of the system. By adding a swap test to

the circuit, the state of the qubit holding |~x〉 can be tested by measuring it’s fidelity

across a known state vector. This design is described in more detail in 2.2.7.
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Figure 3.4: Full Circuit Design with Swap Test: the first steps load the state |b〉 and swap
test state into the circuit, the second step applies the modified HHL algorithm, and the last
step applies the swap test for measurement

As shown in Figure 3.4, the input vector ~b is encoded into the qubit and after

the circuit execution the same qubit now holds the solution state vector. The state

|φ〉 is simultaneously loaded into the swap qubit so that its fidelity can be compared

against the computed solution state. The following subsections detail each subroutine

present in the circuit.

3.1.1.1 Preparation of |b〉

An important subroutine for the quantum circuit includes encoding the classical in-

formation into a quantum state. Several methods exist for encoding data into a qubit

including basis encoding, amplitude encoding, and angle encoding. However, the

process of loading data onto a quantum device is not a trivial task as unlike in clas-

sical computers information cannot be loaded several times without erasing it [17].

Due to the no-cloning theorem [18], noisy quantum operations [7], and decoherence-

bounds [19] state preparation in a quantum device becomes difficult. The no-cloning

theorem states that it is not possible to perform a copy of an arbitrary quantum state

as when a quantum operation is applied its input is transformed or collapsed [18].

So, even if the data is represented using basis state encoding it will be difficult to
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copy the data without corrupting it [17]. Thus for this circuit design, the classical

information will be encoded using amplitude encoding. Amplitude encoding stores

the classical data in the amplitudes of the states of the qubits. A toy example would

be encoding the values [1, 0] into a single qubit. After encoding the classical date the

state of the qubit will be |0〉 as the expanded notation is |0〉 = 1|0〉 + 0|1〉 [2]. The

first value in the classical vector gets stored in the amplitude of the |0〉 state while

the second value gets stored in |1〉. Thus, loading an input vector ~x = (x0, . . . , xN−1)

into the amplitudes of a quantum system requires log2(N) qubits [17]. The state of

the system after encoding can be represented as:

x0|0〉+ · · ·+ xN−1|N − 1〉

In order to encode classical data into a quantum state vector, the classical information

must be normalized. This is due to the fact that the squares of the amplitudes of a

qubit must equal one when added together [2]. The squared value of an amplitude of

a qubit’s state is equal to the probablity of the qubit collapsing to that state when

measured [2].

Due to the issue of decoherence [19], it is important to implement optimal quantum

circuit decomposition. In addition, the more gates present in a circuit introduces more

gate noise affecting the results of the circuit [7]. Bergholm et. al introduced a method

of local state preparation using uniformly controlled one-qubit gates and detailed

implementing general n-qubit gates using elementary gates [20]. Then in [21], the

authors describe a unitary transformation which maps any given state of a n-qubit

quantum register into another one. By employing uniformly controlled rotations

described in [20], Moettoenen et. al presents a quantum circuit of 2n+2 − 4n − 4

CNOT gates and 2n+2 − 5 one-qubit elementary rotations to effect the previously

described state transformation [20].
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The state preparation of |b〉 subroutine used in this circuit design has been mod-

ified from an algorithm presented in [17]. Given an N -dimensional vector x, where

n = log2(N) the vector is loaded into a quantum register using the following process.

Algorithm 1 gen angle(x)

input: A vector x with dimension N = 2n

output: Angles to generate the amplitude encoding circuit

1: Check if length of x is power of 2, if it is not break

2: if size(x) > 1 then

3: Create an auxiliary vector new x with dimension N/2

4: for k ← 0 to length(new x) do

5: new x[k] =
√
|x[2k]|2 + |x[2k + 1]|2

6: inner angles = gen angles(new x)

7: Create a vector angles with dimension N/2

8: for k ← 0 to length(new x) do

9: if new x[k] 6= 0 then

10: if x[2k] > 0 then

11: angles[k] = 2asin( x[2k+1]
new x[k]

)

12: else

13: angles[k] = 2π - 2asin( x[2k+1]
new x[k]

)

14: else

15: angles[k] = 0

16: if inner angles is not None then

17: angles = inner angles + angles

18: else

19: angles = angles

20: return angles
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Algorithm 2 gen circuit(angles)

input: N − 1 dimensional vector angles = gen angles(x)

output: Quantum circuit to lad x in the amplitudes of a quantum system

1: circuit = quantum circuit with n = log2(N) qubits q[0], . . . , q[n− 1]

2: if length(angles) == 1 then

3: Ry(angle[0], 0)

4: else

5: for k ← to N − 2 do

6: j = level(k)

7: index(k, j, q)

8: CRy(angle[k], [q[0], ·, q[j − 1], q[j]])

9: index(k, j, q)

10: return circuit

As stated previously the amplitude encoding subroutine shown in algorithms 1

and 2 were taken from [17] but modified to include the case in which only one qubit is

required to encode the classical data. The amplitude encoding algorithm includes two

parts: angle generation and circuit generation. The angle generation function takes

in ~x and finds the angles to perform rotations that lead |0〉n ≡ |0〉⊗n to the encoded

state. The second function will take in these angles and generate a quantum circuit of

Y-Rotation and controlled Y-rotation gates from the calculated angle rotations. One

thing to note is that the input vector into the function to generate angles functions

must be normalized in order to encode the data into a quantum state vector.

The generate angles function divides the 2n input vector into 2n−1 2-dimensional

subvectors and creates a new 2n−1 dimensional vector new x with the norms of the

generated subvectors. While the size of the generated sub vector is greater than 1,

the generate angles function gets called recursively with the new sub vector until no

more sub vectors are created. After the last recursive call, angle θ gets appended to
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the angle array such that sin(θ/2) = x[2k+1]
new x[k]

and cos(θ/2) = x[2k]
new x[k]

. The premise of

the angles algorithm is that the angle vector is a complete binary tree [17] with the

overall cost of the generate angles function being O(N) as each gen angles call will

perform log2(N) recursive calls.

The circuit generation function receives the N−1 array of vector angles generated

by the previously described function and outputs a circuit with the gates to load

the classical data into the qubits. The function will first check if only one qubit is

needed, if so, it will only add one Y-rotation gate with the computed angle. In the

case where multiple qubits are needed the root of the binary angle tree generated by

the gen angles function defines the first rotation and then a top-down approach is

used where the rotation of an angle is defined by the angles of the next level down

in the tree. As defined in [17] the cost to compute the necessary angles and generate

the circuit is O(N). O(N) multi-controlled gates are applied sequentially at a circuit

depth of O(N).

3.1.1.2 Quantum Phase Estimation Design

The Quantum Phase Estimation subroutine consists of three main parts: Walsh-

Hadamrd Transform, Hamiltonian simulation, and inverse Quantum Fourier Trans-

form. The Walsh-Hadamard Transform is accomplished by applying a Hadamard

gate onto every qubit in the counting register in order to move away from the poles

and create a superposition of |0〉 and |1〉 [2].

The inverse Quantum Fourier transform subroutine is well-known and described

in detail in 2.2.4. Although one thing to note is the most significant bit and least

significant bit for the generic circuit in 2.2.4 and the circuit design presented in this

thesis are different. This is due to the fact that qiskit and many physicists will list

q0 as their most significant qubit if their circuit is represented as |q0q1, . . . , qn〉 [2].

However, for most computer notation q0 is the least significant bit and the circuit was
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designed with that notation in mind.

The most difficult portion of the quantum phase estimation subroutine is the

Hamiltonian simulation. For general non-sparse N × N Hamiltonian H, it is not

possible to simulate e−iHt in poly(||Ht||, logN) [12]. In addition, since the initial HHL

algorithm [1], there have been improvements by using a linar combination of unitary

operators to yield a cost scaling that is poly(logN, 1/ε) and nearly linear in ||Ht|| [22].

For the purposes of this circuit design, the specific gate decomposition was found using

a heuristic method introduced in [23], [24]. A group leaders optimization algorithmn

was used to find the Hamiltonian situation for both the 2 × 2 and 4 × 4 matrices

cases. For the 2×2 matrix the gate decomposition was detailed in [12] while the 4×4

matrix Hamiltonian gate decomposition was taken from [14]. In addition, since the

specific case considered in this circuit design only considers matrices with eigenvalues

that are powers of 2, they can be implemented exactly [12]. After implementation

the state of the system will be

N∑
j=1

βj|uj〉|(λ̃jt0/2π)〉.

However, if we chose our evolution time as t0 = 2π. Then the state of the system will

be
N∑
j=1

βj|uj〉|λ̃j〉.

In addition, since there are a sufficient number of qubits to encode the eigenvalues

with phase estimation, |λ̃j〉 = |λj〉 [14]. The state of the system can be rewritten as

N∑
j=1

βj|uj〉|λj〉.

Figure 3.5 shows the decomposition of the hamiltonian simulation for eigenvalues of

one and two into elementary gates.
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Figure 3.5: Hamiltonian Simulation for 2× 2 Circuit: U is the controlled u gate and p is
the controlled phase gate

For the Hamiltonian Simulation for the 4 × 4 matrix circuit, the simulation is

applied on two qubits as two qubits are used to hold the output vector. Every

gate applied in the gate decomposition is controlled on the corresponding counting

qubit in the clock register. The hamiltonian operator eiA
2π
16 gate decomposition was

found using the previously mentioned group leaders optimization algorithm heuristic

and then the operators for eiA
2π
8 , eiA

2π
4 , and eiA

2π
2 were found by multiplying the

angle shifts in the rotation gates by the necessary factor [12]. The specific gate

decomposition for the hamiltonian eiA
2π
16 is shown in Figure 3.6.

Figure 3.6: Hamiltonian Simulation for 4× 4 Circuit

One thing to note is Figure 3.6 shows the gate decomposition of only the hamil-

tonian portion. Every gate in the circuit decomposition is also controlled by the

clock register qubit the hamiltonian is being applied on. The other three hamiltonian

gates are identical to the one shown in Figure 3.6 but the rotation values differ. The

rotation values for all the Hamiltonian were taken from [14] and were found using

the scipy.optimize.minimize function. The parameters for the rotation gates in the

hamiltonian are shown in Table 3.1.
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4× 4 Hamiltonian Parameters

Hamiltonian

Simulation

Parameters

eiA
2π
16 [0.19634953, 0.37900987, 0.9817477, 1.87900984,

0.58904862 ]

eiA
2π
8 [1.9634954, 1.11532058, 1.9634954, 2.61532069,

1.17809726 ]

eiA
2π
4 [-0.78539816, 1.01714584, 3.92699082, 2.51714589,

2.35619449 ]

eiA
2π
2 [-9.01416169e-09, -0.750000046, 1.57079632,

0.750000039, -1.57079633]

Table 3.1: Table of Hamiltonian Parameters

The matrices applied by the elementary gates are shown below in order to clarify

the operations being applied.

The X, Y, Z, and H gates represent the standard Pauli operators φx, φy, φz and

Hadamard gates. The S and T (also known as 8
π
) gates are represented by

S =

1 0

0 i

T =

1 0

0 exp(iπ
4
)w


The gate

√
x
†

gate is known as the square root of X conjugate gate or V † gate. The

matrix representation for this gate and its non-conjugate form are:

V † =
1

2

1− i 1 + i

1 + i 1− i

V =
1

2

1 + i 1− i

1− i 1 + i


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The rotation matrices are defined as follows:

Rx(θ) =

 cos( θ
2
) i sin( θ

2
)

i sin( θ
2
) cos( θ

2
)

Ry(θ) =

 cos( θ
2
) sin( θ

2
)

− sin( θ
2
) cos( θ

2
)



Rz(θ) =

1 0

0 exp(iθ)

Rzz(θ) =

exp(iθ) 0

0 exp(iθ)


The gate matrices were taken from [12].

3.1.1.3 Eigenvalue Inversion

The critical portion of a quantum circuit for solving linear systems of equations in-

cludes the subroutine for eigenvalue inversion. The work shown in [12] outlines a

generic circuit for solving a linear systems of equations that includes a subroutine

for eigenvalue inversion. This subroutine includes use of two additional registers and

a controlled global phase shift Rzz in order to transform the state of the two regis-

ters to
∑

p

∑
s exp(i p

2m
t0)|s〉|p〉. In this state |p〉 and |s〉 represent the basis states of

the two additional registers (M and L respectfully) used in the eigenvalue subrou-

tine registers. The |λj〉 states stored in the clock register after the inverse Fourier

transform is then used as a control for the Hamiltonian simulation applied on regis-

ter M [12]. The applied Hamiltonian simulation is a diagonal matrix with diagonal

elements (1, 2, . . . , 2m−1). The kl-th qubit of register L is then used as the control

qubit for the exp[−ip( λj
2m

1
2l−kl

t0)] simulation applied on register M. The binary values

stored in register L then determine the time parameter t in the overall Hamiltonian

exp(−iH0t0). The state of the system after the Hamiltonian situation is now

|0〉 ⊗
n∑
j=1

2m−1∑
p=0

2l−1∑
s=0

βj exp[i
p

2m+l
t0(2l − λjs)]|s〉|p〉|λj〉|uj〉.
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In the case of t0 = 2π, the state |s〉 will be concentrated on the state | 2l
λj
〉 [12]. This

state can then be used to rotate the ancillab bit with the controlled angle shift.

However, for the purposes of this thesis, only a set of constrained eigenvalues are

used in order to simplify the circuit design. By limiting the the eigenvalues to specific

powers of 2, it is possible to accomplish eigenvalue inversion through a serious of

swap gates. In the case of a 2 × 2 matrix the eigenvalues of the circuit should be 1

and 2. While for 4 × 4 matrices the eigenvalues should be 1, 2, 4, and 8. In these

cases the eigenvalues are of the form λi = 2i+1 [14]. For the 2 × 2 matrix case with

eigenvalues of 1 and 2, a swap gate performed on the 2 register qubits will peform the

neccessary eigenvalue inversion. By performing a swap gate between qubits |x2〉 and

|x3〉 the system is transformed to the state β1|10〉|ui〉+β2|01〉|u2〉. The state encoding

|x2x3〉 = |10〉 can now be interpreted as the inverted eigenvalue 2λ−1
1 = 2 and |01〉

as the value 2λ−1
2 = 1 [12]. In the case of the 4 × 4 circuit, a swap gate is used to

on the first and third qubit of the counting register [12]. The eigenvalue λ4 = 8 is

encoded as the state |1000〉. After the swap gate is applied the eigenvalue becomes

|0010〉 which is equal to 1
8
× 24 = 2 [12]. Thus for both circuit cases one swap gate is

used to invert the eigenvalues of the system.

3.1.1.4 Controlled Y-Rotation

The next subroutine applied to the circuit applies controlled Y-rotation gates to the

ancilla qubit conditioned on the clock register qubits. By applying rotation angles

such that θ = θ̃j = 21−rπ/λj, the approximate angle θj = 2 arcsin(C/λj) is applied. C

is the normalization constant discussed in 2.2.6 and is assumed to be C ≤ minj |λj|.

The reason C is needed is that it is a scaling factor to prevent the controlled rotation

from being unphysical [25]. C can also be defined as C = O(1/κ) [14].

The variable r is related to the rotation value of the circuit. As explored in [12],[13]

r cannot be too small or else the small angle approximation θ̃j of θj becames invalid.
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However, an r too large reduces the probability of obtaining the solution and measur-

ing the ancilla qubit as 1. Also, a larger value of r means implementing finer angles in

the rotation gates which is also difficult with current quantum computer [7]. Accord-

ing to [12], the minimum angle resolution realizable can be defined as ω. Thus, r can

range between log2(2π) and log2(π/ω) [12]. For the purposes of our circuit design the

r variable is chosen to be an 4, 5, or 6 depending on the circuit. These rotation angles

are applied to the ancilla qubit and controlled on the state of the clock register.

3.1.1.5 Undo Subroutine

The last portion of the circuit for solving a linear systems of equations undoes the

phase estimation subroutine. By undoing the quantum phase estimation the state of

the system returns from |λj〉 back to |0〉 [12]. This will now bring the state of the

system to ∑
j

(

√
1− C2

λ2
j

|0〉+ (
C

λj
)|1〉)βj|0〉|uj〉.

When measurement of the ancilla qubit is measured to be |1〉 then the state of register

B is now ∑
j

C
βj
λj
|uj〉 ∝ |x〉.

The subroutine for undoing quantum phase estimation is quite simple. All previous

gates prior to the controlled-Y rotation gates need to applied in reverse order. For

example, if a swap gate was the gate applied prior to the controlled rotation subroutine

then it is the first gate applied after the rotation, making sure the gates are applied to

the same qubits. One thing to note is that when undoing phase rotations the inverse

of θ is applied. So if a rotation of θ = π is applied than the a rotation of θ = −π is

applied to reverse it.
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3.1.1.6 Swap Test Subroutine

The last portion of the circuit includes the swap test subroutine. The swap test

subroutine checks the fidelity between the predicted weight values and the weight

values calculated by the circuit using swap gates and a control register. As discussed

in Section 2.2.7, the probabability p0 of measuring state |0〉 relates to the inner product

between the two compared states.

By using a swap test, one is able to get an estimation of the weight values encoded

in the solution state of the circuit without having to convert the solution state from

quantum data to classical data. In [1] the original Harrow, Hassidim, and Lloyd

quantum algorithm for solving a linear systems of equations, under ideal situations

the circuit could be executed in poly(logN) time. However, the HHL algorithm

performs under the assumption that one is not interested in the value ~x itself but in an

expectation value ~xTM~x [1]. In this case M is a linear operator. In order to read out

all the components of the quantum state ~x would require performing the measurement

procedure at least N times, reducing the exponential speedup introduced. Schuld et.

al proposed a method of writing the desired result state into selected entries of an

ancilla’s density matrix [26] and in [27] Wang introduces a three-stage algorithm

where the second stage determines the parameter sign and the last stage determines

whether the calculated vector B ∈ Rd is closer to B̂ or −B̂. In [26] the swap test is

not used because their output domain exteneded into negative number. In contrast, a

swap test is viable for the circuit design in this thesis as the interest is only in binary

weights in the domain of [0,1].

By constraining the weights to a binary value, the expected solution is discrete and

the implementation of the swap test subroutine becomes less complex. One difficulty

with the SWAP test is accurately preparing the states to be compared. Yet, by using

binary weights the expected value state becomes simple to implement. An expected

weight value of [0,1] would require putting the state of the comparison qubit into |1〉,
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which is the state representation of 0|0〉 + 1|1〉. Figure 3.7 shows how the swap test

is placed at the end of the circuit to test the computed |~x〉 state.

Figure 3.7: Swap Test Subroutine where |x〉 holds the computed solution state and |φ1〉
holds the test state

In the case of multiple qubits being used to hold the encoding of the solution

vector, the same number of qubits needs to be used for each state comparison. Each

qubit then gets compared to its corresponding qubit in the comparison state. For

example, if qubits |x1x2〉 hold the calculated state |~x〉 and qubits |x3x4〉 hold the

comparison state φ then qubit x1 and x3 will be swapped and x2 and x4 get swapped.

The modified swap test circuit accounting for multiple qubits being needed to encode

a state vector is shown below in Figure 3.8.
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Figure 3.8: Swap Test with State Encoded in Multiple Qubits

[10] introduces a method of comparing multiple states in a multiple swap test. By

using multiple control ancilla control bits, different states will be compared depending

on the value of the control bit. The work in [10] uses swap gates to re-order the input

states so that every possible pair of input states will be brought to the first two

registers. Once the states that need to be compared are in the first two registers then

a regular two-state swap test is performed. Which two states get swapped depends

on the values of the control qubits. By testing mutiple states with one circuit, the

search space of the possible weights is reduced as the number of possible weights is

finite with quantized neural networks.

3.1.2 Training Algorithmn

While current quantum technology is unable to implement circuits large enough to

solve systems of significant size, this work proposes a potential training flowchart

shown in Figure 3.9.
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Figure 3.9: Potential Training Flowchart

Figure 3.9 outlines how a quantum circuit could be used to partially solve for the

weight vectors in order to reduce the problem space for the classical computer. A

classical computer is still needed to control the data flow, update the network, and

calculate the cost function. Thus, the quantum circuit will only be used in the linear

regression portion to partially solve the linear systems of equations. It is possible

to partially solve the weight vector as the neural networks is a quantized network,

meaning there is a discrete number of weights.

3.1.3 Estimating Number of Ones in Weight Vector

In the specific case being considered, all weights in the weight vector are constrained

to values of either 0 or 1 as it is a binary neural network. As a result the expected

output from the quantum circuit will have solution vector where the amplitudes are

only zero or one.
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As detailed in 2.2.7, the probability of measuring the ancilla qubit of a swap test

as 0 is related to the fidelity between the two states being compared. If the two states

being compared are |x〉 and |test〉, where |x〉 is the solution state and |test〉 is the

test vector, the the probability of measuring 0 in the ancilla qubit is:

P (0) =
1 + 1|〈x|test〉|2

2
=

1

2
+

1

2
|〈x|test〉|2

Since the weight vector only has the value of 0 or 1, the amplitude of each weight will

have a value of 1√
N

if the weight is 1 or 0 if the weight is 0. Note: N is the number of

1s in the circuit. This is due to the fact that the weight vectors encoded in a qubit

are normalized and thus will produce a uniform superposition of weights when only

values of 0 or 1 are encoded. If the test state is a fully uniform superposition of ones,

meaning it only contains values of normalized ones, then a swap test with the binary

solution state will produce the following relationship.

N + ∆ = |〈x|test〉|2W

In the previous equation, ∆ represents the difference in the number of ones between

the test vector and the solution vector and W represents the total number of weights

encoded in the vector. Using this equation it is possible to solve for the number of

ones present in the solution vector.
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3.2 Experimentation

3.2.1 2× 2 Matrix Solver Circuit

The experiment was first conducted with a quantum circuit capable of solving specific

cases of a 2× 2 linear systems of equations. Given matrices A and b it is possible to

solve for x as Ax = b. Assuming one is given the following matrices:

A =
1

2

3 1

1 3

 ;~b =

1

0


Quick calculations show that ~x = 2× [3/8 −1/8]T . The 2 is multiplied by the solution

vector to get the actual solution vector as the value 1
2

is a constant that can be ignored

in calculating ~x. (The solution to the circuit is not necessary to be known beforehand

but is useful for testing the accuracy of the circuit design.) As discussed previously

in 3.1.1.1, the input vector ~b is normalized so that |b1|2 + |b2|2 = 1. The normalization

is necessary to encode the values of ~b into the state |b〉 = b1|0〉+b2|1〉 [12], [28]. In this

specific case encoding the value of~b is trivial as the state |0〉 already corresponds to the

quantum state 1|0〉+ 0|1〉. However, for other other states that cannot be encoded so

simply, the |b〉 state preparation subroutine detailed in 3.1.1.1 is used.The eigenvalues

of A are λ1 = 1 and λ2 = 2 following our previous set constraints in 3.1.1.3. In

addition, as mentioned previously, eigenvalues that are power of 2 will lead the phase

estimation subroutine to generate states that exactly encode the eigenvalues [12].

The eigenvectors corresponding to λ1 and λ2 are |u1〉 and |u2〉 respectively. The

two clock qubits x2 and x3 can exactly encode the eigenvalues as |x2x3〉 = |01〉 and

|x2x3〉 = |10〉. Thus after execution of the phase estimation subroutine, the state of

the system (excluding the ancilla qubit) is |x1x2x3〉 = β1|01〉|ui〉 + β2|10〉|u2〉. The

state amplitudes β1 and β2 correspond to the expansion of the |b〉 coefficients in the
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eigenbasis of matrix A.

The next portion of the circuit includes the eigenvalue subroutine. As outlined

in 3.1.1.3, inverting the eigenvalue is a difficult process but because the chosen test

circuit has eigenvalues of one and two the subroutine consists of simple swap test.

The eigenvalue inversion brings the state of the system to
∑2

j=1 βj2λ
−1
j |uj〉. The

states encoded in |x2x3〉 then control a Y-rotation on the ancilla qubit. Since the

inverted eigenvalues are encoded in |x2x3〉, the rotation is dependent on the state

2|λ−1
j 〉. The rotation angle θ, is θ̃j = 21−rπ/λj = 2C/λj. This angle will approximate

θj = 2 arcsin(C/λj) [12]. The rotation variable r is discussed in 3.1.1.4. The final

portion of the circuit applies the inverse of the the previously applied gates as detailed

in 3.1.1.5. After the circuit finishes execution the state |x〉 will now be encoded in

the qubit |x4〉.

If the ancilla qubit (also known as the flag qubit) is measured to be one, then the

rotations were performed correctly and the correct state is encoded in the fourth qubit.

Reading back out the state of the qubit |x4〉 from the quantum state to classical data

is difficult and requires a run time of at least O(logN) [1]. However, qiskit allows

for the statevector of the circuit to be accessed without measurement under ideal

simulations. In this instance, measurement refers to process of measuring the value

of a qubit, collapsing its state to either 0 or 1. The process of collapsing a qubit

also collapses its superposition so that its value is now always 0 or always 1. But

by using Qiskit’s Statevectorsimulator one can index into the state of the system

and look at its superposition values. In this particular case, the solution vector is

encoded into the amplitude states corresponding to |1000〉 and |1001〉. Note: x1 is the

least significant bit and x4 is the most significant bit, adhering to classic computer

notation. Thus the statevectors of 1 and 9 must be indexed in order to reconstruct

the solution vector. This is due to the fact the circuit correctly computes the state

|x〉 when the flag qubit is measured to be 1 and the two clock register qubits are 0,
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giving us the two cases of |1000〉 and |1001〉 [2]. The normalized solution vector is

x = [0.147 − 0.049].

As can be seen in above, the state amplitudes are not the expected values of the

solution vector. This is due to the fact that the values have to be normalized in order

to encode them into the qubit. By dividing by the norm of the vector and multiplying

by the euclidean norm in order to undo the normalization applied by the circuit, the

expected solution vector can be reconstructed [2].

x = [0.3747299 − 0.1240997].

As shown previously, multiply the the calculated solution vector by 2 approximately

gives the expected vector ~x. While checking the solution to the system by accessing

certain amplitudes in the state vector is not a practical solution (as it is run in ideal

simulations and one can only measure a qubit by collapsing the system) it is useful

for ensuring correctness of circuit design.

3.2.2 4× 4 Matrix Solver Circuit

The previously described experiments were then tested again with a quantum circuit

capable of solving 4 × 4 matrices with the same specific constraints. The circuit

consists of 1 ancilla qubit, 4 clock register qubits, and 2 qubits to hold the solution

to the system. The entire circuit uses 7 qubits as shown in 3.2. For a four variable
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systems of equations the following matrices were chosen.

A =
1

4



15 9 5 −3

9 15 3 −5

5 3 15 −9

−3 −5 −9 15


;~b =



1
2

1
2

1
2

1
2


This specific case was chosen as it adheres to the constraint that the eigenvalues of the

circuit have the form λi = 2i−1. The expected solution vector is ~x = 1
32

[−1 7 11 13]T .

Once again in this particular case the state |b〉 preparation is trivial as it only requires

placing a Hadamard bit on qubits x5 and x6 to encode the state into the b register. For

non-trivial vectors encoding is done using a series of controlled Y-rotation gates are

applied on x5 and x6 with angles calculated using the subroutine detailed in 3.1.1.1.

The eigenvalues of matrix A are λ1 = 1, λ2 = 2, λ3 = 4, and λ4 = 8. These

eigenvalues can be exactly encoded using the four qubits x1, x2, x3, and x4. The

eigenvectors corresponding to the previous eigenvalues can be represented by |u1〉,

|u2〉, |u3〉, and |u4〉. After the execution of the phase estimation subroutine, the state

of the system without the ancilla qubit is |x1x2x3x4x5x6〉 = β1|0001〉 + β2|0010〉 +

β3|0100〉+ β4|1000〉. Since |b〉 =
∑4

j=1 βj|uj〉, the state amplitudes are the expansion

of the |b〉 coefficients. After the inversion subroutine, the state of the systems is∑2
j=1 βj2λ

−1
j |uj〉. Next the Y-rotation subroutine is implemented on the ancilla qubit

according to the state encoded in |x1x2x3x4〉. Similar to the circuit for the 2 × 2

system, the rotation is dependent on the state 2λ−1
j 〉 with the rotation angle being

θ̃j = 2C/λj as outlined in 3.1.1.4. Lastly, the process is undone through application of

the inverse of all gates applied before the Y-rotation subroutine according to 3.1.1.5.

The process for verifying whether the circuit performed as expected is is similar

to the one used for the 2× 2 circuit. The state of the system after circuit execution

was accessed using Qiskit’s Statevector simulator, except that this time four states
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were accessed. The four states corresponding to the conditions that the flag qubit

is 1 while the clock register qubits are 0 represent the circuit solution vector. The

normalized results are

x = [−0.01 0.084 0.132 0.157]

After undoing the normalization process by diving by the norm of the vector and

multiplying by the euclidean norm of
√

340 the calculated solution vector of the

solution is shown in

x = [−0.82929169 6.96605024 10.94665037 13.01987961].

The calculated solution vector by the constant 1
32

matches the expected result.

3.2.3 Full Circuit with Swap Test

Both the 2× 2 and 4× 4 circuit designs were then tested with the swap test detailed

in 3.1.3.

The circuits detailed in Figure 3.1 and Figure 3.2 were expanded to include a

swap test at the end of the circuit as shown in Figure 3.4. The fidelity of the solution

state |x〉 and the test state |test〉 was tested through controlled swaps in the swap

test subroutine as detailed in 2.2.7.

As mentioned in 3.1.3 it is possible to estimate the number of ones in the solution

vector by swapping the solution state with a test state of all ones. Since the probability

of measuring the ancilla qubit as zero is

P (0) =
1

2
+

1

2
|〈x|test〉|2
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it is possible to find |〈x|test〉|2 by setting the equation to

|〈x|test〉|2 = 2(P (0)− 1

2
)

Then since the number of ones in the solution vector can be found by

N + ∆ = |〈x|test〉|2W

where N + ∆ is the total number of ones in the solution vector, the probability of

P (0) can be used to find the number of ones in the solution vector. In the previous

equation, N is the number of ones in the test vector and ∆ is the difference between

the number of ones in the test and the solution vector.

The 2 × 2 circuit was then tested under three cases where the expected solution

vector was [0, 1], [1, 0], and [1, 1] with the swap vector being [1, 1]. The probability

P (0) was then constructed by taking the number of times the circuit measured 01

divided by number of times the circuit measured 01 and 11. 01 is the number of times

the circuit measured success as the 0 corresponds to success in the swap test while

the 1 measures success in the circuit as indicated by the ancilla qubit. 11 measures

the amount of times the ancilla qubit indicated success but the swap test indicated

the states are not similar.

Each test cases was run 100 times with the circuit being executed for 1024 shots

eact time and the average result across the 100 times was recorded and shown in the

table below.
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Vector Value Error

0 1 1.04 0.18

1 0 0.95 0.21

1 1 2.0 0.0

Table 3.2: Calculated number of ones in solution vector for different solution vectors with
Dim = 2

The error was calculated by mean squared error. The test was then repeated for

the 4×4 circuit design. However, since there are more permutations of a 4 dimension

binary vector the Table 3.3 averages the calculated number of ones for all test cases

with the same number of ones. For example, there are four test case vectors with

only one one ([1 0 0 0], [0 1 0 0], [0 0 1 0], [0 0 0 1]). So those four test cases were

further averaged by combining the results for those test cases and dividing by four.

Those results are displayed below.

Expected Number of Ones Value Error

1 0.95 0.46

2 2.02 0.616

3 2.97 0.416

4 3.99 9e-4

Table 3.3: Calculated number of ones in solution vector for different solution vectors with
Dim = 4

From both Tables 3.2 and 3.3 it is shown that it is possible to calculate the number

of ones in a binary weight vector using a swap test.
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4.1 Future Work

Further areas of interest for quantum circuits for solving linear systems could include

a tolerance correction algorithm. While currently quantum circuit are noisy, it may

be of interest to see if one could use a classical algorithm to correct the results of the

circuit. In addition, could it be possible to solve for a linear systems of equations that

have eigenvalues close to the constrained eigenvalue powers of 2 within an acceptable

error level.

In addition, it could be worth exploring the mathematical predictions for finding

the state of a solution vector by using a swap test to calculate the distance between

the two states and narrowing down the possibilities of states the solution vector could

be. Also of particular interest is the overall time complexity analysis. While this work

makes some comparisons between classical and quantum implementations, it is not

explored in-depth as it is not feasible to beat classical implementations with current

quantum circuits.

4.2 Conclusion

While the circuit results were shown with any one specific test case, they can be

implemented for any 2×2 or 4×4 matrix that follows the specific eigenvalue constraint.
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The only values that get encoded in the circuit design outlined in Figure 3.1 and

Figure 3.2 are the eigenvalues and state |b〉. Thus to solve for any other matrix that

follows the eigenvalue constraint, one would just need to change the input ~b. One

thing to note is that while the circuits are capable of solving for any matrix adherring

to the specific constraints, the parameters for the hamiltonian simulation of the 4× 4

circuit were fine-tuned for the particular case in [14] and may have larger errors for

some cases.

In terms of solving for linear regression, the eigenvalue constraint of powers of 2

is applied to the matrix A to solve the system Ax = b. Dutta et. al introduces a

data set X that is positive definite and has the unique solution (XTX)−1XTy [14].

Thus the matrix A would be equal to XTX and y = XTy. The 4× 4 circuit shown in

Figure 3.2, 3.3 is capable of solving the matrix A since it follows the specific eigenvalue

constraint. Thus, while current quantum technology constraints do not allow for any

Hermitian matrix ciruit solver to be implemented, as detailed in [1], there is potential

for using a quantum circuit to solve for linear regresion.

In addition, for the specific case of a binary neural network it is shown that it is

possible to estimate the number of predicted ones in a solution vector by comparing

the solution state to a test state as shown in 3.2.3. By using a swap test to implement

the number of ones, information about the solution vector can be read out without

performing quantum tomography. As quantum tomography is a costly procedure that

require measurements in all three bases, using a swap test to read information about

the solution state reduces the number of measurements needed overall for the circuit.

Since a binary neural network has a finite number of possible weights, knowing how

many ones are within a solution vector would allow reduce the search space for finding

the weight vector. This method would take advantage of the quantum algorithm

speed-up without adding on the additional minimum time complexity O(N) required

to read out the solution state from a qubit and translate it into classical date.
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The circuit proposed in 3.1 is not capable of outperforming classical computers

as it has the constraint of specific eigenvalues and preparing state |b〉 takes O(N).

However, once quantum circuits reach the size of 50 qubits they will outperform

classical computers, as 50 qubits is beyond what the most powerful current digital

supercomputers can simulate using brute force [7]. At 50 qubits the circuit will be

able to encode and process 240 or 1.09× 1012 data points given 9 clock register qubits

with eigenvalue precision of 29 and 1 ancilla qubit. Thus, it is the hope that as larger

quantum circuits become more viable and more efficient state preparation algorithms

are discovered it is possible to take full advantage of the poly(logN) speedup outlined

in the HHL algorithm [1].
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