
Rochester Institute of Technology Rochester Institute of Technology

RIT Digital Institutional Repository RIT Digital Institutional Repository

Theses

5-2022

Why did you clone these identifiers? Using Grounded Theory to Why did you clone these identifiers? Using Grounded Theory to

understand Identifier Clones understand Identifier Clones

Luis Angel Gutierrez Galaviz
lxg8800@rit.edu

Follow this and additional works at: https://repository.rit.edu/theses

Recommended Citation Recommended Citation
Gutierrez Galaviz, Luis Angel, "Why did you clone these identifiers? Using Grounded Theory to understand
Identifier Clones" (2022). Thesis. Rochester Institute of Technology. Accessed from

This Thesis is brought to you for free and open access by the RIT Libraries. For more information, please contact
repository@rit.edu.

https://repository.rit.edu/
https://repository.rit.edu/theses
https://repository.rit.edu/theses?utm_source=repository.rit.edu%2Ftheses%2F11143&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.rit.edu/theses/11143?utm_source=repository.rit.edu%2Ftheses%2F11143&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository@rit.edu

Why did you clone these identifiers?
Using Grounded Theory to
understand Identifier Clones

by

Luis Angel Gutierrez Galaviz

A Thesis Submitted in Partial Fulfillment of the
Requirements for the Degree of

Master of Science in Software Engineering

Supervised by
Dr. Christian D. Newman

Department of Software Engineering
B. Thomas Golisano College of Computing and Information Sciences

Rochester Institute of Technology
Rochester, New York

May 2022

i

The thesis "Why did you clone these identifiers? Using Grounded

Theory to understand Identifier Clones" by Luis Angel Gutierrez

Galaviz has been examined and approved by the following Examination

Committee:

Dr. Christian D. Newman
Assistant Professor
Thesis Committee Chair

Dr. J. Scott Hawker
Associate Professor
Graduate Program Director

Dr. Mohamed Wiem Mkaouer
Assistant Professor

ii

Acknowledgments

Thanks to my advisor, Dr. Christian D. Newman, for his support and guidance
throughout this research project. Dr. Newman was the first to introduce me
into this research area dealing with Program Comprehension through studying
the relationship between natural language and identifier naming. His vast
knowledge in this field was instrumental in the results produced in this research.
His passion for software quality and research have taught me valuable lessons
that will help me in my career as a Software Engineer.

Thanks to my family, for encouraging me to pursue my Master of Science
degree in Software Engineering, and for supporting me from start to finish.

iii

I would like to dedicate this thesis to my family for their encouragement and
support throughout my academic career.

iv

v

Abstract

Developers spend most of their time comprehending source code, with some
studies estimating this activity takes between 58% to 70% of a developer’s
time [1] [2]. To improve the readability of source code, and therefore the
productivity of developers, it is important to understand what aspects of static
code analysis and syntactic code structure hinder the understandability of
code. Identifiers are a main source of code comprehension due to their large
volume [3] and their role as implicit documentation of a developer’s intent when
writing code. Despite the critical role that identifiers play during program
comprehension, there are no regulated naming standards for developers to
follow when picking identifier names. Our research supports previous work
aimed at understanding what makes a good identifier name, and practices to
follow when picking names by exploring a phenomenon that occurs during
identifier naming: identifier clones [3].

Identifier clones are two or more identifiers that are declared using the same
name. This is an important yet unexplored phenomenon in identifier naming
where developers intentionally give the same name to two or more identifiers
in separate parts of a system. We must study identifier clones to understand
it’s impact on program comprehension and to better understand the nature
of identifier naming. To accomplish this, we conducted an empirical study
on identifier clones detected in open-source software engineered systems and
propose a taxonomy of identifier clones containing categories that can explain
why they are introduced into systems and whether they represent naming anti-
patterns.

Contents

1 Introduction 1

2 Research Objective 3
2.1 Motivation . 3
2.2 Contribution . 3
2.3 Research Questions . 3

3 Related Work 5

4 Methodology 8
4.1 Selection of Software Systems 8
4.2 Grounded Theory . 12
4.3 Deviations from Straussian Grounded Theory 15
4.4 Study Infrastructure . 16

5 Analysis & Discussion 20
5.1 Conciseness . 20

5.1.1 Generic Identifiers . 21
5.1.2 Specific Identifiers . 24
5.1.3 Imprecise Identifiers . 24

5.2 Traveling Clones . 26
5.3 Identifier Origin . 27
5.4 Identifier Behavior Stereotypes 28

5.4.1 Accessor . 28
5.4.2 Creational . 29
5.4.3 Collection . 29
5.4.4 Iterator . 29
5.4.5 Mutator . 29
5.4.6 Predicate . 30
5.4.7 Mathematical Operation 30

vi

CONTENTS vii

5.4.8 Logging . 30
5.4.9 Passthrough . 30
5.4.10 Runtime Status . 31
5.4.11 Incidental . 31

5.5 Identifier Clone Categories Frequency 31
5.5.1 Categories Frequency Observations 31

5.6 Semantic Relationships . 33

6 Threats to Validity 38
6.1 Internal Validity . 38
6.2 Construct Validity . 39
6.3 External Validity . 40

7 Conclusion & Future Work 41

List of Figures

4.1 A picture of the Entity Relationship Diagram representing our
database storing codings and memos 16

4.2 A picture of the UI Form used to perform the codings (grounded
observations) on identifier clone instances 19

5.1 Identifier Clone Conciseness Categories Diagram 21
5.2 Identifier Clone Consistency Categories Diagram 26
5.3 Identifier Clone Origin Categories Diagram 28
5.4 Identifier Clone Behavior Categories Diagram 29
5.5 Identifier Clone Conciseness Categories Frequency Pie Chart . . 31
5.6 Identifier Clone Consistency Categories Frequency Pie Chart . . 32
5.7 Identifier Clone Origin Categories Frequency Pie Chart 33

viii

List of Tables

4.1 Software engineering dimensions and their corresponding prac-
tices and metrics taken into consideration by Muniah et al. [4]
in determining software engineered systems 9

4.2 Software Systems chosen for our study along with metrics scor-
ing their software engineering dimensions 11

4.3 Detected identifier clone populations and samples for chosen
software engineered systems as well as number of codings to
perform to estimate effort . 12

5.1 Identifier Clones classified as Generic Identifiers 21
5.2 Identifier Clones classified as Specific Identifiers 25
5.3 Identifier Clones classified as Imprecise Identifiers 25

ix

Chapter 1

Introduction

During program maintenance, developers spend up to 70% of their time on
program comprehension tasks [2]. Given that around 70% of source code char-
acters are made up of identifiers [5], the majority of program comprehension
tasks involve developers deriving meaning and intended behavior from the
terminology found in identifiers. Identifiers are the main source of code docu-
mentation, and oftentimes they are the only source of documentation if there
are no comments in the code being analyzed. This presents a problem as there
is no standard way to name variables, as seen by a study by Fetirelson et
al. [6] which shows there is a low probability that two developers will choose
the same name for an identifier. Different developers are likely to use different
terminology to represent the same concepts based on multiple factors including
their background and exposure to the system at hand. Inconsistent identifier
naming conventions hinder program comprehension. In order to work towards
standardized models for naming identifiers, we must first understand what
characteristics of identifiers improve comprehension and also understand what
naming anti-patterns should be avoided. There have been multiple studies
that look at how identifiers impact program comprehension [7–9], concluding
that longer, more descriptive identifiers have a positive impact on comprehen-
sion. Some studies have shown that poor-quality identifier names have a direct
negative impact on the readability of code [10]. Other studies have aimed to
understand identifier structure by looking at their grammar patterns which
can be used to automate the identifier naming process [11].

Our research explores a phenomenon in identifier naming that has yet to
be explored: identifier clones. The term "identifier clones" refers to multi-
ple identifiers that have been declared using the same name. To understand
identifier clones and their impact on program comprehension we must first

1

CHAPTER 1. INTRODUCTION 2

build a taxonomy of clones to understand what types of clones exist in the
wild. Through an empirical study of identifier clones detected in software en-
gineered open-source systems, we propose a taxonomy of identifier clones that
can be used to classify clones based on their conciseness, consistency, origin,
and behavior stereotypes. Our research supports the ongoing effort to better
understand the nature of identifier naming [6, 12, 13], the characteristics that
define high-quality identifier names [3], and the set of naming anti-patterns to
be avoided when picking identifier names.

The remainder of this paper is as follows: Chapter 2 outlines the motivation
of our research and research questions we set out to answer. Chapter 3 discusses
related work. Chapter 4 details the selection of software systems containing
identifier clones we analyzed, the research methodology we chose, and the
infrastructure we built to support our empirical study. Chapter 5 discusses
our findings in the form of our resulting taxonomy along with examples and
distribution data. Chapter 6 discusses the threats to different validity concerns
relevant to our study. And Chapter 8 concludes our research with a discussion
of potential future work.

Chapter 2

Research Objective

2.1 Motivation

The goal of this paper is to investigate identifier clones found in the wild,
understand their nature through static code analysis, and construct a taxon-
omy of identifier clones that can explain why they are introduced into software
systems. As discussed in Chapter 3, other research studies have investigated
the nature of identifier names and how they relate to program comprehension.
However, there is no research exploring the phenomenon of identifier clones.
Identifier clones is an interesting naming phenomenon to study since the action
of developers declaring multiple identifiers using the same name can provide a
new perspective in understanding naming patterns. Exploring identifier clones
can also help us to discover new naming anti-patterns that can be used to
improve identifier naming modeling used in automated identifier naming tools.

2.2 Contribution

Our primary contribution through our study is to enhance our understanding
of identifier clones. We achieve this by building a taxonomy of identifier clones
based on grounded observations made on real identifier clone occurrences seen
in the wild.

2.3 Research Questions

In Grounded Theory, a research question may be defined prior to the study,
which is usually open-ended in nature. Before starting our Grounded Theory
research, we defined the open-ended research question of “Why are identifier

3

CHAPTER 2. RESEARCH OBJECTIVE 4

clones introduced into software systems?”. As we continued to analyze identifier
clones, we refined our research questions based on the grounded observations
and concepts that came up during our study. The following research questions
help us answer what is the nature of identifier clones as seen in the wild:

• RQ1: Why are identifier clones introduced into software sys-
tems? Through empirical evidence observed on identifier clones seen in
the wild, we propose a set of categories that characterize identifier clones
and provide insight as to why they are introduced into systems. We do
not claim to have found all categories and encourage further research in
investigating this phenomenon.

• RQ2: What are the different factors that lead to the intro-
duction of identifier clones in open-source software systems?
Through relationships observed in source code functions containing iden-
tifier clones, we theorize factors that impact the introduction of identifier
clones. We find that some factors are related to semantic relationships
present in natural language (i.e. Homonymy) that are a source of ambi-
guity in identifier naming. A discussion of these factors can be seen in
Chapter 5.

• RQ3: What is the resulting taxonomy categorizing identifier
clones commonly found in open-source software systems? This
question is concerned with understanding what are the final identifier
clone categories we theorized in our study through the use of Grounded
Theory. To better communicate the structure of our taxonomy, refer to
Chapter 5.

• RQ4: What were the most common types of identifier clones?
And why do these categories of clones show up frequently? Since
we are interested in understanding the nature of identifier clones it is
critical to understand the distribution of identifier clones analyzed in our
study using our final categories. This helps us better understand what
types of clones show up frequently and theorize why this is the case.

Chapter 3

Related Work

Several studies have looked at how to improve software maintenance in general
[13–92]. More specifically, given that identifier names play a crucial role in
code comprehension, there are several studies that aim to improve the quality
of identifier names by defining characteristics of a high-quality name [3] and
by exploring the nature of the identifier naming process [11–13]. Deissenbock
et al. [3] define “Correctness”, “Conciseness”, and “Consistency” to characterize
high quality identifier names. These concepts refer to whether the terminology
in a name correctly describes the entity stored, how precisely the terminology
represents an entity, and whether a name is consistently used throughout the
system to represent the same entity. We used these concepts as a resource for
conceptualizing, establishing relationships between the data we observed in our
study, and generating identifier clone categories during coding and memoing
activities of our Grounded Theory research study. We found that identifier
clones may or may not be concise and consistent. Therefore, these concepts
help in creating discrete logical groupings for identifier clones depending on
whether the terminology used in identifiers is generic or precise, and whether
the identifier name is consistently used to represent the same entity or not.

There are many research studies focusing on understanding the impact
of identifier structure on program comprehension [7–9]. Schankin et al. [9]
found that longer, more descriptive identifier names improve program compre-
hension. Their empirical study, which had a group of developers search for a
semantic defect in a body of code, found that longer more descriptive identifier
names resulted in the task being completed around 14% faster than when using
shorter identifier names. Hofmeister et al. [7] conducted a similar study having
a group of professional developers look for defects in source-code snippets and
measured the time it took to perform this task when presented with identi-

5

CHAPTER 3. RELATED WORK 6

fiers written as full words, letters, or abbreviations. The authors found that
using full words led to the task being completed 19% faster compared to when
using letters and abbreviations. Lawrie et al. [8] investigate whether program
comprehension is improved when identifiers include full words representing the
concepts they represent. They conduct a study where participants are asked
to describe functions containing common computer science algorithms (i.e. bi-
nary search) with the only difference being the use of full word identifiers
versus their abbreviated versions. Their results also support that full word
identifiers lead to better source code comprehension. These empirical studies
all conclude that longer, more descriptive names improve program comprehen-
sion. We can reference these empirical studies for extending our research by
constructing a similar study that measures whether identifier clones have an
impact on program comprehension.

In addition, there are research studies focusing on improving our under-
standing of the nature of identifier naming. Newman et al. [11] investigate
identifiers through studying grammar patterns with the goal of understanding
identifier naming patterns that are used in supporting automated identifier
naming tools. They do this by processing a large set of identifiers seen in the
wild through a part of speech tagger that is able to tag each term composing an
identifier. They conclude that current state-of-the-art part of speech taggers
struggle to accurately tag the parts of speech on identifiers. This research also
provides many insights as to how grammar behaves in identifiers seen in the
wild. These grammar patterns are critical in understanding program seman-
tics, as programmers use them to convey behavior in code. Peruma et al. [13]
explore identifier rename refactorings on a large set of Java systems to under-
stand why developers rename method, class, and package names in their code.
One of their main research questions looked at how the semantic meaning of
identifiers change as a result of a renaming refactoring. More specifically, they
looked at whether the meaning of identifiers is broadened, narrowed, preserved
or completely changed. This research uses a taxonomy of rename refactorings
developed by Arnaoudova et al. [12] to tag identifier rename operations ob-
served in the study. For example, the meaning is said to be modified if the
meaning was generalized (i.e. old term renamed to a hypernym), or narrowed
(i.e. old term renamed to a hyponym). In our research, we observe that the
linguistic relationships that inspired the renaming categories used by Peruma
et al. also plays a role in explaining why identifier clones are introduced into
systems. For example, in our study we observed that hypernyms are a source
of identifier clones as generic terms encapsulating a set of specific subtypes
(i.e. “resource” is a hypernym of “autoScalingGroupResource”) were used in

CHAPTER 3. RELATED WORK 7

any place where a subtype can be expected. This can be argued to hinder
readability if a more concise name representing a specific subtype can be used
instead. Our research therefore can add important information on whether a
rename refactoring that generalizes or narrows the meaning of an identifier is a
naming antipattern or not. Automated tools that perform rename refactorings
that generalize the meaning of an identifier should take into account whether
this refactoring will introduce identifier clones into the system and whether
this will hinder code comprehension.

Chapter 4

Methodology

Given that no prior research has been done in exploring the nature of identifier
clones, we carried out an inductive research approach to derive clone categories
from grounded observations made on clones present in open-source systems.
These clone categories aim to explain why identifier clones are introduced into
a system and whether different types of identifier clones represent naming
anti-patterns, or whether they can be explained by other factors that are to
be expected in these types of systems (i.e. Hierarchical domain concepts).
More specifically, we designed our research based on the Grounded Theory
methodology. The following sections define in detail what steps were taken to
select software systems for our study, what version of Grounded Theory was
chosen, how we used GT to analyze source code as our primary source for
codings, the template and database schema developed to generate and store
codings, and examples of coding and memoing and how they impacted our
final clone categories.

4.1 Selection of Software Systems

The pool of software systems publicly available to study identifier clones are
endless thanks to repository hosting services like GitHub and Bitbucket. How-
ever, anyone can create repositories on these hosting services, creating noise
for researchers to filter out when choosing software systems for their research
projects. For example, Munaiah et al. [4] point out that some repositories do
not represent quality software systems in the slightest, with some repositories
being used to back up a computer’s file system or representing throw away
coding tutorials.

To avoid reaching inaccurate conclusions in our research, in the form of

8

CHAPTER 4. METHODOLOGY 9

Table 4.1: Software engineering dimensions and their corresponding practices
and metrics taken into consideration by Muniah et al. [4] in determining soft-
ware engineered systems

Dimension SW Eng. Practice Metric
Community Collaboration Core Contributors
Continuous Integration Quality Uses CI Service
Documentation Maintainability Comment Ratio
History Sustained Evolution Commit Frequency
Issues Project Management GitHub Issue Frequency
License Accountability Contains License
Unit Testing Quality Test Ratio

clone categories that are not reflective of practices you would find in software
engineered projects, we employed a quality standard on how we picked the
open-source software systems analyzed in this project. More specifically, we
want to pick software systems that provide evidence that the developers in-
volved in the development have made efforts to increase the quality of their
system. A development team that does this will be more likely to spend time
picking high quality identifier names during development, reducing the prob-
ability of encountering abnormal identifier naming behavior. Other research
projects have used popularity measurements such as the number of GitHub
stars a repository has, referred to as “GitHub Stargazers”, to pick software
systems for their research. This assumes that the popularity of a GitHub
repository is correlated with the quality of the software project. However, as
discussed in a study carried out by Munaiah et al. [4], the precision and recall
of this strategy can be improved by also considering a set of software engi-
neering practices commonly seen in high quality systems. The set of practices
proposed can be seen in Table 4.1.

The set of practices chosen by Munaiah et al. provide evidence that a
software system has followed software engineering practices including design,
test, and maintenance. The evaluation framework developed by Munaiah et
al. has some subjectivity, as pointed out by the authors, in terms of how they
chose to measure and weight the different dimensions proposed to determine
if a repository is a high-quality software engineered project or not. Despite
these drawbacks, we chose to use their evaluation framework over other strate-
gies since it provides a higher confidence that a software project has followed
software engineering practices that would have an impact on the quality of

CHAPTER 4. METHODOLOGY 10

identifier names present in a system.
Munaiah et al. developed a classifier called “reaper” that uses their eval-

uation framework to automate the classification of open-source repositories.
To train this classifier, the authors manually created two sets of repositories
containing software engineered projects1. The first set, named “Organization”,
contains repositories gathered from popular software engineering organizations
(i.e. Netflix, Amazon, Google, etc.). The second set, named “Utility”, are
repositories that were deemed to provide a general-purpose utility to users. In
addition to these criteria, the repositories chosen for each set must meet the
criteria for a software engineered project based on their evaluation framework
and software engineer dimensions. For our research project, we used these
manually classified sets to pick software projects that scored highly in terms
of Community, Documentation, History, and Unit Testing.

In addition to using these sets of software engineered projects to pick sys-
tems for our study, we also had the constraint of picking systems written in
languages supported by the tool we used to detect identifier clones in source
code. This tool, “IdentifierNameAndContext”2, takes as input a srcML3 archive
(source code that has been compiled through srcML), which is used to scan
over a repository and output detected clones along with the source code for
the functions containing each declaration of an identifier clone. srcML is a
free software application that compiles source code into XML format. This
software application only supports the following languages: C, C++, C#, and
Java. Given the development experience of the main researcher responsible
for conducting codings, memoing, and conceptualization, we also decided to
limit our study to systems written in Java. As discussed in Section 4.2, a
core principle of Grounded Theory is “theoretical sensitivity”, representing the
ability for researchers to conceptualize given a set of data. Choosing languages
unfamiliar to researchers would therefore hinder theoretical sensitivity. This
decision presents a threat to the generalizability of our categories and can be
used as a motivation for future work by analyzing identifier clones in other
programming languages.

Following these process decisions, we selected 6 systems varying in size
(lines of code), development team, and domain. This is to address theoretical
gaps in our resulting clone categories that may be present in varying types of
software systems as well as categories that may be a result of characteristics
only found in specific types of systems. The software systems chosen can be

1https://gist.github.com/nuthanmunaiah/23dba27be17bbd0abc40079411dbf066
2https://github.com/SCANL/IdentifierNameAndContext
3https://www.srcml.org/#home

CHAPTER 4. METHODOLOGY 11

Table 4.2: Software Systems chosen for our study along with metrics scoring
their software engineering dimensions

Repository Size Contributors Documentation Testing Github Stars
Stash-hook-mirror 989 LOC 1 0.12 0.51 32
SimianArmy 16,086 LOC 8 0.33 0.32 3,717
Sqoop 75,520 LOC 5 0.27 0.26 172
Maven 103,384 LOC 7 0.26 0.07 436
Phoenix 182,447 LOC 9 0.19 0.38 158
Activemq 391,731 LOC 8 0.24 0.35 419

seen in Table 4.2.
After identifying the software engineered systems to include in our study,

we then continued to use the tool “IdentifierNameAndContext” to detect the
population of clones present in the chosen systems. We then applied "Stratified
Sampling" to the population of clones with the goal of reducing the manual
effort of analyzing thousands of identifier clone instances. The populations
and samples of clones to be analyzed for each system can be seen in Table
4.3, along with the number of codings to be performed. This is considering
that each identifier clone instance (each declaration of a variable sharing the
cloned name) will require a coding. You can find the raw text files containing
all detected clones, samples of clones, and source code for functions containing
detected clones in our GitHub repository 4.

The Stratified Sampling performed on populations of clones follows the
following steps:

1. Place identifier clones into subpopulations based on their frequency (num-
ber of times the name was used in declaring a variable)

2. Iterate over subpopulations, picking a random identifier clone from each
subpopulation

3. Repeat previous step until we reach 95% CI Sample

The Python script performing this sampling can be seen in our GitHub repos-
itory 5

4https://github.com/SCANL/identifier_clones_GT_project/tree/main/Repositories
5https://github.com/SCANL/identifier_clones_GT_project/blob/main/

StratifiedSampling/stratifiedsampling.py

CHAPTER 4. METHODOLOGY 12

Table 4.3: Detected identifier clone populations and samples for chosen soft-
ware engineered systems as well as number of codings to perform to estimate
effort

Repository Clone Population # of Codings 95% CI Sample # of Codings
Stash-hook-mirror 20 60 NA NA
SimianArmy 253 1,594 153 1,372
Sqoop 717 5,621 250 4,310
Maven 891 8,788 269 6,966
Phoenix 2,610 27,079 335 18,057
Activemq 1,911 41,315 320 34,826

Given the time constraint for this research study, we were only able to ana-
lyze clones present in Stash-hook-mirror, and SimianArmy. This was primarily
due to the large manual effort involved in performing the codings and memos.
With an average of completing a coding every four minutes, recording a memo
for a clone in around five minutes, and checking if the new data generates a
new category taking around 5 minutes, this effort for "stash-hook-mirror" and
"SimianArmy" alone takes around 125 hours to complete. With codings being
the most time-consuming activity, taking around 95.5 hours. Only analyzing
identifier clones in two systems is a threat to the validity of our study as it
is possible that theoretical saturation was not reached given that we did not
sample clones from additional software systems varying in size, development
team, and domain, which are system characteristics that could impact the
introduction of identifier clones.

4.2 Grounded Theory

Grounded Theory is a process methodology that follows the inductive paradigm
for generating theories grounded in empirical evidence, called “codings”. The
reported theory for a research paper following this process methodology may
be in the form of a conceptual framework, conceptual mode, set of factors, or
set of themes or categories that provide an explanation for a certain behav-
ior [93]. For this thesis, the proposed theory is in the form of a taxonomy
of identifier clones, where each category provides an insight as to why clones
were introduced into a software system. Prior to starting data collection and
analysis, we designed the process to carry out our study based on GT’s core
principles and best practices as outlined by Stol et al. The following are ini-

CHAPTER 4. METHODOLOGY 13

tial considerations and process decisions we discussed abiding by GT’s core
principles:

• Limit exposure to literature. To avoid bias in the process of an-
alyzing detected clones, gathering grounded observations, and deriving
theories for why clones are introduced into a system, we did not do a
prior literature review and limited our use of literature. However, we did
reference related literature on identifier naming to improve our ability to
conceptualize and form relationships between data analyzed. This is a
viable strategy in Straussian GT.

• Treat everything as data. The tool we used to detect identifier clones
present in software systems outputs the source code for function blocks
in which clones are declared. When performing analysis on this free
form data (source code), we did not put any constraints on the type of
observations that can be made. Instead, we created a form template
for researchers to perform codings and annotate their observations. The
form template provides a combination of free-form inputs (i.e. how is the
clone being used in the containing function) and boolean type inputs (i.e.
was the clone declared as a method parameter). The form can be seen
in Figure 4.2. This structure for collecting codings helped in providing
a starting set of generic clone characteristics to observe but also did not
restrict our codings to a limited set of observation types.

• Immediate and continuous data analysis. We performed coding and
memoing simultaneously, and recorded the progression of these activities
on our GitHub repository. Codings were captured in markdown files 6

versioned by the date in which it was generated. Memos were captured
in Microsoft Word documents 7 also versioned by date. More details on
the coding and memoing activities can be seen in Section ??.

• Theoretical sampling. Although there is a finite population of clones
in each open-source software system, theoretical sampling can be done
by choosing additional software systems to fill in gaps in clone categories
defined from observing previous systems. Additional systems can be
continued to be added for analysis until theoretical gaps are saturated.
At the start of the project, we selected six systems to analyze with the

6https://github.com/SCANL/identifier_clones_GT_project/tree/main/MarkdownFiles/
IdentClonesCodingsFiles

7https://github.com/SCANL/identifier_clones_GT_project/tree/main/MemosNotes

CHAPTER 4. METHODOLOGY 14

goal of reducing theoretical gaps. However, due to time constraints, we
only analyzed the clones present in two software systems.

• Theoretical sensitivity. We established weekly meetings to discuss
codings, related concepts between codings, and how clone categories (the-
ories) are impacted by any new data encountered through coding. This
was performed by two researchers to improve the theoretical sensitivity.
We also referenced related works on identifier naming [3, 94] to improve
our ability to derive relationships between the data analyzed and con-
ceptualize new categories of identifier clones.

• Coding. Codings were performed through static code analysis of func-
tion blocks containing each individual identifier clone instance detected.
For example, when analyzing a new identifier clone that was declared
eight times across a software system, we record grounded observations
for each identifier declared that shared the clone name.

• Memoing. Memos were recorded for every new clone observed, docu-
menting how new data relates to the current set of theories (clone cate-
gories) and performing any updates on those theories if necessary.

• Constant comparison. Each new data point (identifier clones) was
compared against previous observations made on past data points to
establish relationships between the clones observed and generate cate-
gories. This often required us to update the ongoing clone categories at
the start of the project. The process of relating new data points to past
observations and categories was done on a weekly basis.

• Cohesive theory. Transitioning from the ongoing categories emerging
from the analysis of new clones, we developed a set of cohesive categories
that combined all emerging categories. Our final theory was a set of
decision trees that can be used to classify new clones based on differ-
ent characteristics including their conciseness, consistency, origin, and
generic behavior. The final set of categories is able to categorize all the
clones observed in this study.

• Theoretical saturation. We reached theoretical saturation for the soft-
ware systems included in this study. All clones found in these systems
fit into the final categories proposed. However, this research will be ex-
tended to observe 4 additional software systems that vary in domain,
size, and development team to have a stronger argument for generaliz-
ability of our categories. Future work can be done by analyzing identifier

CHAPTER 4. METHODOLOGY 15

clones in systems programmed in different languages as well to remove
this as a potential theoretical gap in our findings.

As discussed by Stol et al. [6], there are three main versions of Grounded
Theory consisting of Glaserian GT, Straussian GT, and Constructivist GT.
One of the main differences being the process of deriving theory. Some ver-
sions are more faithful to the data, meaning that any derived category must be
purely based on concrete data observed during the study (Classical GT). While
other versions allow for a more flexible process for deriving theory (Straussian
GT). Given that this is the first-time identifier clones are being explored we
picked Straussian GT since it is more flexible on conceptualizing relationships
in the data and allowed us to investigate additional sources for theories such as
Linguistic Relationships or related literature on identifier naming [3, 94]. For
example, a set of categories we propose classify clones based on the clone origin
or resource a developer must reference to interpret the correct meaning of an
identifier. These categories are not purely based on the data we collected in
our study, since we did not analyze the set of resources where you can find the
correct meaning for each identifier (Project Requirements, Developer Termi-
nology, English Dictionary). Despite these data sources not being included in
our research study, we were still able to theorize that the origin of the meaning
for an identifier has an impact on whether identifier clones are introduced into
a system. This is an acceptable practice in Straussian GT.

4.3 Deviations from Straussian Grounded Theory

As Stol et al. [93] point out, Grounded Theory coding and data analysis prac-
tices were developed for unstructured text which have been primarily used to
analyze data in fields unrelated to Software Engineering. To analyze source
code, we took the advice of Stol et al. and employed static code analysis on
the source code of functions containing identifier clone instances. Therefore,
we did not use the conditional matrix for coding, which is mentioned in the
Straussian GT version.

Grounded Theory also uses "Theoretical Sampling" instead of conventional
sampling techniques. We argue that "Theoretical Sampling" is performed in
our study by including additional systems with varying characteristics un-
til theoretical saturation is reached. Which is something to be extended for
future research. For each chosen system, we can perform a conventional sam-
pling technique to reduce the manual effort of making grounded observations
on thousands of identifiers. We used "Stratified Sampling" to achieve this, re-

CHAPTER 4. METHODOLOGY 16

ducing the number of identifiers analyzed while maintaining a 95% confidence
level on representing the characteristics of the population of clones in a system.

4.4 Study Infrastructure

After choosing the systems to be included in our study, we continued to develop
the infrastructure to support tracking the large number of data points to be an-
alyzed. Given that we wanted control over querying the grounded observations
recorded for each identifier clone, we built a MySQL database reflecting the
Entity-Relationship diagram in Image 4.1. As can be seen by the crow’s foot
notation used in the diagram, the clones stored in the "clones_data" table are
connected to one or many observations stored in the "clones_observations"
table. Each entry in the "clones_observations" table represents a series of
grounded observations collected for a single identifier clone instance. For ex-
ample, if the identifier clone "resource" is declared in eight different places in
a system, then we record eight separate observations in "clones_observations"
table for each time the identifier clone name was used in the declaration of a

Figure 4.1: A picture of the Entity Relationship Diagram representing our
database storing codings and memos

CHAPTER 4. METHODOLOGY 17

variable. Although we did not have time to insert our memos recorded using
MS Word into our database, we propose a schema that supports a hierarchi-
cal structure of memos. This schema was inspired from our goal of having
Ground Level Memos, 1st Level Memos, 2nd Level Memos, and so on, where
each subsequent level gets closer to a finalized theory. Since a memo can either
summarize the findings of a set of observations or a set of lower level memos, we
built two separate junction/join tables called "parentmemo_to_childmemo"
and "observations_to_memos" to support these relationships.

In order to facilitate the effort performing GT codings, we built a light-
weight UI application using React.js and Express.js, which can be run using the
Node.js runtime environment. The code can be found in our GitHub repository
8, which is broken down into two modules: client, and server. The client module
represents the React.js application containing the UI form used by researchers
in our study to record new codings on identifier clone instances. The server
module represents the backend application built on Express.js (Node.js web
application framework) used to connect to a local database instance reflecting
our schema from Image 4.1. A screenshot of the UI form used to perform
the codings can be seen in Image 4.2. Some inputs were omitted from this
screenshot to save space. The full view can be seen by cloning our repository
and running our client and server applications.

As can be seen on our Codings UI form, we follow a static code analysis
approach to perform the codings. This is to say that we record syntactic and
code structure information relating to the identifier clone being observed. For
example, recording whether an identifier was included in any looping struc-
tures or the return statement of a function block. These inputs are in the
form of checkboxes indicating whether this is true or false for the identifier
clone instance being analyzed. We also provide free-form inputs (i.e. "Method
Behavior Summary") that researchers used to input a brief summary of the
behavior of the function being observed as well as how the identifier clone is
being used in the function.

In addition to building the UI form application to insert codings, and
memos into a MySQL database reflecting our schema, we also built a Python
script that queries the codings in the database and generates a readable Mark-
down9 file to analyze ongoing codings. This facilitated the process of concep-
tualizing, forming relationships between clones observed, and generating new
categories. Our versioned markdown files can be seen in our repository10. The

8https://github.com/SCANL/IdentifierClonesObservationsApp
9https://www.markdownguide.org/getting-started/

10https://github.com/SCANL/identifier_clones_GT_project/tree/main/MarkdownFiles/
IdentClonesCodingsFiles

CHAPTER 4. METHODOLOGY 18

Python script to generate the Markdown files is stored in our repository as
well11

11https://github.com/SCANL/identifier_clones_GT_project/blob/main/
MarkdownGeneratorScripts/IdentClonesMarkdownGenerator.py

CHAPTER 4. METHODOLOGY 19

Figure 4.2: A picture of the UI Form used to perform the codings (grounded
observations) on identifier clone instances

Chapter 5

Analysis & Discussion

In this chapter, we list our proposed identifier clone categories and provide
examples of codings and memos that led to the conceptualization of our final
categories. We propose four non-mutually exclusive sets of categories: "Trav-
eling Clones", "Clone Consistency", "Clone Origin", and "Identifier Behavior
Stereotypes". These sets of categories are able to characterize an identifier
clone in terms of different dimensions, providing insight as to why the identi-
fier was cloned and whether it represents a naming anti-pattern. In addition,
we report the frequency of identifier clones that fall under each category, with
exception of the "Identifier Behavior Stereotypes" categories, as we did not
have time to go back and label the behavior stereotypes of each declaration of
a cloned variable.

5.1 Conciseness

The first set of categories proposed deal with how precisely the terminology
used in an identifier clone name represents the entity being stored while using
as few words as possible. These categories were inspired by Deissenboeack et
al.’s definition of "Conciseness" [3], which classifies an identifier as concise if
and only if the identifier name exactly matches the concept name of the entity
represented by the identifier. Therefore, in their definition of conciseness, the
number of terms needed for an identifier to be concise will be determined by
the size of the concepts included in a system. We propose three categories as
seen in Figure 5.1 to describe the conciseness of an identifier name: Generic
Identifiers, Specific Identifiers, and Imprecise Identifiers. Classifying identifier
clones into these conciseness categories can be done by determining whether
the meaning of the identifier name is correct when applied to all contexts in a

20

CHAPTER 5. ANALYSIS & DISCUSSION 21

Figure 5.1: Identifier Clone Conciseness Categories Diagram

system, multiple contexts, or is only correct in a single context. This is similar
to the "conciseness" definition by Deissenboeck et al. [3], where they define
an identifier name is concise if and only if the identifier name is exactly the
same name as the concept it represents. However, we measure conciseness on
whether the meaning of an identifier name becomes incorrect when placed in
different contexts in a system.

5.1.1 Generic Identifiers

Identifier clones classified as Generic Identifiers use abstract terminology that
can be applied to any context in a system. Given that this requires the meaning
of a name to be correct in any context, the number of encountered identifier
clones that fall under this category was small. We only classified 5 identifier
clones as Generic during our study. These clones are listed in Table 5.1.

Table 5.1: Identifier Clones classified as Generic Identifiers

Identifier Repository Conciseness Consistency Origin
values stash-hook-mirror Generic Domestic Traveling Natural Language
value SimianArmy Generic Non-Traveling Natural Language
n SimianArmy Generic Non-Traveling NA
elem SimianArmy Generic Non-Domestic Traveling Natural Language
data SimianArmy Generic Domestic Traveling Natural Language

Generic Identifier Example #1 "value" was detected in the SimianArmy

CHAPTER 5. ANALYSIS & DISCUSSION 22

repository. This identifier was cloned 26 times. 20 of these variable declarations
had the data type "String", 1 had data type of "Enum〈?〉", 1 had data type of
"NamedType", 2 had data types of "Date", and 2 had data types of "boolean".
This identifier name was used in multiple contexts, including de-serializing
the key-value pairs in a map data structure into an internal data object (i.e.
AWSResource), converting encoded strings into enums, and de-serializing json
objects into internal Resource objects. This is an example of an identifier
that is both Generic and Non-Traveling (not used consistently). Listings 5.1
and 5.2 represent two instances of the identifier clone declared in methods
"parseJsonElementToresource" and "valueToEnum".
pr i va t e Resource parseJsonElementToresource (St r ing reg ion , JsonNode jsonNode

, Map<Str ing , Long> lcNameToCreationTime) {
Val idate . notNul l (jsonNode) ;

S t r ing asgName = jsonNode . get ("autoScalingGroupName") . getTextValue () ;
long createdTime = jsonNode . get (" createdTime") . getLongValue () ;

Resource r e sou r c e = new AWSResource () . withId (asgName) . withRegion (r eg ion)
. withResourceType (AWSResourceType .ASG)
. withLaunchTime (new Date (createdTime)) ;

JsonNode tags = jsonNode . get (" tags ") ;
i f (tags == nu l l | | ! tags . i sArray () | | tags . s i z e () == 0) {

LOGGER. debug (St r ing . format ("No tags i s found f o r %s" ,
r e sou r c e . get Id ())) ;

} e l s e {
f o r (I t e r a t o r <JsonNode> i t = tags . getElements () ; i t . hasNext () ;) {

JsonNode tag = i t . next () ;
S t r ing key = tag . get ("key") . getTextValue () ;
S t r ing value = tag . get (" value ") . getTextValue () ;
r e sou r c e . setTag (key , value) ;

}
}

. . .

r e turn r e sour c e ;

}

Listing 5.1: Generic Identifier "value" detected in SimianArmy. This function
deserializes a json object into an internal Resource object. Clone "value" is
used to set tag field on newly constructed Resource object.

/∗∗
∗ Value to enum . Converts a "name | type" s t r i n g back to an enum .
∗
∗ @param value
∗ the value
∗ @return the enum
∗/

pub l i c s t a t i c <T extends NamedType> T valueToEnum(
Class<T> type , S t r ing value) {

// part s = [enum value , enum c l a s s type]
S t r ing [] par t s = value . s p l i t (" \\ | " , 2) ;

. . .

@SuppressWarnings (" rawtypes ")
Class <? extends Enum> enumType = enumClass . a sSubc la s s (Enum. c l a s s) ;
@SuppressWarnings ("unchecked")
T enumValue = (T) Enum. valueOf (enumType , par t s [0]) ;
r e turn enumValue ;

CHAPTER 5. ANALYSIS & DISCUSSION 23

}

Listing 5.2: Generic Identifier "value" detected in SimianArmy. This function
converts an encoded string into an Enum. Clone "value" represents the
encoded string.

Generic Identifier Example #2 "data" was detected in the SimianArmy
repository. This identifier was cloned 4 times. All variables were declared
using the same data type "JsonNode" and represent the same entity being
a json element contained in the data fetched from an external data source.
This is an example of an identifier that is both Generic and Domestic Trav-
eling (used consistently). Listings 5.3 and 5.4 represent two instances of the
identifier clone declared in methods "addLastAttachmentInfo" and "refreshId-
ToCreationTime".

/∗∗
∗ Adds in format ion o f l a s t attachment to the r e s ou r c e s .
∗ @param re s ou r c e s the volume r e s ou r c e s
∗/

pr i va t e void addLastAttachmentInfo (List<Resource> r e s ou r c e s) {
LOGGER. i n f o (St r ing . format ("Updating the l a t e s t attachment i n f o f o r %d

r e s ou r c e s " , r e s ou r c e s . s i z e ())) ;
. . .
f o r (Map. Entry<Str ing , List<Resource>> entry :

regionToResources . entrySet ()) {
f o r (List<Resource> batch : L i s t s . p a r t i t i o n (entry . getValue () ,

BATCH_SIZE)) {
St r ing batchUrl = getBatchUrl (entry . getKey () , batch) ;
JsonNode batchResult = nu l l ;
batchResult = eddaCl ient . getJsonNodeFromUrl (batchUrl) ;

Set<Str ing> proce s s ed Id s = Sets . newHashSet () ;
f o r (I t e r a t o r <JsonNode> i t = batchResult . getElements () ;

i t . hasNext () ;) {
JsonNode elem = i t . next () ;
JsonNode data = elem . get ("data") ;
S t r ing volumeId = data . get ("volumeId") . getTextValue () ;
Resource r e sou r c e = idToResource . get (volumeId) ;
JsonNode attachments = data . get (" attachments ") ;

. . .
p roce s s ed Id s . add (volumeId) ;
setAttachmentInfo (volumeId , attachment , detachTime , r e sou r c e) ;

}

. . .
}

}
}

Listing 5.3: Generic Identifier "data" detected in SimianArmy. This function
updates the "last attachment information" field on list of Resource objects.
Clone "data" represents the last attachment information fetched from external
AWS Edda Service.

/∗∗
∗ AWS doesn ’ t provide c r e a t i on time f o r images . We use the ctime (the c r e a t i on

time o f the image record in Edda)
∗ to approximate the c r e a t i on time o f the image .
∗/

pr i va t e void refreshIdToCreat ionTime () {

CHAPTER 5. ANALYSIS & DISCUSSION 24

f o r (S t r ing reg ion : r e g i on s) {
St r ing u r l = eddaCl ient . getBaseUrl (r eg ion) + "/aws/ images " ;
LOGGER. i n f o (St r ing . format ("Getting the c r e a t i on time f o r a l l AMIs in

reg ion %s" , r eg ion)) ;
u r l += " ; _expand ;_meta : (ctime , data : (imageId)) " ;

JsonNode jsonNode = eddaCl ient . getJsonNodeFromUrl (u r l) ;

. . .

f o r (I t e r a t o r <JsonNode> i t = jsonNode . getElements () ; i t . hasNext () ;) {
JsonNode elem = i t . next () ;
JsonNode data = elem . get ("data") ;
S t r ing imageId = data . get (" imageId") . getTextValue () ;
JsonNode ctimeNode = elem . get (" ctime") ;
i f (ctimeNode != nu l l && ! ctimeNode . i sNu l l ()) {

long ctime = ctimeNode . asLong () ;
LOGGER. debug (St r ing . format ("The image record o f %s was created

in Edda at %s" ,
imageId , new DateTime (ctime))) ;

imageIdToCreationTime . put (imageId , ctime) ;
}

}
}
LOGGER. i n f o (St r ing . format ("Got c r e a t i on time f o r %d images " ,

imageIdToCreationTime . s i z e ())) ;
}

Listing 5.4: Generic Identifier "data" detected in SimianArmy. This function
updates the "Creation Time" values for AWS images stored in class data
member map "imageIdToCreationTime". Clone "data" represents the image
information fetched from external AWS Edda Service.

5.1.2 Specific Identifiers

Identifier clones classified as Specific Identifiers use precise terminology that
can be applied to only one context in a system. If we try to place a spe-
cific identifier in any other context within the system, its meaning will be
incorrect for that given context. For example, the meaning of the clone name
"exludedImageIds", detected in the SimianArmy repository, is only correct in
one context within the system, which is a collection of aws image ids that have
been excluded from being some process. We detected 50 Specific Identifiers
during our study. You can view a small list of examples in Table 5.2

5.1.3 Imprecise Identifiers

Identifier clones classified as Imprecise Identifiers use terminology that can be
applied to multiple, but not all, contexts in a system. In other words, there is a
set of contexts within the system on which we can place an imprecise identifier
and its meaning will remain correct. For example, the meaning of the clone
name "list", detected in the SimianArmy repository, is correct in any context
within the system where a list of elements is expected. However, given that the
identifier name does not provide information as to what elements are stored

CHAPTER 5. ANALYSIS & DISCUSSION 25

Table 5.2: Identifier Clones classified as Specific Identifiers

Identifier Repository Conciseness Consistency Origin
excludedImageIds SimianArmy Specific Domestic Traveling Project + NL
dnsEntryList SimianArmy Specific Non-Domestic Traveling Developer + NL
lcName SimianArmy Specific Non-Domestic Traveling Project + NL
lcNameToCreationTime SimianArmy Specific DomesticTraveling Project + NL
lcCreationTime SimianArmy Specific Non-Domestic Traveling Project + NL
elbClient SimianArmy Specific Domestic Traveling Developer + Project
volumeIds SimianArmy Specific Non-Domestic Traveling Project + NL
dnsType SimianArmy Specific Non-Domestic Traveling Developer + NL
monkeyType SimianArmy Specific Domestic Traveling Project + NL
resourceRegion SimianArmy Specific Domestic Traveling Project

in the list, this name is not precise and the meaning is correct when applied
to multiple contexts. In practice we have noticed that there is a range of how
concise an identifier can be. However, in our research we are not measuring how
concise an identifier is if they fall under the Imprecise Identifiers category. We
are only differentiating imprecise identifiers from precise and generic identifiers.
We detected 114 Imprecise Identifiers during our study. You can view a small
list of examples in Table 5.3

Table 5.3: Identifier Clones classified as Imprecise Identifiers

Identifier Repository Conciseness Consistency Origin
encryptedData stash-hook-mirror Imprecise Non-Domestic Traveling Developer
errors stash-hook-mirror Imprecise Domestic Traveling Natural Language
request stash-hook-mirror Imprecise Non-Traveling Natural Language
client SimianArmy Imprecise Non-Traveling Developer
result SimianArmy Imprecise Non-Traveling Natural Language
query SimianArmy Imprecise Non-Domestic Traveling Developer
request SimianArmy Imprecise Non-Domestic Traveling Developer
resource SimianArmy Imprecise Non-Domestic Traveling Project
input SimianArmy Imprecise Non-Traveling Natural Language
id SimianArmy Imprecise Non-Traveling Natural Language

CHAPTER 5. ANALYSIS & DISCUSSION 26

Figure 5.2: Identifier Clone Consistency Categories Diagram

5.2 Traveling Clones

The "Traveling Clones" categories deal with whether an identifier clone is used
consistently across a system. An identifier clone is said to be used consistently
if all identifiers sharing the cloned name represent the same entity and are used
in the same way in the scope in which they are declared. For identifier clones
classified as "Traveling" (used consistently), we also define the categories "Do-
mestic Traveling Clones" and "Non-Domestic Traveling Clones" that describe
the spread of a clone throughout a system. By "spread" we mean are all in-
stances of a clone declared in a single file, set of cohesive files sharing behavior,
or are declared across multiple files unrelated to the behavior they provide to
the system. We use the term "Domestic" to describe clones that are co-located
in the same file or in a set of cohesive files. Other traveling clones are classified
as "Non-Domestic".

The measurement we used to determine if an identifier is consistent or not
involved a series of checks:

• Do all the identifier clone instances share the same data type or a sim-
ilar data type, where "similar" means data types that share a common
behavior (i.e., data types "List" and "ArrayList" are similar data types
in that they share the common behavior of storing a collection of items)

• Do all the identifier clone instances share a cohesive set of generic Iden-
tifier Behavior Stereotypes (Discussed in Subsection 5.4)

• Do all the identifier clone instances appear to perform the same behavior

CHAPTER 5. ANALYSIS & DISCUSSION 27

in code as observed through static code analysis during the GT coding
activity performed in our study.

5.3 Identifier Origin

The "Identifier Origin" categories deal with determining what resource, or ori-
gin, a developer must refer to in order to understand the correct meaning of
an identifier name. This is an important category to understand whether am-
biguous terminology in natural language stemming from semantic relationships
such as homonyms (words spelled the same having multiple meanings) leads to
the introduction of identifier clones. This category was created from conceptu-
alizing that the more context provided in the terms used in an identifier name,
the less likely it will result in a clone that is generic and used inconsistently.
For example, if an identifier uses terminology from Developer Terminology,
Project Domain, and Natural Language, then it will have a higher probability
of being more precise in representing the entity stored since it uses context
from various sources. This theory was reinforced by our findings for Generic
clones in which we found that the only five clones detected as "Generic" all
had the Origin category "Natural Language" (In exception for the clone "n"
which does not have an Origin since "n" just acts as a placeholder name).

The process in which we classify the clone origin of an identifier clone in-
volves first splitting the identifier into its atomic words following the camel
casing naming format (individual terms composing the identifier). Then, for
each atomic word we determine whether the correct meaning comes from Nat-
ural Language (i.e. English Dictionary), Developer Terminology, or Project Re-
quirements/Domain. For example, the identifier clone "trackedMarkedResources"
is split into the atomic words: "tracked", "Marked", and "Resources". Then
we observe that both "tracked" and "Marked" are Natural Language termi-
nology, and "Resources" is Project Domain terminology ("Resources" refers
specifically to AWS resources). In addition, if the atomic words in an identifier
clone are abbreviations, we first expand them before determining their origin.
For example, the identifier clone "asgList" is first broken into the atomic words:
"asg" and "List". "asg" is first expanded to "Auto Scaling Group". Then we
observe that "Auto Scaling Group" is Project Domain terminology and "List"
is Developer terminology.

CHAPTER 5. ANALYSIS & DISCUSSION 28

Figure 5.3: Identifier Clone Origin Categories Diagram

5.4 Identifier Behavior Stereotypes

The "Identifier Behavior Stereotypes" consists of categories that represent ab-
stract generic behaviors that a variable in code can perform. For example, a
variable that is used in the process of iterating over some collection of elements
(i.e., pointer, or looping index variable) falls under the "Iterator" category. An-
other example is a variable that is used in the evaluation of a boolean expres-
sion is classified as "Predicate". The idea of creating "Behavior Stereotypes" to
summarize the behavior of identifier clones to measure consistency was taken
from Method Stereotypes used by [94]. The goal of these categories was to
support our measurement for determining whether identifier clones are used
consistently or not. If we notice that all variables sharing a cloned name have
the same generic behavior, then this supports the argument that an identifier
clone is used consistently. The following are descriptions for each Identifier
Behavior Stereotype we propose.

5.4.1 Accessor

Identifier is used to fetch data (could be internal or external to the system).
Subtypes of the "Accessor" category:

1. Structural Accessor: Identifier queries the state of an internal object.

(a) Structural Accessor Property: Identifier stores the state of an object
to be used in a method.

(b) Structural Accessor Modifier: Identifier modifies how state of an
object is fetched. For example, a variable that is passed as a method
argument in a "getter" method call.

2. External Data Accessor: Identifier queries data from an external data
store.

CHAPTER 5. ANALYSIS & DISCUSSION 29

Figure 5.4: Identifier Clone Behavior Categories Diagram

(a) External Accessor Property: Identifier stores the state of data fetched
from external data store.

(b) External Accessor Modifier: Identifier modifies how external data
is fetches. For example, a variable that serves as a query filter
parameter in a SELECT database query.

5.4.2 Creational

Identifier is used in the construction of new objects. For example, a variable
that is passed into the constructor of a new object.

5.4.3 Collection

Identifier stores multiple data elements accessed or mutated in the containing
function. Functions commonly iterate over elements in the variable or update
elements inside.

5.4.4 Iterator

Identifier is used to iterate over items in a collection. Commonly declared
within a programming looping structure (e.g., for-loop, while loop, etc.).

5.4.5 Mutator

Identifier is used to update data (could be internal or external to the system).

CHAPTER 5. ANALYSIS & DISCUSSION 30

1. Self Mutator: Identifier state is updated within the method after being
declared and initialized

2. Local Mutator: Identifier is used to update data value of another local
variable. Where a local variable is declared within the same function or
is a data member of the same class instance or is a static data member
of the same class.

3. Structural Mutator: Identifier is used to update the state of an internal
object. For example, a variable that is passed as a method argument to
a "setter" method called on the object that it is modifying.

4. External Data Mutator: Identifier is used to update external data. For
example, a variable that is passed as argument to an api definition of an
external service that is documented to perform a state update.

5.4.6 Predicate

Identifier is used in the evaluation of a boolean expression. Commonly used in
conditional statements or used in the return statement of a predicate method.
For example, a variable that is used in the evaluation of a boolean expression
inside a conditional statement (i.e., if, if-else, or switch statements).

5.4.7 Mathematical Operation

Identifier is used in the calculation of a mathematical expression.

5.4.8 Logging

Identifier is used to log information.

1. Behavior Logging: Identifier is used in logging normal method behavior

2. Error Logging: Identifier is used in logging errors in method. Often found
inside catch blocks.

5.4.9 Passthrough

Identifier is not used inside the function in which it is declared but is passed
as a function argument to another function call.

CHAPTER 5. ANALYSIS & DISCUSSION 31

5.4.10 Runtime Status

Identifier is used in the process of providing visibility to the runtime status. For
example, the identifier "responseStatus" in SimianArmy informs the developer
whether a POST API request resulted in an error or success.

1. Runtime Exception: Identifier is used in the process of throwing a run-
time exception

5.4.11 Incidental

Identifier is declared but not used.

5.5 Identifier Clone Categories Frequency

The Pie Charts depicted in Figures 5.5, 5.3, and 5.4 summarize the distribution
of detected clones in our study on our proposed categories. The frequencies are
the result of a manual effort on labeling the 169 observed clones in our study

Figure 5.5: Identifier Clone Conciseness Categories Frequency Pie Chart

5.5.1 Categories Frequency Observations

• Only 3% of clones detected fall under the Conciseness "Generic" category.
Meaning that it was rare for the naming of an identifier to apply to all

CHAPTER 5. ANALYSIS & DISCUSSION 32

Figure 5.6: Identifier Clone Consistency Categories Frequency Pie Chart

contexts in a system. This may be due to the higher quality of the
systems analyzed where developers avoid using generic lazy terms such
as "value". This could also be a factor of generic terminology being rare
across all naming in software engineered open-source systems. Additional
work would be needed to determine whether this observation can be
generalizable to other systems.

• A large portion (42%) of identifier clones observed were classified as hav-
ing a clone origin of "Natural Language". Both clone origins "Project"
and "Developer" still had significant portions with 14% and 15% re-
spectively. The clone origins that combined terminology from different
sources were seen significantly less often, except for "Project + Natural
Language". This may be a sign that terminology from different sources
provide more contextual information in an identifier name which in turn,
reduces the likelihood of an identifier name being introduced into a sys-
tem. However, we do not have sufficient data to claim there is a strong
causation relationship between the origin of the terminology in an iden-
tifier and identifier clones being introduced into a system.

• Only 13% of clones detected fall under the Consistency "Non-Traveling"
category (not used consistently). This means that the majority of clones

CHAPTER 5. ANALYSIS & DISCUSSION 33

Figure 5.7: Identifier Clone Origin Categories Frequency Pie Chart

detected in our study were used consistently in representing the same en-
tity. The "Non-Traveling" clones represent names that should potentially
be refactored if developers reading them cannot tell from the surrounding
context how to narrow down the meaning of the identifier name.

5.6 Semantic Relationships

The ambiguity present in Natural language due to semantic relationships be-
tween words such as hypernyms, hyponyms, synonyms, and homonyms makes
the identifier naming process challenging (picking high quality terms to repre-
sent an entity) and hinders the comprehension of code when performing static
code analysis. In our research study, we observed these semantic relationships
being a potential cause for the introduction of identifier clones. Specifically,
we noticed that parent-child relationships (hypernyms and hyponyms) present
in the domain terminology of a system leads to imprecise terminology being
used in the naming of identifiers. Which in turn leads to identifier clones us-
ing imprecise terminology. The following example is a clone introduced into
SimianArmy due to this semantic relationship.

Hypernym and Hyponym Example#1. Identifier clone "resource" was

CHAPTER 5. ANALYSIS & DISCUSSION 34

cloned 80 times in SimianArmy repository and classified as "Imprecise" in
terms of Conciseness and "Non-Domestic Traveling" in terms of Consistency.
The function block containing this clone instance can be seen in Listing 5.5.
The name "resource" is a hypernym of the following set of concrete aws re-
sources: Instance, Elastic Block Storage Volume, Elastic Block Storage Snap-
shot, Auto Scaling Group, Launch Configuration, S3 Bucket, Security Group,
Image, and Elastic Load Balancer. The semantic relationships between the
concepts in the domain of the system, with "resource" being the parent con-
cept of the set of concrete resources, translated into the design decisions of
how the developers represented the aws resources in code. Developers created
a class "AWSResource" that contains the instance field "resourceType" to im-
plement this hypernym and hyponym relationship. During runtime, the class
AWSResource can represent any concrete type of resource. This created an
inconsistent naming pattern in how developers named identifiers storing aws
resources. Sometimes, developers would use the name that belongs to the con-
crete resource type (i.e. "ami" standing for Amazon Machine Image as seen
in Listing 5.6), while other times developers would use the name that belongs
to the parent concept "resource". An improvement on this naming behavior,
aligning to our definition of conciseness, would be to use the identifier name
that belongs to that specific hyponym (i.e. "ami") if the code containing that
variable only deals with a specific subtype. However, if due to polymorphism, a
piece of code deals with any type of subtype during runtime, then the variable
name should be kept to describing the hypernym entity (i.e. "resource").

pr i va t e Resource parseJsonElementToSnapshotResource (St r ing reg ion , JsonNode
jsonNode) {

long startTime = jsonNode . get (" startTime ") . asLong () ;

Resource r e sou r c e = new
AWSResource () . withId (jsonNode . get (" snapshotId ") . getTextValue ())

. withRegion (r eg ion)

. withResourceType (AWSResourceType .EBS_SNAPSHOT)

. withLaunchTime (new Date (startTime)) ;
JsonNode tags = jsonNode . get (" tags ") ;

f o r (I t e r a t o r <JsonNode> i t = tags . getElements () ; i t . hasNext () ;) {
JsonNode tag = i t . next () ;
S t r ing key = tag . get ("key") . getTextValue () ;
S t r ing value = tag . get (" value ") . getTextValue () ;
r e sou r c e . setTag (key , value) ;

}
JsonNode d e s c r i p t i o n = jsonNode . get (" d e s c r i p t i o n ") ;
((AWSResource) r e sou r c e)

. setAWSResourceState (jsonNode . get (" s t a t e ") . getTextValue ()) ;
Co l l e c t i on <Str ing> amis = snapshotToAMIs . get (r e sou r c e . get Id ()) ;
r e sou r c e . setOwnerEmail (getOwnerEmailForResource (r e sou r c e)) ;
r e turn r e sour c e ;

}

Listing 5.5: Hypernymy naming anti-pattern example. Identifier clone instance
where hypernym term "resource" is used to represent the concrete resource
"Elastic Block Storage Snapshot".

CHAPTER 5. ANALYSIS & DISCUSSION 35

pr i va t e void updateReferenceTimeByInstance (St r ing reg ion , List<Resource>
batch , long s i n c e) {

St r ing batchUrl = getInstanceBatchUr l (reg ion , batch , s i n c e) ;
Map<Str ing , Resource> idToResource = Maps . newHashMap () ;
f o r (Resource r e sou r c e : batch) {

idToResource . put (r e sou r c e . get Id () , r e sou r c e) ;
}
JsonNode batchResult = eddaCl ient . getJsonNodeFromUrl (batchUrl) ;

f o r (I t e r a t o r <JsonNode> i t = batchResult . getElements () ; i t . hasNext () ;) {
JsonNode elem = i t . next () ;
JsonNode data = elem . get ("data") ;
S t r ing imageId = data . get (" imageId") . getTextValue () ;
S t r ing in s tance Id = data . get (" in s tance Id ") . getTextValue () ;
JsonNode ltimeNode = elem . get (" l t ime ") ;
i f (ltimeNode != nu l l && ! ltimeNode . i sNu l l ()) {

long l t ime = ltimeNode . asLong () ;
Resource ami = idToResource . get (imageId) ;
S t r ing lastRefTimeByInstance = ami . g e tAdd i t i ona lF i e ld (

AMI_FIELD_LAST_INSTANCE_REF_TIME) ;
i f (lastRefTimeByInstance == nu l l | |

Long . parseLong (lastRefTimeByInstance) < l t ime) {
LOGGER. i n f o (St r ing . format ("The l a s t time that the image %s was

r e f e r en c ed by in s tance %s i s %d" ,
imageId , ins tance Id , l t ime)) ;

ami . s e tAdd i t i ona lF i e l d (AMI_FIELD_LAST_INSTANCE_REF_TIME,
St r ing . valueOf (l t ime)) ;

}
}

}
}

Listing 5.6: Hypernymy inconsistent naming behavior example. Identifier
clone instance where "ami" is used to represent the concrete resource "Amazon
Machine Image" instead of the parent concept term "resource".

We also noticed that homonyms, words that are spelled the same but
have multiple meanings, were a source of identifier clones classified as "Non-
Traveling" (not used consistently). This is a naming anti-pattern as it means
that developers may read the same word and misinterpret it for any one of
its different meanings. These occurrences of identifier clones were tied to our
"Identifier Origin" categories as we observed that some clones had multiple
meanings depending on what resource, or origin, one must refer to in order to
interpret its correct meaning. The following example is a clone that follows
this naming anti-pattern due to the homonym semantic relationship.

Homonym Example#1. Identifier clone "node" was detected in Simian-
Army and classified as "Non-Traveling" (not used consistently). The meaning
of the word "node" in two clone instances represents an aws instance node
and was used in the context of establishing an ssh connection to these nodes.
The origin for this meaning comes from the Project Requirements or Project
Domain. The meaning of the word "node" in the other 3 clone instances repre-
sent a json node element in a json object fetched from an external data source.
The origin for this meaning comes from Developer terminology. We can see
that the word "node" is overloaded with two different meanings coming from
different origins that interpret their meaning differently.

CHAPTER 5. ANALYSIS & DISCUSSION 36

pub l i c s t a t i c Map<Str ing , Str ing> getAl lAppl icat ionOwnerEmai ls (EddaClient
eddaCl ient) {

St r ing reg ion = "us−east −1" ;
LOGGER. i n f o (St r ing . format ("Getting a l l app l i c a t i on names and emai l s in

r eg ion %s . " , r eg i on)) ;

S t r ing u r l = eddaCl ient . getBaseUrl (r eg ion) +
"/ n e t f l i x / app l i c a t i o n s / ; _expand : (name , emai l) " ;

JsonNode jsonNode = eddaCl ient . getJsonNodeFromUrl (u r l) ;

I t e r a t o r <JsonNode> i t = jsonNode . getElements () ;
Map<Str ing , Str ing> appToOwner = new HashMap<Str ing , Str ing >() ;
whi le (i t . hasNext ()) {

JsonNode node = i t . next () ;
S t r ing appName = node . get ("name") . getTextValue () . toLowerCase () ;
S t r ing owner = node . get (" emai l ") . getTextValue () ;
i f (appName != nu l l && owner != nu l l) {

appToOwner . put (appName , owner) ;
}

}
return appToOwner ;

}

Listing 5.7: Homonym naming anti-pattern example. Identifier clone instance
where "node" is used to represent a json node element.

@Override
pub l i c SshCl ient connectSsh (St r ing ins tance Id , Log inCredent ia l s c r e d e n t i a l s) {

ComputeService computeService = getJcloudsComputeService () ;

S t r ing j c l oud s Id = getJc louds Id (in s tance Id) ;
NodeMetadata node = getJcloudsNode (computeService , j c l oud s Id) ;

node = NodeMetadataBuilder . fromNodeMetadata (node)
. c r e d e n t i a l s (c r e d e n t i a l s) . bu i ld () ;

U t i l s u t i l s = computeService . getContext () . u t i l s () ;
SshCl ient ssh = u t i l s . sshForNode () . apply (node) ;

ssh . connect () ;

r e turn ssh ;
}

Listing 5.8: Homonym naming anti-pattern example. Identifier clone instance
where "node" is used to represent an aws instance being connected to through
ssh.

1. Probability that a clone will be non-traveling (not used consistently)
given that it is generic 2. Linguistic patterns introducing clones (homonyms,
hypernyms & hyponyms)
What are some interesting relationships observed between the sets of cate-
gories?
For the small set of identifier clones that were classified as "Generic Identi-
fiers", all of these clones were also classified as having the origin of "Natural
Language" (developers must reference an English dictionary to determine the
correct meaning of the terms in the identifiers). It makes sense that we did
not observe identifier clones classified as both Generic and having an origin
of Developer or Project terminology. This is because Developer and Project

CHAPTER 5. ANALYSIS & DISCUSSION 37

terminology holds more contextual information that would increase the con-
ciseness of an identifier. Therefore, it is highly likely that the majority of
Generic identifiers we encounter will have a generic natural language term
such as "value", or "data".

Chapter 6

Threats to Validity

In this section, we discuss threats to the validity of our results. These threats
are broken into three separate categories [95].

6.1 Internal Validity

Internal validity is concerned with how confident we are that our final clone
categories have a true cause-and-effect relationship with the introduction of
identifier clones into a system, and that identifier clones are not the cause of
other external factors not measured or theorized in our study.

This is a concern in the resulting taxonomy we propose since the back-
ground of the researcher making the grounded observations, and establishing
relationships between the data observed, impacts what categories are concep-
tualized and how the final taxonomy is broken down. Our weekly meetings
between the two researchers involved in conceptualization of clone categories
counters this risk. However, there is a risk that limitations in our experience
or background prevented us from establishing relationships seen during static
code analysis.

Another concern is the limited scope of the source code analyzed for cod-
ings. Static code analysis was only performed on the function blocks where
identifier clone instances were declared either as a function parameter or a local
variable. We did not expand this scope to include recording the characteris-
tics of the classes or subsystems containing the clones. Therefore, there could
be additional sources of information that provide additional insight as to why
identifier clones are introduced into a system.

Further, when analyzing the identifier clones present in the "SimianArmy"
repository, we did not include all detected clones. Instead, we only analyzed a

38

CHAPTER 6. THREATS TO VALIDITY 39

sample with 95% Confidence Level. Therefore, there could be some important
characteristics of identifier names that we did not observe in our sample.

6.2 Construct Validity

Construct validity is concerned with the validity of the measurements we used
to derive our results. Specifically for our research, whether our measurements
of clone conciseness, consistency, identifier behavior stereotypes, and origin
are well-designed to classify identifier clones into our proposed categories. Our
measurements for deriving conciseness, consistency, and identifier behavior cat-
egories were based on empirical data gathered from static code analysis. For
example, an identifier that is used to modify a fetch query to an external data
source is classified as "External Accessor Modifier" given that we observed that
this was the usage of the identifier in the source code. This is a concern as
our Identifier Behavior Stereotypes may not be fully complete given that they
are the result of analyzing the usage of only 1,432 identifiers across only two
systems. Analyzing further systems in different domains performing additional
unseen behavior would expand our proposed categories.

Our measurement for determining whether clones are consistently used
across a system is a concern due to not having access to the original devel-
oper that introduced that clone into the system. We determined the meaning
and usage of identifier clones through static code analysis, which we used to
determine the consistency of clones. However, additional information such as
the original intent of the developer would provide supporting evidence whether
the clone is indeed used consistently and represents the same entity in each
declaration sharing a name.

Our measurement for determining the clone origin categories (source that
a developer must refer to understand the correct meaning of an identifier)
is based on analyzing the terms used in the identifier name and determining
whether those terms are Natural Language, Project, or Developer terms based
on how the identifier was used in the code. However, there could be terms
that are not classified correctly given that natural language contains ambigu-
ous semantic relationships such as homonyms, where the same term can have
different meanings depending on context and source for the term (i.e. English
dictionary, or Project Requirements). Again, having access to the original de-
veloper that introduced the identifier clone would prevent these classification
errors as they could confirm the true meaning of the identifier and what sources
the terms come from.

CHAPTER 6. THREATS TO VALIDITY 40

6.3 External Validity

External validity is concerned with whether our final clone categories are able
to generalize to unseen data (identifier clones in other systems). Given that
our study was limited to analyzing identifier clones present in Java systems,
we are at risk of not generalizing to clones present in systems developed in
other programming languages. This concern is elevated for generalizing our
outcomes to identifier clones present in programming languages that do not
follow an Object-Oriented Programming model like Java, and instead follow
the procedural programming model. This is a concern because the identifier
naming process can be affected by the features of a programming language.
For example, polymorphism in java will prompt developers to represent do-
main concepts in code using a hierarchical structure of classes, which simulate
hypernym and hyponym semantic relationships that were seen to be a potential
cause for the introduction of identifier clones.

Our results are also at risk of not generalizing to other systems varying
in domain, development team, and size. Given that we only analyzed two
systems, which in total had 9 main contributors, our research is only observing
the identifier naming performed by a small number of developers. This is a
risk as other studies have found that naming is not consistent between different
developers [6]. For our categories to generalize to a more representative group
of naming practices, we need to increase the number of identifier names we
analyze that are the outcome of a larger sample of developers.

Chapter 7

Conclusion & Future Work

The objective of this work is to help support the understanding of identi-
fier naming phenomenon that impact the quality of identifier names and can
help in detecting naming anti-patterns. To do so, we have created a taxon-
omy of identifier clones that can characterize clones in terms of conciseness,
consistency, origin, and behavior in order to give insight as to why identifier
clones are introduced into systems and whether they are a source of naming
anti-patterns. We conducted an empirical study, following the Grounded The-
ory research methodology, on identifier clones detected in software engineered
open-source systems. We derived four sets of categories ("Conciseness", "Trav-
eling Clones", "Identifier Origin", and "Identifier Behavior Stereotypes") that
are non-mutually exclusive, meaning each identifier clone is classified into a
category in each of these sets. Our main findings indicate the distribution of
clones based off of our classification, providing a better picture of what identi-
fier clones look like and what properties they have. We also make connections
between some types of identifier clones and naming anti-patterns hindering
program comprehension.

We plan on extending this study by analyzing identifier clones present in
additional software systems. We also plan on: (1) Working towards automating
the classification of identifier clones into our proposed categories, (2) exploring
cross-system clones versus clones that are only local to specific systems, and
(3) exploring identifier clones that are not exact clones but that share some
terms within their name. Potentially finding similar head noun indicating they
share a common parent concept (hypernymy).

41

Bibliography

[1] Xin Xia, Lingfeng Bao, David Lo, Zhenchang Xing, Ahmed E Hassan,
and Shanping Li. Measuring program comprehension: A large-scale field
study with professionals. IEEE Transactions on Software Engineering,
44(10):951–976, 2017.

[2] Roberto Minelli, Andrea Mocci, and Michele Lanza. I know what you did
last summer-an investigation of how developers spend their time. In 2015
IEEE 23rd International Conference on Program Comprehension, pages
25–35. IEEE, 2015.

[3] Florian Deissenboeck and Markus Pizka. Concise and consistent naming.
Software Quality Journal, 14(3):261–282, 2006.

[4] Nuthan Munaiah, Steven Kroh, Craig Cabrey, and Meiyappan Nagappan.
Curating github for engineered software projects. Empirical Software En-
gineering, 22(6):3219–3253, 2017.

[5] Václav Rajlich and Norman Wilde. The role of concepts in program com-
prehension. In Proceedings 10th International Workshop on Program Com-
prehension, pages 271–278. IEEE, 2002.

[6] Dror Feitelson, Ayelet Mizrahi, Nofar Noy, Aviad Ben Shabat, Or Eliyahu,
and Roy Sheffer. How developers choose names. IEEE Transactions on
Software Engineering, 2020.

[7] Johannes Hofmeister, Janet Siegmund, and Daniel V Holt. Shorter iden-
tifier names take longer to comprehend. In 2017 IEEE 24th International
conference on software analysis, evolution and reengineering (SANER),
pages 217–227. IEEE, 2017.

[8] Dawn Lawrie, Christopher Morrell, Henry Feild, and David Binkley.
What’s in a name? a study of identifiers. In 14th IEEE International

42

BIBLIOGRAPHY 43

Conference on Program Comprehension (ICPC’06), pages 3–12. IEEE,
2006.

[9] Andrea Schankin, Annika Berger, Daniel V Holt, Johannes C Hofmeister,
Till Riedel, and Michael Beigl. Descriptive compound identifier names
improve source code comprehension. In 2018 IEEE/ACM 26th Interna-
tional Conference on Program Comprehension (ICPC), pages 31–3109.
IEEE, 2018.

[10] Simon Butler, Michel Wermelinger, Yijun Yu, and Helen Sharp. Explor-
ing the influence of identifier names on code quality: An empirical study.
In 2010 14th European Conference on Software Maintenance and Reengi-
neering, pages 156–165. IEEE, 2010.

[11] Christian D Newman, Reem S AlSuhaibani, Michael J Decker, Anthony
Peruma, Dishant Kaushik, Mohamed Wiem Mkaouer, and Emily Hill. On
the generation, structure, and semantics of grammar patterns in source
code identifiers. Journal of Systems and Software, 170:110740, 2020.

[12] Venera Arnaoudova, Laleh M Eshkevari, Massimiliano Di Penta, Rocco
Oliveto, Giuliano Antoniol, and Yann-Gaël Guéhéneuc. Repent: Analyz-
ing the nature of identifier renamings. IEEE Transactions on Software
Engineering, 40(5):502–532, 2014.

[13] Anthony Peruma, Mohamed Wiem Mkaouer, Michael J Decker, and Chris-
tian D Newman. An empirical investigation of how and why developers
rename identifiers. In Proceedings of the 2nd International Workshop on
Refactoring, pages 26–33, 2018.

[14] Christian D Newman, Michael J Decker, Reem Alsuhaibani, Anthony
Peruma, Mohamed Mkaouer, Satyajit Mohapatra, Tejal Vishoi, Marcos
Zampieri, Timothy Sheldon, and Emily Hill. An ensemble approach for
annotating source code identifiers with part-of-speech tags. IEEE Trans-
actions on Software Engineering, 2021.

[15] Yaroslav Golubev, Zarina Kurbatova, Eman Abdullah AlOmar, Timofey
Bryksin, and Mohamed Wiem Mkaouer. One thousand and one stories:
a large-scale survey of software refactoring. In Proceedings of the 29th
ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, pages 1303–1313,
2021.

BIBLIOGRAPHY 44

[16] Eman Abdullah AlOmar, Anthony Peruma, Mohamed Wiem Mkaouer,
Christian D Newman, and Ali Ouni. Behind the scenes: On the relation-
ship between developer experience and refactoring. Journal of Software:
Evolution and Process, page e2395, 2021.

[17] Eman Abdullah AlOmar, Mohamed Wiem Mkaouer, Christian New-
man, and Ali Ouni. On preserving the behavior in software refactor-
ing: A systematic mapping study. Information and Software Technology,
140:106675, 2021.

[18] Eman Abdullah AlOmar, Ben Christians, Mihal Busho, Ahmed Hamad
AlKhalid, Ali Ouni, Christian Newman, and Mohamed Wiem Mkaouer.
Satdbailiff-mining and tracking self-admitted technical debt. Science of
Computer Programming, 213:102693, 2022.

[19] Anthony Peruma, Steven Simmons, Eman Abdullah AlOmar, Christian D
Newman, Mohamed Wiem Mkaouer, and Ali Ouni. How do i refactor this?
an empirical study on refactoring trends and topics in stack overflow.
Empirical Software Engineering, 27(1):1–43, 2022.

[20] Eman Abdullah AlOmar, Jiaqian Liu, Kenneth Addo, Mohamed Wiem
Mkaouer, Christian Newman, Ali Ouni, and Zhe Yu. On the documen-
tation of refactoring types. Automated Software Engineering, 29(1):1–40,
2022.

[21] Eman Abdullah Alomar, Tianjia Wang, Vaibhavi Raut, Mohamed Wiem
Mkaouer, Christian Newman, and Ali Ouni. Refactoring for reuse: an
empirical study. Innovations in Systems and Software Engineering, pages
1–31, 2022.

[22] Anthony Peruma, Emily Hu, Jiajun Chen, Eman Abdullah AlOmar, Mo-
hamed Wiem Mkaouer, and Christian D Newman. Using grammar pat-
terns to interpret test method name evolution. In 2021 IEEE/ACM 29th
International Conference on Program Comprehension (ICPC), pages 335–
346. IEEE, 2021.

[23] Eman Abdullah AlOmar, Mohamed Wiem Mkaouer, and Ali Ouni. Min-
ing and managing big data refactoring for design improvement: Are we
there yet? Knowledge Management in the Development of Data-Intensive
Systems, pages 127–140, 2021.

[24] Wajdi Aljedaani, Anthony Peruma, Ahmed Aljohani, Mazen Alotaibi,
Mohamed Wiem Mkaouer, Ali Ouni, Christian D Newman, Abdullatif

BIBLIOGRAPHY 45

Ghallab, and Stephanie Ludi. Test smell detection tools: A system-
atic mapping study. Evaluation and Assessment in Software Engineering,
pages 170–180, 2021.

[25] Hussein Alrubaye, Mohamed Wiem Mkaouer, and Ali Ouni. On the use of
information retrieval to automate the detection of third-party java library
migration at the method level. In 2019 IEEE/ACM 27th International
Conference on Program Comprehension (ICPC), pages 347–357. IEEE,
2019.

[26] Hussein Alrubaye, Mohamed Wiem Mkaouer, Igor Khokhlov, Leon
Reznik, Ali Ouni, and Jason Mcgoff. Learning to recommend third-party
library migration opportunities at the api level. Applied Soft Computing,
90:106140, 2020.

[27] Hussein Alrubaye, Stephanie Ludi, and Mohamed Wiem Mkaouer.
Comparison of block-based and hybrid-based environments in transfer-
ring programming skills to text-based environments. arXiv preprint
arXiv:1906.03060, 2019.

[28] Anthony Peruma, Mohamed Wiem Mkaouer, Michael John Decker, and
Christian Donald Newman. Contextualizing rename decisions using refac-
torings and commit messages. In 2019 19th International Working Con-
ference on Source Code Analysis and Manipulation (SCAM), pages 74–85.
IEEE, 2019.

[29] Christian D Newman, Mohamed Wiem Mkaouer, Michael L Collard, and
Jonathan I Maletic. A study on developer perception of transformation
languages for refactoring. In Proceedings of the 2nd International Work-
shop on Refactoring, pages 34–41, 2018.

[30] Hussein Alrubaye and Mohamed Wiem Mkaouer. Automating the de-
tection of third-party java library migration at the function level. In
CASCON, pages 60–71, 2018.

[31] Hussein Alrubaye, Mohamed Wiem Mkaouer, and Anthony Peruma. Vari-
ability in library evolution: An exploratory study on open-source java li-
braries. In Software Engineering for Variability Intensive Systems, pages
295–320. Auerbach Publications, 2019.

[32] Montassar Ben Messaoud, Ilyes Jenhani, Nermine Ben Jemaa, and Mo-
hamed Wiem Mkaouer. A multi-label active learning approach for mobile

BIBLIOGRAPHY 46

app user review classification. In International Conference on Knowledge
Science, Engineering and Management, pages 805–816. Springer, 2019.

[33] Hussein Alrubaye, Mohamed Wiem Mkaouer, and Ali Ouni. Migration-
miner: An automated detection tool of third-party java library migration
at the method level. In 2019 IEEE international conference on software
maintenance and evolution (ICSME), pages 414–417. IEEE, 2019.

[34] Deema Alshoaibi, Kevin Hannigan, Hiten Gupta, and Mohamed Wiem
Mkaouer. Price: Detection of performance regression introducing code
changes using static and dynamic metrics. In International Symposium
on Search Based Software Engineering, pages 75–88. Springer, 2019.

[35] Eman Abdullah AlOmar, Mohamed Wiem Mkaouer, Ali Ouni, and
Marouane Kessentini. On the impact of refactoring on the relationship
between quality attributes and design metrics. In 2019 ACM/IEEE Inter-
national Symposium on Empirical Software Engineering and Measurement
(ESEM), pages 1–11. IEEE, 2019.

[36] Licelot Marmolejos, Eman Abdullah AlOmar, Mohamed Wiem Mkaouer,
Christian Newman, and Ali Ouni. On the use of textual feature extraction
techniques to support the automated detection of refactoring documen-
tation. Innovations in Systems and Software Engineering, pages 1–17,
2021.

[37] Eman AlOmar, Mohamed Wiem Mkaouer, and Ali Ouni. Can refactor-
ing be self-affirmed? an exploratory study on how developers document
their refactoring activities in commit messages. In 2019 IEEE/ACM 3rd
International Workshop on Refactoring (IWoR), pages 51–58. IEEE, 2019.

[38] Alex Bogart, Eman Abdullah AlOmar, Mohamed Wiem Mkaouer, and Ali
Ouni. Increasing the trust in refactoring through visualization. In 2020
IEEE/ACM 4th International Workshop on Refactoring (IWoR), 2020.

[39] Eman Abdullah AlOmar, Anthony Peruma, Mohamed Wiem Mkaouer,
Christian Newman, Ali Ouni, and Marouane Kessentini. How we refactor
and how we document it? on the use of supervised machine learning
algorithms to classify refactoring documentation. Expert Systems with
Applications, 167:114176, 2021.

[40] Eman Abdullah AlOmar, Hussein AlRubaye, Mohamed Wiem Mkaouer,
Ali Ouni, and Marouane Kessentini. Refactoring practices in the con-
text of modern code review: An industrial case study at xerox. In

BIBLIOGRAPHY 47

2021 IEEE/ACM 43rd International Conference on Software Engineering:
Software Engineering in Practice (ICSE-SEIP), pages 348–357. IEEE,
2021.

[41] Eman Abdullah AlOmar, Anthony Peruma, Christian D Newman, Mo-
hamed Wiem Mkaouer, and Ali Ouni. On the relationship between devel-
oper experience and refactoring: An exploratory study and preliminary
results. In Proceedings of the IEEE/ACM 42nd International Conference
on Software Engineering Workshops, pages 342–349, 2020.

[42] Eman Abdullah AlOmar, Philip T Rodriguez, Jordan Bowman, Tianjia
Wang, Benjamin Adepoju, Kevin Lopez, Christian Newman, Ali Ouni,
and Mohamed Wiem Mkaouer. How do developers refactor code to im-
prove code reusability? In International Conference on Software and
Software Reuse, pages 261–276. Springer, 2020.

[43] Eman Abdullah AlOmar, Tianjia Wang, Raut Vaibhavi, Mohamed Wiem
Mkaouer, Christian Newman, and Ali Ouni. Refactoring for reuse: An
empirical study. Innovations in Systems and Software Engineering, pages
1–31, 2021.

[44] Anthony Peruma, Khalid Almalki, Christian D. Newman, Mo-
hamed Wiem Mkaouer, Ali Ouni, and Fabio Palomba. Tsdetect: An
open source test smells detection tool. In Proceedings of the 28th ACM
Joint Meeting on European Software Engineering Conference and Sympo-
sium on the Foundations of Software Engineering, ESEC/FSE 2020, New
York, NY, USA, 2020. Association for Computing Machinery.

[45] Anthony Peruma, Christian D. Newman, Mohamed Wiem Mkaouer, Ali
Ouni, and Fabio Palomba. An exploratory study on the refactoring of unit
test files in android applications. In Proceedings of the IEEE/ACM 42nd
International Conference on Software Engineering Workshops, ICSEW’20,
page 350–357, New York, NY, USA, 2020. Association for Computing
Machinery.

[46] Anthony Peruma, Khalid Almalki, Christian D. Newman, Mo-
hamed Wiem Mkaouer, Ali Ouni, and Fabio Palomba. On the distribution
of test smells in open source android applications: An exploratory study.
In Proceedings of the 29th Annual International Conference on Computer
Science and Software Engineering, CASCON ’19, page 193–202, USA,
2019. IBM Corp.

BIBLIOGRAPHY 48

[47] Sirine Gharbi, Mohamed Wiem Mkaouer, Ilyes Jenhani, and Montas-
sar Ben Messaoud. On the classification of software change messages
using multi-label active learning. In Proceedings of the 34th ACM/SI-
GAPP Symposium on Applied Computing, pages 1760–1767, 2019.

[48] Wiem Mkaouer, Marouane Kessentini, Adnan Shaout, Patrice Koligheu,
Slim Bechikh, Kalyanmoy Deb, and Ali Ouni. Many-objective software
remodularization using nsga-iii. ACM Transactions on Software Engineer-
ing and Methodology (TOSEM), 24(3):1–45, 2015.

[49] Mohamed Wiem Mkaouer, Marouane Kessentini, Slim Bechikh, Kalyan-
moy Deb, and Mel Ó Cinnéide. Recommendation system for software
refactoring using innovization and interactive dynamic optimization. In
Proceedings of the 29th ACM/IEEE international conference on Auto-
mated software engineering, pages 331–336, 2014.

[50] Mohamed Wiem Mkaouer, Marouane Kessentini, Slim Bechikh, Kalyan-
moy Deb, and Mel Ó Cinnéide. High dimensional search-based software
engineering: finding tradeoffs among 15 objectives for automating software
refactoring using nsga-iii. In Proceedings of the 2014 Annual Conference
on Genetic and Evolutionary Computation, pages 1263–1270, 2014.

[51] Mohamed Wiem Mkaouer, Marouane Kessentini, Slim Bechikh, Mel
Ó Cinnéide, and Kalyanmoy Deb. On the use of many quality attributes
for software refactoring: a many-objective search-based software engineer-
ing approach. Empirical Software Engineering, 21(6):2503–2545, 2016.

[52] Mohamed Wiem Mkaouer, Marouane Kessentini, Mel Ó Cinnéide, Shin-
pei Hayashi, and Kalyanmoy Deb. A robust multi-objective approach to
balance severity and importance of refactoring opportunities. Empirical
Software Engineering, 22(2):894–927, 2017.

[53] Rafi Almhana, Wiem Mkaouer, Marouane Kessentini, and Ali Ouni. Rec-
ommending relevant classes for bug reports using multi-objective search.
In 2016 31st IEEE/ACM International Conference on Automated Soft-
ware Engineering (ASE), pages 286–295. IEEE, 2016.

[54] Anthony Peruma, Khalid Almalki, Christian D Newman, Mohamed Wiem
Mkaouer, Ali Ouni, and Fabio Palomba. On the distribution of test smells
in open source android applications: An exploratory study. In Proceedings
of the 29th Annual International Conference on Computer Science and
Software Engineering, pages 193–202, 2019.

BIBLIOGRAPHY 49

[55] Islem Saidani, Ali Ouni, and Mohamed Wiem Mkaouer. Improving the
prediction of continuous integration build failures using deep learning.
Automated Software Engineering, 29(1):1–61, 2022.

[56] Wajdi Aljedaani, Mona Aljedaani, Eman Abdullah AlOmar, Mo-
hamed Wiem Mkaouer, Stephanie Ludi, and Yousef Bani Khalaf. I cannot
see you—the perspectives of deaf students to online learning during covid-
19 pandemic: Saudi arabia case study. Education Sciences, 11(11):712,
2021.

[57] Islem Saidani, Ali Ouni, and Wiem Mkaouer. Detecting skipped commits
in continuous integration using multi-objective evolutionary search. IEEE
Transactions on Software Engineering, 2021.

[58] Marwa Daaji, Ali Ouni, Mohamed Mohsen Gammoudi, Salah Bouktif, and
Mohamed Wiem Mkaouer. Multi-criteria web services selection: Balancing
the quality of design and quality of service. ACM Transactions on Internet
Technology (TOIT), 22(1):1–31, 2021.

[59] Nuri Almarimi, Ali Ouni, Moataz Chouchen, and Mohamed Wiem
Mkaouer. csdetector: an open source tool for community smells detec-
tion. In Proceedings of the 29th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering, pages 1560–1564, 2021.

[60] Islem Saidani, Ali Ouni, Moataz Chouchen, and Mohamed Wiem
Mkaouer. Bf-detector: an automated tool for ci build failure detection. In
Proceedings of the 29th ACM Joint Meeting on European Software Engi-
neering Conference and Symposium on the Foundations of Software En-
gineering, pages 1530–1534, 2021.

[61] Oumayma Hamdi, Ali Ouni, Mel Ó Cinnéide, and Mohamed Wiem
Mkaouer. A longitudinal study of the impact of refactoring in android
applications. Information and Software Technology, 140:106699, 2021.

[62] Oumayma Hamdi, Ali Ouni, Eman Abdullah AlOmar, Mel Ó Cinnéide,
and Mohamed Wiem Mkaouer. An empirical study on the impact of
refactoring on quality metrics in android applications. In 2021 IEEE/ACM
8th International Conference on Mobile Software Engineering and Systems
(MobileSoft), pages 28–39. IEEE, 2021.

BIBLIOGRAPHY 50

[63] Islem Saidani, Ali Ouni, Mohamed Wiem Mkaouer, and Fabio Palomba.
On the impact of continuous integration on refactoring practice: An ex-
ploratory study on travistorrent. Information and Software Technology,
138:106618, 2021.

[64] Lobna Ghadhab, Ilyes Jenhani, Mohamed Wiem Mkaouer, and Mon-
tassar Ben Messaoud. Augmenting commit classification by using fine-
grained source code changes and a pre-trained deep neural language
model. Information and Software Technology, 135:106566, 2021.

[65] Fan Fang, John Wu, Yanyan Li, Xin Ye, Wajdi Aljedaani, and Mo-
hamed Wiem Mkaouer. On the classification of bug reports to improve
bug localization. Soft Computing, 25(11):7307–7323, 2021.

[66] Makram Soui, Mabrouka Chouchane, Narjes Bessghaier, Mohamed Wiem
Mkaouer, and Marouane Kessentini. On the impact of aesthetic defects
on the maintainability of mobile graphical user interfaces: An empirical
study. Information Systems Frontiers, pages 1–18, 2021.

[67] Eman Abdullah AlOmar, Hussein AlRubaye, Mohamed Wiem Mkaouer,
Ali Ouni, and Marouane Kessentini. Refactoring practices in the con-
text of modern code review: An industrial case study at xerox. In
2021 IEEE/ACM 43rd International Conference on Software Engineering:
Software Engineering in Practice (ICSE-SEIP), pages 348–357. IEEE,
2021.

[68] Moataz Chouchen, Ali Ouni, Raula Gaikovina Kula, Dong Wang, Patana-
mon Thongtanunam, Mohamed Wiem Mkaouer, and Kenichi Matsumoto.
Anti-patterns in modern code review: Symptoms and prevalence. In
2021 IEEE International Conference on Software Analysis, Evolution and
Reengineering (SANER), pages 531–535. IEEE, 2021.

[69] Xin Ye, Yongjie Zheng, Wajdi Aljedaani, and Mohamed Wiem Mkaouer.
Recommending pull request reviewers based on code changes. Soft Com-
puting, 25(7):5619–5632, 2021.

[70] Hussein Alrubaye, Deema Alshoaibi, Eman Alomar, Mohamed Wiem
Mkaouer, and Ali Ouni. How does library migration impact software qual-
ity and comprehension? an empirical study. In International Conference
on Software and Software Reuse, pages 245–260. Springer, 2020.

BIBLIOGRAPHY 51

[71] Moataz Chouchen, Ali Ouni, Mohamed Wiem Mkaouer, Raula Gaikovina
Kula, and Katsuro Inoue. Whoreview: A multi-objective search-based ap-
proach for code reviewers recommendation in modern code review. Applied
Soft Computing, 100:106908, 2021.

[72] Moataz Chouchen, Ali Ouni, and Mohamed Wiem Mkaouer. Androlib:
Third-party software library recommendation for android applications. In
International Conference on Software and Software Reuse, pages 208–225.
Springer, 2020.

[73] Nuri Almarimi, Ali Ouni, Moataz Chouchen, Islem Saidani, and Mo-
hamed Wiem Mkaouer. On the detection of community smells using
genetic programming-based ensemble classifier chain. In Proceedings of
the 15th International Conference on Global Software Engineering, pages
43–54, 2020.

[74] Eman Abdullah AlOmar, Mohamed Wiem Mkaouer, and Ali Ouni. To-
ward the automatic classification of self-affirmed refactoring. Journal of
Systems and Software, 171:110821, 2021.

[75] Islem Saidani, Ali Ouni, and Mohamed Wiem Mkaouer. Web service api
anti-patterns detection as a multi-label learning problem. In International
Conference on Web Services, pages 114–132. Springer, 2020.

[76] Bader Alkhazi, Andrew DiStasi, Wajdi Aljedaani, Hussein Alrubaye, Xin
Ye, and Mohamed Wiem Mkaouer. Learning to rank developers for bug
report assignment. Applied Soft Computing, 95:106667, 2020.

[77] Motaz Chouchen, Ali Ouni, Mohamed Wiem Mkaouer, Raula Gaikov-
ina Kula, and Katsuro Inoue. Recommending peer reviewers in modern
code review: a multi-objective search-based approach. In Proceedings of
the 2020 Genetic and Evolutionary Computation Conference Companion,
pages 307–308, 2020.

[78] Islem Saidani, Ali Ouni, Moataz Chouchen, and Mohamed Wiem
Mkaouer. Predicting continuous integration build failures using evolu-
tionary search. Information and Software Technology, 128:106392, 2020.

[79] Anthony Peruma, Khalid Almalki, Christian D Newman, Mohamed Wiem
Mkaouer, Ali Ouni, and Fabio Palomba. tsdetect: an open source test
smells detection tool. In Proceedings of the 28th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foun-
dations of Software Engineering, pages 1650–1654, 2020.

BIBLIOGRAPHY 52

[80] Islem Saidani, Ali Ouni, Moataz Chouchen, and Mohamed Wiem
Mkaouer. On the prediction of continuous integration build failures using
search-based software engineering. In Proceedings of the 2020 Genetic and
Evolutionary Computation Conference Companion, pages 313–314, 2020.

[81] Nuri Almarimi, Ali Ouni, and Mohamed Wiem Mkaouer. Learning to
detect community smells in open source software projects. Knowledge-
Based Systems, 204:106201, 2020.

[82] Islem Saidani, Ali Ouni, Mohamed Wiem Mkaouer, and Aymen Saied. To-
wards automated microservices extraction using muti-objective evolution-
ary search. In International Conference on Service-Oriented Computing,
pages 58–63. Springer, Cham, 2019.

[83] Nuri Almarimi, Ali Ouni, Salah Bouktif, Mohamed Wiem Mkaouer,
Raula Gaikovina Kula, and Mohamed Aymen Saied. Web service api rec-
ommendation for automated mashup creation using multi-objective evo-
lutionary search. Applied Soft Computing, 85:105830, 2019.

[84] Makram Soui, Mabrouka Chouchane, Mohamed Wiem Mkaouer,
Marouane Kessentini, and Khaled Ghedira. Assessing the quality of mobile
graphical user interfaces using multi-objective optimization. Soft Comput-
ing, 24(10):7685–7714, 2020.

[85] Nasir Safdari, Hussein Alrubaye, Wajdi Aljedaani, Bladimir Baez Baez,
Andrew DiStasi, and Mohamed Wiem Mkaouer. Learning to rank faulty
source files for dependent bug reports. In Big Data: Learning, Analytics,
and Applications, volume 10989, page 109890B. International Society for
Optics and Photonics, 2019.

[86] Vahid Alizadeh, Marouane Kessentini, Mohamed Wiem Mkaouer, Mel
Ocinneide, Ali Ouni, and Yuanfang Cai. An interactive and dynamic
search-based approach to software refactoring recommendations. IEEE
Transactions on Software Engineering, 46(9):932–961, 2018.

[87] Makram Soui, Mabrouka Chouchane, Ines Gasmi, and Mohamed Wiem
Mkaouer. Plain: Plugin for predicting the usability of mobile user inter-
face. In VISIGRAPP (1: GRAPP), pages 127–136, 2017.

[88] Ian Shoenberger, Mohamed Wiem Mkaouer, and Marouane Kessentini.
On the use of smelly examples to detect code smells in javascript. In
European Conference on the Applications of Evolutionary Computation,
pages 20–34. Springer, Cham, 2017.

BIBLIOGRAPHY 53

[89] Mohamed Wiem Mkaouer. Interactive code smells detection: An initial
investigation. In International Symposium on Search Based Software En-
gineering, pages 281–287. Springer, Cham, 2016.

[90] Mohamed Wiem Mkaouer, Marouane Kessentini, Slim Bechikh, and Mel
Ó Cinnéide. A robust multi-objective approach for software refactoring
under uncertainty. In International Symposium on Search Based Software
Engineering, pages 168–183. Springer, Cham, 2014.

[91] Mohamed Wiem Mkaouer and Marouane Kessentini. Model transforma-
tion using multiobjective optimization. In Advances in Computers, vol-
ume 92, pages 161–202. Elsevier, 2014.

[92] Mohamed W Mkaouer, Marouane Kessentini, Slim Bechikh, and Daniel R
Tauritz. Preference-based multi-objective software modelling. In 2013
1st International Workshop on Combining Modelling and Search-Based
Software Engineering (CMSBSE), pages 61–66. IEEE, 2013.

[93] Klaas-Jan Stol, Paul Ralph, and Brian Fitzgerald. Grounded theory in
software engineering research: a critical review and guidelines. In Proceed-
ings of the 38th International Conference on Software Engineering, pages
120–131, 2016.

[94] Michael J Decker, Christian D Newman, Natalia Dragan, Michael L Col-
lard, Jonathan I Maletic, and Nicholas A Kraft. Which method-stereotype
changes are indicators of code smells? In 2018 IEEE 18th International
Working Conference on Source Code Analysis and Manipulation (SCAM),
pages 82–91. IEEE, 2018.

[95] Claes Wohlin, Per Runeson, Martin Höst, Magnus C Ohlsson, Björn
Regnell, and Anders Wesslén. Experimentation in software engineering.
Springer Science & Business Media, 2012.

	Why did you clone these identifiers? Using Grounded Theory to understand Identifier Clones
	Recommended Citation

	tmp.1652280342.pdf.jJFK1

