
Rochester Institute of Technology Rochester Institute of Technology

RIT Digital Institutional Repository RIT Digital Institutional Repository

Theses

4-2022

Graph Arrowing: Constructions and Complexity Graph Arrowing: Constructions and Complexity

Zohair Raza Hassan
zh5337@rit.edu

Follow this and additional works at: https://repository.rit.edu/theses

Recommended Citation Recommended Citation
Hassan, Zohair Raza, "Graph Arrowing: Constructions and Complexity" (2022). Thesis. Rochester Institute
of Technology. Accessed from

This Thesis is brought to you for free and open access by the RIT Libraries. For more information, please contact
repository@rit.edu.

https://repository.rit.edu/
https://repository.rit.edu/theses
https://repository.rit.edu/theses?utm_source=repository.rit.edu%2Ftheses%2F11142&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.rit.edu/theses/11142?utm_source=repository.rit.edu%2Ftheses%2F11142&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository@rit.edu

Graph Arrowing: Constructions and Complexity

by

Zohair Raza Hassan

A thesis submitted in partial fulfillment of the

requirements for the degree of

Master of Science

in Computer Science

B. Thomas Golisano College of Computing and

Information Sciences

Rochester Institute of Technology

Rochester, New York

April 2022

Graph Arrowing: Constructions and Complexity

by

Zohair Raza Hassan

Edith Hemaspaandra Date

Thesis Advisor

Stanis law Radziszowski Date

Thesis Advisor

Ivona Bezáková Date

Reader

Brendan Rooney Date

Observer

ii

iii

©2022 Zohair Raza Hassan

All rights reserved.

Graph Arrowing: Constructions and Complexity

by

Zohair Raza Hassan

Submitted to the
B. Thomas Golisano College of Computing and Information Sciences

MS Program in Computer Science
in partial fulfillment of the requirements for the

Master of Science Degree
at the Rochester Institute of Technology

Abstract

Graph arrowing is concerned with determining which monochromatic subgraphs are unavoidable

when coloring a given graph. There are two main avenues of research concerning arrowing: finding

extremal Ramsey/Folkman graphs and categorizing the complexity of arrowing problems. Both

avenues have been studied extensively for decades. In this thesis, we focus on graph arrowing

problems where one of the monochromatic subgraphs being avoided is the path on three vertices,

denoted as P3. Our main contributions involve computing Folkman numbers by generating graphs

up to 13 vertices and proving the coNP-completeness of some arrowing problems using a novel

reduction framework geared towards avoiding P3’s.

The (P3, H)-Arrowing Problem asks whether a given graph can be colored using two colors (red and

blue) such that there are no red P3’s and no blue H’s, where H is a fixed graph. The few previous

hardness proofs for arrowing problems relied on ad-hoc, laborious constructions of “gadgets.” We

introduce a general framework that can be used to prove the coNP-completeness of (P3, H)-arrowing

problems. We search for gadgets computationally. These gadgets allow us to simulate variants of

SAT, thus showing coNP-hardness.

Finally, we use our (P3, H)-Arrowing hardness reductions to gain insight into variants of Monotone

SAT. For fixed k ∈ {4, 5, 6}, we show that Monotone SAT remains NP-complete under the following

constraints: 1) each clause consists of exactly two unnegated literals or exactly k negated literals,

2) the variables in each clause are distinct, and 3) the number of times a variable occurs in the

formula is bounded by a constant.

For future work, we expect that the insight gained by our computationally assisted reductions will

help us prove the complexity of other elusive arrowing problems.

iv

Acknowledgments

I want to thank my advisors, Professors Edith and Staszek, for introducing me to a research topic

I’m passionate about, allowing me to explore different ideas at my pace, and being a constant source

of support throughout my graduate school experience. Thank you for believing in me. It has been

a privilege to work under your supervision, and I look forward to holding on to this privilege for

the next few years.

I’d also like to thank Professors Ivona and Brendan for reading my thesis, providing their feedback,

and sharing my enthusiasm for the research presented in this work.

I am grateful to the United States Educational Foundation in Pakistan and the Institute of In-

ternational Education for granting me the Fulbright scholarship and providing the opportunity to

pursue higher education in the US.

I want to thank my friend Talha, who always believed in me and kept my head held high. I’d like

to thank his parents, Drs. Khadija and Irfan, for regularly checking up on me, keeping in touch,

and making sure I’m doing alright.

I want to thank my friends Bilal, Sayaan, and Sultan for their support, hospitality, and making my

transition from Lahore to the US easier. I’d also like to thank my labmate, Maheen Contractor,

for her friendship and for making my time in Rochester a fun and memorable experience.

Finally, I want to thank my family. After having lived in Lahore for all of my life, moving to the US

and not having all of you by my side was a painful experience. However, every message, phone call,

and Zoom session we shared made these circumstances a little bit easier. Thank you for providing

the unconditional love and support I needed to make it this far and for continuing to support me,

even while being 7000 miles away.

v

In loving memory of Talha.

vi

Contents

1 Introduction 1

2 Preliminaries 6

2.1 Graphs . 6

2.2 Coloring & Arrowing . 7

2.3 Ramsey & Folkman Numbers . 8

3 Related Work 9

3.1 Complexity of Arrowing . 9

3.2 Finding Ramsey and Folkman numbers . 10

3.3 Graph Coloring . 11

3.4 Matching Removal . 12

4 Generating (H1, H2)-good Graphs 13

4.1 Preliminary Tools . 13

4.1.1 Isomorphism Checker . 13

4.1.2 Graph Extender . 14

vii

CONTENTS viii

4.1.3 Graph Colorer . 15

4.2 Methodology . 16

5 (P3, H)-Arrowing for some fixed H 17

5.1 Variants of SAT . 18

5.2 Reduction Idea . 19

5.2.1 Gadgets . 19

5.2.2 Joining Gadgets . 21

5.3 Finding Gadgets . 22

5.4 Gadgets for each H ∈ Z . 23

5.4.1 Cycles: C4, C5, and C6 . 23

5.4.2 J4 and BT . 24

5.4.3 Paths: P5 and P6 . 24

5.5 Remarks . 25

6 Some Small Ramsey & Folkman Numbers 33

6.1 Ramsey Numbers . 34

6.2 Folkman Numbers . 34

6.2.1 Approach 1: Targeting H . 35

6.2.2 Approach 2: Targeting I . 35

6.2.3 Open Cases . 36

7 Some Insight on Variants of Monotone SAT 42

7.1 The Hardness of Monotone (2, k)-SAT . 43

CONTENTS ix

7.2 Bounding Variable Occurrences . 43

8 Conclusion and Future Work 49

List of Figures

1.1 The complete graph on six vertices. 1

1.2 Eight out of 32,768 possible 2-(edge)-colorings of K6. 2

5.1 Graphs in Z. 17

5.2 Clause gadget example. 19

5.3 The original gadgets found via enumeration for (P3, P5) and (P3, P6)-Non-Arrowing,

when reducing from (2, 2)-3SAT. These were modified by hand to obtain the gadgets

necessary for the final reductions. 25

5.4 Gadgets to reduce (3, 1)-3SAT to (P3, C4)-Non-Arrowing. 26

5.5 Gadgets to reduce (3, 1)-3SAT to (P3, C5)-Non-Arrowing. 27

5.6 Gadgets to reduce (2, 2)-3SAT to (P3, C6)-Non-Arrowing. 28

5.7 Gadgets to reduce (3, 1)-3SAT to (P3, J4)-Non-Arrowing. 29

5.8 Gadgets to reduce (2, 2)-3SAT to (P3, BT)-Non-Arrowing. 30

5.9 Gadgets to reduce (2, 2)-3SAT to (P3, P5)-Non-Arrowing. 31

5.10 Gadgets to reduce (2, 2)-3SAT to (P3, P6)-Non-Arrowing. 32

6.1 Witness graph for Fe(P3, P4;K4). 38

x

LIST OF FIGURES xi

6.2 Witness graph for Fe(P3, P5; I) for I ∈ {K5,K4,K3, J5, J4, C5} and Fe(P3, P4; I) for

I ∈ {K3, J4}. 38

6.3 Witness graph for Fe(P3, P4;C4). 38

6.4 Witness graph for Fe(P3,K3; I) for I ∈ {K4, J5}. 38

6.5 Witness graph for Fe(P3, C4; I) for I ∈ {K4,K3, J4}. 38

6.6 Witness graph for Fe(P3, P5;C4). 38

6.7 Witness graph for Fe(P3, H;K5) for H ∈ {K3, J4, C5}. 39

6.8 Witness graph for Fe(P3, J4; I) for I ∈ {K4, J5}. 39

6.9 Witness graph for Fe(P3,K3;C5) and Fe(P3, J4; I) for I ∈ {J5, C5}. 39

6.10 Witness graph for Fe(P3, H; I) for I ∈ {K6,K5,K4,K3, J6, J5, J4, C5} and H ∈
{P6, C6}. 39

6.11 Witness graph for Fe(P3, P6;C6). 39

6.12 Witness graph for Fe(P3, C5; I) for I ∈ {K4, J5}. 39

6.13 Witness graph for Fe(P3, P6;C4). 40

6.14 Witness graph for Fe(P3,K3; J4). 40

6.15 Witness graph for Fe(P3, C5; I) for I ∈ {K3, J4}. 40

6.16 Witness graph for Fe(P3,K3;C4). 40

6.17 Witness graph for Fe(P3, BT ;K4) and Fe(P3, BT ; J5). 40

6.18 Witness graph for Fe(P3, BT ;C5). 40

6.19 Witness graph for Fe(P3, C5;C4). 41

6.20 Witness graph for Fe(P3, BT ;K5). 41

6.21 Witness graph for Fe(P3, C6;C4). 41

LIST OF FIGURES xii

7.1 The graphs analyzed to bound the variable occurrences in Monotone (2, 4)-SAT. In

the table on the right, we show for each edge how many times it appeared in a P3

and a C4. 46

7.2 The graphs analyzed to bound the variable occurrences in Monotone (2, 5)-SAT. In

the table on the right, we show for each edge how many times it appeared in a P3

and a C5. 47

7.3 The graphs analyzed to bound the variable occurrences in Monotone (2, 6)-SAT. In

the table on the right, we show for each edge how many times it appeared in a P3

and a C6. 48

List of Tables

2.1 The special graphs used throughout this thesis. 7

6.1 Ramsey numbers R(P3, H) for H ∈ Y. 34

6.2 Folkman numbers Fe(P3, H; I) for H ∈ Y. Cells marked are r if the number is

clearly equal to the corresponding Ramsey number. Cells marked are ne if the

number clearly cannot exist. Cells marked ? were not found during our enumeration. 37

6.3 Witness graphs for Fe(P3, H; I) for H ∈ Y. Each cell refers to the label of a figure. . 37

xiii

Chapter 1

Introduction

Graph arrowing is concerned with coloring graphs such that the monochromatic subgraphs of each

coloring adhere to a specified structural property. For example, take the complete graph on six

vertices, commonly referred to as K6 (see Figure 1.1).

Figure 1.1: The complete graph on six vertices.

Assume that we are coloring the graph’s edges with two colors: red and blue. It can be shown that

in every possible coloring of K6, there must exist either a red triangle or a blue triangle—where a

triangle is the complete graph on three vertices. Some examples have been provided in Figure 1.2.

This fact is also commonly expressed as “each 2-edge-coloring of K6 must have a monochromatic

triangle.” The mathematical notation to put this concisely is K6 → (K3,K3)
e, pronounced, K6

arrows K3,K3. The ‘e’ in the superscript denotes that edges are being colored. Note that this

1

CHAPTER 1. INTRODUCTION 2

Figure 1.2: Eight out of 32,768 possible 2-(edge)-colorings of K6.

concept can be generalized to k colors.

Graph arrowing can be traced back to 1930 when Ramsey formalized the concept of Ramsey

numbers: the order of the smallest complete graph that arrows specified subgraphs [35]. For

example, K6 is the smallest complete graph that arrows (K3,K3)
e. In Ramsey notation, this is

written as R(K3,K3) = 6. Since its inception, Ramsey numbers have been explored for many

different families of graphs, such as cliques, paths, and cycles [5,6,15,34]. This concept was further

generalized to “Folkman numbers,” where the graph being colored is not necessarily a complete

graph and must not contain a specified subgraph [2, 7, 13, 21, 27, 39]. Arrowing decision problems

are concerned with determining whether a given graph arrows some fixed (H1, H2, . . . ,Hk)e, where

Hi is a graph and k is the number of colors being used. Many such problems have been proven to

be solvable in polynomial time [3] or to be coNP-complete [4, 14,36].

This thesis aims to solve problems concerning arrowing by exploring these problems through the lens

of computational combinatorics and complexity theory. This includes finding extremal graphs that

adhere to properties related to arrowing and classifying arrowing problems into various complexity

classes. We list below a few reasons why we believe arrowing is interesting and why this work is

worth exploring:

1. Intellectual curiosity. Ramsey theory is often described as “finding order within chaos.”

CHAPTER 1. INTRODUCTION 3

In his seminal paper in 1930, Ramsey essentially proved that within large enough structures,

specific patterns are unavoidable [22]. It is interesting to see how this observation unfolds for

different structures, such as cliques, paths, cycles, etc. Even more so, it is interesting to see if

these patterns remain unavoidable despite certain substructures being forbidden, as Folkman

did.

2. Delineating the line that divides P and NP-complete problems. By exploring which

subgraphs permit polynomial-time solutions and which don’t, we may be able to understand

better the line that divides P-time problems and NP-complete/coNP-complete problems—at

least for arrowing problems. For instance, determining whether a graph arrows (P3, P3)
e can

be done in polynomial time, but doing so for (P4, P4)
e is coNP-complete, where P3 and P4 are

the path graphs on three and four vertices, respectively. We believe it would be interesting

to obtain sets of problems in P and coNP-complete and compare them to see what inherent

difference divides these problems.

3. More problems for hardness proofs. Many hardness proofs are based on reductions from

variants of SAT. Different variants impose different constraints, allowing for more accessible

hardness proofs. For instance, geometric NP-complete problems may have easier reductions

from planar or rectilinear variants of SAT. Arrowing naturally has infinitely many variants,

many of which are coNP-complete. Due to its diversity, we believe that arrowing problems

could also serve as a useful source for reductions.

This work focuses on graph arrowing where P3 is being avoided. We summarize our contributions

below:

1. Novel reduction framework for (P3, H)-Arrowing. For fixed H, the (P3, H)-Arrowing

problem decides whether the edges of a given graph can be colored red and blue such that

there are no red P3’s and no blue H’s. In Chapter 5, we describe a framework that allows

us to prove hardness results. We first formally define graphs with special colorings, known

as “gadgets.” We then show how one can prove that (P3, H)-Arrowing is coNP-complete

using these gadgets. Finally, we describe a methodology that allows us to search for gadgets

computationally.

2. New complexity results. In Chapter 5 we showcase the utility of the aforementioned

reduction framework by showing that (P3, H)-Arrowing is coNP-complete for seven distinct

H. This result is formally stated in Theorem 5.1.

CHAPTER 1. INTRODUCTION 4

3. New Folkman numbers. In Chapter 6 we present new Folkman numbers of the form

Fe(P3, H; I) where H is one of nine select graphs, and I is a cycle, complete graph, or

complete graph missing an edge. We show the smallest graphs G such that G is I-free, and

G→ (P3, H)e. The results are summarized in Theorem 6.2.

4. Insight on SAT Variants. In Chapter 7 we prove the NP-hardness of special variants of a

variant of SAT called Monotone SAT. Monotone SAT and different variants of it have been

explored in the past [1, 10, 11, 17]. By reducing from arrowing, we show that we are able to

impose more constraints on the Monotone SAT variant than otherwise would be possible from

a direct, trivial reduction from other SAT problems, while still maintaining the NP-hardness

of the problem. Our main result is stated in Theorem 7.2.

We list all the major theorems proven in this work below. The graphs mentioned below have been

defined in Table 2.1 of Chapter 2. Monotone (2, k)-SAT has been defined in Chapter 7.

Theorem 5.1. (P3, H)-Arrowing is coNP-complete for H ∈ {C4, C5, C6, J4, BT, P5, P6}.

Theorem 6.2. Let Y = {K3, P4, P5, P6, C4, C5, C6, J4, BT} and I = {K6,K5,K4,K3, J6, J5, J4, C6,

C5, C4}. For H ∈ Y \ {BT} and I ∈ I, Fe(P3, H; I) ≤ 13, or does not exist. For I ∈ I \ {J4, C4},
Fe(P3, BT ; I) ≤ 10, or does not exist. The exact values for each number can be found in Table 6.2.

Theorem 7.2. For fixed k ∈ {4, 5, 6}, Monotone (2, k)-SAT is NP-complete even when the vari-

ables in each clause are distinct, and the number of times each variable occurs is bounded by a

constant. In particular:

1. Monotone (2, 4)-SAT is NP-complete even when each variable appears at most 11 times, where

a variable appears as an unnegated literal at most eight times and as a negated literal at most

three times.

2. Monotone (2, 5)-SAT is NP-complete even when each variable appears at most 11 times, where

a variable appears as an unnegated literal at most seven times and as a negated literal at most

four times.

3. Monotone (2, 6)-SAT is NP-complete even when each variable appears at most 15 times, where

a variable appears as an unnegated literal at most nine times and as a negated literal at most

six times.

The thesis is organized as follows. In Chapter 2 we describe the notation and terminology used

throughout the thesis. In Chapter 3, we present a literature review of works related to graph

CHAPTER 1. INTRODUCTION 5

arrowing. In Chapter 4 we describe a basic methodology to generate the graphs that have “good”

colorings. These graphs are used in Chapters 5 and 6 to obtain the results mentioned before.

Chapter 7 uses the hardness results from Chapter 5 to explore variants of SAT. Finally, we conclude

in Chapter 8, wherein we discuss the future directions of our work.

Chapter 2

Preliminaries

This chapter lists the notation and terminology used throughout the thesis.

2.1 Graphs

A graph G = (V (G), E(G)) is a two-tuple of vertices and edges. The vertex set is denoted as

V (G), and the edge set as E(G). For a graph G, |V (G)| is referred to as the order of said graph.

Two graphs G and H are isomorphic if there exists a bijection π : V (G) ↔ V (H) such that

{{π(u), π(v)} | {u, v} ∈ E(G)} = E(H). Some special graphs and their notation have been

mentioned in Table 2.1.

For a graph G and a subset V ′ ⊆ V (G), G[V ′] is defined as the graph with vertex set V (G[V ′]) = V ′

and edge set E(G[V ′]) = {{u, v} ∈ E(G) | u, v ∈ V ′}. We define a similar concept for edges: given

a subset of edges E′ ⊆ E(G), G[E′] is defined as the graph with E(G[E′]) = E′ and V (G′[E′]) =

{u ∈ V (G) | {u, v} ∈ E′}.

We say that H is an induced subgraph of G if there exists a subset V ′ ⊆ V (G) such that G[V ′] is

isomorphic to H. We say that H is a subgraph of G if there exists a subset V ′ ⊆ V (G) such that

the removal of some edges from G[V ′] makes G[V ′] isomorphic to H.

6

CHAPTER 2. PRELIMINARIES 7

Notation Description Example on k = 5

Pk The path graph on k vertices, where k ≥ 1.

Ck The cycle graph on k vertices, where k ≥ 3.

Kk The complete graph on k vertices, where k ≥ 1.

Jk
The complete graph minus one edge on k vertices,

where k ≥ 2.

Table 2.1: The special graphs used throughout this thesis.

2.2 Coloring & Arrowing

A k-coloring of the edges of a graph G is a partition of E(G) into k sets. Similarly, a k-coloring of

the vertices of a graph G is a partition of V (G) into k sets. Examples of a 2-(edge)-coloring of K6

are provided in Figure 1.2. The chromatic number of a graph G is denoted as χ(G) and is equal to

the smallest number of colors required to color the graph’s vertices, such that no adjacent vertices

have the same color.

Definition 2.1 (Arrowing). Let G,H1, H2, . . . , and Hk be graphs, where k ≥ 1. We say that

G → (H1, H2, . . . ,Hk)e if in every k-coloring of the edges of G, there exists at least one color i

such that the subgraph corresponding to the ith color has Hi as a subgraph. The notation G →
(H1, H2, . . . ,Hk)v is used similarly for vertex arrowing. The notation is summarized below:

Graphs to avoid
in each color

Number of colors
being used

Graph being
colored

Object
being colored

As an example, consider K6 → (K3,K3)
e again. Assume we are coloring the edges red and blue.

CHAPTER 2. PRELIMINARIES 8

The notation summarizes that in every 2-coloring of K6, the red subgraph of G contains K3, or the

blue subgraph of G contains K3. In this work, we focus on edge arrowing with two colors. Thus,

when we discuss colorings, we assume that we are coloring the edges red and blue. In this vein, we

also define the following terminology:

Definition 2.2 ((H1, H2)-good coloring). An (H1, H2)-good coloring of a graph is one where there

are no red H1’s and no blue H2’s when the edges are colored red or blue.

Definition 2.3 ((H1, H2)-good graph). A graph G is (H1, H2)-good if there exists at least one

(H1, H2)-good coloring of G.

Note that we also use the phrase G ̸→ (H1, H2)
e to say that G is (H1, H2)-good. We now define the

decision problem studied in this paper. Let H1 and H2 be fixed graphs. The basic edge arrowing

problem on two colors is defined as follows:

Problem 2.1 ((H1, H2)-Arrowing). Given a graph G, does G→ (H1, H2)
e?

Note that the problem is phrased in this manner due to convention [3]. However, for simplicity, we

define the Non-Arrowing problem as it is easier to work with problems in NP rather than coNP:

Problem 2.2 ((H1, H2)-Non-Arrowing). Given a graph G, does G ̸→ (H1, H2)
e?

It is easy to see that (H1, H2)-Arrowing is in coNP since an (H1, H2)-good coloring is a certificate

that can be verified in polynomial time for (H1, H2)-Non-Arrowing.

2.3 Ramsey & Folkman Numbers

Let I, H1, H2, . . ., and Hk be graphs. We define Ramsey and Folkman numbers below:

Definition 2.4 (Ramsey numbers). The Ramsey number R(H1, H2, . . . ,Hk) is defined as the small-

est n such that Kn → (H1, H2, . . . ,Hk)e.

Definition 2.5 (Folkman numbers). The Folkman number Fe(H1, H2, . . . ,Hk; I) is the order of

the smallest G such that G is I-free and G→ (H1, H2, . . . ,Hk)e.

Although in this work we focus on edge colorings, Folkman numbers are defined similarly for

vertex colorings: Fv(H1, H2, . . . ,Hk; I) is the order of the smallest G such that G is I-free and

G→ (H1, H2, . . . ,Hk)v.

Chapter 3

Related Work

This section provides a brief literature review of the works related to graph arrowing. We first

discuss existing results on the computational complexity of graph arrowing in Section 3.1, followed

by a brief history of Ramsey and Folkman numbers and the approaches taken to compute them in

Section 3.2. In Sections 3.3 and 3.4, we discuss other problems with links to graph arrowing.

3.1 Complexity of Arrowing

In the late 1980s, Rutenburg [36] explored the Generalized Coloring Problem: GCPF ,k, where k ≥ 1

is an integer and F is a finite family of graphs. The problem asks to determine whether a given

graph’s vertices can be colored using k colors such that there are no monochromatic subgraphs

isomorphic to a graph in F . Observe that when k = 2 and F = {H}, the problem is equivalent to

determining G ̸→ (H,H)v, and extends to more colors. Note that this covers all symmetric vertex

arrowing problems, i.e., where the same subgraph is being avoided in each color.

The general edge arrowing problem is to determine whether G → (H1, H2)
e, given graphs G,H1,

and H2. This has been proven to be Πp
2-complete by Schaefer [37]. However, one can construct

several variants of the problem by considering cases where H1 or H2 are set to be specific graphs,

as in Problem 2.1. Several of these problems have been shown to be in P or coNP-complete. For

instance, one can devise a simple greedy algorithm to show that (P3, P3)-Arrowing is solvable in

polynomial time. Burr et al. [3] showed that (H1, H2)-Arrowing is solvable in polynomial time

when H1 and H2 are stars, or when H1 is a fixed matching and H2 is any fixed graph.

9

CHAPTER 3. RELATED WORK 10

coNP-complete problems include (K3,K3)-Arrowing [14] and (P4, P4)-Arrowing [36]. The problem

has also been shown to be coNP-complete for an infinite family of graphs: Let Γ3 be the set of all

3-connected graphs1 and K3. It has been shown that (H1, H2)-Arrowing is coNP-complete when

H1 and H2 are fixed graphs such that H1, H2 ∈ Γ3 [4]. The proof behind this is based on the

existence of graphs known as “senders.” For (H1, H2)-coloring, positive senders are graphs with

two edges e and f that have (H1, H2)-colorings such that e is red (resp., blue) iff f is red (resp.,

blue). Negative senders are defined similarly, but e is red (resp., blue) iff f is blue (resp., red).

By proving the existence of these senders, one can construct gadgets that allow a reduction from a

variant of SAT [4].

We note that there is little work on the case where only one graph is fixed, i.e., H1 is fixed, and

H2 is part of the input. A result that is easy to observe is that when H1 = K2 and G and H2 are

provided as input, determining whether G→ (H1, H2)
e is equivalent to the subgraph isomorphism

problem, which is NP-complete [14].

3.2 Finding Ramsey and Folkman numbers

Ramsey Theory was introduced in the 1930s. Originally, it was concerned with finding the smallest

complete graph Kn such that Kn → (Kj ,Kℓ)
e for complete graphs Kj and Kℓ. For given Kj and Kℓ,

this is known as the Ramsey number R(j, ℓ). In his seminal paper, Ramsey [35] proved the existence

of these complete graphs for any given Kj and Kℓ. Now, Ramsey theory has been extended to

include k colors, and avoid any given subgraph: for graphs H1, H2, . . ., Hk, R(H1, H2, . . . ,Hk) = n

is the order of the smallest Kn such that Kn → (H1, H2, . . . ,Hk)e. Small Ramsey numbers can be

found via theoretical analysis, but significant strides were made in the field when we could harness

computational power to aid in the search for Ramsey numbers. Radziszowski maintains a detailed

survey [34] of discovered Ramsey numbers and their bounds.

Folkman numbers can be viewed as an extension of Ramsey numbers. Unlike Ramsey numbers,

Folkman numbers look for any graph on n vertices instead of complete graphs and also require

that the graph being colored must be I-free for some graph I. Folkman-esque problems have been

around since before Folkman’s theorem. Graham proved that Fe(K3,K3;K6) = 8 in 1968, and

Erdős and Hajnal first conjectured the existence of a graph G that is K4-free and G → (K3,K3)
e

in 1967. It wasn’t until 1970 that Folkman proved the existence of such a graph and the concept of

1A 3-connected graph is a graph of order at least 4 that requires the removal of at least 3 vertices to become

disconnected.

CHAPTER 3. RELATED WORK 11

Folkman numbers was formalized. For in-depth surveys on Folkman numbers, we refer the reader

to the works of Bikov [2] and Wood [39].

Finding Ramsey/Folkman numbers and their bounds is a computationally expensive task. For

orders up to 12, one can enumerate over all graphs to find the desired graph. Going beyond 12

vertices is a daunting task, as there are 50 trillion connected graphs on 13 vertices, and exponentially

more as we go forward. To explore graphs over more vertices requires a meticulous approach; by

proving the necessary properties of the desired graphs, one can write programs to generate only

these graphs and avoid enumeration over unwanted graphs.

For example, to show that the Folkman number Fv(K2,K2,K2,K2; J4) ≤ 15, Hassan et al. [21] first

showed that if a corresponding graph G exists, then G can be split into subgraphs G1 and G2 such

that G1 is an independent set on four vertices, and G2 is a J4-free graph such that χ(G2) ≥ 4.

We refer the reader to the following accessible works on vertex Folkman numbers to get an idea of

this process: (1) Jensen and Royle’s [25] and Goedgebeur’s [16] work on K3-free Folkman numbers,

(2) Coles and Radziszowski’s [7] and Lathrop and Radziszowski’s [27] work on K4-free Folkman

numbers, and (3) Hassan et al.’s [21] work on J4-free Folkman numbers.

3.3 Graph Coloring

In this section, we discuss other problems that involve coloring graphs. Coloring graphs has been a

popular research avenue for decades. The most common practice in coloring is to find the minimum

number of colors required to color the vertices of a given graph such that no vertices connected

by an edge have the same color. This number is known as the chromatic number of the graph—a

similar concept has been defined for edges, where no two adjacent edges may have the same color,

and it is known as the chromatic index of a graph.

The k-colorability problem decides whether a graph’s vertices can be colored with k colors, such

that no adjacent vertices share the same color. This problem was one of the first problems proven

to be NP-complete via a reduction from SAT by Karp in his seminal paper with 21 similar proofs

via reductions [14, 26]. It is also known, for fixed k, that determining whether a graph’s vertices

can be colored using k colors is NP-complete when k ≥ 3, but can be done in polynomial time

when k ≤ 2. Similarly, determining the k-colorability of edges is also NP-complete [23], for k ≥ 3.

Observe that determining whether a graph G’s vertices are 3-colorable is equivalent to deciding

CHAPTER 3. RELATED WORK 12

whether G ̸→ (K2,K2,K2)
v. Similarly, determining whether a graph G’s edges are 3-colorable

is equivalent to determining whether G ̸→ (P3, P3, P3)
e. It is easy to see that these reductions

generalize to larger k as well. Observe that graph arrowing explores coloring more generally: we

may disallow any graph in each color instead of K2’s or P3’s.

We note that other coloring problems have also been explored. For example, the defective coloring

problem studies vertex colorings of graphs where adjacent vertices are allowed to share colors under

some constraints: in a (k, d)-coloring, vertices are colored with at most k colors, and a vertex is

allowed to have at most d neighbors of the same color [5, 8, 9, 19]. Many instances of defective

colorings are NP-complete. For instance, (2, d)-coloring is known to be NP-complete for d ≥ 1.

3.4 Matching Removal

A matching M is defined as a set of disjoint edges of a graph, i.e., no two edges in M share a

common vertex. Matching removal problems can generally be defined as follows: for a fixed graph

property Π and some given graph G, does there exist a matching M ⊆ E(G) such that the graph

G′ = (V (G), E(G)\M) has property Π? [29] We show below how certain arrowing problems can be

rephrased as matching removal problems and discuss some matching removal problems that have

been explored in the past.

Consider the following problem: Given G, does G ̸→ (P3, H)e for some fixed H? Note that in any

(P3, H)e-good coloring of G, one may only have disjoint P2’s in the red subgraph, and that the blue

subgraph must be H-free. This shows that determining whether G ̸→ (P3, H)e is equivalent to a

matching removal problem where the property Π is that G′ must be H-free.

Recently, work has been done on the acyclic property: determining if a matching exists that gives

an acyclic graph on removal. This was proven to be NP-complete by Lima et al. [28], who also

worked on a variant of this problem known as Odd Decycling Matching, where the graph must have

no odd cycles after removal. This can also be viewed as “bipartization,” i.e., making the resulting

graph bipartite. They show that this problem is NP-complete [29].

An interesting point to note is the relationship between Odd Decycling Matching and defective

coloring. It has been shown that a graph has a (2, 1)-coloring if and only if there exists an odd

decycling matching [30].

Chapter 4

Generating (H1, H2)-good Graphs

Combinatorial computing methodologies begin with the generation of combinatorial objects. Once

generated, the objects are analyzed to find ones with desired properties. In this section, we discuss

a basic framework that iteratively generates (H1, H2)-good graphs, given graphs H1 and H2. In

particular, we discuss how to generate all (H1, H2)-good graphs on n+1 vertices, given the set of all

such graphs on n vertices. These graphs are used to find the gadgets in Chapter 5 and discover the

Folkman numbers in Chapter 6. Section 4.1 introduces some tools required for our methodology

described in Section 4.2.

4.1 Preliminary Tools

Our methodology requires three tools: an isomorphism checker, a graph extender, and finally, a

graph colorer. This section elaborates on the utility of these three tools.

4.1.1 Isomorphism Checker

The Graph Isomorphism Problem is defined as follows:

Problem 4.1 (Graph Isomorphism). Given graphs G and F , is G isomorphic to F?

As of yet, Graph Isomorphism has no known polynomial-time solution. However, in 1984, McKay

developed nauty: a practical solution to the Graph Isomorphism problem [32]. nauty maps each

13

CHAPTER 4. GENERATING (H1, H2)-GOOD GRAPHS 14

graph to a unique string. These strings are constructed based on the adjacency matrix of a graph.

Since a single graph may be represented by many adjacency matrices, McKay proposed an algorithm

that rearranges the order of a graph’s vertices to a “canonical” ordering, allowing us to obtain

unique string representations. In our methodology, we use nauty to discard duplicate graphs

generated during our iterative process. Note that mapping graphs to strings allows us to quickly

remove duplicates from lists of graphs by sorting the list of strings and removing adjacent matching

strings.

4.1.2 Graph Extender

Let G be a graph on n vertices. We say that Ĝ is an extension of G if Ĝ is a graph on n+1 vertices

and G is an induced subgraph of Ĝ. Given a graph G, a graph extender is a function that returns

all possible extensions of G. A simple algorithm for such a function is given in Algorithm 1.

Algorithm 1: Graph Extender

Function Extend(G)

1 XG ← ∅
2 Let P be the set of all subsets of V (G)

3 for V ′ ∈ P do

4 Construct Ĝ by making a copy of G, adding a new vertex u, and adding an edge

between u and each vertex in V ′

5 Add Ĝ to XG

end

6 Remove duplicates from XG using the isomorphism checker (Section 4.1.1)

7 return XG

CHAPTER 4. GENERATING (H1, H2)-GOOD GRAPHS 15

4.1.3 Graph Colorer

Given graphs G,H1, and H2, a graph colorer is a function that returns all possible (H1, H2)-

good colorings of G. We note that it can be difficult to obtain a good coloring efficiently due

to the hardness of graph arrowing. However, modern SAT solvers are practical enough to provide

solutions efficiently for small instances. In this vein, we propose obtaining colorings by constructing

a CNF-SAT formula ϕH1,H2

G such that there is a bijection between the satisfying assignments of

ϕH1,H2

G and the (H1, H2)-good colorings of G.

For graphs G and H, let SH
G be the set of all subsets of E(G) such that G[E′] is isomorphic to

H. Let ei be the ith edge in E(G). Let xi be a variable in ϕG corresponding to ei. Recall that

we are working with two colors: red and blue. Let the value of a variable correspond to a color:

without loss of generality, assume that xi is true iff ei is blue. Let S ∈ SH1
G . Clearly, we must have

at least one red edge in S in any (H1, H2)-good coloring of G. This rule can be represented by a

CNF clause like so: ∨
ei∈S

xi

Similarly, for any S ∈ SH2
G to have at least one blue edge, we can use the clause:∨

ei∈S
xi

Thus, we can construct ϕH1,H2

G like so:

ϕH1,H2

G =
∧

S∈SH1
G

 ∨
ei∈S

xi

 ∧ ∧
S∈SH2

G

 ∨
ei∈S

xi

Note that we can generate ϕH1,H2

G in polynomial time when H1 and H2 are fixed graphs. Also

note that when generating graphs, only one good coloring is required to verify that the graph is

(H1, H2)-good. Thus, in our implementation, we only checked the existence of a single satisfying

assignment for the corresponding formula.

CHAPTER 4. GENERATING (H1, H2)-GOOD GRAPHS 16

Algorithm 2: Constructing (H1, H2)-good graphs

Input : Gn = All (H1, H2)-good graphs on n vertices

Output: Gn+1 = All (H1, H2)-good graphs on n + 1 vertices

1 Gn+1 ← ∅
2 for G ∈ Gn do

3 XG ← Extend(G)

4 Add all graphs from XG to Gn+1, removing duplicates if necessary

end

5 for G ∈ Gn+1 do

6 Let YG be the set of all connected subgraphs of G of order n

7 if any G′ ∈ YG is not a member of Gn then

8 Remove G from Gn+1

else

9 Check if G has a good coloring using the graph colorer

10 if G does not have a good coloring then

11 Remove G from Gn+1

end

end

end

12 return Gn+1

4.2 Methodology

Using the tools described above, we implemented the methodology described in Algorithm 2 to

incrementally generate our (H1, H2)-good graphs. Observe that in lines 2–4, we obtain all possibly

good graphs from the previous set, and in lines 5–11, we filter out graphs which arrow (H1, H2)
e.

Note that in lines 6–8, we check subgraphs of each graph to see if each subgraph is (H1, H2)-

good. This subgraph check allows us to skip calling the SAT solver, allowing for more efficient

computation.

In our implementation, we started with all connected graphs on three vertices (since there are only

two: P3 and K3) and iteratively generated the next sets. The methodology was implemented using

C and Python. We want to acknowledge the use of NetworkX [18], pynauty [33], pySAT [24], and

GrandIso [31] in our implementation.

Chapter 5

(P3, H)-Arrowing for some fixed H

(a) C4 (b) C5 (c) C6 (d) J4

(e) BT (f) P5 (g) P6

Figure 5.1: Graphs in Z.

In this chapter, we propose a simple framework for coNP-hardness proofs of (P3, H)-Arrowing

problems, where H is a fixed graph. We show that (P3, H)-Arrowing is coNP-complete for H ∈
Z = {C4, C5, C6, J4, BT, P5, P6}, where BT—referred to as the butterfly graph—is the graph where

two triangles share a vertex. Each graph is shown in Figure 5.1.

For each H ∈ Z, we build “gadgets” that allow us to simulate CNF-SAT formulas as arrowing

problems. The term gadget refers to a small graph that simulates a component of a boolean

formula. In our reduction, there are two types of gadgets: variable gadgets and clause gadgets.

Variable and clause gadgets will be connected according to their arrangement within the given

17

CHAPTER 5. (P3, H)-ARROWING FOR SOME FIXED H 18

formula. Thus, for any given formula ϕ, we will construct a graph Gϕ that is (P3, H)-good if and

only if ϕ is satisfiable.

We use two variants of SAT to reduce from, which are discussed in Section 5.1. The reduction is

explained in Section 5.2. Finally, the gadgets for each H are discussed in Section 5.4.

5.1 Variants of SAT

We use the following variants of SAT for our reductions:

Problem 5.1 ((3, 1)-3SAT [10]). Let ϕ be a 3CNF formula where 1) each clause has exactly three

distinct variables, and 2) each variable appears as an unnegated literal three times and as a negated

literal once. Does there exist a satisfying assignment for ϕ?

Problem 5.2 ((2, 2)-3SAT [1]). Let ϕ be a 3CNF formula where 1) each clause has exactly three

distinct variables, and 2) each variable appears as an unnegated literal twice and as a negated literal

twice. Does there exist a satisfying assignment for ϕ?

Note that the important properties of these problems are the limit on the number of occurrences

of each variable and that clauses have exactly three distinct variables. The benefit of using these

two problems is that:

1. Each variable appears exactly four times. This allows us to construct variable gadgets with

only four output vertices instead of constructing one that must be modified according to the

number of occurrences.

2. By knowing exactly how many times a variable is negated, we avoid having to create negation

gadgets and instead have negated output vertices within the variable gadgets themselves.

3. Each clause having exactly three literals allows us to construct only one kind of clause gadget.

4. Having distinct variables in each clause eliminates the creation of unwanted subgraphs when

joining gadgets. The utility of this fact will be clearer when we explore the cases where H is

a cycle.

CHAPTER 5. (P3, H)-ARROWING FOR SOME FIXED H 19

Figure 5.2: Clause gadget example.

5.2 Reduction Idea

We make use of the following simple observation, which shows that red edges are especially restric-

tive in (P3, H)-good colorings:

Observation 5.1. In any (P3, H)-good coloring of a graph G, if an edge e is colored red, then all

edges adjacent to e must be blue.

This is clearly true because two adjacent red edges would form a red P3. Based on this observation,

we construct gadgets for variables and clauses to simulate a SAT formula. We explain the properties

of these gadgets below, after which we discuss how these gadgets are connected to simulate a given

boolean formula.

5.2.1 Gadgets

Clause Gadget. To better explain the functionality of the clause gadget, we focus our attention

on a specific H. Consider the (P3, C5)-Non-Arrowing problem. Let u, v, and w be three vertices of

a C5 such that u and w are adjacent, and v is not adjacent to either u or w. Let u′, v′, and w′ be

three vertices not in the C5, such that u′, v′, and w′ are connected only to u, v, and w respectively.

Note that if the three edges (u′, u), (v′, v), and (w′, w) are colored red, then, by Observation 5.1,

the C5 must be colored blue, resulting in an invalid coloring. It follows that at least one edge

in {(u′, u), (v′, v), (w′, w)} must be blue in any (P3, C5)-good coloring of the constructed graph.

Further analysis shows that all seven combinations of colorings with at least one blue edge of

CHAPTER 5. (P3, H)-ARROWING FOR SOME FIXED H 20

the set {(u′, u), (v′, v), (w′, w)} can be extended to a (P3, C5)-good coloring. This is illustrated in

Figure 5.2. Note that this is similar to how a CNF-SAT clause works: At least one true literal

(blue edge) is required to satisfy the clause (allow a good coloring).

Thus, for (P3, C5)-Non-Arrowing, one can use a C5 as a clause gadget, where the vertices u, v, and

w are “input vertices” from variable gadgets. For general H, we define the clause gadget as a graph

with three vertices, u, v, and w, referred to as “input vertices.” Let u′, v′, and w′ be vertices not in

the gadget such that u′, v′, and w′ are connected to u, v, and w, respectively. Observe that there

are eight possible combinations for the colorings of {(u, u′), (v, v′), (w,w′)}. For each combination,

except where all three edges are colored red, there must exist a (P3, H)-good coloring of the clause

gadget, and no good coloring should exist when all edges are colored red.

Variable Gadget. We first define red and blue vertices. Let G be a (P3, H)-good graph. In a

(P3, H)-good coloring of G, a red vertex is a vertex that is adjacent to a red edge, and a blue vertex

is a vertex that is adjacent to no red edges. Note that according to our clause gadget, a red vertex

acts as a false input. Consider the (P3, C5)-Non-Arrowing example again. If the three vertices u, v,

and w were red vertices, where the red edge lies outside the C5, the gadget does not have a good

coloring, i.e., the clause is not satisfied.

Recall that the SAT variants we are reducing from constrain the number of occurrences of each

variable. Thus, a variable gadget will have four “output vertices,” one for each occurrence of

the corresponding variable. Each gadget will have unnegated output vertices and negated output

vertices. These vertices will have the following properties:

1. In each coloring, if a single unnegated (resp., negated) output vertex is a red vertex, then all

unnegated (resp., negated) output vertices must be red vertices.

2. In each coloring, if a single unnegated (resp., negated) output vertex is a blue vertex, then

all unnegated (resp., negated) output vertices must be blue vertices.

3. In each coloring, if the unnegated output vertices are red (resp., blue), then the negated

output vertices must be blue (resp., red).

4. For each output vertex, there must exist at least one coloring where it is a red vertex and at

least one coloring where it is a blue vertex.

The number of these vertices will depend on the SAT variant we are reducing from. If we are

reducing from (3, 1)-3SAT, then we will have three unnegated output vertices and one negated

CHAPTER 5. (P3, H)-ARROWING FOR SOME FIXED H 21

Algorithm 3: (P3, H) Reduction

Input : A formula ϕ with variables X = {x1, x2, . . . , xn} and clauses Y = {Y1, Y2, . . . , Ym}
Output: A graph G s.t. G is (P3, H)-good iff ϕ is satisfiable

1 Let G be the empty graph

2 for Yi ∈ Y do

3 Add a copy of the clause gadget to G

end

4 for xi ∈ X do

5 Add a copy of the variable gadget to G

6 for each clause Yj that xi belongs to do

7 if xi appears as a negated literal in Yj then

8 Join a free negated output vertex of xi’s variable gadget to a free input vertex of

Yj ’s clause gadget

else

9 Join a free unnegated output vertex of xi’s variable gadget to a free input vertex of

Yj ’s clause gadget

end

end

end

10 return G

output vertex. If we are reducing from (2, 2)-3SAT, then we will have two unnegated output

vertices and two negated output vertices.

5.2.2 Joining Gadgets

For each H, Algorithm 3 is used to reduce an instance of one of the SAT variants to (P3, H)-Non-

Arrowing. To explain the algorithm, we first define a “join” operation on the vertices of a graph.

When two vertices u,w ∈ V (G) in a graph are joined, a new vertex v is added such that v is

connected to all neighbors of u and w, and the vertices u and w are removed. Note that some

texts refer to this operation as a vertex contraction or vertex identification operation.1 Let a “free

vertex” be a vertex that has not been created via the join operation.

1https://mathworld.wolfram.com/VertexContraction.html

CHAPTER 5. (P3, H)-ARROWING FOR SOME FIXED H 22

Note that it is not enough for each clause gadget to have at least one blue vertex as input to obtain

a good coloring; we must also show that no blue H is formed when the coloring of the variables

corresponds to a satisfying assignment. In our reductions below, we show that this is the case for

each H ∈ Z.

5.3 Finding Gadgets

For most H ∈ Z = {P5, P6, C4, C5, C6, J4, BT}, the graphs themselves act as clause gadgets: Each

H ∈ {P5, P6, C5, C6, J4, BT} has three vertices that can act as input vertices. This is illustrated in

each gadget’s respective section. For H = C4, it is easy to see that the combination of two C4’s is

enough to make a valid clause gadget.

For a fixed H, the variable gadgets are found by enumerating over (P3, H)-good graphs and finding

graphs that meet the criteria described for said gadgets. Assume we are given a graph G and four

vertices v1, v2, v3, and v4. For each (P3, H)-good coloring of G, we create a 4-tuple: (k1, k2, k3, k4),

where ki ∈ {R,B} corresponds to vertex vi, such that R and B are labels corresponding to whether

vertex vi is a red vertex or a blue vertex, respectively. All colorings of G are enumerated, and each

4-tuple is stored in a set, LG. It is clear that if G and the vertices v1, . . . , v4 form a valid variable

gadget for (3, 1)-3SAT (resp., (2, 2)-3SAT), LG must lie in the set A3,1 (resp., A2,2), defined below:

A3,1 =

{
{(R,R,R,B), (B,B,B,R)},
{(R,R,B,R), (B,B,R,B)},
{(R,B,R,R), (B,R,B,B)},
{(B,R,R,R), (R,B,B,B)}

}
A2,2 =

{
{(R,R,B,B), (B,B,R,R)},
{(R,B,R,B), (B,R,B,R)},
{(R,B,B,R), (B,R,R,B)}

}
The (P3, H)-good graphs are generated as described in Chapter 4, where the number of vertices

is in the range [3, 10]. The procedure described above is performed for all combinations of four

vertices in all generated graphs. If a graph matching the criteria for either variable gadget is found,

we store it. In the end, we are left with a number of graphs that may or may not be suitable

gadgets. Since there are very few graphs that meet our criteria for each H, each is analyzed, and

the best one is selected. If a viable gadget is not found, we use these generated graphs to construct

CHAPTER 5. (P3, H)-ARROWING FOR SOME FIXED H 23

a new one.

5.4 Gadgets for each H ∈ Z

In this section, we prove the following theorem:

Theorem 5.1. (P3, H)-Arrowing is coNP-complete for H ∈ {C4, C5, C6, J4, BT, P5, P6}.

For each H, we found gadgets as discussed in the previous section. These gadgets are shown in

this section. We also show the following:

1. Each coloring of incoming edges for a clause gadget corresponding to a satisfying assignment

is valid, i.e., we show that good colorings exist for each incoming color combination to the

input vertices.

2. For variable gadgets, each possible coloring is shown. The unnegated and negated output

vertices are labeled.

3. No blue H can be formed while joining the gadgets when: (1) the variable gadgets adhere

to their good colorings, and (2) the variable gadgets are colored corresponding to a satis-

fying assignment of the formula ϕ. Essentially, we show that no “unwanted” blue H’s are

formed while joining the gadgets. This requires special attention for each H, and is discussed

separately for all cases. Cases for which these proofs are similar are discussed together.

5.4.1 Cycles: C4, C5, and C6

Gadgets for arrowing (P3, C4), (P3, C5), and (P3, C6), are presented in Figures 5.4, 5.5, and 5.6,

respectively. The reductions for (P3, C4) and (P3, C5)-Non-Arrowing use (3, 1)-3SAT, while the

reduction for (P3, C6)-Non-Arrowing uses (2, 2)-3SAT. For each k ∈ {4, 5, 6}, to show that no

unwanted blue Ck’s are formed, we show that joining the gadgets does not created any new Ck’s.

The same argument works for all three cases. We first discuss the proof for C4, then show the same

applies to C5 and C6.

Recall that each clause in the formula ϕ must have three distinct variables. Thus, a new cycle is

created only when two variables appear together in two clauses.

CHAPTER 5. (P3, H)-ARROWING FOR SOME FIXED H 24

Note that in the variable gadget for (P3, C4) (Figure 5.4), the shortest path between any two

output vertices has two edges. Similarly, in the clause gadget, the shortest path between any two

input vertices has at least one edge. Thus, when two variables appear in two clauses, as discussed

previously, the cycle created must have at least 2 + 1 + 2 + 1 = 6 edges, making a C6, i.e., no new

C4 is formed when joining the gadgets.

A similar argument can be made for C5 and C6. The (P3, C5) variable and clause gadgets also

have two and one edges at minimum, respectively, separating their output/input vertices. Thus,

the shortest new cycle formed is a C6. For both of (P3, C6)’s gadgets, we note that there are at

minimum two edges between the output/input vertices too. Thus, the shortest possible cycle made

is of order 2 + 2 + 2 + 2 = 8.

5.4.2 J4 and BT

(3, 1)-3SAT was reduced to (P3, J4)-Non-Arrowing via the gadgets shown in Figure 5.7. (2, 2)-3SAT

was reduced to (P3, BT)-Non-Arrowing via the gadgets shown in Figure 5.8.

When constructing the graph for (P3, J4)-Non-Arrowing’s reduction, it is clear to see that joining

vertices can not form new J4’s. Thus, unwanted blue J4’s are not formed. For (P3, BT)-Non-

Arrowing, note that BT ’s are formed when joining the gadgets. However, the output vertices of

the variable gadgets never belong to blue K3’s. Thus, unwanted BT ’s can not be formed.

5.4.3 Paths: P5 and P6

(2, 2)-3SAT was reduced to (P3, P5) and (P3, P6)-Non-Arrowing. The gadgets for these are shown

in Figures 5.9 and 5.10, respectively.

Note that to ensure no unwanted P5’s or P6’s are formed when joining the gadgets, it is necessary

to ensure that the input edges to the clause gadget are not parts of larger monochromatic paths.

For instance, consider (P3, P5)-Arrowing and refer to the clause gadget in Figure 5.9. If the blue

input edges were already a part of blue P3’s, then we could not have a valid coloring in the case

where three blue edges are input to the clause gadget. Thus, we had to ensure that the output

vertices of our variable gadget end at blue/red P2’s.

Since no such graphs were found up to 10 vertices, the graphs found using our gadget search were

modified to obtain the graphs presented. The original graphs found are shown in Figure 5.3.

CHAPTER 5. (P3, H)-ARROWING FOR SOME FIXED H 25

(a) The original gadget for (P3, P5). (b) The original gadget for (P3, P6).

Figure 5.3: The original gadgets found via enumeration for (P3, P5) and (P3, P6)-Non-Arrowing,

when reducing from (2, 2)-3SAT. These were modified by hand to obtain the gadgets necessary for

the final reductions.

5.5 Remarks

While the problems discussed in this chapter are coNP-complete, we note that there do exist P3

arrowing problems that are in P. (P3, P3)-Arrowing is in P, as there is a simple greedy algorithm

one can employ to check if a good coloring exists. (P3, P4)-Arrowing and (P3,K3)-Arrowing are also

solvable in polynomial time [20]. (P3, P4)-Arrowing was proven to be in P via a reduction to 2SAT,

while (P3,K3)-Arrowing was shown to be in P via a reduction to maximum weight matching.

We also want to point out that the framework discussed in the chapter is not the only way one can

construct gadgets for arrowing problems. Our initial reductions for (P3, P5) and (P3, P6)-Arrowing

were from a variant of 3SAT that restricted each variable to appear only four times in the formula,

but did not restrict the number of times it is negated [38]. Keeping this in mind, we also constructed

NOT gadgets, which have an input vertex and an output vertex. The property of the NOT gadget

was that the output vertex is a red vertex (resp., blue vertex) if the input vertex is a blue vertex

(resp., red vertex). Moreover, the variable gadgets had only unnegated output vertices, as the

negation was handled via NOT gadgets. While this allowed us to have easier gadgets for (P3, P5)

and (P3, P6)-Arrowing, this methodology was not fruitful for (P3, H)-Arrowing where H is not a

path graph.

CHAPTER 5. (P3, H)-ARROWING FOR SOME FIXED H 26

U

U U

N

(a) The variable gadget is shown on the left. Output vertices are filled in. Unnegated output

vertices are marked U, and negated output vertices are marked N. All good colorings of the

gadget are shown on the right.

(b) The clause gadget is shown on the top. Input vertices are filled in. One coloring for each

possible combination of input edge colorings is shown; note that there exists a good coloring for

all combinations except the one where there are three red input edges. Note that any coloring of

the gray edges with at least one blue edge will lead to a blue C4.

Figure 5.4: Gadgets to reduce (3, 1)-3SAT to (P3, C4)-Non-Arrowing.

CHAPTER 5. (P3, H)-ARROWING FOR SOME FIXED H 27

UN

U

U

(a) The variable gadget is shown on the left. Output vertices are filled in. Unnegated output

vertices are marked U, and negated output vertices are marked N. All good colorings of the

gadget are shown on the right.

(b) The clause gadget is shown on the top. Input vertices are filled in. One coloring for each

possible combination of input edge colorings is shown; note that there exists a good coloring for

all combinations except the one where there are three red input edges.

Figure 5.5: Gadgets to reduce (3, 1)-3SAT to (P3, C5)-Non-Arrowing.

CHAPTER 5. (P3, H)-ARROWING FOR SOME FIXED H 28

N

N

U

U

(a) The variable gadget is shown on the left. Output vertices are filled in. Unnegated output

vertices are marked U, and negated output vertices are marked N. All good colorings of the

gadget are shown on the right.

(b) The clause gadget is shown on the top. Input vertices are filled in. One coloring for each

possible combination of input edge colorings is shown; note that there exists a good coloring for

all combinations except the one where there are three red input edges.

Figure 5.6: Gadgets to reduce (2, 2)-3SAT to (P3, C6)-Non-Arrowing.

CHAPTER 5. (P3, H)-ARROWING FOR SOME FIXED H 29

NU

U

U

(a) The variable gadget is shown on the left. Output vertices are filled in. Unnegated output

vertices are marked U, and negated output vertices are marked N. All good colorings of the

gadget are shown on the right.

(b) The clause gadget is shown on the top. Input vertices are filled in. One coloring for each

possible combination of input edge colorings is shown; note that there exists a good coloring for

all combinations except the one where there are three red input edges.

Figure 5.7: Gadgets to reduce (3, 1)-3SAT to (P3, J4)-Non-Arrowing.

CHAPTER 5. (P3, H)-ARROWING FOR SOME FIXED H 30

N N

U U

(a) The variable gadget is shown on the left. Output vertices are filled in. Unnegated output

vertices are marked U, and negated output vertices are marked N. All good colorings of the

gadget are shown on the right.

(b) The clause gadget is shown on the top. Input vertices are filled in. One coloring for each

possible combination of input edge colorings is shown; note that there exists a good coloring for

all combinations except the one where there are three red input edges.

Figure 5.8: Gadgets to reduce (2, 2)-3SAT to (P3, BT)-Non-Arrowing.

CHAPTER 5. (P3, H)-ARROWING FOR SOME FIXED H 31

U

U

N

N

(a) The variable gadget is shown on the left. Output vertices are filled in. Unnegated output

vertices are marked U, and negated output vertices are marked N. All good colorings of the

gadget are shown on the right.

(b) The clause gadget is shown on the top. Input vertices are filled in. One coloring for each

possible combination of input edge colorings is shown; note that there exists a good coloring for

all combinations except the one where there are three red input edges.

Figure 5.9: Gadgets to reduce (2, 2)-3SAT to (P3, P5)-Non-Arrowing.

CHAPTER 5. (P3, H)-ARROWING FOR SOME FIXED H 32

U

UN

N

(a) The variable gadget is shown on the left. Output vertices are filled in. Unnegated output

vertices are marked U, and negated output vertices are marked N. All good colorings of the

gadget are shown on the right.

(b) The clause gadget is shown on the top. Input vertices are filled in. One coloring for each

possible combination of input edge colorings is shown; note that there exists a good coloring for

all combinations except the one where there are three red input edges.

Figure 5.10: Gadgets to reduce (2, 2)-3SAT to (P3, P6)-Non-Arrowing.

Chapter 6

Some Small Ramsey & Folkman

Numbers

Let H1, H2, and I be graphs. The Ramsey number R(H1, H2) is defined as the smallest n such

that Kn → (H1, H2)
e. The Folkman number Fe(H1, H2; I) is defined as the order of the smallest

I-free graph G such that G→ (H1, H2)
e.

In this chapter, we compute Ramsey numbers of the form R(P3, H), where H ∈ Y and Y =

{K3, P4, P5, P6, C4, C5, C6, J4, BT}. Moreover, we present some Folkman numbers of the form

Fe(P3, H; I), where H ∈ Y, and I is a cycle, a complete graph, or a complete graph missing

an edge. Mainly, we present all such numbers that lie within the range [3, 10].

Note that all Ramsey numbers presented in this chapter, except R(P3, BT), have been discovered

before this work and were recomputed in our work for completeness. For instance, in 1972, Chvátal

and Harary determined the numbers R(P3, H), where H is an “isolate-free” graph on at most four

vertices; this includes the graphs P4, C4, and J4 [6]. Ramsey numbers of the form R(Pn, Pm) were

classified in 1967 by Gerencsér and Gyárfás [15]. Numbers of the form R(Pn, Cm) were classified

in 1974 by Faudree et al. [12].

33

CHAPTER 6. SOME SMALL RAMSEY & FOLKMAN NUMBERS 34

6.1 Ramsey Numbers

To find Ramsey numbers R(P3, H), each Kn, where n ∈ [3, 10], was checked using a graph colorer

(Section 4.1.3) iteratively. We stopped the process once the smallest n was found. The numbers

are shown in Table 6.1.

H K3 P4 P5 P6 C4 C5 C6 J4 BT

R(P3, H) 5 4 5 6 4 5 6 5 5

Table 6.1: Ramsey numbers R(P3, H) for H ∈ Y.

We summarize our results in the following theorem:

Theorem 6.1. R(P3, P4) = R(P3, C4) = 4, R(P3,K3) = R(P3, P5) = R(P3, C5) = R(P3, J4) =

R(P3, BT) = 5, and R(P3, P6) = R(P3, C6) = 6.

6.2 Folkman Numbers

For each H ∈ Y, we look for Fe(P3, H; I) where I is a Ck, Kk, or Jk. Note that certain I’s are

ignored for some H. To explain why, we first note the following observation:

Observation 6.1. If |V (I)| > R(H1, H2), then Fe(H1, H2; I) = R(H1, H2).

This is true because n = R(H1, H2) is the order of the smallest graph G that arrows (H1, H2)
e,

and Kn must be I-free since there are not enough vertices in Kn to include an I. Thus, we ignore

I’s in the following two cases:

1. The number is clearly equal to the Ramsey number by Observation 6.1, e.g., Fe(P3, J4;C6) is

ignored because R(P3, J4) = 5. Thus, Fe(P3, J4;C6) = 5 since K5 is clearly C6-free.

2. The number clearly cannot exist, e.g., Fe(P3, J4;C4) cannot exist because any C4-free graph

must be J4-free and thereby has the trivial coloring where all edges are colored blue.

To show that a Folkman number is equal to n, it is sufficient to show that there exists no graph with

the desired properties on n − 1 vertices and show at least one graph with the selected properties

CHAPTER 6. SOME SMALL RAMSEY & FOLKMAN NUMBERS 35

on n vertices. Said graph on n vertices is typically referred to as a “witness graph.” For example,

Figure 6.1 is a witness graph for Fe(P3, P4;K4) since it contains no K4’s and arrows (P3, P4)
e.

We take two approaches to obtain the Folkman numbers presented in this work. Most of the

numbers were found using the approach in Section 6.2.1. Both approaches are discussed below. For

each H, the Folkman numbers found are shown in Table 6.2. For all Folkman numbers, witness

graphs have been illustrated in Figures 6.1–6.21. Table 6.3 shows the label of the corresponding

witness graph for each Folkman number discovered. Our results are summarized in the following

theorem:

Theorem 6.2. Let Y = {K3, P4, P5, P6, C4, C5, C6, J4, BT} and I = {K6,K5,K4,K3, J6, J5, J4, C6,

C5, C4}. For H ∈ Y \ {BT} and I ∈ I, Fe(P3, H; I) ≤ 13, or does not exist. For I ∈ I \ {J4, C4},
Fe(P3, BT ; I) ≤ 10, or does not exist. The exact values for each number can be found in Table 6.2.

6.2.1 Approach 1: Targeting H

For our first approach, we used the graphs generated using the methodology discussed in Chapter 4.

Let G be the set of all graphs that have between three and ten vertices. Note that this set can be

obtained using nauty’s geng function. For a fixed H, let GH be the set of all (P3, H)-good graphs

in G. Observe that we can find the set of graphs in G that arrow (P3, H)e, denoted as GH , by

computing G \ GH . To find the Folkman number Fe(P3, H; I), we selected all I-free graphs from

GH and obtained the smallest such graph.

6.2.2 Approach 2: Targeting I

In our second approach, we iteratively generated all I-free graphs. We can do this similarly to the

process in Chapter 4: Given the set of I-free graphs on n vertices, use the graph extender to obtain

graphs on n+ 1 vertices and remove any graphs that are not I-free. This approach works since for

any I-free G, the subgraph must be I-free as well.

To find the Folkman number Fe(P3, H; I), we ran the graph colorer on all I-free graphs generated

using the approach above. Since we found all numbers bounded by ten using the first approach,

this approach provided all Folkman numbers reported beyond ten.

Note that the only I for which this approach was necessary were C4 and J4. I-free graphs up to 13

and 11 vertices, respectively, were generated in our attempt to find our desired Folkman numbers.

CHAPTER 6. SOME SMALL RAMSEY & FOLKMAN NUMBERS 36

6.2.3 Open Cases

Note that the only missing numbers are Fe(P3, BT ; J4) and Fe(P3, BT ;C4). Thus, we pose the

following question:

Open Problem 6.1. Do the Folkman numbers Fe(P3, BT ; J4) and Fe(P3, BT ;C4) exist? If yes,

what are their values?

Observe that we pose the question of “existence” in our open problem. This is because Folkman

numbers, unlike Ramsey numbers, have not been proven to exist for all possible cases. An example

we saw earlier was Fe(P3, J4;C4), whose nonexistence is trivial to prove. However, some cases

require more careful reasoning. For example, Fe(K3,K3;B3), whose nonexistence was proven by

Xu et al. [40].1

Note that adding an edge to the BT graph forms a J4/C4, significantly limiting the number of

ways two BT ’s can interact within a graph. This suggests that perhaps all J4-free graphs have a

(P3, BT)-good coloring. If there do exist J4/C4-free graphs that arrow (P3, BT), then we know via

our computation that Fe(P3, BT ; J4) > 11, and Fe(P3, BT ;C4) > 13.

1B3 is the graph on five vertices and seven edges, where one edge belongs to exactly three triangles.

CHAPTER 6. SOME SMALL RAMSEY & FOLKMAN NUMBERS 37

I

H K6 K5 K4 K3 J6 J5 J4 C6 C5 C4

K3 r 5 5 ne r 5 9 r 7 13

P4 r r 4 5 r r 5 r r 6

P5 r 5 5 5 r 5 5 r 5 7

P6 6 6 6 6 6 6 6 7 6 8

C4 r r 6 6 r r 6 r r ne

C5 r 5 6 9 r 6 9 r ne 13

C6 6 6 6 6 6 6 6 ne 6 12

J4 r 5 7 ne r 7 ne r 7 ne

BT r 6 7 ne r 7 ? r 10 ?

Table 6.2: Folkman numbers Fe(P3, H; I) for H ∈ Y. Cells marked are r if the number is clearly

equal to the corresponding Ramsey number. Cells marked are ne if the number clearly cannot

exist. Cells marked ? were not found during our enumeration.

I

H K6 K5 K4 K3 J6 J5 J4 C6 C5 C4

K3 6.7 6.6 6.6 6.14 6.9 6.16

P4 6.1 6.2 6.2 6.3

P5 6.2 6.2 6.2 6.2 6.2 6.2 6.4

P6 6.10 6.10 6.10 6.10 6.10 6.10 6.10 6.11 6.10 6.13

C4 6.5 6.5 6.5

C5 6.7 6.12 6.15 6.12 6.15 6.19

C6 6.10 6.10 6.10 6.10 6.10 6.10 6.10 6.10 6.21

J4 6.7 6.8 6.8 6.9

BT 6.20 6.17 6.17 6.18

Table 6.3: Witness graphs for Fe(P3, H; I) for H ∈ Y. Each cell refers to the label of a figure.

CHAPTER 6. SOME SMALL RAMSEY & FOLKMAN NUMBERS 38

Figure 6.1: Witness graph for Fe(P3, P4;K4). Figure 6.2: Witness graph for Fe(P3, P5; I) for

I ∈ {K5,K4,K3, J5, J4, C5} and Fe(P3, P4; I)

for I ∈ {K3, J4}.

Figure 6.3: Witness graph for Fe(P3, P4;C4). Figure 6.4: Witness graph for Fe(P3,K3; I) for

I ∈ {K4, J5}.

Figure 6.5: Witness graph for Fe(P3, C4; I) for

I ∈ {K4,K3, J4}.
Figure 6.6: Witness graph for Fe(P3, P5;C4).

CHAPTER 6. SOME SMALL RAMSEY & FOLKMAN NUMBERS 39

Figure 6.7: Witness graph for Fe(P3, H;K5)

for H ∈ {K3, J4, C5}.
Figure 6.8: Witness graph for Fe(P3, J4; I) for

I ∈ {K4, J5}.

Figure 6.9: Witness graph for Fe(P3,K3;C5)

and Fe(P3, J4; I) for I ∈ {J5, C5}.
Figure 6.10: Witness graph for Fe(P3, H; I) for

I ∈ {K6,K5,K4,K3, J6, J5, J4, C5} and H ∈
{P6, C6}.

Figure 6.11: Witness graph for Fe(P3, P6;C6). Figure 6.12: Witness graph for Fe(P3, C5; I)

for I ∈ {K4, J5}.

CHAPTER 6. SOME SMALL RAMSEY & FOLKMAN NUMBERS 40

Figure 6.13: Witness graph for Fe(P3, P6;C4). Figure 6.14: Witness graph for Fe(P3,K3; J4).

Figure 6.15: Witness graph for Fe(P3, C5; I)

for I ∈ {K3, J4}.
Figure 6.16: Witness graph for Fe(P3,K3;C4).

Figure 6.17: Witness graph for Fe(P3, BT ;K4)

and Fe(P3, BT ; J5).

Figure 6.18: Witness graph for Fe(P3, BT ;C5).

CHAPTER 6. SOME SMALL RAMSEY & FOLKMAN NUMBERS 41

Figure 6.19: Witness graph for Fe(P3, C5;C4).

Figure 6.20: Witness graph for Fe(P3, BT ;K5).

Figure 6.21: Witness graph for Fe(P3, C6;C4).

Chapter 7

Some Insight on Variants of

Monotone SAT

Monotone SAT is a variant of the satisfiability problem where the input formula is in CNF, and

each clause has only unnegated literals or only negated literals. Monotone 3SAT, where each clause

has three literals, was shown to be NP-complete in 1978 [17]. More recently, work has been done to

show that the problem remains NP-complete for other clause sizes and when the number of times

a variable occurs in the formula is bounded [10, 11]. In this chapter, we provide some insight on a

variant of Monotone SAT that allows clauses of two different sizes. We first define said variant of

the Monotone SAT problem below:

Problem 7.1 (Monotone (p, q)-SAT). Let ϕ be a CNF-SAT formula such that there are two types

of clauses: clauses with p unnegated literals and clauses with q negated literals. Does there exist a

satisfying assignment for ϕ?

The problem is clearly in NP for all p, q, since any satisfying assignment acts as a certificate verifi-

able in polynomial time. We provide new results on the hardness of three variants of this problem.

Namely, Monotone (2, 4)-SAT, Monotone (2, 5)-SAT, and Monotone (2, 6)-SAT. The hardness re-

sults themselves are easy corollaries of the (P3, H)-Non-Arrowing hardness results discussed in

Chapter 5. However, we analyze the reductions of some select problems to bound the number of

variable occurrences as well.

Before we discuss the results obtained via a reduction from (P3, H)-Arrowing, we note that one can

easily show Monotone (2, k)-SAT is NP-complete for all fixed k ≥ 4, using the fact that Monotone

42

CHAPTER 7. SOME INSIGHT ON VARIANTS OF MONOTONE SAT 43

(2, 3)-SAT is NP-complete, which was proven in [11]:

Let ϕ be a Monotone (2, 3)-SAT formula, and ϕ′ be the Monotone (2, k)-SAT formula we construct.

Each three-literal clause in ϕ can be replaced with a k-literal clause including the three original

literals and k − 3 duplicates of one of the original literals. Note that the variables in each clause

are not distinct, and if a variable appeared ℓ times in the original formula, it might appear at

most (k − 2) × ℓ times in the new formula. We make note of this to juxtapose that reducing via

arrowing allows us to have constant bounds for variable occurrences while ensuring that there are

no duplicate variables in each clause.

7.1 The Hardness of Monotone (2, k)-SAT

We first make note of the following lemma, which links (H1, H2)-Non-Arrowing and Monotone

(p, q)-SAT:

Lemma 7.1. (H1, H2)-Non-Arrowing ≤p
m Monotone (|E(H1)|, |E(H2)|)-SAT.

Proof. The reduction was stated in Section 4.1.3. The reduction takes polynomial time because H1

and H2 are fixed graphs.

Note that this reduction also implies that the resulting SAT problem remains NP-complete even

when the variables in each clause are distinct. Recall that the set of graphs we explored the hardness

of is Z = {C4, C5, C6, J4, BT, P5, P6}, and it is easy to see that |E(H)| ∈ {4, 5, 6} for all H ∈ Z.

Thus, Lemma 7.1 and Theorem 5.1 together imply the following:

Theorem 7.1. Monotone (2, k)-SAT is NP-complete for fixed k ∈ {4, 5, 6}, even when the variables

in each clause are distinct.

7.2 Bounding Variable Occurrences

In this section we explore the gadgets for the proofs of (P3, Ck)-Non-Arrowing for k ∈ {4, 5, 6} to

show that Monotone (2, k)-SAT remains NP-complete even though each variable can occur at most

yk times, where yk is some constant. Moreover, we bound how many times a variable appears as a

negated and unnegated literal in the formula.

CHAPTER 7. SOME INSIGHT ON VARIANTS OF MONOTONE SAT 44

Recall from the reduction to Monotone (p, q)-SAT that each edge of the input graph corresponds

to a variable. Moreover, there is a clause for each H1 and H2 present in the graph. Thus, to

show our bounds, we analyze the number of times an edge appears in a P3 and Ck in the graph

G constructed via the (P3, Ck)-Non-Arrowing reduction. This is especially easy for (P3, Ck) since

we showed earlier that no new Ck’s are formed when joining the gadgets. Thus, we need only be

concerned with new P3’s that are created when joining the gadgets.

Checking how many Ck’s each edge belongs to can be done by enumerating over each edge in the

variable and clause gadgets. Checking how many P3’s requires some modifications of the gadgets

before we can check computationally. Note that new P3’s are formed only at the input/output

vertices. Also, note that an edge belongs to a P3 with only those edges that it is adjacent to.

Thus, we can construct new graphs which include the maximum amount of these edges at each

input/output vertex to obtain our bounds for P3 occurrences for each edge. We elaborate on this

with an example.

Consider the (P3, C4)-Non-Arrowing gadgets (Figure 5.4). Note that the maximum degree of an

output vertex of the variable gadget is two, while the maximum degree of an input vertex of a

clause gadget is three. To bound the number of times an edge appears in a P3 in the graph G

constructed via the reduction, we can analyze the graphs in Figure 7.1. Note that in Figure 7.1,

the input and output vertices from the gadgets in Figure 5.4 have new leaf vertices to account for

new P3’s formed while connecting gadgets. After our analysis, we find that the maximum number

of times an edge appears in a P3 is eight and a C4 is three. Moreover, the maximum number of

times an edge appears in either a P3 or C4 is 11.

Thus, the formula constructed using G via the reduction to Monotone (2, 4)-SAT has at most 11

occurrences of each variable. Furthermore, each variable may appear unnegated eight times and

negated three times, at most.

The same methodology can be applied, mutatis mutandis, on the graphs in Figures 7.2 and 7.3 and

to obtain similar bounds for for Monotone (2, 5) and (2, 6)-SAT. With these bounds, we can assert

the following theorem:

Theorem 7.2. For fixed k ∈ {4, 5, 6}, Monotone (2, k)-SAT is NP-complete even when the vari-

ables in each clause are distinct, and the number of times each variable occurs is bounded by a

constant. In particular:

1. Monotone (2, 4)-SAT is NP-complete even when each variable appears at most 11 times, where

a variable appears as an unnegated literal at most eight times and as a negated literal at most

CHAPTER 7. SOME INSIGHT ON VARIANTS OF MONOTONE SAT 45

three times.

2. Monotone (2, 5)-SAT is NP-complete even when each variable appears at most 11 times, where

a variable appears as an unnegated literal at most seven times and as a negated literal at most

four times.

3. Monotone (2, 6)-SAT is NP-complete even when each variable appears at most 15 times, where

a variable appears as an unnegated literal at most nine times and as a negated literal at most

six times.

Our main takeaway from these theorems is that the number of occurrences of the variables can be

bounded by a constant while having distinct variables in each clause. The actual bounds are not

very impressive; there is much room for improvement, considering that many variants of SAT bound

the number of variable occurrences by four. While it may be possible to improve these bounds by

finding better gadgets, we suspect that the improvement to the bounds will be minuscule using our

technique. For completeness, we note that Darmann et al. [11] showed that Monotone (2, 3)-SAT

is NP-complete when each variable occurs exactly four times, and the variables in each clause are

distinct.

CHAPTER 7. SOME INSIGHT ON VARIANTS OF MONOTONE SAT 46

0 1

5

4

6

7

8

3

2

(a) Modified gadget graphs of (P3, C4).

Edge P3 C4 Total

(0, 6) 7 1 8

(0, 7) 6 1 7

(1, 5) 8 1 9

(1, 7) 6 1 7

(2, 6) 7 1 8

(2, 8) 8 1 9

(3, 4) 6 1 7

(3, 5) 8 1 9

(4, 5) 6 1 7

(4, 8) 6 2 8

(5, 6) 7 2 9

(5, 8) 8 3 11

(6, 8) 7 2 9

(7, 8) 6 2 8

(a, b) 7 1 8

(a, f) 4 1 5

(b, c) 7 1 8

(b, e) 6 2 8

(c, d) 4 1 5

(f, e) 3 1 4

(e, d) 3 1 4

(b) Table of occurrences.

Figure 7.1: The graphs analyzed to bound the variable occurrences in Monotone (2, 4)-SAT. In the

table on the right, we show for each edge how many times it appeared in a P3 and a C4.

CHAPTER 7. SOME INSIGHT ON VARIANTS OF MONOTONE SAT 47

0

1

2

3 8

7

4 5

6

(a) Modified gadget graphs of (P3, C5).

Edge P3 C5 Total

(0, 4) 6 2 8

(0, 5) 7 2 9

(1, 5) 7 1 8

(1, 6) 6 1 7

(2, 6) 6 1 7

(2, 7) 6 1 7

(3, 5) 7 3 10

(3, 8) 5 3 8

(4, 5) 7 4 11

(4, 7) 6 4 10

(4, 8) 5 2 7

(5, 6) 7 4 11

(6, 7) 6 4 10

(7, 8) 5 3 8

(a, b) 6 1 7

(a, e) 4 1 5

(b, c) 4 1 5

(c, d) 4 1 5

(d, e) 4 1 5

(b) Table of occurrences.

Figure 7.2: The graphs analyzed to bound the variable occurrences in Monotone (2, 5)-SAT. In the

table on the right, we show for each edge how many times it appeared in a P3 and a C5.

CHAPTER 7. SOME INSIGHT ON VARIANTS OF MONOTONE SAT 48

0

1

2
3

7 4

56

(a) Modified gadget graphs of (P3, C6).

Edge P3 C6 Total

(0, 4) 9 6 15

(0, 5) 9 6 15

(0, 6) 7 6 13

(0, 7) 7 6 13

(1, 4) 9 6 15

(1, 5) 9 6 15

(1, 6) 7 6 13

(1, 7) 7 6 13

(2, 4) 7 4 11

(2, 5) 7 4 11

(3, 4) 7 4 11

(3, 5) 7 4 11

(4, 5) 8 4 12

(6, 7) 4 4 8

(a, b) 6 1 7

(a, f) 6 1 7

(b, c) 6 1 7

(c, d) 6 1 7

(d, e) 6 1 7

(e, f) 6 1 7

(b) Table of occurrences.

Figure 7.3: The graphs analyzed to bound the variable occurrences in Monotone (2, 6)-SAT. In the

table on the right, we show for each edge how many times it appeared in a P3 and a C6.

Chapter 8

Conclusion and Future Work

In this work, we tackled a number of graph arrowing problems via a combinatorial computing

approach. We focused on the case where one must avoid red P3’s. We discussed a general method-

ology to generate (H1, H2)-good graphs, and employed this to generate (P3, H)-good graphs up to

ten vertices. For seven distinct H, we showed that (P3, H)-Arrowing is coNP-complete via a frame-

work based on finding variable and clause gadgets to reduce from variants of SAT. The gadgets used

for these reductions were found computationally, by enumerating over the generated (P3, H)-good

graphs. For nine distinct H, we found almost all Folkman numbers of interest. All of these were

found computationally. The only open cases are Fe(P3, BT ; J4) and Fe(P3, BT ;C4), which we plan

on exploring in the future.

Furthermore, we hope to use the insight gained by our computationally assisted reductions to

find patterns that will allow us to show that (P3, Pk)-Arrowing or (P3, Ck)-Arrowing are coNP-

complete for general k ≥ 5. We believe that this is a feasible task given the insight gained from

our computational approach. A more ambitious goal is to prove a dichotomy theorem for (P3, H)-

Arrowing: categorizing problems to be in P or coNP-complete for all possible H.

We plan on exploring other arrowing problems as well. In particular, we will explore (Pk, Pℓ)-

Arrowing. We conjecture that this is coNP-complete for all fixed k, ℓ ≥ 4. So far, this has only be

shown for k = ℓ = 4.

49

Bibliography

[1] Piotr Berman, Marek Karpinski, and Alex Scott. Approximation hardness of short symmetric

instances of max-3sat. Electronic Colloquium on Computational Complexity, 01 2003.

[2] Aleksandar Bikov. Computation and Bounding of Folkman Numbers. PhD thesis, Sofia Uni-

versity “St. Kliment Ohridski”, 06 2018.

[3] Stefan A. Burr. On the computational complexity of Ramsey-type problems. In Mathematics

of Ramsey theory, pages 46–52. Springer, 1990.

[4] Stefan A. Burr, Jaroslav Nešetřil, and Vojtech Rödl. On the use of senders in generalized

Ramsey theory for graphs. Discrete mathematics, 54(1):1–13, 1985.

[5] G. Chartrand, D.P. Geller, and S. Hedetniemi. A generalization of the chromatic number. In

Mathematical Proceedings of the Cambridge Philosophical Society, volume 64, pages 265–271.

Cambridge University Press, 1968.

[6] Václav Chvátal and Frank Harary. Generalized Ramsey theory for graphs. iii. small off-diagonal

numbers. Pacific Journal of mathematics, 41(2):335–345, 1972.

[7] Jonathan Coles and Stanis law Radziszowski. Computing the Folkman number Fv(2, 2, 3; 4).

Journal of Combinatorial Mathematics and Combinatorial Computing, 58:13–22, 2006.

[8] Lenore Cowen, Wayne Goddard, and C. Esther Jesurum. Defective coloring revisited. Journal

of Graph Theory, 24(3):205–219, 1997.

[9] Lenore J. Cowen, Robert H. Cowen, and Douglas R. Woodall. Defective colorings of graphs in

surfaces: partitions into subgraphs of bounded valency. Journal of Graph Theory, 10(2):187–

195, 1986.

[10] Andreas Darmann and Janosch Döcker. On simplified NP-complete variants of monotone3-sat.

Discret. Appl. Math., 292:45–58, 2021.

50

BIBLIOGRAPHY 51

[11] Andreas Darmann, Janosch Döcker, and Britta Dorn. The monotone satisfiability problem

with bounded variable appearances. Int. J. Found. Comput. Sci., 29(6):979–993, 2018.

[12] Ralph J. Faudree, S.L. Lawrence, T.D. Parsons, and Richard H. Schelp. Path-cycle Ramsey

numbers. Discrete Mathematics, 10(2):269–277, 1974.

[13] Jon Folkman. Graphs with monochromatic complete subgraphs in every edge coloring. SIAM

Journal on Applied Mathematics, 18(1):19–24, 1970.

[14] Michael R. Garey and David S. Johnson. Computers and intractability, volume 174. freeman

San Francisco, 1979.

[15] László Gerencsér and András Gyárfás. On Ramsey-type problems. Ann. Univ. Sci. Budapest.

Eötvös Sect. Math, 10:167–170, 1967.

[16] Jan Goedgebeur. On minimal triangle-free 6-chromatic graphs. Journal of Graph Theory,

93(1):34–48, 2020.

[17] E. Mark Gold. Complexity of automaton identification from given data. Inf. Control.,

37(3):302–320, 1978.

[18] Aric Hagberg, Pieter Swart, and Daniel S Chult. Exploring network structure, dynamics,

and function using NetworkX. Technical report, Los Alamos National Lab, Los Alamos, NM

(United States), 2008.

[19] F. Harary and K. Jones. Conditional colorability ii: Bipartite variations. Congressus Numer-

antium, 50:205–218, 1985.

[20] Zohair Raza Hassan, Edith Hemaspaandra, and Stanis law Radziszowski. Ramsey theory:

Constructions & complexity. Manuscript on Arrowing Problems, 2022.

[21] Zohair Raza Hassan, Yu Jiang, David E. Narváez, Stanis law Radziszowski, and Xiaodong Xu.

On some generalized vertex Folkman numbers. arXiv preprint arXiv:2110.03121, 2021.

[22] Justen Holl, Elizabeth Tso, and Julia Balla. Ramsey theory: Order from chaos. https:

//math.mit.edu/~ngadish/notes/18204/ramsey.pdf, September 2020.

[23] Ian Holyer. The NP-completeness of edge-coloring. SIAM Journal on computing, 10(4):718–

720, 1981.

[24] Alexey Ignatiev, Antonio Morgado, and Joao Marques-Silva. PySAT: A Python toolkit for

prototyping with SAT oracles. In SAT, pages 428–437, 2018.

BIBLIOGRAPHY 52

[25] Tommy R. Jensen and Gordon F. Royle. Small graphs with chromatic number 5: A computer

search. Journal of Graph Theory, 19(1):107–116, 1995.

[26] Richard M. Karp. Reducibility among combinatorial problems. In Raymond E. Miller and

James W. Thatcher, editors, Symposium on the Complexity of Computer Computations, The

IBM Research Symposia Series, pages 85–103. Plenum Press, New York, 1972.

[27] Joel Lathrop and Stanis law Radziszowski. Computing the Folkman number Fv(2, 2, 2, 2, 2; 4).

JCMCC. The Journal of Combinatorial Mathematics and Combinatorial Computing, 78, 08

2011.

[28] Carlos V.G.C. Lima, Dieter Rautenbach, Uéverton S. Souza, and Jayme L. Szwarcfiter. De-

cycling with a matching. Information Processing Letters, 124:26–29, 2017.

[29] Carlos V.G.C. Lima, Dieter Rautenbach, Uéverton S. Souza, and Jayme L. Szwarcfiter. Elim-

inating odd cycles by removing a matching. arXiv preprint arXiv:1710.07741, 2017.

[30] Carlos V.G.C. Lima, Dieter Rautenbach, Uéverton S. Souza, and Jayme L. Szwarcfiter. Bi-

partizing with a matching. In International Conference on Combinatorial Optimization and

Applications, pages 198–213. Springer, 2018.

[31] Jordan K. Matelsky, Elizabeth P. Reilly, Erik C. Johnson, Jennifer Stiso, Danielle S. Bassett,

Brock A. Wester, and William Gray-Roncal. DotMotif: an open-source tool for connectome

subgraph isomorphism search and graph queries. Scientific Reports, 11(1), Jun 2021.

[32] Brendan D. McKay and Adolfo Piperno. Practical graph isomorphism, II. Journal of Symbolic

Computation, 60:94–112, 2014.

[33] Pdobsan. Pdobsan/pynauty: Isomorphism testing and automorphisms of graphs. https:

//github.com/pdobsan/pynauty.

[34] Stanis law Radziszowski. Small Ramsey numbers. The Electronic Journal of Combinatorics,

1000, 2011.

[35] F. Ramsey. On a problem in formal logic. Proceedings of the London Mathematical Society,

30:264–286, 1930.

[36] Vladislav Rutenburg. Complexity of generalized graph coloring. In Mathematical Founda-

tions of Computer Science 1986, Bratislava, Czechoslovakia, August 25-29, 1996, Proceedings,

volume 233 of Lecture Notes in Computer Science, pages 573–581. Springer, 1986.

BIBLIOGRAPHY 53

[37] M. Schaefer. Graph Ramsey theory and the polynomial hierarchy. Journal of Computer and

System Sciences, 62(2):290–322, 2001.

[38] Craig A. Tovey. A simplified NP-complete satisfiability problem. Discrete applied mathematics,

8(1):85–89, 1984.

[39] Christopher A. Wood. Small Folkman numbers. In https: // www. cs. rit. edu/ ~ spr/

COURSES/ CCOMP/ cawfolk. pdf , 2014.

[40] Xiaodong Xu, Meilian Liang, and Stanislaw P. Radziszowski. On the nonexistence of some

generalized Folkman numbers. Graphs Comb., 34(5):1101–1110, 2018.

	Graph Arrowing: Constructions and Complexity
	Recommended Citation

	tmp.1652280697.pdf.Hb9nm

