
Rochester Institute of Technology Rochester Institute of Technology

RIT Digital Institutional Repository RIT Digital Institutional Repository

Theses

5-2022

Taxonomy of Software Readability Changes Taxonomy of Software Readability Changes

Stephen J. Cook
sjc5897@rit.edu

Follow this and additional works at: https://repository.rit.edu/theses

Recommended Citation Recommended Citation
Cook, Stephen J., "Taxonomy of Software Readability Changes" (2022). Thesis. Rochester Institute of
Technology. Accessed from

This Thesis is brought to you for free and open access by the RIT Libraries. For more information, please contact
repository@rit.edu.

https://repository.rit.edu/
https://repository.rit.edu/theses
https://repository.rit.edu/theses?utm_source=repository.rit.edu%2Ftheses%2F11129&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.rit.edu/theses/11129?utm_source=repository.rit.edu%2Ftheses%2F11129&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository@rit.edu

Taxonomy of Software Readability Changes

by

Stephen J. Cook

A thesis submitted in partial fulfillment of the

requirements for the degree of

Master of Science

in Software Engineering

B. Thomas Golisano College of Computing and

Information Sciences

Rochester Institute of Technology

[May 2022]

MS IN SOFTWARE ENGINEERING

ROCHESTER INSTITUTE OF TECHNOLOGY

ROCHESTER, NEW YORK

CERTIFICATE OF APPROVAL

MS DEGREE THESIS

The MS degree thesis of Stephen J. Cook
has been examined and approved by the
thesis committee as satisfactory for the

thesis required for the
MS degree in Software Engineering

Christian D. Newman, Thesis Advisor

J. Scott Hawker, External Chair

Mohamed Wiem Mkaouer

Date

ii

Abstract

Software readability has emerged as an important software quality metric.

Numerous pieces of research have highlighted the importance of readability.

Developers generally spend a large amount of their time reading and under-

standing existing code, rather than writing new code [1] [2]. By creating

more readable code, engineers can limit the mental load required to under-

stand specific code segments [3]. With this importance established, research

has been done into how to improve software readability. This research looked

for ways of measuring readability, how to create more readable software, and

how to potentially improve readability. While some research has examined

the changes developers make, their use of automatic source code analysis may

miss some aspects of these changes. As such, this study conducted a manual

review of software readability commits to identify what changes developers

tend to make.

In this study, we identified 1,782 potential readability commits for 800

open-source Java projects, by mining keyword patterns in commit messages.

These commits were then reviewed by human reviewers to identify the changes

made by the developers. The observations made by the reviewers were then

reviewed for trends, from which several categories would be established. These

categories would be further reviewed for additional trends, developing a tax-

onomy of readability changes. Overall, this research looked at 314 changes

from 194 commits across 154 unique projects.

This study shows the developers’ actions when improving software read-

iii

iv

ability, identifying the common trends of method extraction, identifier renam-

ing, and code formatting, supported by existing research. In addition, this

research presents less observed trends, such as code removal or keyword mod-

ification, which were changes not seen in other research. Overall, this work

provides a taxonomy of the trends seen, identifying high level trends as well

as subgroups within those trends.

Acknowledgments

As with any major work, several people provide their support and knowl-

edge. I would like to extend my thanks to all those who supported me through

the creation of this work.

I would first like to thank my advisor, Dr. Christian Newman, for their

support and insight into this project. Without your contributions to this work,

it would likely not have been finished. I would like to extend my deepest thanks

to you, it was a joy to work with you. I would also like to extend my thanks

to Anthony Peruma, who work paved the way for mine. Not only was the

initial database created and provided by Anthony, but I also gained a lot of

insight into the process of software research both directly and indirectly from

Anthony. Finally, I would like to extend my thanks to the members of my

committee for their time and additional insight.

I would also like to thank those who supported me in less direct ways,

that being my friends and family. While the academic support provided was

important, the moral support provided by them was equally as important. To

each one of you, I say thank you.

v

To my mother, Doreen, who supported me throughout this endeavor

vi

Contents

1 Introduction 1

2 Research Objectives 4

2.1 Research Motivation . 4

2.2 Research Contributions . 5

2.3 Research Questions . 5

3 Methodology 7

3.1 Data Collection . 7

3.2 Data Analysis . 9

3.2.1 Collecting Commits . 10

3.2.2 Grounded Theory . 11

4 Taxonomy 14

4.1 Method Extraction . 15

4.2 Identifier Renames . 19

4.3 Source Code Reformatting . 21

4.4 Code Removal . 23

vii

CONTENTS viii

4.5 Addition of Comments . 25

4.6 Keyword Modification . 26

5 Analysis and Discussion 28

5.1 RQ1: What keyword patterns were most highly correlated with

readability commits? . 28

5.2 RQ2: What code changes do developers make when they admit

that they are trying to improve code readability? 34

5.2.1 Method Extraction . 34

5.2.2 Identifier Renames . 36

5.2.3 Code Reformatting . 38

5.2.4 Code Removal . 40

5.2.5 Addition of Comments 41

5.2.6 Keyword Modification 42

6 Related Work 44

6.1 Research of Software Readability Models 44

6.2 Research of Software Readability Improvements 45

6.3 Research of Renaming . 46

6.4 Research of Refactoring . 47

6.5 Other . 48

7 Threats to Validity 49

8 Future Work 52

9 Conclusion 53

CONTENTS ix

9.1 Takeaways from RQ1 . 53

9.2 Takeaways from RQ2 . 55

List of Figures

3.1 An overview of the developed methodology 8

4.1 Proposed Readability Taxonomy 14

4.2 Method Extraction Taxonomy 15

4.3 Example of Method Extraction Operation 16

4.4 The drainCurrentEntryData method declaration 17

4.5 Identifier Rename Taxonomy 19

4.6 Example of Identifier Rename Operation 19

4.7 Example of Identifier Rename: Meaning Modified 20

4.8 Example of Identifier Rename: Meaning Preserved 21

4.9 Taxonomy of Source Code Reformatting 22

4.10 Example of Source Code Reformatting 22

4.11 Taxonomy of Code Removal . 24

4.12 Example of Code Removal . 24

4.13 Example of Addition of Comments 25

4.14 Taxonomy of Keyword Modification 26

4.15 Example of Keyword Modification 26

x

LIST OF FIGURES xi

5.1 Example of ’readab.*’ pattern considered a non-readability com-

mit . 30

5.2 Example of ’understand.*’ pattern considered a non-readability

commit . 30

5.3 Example of ’clean.* up’ pattern considered a non-readability

commit . 31

List of Tables

3.1 Review Template . 10

3.2 Example of Template: ID-24 12

3.3 Example of Memo: ID-1 . 12

5.1 Break Down of Keyword Occurrences 28

5.2 Top 20 Detected Words . 33

5.3 Break Down of Method Extraction Occurrences 34

5.4 Break Down of Identifier Rename Occurrences 36

5.5 Break Down of Code Reformatting Occurrences 39

5.6 Break Down of Code Removal Occurrences 40

xii

Chapter 1

Introduction

Software readability has emerged as a key aspect of software quality. Soft-

ware readability influences the effort a developer must make to understand a

piece of existing code. Research has shown that poor source code readabil-

ity can significantly increase a developers’ cognitive load [4]. With most of a

developer’s time spent trying to comprehend source code, improving software

readability can improve developer efficiency [2] be it the creation of new code

or the maintenance of existing code. The challenge comes from improving the

readability, as readability is a subjective quality.

A focus has been placed on the research of software readability as a quality

metric. Books have been written on creating high-quality, highly readable

software [2]. Numerous other researchers have attempted to create models

which can quantify software readability and detect improvements [5] [6] [7] [8]

[9]; however, some research has cast doubt on these models’ effectiveness [3]

[10]. With this vast amount of research, most of the focus has been placed

on the creation of new software. While research shows that this focus at

1

CHAPTER 1. INTRODUCTION 2

the start of the cycle does create more readable software [11] it does not

directly guide those who wish to improve existing code bases. In order to

better understand how to make software more readable, attention needs to be

brought to how developers can improve readability. By looking more directly

at the changes made by developers with the intention of improving readability,

recommendations and strategies can be identified. While this has been done

to some extent in other research, such as Fakhoury et al. [3], they analyzed

the commits using source code analysis tools. By taking a more direct look at

these commits using a manual review based in Grounded Theory [12], other

trends maybe identified which are missed by these automatic tools.

The goal of this paper is to identify the types of changes develop-

ers make when attempting to improve software readability. This is

accomplished first by creating a dataset of commits which claim they improve

readability. These commits are then reviewed by manual reviewers, who iden-

tify the changes made within readability commits. These observations by the

reviewers are then examined for common trends across the projects. These

trends are then further analyzed for potential trends within them. Finally,

these observations and trends are used to produce the major contribution of

this paper, the taxonomy of readability changes.

The rest of this paper is structured as follows: Chapter 2 covers the overall

research objectives, including the motivations, contributions, and questions.

Chapter 3 outlines the methodology applied to achieve the research objectives,

highlighting the data collection and analysis process. Chapter 4 covers the

proposed taxonomy, going into detail on the categorizations and their natures.

Chapter 5 addresses the research results, exploring in detail the data seen in

CHAPTER 1. INTRODUCTION 3

the research. Chapter 5 also provides some discussion of this data. Chapter

6 explores some of the other work within the field of readability research.

Chapter 7 identifies some issues with the research which may affect its validity.

Chapter 8 discusses the potential future work and improvements. Finally,

Chapter 9 concludes this paper and highlights the takeaways.

Chapter 2

Research Objectives

2.1 Research Motivation

Software maintenance tasks have become more time-consuming with the grow-

ing scope of software projects. The increased scope means that the code base

often is larger and more complex. This creates more demand on the devel-

oper performing the maintenance task, taking more time to understand the

code. An important way of mitigating this issue is having code that is easier

for the developer to read and understand; however, the challenge of readabil-

ity research is its subjective nature. Determining how to improve software

readability is difficult. While research has been done into the creation of

readability metrics [5], [6], [7] [8] [9] and into the types of changes developers

make [3] [11], their partially automated approaches in research may miss some

nuance in the changes made by developers. This research aim to iden-

tify changes developers make when attempting to improve software

readability. By applying Grounded Theory to a manual review of readabil-

4

CHAPTER 2. RESEARCH OBJECTIVES 5

ity changes, this study presents a taxonomy for these readability changes. In

addition, this research acts to both confirm and augment prior research on the

types of changes that constitute readability changes.

2.2 Research Contributions

Our primary contribution through this study is the created taxonomy for

software readability improvements. This was achieved by:

• Gathering a data set of identifiable readability changes from a set of

refactoring commits on engineered open-source projects.

• Providing a set of manual observations on these change and observations

about trends within those changes.

• Presenting a developed readability taxonomy based on the observations.

As this research represents a first step in the creation of a readability

change taxonomy, the existing data and set of observations is publicly available

on GitHub, along with the scripts used in the mining of data 1.

2.3 Research Questions

To pursue our research goals, two research questions were created:

• RQ1: Which keyword patterns were most highly correlated

with readability commits? By creating keyword patterns, we hope

1https://github.com/sjc5897/readability taxonomy

CHAPTER 2. RESEARCH OBJECTIVES 6

to leverage them in the detection of readability commits. In addition, we

tracked the number of commits that contain these patterns and precision

in detecting readability commits. The goal is to report this precision to

assist in future detection research. The analysis of keywords helps us

identify self-admitted readability improvements, which is key in under-

standing what changes developers make. By more closely analyzing their

effectiveness, we can improve our detection of self-admitted readability

improvements, making our readability analysis more effective.

• RQ2: What code changes do developers make when they admit

that they are trying to improve code readability? By exploring

the changes made, we present a taxonomy of these changes. Highlighting

common trends seen within the commits while also exploring the sub-

types of the most common trends. The goal is to report the observed

trends within the detected commits from a high level. This question

directly targets the goal of the paper, looking directly at what changes

are made and how commonly these changes are made.

Chapter 3

Methodology

The research methodology of this project consisted of two stages: data col-

lection and data analysis. In the data collection stage, a set of potential

readability commits were gathered. This stage was done using an automatic

process to identify and log potential readability commits from a set of refactor-

ing commits, using keyword mining. The potential readability commits were

reviewed in the data analysis stage. This review was performed by a human

reviewer. The reviewer was first asked to confirm if the change was a read-

ability change. When a change was identified, it was logged, and observations

of the changes were made. The observations made by the reviewer were then

reviewed to identify trends in the data. Figure 3.1 highlights the methodology.

3.1 Data Collection

The initial stage of this project was the data collection stage. The goal of

this phase is the gathering of potential open-source readability commits which

7

CHAPTER 3. METHODOLOGY 8

Figure 3.1: An overview of the developed methodology

could be reviewed. To do this, a simple Python script using Pandas was de-

veloped to help mine commits for keyword patterns. Three keyword patterns

were targeted: ‘readab.*’, ‘understand.*’ and ‘clean.* up’. The targeting of

‘readab.*’ and ‘understand.*’ directly targeted words associated with readabil-

ity terms. In addition, E.A. AlOmar et al. were consulted for other patterns.

In this paper, E.A. AlOmar et al. performed research into how refactors were

documented [13]. As part of this research, they identified several patterns

used across commit messages. While a number of these patterns could have

been used for this research, such as ‘simplif.* or “improv.*’, the ‘clean.* up’

CHAPTER 3. METHODOLOGY 9

keyword pattern was chosen as it was the broadest [13]. These patterns were

used to identify commit messages which indicate readability improvements.

Once the tool was created to identify keyword patterns from commit mes-

sages, it was applied to an existing database of Java software refactors. The

targeted database for this research was provided by the authors of Peruma et

al [14]. This database is a random sample of 800 projects from Munaiah et

al’s engineered projects database [15]. The commits from 800 projects were

then run through RefactoringMiner by Peruma et al. to identify specifically

refactoring commits [14]. It is this segment of data that was used for our re-

search. This gave us a set of commits in which refactoring occurred from a set

of engineered open-source software projects. Refactoring commits were chosen

as the focus because refactors are typically done to improve internal code qual-

ities such as readability, rather than creating new behaviors or features. Since

we are concerned with internal code quality improvement via readability, this

focus helped eliminate some potential noise from data collection. From this

dataset, 1,782 potential readability commits were identified. These commits

would make up the set of commits we sampled from.

3.2 Data Analysis

With the set of readability commits extracted from the database, a method for

data analysis was created. This process required manual review by a human

reviewer. This review would leverage Grounded Theory, specifically the cycle

of data collection, coding, and constant comparison, to develop a theory. From

a high level, a sample change from the database would be selected. A reviewer

CHAPTER 3. METHODOLOGY 10

Table 3.1: Review Template
Is this a Readability Change: [Y/N]

Description of Code:
Describe the Code Change: [Free Response]
Describe the Code Functionality: [Free Response]
Keywords: [Free Response]

Description of Commit:
Describe the Commit Message in Terms of Readability: [Free Response]

Location Information
Files: [Free Response]
Old Line Numbers: [Free Response]
New Line Numbers: [Free Response]

would perform a review, writing down observations of the change and tagging

it using keywords. These observations would be reviewed in regular intervals,

and categories would be formed. These categories represented the theoretical

readability taxonomy. This process would repeat until we hit theoretical sat-

uration at 314 changes observed. Our taxonomy in Chapter 4 represents the

final theory generated from these observations.

3.2.1 Collecting Commits

In the Grounded Theory cycle, data needs to be extracted. Since we had col-

lected a set of potential readability changes, our data collection would consist

of random sampling from this database. To help with this, the initial data

mining script was expanded. The script would segment the sample database by

project, randomize the list of projects, and iterate through that list, selecting

one commit to present for review. This was to prevent an over-representation

of one project in the data set. These changes would then be presented to the

reviewer for review. With this sampling, the final set of observations would be

made from 194 commits from 154 different projects, with at most 4 commits

seen from an individual project.

With each sample commit, it was presented to the reviewer. The reviewer

CHAPTER 3. METHODOLOGY 11

would first determine if the commit was in fact a readability commit. Since

it was dubious if the keywords were accurate in the goal of discovering read-

ability changes, the reviewer was asked if the commit was indeed a readability

change. The reviewer was given a few criteria to determine if a readability

change occurred. First, priority was given to the commit message. If the

commit message directly stated a change was done for readability improve-

ments, regardless of if the reviewer agreed, it was considered a readability

improvement. If this change was not found in the code, it was marked as a

non-readability commit. If the commit message was vague, not calling out

specific changes, the reviewer would manually review all the changes to iden-

tify a readability change. At this point, a readability change became more

subjective based on reviewer opinion. The general guidance was a readability

change would be a change to the source code which did not significantly im-

pact observable code behavior. Finally, changes to test files were disregarded

in manual review. This was done to focus on improving production code.

Changes to only test files would be marked as non-readability commits.

3.2.2 Grounded Theory

Once a readability commit was identified, the reviewer was asked a series of

curated questions about the change. Table 3.1, shows the question tree given

to a reviewer. The first set were questions about the code itself. The reviewer

was asked to describe the change and the code’s functionality. In addition, the

reviewer was asked to provide a set of keywords to assist in identification and

search later. The reviewer was then asked to describe the commit message,

being asked to describe how the developer related the change to readability

CHAPTER 3. METHODOLOGY 12

within the commit. Finally, the reviewer was asked to provide location details,

such as files and line numbers. These observations were stored in our database

as entities called templates. The templates were automatically associated with

commits by our Python script.

Each template would represent one change type per commit. This means

that if 5 function extractions were done within one commit, this would be

logged as one change type, thus given one template. A commit could have

different types of changes, and these were generally kept separate. If a commit

had both function extractions and renames occur, these would be logged as

two different changes and given two different templates, one for each. This

was done to prevent an over-saturation from one large refactoring commit or

change type; however, change types were kept separate to distinguish them

from each other. This set up means while we looked at 314 different changes,

these changes only came from 194 commits. This gives us an average of 1.62

readability changes per commit. This process would provide us with a set

of observations which we could analyze for trends. The templates and tags

represented our attempt at coding the data [12].

Table 3.2: Example of Template: ID-24
Is this a Readability Change: Y

Description of Code:

Describe the Code Change:
Extracted numerous code blocks into its own class, SecuritiesTables.
These extracted code blocks were created as descriptive name functions within the class

Describe the Code Functionality: Manages a code concept called SecuritesTables
Keywords: function extraction,class extraction

Description of Commit:
Describe the Commit Message in Terms of Readability: Directly mentions that the extraction of the class improves readability

Location Information

Files:
name.abuchen.portfolio.ui/src/name/abuchen/portfolio/ui/views/SecuritiesTable.java;
name.abuchen.portfolio.ui/src/name/abuchen/portfolio/ui/views/SecurityListView.java

Old Line Numbers: Whole file
New Line Numbers: New file created

Table 3.3: Example of Memo: ID-1
ID Memo Message Keywords Templates-Associated Memos-Associated

1
Blocks of code are being extracted into separate functions,
usually with the function given a descriptive identifier name

function extraction 24 -

CHAPTER 3. METHODOLOGY 13

In line with Grounded Theory’s constant comparison and memoing [12],

in regular periods throughout the templating stage, usually once a week, the

existing observations would be analyzed by a reviewer. Similarly, to how obser-

vations of changes were made with templates, observations of trends were also

made. These observations are called memos. A memo consists of a message

and an association to templates and would also be stored in the database. As

more and more memos were created, eventually observations would be made

about the existing memos, creating even more memos. Table 3.2 and Table

3.3 show an example template and example memo respectively. These memos

would form the backbone of theory development, as the identified categories

from the taxonomy would be derived from the memos. Ideally, the memos

should have been created more often than once a week; however, lack of avail-

able resources made this somewhat of a necessity.

This process of sampling, coding and comparison was repeated until the-

oretical saturation was achieved. Theoretical saturation is the point when

more observations do not modify the developed theory [12]. The difficulty

with readability research is that it may have taken a very long time to achieve

theoretical saturation, as a very diverse number of changes could be made. As

such, we targeted 317 changes as the sample size, which is the sample size that

achieves 95% confidence with 5% margin of error on the population of 1,782.

This gave us a target number of observations to make.

Chapter 4

Taxonomy

Figure 4.1: Proposed Readability Taxonomy

This section provides an overview of the produced readability taxonomy.

This taxonomy categorizes the trends seen within identified readability changes.

The overall taxonomy is represented in Figure 4.1. At the top is the Readabil-

ity Changes group, representing the totality of the examined changes. The

14

CHAPTER 4. TAXONOMY 15

next level represents the six main categories which were identified. These

categories are the most seen trends in the review. The layer under them is

their identified subgroups, trends seen within the larger trends. The rest of

this chapter is divided into six sections, each explaining the six main trends

identified along with their subgroups. In addition, examples of each action are

provided for further understanding.

4.1 Method Extraction

Figure 4.2: Method Extraction Taxonomy

The largest readability change type seen was method extraction. This

categorization is identical to the common software refactoring Extract Func-

tion [16]. In method extraction, a code segment is removed from an existing

CHAPTER 4. TAXONOMY 16

block of code and added to a newly created method. The code segment is

then replaced with a call to the newly created method. This new method

is given a unique identifier, which can provide additional information about

the method to the user. Typically, the extracted code is not modified, simply

moved; however, it is still considered a method extraction if the original code

segment is modified.

Figure 4.3: Example of Method Extraction Operation

Apache’s Common-Compress Project highlights an example of the method

extraction operation. Figure 4.3 shows a unified diff of the extraction. Here,

a while loop and some setup code are removed and replaced with the function

drainCurrentEntryData. Figure 4.4 shows the drainCurrentEntryData method

declaration. This is a newly created method, with the body being the exact

same as the removed code from Figure 4.3. In addition, the developer added a

meaningful identifier and comments to the method declaration, which further

supports a reader’s understanding of the new method and code segment. The

CHAPTER 4. TAXONOMY 17

commit message for this change directly states that this change occurred to

improve readability, and method extractions were performed in other places

within the commit.

Figure 4.4: The drainCurrentEntryData method declaration

The method extraction change type can be further divided into four sub-

categories. These four categories are based on the trends seen in the type of

code being extracted, mostly different control blocks. These groups are: if-else

extraction, class extraction, loop extraction, and try-catch extraction. These

categories were identified in a top-down manner. This means that method

extraction was first identified, and these trends emerged from there. As a

result, not all method extractions fit into one of the four categories, as with

classifications seen later in this chapter.

The most common method extraction subcategory is the extraction of if-

else ladders. In this category, part, or all, of an if-else ladder is extracted out

to an external function. If-else extraction specifically includes the extraction

CHAPTER 4. TAXONOMY 18

of the if statements. While Figure 4.3 shows the body of an if statement being

extracted, it does not fit into this category because the if statement is not

moved. This category is unique among the method extractions, as it also has

a subcategory, Boolean extraction. In Boolean extraction, the Boolean logic

of an if statement, meaning the expression, is extracted to a function which

returns the evaluation. This is distinct from if-else extraction, as it does not

move the if-else ladder, moving just the expression.

The next most common type of method extraction is class extraction. This

change is like two types of common software refactors. It can either be like a

true class extraction, where a new class is created out of a set of behaviors,

or like a move method, where a method is moved to an existing class [16].

In addition, this categorization does not focus on other class members, such

as attributes. While there is likely an extraction of other class members, the

observations only noted the movement of functions. Based on this observation,

class extraction is set as a type of method extraction; however, this change

could easily become its own category with further research.

The next two subcategories of method extraction are simpler than the

previous two. The first of these is loop extraction, which is very similar to

the if-else extraction. In this category, an entire looping block is extracted

to a newly created function. The example provided in Figure 4.3 and 4.4 is

in addition an example of loop extraction, as it extracts an entire while loop.

Similarly, try-catch extraction extracts all of a try-catch block to an external

function

CHAPTER 4. TAXONOMY 19

4.2 Identifier Renames

Figure 4.5: Identifier Rename Taxonomy

Figure 4.6: Example of Identifier Rename Operation

The second-largest category of readability changes is identifier renames.

Figure 4.5 shows the taxonomy of renames. This change occurs whenever any

software identifier, such as a function identifier or class identifier, is changed in

any way. Software identifier names give the developer a great opportunity to

provide valuable information to a reader without being constrained by syntax.

An example of an identifier rename is shown in Figure 4.6, the Casmi developer

renamed the function identifier of drawParse to drawProjection. Identifier

renames fall within two categories, focusing on the change of the identifiers

CHAPTER 4. TAXONOMY 20

meaning. The meaning of the identifier can either be preserved (not changed)

or modified (changed).

Figure 4.7: Example of Identifier Rename: Meaning Modified

The meaning of an identifier is modified if the meaning is: broadened,

narrowed, or completely changed. When the meaning of an identifier is broad-

ened, one or more of the terms in the identifier is replaced with a hypernym. A

hypernym is simply a term that is higher on a semantic tree. If the word blue

was changed to color, it would broaden the meaning, as color is a hypernym

of the word blue. When the meaning of an identifier is narrowed, one or more

of the terms is replaced with a hyponym. A hyponym is the opposite of a

hypernym; it is a word lower on a semantic tree. Finally, the meaning can

be completely changed by replacing words to new, unrelated words. While

these three categories could become subcategories in themselves, it was hard

to determine if broadening, narrowing or complete change occurred from the

observations, more that the meanings were changed and generally these were

the segmentation. To categorize them, a much more thorough analysis of each

rename would need to be done, which would distract from other observations.

The example provided in Figure 4.7 shows an example of a modified meaning

rename. In this example, the identifier is changed from ‘QUESTIONMARK’

to ‘BEGIN FILTER’. This completely changes the meaning of the identifier to

the reader, going from the actual value the identifier represents, a ‘?’ symbol,

to the use of the simple in context, the start of a filter string.

CHAPTER 4. TAXONOMY 21

Figure 4.8: Example of Identifier Rename: Meaning Preserved

The simpler of the two to identify is if the meaning of the identifier is pre-

served. This category stands opposed to the other category, as the meaning

cannot be preserved and modified. Generally, an identifier is considered to

have its meaning preserved if a rename operation occurred, but the meaning

was not modified. A few situations occurred that fit this definition. First were

situations where the identifier separators were changed, such as a move from

camel case to underscores. Second was a collapse or expansion of abbrevia-

tions. The example in Figure 4.8 highlights this type of change. In the rename

for errorMessage, the word message was collapsed into a known abbreviation,

msg. The third situation was fixing typos or misspellings, as these are just

corrective actions. Finally, and most complex, is the use of synonyms which

still preserve the overall meaning of the identifier. Similarly, to the previous

category, these different types could make up another layer of the taxonomy,

but with the way renames were coded it is hard to tell how prevalent these

observations are in the data.

4.3 Source Code Reformatting

The third largest readability change category is source code reformatting. The

taxonomy is highlighted in Figure 4.9. In source code reformatting, the devel-

oper changed the formatting of the code base without directly editing any of

CHAPTER 4. TAXONOMY 22

Figure 4.9: Taxonomy of Source Code Reformatting

the code. A simple example can be found within the Flying Saucer Project.

In Figure 4.10 the before and after of the code change is shown. Here, the

developer reformatted the function call, mostly using newlines to space out the

function’s parameters. The developer directly stated that this change would

improve the readability of the software. While the addition of parameters

modifies the code slightly, this change still highlights a common type of code

reformatting preformed.

Figure 4.10: Example of Source Code Reformatting

CHAPTER 4. TAXONOMY 23

This category can then be subdivided into the two main methods of code

reformatting. The largest of the two is changes to the code white space. With

this change, the developer uses different types of white space characters to

modify the spacing of the code. These white space characters include spaces,

new lines, and tabs. Figure 4.10 is also an example of this subcategory, as

it uses new lines to spread out the function call. White space source code

formatting would often occur as part of cleanup operations.

The other category of source code formatting is editing of brackets in code.

Any formatting change to the brackets in the code, such as adding curly braces

or parentheses, is of this group. The most common example of this change is

the addition of curly brackets to one line if-statements that do not have them.

This change most often occurs with edits to white space; however, a couple of

examples were seen without white space modification.

4.4 Code Removal

The fourth most common category of change for readability was the removal

of code. With code removal, the developer deletes code that is no longer

needed. While code removal can be done without the intent of improving

readability, there are situations where the removal of code is done to improve

the readability. The example, in Figure 4.12, shows how code removal can

be used to improve readability. Before, the developer stored the output of

getClassPath in the cp variable. Since the cp variable is only used once in

line 199, the output storage is unneeded and can be removed. As seen at the

bottom of the image, the adding of cp was replaced with a call to getClassPath.

CHAPTER 4. TAXONOMY 24

Figure 4.11: Taxonomy of Code Removal

Figure 4.12: Example of Code Removal

Overall, the removal of code has been added to this taxonomy as it can be

done to improve software readability.

This category can be broken into two types of removal. The first is the

removal of dead code. In this definition, dead code covers three types of code

segments. The first is code that is never executed. This can be an unused

method or a code segment under a control statement that cannot be triggered.

The second is executed code, but it does not modify the system and its output

is not used. An example would be a function which counts the characters in

CHAPTER 4. TAXONOMY 25

a string, but the code never uses that count. The final type is code segments

which are completely commented out.

The other category is the removal of redundant code. This category is

distinct from the other in that the code does have some effect on the state

of the system and is used; however, the developer has deemed it redundant

in some way. There are a number of examples of this type of removal, but

Figure 4.12 directly shows an example. Since the storage variable cp is used,

but it is somewhat redundant to store the method output, it is the removal of

redundant code. Other examples of this type of removal include the removal

of function parameters or unnecessary attribute declarations.

4.5 Addition of Comments

Figure 4.13: Example of Addition of Comments

The fifth category of readability change is the addition of comments by

the developer. This category focuses on any in code documentation being

added or modified, be it inline comments, multi-line comments or Javadoc.

Adding comments to the source code can aid the reader in their understanding.

In Figure 4.13, the simple addition of Javadoc as comments improves the

software’s readability. More research into the taxonomy of software comments

could improve this sections taxonomy.

CHAPTER 4. TAXONOMY 26

4.6 Keyword Modification

Figure 4.14: Taxonomy of Keyword Modification

Figure 4.15: Example of Keyword Modification

The final category identified within this taxonomy is the keyword modifi-

cation category. In this category, the developer changes the keywords in the

software to help convey the purpose of a software entity. This includes the

changing, addition, or removal of certain keywords. In Figure 4.15 an example

of this type of change is shown. The developer of this commit added the final

keyword to the static attribute declaration. While this change does influence

the behavior of the code, preventing the variable’s modification. The final key-

word in this example provides the context for the developer that this variable

CHAPTER 4. TAXONOMY 27

does not change.

This category is separated into two categories, based on how Java di-

vides up keywords. The first category is the change to access modifiers. This

means the changing, adding or removing of keywords such as public, private,

or protected. The most common change of this type is the addition of access

modifiers. In a few cases, classes or methods did not have a specified access

modifier, making them default, being changed to a declared access modifier.

The second category is the change to non-access modifiers. This means the

changing, addition, or removal of Java keywords that do not modify access.

Java non-access keywords include final, static, or void. While variable types

are keywords, changing of variable types do not fall under this definition, as

this type of keyword modification was not seen. In addition, the changing

of loop types, such as for to whiles, may fall under this definition but needs

more research. The most common type of this change is the addition of final

variables. Figure 4.15 highlights this type of change, as the final keyword has

been added.

Chapter 5

Analysis and Discussion

In this chapter, we take a closer look at the data and their relationship to the

research questions. In Section 5.1, , we look at and discuss the performances

of the targeted keyword patterns in more detail. In Section 5.2, we take a

closer look at the taxonomy provided, examining prevalence of the categories,

how they emerged, and what benefits they might provide to readability.

5.1 RQ1: What keyword patterns were most highly

correlated with readability commits?

Table 5.1: Break Down of Keyword Occurrences
Keyword Total Found Total Reviewed Marked Readability Commit Marked Non-Readability Commit Precision

’readab.*’ 155 113 64 49 56.64%

’understand.*’ 95 59 13 46 22.02%

’clean.* up’ 1532 364 117 247 32.14%

Total 1782 536 194 342 36.19%

A key aspect to this project was the data collection. As mentioned in

Chapter 3, the data set was partially collected via automatic collection and

28

CHAPTER 5. ANALYSIS AND DISCUSSION 29

then manually reviewed. From the initial data set of refactoring commits,

our tool automatically identified 1,782 potential readability commits based on

targeted keyword patterns. Of these 1,782 commits, 536 commits would be

manually reviewed. Table 5.1 shows the breakdown of the keywords patterns.

Of the 536 commits looked at, only 194 of the commits were considered read-

ability changes by the reviewer. This gives the tool a precision of 36.19%.

This indicates generally that there is room for improvement with the tool.

While there are identifiable issues within individual patterns, the tool is

also lacking in some respects that affect all patterns. The most common issue

was the inability to differentiate test file changes from source code changes.

Since test files were not considered in this study, the reviewer would simply

mark them as non-readability commits. This brings down the precision of all

the keywords slightly. There are a set of commits in which readability im-

provements occurred in test files and were called out by developers; however,

reviewers marked them as non-readability commits. In a rework of this project,

it would be better to simply throw out these types of commits all together.

The other major issue was the reviewer’s inability to identify a readability

change. There were situations seen where the developer said a change oc-

curred; however, the reviewer could not find the change. These would also be

marked as non-readability commits.

The first keyword pattern selected for the search was ’readab.*’. This

pattern was meant to target specifically words like readability or readable.

This was generally the best preforming pattern. Of the total 155 keywords

identified, 113 were manually reviewed. Of these 64 commits were marked

as readability, while 49 were marked as non-readability commits, giving a

CHAPTER 5. ANALYSIS AND DISCUSSION 30

Figure 5.1: Example of ’readab.*’ pattern considered a non-readability commit

precision of 56.64%. Some unique issues with the ’readab.*’ pattern were

identified. The terms for this pattern were also used to describe the product of

the software as opposed to the source code. This means that developers would

often describe changes to log messages or UI elements as “more readable”,

which would be marked as a non-readability commit. Figure 5.1 shows an

example of this, the ”more readable” item is the error message itself, not the

code that creates the message. This issue is caused by the simple nature of

the mining tool. In addition, this pattern was small in its scale. From the

larger database of commits from 800 software projects, only 155 commits were

identified as belonging to this pattern. So, while one of the more precise

patterns used, it also a rarely used pattern.

Figure 5.2: Example of ’understand.*’ pattern considered a non-readability
commit

The second identified keyword pattern was ‘understand.*’. This pattern

was chosen due to the linked nature of software readability and software un-

CHAPTER 5. ANALYSIS AND DISCUSSION 31

derstanding. This pattern’s performance is the most surprising. Of the 95

commits identified with this pattern, 59 were reviewed and only 13 were iden-

tified as readability commits. This gives a precision of 22.02%. In the initial

stages of the project, it was assumed that ’understand.*’ would be similar to

’readab.*’ ; however, this was our worst preforming pattern in both terms of

scope and precision. This pattern suffered from similar issues to ’readab.*’,

but a bit worse. It would also be used to describe the software’s poducts as

opposed to the source code, similar to ’readab.*’, but would also have two

other seen uses. Developers would also use this pattern to describe their own

understanding of the code, either they understood or did not understand an

aspect of the code or behavior. Figure 5.2 shows one of these commits, where

the developer is actually describing their own understanding (or lack) of the

code. Finally, the developers also used this pattern to describe the code’s

ability, like the ability to interpret file formats. Once again, these issues were

created by the tools inability to understand the context of the patterns. This

keyword was also very limited in its scope, being the least commonly detected

pattern.

Figure 5.3: Example of ’clean.* up’ pattern considered a non-readability com-
mit

The final identified keyword pattern was ’clean.* up’. This pattern was

chosen to have a more generalized pattern that still focused on changing ex-

CHAPTER 5. ANALYSIS AND DISCUSSION 32

isting code. Since this was a more generalized term, it was by far the most

common. Of the 1,535 commits with this pattern, 364 were reviewed and 117

were considered readability improvements. This gives the pattern a 32.14%

precision. The main issue with this pattern type came from its vagueness.

While there was indication that readability changes were made with these

commits, most of these commits were not considered as readability changes.

This was made worse by its usage, as developers would very often just call a

commit “clean up” without context. It was difficult for the reviewer to find and

determine readability changes without the context. These very generic com-

mit messages would also often occur in commits with hundreds of line changes,

making it very taxing to determine if a readability change occurred. Figure

5.3 shows one of these commits, where the developer simply state code clean

up. While this keyword pattern represents most of the readability changes

looked at, a rework of the pattern maybe needed to make it more accurate.

In addition to exploring the performance of our targeted patterns, we

pulled word counts from all the readability commit messages to attempt to

identify other usable patterns. After eliminating stop words, using NLKT’s

stop words list, a count of all the words in the readability commit messages

were taken. Table 5.2 shows the top 20 words discovered from 2,898 consid-

ered words. The first observation is the high variety in the words used for

commit messages, as the most common word, code, only makes up 2.65% of

all words. We also see the targeted patterns, such as clean, readability, read-

able, and cleaning which make sense as they were directly targeted. From this

data, the most interesting words include added/add, better, fix/fixed, and re-

moved. While not targeted by mining, these words occurred at a high rate

CHAPTER 5. ANALYSIS AND DISCUSSION 33

Table 5.2: Top 20 Detected Words

Word Count Word Count

code 77 readable 16

clean 67 class 15

added 42 improve 15

cleaned 41 add 15

readability 28 git-svn-id: 14

removed 23 fix 14

method 21 use 13

better 20 fixed 13

make 19 cleaning 13

methods 17 type 12

Total 2898

CHAPTER 5. ANALYSIS AND DISCUSSION 34

and generally indicate a change to existing code bases. The issue is that we

cannot link these words with readability as with our patterns. While addi-

tion was common, and some of our changes are additions (like comments),

there is no direct way to tell if these added sections are readability changes.

It must be acknowledged that while these words were in commits associated

with readability changes, these words may not refer to readability changes at

all. They may describe changes unrelated to readability change, as commits

often involve a number of changes

5.2 RQ2: What code changes do developers make

when they admit that they are trying to im-

prove code readability?

5.2.1 Method Extraction

Table 5.3: Break Down of Method Extraction Occurrences
Category Count Precent of Total

Method Extraction 64 20.38%

If-else Extraction 15 3.18%

Boolean Logic Extraction 5 1.60%

Class Extraction 7 2.23%

Loop Extraction 5 1.60%

Try-Catch Extraction 5 1.60%

Looking first at the method extraction category, 64 total changes were

associated with this category, representing 20.38% of examined changes. This

makes this the single most common change discovered in the research. Since

this was focused on software refactoring, it makes sense that method extraction

CHAPTER 5. ANALYSIS AND DISCUSSION 35

would be well represented here as it is one of the more common software

refactors. Of the subcategories: 15 were identified as if-else extraction, 7

were identified as class extraction, 5 were loop extraction and 5 were try-

catch extraction. This highlights the very diverse nature of method extraction.

Interestingly, the opposite of method extraction, inline method, was seen a

couple times, but not enough to include it in the taxonomy.

Method extraction was one of the first emerging trends. It was identified

very early on in the review process; however, some of the subcategories were

harder to identify. As seen by the gap between method extraction, and the

largest category of if-else extraction, method extraction is an operation that

can be performed to a wide range of code. The trends of the code blocks did not

appear until a re-review of all the existing method extractions were completed.

This made it a little clearer that method extraction tended to be performed

to control statements. At this time the distinction between if-else extraction

and Boolean extraction was identified. Since the if’s conditional statement

is separated from the if-else statement, it emerged as its own category. As

mentioned in the taxonomy section, class extraction is a curious inclusion

here. Since we mostly identified methods moving to new classes, it was set

as a subcategory of method extraction, but given more thorough research it

could become its own category.

Overall, the prevalence of method extraction as a readability change coin-

cides with some other research looked at. Fakhoury et al. identified the extract

method refactoring as a common readability change. They identified extract

methods occurring 124 times, categorized as a readability improvement [3].

In contrast, they saw many inline methods preformed, which was not seen in

CHAPTER 5. ANALYSIS AND DISCUSSION 36

this research. In Piantadosi et al., they found that code refactoring improved

software readability [11]. As method extraction is one of the most common

refactors, it again makes sense that it would be a tool used by developers in

readability improvements.

Method extraction makes sense as a common readability change for a few

reasons. First, when performed on repeated code blocks, it simply reduces the

amount of code the developer must read. Rather than attempting to read a

block of code multiple times just to realize it is a reused segment, they can just

reference the method. In addition, method extraction comes with the benefit

of naming. Being able to associate a block of code with a descriptive method

name can make that block of code easier to understand. It also gives the

reader the option of abstracting out that segment, meaning they can ignore

the code block if they feel it is irrelevant based on the name.

5.2.2 Identifier Renames

Table 5.4: Break Down of Identifier Rename Occurrences
Category Count Precent of Total

Identifier Rename 57 18.15%

Meaning Modified 27 8.60%

Meaning Preserved 16 5.10%

The second major category was the identifier rename category. Rename

changes were performed 57 times, making up 18.15% of the changes looked

at. Of those, 27 were identified as renames that modified the meaning of

the identifier, while 16 preserved the identifier’s meaning. Not all the iden-

tified renames fit within one of the two subcategories; even though they are

CHAPTER 5. ANALYSIS AND DISCUSSION 37

dichotomies. Since this methodology treated all renames in a commit as one

singular change, the reviewer did not specify the renames which occurred, just

stating they did occur. This most often occurred when many different renames

were performed in a commit. This also highlights another observation with

the renames. They often occur in batches, with several renames occurring in a

single commit. If each rename in a commit was categorized as a unique change

as opposed to a batch, rename operations likely become the most seen change.

Identifier renames was another category that was identified right away

in the process. As with most of the larger categories, the first few changes

seen in the review involved a rename in some way. As the breakdown of the

category occurred, there were two potential ways to go with it, either based

on what is being renamed or how the rename was done. The first category

more closely follows the taxonomy presented by Fowler, who distinguished

rename types on what is being renamed [16]. Our review only noted two

software entities that tended to be renamed, methods and variables. To focus

more on the readability aspect, the effects on the identifiers meaning was

looked at more closely. This led to the division of “is the meaning modified or

preserved”. While these criteria were mentioned in the taxonomy, these were

general guidelines based on the reviewer’s experience.

In Arnaoudova et al. [17], a similar breakdown of rename operations is

seen. In their REPENT taxonomy, they provide an in-depth summary for

categorizing rename operations [17]. In this taxonomy, one key category is

semantic changes. This category is very similar to the trend that we observed

with our renaming. Arnaoudova et al. divided these into 7 categories in-

cluding, preserved meaning, changed meaning, narrow meaning, and broaden

CHAPTER 5. ANALYSIS AND DISCUSSION 38

meaning [17]. While our taxonomy does focus on semantic changes, it is not as

branched as REPENT, considering all modifications in meaning as a change

in meaning. The REPENT taxonomy is also more significant in scope, cat-

egorizing forms and grammatical changes, which were not seen within our

observations [17]. Ultimately, the REPENT taxonomy supports the existence

of the observations we made for our rename taxonomy, as similar focus on

semantic changes were seen.

Identifier renames were a change that was expected to be the most com-

mon. This is because of the role that identifiers play within software. Since

they have looser syntax rules, they are one of the best opportunities to provide

the reader with information. The importance of identifier quality is something

that is taught to every CS1 student. Naturally, changing poorly worded or

incorrect identifiers to more accurate ones fix potential readability issues that

occur. Again, the research in Fakhoury et al. also identified rename refactor-

ing necessary readability change. A significant portion of the refactors they

looked at which were associated with readability was rename refactoring [3].

Martin’s book, Clean Code: A Handbook of Agile Software Craftsmanship also

addresses the importance of identifier naming, highlighting the importance of

meaningful names [2]

5.2.3 Code Reformatting

Edits to the code format was the third most common category. Of the changes,

34 of them were of this type representing 10.8% of the changes looked at.

Interestingly, this category was dominated by changes to white spaces, as 32

of the changes contained some type of white space edits, roughly 10.19% of

CHAPTER 5. ANALYSIS AND DISCUSSION 39

Table 5.5: Break Down of Code Reformatting Occurrences
Category Count Precent of Total

Code Reformatting 34 10.80%

Changes to Code
Whitespace

32 10.19%

Changes to Brackets 5 1.60%

the changes seen. These changes to white space tended to be massive scale

changes, reformatting entire files to unify indexing or spacing. Less common

was the changes to bracketing, seeing only 5 changes to brackets. These were

almost always done with white space changes. The only type seen that did

not include a white space change was the addition of curly braces around one

line if statements, which only occurred twice on its own.

Code reformatting was another one of the earliest identified categories.

During the research, method extraction, renames, and reformatting made up

what was the big three. Those three changes were seen as the most obvi-

ous and apparent changes. Code reformatting was almost entirely done using

white space edits, either spaces, new lines, or indentations. This change can be

traced back to some of the earliest research into software readability models.

Buse and Weimer’s initial software readability metrics focused on white space,

specifically indentations and blank lines [5]. Martin also calls out the impor-

tance of code formatting, mentioning the importance of vertical and horizontal

formatting [2]. The more surprising thing was the lack of edits to braces, such

as parentheses or curly braces were modified, likely due to language syntax.

The formatting of software also provides an opportunity to improve the

readability of software code bases. In Java specifically, the formatting of the

code is more fluid, not requiring indentation, bracket position or white space.

CHAPTER 5. ANALYSIS AND DISCUSSION 40

Languages like Python, which was developed with a focus on readable syntax,

enforce white space requirements. This makes code reformatting, and specif-

ically white space changes, more useful based on language. The use of blank

lines to separate code blocks can be done in both Java and Python; however,

indentation is a Python requirement.

5.2.4 Code Removal

Table 5.6: Break Down of Code Removal Occurrences
Category Count Precent of Total

Code Removal 33 10.51%

Removal of Dead Code 21 6.69%

Removal of Redundant Code 12 3.82%

The fourth most common change observed was the removal of code. 33 of

the changes observed, 10.51% of the total, involved the deletion of code. Of

these, 21 were identified as removal of dead code, while 12 were the removal of

redundant code. The main distinction between the dead code and redundant

code is if the code is used, as dead code is generally considered to be code that

is not being used. This distinction is obvious in most cases, as commented out

or never called code is clearly dead code. The difference between redundant

code and dead code which was executed was left up to the reviewer. Code

removal was discovered in a bottom-up manner, meaning the subcategories

were identified and the link was discovered later in the review. This is unique

from the other three methods explored, which were discovered in a top-down

manner. In addition, code removal represents the first unique trend discovered

in this research, as other similar research did not directly identify code removal

CHAPTER 5. ANALYSIS AND DISCUSSION 41

as a readability change. While the code removal was mostly done with clean-

up operations, there is some link to the software’s readability. Like method

extraction, it can reduce the amount a developer needs to read. In addition,

it can help reduce confusion. Dead code can be inherently confusing, as the

assumption is that the code does something or has some effect. If the code does

not influence the system, this breaks that assumption potentially confusing the

reader. By cleaning out code segments which are not useful or used, you lessen

the strain on the developer reading the code.

5.2.5 Addition of Comments

One of the smaller categories of the taxonomy was the Addition of Comments.

Of the changes looked at, the addition of comments occurred 23 times. This

category is unique in that it could not be broken into subcategories. There

were no real observations made in which this class could be further broken

down. Comments were only really added as Javadoc, making only one dis-

tinct category. While not all comment adding commits were Javadoc, no real

trend among the comments could be seen. Making it more difficult to distin-

guish categories is that when general comments were added so where Javadocs,

so reviewers often tagged comments and Javadocs together. In Pascarella and

Bacchelli, a more thorough taxonomy of comments is presented [18]. This tax-

onomy focused on identifying different purposes, locations, and styles; how-

ever, their research did not tie comments to readability improvements. Finally,

Martin includes comments and their importance to readable code in a chapter

of his book [2].

The addition of comments is a debatable readability improvement. While

CHAPTER 5. ANALYSIS AND DISCUSSION 42

it is true that comments increase code understanding, they are often viewed as

supplemental to the code itself. Our research considered any change to the java

files, so while external documentation would not be included, comments were

included as acceptable changes. Since comments exist within the code and

help improve the general code understanding for readers, they are considered

a readability change.

5.2.6 Keyword Modification

Category Count Precent of Total

Keyword Modification 14 4.46%

Non-access Keyword 8 2.55%

Access Keyword 6 1.91%

The final category from the taxonomy was the modification of keywords.

This represented only 14 changes, about 4.46% of the changes looked at. This,

like code removal, was a group created as a parent to two emerging trends.

The first and more common of the two was the modification of non-access

modifiers. 8 times we saw direct changes to non-access modifiers, most often

the addition of the final or static keywords. The less common trend was

the modification of access keywords. Of the 6 changes categorized here, the

most common change seen was the transition from a non-declared access, so no

keyword, to a declared access. This was another change that was not identified

in other research looked at.

As for this category as a readability change, it is again a debatable one.

More than any other category, this category has the most direct effect on the

actual behavior of the program. A switch from private to public, or the final

CHAPTER 5. ANALYSIS AND DISCUSSION 43

addition, has a programmatic effect and changes some of the behavior. On the

other hand, an intrinsic amount of information is provided by keywords, espe-

cially with the addition of optional keywords. Since these changes were seen

within targeted rename commits, ultimately it was included in the taxonomy.

Chapter 6

Related Work

Several studies have looked at how to improve software maintenance in general

[19–98]. Among them, we focus, in this section, on studies (1) measuring

readability in code, (2) detecting readability improvement opportunities, and

finally (2) recommending readability-related refactorings.

6.1 Research of Software Readability Models

Software readability models represent some of the earliest attempts at quanti-

fying software readability and tracking readability improvements. Readability

models can be tracked back to Buse and Weimer’s work into creations of var-

ious software readability metrics [5]. The Buse and Weimer models focused

more on the key statistics of the code, looking at things like line length or

identifier length [5]. These models would be expanded upon by Dorn [6] and

Scalabrino et al. [8]. Their work would make these models more advance.

Scalabrino et al. would go on to extend their readability model, including a

44

CHAPTER 6. RELATED WORK 45

focus textual features [9].

Roy et al. [7]. would identify some issues within the existing models,

arguing that they used more statistical approaches which miss important as-

pects of readability. Roy et al. used a very similar method of identifying

readability commits as we used. They mined keywords from Java commits,

including words which match our “readab.*”, “under.*” and ”clean.* up” pat-

terns. These commits would then be manually reviewed to ensure they were

readability commits. The distinction is that these commits would be used to

create a dataset, which would have metrics taken from it and used to create a

new software model.

6.2 Research of Software Readability Improvements

Robert Martin’s book Clean Code: A Handbook of Agile Software Craftsman-

ship [2] conveys a large amount of information from professional developers

on the creation of “clean code”. A large amount of the book focuses on how

to create extremely readable code There is a large amount of overlap be-

tween Martin’s recommendations in his book and the changes found within

this study. Martin’s focus is more on creating new code, rather than the im-

provement of existing code; however, his advice is still applicable. Many of

the observations made in this research are also found within Martin’s book,

further strengthening the trends we have found.

Fakhoury et al’s [3] explored the different types of changes made by devel-

opers to improve readability. The goal was to test the ability of readability

models to detect incremental changes. Again, they used a similar method of

CHAPTER 6. RELATED WORK 46

detection of readability commits as this research, using keyword mining of com-

mits to detect self-admitted readability changes. While these commits would

be used to test the model’s effectiveness, Fakhoury et al. also explored some

of the changes developers made. These commits were analyzed using source

code analysis tools, like RefactoringMiner and CheckStyle. Similar trends to

those found in this paper were made, such as using method extraction as a

common readability change; however, the automation may have missed other

trends. While some automation was used in the detection of commits, manual

review was performed for the identification of trends. In addition, they ex-

plored how developers document their readability commits, which is a similar

contribution to this paper’s RQ1.

Piantadosi et al [11] preformed research in how the readability of software

changed generally over time. Their research found that the developers tend

to have readability in mind from the start and that readability changes very

little over time. More relevant to this research, they also explored a bit of

the changes made to files that had significant readability changes, determined

by their models. In this research, one of their major conclusions was that

refactors had major impacts on code readability; however, these ties are not

explicitly tied to readability improvement attempts by developers.

6.3 Research of Renaming

Arnaoudova et al. [17] developed a more complete taxonomy of rename changes,

known as REPENT. Within their taxonomy, they presented different aspects

of identifier renames including location, semantic changes, rename forms and

CHAPTER 6. RELATED WORK 47

grammatical changes. Most notably, the semantic change mirrors our choices

for the rename taxonomy. Our breakup of readability was based on semantic

change, looking at if the meaning changed or was preserved. The REPENT

taxonomy included these categories and included aspects like name broaden-

ing, narrowing, and adding or removing meaning. All these additional aspects

were simply considered a modified meaning in our taxonomy. Our taxon-

omy is further supported and potentially expanded upon with the REPENT

taxonomy; however, our research solidifies the connection to readability.

Pernuma et al. 2018 [99] further expanded upon their existing research

into software renames. In their study, they explored more closely how devel-

opers rename and what is the motivation. They used the REPENT taxonomy

from Arnaoudova et al. to explore what types of renames developers had per-

formed. This included looking at if the meaning of identifiers were modified

or preserved, with most identifiers being modified. This lines up with some

of the observations found within this research, as we found in a much smaller

sample that meaning tended to be modified by developers.

6.4 Research of Refactoring

Several works related to the effects refactoring has on software. One of the pri-

mary sources for refactoring is Martin Fowler’s book Refactoring: Improving

the Design of Existing Code [16]. Fowler’s book is one of the most complete

works on taxonomizing refactors. Since our work focused on refactors, specif-

ically those from RefactorMiner, many of the Fowler refactors were seen. As

noted in Chapter 4, a large amount of our taxonomy is made up of refactors

CHAPTER 6. RELATED WORK 48

from Fowler’s taxonomy.

AlOmar et al. 2021 [100] took preformed research into self-admitted refac-

tors by developers. Similarly, to how we determined self-admitted readability

improvements by developers, AlOmar et al used commit messages to deter-

mine if a change occurred. These commits were then used to develop a machine

learning algorithm to detect and classify refactors. The most similar aspect of

their research is the aspect of self-admitted refactors making up their dataset;

however, they focused on the refactoring research.

6.5 Other

Pascarella and Bacchelli [18] created a taxonomy of comments in Java projects.

By performing an extensive manual review of software comments, they devel-

oped a thorough taxonomy of the types of comments developers add to source

code. Their research into comment taxonomy could be used to expand upon

the taxonomy of comments; however, their research did not focus on readabil-

ity, but instead comments.

Chapter 7

Threats to Validity

While we present experimental results based on real life projects, identified

factors within the study impact the applicability of the observations made.

These threats to validity have been divided into four categories [101].

Conclusion Validity. Threats to conclusion validity focus on issues with

the ability to draw the correct conclusions from the relations between the ob-

servation and the outcome [101]. The main threat to this type of validity

comes from the manual review process. In some cases, the reviewer had to

make a subjective decision if a readability change occurred. This most often

occurred with very general and unspecific commit messages. This subjective

decision may have led to some bias in what observations were considered. In

addition, if the reviewer determined the change was a readability change, that

also introduces some subjectivity into the observations. These additions of

more subjective decisions may affect the conclusion made. This was mitigated

by mostly focusing on changes that were properly described by commit mes-

sages and criteria for what constituted a readability change. Still, subjectivity

49

CHAPTER 7. THREATS TO VALIDITY 50

and bias were likely introduced by the reviewer.

Internal Validity. Threats to internal validity focus on influences on the

independent variable that could not be controlled for [101]. The most apparent

threat to internal validity comes from the review sessions’ nature. Since the

manual review of software changes can take time, the review was done via

several sessions. These sessions did not have consistent timing, meaning that

some sessions were quick while others were longer. These longer sessions could

become taxing on the reviewer, leading to less accurate observations over the

time of this session. This issue is exacerbated by the inaccuracy of the initial

sampling tool. Since the reviewer also needed to determine if a readability

change occurred at all, more review was done leading to even longer more

taxing sessions. This could lead to inconsistent observation quality or even

missed observations, which affect the presented research.

Construction Validity. Threats to construction validity are issues with

generalization to the concept or theory of the study [101]. The main threat

to this validity comes from our lack of resources. One person performed all

the reviewing, only reviewed after the fact by others. This means that this

one reviewer’s bias is inherent to the observations made. In addition, this

same reviewer did most of the memoing. This again introduces bias to the

observations. The repeated nature of the memoing also has another effect. It

is possible that the reviewer made observations in trends and was biased in

seeing them. This would help in the identification of these trends; however, it

might blind them to new trends. If this study was to be repeated, having more

reviewers and division between commit reviewers and observation reviewers

may mitigate these biases.

CHAPTER 7. THREATS TO VALIDITY 51

External Validity. Threats to external validity limit the ability to gen-

eralize the results of the experiment to industrial practice [101]. The main

threat to external validity comes from the use of only Java projects. While

Java was the focus because of common usage, these results can only truly rep-

resent trends in Java. It is unknown how generalizable these observations are

to other languages, though the study does use a statistically significant sample

of Java projects; mitigating the threat that the results presented do not gen-

eralize to open source Java systems. It is possible many of these changes are

preformed specifically because of Java’s language features. An example was

already pointed out in the use of indentation. While this change is possible

in Java, Python’s white space requirements make it unlikely to see this type

of change. In addition, the focus on specifically exploring refactoring commits

may limit the generalizability. It is possible that readability is improved out-

side commits where refactoring is performed, and those changes are maybe

different. While the focus on refactoring commits helped focus on improve-

ments, it also limits the observations to refactor commits. In addition, it does

bias some of the observations to refactors instead of other possible readability

changes.

Chapter 8

Future Work

In the future it is hoped that this research is expanded in scope. First, with

a more substantial review to help support the trends identified, while elimi-

nating some shortcomings. In addition, an expansion to additional languages

may highlight different trends or differences in approach. These are both

done in a hope to make a much more substantial and supported taxonomy.

In addition, improvements could be made to the identification of readability

commits presented in this research. More accurate and effective methods of

detecting commits where the developers wish to improve readability could im-

prove the taxonomy’s validity. Exploring keyword patterns and committing

message trends could improve the automatic methods’ effectiveness. Finally,

this research only looked at readability commits and improvements; however,

different trends may exist in non-refactoring commits. All this work would

improve the overall taxonomy and its generalizability.

52

Chapter 9

Conclusion

The objective of this work was to gain a deeper understanding of the types of

changes developers make when attempting to improve the readability of their

software. To achieve this, an automatic process using keyword pattern mining

was developed to search commits for indications of readability improvements.

This mining was applied to a set of refactoring commits from 800 open-source

java projects. This created a data set of 1,782 potential readability commits,

of which 536 commits would be manually reviewed. From this process, several

takeaways have been provided.

9.1 Takeaways from RQ1

The keyword pattern readab.* provides the best accuracy for de-

tecting readability improving commits; however, it has a limited

usage. When looking closely at the keyword patterns used, our readab.* pat-

tern represented the highest precision in the detection of readability commits.

53

CHAPTER 9. CONCLUSION 54

While a 56.64% precision is not highly precise, our detection method was very

naive and generally lacked precision. The limiting factor is that this pattern

was only seen 155 times, meaning its usage was limited. This limited usage

makes it a bit unreliable for the future detection.

The understand.* keyword pattern was the worst keyword pat-

tern for readability improvement detection. This keyword pattern had

the worst precision and smallest scale. The precision of the understand.* key-

word pattern was only 22.02%, meaning that only around 1/5 of the looked at

commits were tied to readability by reviewers. In addition, this keyword was

only detected 95 times, further limiting the scope of the pattern.

The clean.* up keyword pattern, while very common, is too

general to reliably detect readability commits. The bulk of detected

keyword patterns in the sample data set followed this pattern, with a total

of 1,532 commits matching this pattern. The issue is that this pattern is far

too general and very loosely linked with specifically readability improvements,

as the sample of 364 commits only gave a precision of 32.14%. This keyword

pattern was mostly harmed by poor commit messaging, as it was common for

the looked at commits to just be “code clean up”.

It is difficult to link keyword patterns to direct readability change

given our approach. Our approach only gave us a 36.10% precision, which

is very inaccurate. The issue comes partially from the process, where commits

that maybe should have been disregarded were marked as non-readability.

Some of it comes from the patterns chosen, as understand.* and clean.* up

proved to be inaccurate. Finally, sometimes commit messages just are not

descriptive.

CHAPTER 9. CONCLUSION 55

9.2 Takeaways from RQ2

ṡec:conRQ2

Method extraction was the most seen readability improvement.

Seen 64 times in the data set, the removal of code to a new function was the

most seen change made by developers when attempting to improve readability.

Developers often preformed Identifier Renames when attempting

to preform readability improvements. Although, 57 of the looked at

changes involved some sort of rename operation, generally multiple renames

would occur.

Developers would often reformat the code base to improve its

readability. 34 of the changes looked at involved changes to code format-

ting, the majority of which affected the code’s whitespace. This change often

occurred within clean up commits.

Developers would often remove dead or unused code when im-

proving readability. This change was seen in 33 of the explored operations.

Again, this change was seen mostly as part of clean up operations

Comments can be added to improve the source code readability.

23 of the changes looked at included the addition of comments, mainly the

addition of Javadoc.

Changes to reserved keywords can potentially improve readabil-

ity. 14 of the changes looked at involved changes to software keywords.

Overall, this research presents a taxonomy of software readability changes.

This taxonomy provides several contributions to both research and industry.

First, this taxonomy can be used to further explore and understand readability

CHAPTER 9. CONCLUSION 56

improvements, enforcing existing research and presenting new trends. In addi-

tion, it provides several changes developers could make if wanting to improve

their own code. Finally, the taxonomy can be used to support documentation,

giving names to change types as seen with other taxonomies, like Fowler’s

Refactorings [16]

Bibliography

[1] Xin Xia, Lingfeng Bao, David Lo, Zhenchang Xing, Ahmed E. Hassan,

and Shanping Li. Measuring program comprehension: A large-scale field

study with professionals. IEEE Transactions on Software Engineering,

44(10):951–976, 2018.

[2] Robert Martin and an O’Reilly Media Company Safari. Clean Code: A

Handbook of Agile Software Craftsmanship. Pearson, 1st edition, 2008.

[3] Sarah Fakhoury, Devjeet Roy, Adnan Hassan, and Vernera Arnaoudova.

Improving source code readability: Theory and practice. In 2019

IEEE/ACM 27th International Conference on Program Comprehension

(ICPC), pages 2–12, 2019.

[4] Sarah Fakhoury, Yuzhan Ma, Venera Arnaoudova, and Olusola Adesope.

The effect of poor source code lexicon and readability on developers’

cognitive load. ICPC ’18, page 286–296, New York, NY, USA, 2018.

Association for Computing Machinery.

[5] Raymond P. L. Buse and Westley Weimer. A metric for software read-

ability. In ISSTA ’08, 2008.

57

BIBLIOGRAPHY 58

[6] Jonathan Dorn. A general software readability model. 2012.

[7] Devjeet Roy, Sarah Fakhoury, John Lee, and Venera Arnaoudova. A

model to detect readability improvements in incremental changes. In

Proceedings of the 28th International Conference on Program Compre-

hension, pages 25–36, 2020.

[8] Simone Scalabrino, Mario Linares-Vásquez, Denys Poshyvanyk, and

Rocco Oliveto. Improving code readability models with textual features.

In 2016 IEEE 24th International Conference on Program Comprehen-

sion (ICPC), pages 1–10, 2016.

[9] Simone Scalabrino, Mario Linares-Vásquez, Rocco Oliveto, and Denys

Poshyvanyk. A comprehensive model for code readability. Journal of

software : evolution and process, 30(6):e1958–n/a, 2018.

[10] Jevgenija Pantiuchina, Michele Lanza, and Gabriele Bavota. Improving

code: The (mis) perception of quality metrics. In 2018 IEEE Inter-

national Conference on Software Maintenance and Evolution (ICSME),

pages 80–91, 2018.

[11] Valentina Piantadosi, Fabiana Fierro, Simone Scalabrino, Alexander

Serebrenik, and Rocco Oliveto. How does code readability change during

software evolution? Empirical software engineering : an international

journal, 25(6):5374–5412, 2020.

[12] Klaas-Jan Stol, Paul Ralph, and Brian Fitzgerald. Grounded theory in

software engineering research: A critical review and guidelines. 05 2016.

BIBLIOGRAPHY 59

[13] Eman Abdullah AlOmar, Anthony Peruma, Mohamed Wiem Mkaouer,

Christian Newman, Ali Ouni, and Marouane Kessentini. How we refactor

and how we document it? on the use of supervised machine learning

algorithms to classify refactoring documentation. Expert Systems with

Applications, 167:114176, apr 2021.

[14] Anthony Peruma, MohamedWiemMkaouer, Michael Decker, and Chris-

tian Newman. Contextualizing rename decisions using refactorings and

commit messages. 08 2019.

[15] Nuthan Munaiah, Steven Kroh, Craig Cabrey, and Meiyappan Nagap-

pan. Curating github for engineered software projects. Empirical Softw.

Engg., 22(6):3219–3253, dec 2017.

[16] Martin Fowler and an O’Reilly Media Company Safari. Refactoring:

Improving the Design of Existing Code. Addison-Wesley Professional,

1st edition, 2018.

[17] Venera Arnaoudova, Laleh M. Eshkevari, Massimiliano Di Penta, Rocco

Oliveto, Giuliano Antoniol, and Yann-Gaël Guéhéneuc. Repent: Analyz-

ing the nature of identifier renamings. IEEE Transactions on Software

Engineering, 40(5):502–532, 2014.

[18] Luca Pascarella and Alberto Bacchelli. Classifying code comments in

java open-source software systems. In 2017 IEEE/ACM 14th Interna-

tional Conference on Mining Software Repositories (MSR), pages 227–

237, 2017.

BIBLIOGRAPHY 60

[19] Christian D Newman, Michael J Decker, Reem Alsuhaibani, Anthony

Peruma, Mohamed Mkaouer, Satyajit Mohapatra, Tejal Vishoi, Marcos

Zampieri, Timothy Sheldon, and Emily Hill. An ensemble approach

for annotating source code identifiers with part-of-speech tags. IEEE

Transactions on Software Engineering, 2021.

[20] Yaroslav Golubev, Zarina Kurbatova, Eman Abdullah AlOmar, Timofey

Bryksin, and Mohamed Wiem Mkaouer. One thousand and one stories:

a large-scale survey of software refactoring. In Proceedings of the 29th

ACM Joint Meeting on European Software Engineering Conference and

Symposium on the Foundations of Software Engineering, pages 1303–

1313, 2021.

[21] Eman Abdullah AlOmar, Anthony Peruma, Mohamed Wiem Mkaouer,

Christian D Newman, and Ali Ouni. Behind the scenes: On the relation-

ship between developer experience and refactoring. Journal of Software:

Evolution and Process, page e2395, 2021.

[22] Eman Abdullah AlOmar, Mohamed Wiem Mkaouer, Christian New-

man, and Ali Ouni. On preserving the behavior in software refactoring:

A systematic mapping study. Information and Software Technology,

140:106675, 2021.

[23] Eman Abdullah AlOmar, Ben Christians, Mihal Busho, Ahmed Hamad

AlKhalid, Ali Ouni, Christian Newman, and Mohamed Wiem Mkaouer.

Satdbailiff-mining and tracking self-admitted technical debt. Science of

Computer Programming, 213:102693, 2022.

BIBLIOGRAPHY 61

[24] Anthony Peruma, Steven Simmons, Eman Abdullah AlOmar, Chris-

tian D Newman, Mohamed Wiem Mkaouer, and Ali Ouni. How do i

refactor this? an empirical study on refactoring trends and topics in

stack overflow. Empirical Software Engineering, 27(1):1–43, 2022.

[25] Eman Abdullah AlOmar, Jiaqian Liu, Kenneth Addo, Mohamed Wiem

Mkaouer, Christian Newman, Ali Ouni, and Zhe Yu. On the documenta-

tion of refactoring types. Automated Software Engineering, 29(1):1–40,

2022.

[26] Eman Abdullah Alomar, Tianjia Wang, Vaibhavi Raut, Mohamed Wiem

Mkaouer, Christian Newman, and Ali Ouni. Refactoring for reuse:

an empirical study. Innovations in Systems and Software Engineering,

pages 1–31, 2022.

[27] Anthony Peruma, Emily Hu, Jiajun Chen, Eman Abdullah AlOmar, Mo-

hamed Wiem Mkaouer, and Christian D Newman. Using grammar pat-

terns to interpret test method name evolution. In 2021 IEEE/ACM 29th

International Conference on Program Comprehension (ICPC), pages

335–346. IEEE, 2021.

[28] Eman Abdullah AlOmar, Mohamed Wiem Mkaouer, and Ali Ouni. Min-

ing and managing big data refactoring for design improvement: Are

we there yet? Knowledge Management in the Development of Data-

Intensive Systems, pages 127–140, 2021.

[29] Wajdi Aljedaani, Anthony Peruma, Ahmed Aljohani, Mazen Alotaibi,

Mohamed Wiem Mkaouer, Ali Ouni, Christian D Newman, Abdullatif

BIBLIOGRAPHY 62

Ghallab, and Stephanie Ludi. Test smell detection tools: A systematic

mapping study. Evaluation and Assessment in Software Engineering,

pages 170–180, 2021.

[30] Hussein Alrubaye, Mohamed Wiem Mkaouer, and Ali Ouni. On the use

of information retrieval to automate the detection of third-party java li-

brary migration at the method level. In 2019 IEEE/ACM 27th Interna-

tional Conference on Program Comprehension (ICPC), pages 347–357.

IEEE, 2019.

[31] Hussein Alrubaye, Mohamed Wiem Mkaouer, Igor Khokhlov, Leon

Reznik, Ali Ouni, and Jason Mcgoff. Learning to recommend third-party

library migration opportunities at the api level. Applied Soft Computing,

90:106140, 2020.

[32] Hussein Alrubaye, Stephanie Ludi, and Mohamed Wiem Mkaouer.

Comparison of block-based and hybrid-based environments in trans-

ferring programming skills to text-based environments. arXiv preprint

arXiv:1906.03060, 2019.

[33] Anthony Peruma, Mohamed Wiem Mkaouer, Michael John Decker, and

Christian Donald Newman. Contextualizing rename decisions using

refactorings and commit messages. In 2019 19th International Work-

ing Conference on Source Code Analysis and Manipulation (SCAM),

pages 74–85. IEEE, 2019.

[34] Christian D Newman, Mohamed Wiem Mkaouer, Michael L Collard,

and Jonathan I Maletic. A study on developer perception of transfor-

BIBLIOGRAPHY 63

mation languages for refactoring. In Proceedings of the 2nd International

Workshop on Refactoring, pages 34–41, 2018.

[35] Hussein Alrubaye and Mohamed Wiem Mkaouer. Automating the de-

tection of third-party java library migration at the function level. In

CASCON, pages 60–71, 2018.

[36] Hussein Alrubaye, Mohamed Wiem Mkaouer, and Anthony Peruma.

Variability in library evolution: An exploratory study on open-source

java libraries. In Software Engineering for Variability Intensive Systems,

pages 295–320. Auerbach Publications, 2019.

[37] Montassar Ben Messaoud, Ilyes Jenhani, Nermine Ben Jemaa, and Mo-

hamedWiemMkaouer. A multi-label active learning approach for mobile

app user review classification. In International Conference on Knowl-

edge Science, Engineering and Management, pages 805–816. Springer,

2019.

[38] Hussein Alrubaye, Mohamed Wiem Mkaouer, and Ali Ouni. Migration-

miner: An automated detection tool of third-party java library migration

at the method level. In 2019 IEEE international conference on software

maintenance and evolution (ICSME), pages 414–417. IEEE, 2019.

[39] Deema Alshoaibi, Kevin Hannigan, Hiten Gupta, and Mohamed Wiem

Mkaouer. Price: Detection of performance regression introducing code

changes using static and dynamic metrics. In International Symposium

on Search Based Software Engineering, pages 75–88. Springer, 2019.

BIBLIOGRAPHY 64

[40] Eman Abdullah AlOmar, Mohamed Wiem Mkaouer, Ali Ouni, and

Marouane Kessentini. On the impact of refactoring on the relationship

between quality attributes and design metrics. In 2019 ACM/IEEE

International Symposium on Empirical Software Engineering and Mea-

surement (ESEM), pages 1–11. IEEE, 2019.

[41] Licelot Marmolejos, Eman Abdullah AlOmar, Mohamed Wiem

Mkaouer, Christian Newman, and Ali Ouni. On the use of textual feature

extraction techniques to support the automated detection of refactoring

documentation. Innovations in Systems and Software Engineering, pages

1–17, 2021.

[42] Eman AlOmar, Mohamed Wiem Mkaouer, and Ali Ouni. Can refactor-

ing be self-affirmed? an exploratory study on how developers document

their refactoring activities in commit messages. In 2019 IEEE/ACM 3rd

International Workshop on Refactoring (IWoR), pages 51–58. IEEE,

2019.

[43] Alex Bogart, Eman Abdullah AlOmar, Mohamed Wiem Mkaouer, and

Ali Ouni. Increasing the trust in refactoring through visualization. In

2020 IEEE/ACM 4th International Workshop on Refactoring (IWoR),

2020.

[44] Eman Abdullah AlOmar, Anthony Peruma, Mohamed Wiem Mkaouer,

Christian Newman, Ali Ouni, and Marouane Kessentini. How we refactor

and how we document it? on the use of supervised machine learning

BIBLIOGRAPHY 65

algorithms to classify refactoring documentation. Expert Systems with

Applications, 167:114176, 2021.

[45] Eman Abdullah AlOmar, Hussein AlRubaye, Mohamed Wiem Mkaouer,

Ali Ouni, and Marouane Kessentini. Refactoring practices in the con-

text of modern code review: An industrial case study at xerox. In 2021

IEEE/ACM 43rd International Conference on Software Engineering:

Software Engineering in Practice (ICSE-SEIP), pages 348–357. IEEE,

2021.

[46] Eman Abdullah AlOmar, Anthony Peruma, Christian D Newman, Mo-

hamed Wiem Mkaouer, and Ali Ouni. On the relationship between

developer experience and refactoring: An exploratory study and pre-

liminary results. In Proceedings of the IEEE/ACM 42nd International

Conference on Software Engineering Workshops, pages 342–349, 2020.

[47] Eman Abdullah AlOmar, Philip T Rodriguez, Jordan Bowman, Tianjia

Wang, Benjamin Adepoju, Kevin Lopez, Christian Newman, Ali Ouni,

and Mohamed Wiem Mkaouer. How do developers refactor code to

improve code reusability? In International Conference on Software and

Software Reuse, pages 261–276. Springer, 2020.

[48] Eman Abdullah AlOmar, Tianjia Wang, Raut Vaibhavi, Mo-

hamed Wiem Mkaouer, Christian Newman, and Ali Ouni. Refactoring

for reuse: An empirical study. Innovations in Systems and Software

Engineering, pages 1–31, 2021.

BIBLIOGRAPHY 66

[49] Anthony Peruma, Khalid Almalki, Christian D. Newman, Mo-

hamed Wiem Mkaouer, Ali Ouni, and Fabio Palomba. Tsdetect: An

open source test smells detection tool. In Proceedings of the 28th ACM

Joint Meeting on European Software Engineering Conference and Sym-

posium on the Foundations of Software Engineering, ESEC/FSE 2020,

New York, NY, USA, 2020. Association for Computing Machinery.

[50] Anthony Peruma, Christian D. Newman, Mohamed Wiem Mkaouer, Ali

Ouni, and Fabio Palomba. An exploratory study on the refactoring of

unit test files in android applications. In Proceedings of the IEEE/ACM

42nd International Conference on Software Engineering Workshops, IC-

SEW’20, page 350–357, New York, NY, USA, 2020. Association for Com-

puting Machinery.

[51] Anthony Peruma, Khalid Almalki, Christian D. Newman, Mo-

hamed Wiem Mkaouer, Ali Ouni, and Fabio Palomba. On the dis-

tribution of test smells in open source android applications: An ex-

ploratory study. In Proceedings of the 29th Annual International Con-

ference on Computer Science and Software Engineering, CASCON ’19,

page 193–202, USA, 2019. IBM Corp.

[52] Sirine Gharbi, Mohamed Wiem Mkaouer, Ilyes Jenhani, and Montas-

sar Ben Messaoud. On the classification of software change messages us-

ing multi-label active learning. In Proceedings of the 34th ACM/SIGAPP

Symposium on Applied Computing, pages 1760–1767, 2019.

BIBLIOGRAPHY 67

[53] Wiem Mkaouer, Marouane Kessentini, Adnan Shaout, Patrice Koligheu,

Slim Bechikh, Kalyanmoy Deb, and Ali Ouni. Many-objective software

remodularization using nsga-iii. ACM Transactions on Software Engi-

neering and Methodology (TOSEM), 24(3):1–45, 2015.

[54] Mohamed Wiem Mkaouer, Marouane Kessentini, Slim Bechikh, Kalyan-

moy Deb, and Mel Ó Cinnéide. Recommendation system for software

refactoring using innovization and interactive dynamic optimization. In

Proceedings of the 29th ACM/IEEE international conference on Auto-

mated software engineering, pages 331–336, 2014.

[55] Mohamed Wiem Mkaouer, Marouane Kessentini, Slim Bechikh, Kalyan-

moy Deb, and Mel Ó Cinnéide. High dimensional search-based software

engineering: finding tradeoffs among 15 objectives for automating soft-

ware refactoring using nsga-iii. In Proceedings of the 2014 Annual Con-

ference on Genetic and Evolutionary Computation, pages 1263–1270,

2014.

[56] Mohamed Wiem Mkaouer, Marouane Kessentini, Slim Bechikh, Mel

Ó Cinnéide, and Kalyanmoy Deb. On the use of many quality at-

tributes for software refactoring: a many-objective search-based software

engineering approach. Empirical Software Engineering, 21(6):2503–2545,

2016.

[57] Mohamed Wiem Mkaouer, Marouane Kessentini, Mel Ó Cinnéide, Shin-

pei Hayashi, and Kalyanmoy Deb. A robust multi-objective approach to

BIBLIOGRAPHY 68

balance severity and importance of refactoring opportunities. Empirical

Software Engineering, 22(2):894–927, 2017.

[58] Rafi Almhana, Wiem Mkaouer, Marouane Kessentini, and Ali Ouni.

Recommending relevant classes for bug reports using multi-objective

search. In 2016 31st IEEE/ACM International Conference on Auto-

mated Software Engineering (ASE), pages 286–295. IEEE, 2016.

[59] Anthony Peruma, Khalid Almalki, Christian D Newman, Mo-

hamed Wiem Mkaouer, Ali Ouni, and Fabio Palomba. On the distribu-

tion of test smells in open source android applications: An exploratory

study. In Proceedings of the 29th Annual International Conference on

Computer Science and Software Engineering, pages 193–202, 2019.

[60] Islem Saidani, Ali Ouni, and Mohamed Wiem Mkaouer. Improving the

prediction of continuous integration build failures using deep learning.

Automated Software Engineering, 29(1):1–61, 2022.

[61] Wajdi Aljedaani, Mona Aljedaani, Eman Abdullah AlOmar, Mo-

hamed Wiem Mkaouer, Stephanie Ludi, and Yousef Bani Khalaf. I

cannot see you—the perspectives of deaf students to online learning

during covid-19 pandemic: Saudi arabia case study. Education Sciences,

11(11):712, 2021.

[62] Islem Saidani, Ali Ouni, and Wiem Mkaouer. Detecting skipped com-

mits in continuous integration using multi-objective evolutionary search.

IEEE Transactions on Software Engineering, 2021.

BIBLIOGRAPHY 69

[63] Marwa Daaji, Ali Ouni, Mohamed Mohsen Gammoudi, Salah Bouktif,

and Mohamed Wiem Mkaouer. Multi-criteria web services selection:

Balancing the quality of design and quality of service. ACM Transactions

on Internet Technology (TOIT), 22(1):1–31, 2021.

[64] Nuri Almarimi, Ali Ouni, Moataz Chouchen, and Mohamed Wiem

Mkaouer. csdetector: an open source tool for community smells de-

tection. In Proceedings of the 29th ACM Joint Meeting on European

Software Engineering Conference and Symposium on the Foundations of

Software Engineering, pages 1560–1564, 2021.

[65] Islem Saidani, Ali Ouni, Moataz Chouchen, and Mohamed Wiem

Mkaouer. Bf-detector: an automated tool for ci build failure detection.

In Proceedings of the 29th ACM Joint Meeting on European Software

Engineering Conference and Symposium on the Foundations of Software

Engineering, pages 1530–1534, 2021.

[66] Oumayma Hamdi, Ali Ouni, Mel Ó Cinnéide, and Mohamed Wiem

Mkaouer. A longitudinal study of the impact of refactoring in android

applications. Information and Software Technology, 140:106699, 2021.

[67] Oumayma Hamdi, Ali Ouni, Eman Abdullah AlOmar, Mel Ó Cinnéide,

and Mohamed Wiem Mkaouer. An empirical study on the impact

of refactoring on quality metrics in android applications. In 2021

IEEE/ACM 8th International Conference on Mobile Software Engineer-

ing and Systems (MobileSoft), pages 28–39. IEEE, 2021.

BIBLIOGRAPHY 70

[68] Islem Saidani, Ali Ouni, Mohamed Wiem Mkaouer, and Fabio Palomba.

On the impact of continuous integration on refactoring practice: An ex-

ploratory study on travistorrent. Information and Software Technology,

138:106618, 2021.

[69] Lobna Ghadhab, Ilyes Jenhani, Mohamed Wiem Mkaouer, and Mon-

tassar Ben Messaoud. Augmenting commit classification by using fine-

grained source code changes and a pre-trained deep neural language

model. Information and Software Technology, 135:106566, 2021.

[70] Fan Fang, John Wu, Yanyan Li, Xin Ye, Wajdi Aljedaani, and Mo-

hamed Wiem Mkaouer. On the classification of bug reports to improve

bug localization. Soft Computing, 25(11):7307–7323, 2021.

[71] Makram Soui, Mabrouka Chouchane, Narjes Bessghaier, Mo-

hamed Wiem Mkaouer, and Marouane Kessentini. On the impact of

aesthetic defects on the maintainability of mobile graphical user inter-

faces: An empirical study. Information Systems Frontiers, pages 1–18,

2021.

[72] Eman Abdullah AlOmar, Hussein AlRubaye, Mohamed Wiem Mkaouer,

Ali Ouni, and Marouane Kessentini. Refactoring practices in the con-

text of modern code review: An industrial case study at xerox. In 2021

IEEE/ACM 43rd International Conference on Software Engineering:

Software Engineering in Practice (ICSE-SEIP), pages 348–357. IEEE,

2021.

BIBLIOGRAPHY 71

[73] Moataz Chouchen, Ali Ouni, Raula Gaikovina Kula, Dong Wang,

Patanamon Thongtanunam, Mohamed Wiem Mkaouer, and Kenichi

Matsumoto. Anti-patterns in modern code review: Symptoms and

prevalence. In 2021 IEEE International Conference on Software Analy-

sis, Evolution and Reengineering (SANER), pages 531–535. IEEE, 2021.

[74] Xin Ye, Yongjie Zheng, Wajdi Aljedaani, and Mohamed Wiem Mkaouer.

Recommending pull request reviewers based on code changes. Soft Com-

puting, 25(7):5619–5632, 2021.

[75] Hussein Alrubaye, Deema Alshoaibi, Eman Alomar, Mohamed Wiem

Mkaouer, and Ali Ouni. How does library migration impact software

quality and comprehension? an empirical study. In International Con-

ference on Software and Software Reuse, pages 245–260. Springer, 2020.

[76] Moataz Chouchen, Ali Ouni, Mohamed Wiem Mkaouer, Raula Gaikov-

ina Kula, and Katsuro Inoue. Whoreview: A multi-objective search-

based approach for code reviewers recommendation in modern code re-

view. Applied Soft Computing, 100:106908, 2021.

[77] Moataz Chouchen, Ali Ouni, and Mohamed Wiem Mkaouer. Androlib:

Third-party software library recommendation for android applications.

In International Conference on Software and Software Reuse, pages 208–

225. Springer, 2020.

[78] Nuri Almarimi, Ali Ouni, Moataz Chouchen, Islem Saidani, and Mo-

hamed Wiem Mkaouer. On the detection of community smells using

genetic programming-based ensemble classifier chain. In Proceedings of

BIBLIOGRAPHY 72

the 15th International Conference on Global Software Engineering, pages

43–54, 2020.

[79] Eman Abdullah AlOmar, Mohamed Wiem Mkaouer, and Ali Ouni. To-

ward the automatic classification of self-affirmed refactoring. Journal of

Systems and Software, 171:110821, 2021.

[80] Islem Saidani, Ali Ouni, and Mohamed Wiem Mkaouer. Web service api

anti-patterns detection as a multi-label learning problem. In Interna-

tional Conference on Web Services, pages 114–132. Springer, 2020.

[81] Bader Alkhazi, Andrew DiStasi, Wajdi Aljedaani, Hussein Alrubaye,

Xin Ye, and Mohamed Wiem Mkaouer. Learning to rank developers for

bug report assignment. Applied Soft Computing, 95:106667, 2020.

[82] Motaz Chouchen, Ali Ouni, Mohamed Wiem Mkaouer, Raula Gaikovina

Kula, and Katsuro Inoue. Recommending peer reviewers in modern code

review: a multi-objective search-based approach. In Proceedings of the

2020 Genetic and Evolutionary Computation Conference Companion,

pages 307–308, 2020.

[83] Islem Saidani, Ali Ouni, Moataz Chouchen, and Mohamed Wiem

Mkaouer. Predicting continuous integration build failures using evolu-

tionary search. Information and Software Technology, 128:106392, 2020.

[84] Anthony Peruma, Khalid Almalki, Christian D Newman, Mo-

hamed Wiem Mkaouer, Ali Ouni, and Fabio Palomba. tsdetect: an

open source test smells detection tool. In Proceedings of the 28th ACM

BIBLIOGRAPHY 73

Joint Meeting on European Software Engineering Conference and Sym-

posium on the Foundations of Software Engineering, pages 1650–1654,

2020.

[85] Islem Saidani, Ali Ouni, Moataz Chouchen, and Mohamed Wiem

Mkaouer. On the prediction of continuous integration build failures using

search-based software engineering. In Proceedings of the 2020 Genetic

and Evolutionary Computation Conference Companion, pages 313–314,

2020.

[86] Nuri Almarimi, Ali Ouni, and Mohamed Wiem Mkaouer. Learning to

detect community smells in open source software projects. Knowledge-

Based Systems, 204:106201, 2020.

[87] Islem Saidani, Ali Ouni, Mohamed Wiem Mkaouer, and Aymen Saied.

Towards automated microservices extraction using muti-objective evo-

lutionary search. In International Conference on Service-Oriented Com-

puting, pages 58–63. Springer, Cham, 2019.

[88] Nuri Almarimi, Ali Ouni, Salah Bouktif, Mohamed Wiem Mkaouer,

Raula Gaikovina Kula, and Mohamed Aymen Saied. Web service api

recommendation for automated mashup creation using multi-objective

evolutionary search. Applied Soft Computing, 85:105830, 2019.

[89] Makram Soui, Mabrouka Chouchane, Mohamed Wiem Mkaouer,

Marouane Kessentini, and Khaled Ghedira. Assessing the quality of

mobile graphical user interfaces using multi-objective optimization. Soft

Computing, 24(10):7685–7714, 2020.

BIBLIOGRAPHY 74

[90] Nasir Safdari, Hussein Alrubaye, Wajdi Aljedaani, Bladimir Baez Baez,

Andrew DiStasi, and Mohamed Wiem Mkaouer. Learning to rank faulty

source files for dependent bug reports. In Big Data: Learning, Analytics,

and Applications, volume 10989, page 109890B. International Society for

Optics and Photonics, 2019.

[91] Vahid Alizadeh, Marouane Kessentini, Mohamed Wiem Mkaouer, Mel

Ocinneide, Ali Ouni, and Yuanfang Cai. An interactive and dynamic

search-based approach to software refactoring recommendations. IEEE

Transactions on Software Engineering, 46(9):932–961, 2018.

[92] Anthony Peruma, Mohamed Wiem Mkaouer, Michael J Decker, and

Christian D Newman. An empirical investigation of how and why devel-

opers rename identifiers. In Proceedings of the 2nd International Work-

shop on Refactoring, pages 26–33. ACM, 2018.

[93] Makram Soui, Mabrouka Chouchane, Ines Gasmi, and Mohamed Wiem

Mkaouer. Plain: Plugin for predicting the usability of mobile user inter-

face. In VISIGRAPP (1: GRAPP), pages 127–136, 2017.

[94] Ian Shoenberger, Mohamed Wiem Mkaouer, and Marouane Kessentini.

On the use of smelly examples to detect code smells in javascript. In

European Conference on the Applications of Evolutionary Computation,

pages 20–34. Springer, Cham, 2017.

[95] Mohamed Wiem Mkaouer. Interactive code smells detection: An initial

investigation. In International Symposium on Search Based Software

Engineering, pages 281–287. Springer, Cham, 2016.

BIBLIOGRAPHY 75

[96] Mohamed Wiem Mkaouer, Marouane Kessentini, Slim Bechikh, and Mel

Ó Cinnéide. A robust multi-objective approach for software refactoring

under uncertainty. In International Symposium on Search Based Soft-

ware Engineering, pages 168–183. Springer, Cham, 2014.

[97] Mohamed Wiem Mkaouer and Marouane Kessentini. Model transfor-

mation using multiobjective optimization. In Advances in Computers,

volume 92, pages 161–202. Elsevier, 2014.

[98] Mohamed W Mkaouer, Marouane Kessentini, Slim Bechikh, and

Daniel R Tauritz. Preference-based multi-objective software mod-

elling. In 2013 1st International Workshop on Combining Modelling

and Search-Based Software Engineering (CMSBSE), pages 61–66. IEEE,

2013.

[99] Anthony Peruma, MohamedWiemMkaouer, Michael Decker, and Chris-

tian Newman. An empirical investigation of how and why developers

rename identifiers. pages 26–33, 09 2018.

[100] Eman Abdullah AlOmar, Mohamed Wiem Mkaouer, and Ali Ouni. To-

ward the automatic classification of self-affirmed refactoring. Journal of

Systems and Software, 171:110821, 2021.

[101] Claes Wohlin. Experimentation in software engineering. Springer, New

York;Berlin;, 2012.

	Taxonomy of Software Readability Changes
	Recommended Citation

	tmp.1652277521.pdf.oAC03

