Rochester Institute of Technology

RIT Digital Institutional Repository

Theses

4-12-2022
Modeling Users Feedback Using Bayesian Methods for Data-
Driven Requirements Engineering

Moayad M. Alshangiti
mma4247@rit.edu

Follow this and additional works at: https://repository.rit.edu/theses

Recommended Citation
Alshangiti, Moayad M., "Modeling Users Feedback Using Bayesian Methods for Data-Driven Requirements
Engineering" (2022). Thesis. Rochester Institute of Technology. Accessed from

This Dissertation is brought to you for free and open access by the RIT Libraries. For more information, please
contact repository@rit.edu.

https://repository.rit.edu/
https://repository.rit.edu/theses
https://repository.rit.edu/theses?utm_source=repository.rit.edu%2Ftheses%2F11135&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.rit.edu/theses/11135?utm_source=repository.rit.edu%2Ftheses%2F11135&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository@rit.edu

Modeling Users Feedback Using Bayesian Methods for Data-Driven
Requirements Engineering

by

Moayad M. Alshangiti

A dissertation submitted in partial fulfillment of the
requirements for the degree of
Doctor of Philosophy

in Computing and Information Sciences

B. Thomas Golisano College of Computing and

Information Sciences

Rochester Institute of Technology
Rochester, New York
April 21th, 2022

Modeling Users Feedback Using Bayesian Methods for Data-Driven
Requirements Engineering

by
Moayad M. Alshangiti

Committee Approval:
We, the undersigned committee members, certify that we have advised and/or supervised the candidate on the work
described in this dissertation. We further certify that we have reviewed the dissertation manuscript and approve it in

partial fulfillment of the requirements of the degree of Doctor of Philosophy in Computing and Information Sciences.

Dr. Qi Yu Date
Dissertation Advisor

Dr. Xumin Liu Date
Dissertation Committee Member

Dr. Pradeep K. Murukannaiah Date
Dissertation Committee Member

Dr. Mohamed Wiem Mkaouer Date
Dissertation Committee Member

Dr. Jai Kang Date
Dissertation Defense Chairperson

Certified by:

Dr. Pengcheng Shi Date
Ph.D. Program Director, Computing and Information Sciences

ii

(©2022 Moayad Alshangiti
All rights reserved.

iii

Modeling Users Feedback Using Bayesian Methods for Data-Driven
Requirements Engineering

by
Moayad M. Alshangiti

Submitted to the
B. Thomas Golisano College of Computing and Information Sciences Ph.D. Program in
Computing and Information Sciences
in partial fulfillment of the requirements for the
Doctor of Philosophy Degree
at the Rochester Institute of Technology

Abstract

Data-driven requirements engineering represents a vision for a shift from the static traditional
methods of doing requirements engineering to dynamic data-driven user-centered methods. App
developers now receive abundant user feedback from user comments in app stores and social media,
i.e., explicit feedback, to feedback from usage data and system logs, i.e, implicit feedback. In this
dissertation, we describe two novel Bayesian approaches that utilize the available user’s to support
requirements decisions and activities in the context of applications delivered through software mar-
ketplaces (web and mobile). In the first part, we propose to exploit implicit user feedback in the
form of usage data to support requirements prioritization and validation. We formulate the problem
as a popularity prediction problem and present a novel Bayesian model that is highly interpretable
and offers early-on insights that can be used to support requirements decisions. Experimental re-
sults demonstrate that the proposed approach achieves high prediction accuracy and outperforms
competitive models. In the second part, we discuss the limitations of previous approaches that
use explicit user feedback for requirements extraction, and alternatively propose a novel Bayesian
approach that can address those limitations and offer a more efficient and maintainable framework.
The proposed approach (1) simplifies the pipeline by accomplishing the classification and summa-
rization tasks using a single model, (2) replaces manual steps in the pipeline with unsupervised
alternatives that can accomplish the same task, and (3) offers an alternative way to extract require-
ments using example-based summaries that retains context. Experimental results demonstrate that
the proposed approach achieves equal or better classification accuracy and outperforms competitive
models in terms of summarization accuracy. Specifically, we show that the proposed approach can
capture 91.3% of the discussed requirement with only 19% of the dataset, i.e., reducing the human

effort needed to extract the requirements by 80%.

v

Acknowledgments

I would like to express my sincere gratitude to Dr. Qi Yu for all his time, support, and guidance
throughout my studies. Dr. Yu has been more than an advisor to me, he is a teacher, a mentor,
and a friend that I truly cherish. His knowledge and expertise were invaluable to my research and
growth. His high standards in research, teaching, and work set a standard that I look up to and
try to achieve. It has been a pleasure working under Dr. Yu’s supervision and I will be eternally

indebted to him for all that I have learned from him.

Also, I would like to thank Dr. Xumin Liu for guiding me through the various projects we worked
on. I truly value the amount of effort and time she put into helping me achieve my goals and

succeed in my journey. I cannot thank her enough for her help.

Moreover, I want to extend my gratitude to the doctoral committee members. Dr. Pradeep Mu-
rukannaiah and Dr. Mohamed Mkaouer. I immensely value their research guidance and feedback.
Their door was always open for me and for that I will always be grateful. I would like to also thank

Dr. Jai Kang for sharing his time to chair my defense.

Over the years, I worked with several people at RIT. This includes Dr. Pengcheng Shi, Min-Hong
Fu, Lorrie Jo Tyrner, Charles Gruener, and many others at the Golisano College of Computing
and Information Sciences. Their counsel, patience, and eagerness to help made my experience at

RIT stress-free and memorable.

Additionally, I want to acknowledge my lab mates. Above all is Weishi Shi. We have spent countless
hours discussing classes, research, life, worries, and every other aspect of life. It has been a pleasure
knowing such an extraordinary individual, someone I consider much more than a colleague, but a
true friend. Additionally, I want to thank Hitesh Sapkota and Eduardo Coelho de Lima. Working
with them as a team in our projects made the whole experience much more enjoyable, and I look

forward to working with them on future projects.

Last but not least, I want to thank my loving parents. Unfortunately, they both passed away
during my time abroad, but I can still feel all their love. They provided me with all the care, time,
and support that one can ask for and beyond. I cannot thank them enough for all they have done
for me. I want to extend my thanks to my lovely and caring wife Weeam. Without her love, care,
and support I would not have reached this point. My kids Waleed, Layan, and Faris. My sister
Dalal whom I consider my compass in life. She guides me with her wisdom and love to be the best

version of me.

To my loving parents Khadija and Mohammed.
To my wife and joy in life Weeam.
To my sister and compass in life Dalal.

To my kids Waleed, Layan, and Faris.

vi

Contents

Introduction
1.1 Modeling popularity to support requirements decisions

1.2 Building an efficient and maintainable requirements elicitation approach

Background and Literature Review

2.1 Data-Driven Requirements Engineering

2.2 Types of Users Feedback
2.2.1 Implicit Users Feedback

2.2.2 Explicit Users Feedback o

Modeling Implicit Users Feedback

3.1 Introduction L e

3.2 Related Work L e
3.2.1 Popularity Prediction in Software Development
3.2.2 Popularity Prediction in Other Domains

3.3 Data Collection o e

3.3.1 Measuring the Popularity oo

vii

11

11

12

14

CONTENTS viii

3.3.2 Analyzing Data for Factors Behind Popularity 18

3.4 The Bayesian Data Modeling o 20
3.4.1 Constructing the Feature Space 20
3.4.2 The Prediction Model 25

3.5 Experimental Evaluationo 28
3.5.1 Experimental Setup 29
3.5.2 Model Performance 29
3.5.3 Feature Analysis 30

3.6 Discussion 33
3.6.1 Insights that Supports Requirements Decisions 33

4 Modeling Explicit Users Feedback 36
4.1 Introduction L 36
4.2 Related Work L 39
4.2.1 Summarizing User Reviews oo 39
4.2.2 Classifying User Reviews 40

4.3 Data Collection 41
4.3.1 Datasets: 41
4.3.2 Measuring Representativeness 41

4.4 Minimizing Information Loss of False Negatives 45
4.4.1 Simple but Effective: Flat versus Hierarchical Classification 45

4.4.2 Evaluation and Discussion 47

CONTENTS ix
4.5 Representing Explicit Users Feedback 52
4.5.1 The Short and Noisy Nature of Explicit Feedback 52
4.5.2 Proposed Representation 54
4.5.3 Training a Word Embedding Representation. 55
4.5.4 Adapting the Bidirectional Encoder Representation of BERT 56
4.5.5 Evaluation and Discussiono 59
4.6 The Bayesian Framework o 70
4.6.1 OVErvIEW 70
4.6.2 Why Extend RVM? 71
4.6.3 Why Merge RVM with Criticism Selection? 72

4.6.4 The Proposed Approach: Relevance Vector Machine with Criticism Selection
(RVMCS) . . . 72
4.6.5 Evaluation and Experiment oL 75
4.6.6 Results Discussion 82
5 Future Work 88
Appendices 102

A Panichella Labeling Instructions 103

List of Figures

3.1

3.2

3.3

3.4

3.5

4.1

The use count (Y) distribution in the ProgrammableWeb dataset. We show the
distribution of the popularity in (a) and the log popularity distribution in (b).

Is there a strong correlation between the word count, tag count, API count, and
the popularity? We compare the popularity of a mashup against the three potential
factors (a) textual length (word count), (b) search exposure (tag count), and (c)

integrated functionality (API count)

An example of two discovered LDA topics, a travel related topic on the left, and a
real state related topic on the right. The two example topics highlight LDA’s ability

to summarize the textual content into a set of real-world concepts.

Proposed model’s performance vs. other regression models. We can observe that the
performance of other regression models can vary greatly depending on the selected
parameter value; whereas, the proposed approach provides a consistent performance

as it requires no parameter tuning. Lo

The two discovered topics (i.e., functionalities). We can observe that the model was
able to capture the two main concepts behind the shown test mashup, in which users
share fishing information and locations. The first discovered topic shown on the left
can be mapped to the general concept of Maps and Social Sharing based on the
observed terms (e.g., map, Twitter, share, and user). The second discovered topic
can be mapped to the general concept Fishing and Wildlife based on observed terms

(e.g., campground, park, outdoor, and fish). L.

The hierarchical structure in app reviews classes

18

LIST OF FIGURES

4.2

4.3

4.4

4.5

4.6

Evaluation of flat and hierarchical app reviews classification. On the left, we have
three binary classifiers, one for each label. In this setting, each classifier is working
on its own. On the right, we have four binary classifiers where the parent classifier
identifies informative reviews, and then passes the informative subset to the second
level where we have the three children binary classifiers, one for each label. In
this setting, the children classifiers are leveraging the parent’s classifiers collective

knowledge. e

Given 52 app reviews with bug reports, how were they classified in flat vs hierar-
chical? We can observe that on the flat classifier we were able to identify only 20
out of the 52 existing bug reports, i.e., we captured only 38% of the information on
reported issues/bugs. On the other hand, with a hierarchical classifier, were able
to capture 44 out of the existing 52 reviews with bug reports as informative using
the parent classifier, i.e., we captured 85% of the reported issues/bugs, which is a
significant minimization of the information loss. Furthermore, using the child clas-
sifier, we labeled 30 out of the 44 informative reviews correctly as bug reports. The

remaining 14 reviews received an informative label, but did not receive any subclass.

Evaluating the best pooling strategy on the Panichella dataset. We extracted em-
beddings from two different BERT models and evaluated the embeddings on multiple
classifiers in a multi-label multi-class setup of requirements classification. We can

see that the 2TL strategy consistently provided better results.

Evaluating the best fine-tuning strategy on the Panichella dataset. We extracted
the embeddings using the 2TL pooling strategy, which we determined to be the
best, and evaluated the classifiers on a multi-label multi-class setup of requirements
classification. We can see that fine-tuning BERT on the MCML task consistently
provided better results, whereas, the original BERT-BASE with no fine-tuning is the

least performing model.

A comparison between the merged terms using the traditional methods of Stem-
ming and Lemmatization versus the merged terms using the embeddings. The plots
show the score for completeness, homogeneity, and vmeasure across various cosine

similarity thresholds.

xi

o1

LIST OF FIGURES xii

4.7 Showing examples of terms in the embedded space and all the terms around it within
a 0.8 cosine distance. We can observe that we were able to capture misspelled and

alternatively spelled terms. L 61

4.8 Evaluating how closely are reviews with similar requirements placed under each of
the representations. We can observe that the embeddings generated from masked

language modeling techniques are significantly better than other approaches. 63

4.9 Evaluating the embeddings space that is created through the masked language mod-
eling technique against a TFIDF representation in terms of their ability to place
reviews with similar requirements closer to each other. The blue points represent all
the data points in the Panichella dataset. The colored points represent six subsets of
reviews where each discuss a similar requirement. We can observe that in the TFIDF
representation, the groups are spread across the space, whereas, in the embeddings

representation they are placed closely together. 65

4.10 Evaluating the best representation for the classification task. We can observe that
using an embeddings representation (i.e., FastText or BERT') provides the best aver-
age performance across datasets and across classifiers for the multi-class multi-label

requirements classification task.00 L o0 67

4.11 Evaluating the best representation on the Panichella dataset. We can observe that
the best performing representation across clustering algorithms is the one that com-
bines BERT embeddings with TFIDF. 68

4.12 The process for extracting requirements from app reviews using the proposed example-
based summary approach. The set of reviews provided as the example-based sum-
mary contain the set of the most representation reviews in the dataset which is then
used for requirement extraction. This approach requires less human effort for re-
quirement extraction because 1) less reviews need to be manually analyzed, and 2)

the provided summaries retain the context. 70

4.13 The summarization results on the Panichella dataset. First, on the y-axis, we show
the coverage, which is the percentage of requirements that were captured by the
approach versus the ground truth. Second, inside the whitebox at the top of the
barchart, we show the recall percentage of points with level four expressiveness (L4R).
Lastly, the colors of the barchart shows the level of expressiveness in the selected

sample, i.e., noise vs signal ratio. 80

LIST OF FIGURES xiii

4.14 The Figure shows a run of regular RVM and the selected relevant vectors that it
picked for the Panichella dataset. In this Figure, each dot is a requirement, and the
y-axis shows the number of reviews under that requirement. The higher on the y-axis
the requirement, the more reviews are talking about it, and the more dense its region
would be in the space. The blue colored points are the captured requirements using
the selected RVM relevant vectors. The red dot colored points are requirements that

were missed by RVM relevant vectors.o 83

4.15 Comparison between the proposed framework for requirements extraction and exist-
ing approaches. The proposed approach is simpler to create and maintain. It also
provides a more efficient method for requirements extraction, i.e., example-based

SUMINATICS. . v v v v v v e e e e e e e 86

List of Tables

1.1

3.1

3.2

3.3

3.4

3.5

3.6

Examples of representative reviews. The first review in the block is the representative
review, whereas, the others inside the block are examples of reviews summarized by
the representative review. The first block shows a review that summarizes reviews
with different topics, whereas, the second block shows a review that summarizes

reviews with a single topic.

Summary of the available information for each mashup
Summary statistics of the ProgrammableWeb dataset

Demonstrating the effect of the lack of novelty with an example of a cluster with a

dominating mashup, and another with no dominating mashup

Finding the optimal number of topics (K) for LDA. The lowest RMSE can be ob-

served when the number of topics is 100.

Examples of frequent tag/API compositions. The combination of such compositions
lead to unique functionalities. For example, merging Flickr’s capability with Google-
maps allowed users to search for their images based on where the images were taken,
i.e., location. This unique functionality, captured by the composition, can be a

leading factor behind the popularity of the service mashup.

Examples of the model’s estimated popularity (on a logarithmic scale) and confidence
level compared to the true mashup’s popularity. We can observe that the predicted
values are close to the true values, and that the behaviour of the model matches the

intuition in that the lower variance (i.e., higher confidence) maps to a more accurate

Xiv

LIST OF TABLES XV

3.7

3.8

3.9

4.1

4.2

4.3

4.4

4.5

4.6

4.7

Comparing our unique approach to construct the feature space versus other standard
methods in terms of complexity and accuracy. We can observe that the proposed
approach provides a superior accuracy while using a significantly less number of

features.o 31

Measuring the incremental performance boost with each added set of features start-

ing with the LDA topics as a base, and then adding our features incrementally. . . . 32

Demonstrating a test mashup as an example of the information a software developer
would provide to the proposed model (input), and the design-phase insight he/she

would recieve (output).. 34

Statistics of the used datasets 41

Examples of real-world reviews from the Panichella dataset and how they were la-
beled in terms of representativeness. First column is the list of requirement id(s) that
were mentioned in the review. E.g., Requirement ID (4) refers to users requesting
additional login options, and Requirement ID (1) refers to a review process requir-
ing from all users to have a specific number of friends on Facebook to use the app.
Second column is level of Expressiveness, which is a value between 1 to 4. The least

expressive is labeled with 1 and most expressive is labeled with 4. 43
Classification results of flat and hierarchical app review classifiers on Maalej Dataset 49
Classification results of flat and hierarchical app review classifiers on Panichella Dataset 49
Analyzing Random Forest: The flat vs. hierarchical classifier on the Panichella dataset. 50
Examples of misspelled words or alternatively spelled words 53

The subset of requirements selected to be manually evaluated in terms of their place-
ment under the TFIDF representation and the FT representation. We can see their
visual placement as per their color code in Figure 4.9. Additionally, we calculated
the average cosine similarity between the reviews of each requirement under each
representation. We can observe that the reviews of each requirement are placed

significantly closer to each other in the FT representation. 64

LIST OF TABLES xvi

4.8 Summary of the classification results comparing proposed approach to the start of
the art on the Panichella Dataset. 77

4.9 Summary of the classification results comparing proposed approach to the start of
the art on the Maalej Dataset. 77

4.10 Below are three different runs with different splits of RVMCS. We summarize the
behaviour of RVMCS with each run and how the reviews with level four expres-
siveness were selected. We first show (RVM Only), which represents the number of
points selected by RVM’s maximum marginal likelihood approach. Next, (Criticism
Only), which represents points selected by Kim et al. Criticism selection approach.
Finally, we show (Overlap), which represents the number of points selected by both
approaches. e e e 84

4.11 Example of real-world reviews from the Panichella dataset and how RVMCS was

able to capture their mentioned requirements using the least number of app reviews. 85

A.1 Meta data for the reviews in Panichella dataset 103
A.2 Examples of how to label a review with Has_User_Experience 104
A.3 Examples of how to label a review with Has_Feature_Request 104

A.4 Examples of how to label a review with Has_Bug Report 105

Chapter 1

Introduction

Requirements are the basis of every project. It defines what the stakeholders, users, developers,
and business need from a system and what the system must do in order to satisfy that need [18§].
Requirements cover many aspects of a project, starting from project planning, risk management,
change control to validation and documentation [10]. Thus, they form an important component
in any project. The Standish Group, which is an independent international I'T research advisory,
conducts a survey every year since 1995 to understand project success and failure factors. In their
survey of over 8380 project from 350 companies [25,26], they found that only 16.2% of the projects
were completed successfully, whereas, the remaining projects met with challenges and were partially
completed with time delays and over budget (52.7%), or even worst canceled (31.1%). This high
failure rate costs the United States a great deal of money as it spends more than $250 billion
each year on IT application development of approximately 175,000 projects, where the average
cost of a project varies between $2,332,000 and $ 434,000 depending on the project’s size [25].
According to the report, the most common reasons for project failures are not technical, but
rather poor requirements engineering (RE). For example, 13% were lack of user involvement, 12%
incompleteness of requirements, 11% changing of requirements, 6% unrealistic expectations, and
5% unclear objectives. [25,42]. Thus, requirements engineering is a decisive factor in the success

or failure of any project.

Traditionally, requirements engineering (RE) involved users through interviews, workshops, and
focus groups [59]. However, with the emergence of app stores as a software marketplace, app
developers now receive abundant users feedback. This feedback was found to contain valuable in-

formation that can be used to support RE activities related to elicitation, validation, prioritization,

CHAPTER 1. INTRODUCTION 2

and management of requirements [35,48, 59, 75, 87]. For instance, it can contain reports of bugs,
requests for new features, shortcomings for existing features, description of a specific way the app
is used, etc. This has inspired the idea for Data-Driven Requirements Engineering, which Maalej et
al. [59] describe as “Requirements engineering by the masses and for the masses”. In recent years,
data-driven requirements engineering has attracted a lot of attention. Current research efforts un-
der data-driven requirements engineering can be categorized as research focused on implicit users
feedback, and research focused on explicit users feedback. We refer to non-verbal feedback that
is usually obtained through usage data and system logs (e.g., user click data) as implicit user’s
feedback. Whereas, explicit users feedback is verbal feedback that the user intentionally provides

in a visual and readable format, e.g., user comments.

In this dissertation, we focus on supporting requirements decisions and activities in the context of
applications delivered through software marketplaces (web and mobile). We aim to use machine
learning techniques to make two folds of contributions to the field of requirements engineering,

which we will discuss in the next sections.

1.1 Modeling popularity to support requirements decisions

Based on our analysis of current work, one aspect that was not well studied for requirements pur-
poses is the prioritization and validation of requirements through an implicit feedback that measures
popularity such as the number of downloads. For example, business requirements describe what an
organization hopes to achieve. They are not something a system must do. They are something the
business needs to have in order to stay in business. Such requirements are usually vaguely written
as they are surrounded with high uncertainty. In fact, the Standish group reports [25,26] list im-
proper management of expectations and poor understanding of the current user/market among the
major factors behind the success/failure of projects. For example, a business requirement to reach
a million download within siz months of release is very difficult to validate (i.e., is it a reasonable
expectation for this kind of app?). In many cases, validation of such requirements is usually not
data-driven, but rather based on the intuition and experience of stakeholders, which is subjective,
potentially inconsistent, and lacks explanation [2,16]. However, we argue that such requirements
can be validated in a quantitative data-driven way. According to the IEEE SWEBOK [10], " re-

quirements that cannot be validated are just wishes” .

We propose to exploit the number of app downloads, which is a measurement of popularity, to ac-

complish this task. We believe that through the analysis of the most successful and least successful

CHAPTER 1. INTRODUCTION 3

apps, in terms of the number of downloads, we can get a sense of how widely accepted a specific
idea/concept/feature is to the general public at the current point of time. Next, based on this
analysis we can build a model that aims to provide an early-on insights into the potential popu-
larity (e.g., number of downloads) for a given application. In addition to requirements validation,
exploiting such implicit feedback can help in requirements prioritizing as well, e.g., prioritize one
idea/feature over another, or postponing the release of a specific idea/feature to a more commu-
nity appropriate time. Moreover, through the analysis of the most successful apps and their used
API/services, we can recommend /suggest the use of specific popular APIs or services, which is an
important decision that determines both the implementation time and the potential reliability of a
new feature. Thus, to evaluate the usefulness of this type of collective implicit feedback, we propose
to formulate the problem as a popularity prediction problem and investigate the following research

questions:

RQ:: What popularity factors can we learn from analyzing software individually and collectively?

RQ2: How to model/capture the derived factors to reach an optimized and self-explanatory feature

space?

RQ3s: Given that requirements decisions are made as early as design phase, i.e., prior to implemen-
tation, how accurate would be a machine learning model at estimating a software’s popularity

using only verbal information about its functionality (e.g, a textual description)?

RQ4: What kind of insight can we gain from such a model to support requirements decisions?

We present our completed work on RQ1-R4 and report our findings in Chapter 3. This work was
conducted in 2016 and published later in the Journal of Expert Systems with Applications (Impact

Factor: 4.29) [1]. They key contributions of our work are as follows:

e We present an in-depth investigation on the popularity of web-based software using a Pro-
grammableWeb service mashups dataset with 7392 service mashups covering a period of five

years.

e We are the first to discuss the lack of novelty observation and to exploit the use of tag/API

compositions for popularity prediction.

e We suggest a unique approach to build an optimized and self-explanatory feature space that
can overcome the sparse nature of the data and quantify the popularity contribution of each

feature.

CHAPTER 1. INTRODUCTION 4

e We propose a Bayesian learning model that can utilize our suggested feature space to make ac-
curate predictions, identify important features, and offer confidence level with each prediction

which provides a rich platform for predictions understanding and interpretability.

e We discuss the rich early-on insight that this model can provide to requirements validation

and prioritization.

e We conduct extensive experiments over real-world service mashup data to demonstrate the

effectiveness of the proposed approach.

1.2 Building an efficient and maintainable requirements elicitation

approach

It was reported in a recent 2020 survey paper [78] that there is very little adoption of the proposed
automated approaches in the industry. Patkar et al. [78] surveyed and interviewed participants
from 45 mobile app development companies in Switzerland, Germany, and the Czech Republic.
They specifically looked for people who claimed to be responsible for requirements elicitation in
their company. They reported that 75% of the participants (considered requirements experts in
their company) utilized app store reviews for requirements. However, all of them with no exception
manually processed the users feedback for requirements, i.e., very little adoption of the automated
approaches exists. We believe the choice of manually analyzing users feedback might lead to other
choices that can limit their ability to utilize the full potential of the available users feedback.
For example, all the participants in [78] reported only using app store reviews for requirements
elicitation, i.e., they have not utilized other social media channels for requirements (e.g., Twitter).
We believe they chose to use only a single social media channel in order to keep the volume of
users feedback low, i.e., minimize the effort needed to manually inspect users feedback. This is
problematic as Williams et al. [105] reported that 51% of the tweets they analyzed contained useful
technical information that can be used for requirements, which means a major subset of the users
feedback is not leveraged. Moreover, Nayebi et al. [68,69] studied requirements extracted from
Twitter and compared it to requirements extracted from app stores. They found that they were
able to mine 22.4% additional features and 12.89% additional bug reports from Twitter, concluding
that app review mining is not enough and that other information sources must be considered as
they provide added value to requirements. Thus, we argue that if we want to see a paradigm shift
in requirements engineering and software evolution towards data-driven user centered development,

prioritization, planning, and management of requirements, we should study the reasons behind the

CHAPTER 1. INTRODUCTION 5

lack of adoption and find ways to make the automated approaches more appealing and accessible

to the community.

To achieve this goal, we studied existing literature to identify potential issues that would explain
the limited community adoption. We believe that in terms of technical aspects, existing approaches

may not be as appealing to the community as we believe them to be due to the following issues:

First, the complexity and technical knowledge needed to implement, tune, and maintain such
approaches. For example, most of the existing literature would first classify the feedback, and then
cluster it using two separate models. The use of a classification model followed by a clustering
model complicates the pipeline. A user of such an approach would need to know how to train,
debug, fine-tune, and maintain two very different models. Any issue in one of the two would
breakdown the pipeline. This becomes even more critical knowing that most of the participants
in [78], i.e., experts who claim to be responsible for requirements elicitation in their company, had
almost no technical experience, e.g., holding a marketing or management title/degree. In addition
most of the current approaches include manual steps that are difficult to maintain beyond a small
experiment. For example, one common text preprocessing issue with short text is the high number
of out-of-dictionary words. We found that current approaches suggest to manually create a custom
dictionary of such terms to replace them with their dictionary-equivalent terms [27,100,100], which
is not a scalable nor a maintainable solution. Thus, rethinking current approaches to provide a
more practical framework that takes out much of the complexity and maintenance effort while
maintaining performance can potentially increase the adoption of an automated approach, i.e.,

providing a more accessible framework to the community.

Second, most of the existing literature provided a term level summarization, which is usually
visualized using a word-cloud. However, in Williams et al. [105], where a study was conducted to
evaluate word-cloud summarizes and whether they would be enough to replace manual analysis.
They found that software developers did not find the word-cloud summary particularly useful as it is
very challenging to understand the context around the shown keywords. In general, they preferred
to see full text summaries over keyword summaries. In fact, in our own analysis, we found that when
looking at informative reviews, a handful of reviews can summarize the content of the complete
corpus. Table 1.1 shows the two types of possible summarization that we observed. The first, most
common, is a representative review that would summarize reviews discussing a single reoccurring
topic (review#86). The second, less common, is a representative review that summarizes reviews
with multiple and varying topics (review#2634). In the first case, ideally we want to capture the

first review, in the second case, however, we can say that selecting any review in that group would

CHAPTER 1. INTRODUCTION 6

Table 1.1: Examples of representative reviews. The first review in the block is the representative
review, whereas, the others inside the block are examples of reviews summarized by the representa-
tive review. The first block shows a review that summarizes reviews with different topics, whereas,

the second block shows a review that summarizes reviews with a single topic.

ID Review

2634 | According to all the members of this community, got some com-
bined suggestions. 1...gesture control for brightness, volume, fast
forward and rewind 2.Support forAC3, DivX and... decoders
3.Fix for ... play video... 4.Add a lock screen... 10.0n screen
option to set the screen size 16:9 or 4:3... 11... 12. Option to
add subtitles via external files

2827 | Hello friends ... I want to play many more formats especially
MKV and more ... PLEASE :-)

2845 | Video app should have screen resizing options like 16:9 or
16:10 or 4:3...

2808 | Please add ability to show subtitle bundled in video ..With that

ill never use mx player again

86 Waiting for more than 2 weeks for the activation code... hope
this will change soon ...

65 After a week of no activation thereby quickly you lose the desire
to use this app...

13 Not good waiting ... more than a week and nothing has hap-
pened...

135 | No Access Code. They have to change the fact that ...

also be considered acceptable. We believe being able to identify those reviews would provide the
level of summarization and context needed for requirements elicitation. However, how accurately

can we identify these representative reviews still remains an open question.

Third, in our own analysis of existing methods, we found that most research emphasised overall
model’s accuracy in terms of F1 measure, and in the process provided models with moderate recall.
However, in this type of problem, the ability to label all existing informative reviews correctly (i.e.,
recall) is far more important than mis-classifying a few non-informative reviews as informative

(i.e., precision). This is because all reviews labelled as non-informative are usually disregarded (i.e.,

CHAPTER 1. INTRODUCTION 7

feedback would be lost with low recall). Ignoring this aspect makes such models less appealing due

to the concern of losing valuable users feedback in the automation process. Thus, to increase trust

in such automated approaches, more efforts should be placed on finding techniques to minimize

information loss when filtering out non-informative reviews.

We suggest that addressing these issues may help make data-driven techniques be more appealing

and accessible to the community. Thus, we plan to investigate the following research questions:

RQ5:

RQ6:

RQ7:

RQg:

How can we minimize information loss when filtering out users feedback (i.e., maximize the

recall while maintaining precision)?

How can we improve the representation of users feedback to accommodate its unique and
noisy language (i.e., improve context understanding of short text and capturing of misspelled

and alternatively spelled words)?

What are the characteristics of a representative review and how accurately can we identify

such reviews?

How accurately can we accomplish both the classification and summarization tasks using a

single model compared to state of the art?

We present our work in addressing those research question and our novel Bayesian framework in

Chapter 4. We summarize our key contributions as follows:

We discuss the information loss issue due to false negatives and showed how using a hierarchi-
cal classification approach can help boost the recall, i.e., minimize information loss, through

leveraging the implicit inter-class hierarchical relationship between the labels.

We show that in addition to learning the same patterns as stemming and lemmatization,
embeddings generated from neural network models trained on the left-to-right language mod-
eling task can learn to group the misspelled and alternatively spelled terms that posed a

challenge for previous approaches.

We show that embeddings generated from a fine-tuned BERT model using the second-to-last
average pooling strategy can create a space where app reviews with similar requirements are
placed closer together in terms of cosine similarity compared to the more common approaches

used to represent app reviews such as TFIDF.

CHAPTER 1. INTRODUCTION 8

e We found that the best representation for both the classification and summarization task is
achieved through merging a TFIDF representation with embeddings generated from a BERT
model that is fine-tuned on the multi-class and multi-label requirements classification task

using the second-to-last average pooling strategy.

e We expand the problem of requirements extraction from only classifying requirements using
predefined labels to identifying the most representative subset of reviews for requirements

extraction, which aligns better with the original goal of requirements extraction.

e We propose an end-to-end Bayesian framework that can accomplish both the classification
and summarization task using a single model. We conducted comprehensive experiments to
evaluate our proposed Bayesian framework and showed that it can produce equal or better
results than the state of the art while addressing the issues of reliability and maintainability

of previous methods.

e We demonstrate that our proposed Bayesian approach outperforms the state of the art in
its ability to identify the most representative subset as it is able to capture 91.3% of the
discussed requirement with only 19% of the dataset, i.e., reducing the human effort needed

to extract the requirements by 80%.

The remainder of this dissertation is organized as follows: Chapter 2 discusses data-driven re-
quirements engineering and summarizes the current literature. Chapter 3 addresses the first four
research questions and presents our novel Bayesian approach that exploits implicit user feedback for
requirements validation and prioritization. Chapter 4 addresses the remaining research questions
and discussed our novel Bayesian framework that leverage explicit user feedback for requirements
elicitation from explicit users feedback. Finally, in Chapter 5 we provide additional future directions

that we believe are worth investigating.

Chapter 2

Background and Literature Review

In this chapter, we will discuss the literature review and the necessary background. First, we present
an overview of the requirements engineering field, and then discuss the new vision for data-driven
requirements engineering. Second, we present a summary of current research efforts categorized by

the type of users feedback that is being analyzed or studied.

2.1 Data-Driven Requirements Engineering

Requirements engineering (RE) has five main activities: elicitation, analysis, specification, valida-
tion, and management [10,81]. In elicitation, we identify sources of information and what require-
ments we can elicit from these sources. In analysis, we analyze the set of discovered requirements
to ensure that they are well-defined and clear to both the stakeholders and the developers. Also, we
classify requirements based on their type. Software requirements are classifies as: 1) business re-
quirements, 2) user requirements, 3) functional requirements, 4) non-functional requirements. [42].
Business requirements are specified to address business objective, vision, and goals. usually defined
at a high level of abstraction [42]. Functional requirements are system requirements that include
the main features and characteristics of the desired system [42]. Non-functional requirements are
system properties and constraints. They set the criteria for judging the operation of the system,
e.g., performance, availability, reliability. [15,23,42]. User requirements are users wishlist’s for the
system, they are valuable for ensuring the system performs as the users expect [42]. In specification,
we systematically document our requirements to establish the basis for an agreement on what the

software is expected to as well as what it is not expected to do. In walidation, we aim to ensure

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 10

the documented requirements meet the quality criteria and negotiate any potential conflicts or
risks that may arise from a given requirement. Validation is done in many ways, from the review
of the requirements document and creation of prototypes to the creation of acceptance tests [10].
In management, we manage requirements changes, prioritization (e.g., based on importance, risk,
duration and cost of implementation, etc), and traceability (i.e., tracing the requirement over its

entire life cycle).

Traditionally, RE activities have been stakeholder driven, i.e., elicitation of requirements relied
mainly on upfront requirements based on stakeholders domain knowledge. However, this setup
marginalized input from users, which is an important factor to the success of any project. In fact,
according to the Standish report [25], the lack of user involvement is the most important cause
of projects failure. Moreover, RE decisions, e.g., what features to add, enhance, or remove to
get the most business value in terms of user satisfaction, are mainly based on the intuition and
experience of small group of stakeholders, which is subjective, potentially inconsistent, and lacks
well explanation [2,16]. However, with the emergence of app stores as a software marketplace, app
developers now receive abundant users feedback, which sparked a new opportunity that paved the

way for data-driven requirements engineering.

Data-driven requirements engineering offers a way to involve system users, capture their needs,
and get their feedback on a much larger scale than anything previously done [59]. It addresses
the issue of users marginalization that occur with traditional setting. It also supports a change in
the decision aspect, from the stakeholder-focused and intuition/rationale based decision making,
to user-centered, data-driven decision making based on real-time analysis of the collective users
feedback [59]. Thus, modern software engineering processes have now evolved from traditional
static upfront requirements engineering to a more continuous approach of conducting RE, partic-
ularly approaches that leverage user generated data [59,71]. Specifically, user generated data that
represents users or crowd feedback, which we can further classify as implicit users feedback and
explicit users feedback. We refer to non-verbal feedback that is usually obtained through usage
data and system logs (e.g., user click data) as implicit user’s feedback. Whereas, explicit users feed-
back is verbal feedback that the user intentionally provides in a visual and readable format, e.g.,
user comments. The same classification can be used to describe the current research efforts under
data-driven requirements engineering, i.e., based on the type of user data that is being studied or

analyzed. In Section 2.2, we will discuss these efforts in more details.

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 11

2.2 Types of Users Feedback

2.2.1 Implicit Users Feedback

Implicit feedback can be described as all the information collected automatically on users software
usage [59]. This include usage data, logs, and all user-app interaction traces. For example, user
click data is one form of such feedback, as usually a User Interface (UI) is associated with a specific
feature, so analyzing how the user navigates and interacts with the UI can help developers gain
a better understanding of the user needs. Another example would be the app download count,
which gives us an overall understanding of the app usage and outreach. Such insight can be used
to, e.g., track the impact of a new feature on the popularity of the app, i.e., how much a given
feature is meeting users needs and expectations. This type of feedback is usually a continuous
stream of data that is processed in real-time. It provides a wealth of feedback that can be used
to understand user behaviour, e.g., analyze the usage of specific feature (interaction sequence,
duration, frequency, time of day, etc). Research on collecting and analyzing implicit feedback for
software engineering is mainly on error reproduction and localization, improving system usability,
providing recommendations to users, or conducting usability testing [85]. However, in our own
analysis and according to Wang et al. [103], analyzing such feedback for requirements is not very
common. We believe the reason is the difficulty in obtaining implicit user’s data as most would
be considered proprietary data. Using such data would also raise concerns about user and data
privacy. As such, researchers seem to prefer to work on publicly available data, which mostly consist

of explicit feedback.

Schuur et al. [97] studied implicit feedback from users of a Dutch software vendor. They presented
an approach that monitors performance, usage, and feedback knowledge for requirements manage-
ment. Their approach generates reports that describe changes in the performance or usage data of
their userbase as a way to help such vendors to respond accordingly to any potential issues with
their service. Unfortunately, the work does not specify any details on the type of feedback used.
Liu et al. [56] offers insights into requirements elicitation from user behavioral data analysis. They
summarize potential data to collect for such analysis, e.g., user click data, eye movement tracking,
and time spent on different functions. Next, they analyzed the data from a specific app and discuss
different scenarios in which such data can be useful for requirements decisions. Liang et al. [55] they
propose a data mining approach to extract user behaviour from user logs. They analyze location
and motion logs to infer user habits when using the mobile. For example, they analyze locations

visited by the user, time spent in each location, etc. They assume that users with similar habits

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 12

(e.g., going to a coffe shop every morning) would need similar requirements, i.e,. similar apps or

services. Thus, based on their grouping of users, they recommend a specific service or application.

2.2.2 Explicit Users Feedback

Explicit users feedback is verbal feedback that the user intentionally provides in a visual and
readable format. It is has been very well studied in the literature, mostly to understand the
nature of the feedback [12,21,34,35,48,64,72] and to support requirements elicitation and analysis
[11,13,22,27,32,40,44,57,58,75,76,87,88,96,99,100,101, 105].

In terms of the source for the feedback, we observed that most of the current work is focused on
app stores, especially Apple’s app store [44,45,72] and Google’s Play store [13,14,46,63,74,99,100],
or both [30,31,33,57,62]. Other app stores, e.g., Microsoft’s app store have limited studies [76].
For example, Pagano and Maalej [72] is one of the early investigation on the type of feedback
available on app reviews. The authors identified the type of available feedback through manual
analysis of the reviews, e.g., praise reviews, feature shortcoming, etc. Additionally, social media has
attracted attention as well, mainly studies on Twitter [9,29,32,68,105]. For example, Guzman et
al. [29] studied the contents of tweets and investigated their potential for software. Next, Guzman
et al. [32] proposed ALERTme which creates a TFIDF representation [61] of tweets, and then uses
a Naive Bayes classifier to determine whether a tweet has an improvement request or not. Tweets
that contain bug reports, feature requests/shortcomings are considered tweets with improvement
requests. Once tweets with improvement requests are identified, they are grouped together based
on topic using a topic modeling technique call Biterm Topic Model (BTM) [109], which groups
terms that co-occur together under a topic, and then each tweet is assigned a probability on its
likelihood to belong to one of the topics. This technique shares a lot of similarity to the traditional
topic modeling technique Latent Dirichlet Allocation (LDA) [5], but [109] and [32] claim that it
performs better on short text. Finally, tweets are presented to developers and ranked considering
aspects such as the number of shares, likes, and sentiment score. The authors found that despite the
short length of tweets, they represent a very good source for requirements. Moreover, they found
that companies tend to actively engage with users to obtain additional information, which users do
follow up on, and provide a more richer context to analyze. They also suggest a future merging of
user feedback generated from different channels (e.g., Twitter, app store reviews, internal reports,

etc) for software evolution purposes.

Finally, we observed some requirements studies on other websites such as Vu et al. work on Phrase-

based extraction of user opinions from Amazon [101] and Wattanaburanon et al. [104] work on

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

gamers reviews on steam.

13

Chapter 3

Modeling Implicit Users Feedback

3.1 Introduction

In this chapter, we present our work in exploiting the use count of service mashups (i.e., web
applications) as an implicit feedback to help requirements decisions. A service mashup is a web
application that integrates multiple sources (mainly APIs) to provide a new service in a user
friendly manner. For example, The Trend Bed" is a service mashup that displays and keeps record
of top trending news articles, Twitter hashtags, and YouTube videos of various countries. The web
application attempts to provide a platform for analyzing current trends worldwide or for a specific
country. We aim to address RQ1-RQ4 in the following four Sections. In Section 3.2, we give an
overview of the related work on popularity prediction related to the software engineering domain
and touch on work done on other domains as well. In Section 3.3, we discuss the used dataset,
our data preparation, and our exploratory data analysis on it to address RQ1. In Section 3.4, we
present our proposed Bayesian model and our unique approach in creating an optimized and self-
explanatory feature space that addresses RQ2. Finally, to address RQ3 and RQ4, we discuss our
experiment and evaluation, and conclude with a discussion on how this work can help requirements

decisions in Section 3.5 and Section 3.6.

"https://thetrendbed.com/

14

CHAPTER 3. MODELING IMPLICIT USERS FEEDBACK 15

3.2 Related Work

In this section, we describe several related work and differentiate them from ours. In general, current
research efforts aim to predict the popularity of a web item [3,20, 36,47, 50,52,89,91,110, 111}, or
leverage the popularity for item filtering or recommendation [38,39,43,66,102]. In this work, we

focus on the earlier, specifically popularity prediction in the software domain.

3.2.1 Popularity Prediction in Software Development

In [38,39,43,66,102], the authors use popularity prediction as part of their model to recommend
APIs for mashup developers. In [38,66], they aim to help developers decide between multiple APIs
that offer the same functionality. They both developed a tool that analyzes the usage information
of APIs as a metric for popularity, and use such information to make recommendations. In [43], the
authors suggested a recommender system that can discover and recommend relevant web APIs to
developers based on their functionality, usage, and popularity. They used the number of times an
APT has been used in existing APIs as a way to rank their final list of recommendation. In [39], the
authors developed a tool that utilizes the popularity of APIs and their elements to rank suggestions
given by code completion systems, and they show that ranking suggestions based on their usage
frequency (i.e. popularity) can result in better filtering than other approaches such as alphabetical
ranking or relevance ranking. Thus, [38,39,43,66] have used the popularity as a feature in their
model/tool to filter /rank existing APIs which is different from our work where we aim to predict the
popularity itself. The only exception is [102] which we have already addressed in the introduction
of this paper. We differ in that we aim to predict the popularity before the service is released to
the public.

3.2.2 Popularity Prediction in Other Domains

Current work follows one of two directions [92]. The first is predicting the popularity prior to the
release of the web item [3,95], and the second is predicting the popularity after the release of the
web item [20,36,37,47,50,52,53,80,84,89,91,107,111]. The two directions are not competing with
each other, but rather, they have a complimentary relationship as the pre-release prediction can
address some of the post-release prediction’s limitations. They key difference is that a post-release
prediction exploits the time-series information for how the popularity changes over time to make

a prediction. Such information is not available when the item has not been released yet, or is in

CHAPTER 3. MODELING IMPLICIT USERS FEEDBACK 16

Table 3.1: Summary of the available information for each mashup

Column Example
Title Haiku
Date 2009-07-02T21:35:07Z

Description Parses #haiku on Twitter and matches

the lines with photos from Flickr

Tags art, haiku, microblogging, ...
APIs Flickr, Twitter
URL http://haiku.thehempcloud.com

Use count 7097

its early stages. Furthermore, a pre-release prediction can have a significant value when the goal is
to have an early-on insight into the potential popularity of a web item to make critical budgeting
or marketing decisions, which is what our work aims to provide. The literature on post-release
popularity prediction suffers from the same limitation as [102] where we explained that an item has
to be released to the public and used for a given period of time before a prediction can be made.
This kind of setting does not apply to our problem as a pre-development prediction is required.
As for the work on pre-release popularity prediction [3,95]. The authors attempt to predict the
popularity of news stories using its content. However, they were not successful as they did not
have access to the full body of the news story, which limited their ability to utilize the content
thoroughly. Moreover, they ignored other factors that may play a major role in the popularity of
news stories such as the geographical factor where the topic might be a popularity magnet, but it is
too local, i.e., popular in one source, but not the others. We align ourselves with this kind of work.
However, we plan to have a more thorough analysis of the content, and to investigate other factors
that may contribute to the popularity. Moreover, our proposed approach s not simply about an
accurate point prediction, but rather about providing a complete prediction framework that can offer
an early-on insight into the estimated popularity of a web item, the prediction’s confidence level,

and the reasoning behind it.

CHAPTER 3. MODELING IMPLICIT USERS FEEDBACK 17

Table 3.2: Summary statistics of the ProgrammableWeb dataset

Column Min Mean 3rd Quartile Max
Use Count 3 3474 4086 24780
log(Use Count) 1.099 8.004 8.315 10.120
Word count 1 25 33 76
Tag count 0 3 4 6
API count 0 1 2 38

3.3 Data Collection

We used a dataset from ProgrammableWeb.com, one of the most comprehensive online directo-
ries for APIs and service mashups [43]. The website is considered a free and convenient way for
developers to market their APIs and service mashups. They first started in 2005, and their di-
rectory quickly grew to over 10,000 API by 2013 2. We believe ProgrammableWeb.com to be a
good candidate for our study because the provided list of service mashups include the list of used
APIs as part of their listing, which provides us with a richer content to investigate for requirements
engineering. The dataset we used was provided by [43], and it consists of 4535 mashups. In Table
3.1, we shows an example of the information provided with each service mashup as part of their
listing on ProgrammableWeb. Simply put, we have a title, description, submission date, list of

relevant tags, list of used APIs, URL to web application, and the use count (i.e., popularity).

3.3.1 Measuring the Popularity

We measure the popularity of a service mashup using the use count metric provided by Pro-
grammableWeb, which is the only provided popularity metric. Table 3.2 shows a summary statistics
of the use count. The use count metric measures only the raw popularity, i.e., the level of public ex-
posure. It does not capture other aspects of the popularity, e.g., user satisfaction, in which another
metric such as the ratio of thumbs up/down would be more appropriate. Nonetheless, it is expected

that in most cases the number of use count will be highly correlated with user satisfaction [8,36].

Zhttps:/ /www.programmableweb.com /api-research

CHAPTER 3. MODELING IMPLICIT USERS FEEDBACK 18

1200
=600 .
8 8
[[

El 3 800
£ £
=400 E
1% 1%
s 5
[[
£ £

S s 400
3200 o
Qo Qo
€ €
2 2

0 0

0 5000 10000 15000 20000 25000 25 5.0 7.5 10.0
useCount useCountLog
(a) Y distribution (b) Log(Y) distribution

Figure 3.1: The use count (Y) distribution in the ProgrammableWeb dataset. We show the distri-
bution of the popularity in (a) and the log popularity distribution in (b).

3.3.2 Analyzing Data for Factors Behind Popularity

25000 o 25000

20000 20000

ount

se
mas ooo
oo
- o
o -e o

5 15000 15000 2
8 8 i
210000 10000
=l =]

5000 5000

0 i 0 %
0 25 50 75 0 2 4 6 0 10 20 30

Total word count (title and description) Tags count APIs count

(a) #Words vs. use count (b) #Tags vs. use count (c) #APIs vs. use count

Figure 3.2: Is there a strong correlation between the word count, tag count, API count, and the
popularity? We compare the popularity of a mashup against the three potential factors (a) textual
length (word count), (b) search exposure (tag count), and (c) integrated functionality (API count)
To address RQ1 on the factors behind the popularity of software that we can learn from the textual
content, A summary statistics can been seen in Table 3.2 where we have found that 1) seventy-five
percent of service mashups use thirty-three words or less to describe their mashup, which means
we have short textual information, 2) seventy percent of service mashups are tagged with two to
four keywords (i.e. tags count), 3) eighty percent of service mashups use one or two APIs at most
with their service mashup (i.e., API count). Based on Figure 3.2, we observed that there’s no
correlation between the number of words, the number of tags, and the service mashup popularity
(i.e., use count). This means that having a long description or a large number of tags will have
very little effect on the popularity of a mashup. However, it is also observed that having no tags
will affect the popularity, as all service mashups with zero tags ended up being in the low popular

range as seen in Figure 3.2. We believe that not properly tagging a service mashup when listing it

CHAPTER 3. MODELING IMPLICIT USERS FEEDBACK 19

in online markets can limit the users ability to find it, which may explain this observation.

On the other hand, we can see a much stronger correlation, in Figure 3.2, between the API count
and the popularity. We observed that service mashups in the high popular range mostly use one
to three APIs; whereas, service mashups that use more than three APIs immediately lower their
chances of being in the high popular range. When taking a closer look, we found that service
mashups with a high number of APIs are mostly not targeting the general public, but a more
specific audience. For example, USPS Tracking is a service mashup in the upper half of high
popularity range (e.g., 20,699 use count) which uses only two APIs (Google Maps and USPS Track
& Confirm), and offers a service to track USPS shipments with Google Maps, and is considered
relevant to a wide range of audience which explains its very high popularity. Whereas, Congress
SpaceBook is a service mashup in the lower half of medium popularity range (i.e., 4737 use count)
which uses eleven APIs (e.g., Flickr, YouTube, Google Social Graph, ..etc), and basically offers a
social networking platform for congress, is considered relevant to a significantly smaller audience
which explains its low popularity. Thus, the general observation is that the more APIs consumed by
a service mashup, the higher the chances of it being in the medium popular range (i.e., 2000-7000
use count) as it will most likely be targeting a much smaller audience, so even if it was successful
in reaching it’s targeted audience, it will still overall be considered within the medium-low popular

range (i.e., below 3rd quantile).

When taking a closer look into the functionality the mashups offer, we found that similar mashups
have an interesting relationship between them. If we consider a group of similar mashups to be
forming a cluster for a specific functionality (e.g., they all offer a hotel finding service), then we
can observe that they fall under one of two states: They either have a dominant mashup (i.e.,
a mashup that has captured most of the attention for that functionality), in which case that
dominating mashup would have a significantly higher popularity than its neighbors within the
cluster, or they would all be closely related in popularity with no dominant mashup. Table 3.3
shows an example of a cluster with a dominating mashup, and an example of a cluster with no
dominating mashup. We can see that mashups within the same cluster offer similar functionality.
For the first case, we observe that once a dominating mashup appears, all the later mashups are
likely to be in the low-range popularity of that cluster. As for the second case where we do not have
a dominating mashup, we believe that if a cluster has an overall mid-range popularity, then the
cluster’s functionality can be considered a promising open area for developers to try and build the
next mashup that will dominate it. However, in case the cluster had an overall low-range popularity
average, then this may indicate that this cluster offers a useless or uninteresting functionality that

developers should avoid in the future. In rare cases, a cluster of similar mashups can be dominated

CHAPTER 3. MODELING IMPLICIT USERS FEEDBACK

20

Table 3.3: Demonstrating the effect of the lack of novelty with an example of a cluster with a

dominating mashup, and another with no dominating mashup

Cluster (8) with a dominating mashup

Title Pub.
1001 Secret Fishing Holes Nov.
Fishingnotes.com Mar.
Fish Mapper Apr.
Fishing Stories Oct.
Flyfishmap Jun.

Date
2005
2003
2006
2006
2009

Use count

23,567
3125
3011
92842
1673

Cluster (658) with NO dominating mashup

Title Pub.
Earthquake Vulnerable Cities Aug.
Earthquakes in Last 7 Days Nov.
Earthquakes this Week Nov.

World and Regional Earthquakes Nov.

Date
2008
2005
2005
2006

Use count

2785
3146
4082
2322

by more than a single mashup, however, we have found that in most cases, we only have a single

dominating mashup.

3.4 The Bayesian Data Modeling

In this section, we discuss our suggested approach which consists of our method to construct an

optimized and self-explanatory feature space from raw sparse data, and our Bayesian learning model

that can predict, select features, and offer confidence level with each prediction.

3.4.1 Constructing the Feature Space

The Functionality: To derive the functionality of a mashup, we suggest leveraging its title and

description as follows. First, we apply a standard natural language processing methods, such as

stop-word removal and word stemming, on the textual content of the title and the description to

CHAPTER 3. MODELING IMPLICIT USERS FEEDBACK 21

Table 3.4: Finding the optimal number of topics (K) for LDA. The lowest RMSE can be observed

when the number of topics is 100.

K | 5 | 3 | 5 | 100 [250 | 500 | 1000 |

RMSE | 0.6302 | 0.6292 | 0.6242 | 0.6181 | 0.6270 | 0.6200 | 0.6355 |

generate a term frequency-inverse document frequency matrix or TF-IDF matrix [61]. The TF-
IDF matrix is a representation of the content where each row is a mashup, and each column is a
term. The elements in this matrix represent how relevant a given term is to a specific mashup.
This representation allows us to capture the most important terms that describe the content of
a mashup. However, TF-IDF usually produces a large matrix that is highly sparse, i.e., a given
mashup’s vector would have many zero entries as it uses only a few terms out of the available

dictionary.

To address this issue, we utilize the probabilistic topic modeling technique Latent Dirichlet Alloca-
tion (LDA) [5]. The intuition behind using LDA is that given the TF-IDF matrix, LDA can leverage
such representation by grouping together the frequently co-occurring terms into an approximation
of a real-world concept, i.e., a topic. The set of topics discovered by LDA would represent a higher
level summary of the terms discovered by the TF-IDF approach. As such, LDA is expected to
provide a good and compact approximation of the TF-IDF matrix as the number of topics in the
LDA matrix is significantly smaller than the number of terms in the TF-IDF matrix. LDA produces
a topic proportion matrix D where each row in the matrix represents a mashup, and each column
represents a discovered topic. The entries D; ;, in the LDA matrix essentially denote the probability
that topic k describes mashup i. As part of using LDA, we need to specify the number of topics k,
and through cross-validation, as seen in Table 3.4, we found one-hundred to be a good candidate
as it offers a balance between model’s complexity and model’s accuracy. We believe those topics
represent the mashups functionalities that we aim to derive. To give a better insight into those
discovered topics, Figure 3.3 shows the content of two topics, the first (left side) is about traveling,
while the second (right side) is about real-estate. We learn the contribution of each discovered

topic as follows:

. D; i
gy = 2z Dk XY oy (3.1)

2211 Di,k

where m is the total number of mashups, K is the total number of topics, and y; is the corresponding

CHAPTER 3. MODELING IMPLICIT USERS FEEDBACK 22

f?a?] get
@ fl| a
world — dgsla%

rlpcar
cw travel 8

search gglewineri
= _9 unit

rentCD ‘5@ 2D 5

O 1:5
askO estat

> rental o = oreal
wifi a”’port — 8 state ||St

holiday europ schoolarea
ticket dealer home happen

(Travel) (Real Estate)

stoc?<
hotspotexpens

Figure 3.3: An example of two discovered LDA topics, a travel related topic on the left, and a real
state related topic on the right. The two example topics highlight LDA’s ability to summarize the

textual content into a set of real-world concepts.

popularity (i.e., use count) for mashup i. Thus, each entry in the vector di is a score that indicates
the topic’s contribution towards the popularity. When splitting the dataset into training and

testing, we learn the contribution of a new testing mashup with vector 8, € R" as follows:
Ot = Ot od (32)

simply, we do an element-wise multiplication between the new mashup’s probability vector and
the topic-contribution vector that represents the contribution of each discovered topic towards the
popularity. We use the generated LDA matrix with the new topics score directly in our model as

features.

The Selection of Tags and Services: The standard way to capture the use of tags and the
selection of services (i.e., APIs) is to create two binary frequency matrices. The rows in those
matrices represent our mashups and the columns represent the used tags in the first matrix, and
the selected services (i.e., APIs) in the second matrix, where each entry denotes if a given tag/API
was used in a given mashup or not (i.e., binary score). However, since we have 1409 unique tag,
and 788 distinct service (i.e., API), and that developers use on average 2-3 tags and 1-2 APIs per
servie mashup, we have an extremely sparse matrix. Thus, we suggest a better two-step approach
to replace those two sparse and large matrices with only two features: the tag score feature and the
API score feature. These score features will denote the contribution of the used tags, for the tag
score, and contribution of selected services (i.e., APIs) for a given mashup. We constructed those

two features as follows: In step one, we learn the averaged contribution of each tag/API towards

CHAPTER 3. MODELING IMPLICIT USERS FEEDBACK 23

popularity. To learn the contribution of each tag, we divide the use count (i.e., popularity) of each
mashup in the tag matrix by the number of tags it uses, and assign that as a new score for the
used tags. At this point, for each column in both the tags matrix, we have a score that represents
the contribution of that tag/API towards the popularity of the mashups. We take the average of
each column which represents the averaged contribution towards popularity for a given tag, and
assign it as a score for the whole column. We do the same for the API matrix to learn the averaged
contriubution of each API towards the popularity. In step two, given a service mashup, we add up
the individual averaged contributions of the tags that it uses to create the tag score feature, and add
up the individual contribuitons of APIs that it uses to create the API score feature. When splitting
the data into training and testing, we use the average contribution for each tag/API that we learned
from training as a score for the testing as well. We then add up the individual contributions in the

salmme manner.

The Combination of Selected Tags/Services: To capture the role such compositions play in
the popularity of a mashup, we suggest finding those compositions and building a binary frequency
matrix that allows us to use them as features. To find those compositions, we suggest the use of
Apriori algorithm [90] which is a standard technique to find frequently used compositions. The
selected support level for Apriori should offer a balance between finding all possible compositions
and maintaining a statistical meaning for the compositions. It is expected to have a large number of
compositions, and that should not be a problem as our suggested Bayesian learning model can select
the most relevant ones. In our dataset, we were able to find 178 frequently used compositions. Table
3.5 shows a few of the discovered compositions. For example, the first composition represents the
use of (Photo and Map) as tags and (Flickr and Google-maps) as APIs. This combination created
a mashup with an interesting functionality that allowed users to know the location of where their
Flickr images were taken. We believe this interesting functionality, captured by the composition,
is behind the popularity of the mashup. We used those frequent compositions to create the binary

frequency matrix which we used directly as features in our model.

Novelty: As we have explained earlier, a mashup may fail to attract its users if similar mashups
are already available and have taken up the market. We observed this through our analysis in
which we found that when we cluster similar mashups together, it’s common to see one of two
states: A cluster with a dominant mashup, or a cluster with no dominant mashup. In the first
case, we observed that once a dominant mashup appears, it would capture most of the attention for
that cluster’s functionality forcing all the other mashups, especially the later ones, in that cluster
to settle-in for a lower popularity. In other words, we can say that the other dominated mashups

within the cluster lack the novelty as the dominant mashup is presumed to be the first in the cluster

CHAPTER 3. MODELING IMPLICIT USERS FEEDBACK 24

Table 3.5: Examples of frequent tag/API compositions. The combination of such compositions
lead to unique functionalities. For example, merging Flickr’s capability with Google-maps allowed
users to search for their images based on where the images were taken, i.e., location. This unique
functionality, captured by the composition, can be a leading factor behind the popularity of the

service mashup.

Tags APIs
Photo, Map Flickr, Google-maps
Video, Music YouTube

Social, Microblog Twitter
Video, Photo Flickr, YouTube

to successfully capture all the user’s needs for that functionality. Thus, we suggest to create a new
feature vector called the lack of novelty where we penalize all the dominated mashups with a score
of one, as we expect them to have a low/medium popularity (i.e., use count below 3rd quantile),
and assign a score of zero to all other mashups including dominating mashups and mashups in
clusters with no dominating mashup as we have no evidence that they lack the novelty. We then

use that vector as a feature in our model.

However, to achieve the suggestion mentioned above, we need to determine the best approach
to measure the similarity between the functionality of two mashups. We suggest combining the
knowledge from both the content found in the title/description of the mashup, and from the list of
used tags and APIs as follows:

Sim@j =a X Cm’ + (1 — Oé) X Jz”j (3.3)

where « is a learned probability weight between zero and one. C; ; is a cosine similarity matrix [90]
that measures the similarity between the title and the description of two given mashups. J;; is
a jaccard similarity matrix [90] that measures the similarity between the list of tags and APIs of
two given mashups. The a weight measures how much trust you place on your content from the
title/description. If the dataset lacks proper description, but is tagged properly, then less weight can
be placed on the content from the title/description so that more weight is placed on the list of used
tags and APIs, and vice versa. If there is no clear pattern in the dataset, then the recommended
approach in such case would be to provide equal weights to both aspects. However, if there’s a clear
preference in the dataset (i.e., community), the proposed approach can provide better predictions

if the preference is reflected in the provided weights. In the rare case where mashups are posted

CHAPTER 3. MODELING IMPLICIT USERS FEEDBACK 25

without any meta information (i.e., both the description and tags are empty), the model would not
have enough data to make a confident predication. Nonetheless, it is expected that such an extreme
case (i.e., no meta information) would be difficult even for human experts as they would find it
impossible to make a judgement with no available information on the mashup. It is important to
clarify that in this approach we assume that professional developers will put a great deal of effort
in preparing the meta information (i.e., description and/or tags) of their mashup to ensure proper
exposure of their work. This assumption is needed for the model to provide accurate and confident
predictions. For our dataset, with cross-validation, we have found that an « value of 0.9 produced

clusters that met our requirement in that mashups were clustered together based on functionality.

Next, we suggest using hierarchical clustering [90] to create the clusters using the averaged similarity
matrix Sim;; that we already constructed. As it’s the case with most clustering algorithms, in
hierarchical clustering, we need to specify the number of clusters as a parameter to the algorithm.
we found 2197 to be a good number of clusters for our dataset. The number of clusters we chose is
the total number of unique tags (1409) and APIs (788). Since each cluster should represent a unique
possible functionality, the choice of the number of cluster should represent the number of unique
possible functionality we assume to exist in the dataset. Thus, we are making the assumption that

for each unique available tag and API, at least a single possible unique functionality exists.

Finally, to identify the clusters with a dominant mashup from the ones without, we looked for an
outlier point in the cluster where we measured how many standard deviations each point is away
from the mean using z-score. To determine if a point within a cluster is an outlier or not, we
measure how many standard deviations it is from the mean of the cluster. If we found that it’s ¢
standard deviations away from the mean, then we declare it as a dominating mashup. The value
for ¢ has to be determined through cross validation. In our case, we have found three to be a good
value for t. We can now create our lack of novelty feature vector as described above, and use it as

a feature in our model.

3.4.2 The Prediction Model

We present a Bayesian learning model for popularity prediction. The proposed model offers three
major advantages over other regression models. First, instead of just providing a point prediction,
the Bayesian model outputs a predictive distribution for a given test mashup. The variance of
the predictive distribution can be used to quantify the confidence level of the prediction. Second,
we integrate the Bayesian learning model with the Auto Relevance Determination (ARD) mecha-

nism [4], which allows us to perform feature selection and identify the most important factors that

CHAPTER 3. MODELING IMPLICIT USERS FEEDBACK 26

affect mashup popularity. Third, by performing type 2 maximum likelihood, we can automatically
optimize the hyperparameters of the model, which avoid the tedious process of cross-validation

required by many other models.

Model inference

We start by assuming the response t is a random variable whose distribution conditioned on input

x is Gaussian:
p(tlx, w, 8) = N(tlw" ¢(x), 37" (3.4)

where [is the precision of the Gaussian and ¢(x) is the feature vector of mashup x.

The likelihood of the training data X then is given as:

N
p(tIX, w, 8) = [[p(talxn, w,57") (3.5)
n=1

The flexibility of the Bayesian inference framework allows us to incorporate different prior knowledge
for different learning effects. Specifically in this work, we assume that not all features are equally
important to the prediction problem. As a result we choose a conjugate Gaussian prior(A.K.A

ARD prior) on the coefficient random variable w to conduct feature selection:
p(wla) = N(0,A71) (3.6)

where A is a diagonal matrix governed by hyper-parameter @ where «; denotes the i-th diagonal
entry of A. Section 3.4.2 provides the detailed discussion of how feature selection can be achieved

by adopting ARD prior.

According to the Bayesian rule, the posterior distribution of w is proportion to the product of the

likelihood and prior, which is also Gaussian due to conjugacy:
p(wlt,a, B) = N(w|m, X) (3.7)
where the posterior mean and the covariance are given as follows:
m = ueT, ¥ = (A4 poapT)! (3.8)

® is the design matrix. The i-th row of ® is ¢(x;). Assume that the optimal values of the hyper-

parameters, a* and * can be learned (see the next section for details). We can derive the predictive

CHAPTER 3. MODELING IMPLICIT USERS FEEDBACK 27

distribution over a test mashup x; by integrating out w, which is also a Gaussian:

p(t|Xaxt7a*7ﬁ*) = /p(ﬂxhwa B*)p(wla*’xvﬁ*)dw

(3.9)
= N(m" ¢(xt), 0% (x1))
where the predictive mean and the covariance are given as follows.
o?(xt) = (87" + ¢(x1) " T(x) (3.10)

Besides using the mean of the predictive distribution (i.e., m” ¢(x;)) to predict the future use count
of x4, the variance o2(x;) provides important information to quantify the confidence level of the

prediction.

Learning Process

Estimating hyper-parameters «, § yields a type-2 maximum likelihood problem. Specifically, we

maximize the log of the model evidence given by:

Inp(t|X, e, f) = ln/p(t|X,w,ﬁ)p(w|a)dw
—In N(0,C) (3.11)

- _%(N In(27) + In(C) +t"C~'¢)

where C is given by
C=p"'T+oA 0" (3.12)

By setting the partial derivative of (3.11) with respect to e and 3 to zero, we derive the solutions

for both hyper-parameters

a = %
R (.13
(B%) = m
where ~; is defined by
Yi =1— 0% (3.14)

The learning proceeds by using (3.8) and (3.13) alternatively with randomly initialized a and g

until convergence.

CHAPTER 3. MODELING IMPLICIT USERS FEEDBACK 28

Feature Selection

The first updating rule from (3.13) implies an implicit solution as the right hand side is also a
funtion of «;. To determine the stationary point of the log likelihood function (3.11) explicitly, we
can extract the contribution from «; out of the covariance matrix C in (3.11):
C=p1T+> a'eiel +a o
i (3.15)
=C_i+a] ‘g

where ¢, denotes the i-th column of ® and C_; represents matrix C' with the removal of ¢,.
Substituting (3.15) in (3.11), the log likelihood can be written as:

InN(0,C) = L(a—;) + M) (3.16)

where L(a_;) denotes the log likelihood function with ¢,; omitted and function A(«;) is defined as:

1 a
Mag) = 5 Ino; — In(ay; + s4) + o,

(3.17)

where ¢; and s; are defined as:
i :‘Pz‘TC:il Pi

S (3.18)
¢ =p; C_;t

The partial derivative of (3.17) with respect to «; is

-1.2
Q; 5

— (¢ — i)
2(v; + ;)2

(3.19)
Setting (3.19) to zero gives two possible solutions for «;:

2
Q; — 00, q; < 8;
oo (3.20)

S .
a; = —*+—, otherwise
.2—31- ?

In the first case, as «; (i.e., precision of coefficient w;) approaches to infinity, w; will be driven to its
mean (i.e., 0). This will result in the removal of the corresponding feature from the model, which

achieves feature selection.

3.5 Experimental Evaluation

We first describe the experimental setup. We then compare the prediction accuracy of our proposed

Bayesian learning model with other competitive models, and show how our learning model is overall

CHAPTER 3. MODELING IMPLICIT USERS FEEDBACK 29

superior. Moreover, we show examples of our model’s ability to offer confidence level with each
prediction. Finally, we evaluate our approach in building the feature space and ability to identify

the important features.

3.5.1 Experimental Setup

The current use count (i.e., popularity) of a mashup is the total number of use count accumulated
over the years since its publication date. Thus, it favors older mashups over newer ones as the
newer mashups had less time to accumulate their use count. To have a more balanced and fair
scale, we instead used the average yearly use count as our response in which we divided the original

use count by the mashup’s lifetime (i.e., number of years it’s been available in the market).

To simulate a real world scenario, we used the information from the mashups listed in the first four
years as the training data, to predict the popularity of the fifth’s year mashups. In other words, we
are training the model on service mashups that were created in the first four years, and testing the
model on service mashups that were created on the fifth year. To measure the prediction accuracy,
we used Root Mean Square Error (RMSE) which is a standard way to measure the difference
between the true and predicted values. In general, the lower the RMSE, the more accurate the

model.

3.5.2 Model Performance

To evaluate the prediction performance of our proposed Bayesian learning model versus other
models, we used a feature space of 287 features where for each mashup we have a tag score feature,
an API score feature, a Lack of Novelty score feature, 100 LDA features (one feature per topic),

and a 174 binary API/tag composition features.

Figure 3.4 shows the prediction result of our proposed model versus Linear Regression with L1
norm regularization (i.e., Lasso) and Linear Regression with L2 norm regularization (i.e., Ridge
Regression). Both ridge regression and lasso require parameter tuning (i.e., lambda) and their
performance significantly rely on the selected parameter value. For ridge regression, we can see
that a low or a high lambda value can drastically decrease the performance; whereas, with lasso
regression, the higher the lambda value, the lower the performance as the model becomes more
selective of what features to use. On the other hand, our proposed bayesian learning model does

not require any parameter tuning as it can directly give the optimal or near-optimal solution.

CHAPTER 3. MODELING IMPLICIT USERS FEEDBACK 30

0.68 H .
) —E71 Ridge Regression
\ —e— Lasso Regression
0.66 |\ —>¢ Proposed Approach
\
0.64 r ‘\ 1
W 0.62 \
@ \
= \
E o6 |\
\
0.58 - '
\
0.56, “ 19
= N\ /\)
—8——=F86 -8 .
0.54 ‘ ‘ ‘ ‘ ‘
1e-15 1e-12 1e-09 1e-06 0.001 1 1000

Lambda Parameter (Regression & Lasso)

Figure 3.4: Proposed model’s performance vs. other regression models. We can observe that
the performance of other regression models can vary greatly depending on the selected parameter
value; whereas, the proposed approach provides a consistent performance as it requires no parameter

tuning.

Moreover, it can identify the important features which ridge regression does not offer, and it
provides a confidence level with each prediction which both ridge and lasso regression cannot do.

Thus, overall, it offers the best prediction framework.

To show how our suggested learning model can offer confidence level with each prediction, we
present a few examples in Table 3.6. The first one is a mashup we predicted with a relatively large
error, and the second one is a mashup we predicted with a smaller error. The general observation
is that if we have a small variance, then we are more confident about the prediction, and vice versa.
For example, we predicted more accurately the second mashup, and the model confirms that fact
by showing a small variance for the prediction (i.e., a high confidence). On the other hand, our
prediction of the first mashup is more off as the model does not have enough historical data to
make a more accurate prediction, so the model presents a much higher variance which means it has

a low confidence in this prediction.

3.5.3 Feature Analysis

To show the performance boost when using our unique approach to construct feature space versus

simpler standard methods, we created an alternative feature space that uses word frequency matrix

CHAPTER 3. MODELING IMPLICIT USERS FEEDBACK 31

Table 3.6: Examples of the model’s estimated popularity (on a logarithmic scale) and confidence
level compared to the true mashup’s popularity. We can observe that the predicted values are close
to the true values, and that the behaviour of the model matches the intuition in that the lower

variance (i.e., higher confidence) maps to a more accurate model.

Mashup True Pop. Predicted Pop. Variance SD

Adult Or Not 8.4740 7.4677 0.3763 0.6134
QuoteRelish 6.9697 7.1060 0.2655 0.5152

Table 3.7: Comparing our unique approach to construct the feature space versus other standard
methods in terms of complexity and accuracy. We can observe that the proposed approach provides

a superior accuracy while using a significantly less number of features.

Approach ‘ #Features RMSE
Standard methods 10455 1.1046
Suggested approach 277 0.5545

to capture the role of the title and the description of the mashup, and a binary frequency matrix
to capture the role of the tags and APIs. The result can be seen on Table 3.7 where our approach
in constructing the feature space is not only offering a significantly smaller feature space, but also

a drastically better prediction accuracy compared to the frequency approach.

Furthermore, we show in Table 3.8 the added value of each suggested feature using different models

as follows:

e Base: Using the 100 topics generated from LDA, where each topic’s probability is replaced

with the calculated score (100 features).

+ Compositions: Using the previous model features and the binary matrix of compositions

generated from the Apriori algorithm as features (274 features).

+ API Score: Using the previous model features and the API score feature (275 features).

+ Lack of Nov.: Using the previous model features and the lack of novelty feature (276

features).

CHAPTER 3. MODELING IMPLICIT USERS FEEDBACK 32

Table 3.8: Measuring the incremental performance boost with each added set of features starting

with the LDA topics as a base, and then adding our features incrementally.

Model #Features RMSE
Base 100 0.6287
+ Compositions 274 0.5897
+ API Score 275 0.5742
+ Lack of Nov. 276 0.5688
+ Tag Score 277 0.5545

e + Tag Score: Using the previous model features and the tag score feature (277 features).

As we can see, the baseline is performing quite well as expected since the discovered LDA topics
are able to capture the offered functionality of the mashup, and their current score represent
their contribution towards the popularity. Nonetheless, each of our added features was still able
to improve the model, and collectively they improved the baseline model’s accuracy by roughly
12%. The compositions offered the biggest improvement, but it added a high complexity (174
new features). Whereas, the other three features were able to collectively add the same level of
improvement to the model but with drastically less added complexity which shows their significance.
Furthermore, we used random forest regression and lasso regression as well as our proposed bayesian
model to evaluate their importance to the model as features. We found that all three models picked
the tag score feature and the API score feature as the top two most important features which
confirms that they play a major role in the accuracy of the model. The models did not all agree
on the rank of the lack of novelty feature as our bayesian learning model suggested it was the 7th
most important feature, random forest as the 16th, and lasso as the 25th. We believe this is the
case because the lack of novelty feature is targeting a specific observation, and thus is used for
only a small subset of the mashups (roughly 16% in our dataset) which may not show an overall

significance, but should be critical for those relevant mashups.

CHAPTER 3. MODELING IMPLICIT USERS FEEDBACK 33

user world

e mashupwen histor=g park
cEOoVIdeo o' 5o tini Ladd
ch)xccsmap cu: E SBfish 2 kit

v 89000183 2tion Swildlif
g~ flickrapl > campground
© MUSIC news shanahanbirth

(Maps and Social Sharing) (Fishing and Wildlife)

Figure 3.5: The two discovered topics (i.e., functionalities). We can observe that the model was
able to capture the two main concepts behind the shown test mashup, in which users share fishing
information and locations. The first discovered topic shown on the left can be mapped to the
general concept of Maps and Social Sharing based on the observed terms (e.g., map, Twitter, share,
and user). The second discovered topic can be mapped to the general concept Fishing and Wildlife

based on observed terms (e.g., campground, park, outdoor, and fish).

3.6 Discussion

3.6.1 Insights that Supports Requirements Decisions

To address RQ4 which aims to investigate what kind of insight can we gain from the model to
support requirements decisions, we show a test mashup from our experiment in Table 3.9 where
the developer created a web app that shows nearby fishing locations on Google Maps. Also, the
web app allows users to post images and YouTube videos to share their experience. To evaluate
the test mashup, we need only textual description of the functionality as shown in Table 3.9, which
is expected to be known early-on. Given this information, here is the kind of insight the suggested

model would offer to support requirements decisions:

e First, we provide an estimated popularity with a low variance of 0.27 which indicates a high
confidence in the prediction. We can see that the model is quite accurate with only a 633 use

count difference between the true and predicted popularity.

e Second, as seen in Figure 3.5, two functionalities were discovered. The first (i.e., maps and
social sharing of images and videos) attracts a large audience as the functionality contribution
score is above the 90th percentile of all the discovered functionalities scores. Whereas, the

second (i.e., fishing and wildlife) attracts only a small audience as its score is below the 30th

CHAPTER 3. MODELING IMPLICIT USERS FEEDBACK 34

Table 3.9: Demonstrating a test mashup as an example of the information a software developer

would provide to the proposed model (input), and the design-phase insight he/she would recieve

(output).
’ Mashup’s Information ‘

Title Flyfishmap

Description User generated fly fishing
information using Google...

Tags Used #fishing #flyfishing ...

APIs used Google-maps, YouTube...

Mashup’s Design-Phase Popularity Insight ‘

True Popularity (Log) 7.4223 (i.e., 1673 use count)

Predicted Popularity (Log) 6.9475 (i.e., 1040 use count)

Popularity Range Low

Prediction Variance 0.27243

Func.#1 (Maps & Social Sharing) 25.3 (above 90th Percentile)

Func.#2 (Fishing & Wildlife) 3.26 (below 30th Percentile)

Lack of Novelty 1

Tags Contribution Score 4.04 (below 10th Percentile)

APIs Contribution Score 15.41 (above 90th Percentile)

Popular Combinations map (tag), YouTube (API),
Google-maps (API)

percentile.

e Third, the idea lacks the novelty as this functionality is already offered by an existing mashup

that has successfully captured the market.

e Fourth, the selected tags (all related to fishing) attract a small audience (i.e., users searching
for such functionality represent a small club) as the tags contribution score is below the 10th

percentile.

e Fifth, the selected APIs (i.e., Google-maps and YouTube) attract a large audience as the

APIs contribution score is above the 90th percentile of the APIs scores.

e Finally, the used combination of tag (maps) and APIs (YouTube and Google-maps) is a

CHAPTER 3. MODELING IMPLICIT USERS FEEDBACK 35

popular combination.

Given such insight, the developer is well-informed early-on of the estimated popularity, the esti-
mated audience for each component (i.e., strength /weakness), and the confidence in the estimation.
This estimation can be thought of as as measure for the wvalue of a feature. Based on the Stan-
dish group reports [25,26], among the factors related to the success/failure of projects are improper
management of expectations and poor understanding of the current user/market (i.e., project is not
needed). We believe such insight can help in this context as it provides insights into the current
user/market preferences, especially for requirements prioritization and validation. For example,
through the estimated value for a feature or specific functionality, we can prioritize one feature
over another, or postpone the release of a specific idea/feature to a more community appropriate
time. Moreover, through the analysis of the most successful apps and their used API/services,
we can recommend /suggest the use of specific popular APIs or service, which can be valuable for
effort estimation. It can help with determining both the implementation time and the potential
reliability of a new feature. Additionally, we can use it for requirements validation in the context of
acceptance testing, i.e., validate whether the finished product satisfies the business requirements.
if a business requirement (i.e., something the business needs to do or have in order to stay in
business) is to reach one million downloads within six months. The insight provided in the form of
estimated popularity can be used to tame expectations through quantifying the uncertainty around
the expected user base. Moreover, the explanation provided with each prediction can be utilized

as well to provide an additional valuable support to requirements decisions.

Chapter 4

Modeling Explicit Users Feedback

4.1 Introduction

In this chapter, we discuss the findings of our study and present our proposed Bayesian framework
that addresses previous work’s limitations while being more accurate, efficient, and maintainable
than the state of the art.

First, we provide an overview of the current literature in Section 4.2. We show that current research
efforts on this task fall under one of two directions: In the first direction, a classification model is
constructed to classify reviews into a predefined list of labels that is considered useful for software
developers (e.g., bug reports, feature requests, etc) as a way to automate the filtering process
[13,33,41,57,58,75,87,88]. However, it was found that assigning such general labels was not enough
to extract requirements, as you can easily find thousands of reviews that fall under one of those
labels, e.g., feature requests. Thus, a second direction with the goal of summarizing or grouping
together user reviews with similar topics for easier requirement extraction was established [11,22].
In this type of research, either a visualization technique is used to highlight the most frequent terms
used in those reviews and it is left to the developer to infer the requested feature(s), or a clustering
technique is used to group those reviews that discuss a single topic together, and then it is left
to the developer to analyze each cluster and make a list of the requested feature(s) . In a more
end-to-end research, both the classification and summarization tasks were attempted [27,73,76,99].
We align our work with this direction. However, unlike previous work where the classification and
summarization tasks were handled separately, we propose to merge the two tasks together in a

single learning process.

36

CHAPTER 4. MODELING EXPLICIT USERS FEEDBACK 37

Second, in Section 4.3 we discuss the two datasets that were used throughout this chapter for
experimentation and evaluation purposes. We provide an overview of the datasets, the process we

followed in preparing and labeling each of them, and a summary statistics of their main attributes.

Third, to address (RQ5) on minimizing information loss when filtering users feedback, we explore
the claim discussed in previous work [51,67] which indicates that when hierarchical relationships
exist between classification labels, then leveraging those relationships can improve the classification
accuracy. We studied the literature and found that hierarchy does exist between the predefined
requirement labels, e.g., feature requests and bug reports are all considered functional requirements.
Thus, we investigated the use of such relationships as a way to minimize information loss and boost
the recall in Section 4.4. We followed the technique suggested in [67] and evaluated the hierarchical
approach on multiple classifiers and multiple datasets. We found that we get an average of 33%
increase in the F1 measure when leveraging hierarchical relationships, mostly from a boost in
recall. Thus, the use of a hierarchical classification approach can greatly boost recall, which in turn
minimizes information loss. In addition, we highlight that using a Bayesian approach allows us to
use the top parent classifier’s variance provided with its predictive distribution as a way to keep
track of the hidden cost of false negatives. A high variance can indicate a lower confidence in our
top level classifier, which indicates a potential high information loss, whereas, a low variance can
indicate a higher confidence at the top filtering level, which should give us more confidence that

information loss is minimized.

Fourth, to address (RQg) on how can we improve the representation of users feedback to accom-
modate its unique language, we first discuss the challenge with representing explicit users feedback
in Section 4.5. We explain the short and noisy nature of app reviews due to the high amount of
misspelled and alternatively spelled words, and we discuss how the current proposed solutions in
the literature use manual steps to address these issues, which are difficult to create and maintain.
We then exploit neural network embeddings as a potential better alternative that addresses exist-
ing issues and provides better performance and maintainability. We found that the left-to-right
language modeling task (i.e., predicting the next missing word) that word embedding models such
as Word2Vec [65] and FastText [7] are trained on can group words together in a similar fashion to
what stemming and lemmatization can do when used on top of a traditional bag-of-words or TFIDF
representation. Additionally, we found that it can successfully group misspelled and alternatively
spelled words, which addresses a key limitation of previous approaches. Moreover, to build a
more context aware representation, we studied BERT(Bidirectional Encoder Representations from
Transformers) method of pre-training language representations [17], which is the current state of

the art. By using a pre-trained BERT model to generate embeddings, we can leverage the patterns

CHAPTER 4. MODELING EXPLICIT USERS FEEDBACK 38

it learned on syntax, semantics, structure, and language from training on billions of examples. We
found that embeddings generated from the pre-trained BERT can produce decent representations,
but they only reach their full potential if the model was fine-tuned on the specific downstream
task. We also found that the best representation that offers a balance between performance and
maintainability is the one that merges a TFIDF representation with embeddings generated from a
BERT model that is fine-tuned on the multi-class and multi-label requirements classification task

using the second-to-last average pooling strategy.

Finally, in Section 4.6, we address (RQ7) on the characteristics of a representative review and
whether we can accurately identify such reviews, and (RQg) on how accurately we can accomplish
the classification and summarization tasks using a single model compared to the state of the art. We
described the representativeness of reviews vary in terms of coverage (i.e., number of requirements
mentioned) and expressiveness (i.e., ease of requirement extraction). Additionally, we demonstrate
that our proposed Bayesian approach can capture 91.3% of the discussed requirement with only

19% of the dataset, i.e., reducing the human effort needed to extract the requirements by 80%.

We summarize our main contributions as follows:

e We discuss the information loss issue due to false negatives and showed how using a hierarchi-
cal classification approach can help boost the recall, i.e., minimize information loss, through

leveraging the implicit inter-class hierarchical relationship between the labels.

e We show that in addition to learning the same patterns as stemming and lemmatization,
embeddings generated from neural network models trained on the left-to-right language mod-
eling task can learn to group the misspelled and alternatively spelled terms that posed a

challenge for previous approaches.

e We show that embeddings generated from a fine-tuned BERT model using the second-to-last
average pooling strategy can create a space where app reviews with similar requirements are
placed closer together in terms of cosine similarity compared to the more common approaches

used to represent app reviews such as TFIDF.

e We found that the best representation for both the classification and summarization task is
achieved through merging a TFIDF representation with embeddings generated from a BERT
model that is fine-tuned on the multi-class and multi-label requirements classification task

using the second-to-last average pooling strategy.

e We expand the problem of requirements extraction from only classifying requirements using

CHAPTER 4. MODELING EXPLICIT USERS FEEDBACK 39

predefined labels to identifying the most representative subset of reviews for requirements

extraction, which aligns better with the original goal of requirements extraction.

e We propose an end-to-end Bayesian framework that can accomplish both the classification
and summarization task using a single model. We conducted comprehensive experiments to
evaluate our proposed Bayesian framework and showed that it can produce equal or better
results than the state of the art while addressing the issues of reliability and maintainability

of previous methods.

e We demonstrate that our proposed Bayesian approach outperforms the state of the art in
its ability to identify the most representative subset as it is able to capture 91.3% of the
discussed requirement with only 19% of the dataset, i.e., reducing the human effort needed

to extract the requirements by 80%.

4.2 Related Work

In this section, we summarize existing studies related to app reviews classification and /or summa-

rization.

4.2.1 Summarizing User Reviews

We can find several works with the goal of summarizing or visualizing the overall topics found in
user reviews. In [40] an approach to summarize the most discussed aspects of a product and the
opinions of users on them (i.e, positive or negative) is presented. In [11] a topic modeling techniques
is exploited to discover the topics found in the reviews along with the sentences that best describe
those topics. In [13] a clustering algorithm (DBSCAN) is used to group together similar reviews.
In [100], the authors proposed an information retrieval framework that pre-process the reviews and
put them in a knowledge database, and then given a set of developer’s selected keywords, their
framework would return the most relevant reviews that discuss the provided topics. In [22,27,76]
different visualization tools/techniques are presented. For example, in [76] an HTML tool that can
visualize the content of the reviews, e.g., terms plotted as a word cloud, is used. in [22,101] they
focused on providing an interface that summarizes and tracks the change in the volume of reviews
under specific topics between different versions to highlight abnormal changes, e.g., version 2 has

significantly higher bug reports than all other versions. In [96], the authors mine user opinions on

CHAPTER 4. MODELING EXPLICIT USERS FEEDBACK 40

APIs from user reviews, and provide a search engine to developers to utilize when searching for

opinions on APIs.

4.2.2 Classifying User Reviews

As for app reviews classification, in [13], the first attempt to classify app reviews into informative
and non-informative was conducted. The authors used a bag of words representation as it is
the case with many other studies as well [57,58,99]. In fact, the novel angles that are taken into
consideration with every approach is one interesting aspect of the related work. For example, in [99]
the authors included N-gram extraction in the creation of the bag of words representation to account
for context that require two or three words, e.g, not laggy. If we process that term separately, then
we wont’ understand the actual intention. In [57] the tense of the verb was incorporated into the
feature space as the authors argue that verbs in the past are usually associated with users reporting
bugs, whereas, verbs in the future are usually correlated with hope and requests for additions (i.e.,
feature requests). In [75], the authors claim that most reviews follow a specific linguistic patterns,
and that identifying those patterns can help with the classification task. Thus, they created 246
linguistic patterns that describe the general form in which a review would be in to fall under a
specific label, e.g., [someone] should add [something]. In [27] the bag of words representation is
replaced with a representation generated from parsing sentences as parsing trees and then traversing
the tree to construct the representation. The authors claim this approach can take word semantics
into consideration. In [87,88], the authors suggest to classify on the sentence level instead of the
review level to allow for multi-label classification. It is also worth mentioning that some studies
investigate connections beyond the classification of app reviews, e.g., in [73] the authors investigate

the possibility of linking user feedback to the source code components.

CHAPTER 4. MODELING EXPLICIT USERS FEEDBACK 41

4.3 Data Collection

Table 4.1: Statistics of the used datasets

Maalej Panichella

Feature Request 252 (7%) 391 (13%)
Bug Report 370 (10%) 271 (9%)
User Experience 607 (16%) 334 (11%)

Total Info 1229 (33%) 880 (30%)
Total Non-Info 2455 (67%) 2024 (70%)

Total Reviews 3684 2904

4.3.1 Datasets:

To address our research questions, we will report results on two real-world datasets that were
provided by previous research. The first is the Maalej dataset [57,58] where reviews were randomly
selected from both Apple and Google Play stores. The authors crawled over a million app reviews
and followed a sampling strategy with the goal of picking a stratified and a representative sample
(e.g., equal number of free and paid apps, equal number of iOS and Android app, etc). The second
is the Panichella dataset [76,87] where the authors favored an app specific sampling approach. The
dataset contains reviews of 17 apps coming from the Google Play, Microsoft, and Apple app stores.
Unfortunately, the ground truth was not provided for this dataset so will need to label this dataset
ourselves. Thus, we asked two teams of graduate students to label the dataset separately according
to a labelling guide that can be found in Appendix A. The guide follows closely the guidance of
the original paper. Once the two teams completed their labelling task, we compared the two labels
and went over all disagreements to make sure they receive the appropriate label. The statistics
of both datasets can be found in Table 4.1. For the Panichella dataset, the sum of the individual

labels is greater than the total informative labels as some reviews are assigned multiple labels.

4.3.2 Measuring Representativeness

Data Labeling: To identify the set of the most representative reviews for requirements extraction,

we need to first define what aspects and criteria we will use to evaluate each review for representa-

CHAPTER 4. MODELING EXPLICIT USERS FEEDBACK 42

tiveness, and then label the dataset accordingly. We define the most representative set of reviews
for requirements extraction as the set with the highest coverage, expressiveness, and endorsement.
First, the coverage of requirements measures the number of requirements captured by the se-
lected set of reviews. The more requirements captured by the selected set, the more representative
the set is considered. Second, the expressiveness of reviews describes the ease of requirement
extraction from each of the reviews in the selected set. A review that well describes a request/issue
with a developer friendly language is more useful than a review with a vaguely described content.
For example, a review that simply states a crash occurred is less useful for requirement extraction
than a review that describes what the user was doing when the crash occurred. Thus, the more

expressive the selected reviews, the more representative the set is considered.

To capture this intuition, we asked two Ph.D students to label each review with two labels as seen in
Table 4.2. The first label is requirement id(s), which contain a list of all the mentioned requirements
in a review. Creating this label is a two step process. The annotators would first need to establish
a unified list of all the discussed requirements for a given app, and then use that list to label each
review with a requirement id or more based on its content. We asked each annotator to create his
own list of requirements separately after going through the reviews, and then in a group meeting
we decided on the final set of requirements to be used for labeling. Once the list was decided, the
annotators started the labeling process separately. Once both completed the process, final labels
were assigned in a group discussion. Second, the level of expressiveness in a review. We decided on
four levels and we show examples of each in Table 4.2. Each review will be assigned a number from
one to four based on the level of expressiveness. Level one represents a non-informative or barely
readable review. Level two represents a review that is somewhat readable but does not provide
the minimum expected context for requirement extraction. Level three represents a review that
is readable and contains the minimum needed context for a single requirement extraction. Level
four represents a superstar review in the sense that it is readable and contains enough context for

multiple requirements extraction.

We found a substantial inter-rater agreement (kappa=0.87) between the annotators for the Panichella
dataset. However, we decided to exclude the Maalej dataset from this labeling effort because the
reviews in the Maalej dataset were randomly selected from the app store with the no connection to
the original app. This makes the labeling effort challenging as we need to know that the reviews
share the same context (i.e., same app) to assume that they are discussing the same requirement,
For example, if one review said “The UI button is not displaying properly” and another review said
“The button is cut off”, we cannot assume that they are talking about the same issue as they can

be talking about two completely different apps and two different issues. However, if we know that

CHAPTER 4. MODELING EXPLICIT USERS FEEDBACK 43

Table 4.2: Examples of real-world reviews from the Panichella dataset and how they were labeled
in terms of representativeness. First column is the list of requirement id(s) that were mentioned
in the review. E.g., Requirement ID (4) refers to users requesting additional login options, and
Requirement ID (1) refers to a review process requiring from all users to have a specific number
of friends on Facebook to use the app. Second column is level of Expressiveness, which is a value

between 1 to 4. The least expressive is labeled with 1 and most expressive is labeled with 4.

Review ‘ Req. Id(s) ‘ Expressiveness

Example 1: Reviews for Bling (Social Dating Application)

Blinq Okay ‘ NA ‘ 1
Login Facebook? Nope. App immediately deleted ‘ 4 ‘ 2
FB and without FB can Blinq not work?? There must 4 3

also be an alternative logon options!

Facebook and many data are required There is no way 14 4
login without FB account and admin permission... |
had ... create account but now I can not get access

because I have too few contacts ... 17

Example 2: Reviews for Lifelog (Health and Fitness Application)

Any chance of an export option so I can open the data 1086 3

from lifelog in Excel and analyse it? ...

Still experiencing .. fonts problem. Cant see text. 1068 ‘ 2

I would like ... to refresh and load my activity ... 1079 3

without having to connect to the network...

I like to suggest the following: 1. Allow users to down- | 1068, 1086, 1079 4
load their tracking data... 2.have the app...work offline
w /o needing to sync all time...3. More options to cus-
tomize the font, color, appearance.. the latest copy of
lifelog on my Note 4 Samsung has a transparent font

in sub menus .. I cant see anything!)

the two reviews are referring to the same app, then we can assume that they potentially refer to

CHAPTER 4. MODELING EXPLICIT USERS FEEDBACK

the same issue.

44

CHAPTER 4. MODELING EXPLICIT USERS FEEDBACK 45

Non-
informative

Non-
functional

Information
Seeking

Feature
Request

‘4——) Performance

Figure 4.1: The hierarchical structure in app reviews classes

4.4 Minimizing Information Loss of False Negatives

In this section, we present our effort in addressing (RQs)on minimizing information loss when
filtering users feedback, i.e., minimizing false negatives. We first first discuss the limitation of cur-
rent approaches. We then explain our proposed approach for minimizing information loss through
the use of a hierarchical classification approach. Finally, we evaluate our proposed approach using
multiple baselines, classifiers, and datasets on our specific downstream task to determine how much

value it adds compared to other approaches.

4.4.1 Simple but Effective: Flat versus Hierarchical Classification

We observed that all the previous work has approached the problem as a flat classification problem.
In [13], a binary classifier that determines whether an app review is informative or non-informative
was used, introducing the first two types of classes. A follow up work [58] further studied the app
reviews and introduced a new set of labels rating, bug reports, feature requests, and user experience
reviews. A more recent study used feedback from the industry to further break down the user
experience label into reviews reporting security concerns, energy concerns, etc. This increasing

number of requirement labels shows the increasing complexity and the level of information that

CHAPTER 4. MODELING EXPLICIT USERS FEEDBACK 46

can be found in reviews, however, we observed two missing aspects. First, there seems to be a
hierarchical structure between the predefined set of labels that previous work did not attempt to
leverage. Second, while there’s a strong emphasis on attempting to classify reviews under each
label, there is no emphasis on the level of information loss when working on a problem with many
labels. In particular, when all the binary classifiers provide a negative class to a data point, i.e.,
it is not assigned any class, then it is assumed to be non-informative and filtered out. If this
data point is actually informative, then we lost the information it provides in the process, i,e., a
false negative. We believe the amount of information loss as part of the automation process of
requirements extraction should always be considered and emphasised to ease developers concerns
on incorrectly filtering out informative reviews. However, this was not addressed in previous work.

We can address both points through the use of a hierarchical classification approach.

Exploiting the hierarchical relationship: In traditional flat classification the hierarchical rela-
tionship between the classes is ignored. For example, a binary flat classifier would attempt to dis-
tinguish app reviews with feature requests from all other classes, i.e., reviews with non-informative
content, reviews with bug reports, etc. This ignores the fact that reviews with feature requests
and/or bug reports are all considered as informative reviews, i.e., they share a common parent
class. Taking this information into consideration when training the classifier can help us build a
better classifier that attempts to first distinguish the informative reviews from the non-informative
reviews as they share common characteristics, and then further classify those informative reviews
into their appropriate class. Moreover, using this top-down classification strategy, we can achieve
a shorter overall training/testing time as we are filtering down the number of training examples
with each level, i.e., classes further down the hierarchical relationship tree would train on a subset

of the original training examples.

We argue that based on the analysis of previous work, it is clear that the classes of app reviews can
be organized into a fairly complex hierarchy as shown in Figure 4.1. It was reported in multiple
studies [72] that the informative subset of app reviews seem to represent 30%-35% at max of
the whole corpus. If we break down the informative subset further into multiple classes, we can
observe that some classes can be as rare as 5%-10%. As such, using traditional flat classification will
create classifiers dominated by the negative class, hence, will not be able to accurately discriminate
between the two classes. We believe that this limitation can be addressed when a hierarchical top

down classification approach is used. We aim to address the following research question:

e RQsa: Do we gain any app reviews prediction accuracy from leveraging the existing hierar-

chical relationships that exist between the predefined requirements labels?

CHAPTER 4. MODELING EXPLICIT USERS FEEDBACK 47

4.4.2 FEvaluation and Discussion

In this section, we present our evaluation and discuss our results for our proposed approach.

RQs5a: Do we gain any app reviews prediction accuracy from leveraging the existing

hierarchical relationships that exist between the predefined requirements labels?

Experiment Setup: To evaluate the model’s accuracy gained from leveraging the hierarchical
relationship embedded within the labels, we will use a simple feature space consisting of a bag-of-
words representation with term frequency—inverse document frequency (TF-IDF) [82], i.e., the most
standard representation. For this evaluation, we will not attempt to add any additional features
such as meta-data features (e.g., rating, review length, etc) as we want to focus on the added benefit
of hierarchical versus flat app reviews classification. Moreover, to make sure the results are not due
to a specific classifier or to a specific dataset, we will evaluate on both the Maalej and Panichella
datasets, and on four different classifiers: Logistic Regression (L1 Regularization), Random Forest
(200 trees), Support Vector Machines (Linear Kernel), Relevant Vector Machines (Linear Kernel),
and Naive Bayes (Multinomial). However, as we are limited to the three mutual labels (bug report,
feature request, user experience) provided with those datasets, we will build the experiment around
them. Finally, to make sure both the flat and hierarchical classifiers were exposed to the same set
of reviews during training and testing, we used a single train/test split of 80/20 for both. For
flat classification, as shown in Figure 4.2(a), we are training three one-vs-rest binary classifiers,
one classifier per label (e.g., bug report or not). We prefer to use binary classifiers instead of a
multi-class classifier as this setup allows for multi-label classification. This means an app review
can be given a single or multiple labels. For example, an app review with multiple labels from the
Panichella dataset is “This is a great app for keeping track of weight ... there should be a way to
turn off daily reminder ... also I notice it keeps changing the year I was born...“. However, using
this setup, it is also possible for an app review not to be assigned any of the three classes. For
that purpose, in Figure 4.2(a) we show a non-informative node that captures all such cases. For
hierarchical classification, as shown in Figure 4.2(b), we use a top-down approach for training and
classification purpose. At the first level, we are using a binary classifier that classifies all app reviews
as either informative or non-informative, and on the second level we use three one-vs-rest binary
classifiers that attempt to further classify what passes as informative under one or none of the
three classes (i.e., bug report, feature request, user experience). Thus, in hierarchical classification
we are training one more classifier than flat classification. This may seem as added complexity,

however, the top down approach actually has a better overall computational cost because only the

CHAPTER 4. MODELING EXPLICIT USERS FEEDBACK 48

informative classifier is trained on all the training examples, the remaining three classifiers train
only on the informative subset. For example, if we had a training data set of 10k app reviews,
3k of those are informative, then the first level classifier will train on all 10k app reviews, but the
second level will only have to train on the 3k app reviews. Whereas, in flat classification, each of

the classifiers would need to trained on the complete 10k dataset.

Feature User Bug Report Feature User
Request Experience g Rep Request Experience

Bug Report

(a) Flat Classification (b) Hierarchical Classification

Figure 4.2: Evaluation of flat and hierarchical app reviews classification. On the left, we have three
binary classifiers, one for each label. In this setting, each classifier is working on its own. On the
right, we have four binary classifiers where the parent classifier identifies informative reviews, and
then passes the informative subset to the second level where we have the three children binary
classifiers, one for each label. In this setting, the children classifiers are leveraging the parent’s

classifiers collective knowledge.

Experiment Results: We report the average AUC computed from precision and recall (AUCpg),
macro F1 (MF}), and macro recall (MR) in table 4.4. We can make a couple of observation. First,
Naive Bayes seem to outperform the other classifiers when a simple bag of words model is used,
which was also observed in a previous study [58], because a term count representation aligns
perfectly with how Naive Bayes works. Second, overall, formulating the problem using hierarchical
classification increases the model’s accuracy, especially with recall (i.e., increases the chance that
we do not miss any informative app reviews). On Maalej dataset, we observed on average a 8.4%
better AUCpg, 49.8% better F1 measure, and 108% better recall. Similarly on Panichella dataset
we observed 13% better AUCpg, 17% better F1, and 33% better recall. To better understand
the results, we analyzed the performance of Random Forest on the Panichella dataset where the
recall had an improvement of 61%. It’s important to mention that in app reviews classification,

the ability to label all existing informative reviews correctly (i.e., recall) is more important than

CHAPTER 4. MODELING EXPLICIT USERS FEEDBACK 49

Table 4.3: Classification results of flat and hierarchical app review classifiers on Maalej Dataset

Classifier ‘ Flat Approach ‘ Hierarchical Approach
|AUCpr MF, MR | AUCpr MF MR
Logistic Reg. 0.349 0.369 0.381 0.393 0.433 0.562
(+12%) (+17%) (+47%)
Random Forest | 0.399 0.195 0.136 0.433 0.531 0.603
(+8%) (+172%) (+343%)
SVM 0.346 0.358 0.385 0.353 0.423 0.561
(+2%) (+18%) (+45%)
Naive Bayes 0.458 0.474 0.529 0.497 0.507 0.623
(+8%) (+7%) (+17%)
RVM 0.459 0.375 0.309 0.514 0.505 0.591
(+12%) (4+35%) (+91%)

Table 4.4: Classification results of flat and hierarchical app review classifiers on Panichella Dataset

Classifier ‘ Flat Approach ‘ Hierarchical Approach
| AUCpr MF, MR | AUCpr MF MR
Logistic Reg. 0.622 0.599 0.594 0.699 0.681 0.731
(+12%) (+13%) (+23%)
Random Forest | 0.739 0.541 0.428 0.768 0.699 0.692
(+4%) (+29%) (+61%)
SVM 0.482 0.523 0.572 0.625 0.617 0.701
(+30%) (+17%) (+22%)
Naive Bayes 0.681 0.630 0.624 0.768 0.705 0.736
(+13%) (+10%) (+17%)
RVM 0.686 0.591 0.512 0.734 0.702 0.747
(+7%) (+18%) (+45%)

mis-classifying a few non-informative reviews as informative (i.e., precision) because all reviews
labelled as non-informative are usually disregarded (i.e., feedback would be lost with low recall).

Thus, this significant improvement on the recall when using a hierarchical approach is a perfect

CHAPTER 4. MODELING EXPLICIT USERS FEEDBACK 50

match with the app reviews classification problem, and such would be our focus in this section.

Table 4.5: Analyzing Random Forest: The flat vs. hierarchical classifier on the Panichella dataset.

Type Informative | Feature Bug Report | User Experience
Request
‘ Recall Measure
Flat | 0517 | 0.666 | 0.385 | 0.145
Hierarchical | 0.727 | 0.831 | 0.682 | 0.526

We report in Table 4.5 the recall of each classifier. In flat classification, we can observe that the
classifier’s ability to correctly classify all the bug report and user experience instances is quite
poor. As we believe the bug report is more a critical category, we further investigated the instances
and how they were labelled in both classifiers as shown in Figure 4.3. In our experiment, the
testing sample had 52 app reviews with bug reports. In the case of flat classification, we clearly
observe that the classifier missed 32 of the bug reports (62%). However, the hierarchical classifier
mislabelled 8 bug reports out of the 52 as non-informative, and mislabeled 14 bug reports out of
the 44 informative reviews as other type of informative reviews. Overall, the classifier mislabelled
42% of the bug reports, a much better recall than the flat classifier. Upon further checking, we can
observe that the first level performance in the hierarchical classifier is excellent as we were able to
capture 85% of the bug reports as informative reviews. However, the second level performance was
not ideal (i.e., missed 14 out of 44), but we can argue that it is still better than the flat classifier as
we were still able to label those app reviews as informative, i.e., they were not completely missed,

but were incorrectly classified as other type of informative reviews.

We credit the hierarchical classifier better performance to two main factors. First, it is not affected
as much by the class imbalance as the flat classifier. In the case of flat classification, the frequency
of each class is dominated by the negative class, e.g., the bug report classifier had 91% instance
of the negative class as it would need to distinguish itself from the non-informative and other
informative classes which is quite challenging. However, in hierarchical classification, the first
level uses the combined knowledge from all three classes to first filter out informative from non-
informative app reviews, which is an easier task, i.e., due to the different nature of non-informative
reviews from informative and due to having a much higher positive class frequency. Second, we
observed that, e.g., the bug report classifier can distinguish itself better from other feature request

and user experience reviews (i.e., informative reviews) when non-informative reviews are removed,

CHAPTER 4. MODELING EXPLICIT USERS FEEDBACK

Given 52 reviews with bug reports

Classifier 1

Feature User
Request Experience

Bug Report

20 classified as bug reports
30 discarded as non-informative

(a) Flat Classification

Given 52 reviews with bug reports

Classifier 1

44 classified|as informative
8 discarded as non-informative

Classjfier 2

User
Experience

Feature
Request

Bug Report

30 classified as bug reports
14 remained labeled as informative w/o a subclass

(b) Hierarchical Classification

ol

Figure 4.3: Given 52 app reviews with bug reports, how were they classified in flat vs hierarchical?

We can observe that on the flat classifier we were able to identify only 20 out of the 52 existing

bug reports, i.e., we captured only 38% of the information on reported issues/bugs. On the other

hand, with a hierarchical classifier, were able to capture 44 out of the existing 52 reviews with bug

reports as informative using the parent classifier, i.e., we captured 85% of the reported issues/bugs,

which is a significant minimization of the information loss. Furthermore, using the child classifier,

we labeled 30 out of the 44 informative reviews correctly as bug reports. The remaining 14 reviews

received an informative label, but did not receive any subclass.

which is what the hierarchical top-down classification is inherently doing, i.e., leveraging hierarchical

structure.

CHAPTER 4. MODELING EXPLICIT USERS FEEDBACK 52

4.5 Representing Explicit Users Feedback

In this section, we present our effort in addressing (RQg) on how can we improve the representation
of users feedback to accommodate its unique language. We first first discuss the challenges and
limitation of current approaches in representing explicit users feedback. We then explain our
proposed approach for constructing a representation that would address current limitations and
provide better model performance on our specific task. Next, we discuss the details of how we
trained and implemented our proposed approach. Finally, we evaluate our proposed representation
using multiple baselines, classifiers, and datasets on our specific downstream task to determine how

much value it adds compared to other approaches.

4.5.1 The Short and Noisy Nature of Explicit Feedback

It was observed in [58] that classifying the reviews coming from the iOS app store was significantly
more accurate than those coming from the Android store. They attribute this difference to the
language and vocabulary difference from those two app stores. They claim that the iOS store reviews
were less noisy (i.e., had less typos) and used a much more homogeneous vocabulary of terms. This
observation highlights the effect of the noise found in user reviews on the classification task and
the impact it has on the learning task. In [100], this observation was studied further as the authors
also highlighted and described the observation that app reviews suffer from a high percentage of
typos (misspelled words), acronyms, and abbreviations. They performed a preliminary analysis
of 300,000 reviews and compared their textual content against an English dictionary of 150,000
common words, and found that a large portion of the used words in app reviews do not match
any words in the English dictionary, i.e., due to abbreviations and typos. Having such high noise
and unique language (e.g., wait is written as w8) creates an issue for traditional data mining
techniques that relies on stemming and dictionary creation as both wait and w8 will still exist as
two unique different words. They hypothesized that this observation might be due to the fact that
reviews are written using mobile devices which lack a physical keyboard, hence, it is more likely
to have typos, acronyms, and abbreviations. To overcome this issue, the authors in [100] manually
created a custom dictionary that attempts to replace the most frequent out-of-dictionary words
with their dictionary-equivalent (e.g., replace exelent with excellent). Moreover, in [27], a similar
observation was made, and the authors manually constructed a collection of 60 different typos
and contractions, and replaced them using regular expression. We have observed a similar pattern
of noise with app reviews where a large portion of words in the post-processing and stemming

dictionary seem to represent the same word but written differently due to misspelled words (e.g.,

CHAPTER 4. MODELING EXPLICIT USERS FEEDBACK 93

fantastic vs fantastick) or alternatively spelled words either for abbreviations purposes (e.g., thanks
vs thx), or to represent a stronger emotion, (e.g., loved vs loooved). In Table 4.6, we show a few
examples. We believe this might be more common in app reviews than in other forms of social
media (e.g., Tweets) because of the difference in public exposure. People tend to be more conscious
about what they write on their social media profiles (e.g., Twitter, Facebook) as that content is
shared with their circle of family and friends, which is not the case with app reviews. Thus, people

put less effort into checking their review for grammar or spelling mistakes. We agree with prior work

Table 4.6: Examples of misspelled words or alternatively spelled words

Term Observed noise

amazing amaazing, amaaazing, amassing, amazeng

thanks thx, thanx, tx, tnx, 10x, thnx, ty

wait wt, w8, waait, w8t

awesome awasoIne, awesolneeee, awsome, owesolne, asssoine

love lov, luv, lovve, looove, loveee

because bc, b/c, cuz, coz, bez, caus

that merging misspelled or alternatively spelled words would improve the textual representation
and the model’s performance overall. However, we argue that using a manually created custom

dictionary would be too difficult to create and maintain overtime.

CHAPTER 4. MODELING EXPLICIT USERS FEEDBACK o4

4.5.2 Proposed Representation

It was shown in previous literature [58] that most of the accuracy comes from the textual repre-
sentation, i.e., bag-of-words or other representations that builds upon the text of the review. This
highlights the inherent valuable information that exist in the text of the review. As such, any is-
sues that exist with textual representation can hinder any model, and vice versa, any improvement
that can help better represent such information would be valuable. We studied how previous work
created a representation for the textual content of the users feedback and found that most applied
traditional text preprocessing techniques that is used in data mining to prepare the text, i.e., stem-
ming or lemmatization, and then used a bag-of-words representation or a TFIDF representation.
While this is a reasonable proof-of-concept representation, it comes with many limitations. For
example, it does not capture word semantics, structure, or context, which is is an important aspect

due to the unique and noisy nature of explicit users feedback.

In recent years, embeddings generated from neural network models revolutionized the natural lan-
guage processing (NLP) space. For example, the word2vec [65], the GloVe [79], and the FastText [7]
are all techniques that learn representations from training on a left-to-right language modeling task
(i.e., predicting the next missing word) over millions of examples. The assumption is that the final
representation learns word semantics and meaning. These techniques are built on the notion that
words with similar semantic meaning will have the same set of words around them. For example,
the words love and like are used in similar manners, i.e., I love that app and [like that app. As
a result, they would be closely placed in the embedded space as they share a similar semantic

meaning.

Following up on this work, researchers started expanding on neural network architectures to enrich
the embeddings and they had great success. The most notable being the Transformer’s architecture
[98], where the authors introduced the attention mechanism where certain tokens are emphasised
more than others tokens during the training instead of giving all tokens in a sentence the same level
of attention. Additionally, the language modeling task was expanded from a left-to-right modeling
task to a bidirectional masked language modeling task. The most successful Transformer-based
model is BERT(Bidirectional Encoder Representations from Transformers) [17], which we believe

to be the current state of the art.

Leveraging Embedded Representations: Traditional text preprocessing techniques such as
stemming/lemmatization are powerful techniques used to merge words with similar meaning to-

gether, but they suffer from out of dictionary terms that are either completely new terms, mis-

CHAPTER 4. MODELING EXPLICIT USERS FEEDBACK 95

spelled, or alternatively spelled terms, which are present heavily in online users feedback. This can
greatly affect the representation and the pattern learning of machine learning models. Alternatively,
embeddings generated from neural network models trained on masked language modeling (i.e., pre-
dict the missing word) claim to learn many things on language modeling, one of which is word
semantics. We propose to study whether such approaches complement or replace the traditional
stemming /lemmatization techniques (i.e., do they learn similar or different patterns). Additionally,
whether they can address the issues of the noisy and unique language used in online users feed-
back. Moreover, whether they provide better contextual understanding of such short text that is
crucial for distinguishing feedback with different requirements/topics. As a result, we propose to
exploit neural network embeddings as a potential better alternative that addresses existing issues
and provides better performance and maintainability through the analysis of the following research

questions:

e RQga: Traditional text preprocessing techniques such as stemming/lemmatization are used
to merge words with similar meaning together, does the masked language modeling approach

complement or replace these techniques (i.e., do they learn similar or different patterns)?

e RQgb: Can embeddings trained on masked language modeling provide a better representation
for grouping reviews with similar requirements (i.e., provide a representation with a better

context understanding)?

e RQgc: What is the best representation for our specific classification and summarization tasks

that offers best balance between performance and maintainability?

4.5.3 Training a Word Embedding Representation

To address RQga, we need to investigate the patterns learned using the MLM objective and whether
it addresses the limitations we discussed. As such, we looked at word embedding techniques and
found the most prominent to be the Facebook FastText model [7] as it is not only trained using
the MLM objective, but it also expanded previous approaches in that it trains on tokens generated
from subwords, which allows it to generate embeddings even to never-seen-before terms. In this
subsection, we will discuss the training process used to create the word embedding model used in

our experiment.

We trained a FastText [7] model on 1,673,672 app reviews collected from [77] and [24]. First, the

training method of either continuous bag of words or skip-gram. We selected skip-gram because

CHAPTER 4. MODELING EXPLICIT USERS FEEDBACK o6

Second, the vector’s length. The larger the vector’s length, the larger the information it can
capture, and the larger the training data needs to be. A popular choice for length is a value between
100 and 300. In our analysis, we observed that as we increase the vector’s length beyond 100, the
cosine similarity between words increases, and the performance on the downstream task decreases.
Thus, we found a vector of length 100 is a good choice for our case. Third, the range of size for
subwords. A popular choice is 3 and 6. In our own analysis, we experimented with a few different
ranges, but we did not observe a difference in the downstream task. we found the 3 to 6 range to

offer a balance between performance and training time.

4.5.4 Adapting the Bidirectional Encoder Representation of BERT

To address RQgb and RQgc, we need to investigate how to best leverage the success with transfer
learning and the effect of using a bidirectional masked language objective (MLM) with a Next
Sentence Prediction (NSP) learning objective on providing better context understanding. For that
purpose, we reviewed the current state of the art approaches that can help in accomplishing this
task and determined that BERT [17] is the best choice. In this subsection, we will discuss the
process we used to exploit BERT for the purpose of generating the best sentence embeddings for

our specific problem.

To generate the embeddings, we can directly use BERT’s pre-trained model, which was trained
on billions of sentences from a large books corpus and a Wikipedia’s corpus. In such setting, the
embeddings are expected to provide the best generalization. However, the original BERT paper [17]
suggested that a fine-tuning of the model on the downstream task or a related task can improve the
performance. They proposed to fine-tune the pre-trained BERT model by attaching a classification
layer with a softmax activation function at the end of the architecture, and then train the model
on the downstream task. Once training is done, then sentence embeddings can be extracted from
the network based on the selected strategy of pooling, e.g., averaging across all transformer layers.
This approach is not expected to drastically change the embeddings, but it is expected to fine-
tune it enough for a measurable improvement on the downstream task. Additionally, the authors
in [83] suggested that fine-tuning the pre-trained BERT model using a Siamese and triplet network
structures that train on learning similarity between sentences can generate sentence embedding
vectors that are richer and more appropriate for sentence similarity comparisons within a vector
space. This fine-tuning approach is in particular interesting as we want the selected representation

to help us in grouping reviews with similar requirements together.

We evaluated multiple options for the purpose of exploiting the best way to use BERT for our

CHAPTER 4. MODELING EXPLICIT USERS FEEDBACK o7

specific problem as follows: First, a pooling strategy, i.e., the embeddings extraction strategy.
The authors of the original BERT paper [17] experimented with multiple strategies. For example,
using embeddings from the last hidden layer only, or from the concatenation of the last four layers,
or from the sum of the twelve hidden layers, etc. The found that all were reasonable ways to
extract the embeddings, but it turns out using embeddings extracted from the layers in the first
half of the architecture only (e.g., the first hidden layer) produced inferior result compared to using
embeddings extracted from the second half of the architecture (e.g., last 4 hidden layers). Overall,
they reported the strategy that produced the best results for their task was extracting embeddings
from the last four hidden layers. Following up on their a work, a more in-depth analysis on [108]
found that different layers capture different information. The first few layers seem to capture low
level information and might be too noisy on their own, whereas, the last few layers capture a higher
level of information that is producing better general representations. The author recommended
approach is extracting embeddings from the second-to-last layer. This is because the last layer
is too close to the training output which makes its representation biased to the training targets.
Therefore, to identify the best pooling strategy for our specific problem, we compared embeddings

generated from the following strategies:

e The second-to-last Layer (2TL): We used the second-to-last hidden layer to extract an

embedding per token, and then we averaged across all tokens to represent a document.

e The Last Four Layers (4L-AVG): We averaged the last four hidden layers to extract an

embedding per token, and then we averaged across all tokens to represent a document.

e The 12 Layers (12L-AVG): We averaged over all the 12 layers to extract an embedding

per token, and then we averaged across all tokens to represent a document.

Second, the fine-tuning strategy. It is not clear what is the affect of using different downstream
tasks to fine-tune BERT on the final embeddings representation. As such, we created the following

models to evaluate whether a difference exists:

e BERT-BASE: The pre-trained BERT model with no modification.

e BERT-INFO: The pre-trained BERT model fine-tuned on the downstream task of informa-

tive binary classification (i.e., review is informative or not).

¢ BERT-MCML: The pre-trained BERT model fine-tuned on the downstream task of multi-
class and multi-label classification of the three classes feature request, bug report, and user

experience.

CHAPTER 4. MODELING EXPLICIT USERS FEEDBACK o8

e BERT-SB: The pre-trained BERT model fine-tuned using Siamese and triplet network struc-
tures with a pooling operation added to the output of BERT to derive a fixed-sized sentence
embedding vector. This fine-tuning model is based on [83] work in trying to build a richer
sentence embeddings that is more appropriate for sentence similarity comparisons within a

vector space.

We evaluated the different strategies on a multi-class multi-label requirements classification setup
using multiple different classifiers. The results for the Panichella dataset are shown in Figure 4.4.
We found that extracting embeddings from the second-to-last layer showed between 2% to 4%
improvement over embeddings extracted from the last four hidden layers or the full 12 hidden
layers. Also, we present our results for evaluating the best fine-tuning strategy in Figure 4.5. We
found that fine-tuning BERT on the specific downstream task provided the best result ad BERT-
MCML consistently provided the best performance. We observed as well that while BERT-SB
provided better results than BERT-BASE, it is far behind BERT-MCML. This concludes that
using BERT-MCML with a 2TL pooling strategy provides the best BERT representation for our
specific task.

B 12L-AVG W 2TL B 4L-AVG B 12L-AVG W 2TL B 4L-AVG

64 7
63 76
62 75
74

61 73
60 72
59 71
a 58 70
57 169
8 56 8 o8
67

< <66
54 65
53 64
63

52 62
51 61
50 60

Logistic Reg. Random Forest Logistic Reg. Random Forest
(a) BERT-BASE (b) BERT-MCML

Figure 4.4: Evaluating the best pooling strategy on the Panichella dataset. We extracted embed-
dings from two different BERT models and evaluated the embeddings on multiple classifiers in
a multi-label multi-class setup of requirements classification. We can see that the 2TL strategy

consistently provided better results.

CHAPTER 4. MODELING EXPLICIT USERS FEEDBACK 99

B BERT-BASE M BERT-INFO M BERT-MCML B BERT-SB

Logistic Reg. Random Forest RVM SVM

Figure 4.5: Evaluating the best fine-tuning strategy on the Panichella dataset. We extracted the
embeddings using the 2TL pooling strategy, which we determined to be the best, and evaluated
the classifiers on a multi-label multi-class setup of requirements classification. We can see that
fine-tuning BERT on the MCML task consistently provided better results, whereas, the original
BERT-BASE with no fine-tuning is the least performing model.

4.5.5 Evaluation and Discussion

In this section, we conduct our evaluation and discuss the results for our proposed approach. To

address RQgb and RQgc, we will compare the following representations and their mixture:

e TFIDF: We preprocessed the text using standard data mining techniques (i.e., removing
stop words, applying lemmatization) and then created a representation using TFIDF with
a minimum term frequency of five. We included bigrams and trigrams. This representation
should capture all the main terms and their importance based on their frequency in the

corpus.

e LDA: We used the TFIDF representation created from the last step to generate a repre-
sentation using LDA. We set the number of topics to 85, which we determined using cross
validation. This representation should provide a higher level representation that captures the

main discussed topics instead of focusing on specific terms.

CHAPTER 4. MODELING EXPLICIT USERS FEEDBACK 60

e FT: We generated embeddings from the FastText model we trained in section 4.5.3. We av-
eraged embeddings to represent a review. This representation should also provide a high level
representation that captures the main discussed topics, but it should be better at handling
misspelled and alternatively spelled terms that TFIDF and LDA.

e BERT: We generated embeddings from the BERT-MCML model we trained in section 4.5.4.
We use embeddings from the second-to-last layer and averaged embeddings to represent a
review. This representation should have the main advantages of the FastText model but with

a richer sentence context understanding.

Metric completeness ~ homogeneity V_Measure Metric completeness ~ homogeneity V_Measure

1.00 e o S ¢ 1.00 P
@ ——= = ® b - &8 —= =
g 0 g
0.75 Z 0.75 oy
, / /
2 , 2 /
5050 5050 @)
2]]
/
0.25 0.25
0.00 0.00
6 b & A H B H O H O 6 b & A H B H O H O
NSNS SN S N NSNS SN S N
Cosine Threshold Cosine Threshold
(a) Comparison w/ Stemming (b) Comparison w/ Lemmatization

Figure 4.6: A comparison between the merged terms using the traditional methods of Stemming
and Lemmatization versus the merged terms using the embeddings. The plots show the score for

completeness, homogeneity, and vimeasure across various cosine similarity thresholds.

RQga:Traditional text preprocessing techniques such as stemming/lemmatization are
used to merge words with similar meaning together, does the masked language mod-
eling approach complement or replace these techniques (i.e., do they learn similar or

different patterns)?

Experiment Setup: To address this research question, we will use embeddings generated from
the model that we trained on a large corpus of app reviews in Section 4.5.3. We will treat both

techniques as a way to merge words with similar meaning together and compare the two lists.

CHAPTER 4. MODELING EXPLICIT USERS FEEDBACK 61

We will first create a shared dictionary of the original unique words. Next, we will apply stem-
ming/lemmatization to each term and consider those terms that share the same base term as a
merged set. Every term in the merged set will be assigned the same cluster id. For example, in a
traditional preprocessing setting, the words waits, waited, waiting would be replaced with the base
term wait, i.e, we can say the four terms were merged together. We want to measure how closely
those terms would be placed in the embedded space to determine whether embeddings would clus-
ter such terms together (i.e., waits, waited, waiting would be clustered with the base term wait).
Specifically, for each unique term in our dictionary, we query our embedded space for its location
and create a cluster of the term and all the terms that exist within a given ¢ cosine similarity. As
such, we would have a cluster id assigned for each term. We will then compare the two sets and
evaluate their similarity using the standard clustering evaluation metrics [86] of Homogeneity (each
cluster consists of a single class), Completeness (observations that belong to the same class ended

up being in the same cluster), and V-measure (harmonic mean between the two).

Experiment Results: Analyzing Figure 4.6, we can observe that the behaviour with stemming
and lemmatization is closely similar. Evaluating completeness, we can observe that its score is
mostly high and is decreasing as we increase the value for the threshold ¢t. Whereas, homogeneity
starts low and increases as we increase threshold ¢. This makes sense as with a low threshold ¢ the
embededd space clusters are expected to be big and they become smaller and more concise as we
increase the cosine similarity threshold value. We can also observe that using a cosine similarity
threshold of 0.8 offers the best balance between all three metrics. At t=0.8, we get a score of
roughly 94% across all three metrics. Therefore, we can conclude based on the results that the
clusters constructed from the embedded space closely positioned all the terms that stemming and
lemmatization grouped together. Thus, we can say that it learned all the patterns that stemming

and lemmatization encapsulate.

Thanks Love Lag Bug
Thankyou Loove Lagging Issue
Thank Luv Laggy Bugs
Thanx Lovely Lags Problem
Thx Fantastic Glitchy Glitch
Cheers superb Slow Issues

Figure 4.7: Showing examples of terms in the embedded space and all the terms around it within
a 0.8 cosine distance. We can observe that we were able to capture misspelled and alternatively

spelled terms.

Furthermore, we investigated the content of the clusters and show examples in Figure 4.7. We can

CHAPTER 4. MODELING EXPLICIT USERS FEEDBACK 62

observe that the embedded space captured more than the terms merged with traditional stemming
and lemmatization approaches to include the misspelled and alternatively spelled terms as well,
which posed a challenge to the traditional approach. Thus, we concluded that the embedded
space is a suprior approach that not only can replace the traditional approaches of stemming and

lemmatization, but also address the limitation of misspelled and alternatively spelled terms.

RQgb: Can embeddings trained on masked language modeling provide a better repre-
sentation for grouping reviews with similar requirements (i.e., provide a representation

with a better context understanding)?

Experiment Setup: We will evaluate the different representations on their ability to group reviews
with similar requirements together. One way to measure how close or far specific points within a
space, is with the use of cosine similarity. In this experiment, we plan to measure the average cosine
similarity between points that mention the same requirement and compare the global averaged
similarity across different representations. We will use this as a measure to determine whether
such embeddings can create a space where reviews with similar requirements are placed closer
together or further apart than other approaches. To accomplish this task, we will use the labels
we created for each review, as discussed in Section 4.3, where each review was assigned the list of
requirement ids that it mentioned in its text. For the sake of simplicity, we will assign reviews that
discuss multiple requirements only one of them, i.e., to have one requirement per review. We will
assign the requirement with the highest endorsement, i.e., the requirement that is most discussed.
Once data is prepared, we will calculate the averaged cosine similarity between the reviews of each
requirement, and then calculate the global averaged cosine similarity across all requirements for a
given representation. Additionally, we will select a subset of requirements and visualize how their
reviews are placed in the space using t-Distributed Stochastic Neighbor Embedding (t-SNE) [60],
which is a commonly used approach for visualizing data in high dimensional spaces. We aim to
visually study how the TFIDF representation, the most common representation, places reviews
with similar requirements, in terms of distance, compared to the FT representation and/or BERT

representation that is trained on the masked language modeling task.

Experiment Results: We report our results in Figure 4.8 for the Panichella dataset. Surprisingly
the most noisy representation is TFIDF. We believe for the task of grouping reviews with similar
requirements, a term level representation might be too low level to be meaningful. It is highly
affected by the noise. This idea is further supported with the observation that a higher level

representation such as LDA, which is a topic level representation, is outperforming TFIDF by a

CHAPTER 4. MODELING EXPLICIT USERS FEEDBACK 63

0.91
0.90
0.89
0.88
20.87
80.86
Eos85
0 0.84
©0.83
So.82
g 0.81
20.80
<0.79
0.78
0.77
0.76 ry
<<\0 & & /\<<\° S K€
& & 9

Figure 4.8: Evaluating how closely are reviews with similar requirements placed under each of the
representations. We can observe that the embeddings generated from masked language modeling

techniques are significantly better than other approaches.

good margin. The best performing representations for the task are clearly the embeddings generated
from the FT and BERT models. For example, the F'T representation created a space where reviews

with similar requirements are 12% more closer to each other than the TFIDF representation.

We further investigated this observation in Figure 4.9, where we plotted all the data points in
the Panichella dataset using t-SNE with perplexity of 40. The intuition behind the perplexity
parameter is that it is a rough estimation for the expected the number of close neighbors each
point has. According to the original authors of t-SNE, the performance should be fairly robust to
changes in the perplexity, and the recommended range is 5 to 50 [60]. We experimented with values
between 5 to 100, and found that the same patterns are observed with all these values. The only
observed difference between the different perplexity values is the spread of the data points in the
new space. We picked 40 as it seems to show the clearest picture for how points are placed in the
space. In addition to plotting the reviews, we randomly selected five requirements and their reviews
and highlighted each with a different color. The selected requirements and their color coding is
shown in Table 4.7. Looking at Table 4.7, we can observe that the averaged cosine similarity
between the reviews under each requirement is substantially closer under the FT representation
compared to the TFIDF representation. Additionally, looking at Figure 4.9, we can observe that in
the TFIDF representation, the data points are spread all over the place for all the five requirements.
For example, the data points highlighted with a black marker, which correspond to users requesting
additional game levels, can be seen spread in all the directions in the TFIDF representation. On

the other hand, we can observe the same data points are well concentrated in the bottom left side

CHAPTER 4. MODELING EXPLICIT USERS FEEDBACK 64

Table 4.7: The subset of requirements selected to be manually evaluated in terms of their placement
under the TFIDF representation and the FT representation. We can see their visual placement as
per their color code in Figure 4.9. Additionally, we calculated the average cosine similarity between
the reviews of each requirement under each representation. We can observe that the reviews of

each requirement are placed significantly closer to each other in the F'T representation.

Requirement #Reviews Color Sim(TFIDF) Sim(FT)

Request for additional login options 16 Reviews Red 0.2318 0.5559
other than Facebook.

Review process requires too many 7 Reviews Green 0.2406 0.6523

Facebook friends.

Add more levels to the game 23 Reviews Black 0.1211 0.4844
Add option to select theme 7 Reviews Orange 0.4399 0.7823
Allow forward and rewind gestures 6 Reviews Purple 0.4109 0.5492
Averaged Cosine Similarity 0.2889 0.6048

of the FT representation, i.e., they are grouped closer to each other. In fact, the reviews under
each requirement are better grouped under the TF representation. The only overlap observed is
between the green and red data points. This is due to the nature of the requirements. They both
discuss an aspect of Facebook integration that the app uses. The first is a request for additional
login options other than Facebook. The second is criticism that the app requests the users to have
a specific number of friends on Facebook to create an account. Unlike the other requirements, those

two share similar language, which is the reason behind their high overlap within the space.

RQgc: What is the best representation for our specific classification and summarization

tasks that offers best balance between performance and maintainability?

Experiment Setup: First, to evaluate the best representation for the classification task, we will
evaluate the different representations using multiple dataset and multiple classifiers, i.e., to make
sure performance is not due to a specific dataset or classifier. We will report results for Logistic
Regression (L1 Regularization), Random Forest (200 trees), Support Vector Machines (Linear

Kernel), Relevant Vector Machines (Linear Kernel), and Naive Bayes (Multinomial). For each

CHAPTER 4. MODELING EXPLICIT USERS FEEDBACK 65

20
15 -
10 . .
5_ .. ® g"'.'.'.
° e o @ °°w®
01 « “la-
=51 e e "° .o.o
° .. 'o . o’
-10 - e e %"
~15- RN
-20 . .
-20 -15 -10 20

(a) TFIDF Representation w/ Avg Sim = 0.289 between points w/ similar requirements

15

oo
L] e ® ° ® o cod . L]
° ® o 2o
o oe L] LY .:‘% ®
o 2 ° 05 [o o
10 i ° * o8, ° &.%e.‘v’i&. . i
e g o, ™ o ° 0g®, °
W g aegw 0 W ML e
N 080 0t @ Do o
° of ~m %o o9’ e ° ° X
o® 0 ¢ K° &Q" o ®° %° . o o®
"M)
5 - e 8 5, R 0002 ° Sa s Fog oo > . ° °a
g,"%‘?" KR o 6% @ ° YoT0ogy off e o0 .o
3 %o ° o % %t g0)
!":%% Ae ¥, % ‘o* o ® s 2 ® N
° %055, “oaie s ® o o % o o %o o 00 Ve " $
% oL ey B fpee 0of i % Yo B °
TR EY e o an® To, el PRRIN. CoooR
01 Gop s, 920 - §2 9oy C] * % °¢° v & 0°e° o%®
Bo? 3 % ° ° H° o8 ooq S0q b &ob
- 0® e0 028 ° %4 ¢ 8 ° 8077 °f°mg °°°°o%susp '%’. = ®)
® %0000 AL L o8y o
9 .Qicco o® %‘T,‘ %95 3 om‘?o.o;o .°o ‘.‘ o, P 0*0(9 o L
. A YR AT TN i
=51 . S 2" §oat? J9° °3be B 2o, o &%
f E T Mo e® 0'& ° °
° © 6 5% 00 g o M¥E & [o -
R SR TS %E%w" .
) °] ° L)
35 ° ° o g.? oc' € o.u Qo o‘”::dp 4.“9 .% .
_10 n o ® o & oo %, 3 'Y E ol ®
[} $° 5°0 8558 © Toq Po °
o Lo 2’ eteet%
. °° S "o
 { ° °
_15 T T T T T
-15 -10 -5 0 5 10 15

(b) FT Representation w/ Avg Sim = 0.605 between points w/ similar requirements

Figure 4.9: Evaluating the embeddings space that is created through the masked language modeling
technique against a TFIDF representation in terms of their ability to place reviews with similar
requirements closer to each other. The blue points represent all the data points in the Panichella
dataset. The colored points represent six subsets of reviews where each discuss a similar require-
ment. We can observe that in the TFIDF representation, the groups are spread across the space,

whereas, in the embeddings representation they are placed closely together.

CHAPTER 4. MODELING EXPLICIT USERS FEEDBACK 66

classifier, we will use multiple binary classifiers to classify reviews under one of the three major
classes of feature request, bug report, and or user experience. We used binary classifiers to allow
for a multi-class and multi-label setup. For evaluation, we will report the averaged AUC generated
from the precision and recall across all classes. Additionally, to make sure results are not due to a

specific dataset, we will evaluate the performance on both the Panichella and Maalej datasets.

Second, to evaluate the best representation for the summarization task, we will evaluate the different
representations on their ability to group reviews with similar requirements together using multiple
clustering algorithms. We will evaluate this aspect on the Panichella dataset using the labels we
created for each review, which list the discussed requirements as explained in Section 4.3. For the
sake of simplicity, we will assign reviews that discuss multiple requirements only one of them, i.e., to
have one requirement per review. We will assign the requirement with the highest endorsement, i.e.,
the requirement that is most discussed. We will compare the performance of each representation
using the following clustering algorithms. First, K-means, which is a centroid based clustering
algorithm. The only hyper-parameter needed is the number of clusters, which is already known to
us. Second, Density-Based Spatial Clustering of Applications with Noise (DBSCAN) [19], which
is a density based clustering algorithm. DBSCAN requires two hyper-parameters epsilon and
minimum sample. We will experiment with different epsilon values ranging from 0.1 to 50 while we
keep the value for minimum sample fixed to 1. The results for the best performing model will be
reported. Third, Agglomerative Hierarchical Clustering (HAC), which is a hierarchical clustering
algorithm. HAC requires two parameters, the number of clusters, and the linkage type. We will
keep the number of clusters fixed and experiment with four linkage types: single, average, ward, and
complete. The results for the best performing model will be reported. We will evaluate performance
using the V-Measure, which is the mean of homogeneity (i.e., each cluster contains only members of

a single class) and completeness (i.e., all members of a given class are assigned to the same cluster).

Experiment Results: We can make several observations from the results reported in Figure
4.10. First, the FastText and BERT approaches, which use embeddings, perform better than
traditional approaches on the classification task. We can also observe that the embeddings are
more resilient to noise than other approaches. They presented the same high performance on
both the very noisy dataset of Maalej and the less noisy dataset of Panchilla, whereas, other
approaches showed reasonably good performance on Panchilla (the less noisy dataset) but suffered
on the the Maalej (the more noisy dataset). Second, for both datasets, we can observe that the
best average performance across all classifiers is seen with the embeddings generated from the
BERT-MCML model using the 2TL pooling strategy. There is a significant difference between the

representation generated from the fine-tuned BERT model and all other approaches. For example,

CHAPTER 4. MODELING EXPLICIT USERS FEEDBACK 67

86
81
76
71
X 66
61
56
<51
46
41
36
31

B Logistic Reg.

® Naive Bayes A Random Forest

¢ RVM ® SVM

B Logistic Reg.

© Naive Bayes A Random Forest

\o<< Ov XQ& Q,é \O<< O? X &
3 N4 Do) & XY K
& & R A
&L & & °

(a) Panichella dataset

¢ RVM @ SVM

73
68
63
58
@ 53
D'|48
O 43
< 38
33
28
23

18

(b) Maalej Dataset

Figure 4.10: Evaluating the best representation for the classification task. We can observe that

using an embeddings representation (i.e., FastText or BERT) provides the best average performance

across datasets and across classifiers for the multi-class multi-label requirements classification task.

we can observe an average improvement of 26% on Panichella and 48% on Maalej in the performance

CHAPTER 4. MODELING EXPLICIT USERS FEEDBACK 68

B Agglomerative @ DBScan A K-means

Ng \'e

&Q\O x& X
\o“
&

Figure 4.11: Evaluating the best representation on the Panichella dataset. We can observe that
the best performing representation across clustering algorithms is the one that combines BERT
embeddings with TFIDF.

between BERT’s representation and the TFIDF representation, which is the most commonly used
representation in current approaches. Third, for both datasets, in terms of average performance
across classifiers, the most robust representation across both datasets is the one that merged BERT
an TFIDF. We assume this is the case because it combines the best of both worlds. The TFIDF
representation is powerful in the sense it allows the models to learn patterns at the term level,
i.e., the low level, and it assigns higher weights to the most important terms in each corpus, but
it suffers when the corpus is filled with misspelled and alternatively spelled terms. On the other
hand, the embeddings generated from BERT can address the limitation of TFIDF as it can better
represent the misspelled and alternatively spelled terms, but its representation learns high level

patterns and does not assign importance weights at the term level, which TFIDF can address.

Finally, analyzing Figure 4.11, we can observe that K-mean, a centroid-based algorithm, was the
only one that benefited from the close placement of reviews with similar requirements under the
LDA, FT, and BERT representations. The Agglomerative, a hierarchical-based algorithm, and DB-
SCAN, a density-based algorithm, are under performing with those representations while benefiting
the most from the TFIDF representation. We assume some models benefit more from high level
features (e.g., BERT'), while others benefit most from low level features (e.g., TFIDF). Nonetheless,

CHAPTER 4. MODELING EXPLICIT USERS FEEDBACK 69

despite the used learning algorithm, combining the embeddings from the BERT representation with

the TFIDF representation is, again, showing that it is the most robust representation for the task.

CHAPTER 4. MODELING EXPLICIT USERS FEEDBACK 70

4.6 The Bayesian Framework

\ > Dat

App Reviews

Review #1920

As many before
asked, we need:
1) support for .vic
2) add dark theme
3) allow us to

Presenting
Example-based

Summary

Classifying Into Identifying Most
Predefined Labels Representative Subset

Figure 4.12: The process for extracting requirements from app reviews using the proposed example-
based summary approach. The set of reviews provided as the example-based summary contain the
set of the most representation reviews in the dataset which is then used for requirement extraction.
This approach requires less human effort for requirement extraction because 1) less reviews need

to be manually analyzed, and 2) the provided summaries retain the context.

4.6.1 Overview

We propose to use an example-based approach for requirements extraction, which is a better alter-
native for keyword-based approaches. We aim to create a Bayesian approach that can summarize
the mentioned requirements through the identification of the most representative subset of reviews
for requirements extraction. This representative subset is a summarized version of the dataset. It
should ideally consist of the most descriptive and developer friendly reviews to ease the require-

ments extraction. Additionally, the representative subset should be much smaller in size to reduce

CHAPTER 4. MODELING EXPLICIT USERS FEEDBACK 71

the human effort needed for requirement extraction. Figure 4.12 provides an overview for the
process where we would first filter out the non-informative reviews and classify remaining reviews
into a specific set of predefined labels. Next, we would select the most representative reviews and

present it to the requirements engineers for requirements extraction.

Thus, our objective is to identify the most representative subset for requirements extraction, which
we define as the smallest set of informative reviews with the highest coverage and expressiveness.
It should allow us to extract the highest number of existing requirements from the most well
expressed reviews with least amount of human effort. As a reminder, we repeat the definition for
coverage and expressiveness in here. First, the coverage of requirements measures the number
of requirements captured by the selected set of reviews. The more requirements captured by the
selected set, the more representative the set is considered. Second, the expressiveness of reviews
describes the ease of requirement extraction from each of the reviews in the selected set. A review
that contains a well described request or issue is more useful than a review with a vaguely described
content. For example, a review that simply states a crash occurred is less useful for requirement
extraction than a review that describes what the user was doing when the crash occurred. Thus,

the more expressive the selected reviews, the more representative the set is considered.

To achieve this task, we propose to extend Relevance Vector Machines (RVM) [93] with the Criticism
selection approach described by Kim et al. [49].

4.6.2 Why Extend RVM?

The way that RVM works is how we propose to accomplish both the classification and summa-
rization tasks using a single model, i.e., this is why RVM specifically is used. As part of RVM’s
learning process, it identifies the set of most representative points that are referred to as relevant
vectors. It uses those relevant vectors to make predictions. The model attempts to optimize two
aspects when it selects the relevant vectors: Sparsity and Quality. In quality, the model measures
alignment of the current selected point with the error between training and prediction that would
result from excluding it. In sparsity, the model measures the extent to which current selected point
overlaps with the other selected points. This process will result in a selection of highly unique
points from representative regions. We believe this learning mechanism aligns well with the goal of
identifying the set of the most representative reviews for requirements extraction, i.e., summarizing
the users feedback. As such, we propose to use those points not only for classification, but also for

summarization.

CHAPTER 4. MODELING EXPLICIT USERS FEEDBACK 72

4.6.3 Why Merge RVM with Criticism Selection?

We hypothesize that since RVM focuses on selecting points from representative regions, i.e., points
that best represent the distribution of the data, it can miss points that are equally important but
less represented. In our specific problem, we suffer from the existence of many such points. We
found that a large portion of requirements are represented by a few reviews only, i.e., likely to be
missed as it does not belong to a representative region. We also hypothesize that many of the app
reviews with level four expressiveness, i.e., most valuable points for requirements extraction, would
be missed as most contain mention of multiple requirements, and as such, we assume they will
construct their own unique regions that represent the overlap between the different requirements.
One way to address this potential issue is the use of Criticism Selection as described by Kim et
al. [49]. The authors explain that selecting representative points that summarize the underlying
distribution, which they refer to such points as prototypes, is not enough on its own. They explain
that the selection process should extend to regions in the input space where the selected prototypical
points do not represent well, which they refer to as Criticism. Such points is meant to criticize
the selected representative set as they help identify where a particular model may fail to explain
the data. Together, prototypes and criticisms construct a better summarization for the underlying
data. As a result, we propose to extend RVM to pick criticism points as part of its relevant vector’s
selection process. We suggest that this may lead to a more comprehensive model that is not only

accurate for data points labeling, but also accurate for data points summarization.

4.6.4 The Proposed Approach: Relevance Vector Machine with Criticism Se-
lection (RVMCS)

Let X = {x1,X2,..xy} denote the set of N training instances where x; € R”.We limit the introduc-
tion to Relevance Vector Machines (RVM) [93] to binary classification problem for simplicity where
each data instance x; is assigned with a label ¢; € {0,1}. Later, the binary classification solution
can be directly generalized to multi-class problem with one-vs-the-rest prediction approach. The
RVM is a probabilistic model in which the label follows the Bernoulli distribution ¢; ~ Bernoulli(o):

M
pti=1) =y = oY Sm(xm)wm) = o (W' (%)) (4.1)

m=1

where ¢(x;) is a vector of M basis functions that span the feature space from D to M: ¢(x;) =

[01(x3), p2(xi), ..par(x:)]. In RVM, the basis functions are specified with a kernel function k(-,-):

CHAPTER 4. MODELING EXPLICIT USERS FEEDBACK 73

¢i(x) = k(x,%;). The kernel view of (4.1) is given by:

N
pti=1)=y, = O'(Z wpk(X,Xy)) (4.2)
n=1

where w are model parameters that follow a Gaussian distribution p(w; a) ~ N(0, A~1), with A
being a diagonal matrix A = diag(as, ..., an). The goal of RVM is to learn the posterior distribution

p(wlt, X) as well as to give a point estimation on the hyper-parameter c.
The posterior distribution can be inferred via Bayesian rule:
Inp(wlt, X) o< Inp(t|w) + In p(w;) (4.3)

Then applying Laplace approximation, the posterior distribution also follows the Gaussian dis-
tribution A/(w*,X) whose mean and covariance are given by w* = A7!KT(t —y) and ¥ =
(KTBK + A)7!, respectively. Here, B = diag(y(1 —y)).

The hyper-parameter ac can be derived using type II maximization. To do that, we first compute

the data evidence
ptia) o [pltlw)p(ws a)iw = pltw)p(w’|) (4.4)

where we used Taylor expansion on the integrant at w* to remove the integral. Then the optimal

value of ¢ is obtained by solving % éia) =0

1 — %y
af = W (4.5)
In the training phase, RVM takes an iterative process of updating w*, ¥, and a until (4.4)
converges. In the prediction phase, the predictive distribution of a test data point x’is given by
p(t'|x’, w*) = Bernoulli(c(w*Tx’)). The prior distribution adopted by RVM is commonly referred as
auto relevance detection (ARD) prior. It makes the model prefer simpler explanations than complex
explanations so that over-fitting can be automatically addressed. Specifically, during the training
process, a certain number of a’s components will be driven to infinity, making their corresponding
training data instances independent to the prediction and the remaining few determinant training

data instances are called relevant vectors.

We make a general extension to RVM through updating its Marginal Likelihood Maximisation

algorithm [94] that iteratively updates w*, ¥, and « to include criticism points as follows:

1. Initialize RVM with a single basis vector ¢,. This could be the bias, i.e., ¢; = (1,1,...,1)T.

CHAPTER 4. MODELING EXPLICIT USERS FEEDBACK 74

2. Explicitly compute 3, p, and initial values of s, and ¢, for all M bases ¢,,,.

3. Using an alternating mechanism, select a candidate basis vector ¢, from the set of all M as

described in the section below.
4. Compute 6; = qz2 — 8.
5. If 8; > 0 and «o; < 00, re-estimate «;.
6. If 6; > 0 and o; = o0 , add ¢; with updated «;.
7. If 6; <0 and a; < 0o, delete ¢p; from the model and set a; = oo .
8. Update ¥, p, and values of s, and ¢, for all M bases ¢,,.

9. Terminate if convergence is reached, otherwise go to 3.

Selecting a Candidate Basis Vector: The selection process would alternate between selecting
a candidate basis vector that gives the greatest increase in marginal likelihood and a candidate
that gives the maximum witness function score, i.e., best criticizes the currently selected basis
vectors, until convergence or maximum number of iterations is reached. To select the candidate
with the greatest increase in marginal likelihood, we need to compute values for «; and 6; for all
bases, and then the change in marginal likelihood can be computed for each potential update.
The candidate giving greatest increase will then be selected. As for selecting a candidate that
criticizes the currently selected basis vectors, we would pick the candidate that maximizes our
witness function as described in [49]. The witness function is expected to tell us how different two

distributions are at a particular data point as follows:

1 & 1
witness(x) = N Z k(x,xy) Z k(z, ;) (4.6)
i=1 1:1

where 7 is a training example from the set of all training examples N and j is a basis vector from
the set of all selected basis vectors M. As such, if the witness function for a point x is close to
zero, the density function of the data and the prototypes are close together, which means that the
distribution of prototypes resembles the distribution of the data at point x. A negative witness
function at point z means that the prototype distribution overestimates the data distribution, e.g.,
if we select a prototype but there are only few data points nearby. a positive witness function at
point x means that the prototype distribution underestimates the data distribution, e.g., if there

are many data points around z but we have not selected any prototypes nearby.

CHAPTER 4. MODELING EXPLICIT USERS FEEDBACK 75

4.6.5 Evaluation and Experiment

In this section, we will evaluate the proposed framework. We aim to address the following research

questions:

e RQ7a: How accurate is the proposed approach in terms of the multi-class and multi-label

requirements classification?

e RQ7b: How accurate is the proposed approach in terms of summarizing the data and identi-

fying the set of the most representative reviews?

To address the research questions, we will first evaluate the proposed approach on both the clas-
sification and summarization aspect. Next, we will provide a comprehensive analysis on the inner
workings of the proposed approach and discuss its strength and weakness. Finally, we will con-
clude with a discussion on the framework as a whole compared to other approaches for the task of

requirements extraction.

RQ7a: How accurate is the proposed approach in terms of multi-class and multi-label

requirements classification?

Experiment Setup: To evaluate our proposed approach, we will compare it against multiple
baselines. The hyper-parameters of each baseline were optimized for the purpose of achieving the

highest model’s performance.

e AR-Miner [13], used a Naive Bayes model [70] where the hidden topics of the reviews were
discovered using Latent Dirichlet Allocation (LDA) [6] and used alongside the rating of the
app review to construct the feature space. To implement their approach, We selected the
number of topic k for LDA using cross validation, specifically, we found 85 topics for both
the Maalej and Panichella datasets.

e Maalej [58] where also a Naive Bayes model was used, due to its previously reported high
performance with text classification. However, [58] used a bag of words approach and ex-
tracted the ratio of past, present, and future tenses in the review to represent the textual
content, claiming that reviews with bug reports tend to use past tenses, whereas, reviews
with feature requests tend to use future tenses. Additionally, they used the review’s rating,

length, and sentiment score as part of their feature space.

CHAPTER 4. MODELING EXPLICIT USERS FEEDBACK 76

e ARdoc [75,76], where a Decision Tree (J48) was used. The authors manually constructed a
set of 246 linguistic patterns each mapping to a specific app review label/category, e.g., reviews
with pattern [someone/ should add [something] are mapped to feature requests. Moreover, they
generate a Term Frequency - Inverse Document Frequency (TF-IDF) [54] from the textual
content of the reviews, and used the review’s sentiment score in their feature space. Due to
the difficulties in recreating the 246 linguistic patterns, we did not implement this approach
ourselves, but rather used the tool provided by the authors to generated labels. As such, we
do not have the AUC score for this baseline, since computing them requires access to the

model itself to evaluate performance under different decision thresholds.

e Naive Bayes (NB Classifier): We used a Naive Bayes model (Multinomial) with our
proposed representation that combines the BERT representation with the TFIDF represen-
tation as discussed in Section 4.5.5. This baselines is used to directly compare an alternative

Bayesian approach that uses the same representation as RVM.

¢ Relevant Vector Machines (RVM): We used the Relevant Vector Machines model (Linear
Kernel) [94] with our proposed BERT and TFIDF representation described in Section 4.5.5.

e Relevant Vector Machines with a Hierarchical Classification approach(RVM-HC):
We used the same exact setup as the RVM baseline, but we used a hierarchical approach to

conduct the classification.

e Relevant Vector Machines with Criticism Selection (RVMCS) : This is our proposed
approach that merges RVM [94] with Criticism Selection [49]. We used a Linear Kernel as

well and utilized the same proposed BERT and TFIDF representation described in Section
4.5.5.

Experiment Results: We can make several observations from the results in Tables 4.9 and 4.8.

First, we notice a better overall performance for all the baselines on the Panichella dataset than
the Maalej dataset. We attribute this difference to the fact that the Maalej dataset contains a lot
more short and noisy app reviews than the Panichella dataset. When such reviews constitute a
large portion of a dataset, it becomes hard for any model to find patterns in the data, hence the

lower performance.

Second, we can observe that the RVMCS, i.e., proposed approach, constantly outperformed regular
RVM by an average of 9.4% in terms of AUC),. We attribute this difference to the notion that

RVMCS can select more representative points than regular RVM, which led to a better classification

CHAPTER 4. MODELING EXPLICIT USERS FEEDBACK

77

Table 4.8: Summary of the classification results comparing proposed approach to the start of the

art on the Panichella Dataset.

Approach ‘ Panichella Dataset

\ AUCpr mF, MF MP MR
AR-miner [13] 0.432 0.472 0444 0.345 0.699
Maalej [58] 0.668 0.677 0.640 0.645 0.647
ARdoc [75,76] - 0.376 0.307 0.642 0.344
NB Classifier 0.702 0.666 0.634 0.681 0.603
RVM 0.676 0.664 0.619 0.690 0.563
RVM-HC 0.725 0.713 0.685 0.648 0.738
Proposed Approach | 0.759 0.758 0.728 0.735 0.722

Table 4.9: Summary of the classification results comparing proposed approach to the start of the

art on the Maalej Dataset.

Approach ‘ Maalej Dataset

\ AUCpr mF, MF MP MR
AR-miner [13] 0.402 0.496 0.445 0.363 0.634
Maalej [58] 0.463 0.559 0.510 0.463 0.587
ARdoc [75,76] - 0.338 0.267 0.341 0.325
NB Classifier 0.447 0.526 0.473 0.439 0.524
RVM 0.405 0.418 0.380 0.417 0.351
RVM-HC 0.425 0.521 0.447 0.401 0.541
Proposed Approach 0.462 0.540 0.479 0.448 0.543

accuracy. We will investigate this assumption further when evaluating the performance on the

summarization aspect.

Third, we can observe that RVMCS provided equal or better results than the state of the art on
both datasets. On the Panichella dataset, the proposed approach, RVMCS, outperformed all the

baselines by a good margin. While on the Maalej dataset, we can observe that the Maalej ap-

proach performed the best, the proposed approach, RVMCS, came in second with a small marginal

difference in performance.

CHAPTER 4. MODELING EXPLICIT USERS FEEDBACK 78

RQ7b: How accurate is the proposed approach in terms of summarizing the data and

identifying the set of the most representative reviews?

Experiment Setup: To evaluate the proposed approach (RVMCS) ability to summarize the data
and identify the set of the most representative reviews, we will compare it against multiple baselines.
Each baseline will select a subset of reviews as the set of the most representative reviews using a

different approach as follows:

e AR-Miner [13], used a Naive Bayes model [70] where the hidden topics of the reviews were
discovered using Latent Dirichlet Allocation (LDA) [6] and used alongside the rating of the
app review to construct the feature space. To evaluate the summarization aspect, LDA will
be used to group the set of reviews predicted as informative, and then the review with the
highest probability for each topic will be picked as the most informative review. The size of

the final list of selected reviews will be equal to the number of topics.

e Maalej [58] where also a Naive Bayes model was used, due to its previously reported high
performance with text classification. However, [58] used a bag of words approach and ex-
tracted the ratio of past, present, and future tenses in the review to represent the textual
content, claiming that reviews with bug reports tend to use past tenses, whereas, reviews
with feature requests tend to use future tenses. Additionally, they used the review’s rating,
length, and sentiment score as part of their feature space. The original authors did not pro-
pose any summarization approach, so we will apply K-means to the set of reviews classified as
informative to cluster them, and then use the core samples as the most representative review

for each cluster.

e Latent Dirichlet allocation (LDA): This is a probabilistic baseline with a well established
ability to summarize textual data. We applied LDA to our proposed representation that
combines the BERT representation with the TFIDF representation, which we discussed in
Section 4.5.5, to summarize the data to k topics. For each topic, the review with the highest
probability for that topic will be picked as the most representative review. We will then
evaluate the set of most representative reviews under each topic, hence, the size of the final

list of selected reviews will be equal to the number of topics.

e DBscan: This is a well established density-based clustering approach that was used in many
similar problems and showed promising results for summarizing data. We will apply DBSCAN
to the set of reviews classified as informative to cluster them, and then use the core samples

as the most representative review for each cluster.

CHAPTER 4. MODELING EXPLICIT USERS FEEDBACK 79

e Star Clustering: This is a graph-based clustering approach [?] that can be used to summa-
rize data with network like connections. The approach creates a graph where each node is a
review, and then creates edges whenever the cosine similarity between two reviews is larger
than a given alpha. We will apply Star Clustering to our proposed representation that com-
bines the BERT representation with the TFIDF representation, which we discussed in Section
4.5.5. Once the graph is constructed, we will use the set of nodes with the highest degree to

be the set of center stars, i.e., most representative reviews for requirements extraction.

e Kim Et al. Approach (Kim Et al.): This baseline uses the original work by Kim et al. [49]
that introduced the idea of using prototypes and criticism points to summarize the data. We
will apply it to the our proposed representation that combines the BERT representation with
the TFIDF representation, which we discussed in Section 4.5.5 to sample prototypes and
criticism points. Following the steps of the original paper [49], we will use the approach to
identify a sample where the majority of points are prototypes and the remaining points as

criticisms. The sample picked by the model will be set of the most representative points.

e Prototype and Criticism Selection (PCS): This baseline represents a follow up by IBM
research [28] on the work of Kim et al. [49]. Unlike the original work which separates the
selection of prototypes from the selection of criticisms, the researchers in [28] combine the
selection of both under a single a framework. Given a dataset and a number of points k to be
selected, the model will determine the optimal ratio of prototypes and criticism points and

return the set of the most representative points where both are represented.

e Relevant Vector Machines (RVM): This baseline will use the Relevant Vector Machines
model (Linear Kernel) [94] with our proposed BERT and TFIDF representation described in
Section 4.5.5. The selected relevant vectors by the model will be used as the set of the most

representative points.

e Relevant Vector Machines with a Hierarchical Classification approach(RVM-HC):
We used the same exact setup as the RVM baseline, but we used a hierarchical approach to
conduct the classification. The selected relevant vectors by the model will be used as the set

of the most representative points.

e Relevant Vector Machines with Criticism Selection (RVMCS) : This is our proposed
approach that merges RVM [94] with Criticism Selection [49]. We used a Linear Kernel as well
and utilized the same proposed BERT and TFIDF representation described in Section 4.5.5.
The selected relevant vectors by the model will be used as the set of the most representative

points.

CHAPTER 4. MODELING EXPLICIT USERS FEEDBACK 80

Expressiveness
[Level 1 (Noise) [Level 2 (Related) [Level 3 (Sufficienty [l Level 4 (Excellent)

100.0%
95.0%
(17%)
0 -
%0.0% L4R=%41.27
85.0%
80.0%
75.0% L4R=%23.81

70.0%
65.0% L4R=%23.8
60.0%
55.0%
50.0%
45.0%
40.0%
35.0% [4R=%12.7
30.0%
25.0%
20.0%
15.0%
10.0%
5.0%
0.0%

Coverage

et CP“\‘\. ‘a\f \pPi A6 PCS doml AN G
pr 0B (€ W R g ::' o OV

Figure 4.13: The summarization results on the Panichella dataset. First, on the y-axis, we show the
coverage, which is the percentage of requirements that were captured by the approach versus the
ground truth. Second, inside the whitebox at the top of the barchart, we show the recall percentage
of points with level four expressiveness (L4R). Lastly, the colors of the barchart shows the level of

expressiveness in the selected sample, i.e., noise vs signal ratio.

All the baselines were optimized for the purpose of achieving the highest accuracy while maintaining
a sample size that is within 17%-19% of the original dataset. This fixed size range is used to make
sure a fair comparison is maintained between baselines, where roughly the same number of points
is selected for the set of the most representative reviews across all baselines. Also, keeping a small
sample size compared to the original dataset assures maximum minimization of the human efforts

needed to extract the requirements, which is a goal we aim to achieve.

As for the evaluation of the summarization capability, we will evaluate each baseline on three

aspects. First, the coverage, i.e., the ability to capture as many of the discussed requirements

CHAPTER 4. MODELING EXPLICIT USERS FEEDBACK 81

as possible. The higher the coverage, the better the model. Second, the sample’s signal/noise
ratio, i.e,. the ability to capture as much of the signal (reviews with expressiveness of level three
and four) and filter as much of the noise (reviews with expressiveness of level one and two) within
the selected sample. As a reminder, a review with a level one expressiveness is a review that
does not discuss or mention any requirements in its content, i.e., considered pure noise, whereas, a
level four app review is a review that discusses multiple requirements and uses a developer friendly
language that can ease the extraction of the requirements. We want the highest signal ratio and the
lowest noise ratio. Third, as we find points with level four expressiveness especially valuable, we will
use the Level Four Recall (L4R) as an evaluation metric as well. This means we will evaluate
each baseline on how many level four reviews it captured with its selected sample compared to the

existing level four reviews within the dataset. The higher the recall, the better the model.

Finally, since requirements with a single review do not have enough statistical presence, we will
only focus on capturing requirements with at least two reviews. We believe this will not be an issue
with a larger dataset as each requirement should have at least two reviews. As such, we argue that
the exclusion of requirements with a single review will not have any effect on the results of the

experiment, nor its real-world applicability.

Experiment Results: We can observe from the results shown in Figure 4.13 that the proposed

approach, RVMCS, outperforms all baselines in all three evaluation aspects.

Evaluating coverage, we can see that RVMCS outperformed all the baselines by achieving a 91.3%
coverage, i.e., the representative sample picked by the model for requirements extraction was able
to capture over 90% of the requirements discussed in the dataset with only a fraction of the original
size (19%). This performance filters out 80% of the human effort needed for requirements extraction
as a requirement engineer would only need to manually analyze this set to capture 91.3% of the

discussed requirement, which is a very reasonable trade between effort and completeness.

Looking at the sample’s signal/noise ratio, we can observe that RVMCS selected only 17% app
reviews with level one expressiveness, which is the lowest level of noise selected across all the base-
lines. Additionally, if we merge the ratio for app reviews with level one and level two expressiveness,
we find that RVMCS also provided the lowest total noise within its sample with only 51% (17% +
34%). Moreover, the proposed approach selected the highest ratio of app reviews with expressive-
ness level of three and four with a total of 49% (40% + 9%). Thus, RVMCS was able to select a

representative sample that achieve the highest signal ratio and the lowest noise ratio.

Evaluating the level four expressiveness recall, we can also observe that RVMCS was able to out-

CHAPTER 4. MODELING EXPLICIT USERS FEEDBACK 82

perform all the baselines by achieving a recall of 77.78%. This means the proposed approach was
able to include 78% of the most useful app reviews for requirements extraction as part of the final

selected representative sample.

When comparing RVMCS to its the original RVM and its hierarchical version HRVM, we can
observe that it outperformed both on all aspects. More importantly, RVMCS showed a significant
improvement in the selection of app reviews with level four expressiveness. E.g., compared to regular

RVM, it selected more than two times the number of level four points, showing an improvement of
226.6%.

Finally, when analyzing other baselines, we can see that most suffer from selecting more noise than
signal which heavily impacted their coverage score. E.g., 71% of LDA’s set is pure noise, i.e., app
reviews that do not discuss or mention any requirements. We hypothesize this might be due the
way those approaches select their representative set. In the case of LDA, it is the points with
the highest topic probability. In the case of Kim Et al., it is prototypes that are selected from
concentrated regions. In the case of K-means, it is the points in the center of the cluster. For all
those approaches, when the noise constitutes the majority of the dataset, they will be drawn to
picking points from the noise more than the signal, which we believe to be the reason behind the
poor performance. Perhaps the only promising baseline is DBSCAN. We attribute its performance
to the feature space we constructed and discussed in Section 4.5.5. Under such a space a density-
based approach is expected to shine for two reasons: having a feature space where app reviews
with different requirements are well separated into different regions, and knowing that most of
those regions contain a small number of app reviews. This allows a density-based approach to have
clusters where each is a requirement, i.e, picking a point per cluster will guarantee a high coverage.
Also, having a small number of app reviews under each cluster means that the approach will have
a high chance of picking good points than approaches that pick from a larger pool where majority

is noise.

4.6.6 Results Discussion
How much of RVMCS performance is due to the addition of criticism selection?
The two approaches complement each other nicely for our specific problem, which explain the

added performance. To understand this better, we show, in Figure 4.14, a run of regular RVM

and the selected relevant vectors that it picked for the Panichella dataset. In this Figure, each

CHAPTER 4. MODELING EXPLICIT USERS FEEDBACK 83

€
g
& 40-
=i
O
(@)
x
E
(%]
=
(]
3
x 20-
©
@
Q
S
>
z

0.

Q (2
ST E E P PP E DL FES EEE @
/ O\
% o&e o\& 6"@ ;} 7 &7 L \V\Q} /O/ é\&/OQQJ (\PQ {\GQ’O ’ \@Q\ é&\/
FETF T @SR F & E TES
Q\Q;Q’Q ¥ 23 ‘.\@@
&S <€ S
@0

Figure 4.14: The Figure shows a run of regular RVM and the selected relevant vectors that it
picked for the Panichella dataset. In this Figure, each dot is a requirement, and the y-axis shows
the number of reviews under that requirement. The higher on the y-axis the requirement, the more
reviews are talking about it, and the more dense its region would be in the space. The blue colored
points are the captured requirements using the selected RVM relevant vectors. The red dot colored

points are requirements that were missed by RVM relevant vectors.

dot is a requirement, and the y-axis shows the number of reviews under that requirement. The
higher on the y-axis the requirement, the more reviews are talking about it, and the more dense
its region would be in the space. The blue colored points are the requirements captured by the
RVM'’s selected relevant vectors. We can observe that RVM is mostly picking points from from
highly representative regions. While this behaviour is expected and is great for our task, it limits
RVM'’s ability to capture all the points we aim to capture as it will miss those points that belong to
a less represented regions. For example, RVM is expected to miss requirements with a few reviews.

We can see this clearly in Figure 4.14 as most of the missed requirements are the bottom, where

CHAPTER 4. MODELING EXPLICIT USERS FEEDBACK 84

Table 4.10: Below are three different runs with different splits of RVMCS. We summarize the
behaviour of RVMCS with each run and how the reviews with level four expressiveness were selected.
We first show (RVM Onuly), which represents the number of points selected by RVM’s maximum
marginal likelihood approach. Next, (Criticism Only), which represents points selected by Kim
et al. Criticism selection approach. Finally, we show (Overlap), which represents the number of

points selected by both approaches.

Run ‘ RVM Only Criticism Only Overlap ‘
1 3 (6%) 24 (49%) 22 (45%)
2 6 (12%) 29 (58%) 15 (30%)
3 8 (14%) 31 (54%) 18 (32%)

requirements with less dense regions are placed on the Figure. It is clear that RVM is picking more
points from the top compared to the bottom. Additionally, we argue that many of the reviews with
level four expressiveness might as well be missed by regular RVM as we assume they will construct
their own unique regions that represent the overlap between the different requirements. This is
where criticism selection role comes in. It forces RVM to include points from those less represented
regions. As such, the overall framework merging the two would have a more regional comprehensive
selection, which is what we believe is behind the performance we observed from merging the two
approaches. We can observe that this is true from comparing the performance of regular RVM
against the RVMCS.

By analyzing Table 4.8 and Figure 4.13, we can observe the difference in performance between
regular RVM and the proposed RVMCS. We can observe that when we added criticism selection to
the inner workings of RVM, we got two main improvements: We got an average of 9.4% improved
classification accuracy in terms of AUC),, and we observed a substantial increase that is up to
226.6% in the app reviews with level four expressiveness. Those two improvements show the
added value of the merge between RVM and criticism selection for our specific problem. We can
observe that regular RVM was able to capture only 23.81% of the existing reviews with level four
expressiveness, whereas, RVMCS was able to capture 77.78% of those points, which is a significant
boost that was only possible after the merge between the two approaches. Moreover, RVM selected
sample had 30% level three and four points, whereas, RVMCS had 49% level three and four points
as part of its selected sample. This is also evidence that RVMCS is able to identify representative
points with a higher accuracy than regular RVM.

CHAPTER 4. MODELING EXPLICIT USERS FEEDBACK 85

Additionally, by analyzing RVMCS’s behaviour, we made multiple observations that show the
addition of criticism selection played a significant role in the selection of the most representative
data points. In Table 4.10, we show three runs of RVMCS and the analysis of the selected app
reviews with level four expressiveness, i.e., the most representative data points. In each run we
evaluated the contribution of each approach in selecting the level four points. We can observe
that for all the three runs, criticism selection proposed over 50% of selected level four points on
average and that those reviews were uniquely proposed by criticism selection. This shows the added
value of the merge between the two and we argue that this is another evidence that explain the

improvement observed in the performance over regular RVM.

Table 4.11: Example of real-world reviews from the Panichella dataset and how RVMCS was able

to capture their mentioned requirements using the least number of app reviews.

Review ‘ Req. Id(s) ‘ Is RV?

Reviews for Lifelog (Health and Fitness Application)

Any chance of an export option so I can open the data 1086 No

from lifelog in Excel and analyse it? ...

Still experiencing .. fonts problem. Cant see text. ‘ 1068 No

I would like ... to refresh and load my activity ... 1079 No

without having to connect to the network...

I like to suggest the following: 1. Allow users to down- | 1068, 1086, 1079 Yes
load their tracking data... 2.have the app...work offline
w /o needing to sync all time...3. More options to cus-
tomize the font, color, appearance.. the latest copy of

lifelog on my Note 4 Samsung has a transparent font

in sub menus .. I cant see anything!)

What are some examples of the type of summarization this framework offers?

One of the main objectives of this framework is minimize human effort needed to extract require-
ments. To accomplish this task, we replace the need to manually analyze the complete set of
informative reviews, as it is the case with previous approaches, with only using a subset that is

substantially smaller in size. This subset is what we refer to as the set of the most representative

CHAPTER 4. MODELING EXPLICIT USERS FEEDBACK 86

reviews. We will use this set for requirements extraction.

To better explain this idea, we show an example of the type of summarization achieved in Table 4.11.
We can see four reviews in the table. The first three reviews discuss three different requirements.
However, the fourth review summarizes the previous three reviews as it lists all the discussed
requirements. Using previous approaches, the requirement engineer would need to read all four
reviews. However, in our case, RVMCS was able to select only the fourth review and presented
as part of the set of the most representative reviews. As such, the requirement engineer would
only need to manually analyze the fourth review and would still be able to capture all the three

discussed requirements.

Previous Approach

Output
Classification l
Data Feature
Processing Engineering g MOd?I Class Generate and
Selection Labels analyze word-
clouds &
Reviews
> ¢ X
Extract
Requirements
Class Clustering
Labelled —» _ Fe3tUre L o “pogel L7
Engineering " Labels
Dataset Selection
Input
- RE Engineer
App
Reviews
Output
Proposed Approach
Analyze
—A
Class Selected
Labels Reviews
Data Feature Model Extract
—> Processing Engineering Selection T Requirements
epresentative
Set (IDs)

RE Engineer
Figure 4.15: Comparison between the proposed framework for requirements extraction and existing

approaches. The proposed approach is simpler to create and maintain. It also provides a more

efficient method for requirements extraction, i.e., example-based summaries.

CHAPTER 4. MODELING EXPLICIT USERS FEEDBACK 87

What is the added value of RVMCS over existing approaches?

In Figure 4.15, we show the difference in the requirements extraction pipeline between previous
approaches and our proposed approach. In previous approaches, to extract the requirements, we
would need to first classify the reviews into the predefined labels using a classification model, and
then use a clustering model to group reviews with similar requirements together, and then we would
need to summarize the data using a visualization technique such as word-clouds. Finally, using the
word-clouds summary we would try to make sense of the existing requirements, and then go over
the reviews to extract it. This two-step sequential pipeline is complex and difficult to create and
maintain as it requires the training and tuning of two models where the quality of the second model
relies on the quality of the first model. Also, using word-clouds to summarize the data, i.e., keyword

summarizes, was reported to be inefficient for requirements extraction as it lacks context.

Alternatively, our approach uses example-based summaries where the data is summarized using
a representative subset that is used for requirements extraction. This is the first added value
for RVMCS as this approach retains context and can significantly reduce human effort needed to
extract the requirements due to the fact that the RE engineer would only need to review and analyze
the representative subset to extract the requirements. In addition to providing a better method
for requirements extraction, a second added value is its performance where we demonstrated that
RVMCS can provide equal or better results than the state of the art in terms of classification
accuracy and that it can summarize the data better than all the alternative approaches as it was
able to capture 91.3% of the discussed requirement with only 19% of the reviews. Moreover, a third
added value is the fact that this performance was reached using a single model that requires little to
none fine-tuning. The proposed RVMCS can do both the classification and summarization in one
step, which significantly reduces the effort and domain knowledge needed to create and maintain

the pipeline.

Chapter 5

Future Work

First, for modeling implicit feedback using popularity prediction, the functionality is learned only
from the description which mostly provide a high level description of the app, but does not contain
details on the features provided. One potential extension for this work is to include additional
information in the functionality learning process, e.g, the description of the used APIs and libraries
(e.g., from stackshare.io), or discussions on public forums such as reddit.com where many apps
maintain subreddit forums that discuss aspects of the functionality, e.g., answers to the question
what is dropbox and how to use it. Second, the work provides a popularity estimation for a given
functionality along with an explanation for the prediction. However, it does not recommend or
suggest how to improve the popularity. An extension to current work would be to investigate how
to provide such insight. One potential answer would be to create a recommender system that
suggests the use of a specific API or library based on the change in the estimated popularity
when such API/library is used. This change in popularity between the two APIs/libraries can be
explained by the higher reliability of service or the potential to provide more functionality in one
over the other. Third, we are using a single type of feedback which may limit our evaluation ability.
For example, the use count can capture exposure but it does not capture sentiment. One possible
extension for this work is to model users feedback on public forums to understand how they feel
about the given functionality. This would help developers to prioritize requirements, i.e., pick the

one with the most appeal to be implemented first.

Second, for explicit feedback modeling, even though the goal of data-driven requirements engineer-
ing is to combine data from different sources, we only consider app reviews in this work. The

addition of more sources can help in capturing new requirements that are not present in app re-

88

CHAPTER 5. FUTURE WORK 89

views. Nayebi et al. [68,69] found that they were able to mine 22.4% additional features and
12.89% additional bug reports from Twitter, concluding that app review mining is not enough and
that other information sources must be considered as they provide added value to requirements.
Additionally, we argue that it can help with context understanding of ambiguous requirements, i.e.,
due to ambiguity around the app review itself. According to Maalej et al. [57], one of the main
challenges with requirements elicitation from app reviews is attempting to understand the context
around a reported problem. We propose to study whether we can better understand the context
of such ambiguous requests/problems by considering other sources of information such as Twitter
or reddit.com. We may find a higher quality user feedback on the same topic that better describes
the same request/issue. Additionally, the current approach is limited to a single RE activity, i.e.,
requirements elicitation. One potential extension is to consider other activites, e.g., to provide
techniques that can help decision makers in requirements prioritization, i.e., identify which require-
ments should be addressed in the next release through metrics such as popularity, affected number
of users, estimated effort, etc. Additionally, we can build up on more recent work by Winkler et
al. [106] that attempts to predict what type of validation a given requirements would need, e.g.,
by manual review, testing, or simulation; also called potential verification method. Moreover, cur-
rent work does not consider the potential of using the reviews of competitive apps to suggest new
requirements, e.g., feature requests, or to provide an alert that a competitor is facing issues. For
example, Telegram, which is a mobile text messaging app, gained three million users in 24 hours
following the outage in competitor WhatsApp !, which highlights the importance of monitoring

competition.

"https://thehackernews.com/2019/03/encrypted-telegram-messenger.html

Bibliography

Moayad Alshangiti, Weishi Shi, Xumin Liu, and Qi Yu. A bayesian learning model for design-
phase service mashup popularity prediction. Expert Systems with Applications, 149:113231,
2020.

Aybiike Aurum and Claes Wohlin. The fundamental nature of requirements engineering
activities as a decision-making process. Inf. Softw. Technol., 45(14):945-954, 2003.

Roja Bandari, Sitaram Asur, and Bernardo A. Huberman. The pulse of news in social media:
Forecasting popularity. In AAAI International Conference on Weblogs and Social Media
ICWSM, 2012.

Christopher M. Bishop. Pattern Recognition and Machine Learning (Information Science and
Statistics). Springer-Verlag New York, Inc., 2006.

David M. Blei, Andrew Y. Ng, and Michael 1. Jordan. Latent dirichlet allocation. Journal of
Machine Learning Research, 3:993-1022, 2003.

David M. Blei, Andrew Y. Ng, and Michael I. Jordan. Latent dirichlet allocation. Journal of
Machine Learning Research, 3:993—-1022, 2003.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. Enriching word
vectors with subword information. TACL, 5:135-146, 2017.

Hudson Borges, André C. Hora, and Marco Tulio Valente. Understanding the factors that
impact the popularity of github repositories. In IEEE International Conference on Software
Maintenance and Evolution, pages 334-344, 2016.

Gargi Bougie, Jamie Starke, Margaret-Anne Storey, and Daniel M. German. Towards un-
derstanding twitter use in software engineering: Preliminary findings, ongoing challenges and

future questions. In Proceedings of the 2nd International Workshop on Web 2.0 for Software

90

BIBLIOGRAPHY 91

[10]

[11]

[12]

[13]

[14]

[18]

Engineering, Web2SE ’11, page 31-36, New York, NY, USA, 2011. Association for Computing
Machinery.

Pierre Bourque, Richard E. Fairley, and IEEE Computer Society. Guide to the Software
Engineering Body of Knowledge (SWEBOK(R)): Version 3.0. IEEE Computer Society Press,
Washington, DC, USA, 3rd edition, 2014.

Laura V. Galvis Carrefio and Kristina Winbladh. Analysis of user comments: an approach
for software requirements evolution. In Proceedings of the 35th International Conference on
Software Engineering, ICSE, pages 582-591. IEEE Computer Society, 2013.

Eya Ben Charrada. Which one to read? factors influencing the usefulness of online reviews
for RE. In Proceedings of the 24th IEEE International Requirements Engineering Conference,
RE, pages 46-52. IEEE Computer Society, 2016.

Ning Chen, Jialiu Lin, Steven C. H. Hoi, Xiaokui Xiao, and Boshen Zhang. Ar-miner: mining
informative reviews for developers from mobile app marketplace. In Proceedings of the 36th
International Conference on Software Engineering, ICSFE, pages 767-778. ACM, 2014.

Adelina Ciurumelea, Andreas Schaufelbiihl, Sebastiano Panichella, and Harald C. Gall. An-
alyzing reviews and code of mobile apps for better release planning. In Martin Pinzger,
Gabriele Bavota, and Andrian Marcus, editors, IEEE 2/th International Conference on Soft-
ware Analysis, Fvolution and Reengineering, SANER 2017, Klagenfurt, Austria, February
20-24, 2017, pages 91-102. IEEE Computer Society, 2017.

Alan M. Davis. Software requirements - objects, functions, and states. Prentice Hall interna-
tional editions. Prentice Hall, 1993.

Alan M. Davis. The art of requirements triage. IEEE Computer, 36(3):42-49, 2003.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training
of deep bidirectional transformers for language understanding. In Proceedings of the 2019
Conference of the North American Chapter of the Association for Computational Linguis-
tics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7,
2019, Volume 1 (Long and Short Papers), pages 4171-4186. Association for Computational
Linguistics, 2019.

Jeremy Dick, Elizabeth Hull, and Ken Jackson. Introduction, pages 1-32. Springer Interna-
tional Publishing, Cham, 2017.

BIBLIOGRAPHY 92

[19]

[21]

22]

[24]

[28]

Martin Ester, Hans-Peter Kriegel, Jorg Sander, and Xiaowei Xu. A density-based algorithm
for discovering clusters in large spatial databases with noise. In KDD, pages 226-231. AAAI
Press, 1996.

Flavio Figueiredo. On the prediction of popularity of trends and hits for user generated
videos. In ACM International Conference on Web Search and Data Mining, pages 745-754,
2013.

Bin Fu, Jialiu Lin, Lei Li, Christos Faloutsos, Jason I. Hong, and Norman M. Sadeh. Why
people hate your app: making sense of user feedback in a mobile app store. In Proceedings of
the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
KDD, pages 1276-1284. ACM, 2013.

Cuiyun Gao, Jichuan Zeng, David Lo, Chin-Yew Lin, Michael R. Lyu, and Irwin King. IN-
FAR: insight extraction from app reviews. In Proceedings of the 2018 ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations of Software
Engineering, ESEC/SIGSOFT FSE 2018, Lake Buena Vista, FL, USA, November 04-09,
2018, pages 904-907. ACM, 2018.

Martin Glinz. On non-functional requirements. In 15th IEEE International Requirements
Engineering Conference, RE 2007, October 15-19th, 2007, New Delhi, India, pages 21-26.
IEEE Computer Society, 2007.

Giovanni Grano, Andrea Di Sorbo, Francesco Mercaldo, Corrado Aaron Visaggio, Gerardo
Canfora, and Sebastiano Panichella. Android apps and user feedback: a dataset for software
evolution and quality improvement. In Proceedings of the 2nd ACM SIGSOFT International
Workshop on App Market Analytics, WAMAQ@ESEC/SIGSOFT FSE 2017, Paderborn, Ger-
many, September 5, 2017, pages 8-11. ACM, 2017.

The Standish Group. The standish group report, 1995.
The Standish Group. The standish group report, 2014.

Xiaodong Gu and Sunghun Kim. ”what parts of your apps are loved by users?” (T). In
Proceedings of the 30th IEEE/ACM International Conference on Automated Software Engi-
neering, ASE, pages 760-770. IEEE Computer Society, 2015.

Karthik S. Gurumoorthy, Amit Dhurandhar, Guillermo A. Cecchi, and Charu C. Aggarwal.
Efficient data representation by selecting prototypes with importance weights. In 2019 IEEE
International Conference on Data Mining, ICDM 2019, Beijing, China, November 8-11, 2019,
pages 260-269. IEEE, 2019.

BIBLIOGRAPHY 93

[29]

[30]

[34]

Emitza Guzman, Rana Alkadhi, and Norbert Seyff. A needle in a haystack: What do twitter
users say about software? In 2/th IEEFE International Requirements Engineering Conference,
RE 2016, Beijing, China, September 12-16, 2016, pages 96-105. IEEE Computer Society,
2016.

Emitza Guzman, Omar Aly, and Bernd Bruegge. Retrieving diverse opinions from app re-
views. In 2015 ACM/IEEE International Symposium on Empirical Software Engineering
and Measurement, ESEM 2015, Beijing, China, October 22-23, 2015, pages 21-30. IEEE
Computer Society, 2015.

Emitza Guzman, Muhammad El-Haliby, and Bernd Bruegge. Ensemble methods for app
review classification: An approach for software evolution (N). In Proceedings of the 30th
IEEE/ACM International Conference on Automated Software Engineering, ASE, pages 771—
776. IEEE Computer Society, 2015.

Emitza Guzman, Mohamed Ibrahim, and Martin Glinz. A little bird told me: Mining tweets
for requirements and software evolution. In Ana Moreira, Joao Araidjo, Jane Hayes, and
Barbara Paech, editors, 25th IEEFE International Requirements Engineering Conference, RE
2017, Lisbon, Portugal, September 4-8, 2017, pages 11-20. IEEE Computer Society, 2017.

Emitza Guzman and Walid Maalej. How do users like this feature? A fine grained sentiment
analysis of app reviews. In Tony Gorschek and Robyn R. Lutz, editors, Proceedings of the
IEEFE 22nd International Requirements Engineering Conference, RE, pages 153-162. IEEE
Computer Society, 2014.

Elizabeth Ha and David A. Wagner. Do android users write about electric sheep? examining
consumer reviews in google play. In Proceedings of the 10th IEEE Consumer Communications
and Networking Conference, CCNC, pages 149-157. IEEE, 2013.

Mark Harman, Yue Jia, and Yuanyuan Zhang. App store mining and analysis: MSR for app
stores. In Proceedings of the 9th IEEE Working Conference of Mining Software Repositories,
MSR, pages 108-111. IEEE Computer Society, 2012.

Xiangnan He, Ming Gao, Min-Yen Kan, Yiqun Liu, and Kazunari Sugiyama. Predicting the
popularity of web 2.0 items based on user comments. In ACM International Conference on

Research and Development in Information Retrieval, pages 233-242, 2014.

Liangjie Hong, Ovidiu Dan, and Brian D. Davison. Predicting popular messages in twitter. In
Proceedings of the ACM 20th International Conference on World Wide Web, WWW, pages
57-58, 2011.

BIBLIOGRAPHY 94

[38]

[39]

[41]

[45]

André C. Hora and Marco Tulio Valente. Apiwave: Keeping track of API popularity and
migration. In IEEFE International Conference on Software Maintenance and Fvolution, pages
321-323, 2015.

Daging Hou and David M. Pletcher. Towards a better code completion system by API
grouping, filtering, and popularity-based ranking. In ACM International Workshop on Rec-
ommendation Systems for Software Engineering, pages 26-30, 2010.

Minging Hu and Bing Liu. Mining and summarizing customer reviews. In Proceedings of the
Tenth ACM International Conference on Knowledge Discovery and Data Mining, SIGKDD,
pages 168-177. ACM, 2004.

Claudia Iacob and Rachel Harrison. Retrieving and analyzing mobile apps feature requests
from online reviews. In Proceedings of the 10th Working Conference on Mining Software
Repositories, MSR, pages 41-44. IEEE Computer Society, 2013.

Tahira Igbal, Parisa Elahidoost, and Levi Lucio. A bird’s eye view on requirements engineer-
ing and machine learning. In 25th Asia-Pacific Software Engineering Conference, APSEC
2018, Nara, Japan, December 4-7, 2018, pages 11-20. IEEE, 2018.

Aditi Jain, Xumin Liu, and Qi Yu. Aggregating functionality, use history, and popularity
of apis to recommend mashup creation. In International Conference on Service-Oriented

Computing, volume 9435, pages 188-202. Springer, 2015.

Wei Jiang, Haibin Ruan, Li Zhang, Philip Lew, and Jing Jiang. For user-driven software
evolution: Requirements elicitation derived from mining online reviews. In Vincent S. Tseng,
Tu Bao Ho, Zhi-Hua Zhou, Arbee L. P. Chen, and Hung-Yu Kao, editors, Advances in Knowl-
edge Discovery and Data Mining - 18th Pacific-Asia Conference, PAKDD 2014, Tainan,
Taiwan, May 13-16, 2014. Proceedings, Part II, volume 8444 of Lecture Notes in Computer
Science, pages 584-595. Springer, 2014.

Timo Johann, Christoph Stanik, Alireza M. Alizadeh B., and Walid Maalej. SAFE: A simple
approach for feature extraction from app descriptions and app reviews. In 25th IEEFE Inter-
national Requirements Engineering Conference, RE, pages 21-30. IEEE Computer Society,
2017.

Swetha Keertipati, Bastin Tony Roy Savarimuthu, and Sherlock A. Licorish. Approaches for

prioritizing feature improvements extracted from app reviews. In Sarah Beecham, Barbara A.

BIBLIOGRAPHY 95

[48]

[49]

[53]

[54]

Kitchenham, and Stephen G. MacDonell, editors, Proceedings of the 20th International Con-
ference on Evaluation and Assessment in Software Engineering, EASE 2016, Limerick, Ire-
land, June 01 - 03, 2016, pages 33:1-33:6. ACM, 2016.

Yaser Keneshloo, Shuguang Wang, Eui-Hong Sam Han, and Naren Ramakrishnan. Predicting
the popularity of news articles. In Proceedings of the 2016 SIAM International Conference
on Data Mining, pages 441-449, 2016.

Hammad Khalid, Emad Shihab, Meiyappan Nagappan, and Ahmed E. Hassan. What do
mobile app users complain about? IEEE Software, 32(3):70-77, 2015.

Been Kim, Oluwasanmi Koyejo, and Rajiv Khanna. Examples are not enough, learn to
criticize! criticism for interpretability. In Advances in Neural Information Processing Systems
29: Annual Conference on Neural Information Processing Systems 2016, December 5-10,
2016, Barcelona, Spain, pages 22802288, 2016.

Su-Do Kim, Seon-Yeong Kim, and Hwan-Gue Cho. A model for popularity dynamics to
predict hot articles in discussion blog. In International Conference on Ubiquitous Information

Management and Communication, pages 10:1-10:8, 2012.

Daphne Koller and Mehran Sahami. Hierarchically classifying documents using very few
words. In Proceedings of the Fourteenth International Conference on Machine Learning
(ICML, pages 170-178. Morgan Kaufmann, 1997.

Jong Gun Lee, Sue B. Moon, and Kavé Salamatian. An approach to model and predict the
popularity of online contents with explanatory factors. In IEEE/WIC/ACM International
Conference on Web Intelligence, pages 623-630, 2010.

Kristina Lerman and Tad Hogg. Using a model of social dynamics to predict popularity of
news. In ACM International World Wide Web Conference, pages 621-630, 2010.

Jure Leskovec, Anand Rajaraman, and Jeffrey D. Ullman. Mining of Massive Datasets, 2nd
Ed. Cambridge University Press, 2014.

Wenjie Liang, Wenyi Qian, Yijian Wu, Xin Peng, and Wenyun Zhao. Mining context-aware
user requirements from crowd contributed mobile data. In Hong Mei, Jian Lii, Xiaoxing Ma,
Qianxiang Wang, Gang Yin, and Xiaofei Liao, editors, Proceedings of the 7Tth Asia-Pacific
Symposium on Internetware, Internetware 2015, Wuhan, China, November 6, 2015, pages
132-140. ACM, 2015.

BIBLIOGRAPHY 96

[56]

[57]

[60]

[61]

[62]

[67]

[68]

Lin Liu, Qing Zhou, Jilei Liu, and Zhangiang Cao. Requirements cybernetics: Elicitation
based on user behavioral data. J. Syst. Softw., 124:187-194, 2017.

Walid Maalej, Zijad Kurtanovic, Hadeer Nabil, and Christoph Stanik. On the automatic
classification of app reviews. Requir. Eng., 21(3):311-331, 2016.

Walid Maalej and Hadeer Nabil. Bug report, feature request, or simply praise? on automat-
ically classifying app reviews. In Proceedings of the 25rd IEEE International Requirements
Engineering Conference, RE, pages 116-125. IEEE Computer Society, 2015.

Walid Maalej, Maleknaz Nayebi, Timo Johann, and Guenther Ruhe. Toward data-driven
requirements engineering. IEEE Software, 33(1):48-54, 2016.

Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of
machine learning research, 9(Nov):2579-2605, 2008.

Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schiitze. Introduction to Infor-
mation Retrieval. 2008.

Stuart Mcllroy, Nasir Ali, Hammad Khalid, and Ahmed E. Hassan. Analyzing and auto-
matically labelling the types of user issues that are raised in mobile app reviews. Empirical
Software Engineering, 21(3):1067-1106, 2016.

Stuart Mcllroy, Weiyi Shang, Nasir Ali, and Ahmed E. Hassan. Is it worth responding to
reviews? studying the top free apps in google play. IEEE Software, 34(3):64-71, 2017.

Stuart Mcllroy, Weiyi Shang, Nasir Ali, and Ahmed E. Hassan. User reviews of top mobile
apps in apple and google app stores. Commun. ACM, 60(11):62-67, 2017.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word

representations in vector space. In ICLR (Workshop Poster), 2013.

Yana Momchilova Mileva, Valentin Dallmeier, and Andreas Zeller. Mining API popularity. In
International Conference on Testing, Practice and Research Techniques, volume 6303, pages
173-180. Springer, 2010.

Azad Naik and Huzefa Rangwala. Large Scale Hierarchical Classification: State of the Art.
Springer Briefs in Computer Science. Springer, 2018.

Maleknaz Nayebi, Henry Cho, and Guenther Ruhe. App store mining is not enough for app
improvement. Empirical Software Engineering, 23(5):2764-2794, 2018.

BIBLIOGRAPHY 97

[69]

[75]

[77]

Maleknaz Nayebi, Homayoon Farrahi, Guenther Ruhe, and Henry Cho. App store mining is
not enough. In Sebastidn Uchitel, Alessandro Orso, and Martin P. Robillard, editors, Pro-
ceedings of the 39th International Conference on Software Engineering, ICSE 2017, Buenos
Aires, Argentina, May 20-28, 2017 - Companion Volume, pages 152-154. IEEE Computer
Society, 2017.

Kamal Nigam, Andrew McCallum, Sebastian Thrun, and Tom M. Mitchell. Text classification
from labeled and unlabeled documents using EM. Machine Learning, 39(2/3):103-134, 2000.

Nan Niu, Sjaak Brinkkemper, Xavier Franch, Jari Partanen, and Juha Savolainen. Require-

ments engineering and continuous deployment. IEEE Software, 35(2):86-90, 2018.

Dennis Pagano and Walid Maalej. User feedback in the appstore: An empirical study. In
21st IEEFE International Requirements Engineering Conference, RE 2013, Rio de Janeiro-RJ,
Brazil, July 15-19, 2013, pages 125-134. IEEE Computer Society, 2013.

Fabio Palomba, Pasquale Salza, Adelina Ciurumelea, Sebastiano Panichella, Harald C. Gall,
Filomena Ferrucci, and Andrea De Lucia. Recommending and localizing change requests for
mobile apps based on user reviews. In Proceedings of the 39th International Conference on
Software Engineering, ICSE, pages 106-117. IEEE / ACM, 2017.

Fabio Palomba, Mario Linares Vasquez, Gabriele Bavota, Rocco Oliveto, Massimiliano Di
Penta, Denys Poshyvanyk, and Andrea De Lucia. User reviews matter! tracking crowd-
sourced reviews to support evolution of successful apps. In Rainer Koschke, Jens Krinke,
and Martin P. Robillard, editors, 2015 IEEE International Conference on Software Main-
tenance and Evolution, ICSME 2015, Bremen, Germany, September 29 - October 1, 2015,
pages 291-300. IEEE Computer Society, 2015.

Sebastiano Panichella, Andrea Di Sorbo, Emitza Guzman, Corrado Aaron Visaggio, Gerardo
Canfora, and Harald C. Gall. How can i improve my app? classifying user reviews for software
maintenance and evolution. In Proceedings of the 2015 IEEFE International Conference on
Software Maintenance and Evolution, ICSME, pages 281-290. IEEE Computer Society, 2015.

Sebastiano Panichella, Andrea Di Sorbo, Emitza Guzman, Corrado Aaron Visaggio, Gerardo
Canfora, and Harald C. Gall. Ardoc: app reviews development oriented classifier. In Pro-
ceedings of the 24th ACM SIGSOFT International Symposium on Foundations of Software
Engineering, FSE, pages 1023-1027. ACM, 2016.

Dae Hoon Park, Mengwen Liu, ChengXiang Zhai, and Haohong Wang. Leveraging user

reviews to improve accuracy for mobile app retrieval. In Proceedings of the 38th International

BIBLIOGRAPHY 98

[81]

[82]

[83]

[84]

[85]

[36]

[87]

ACM SIGIR Conference on Research and Development in Information Retrieval, Santiago,
Chile, August 9-13, 2015, pages 533-542. ACM, 2015.

Nitish Patkar, Mohammad Ghafari, Oscar Nierstrasz, and Sofija Hotomski. Caveats in elic-
iting mobile app requirements. CoRR, abs/2002.08458, 2020.

Jeffrey Pennington, Richard Socher, and Christopher D. Manning. Glove: Global vectors for
word representation. In EMNLP, pages 1532-1543. ACL, 2014.

Henrique Pinto, Jussara M. Almeida, and Marcos André Gongalves. Using early view patterns
to predict the popularity of youtube videos. In Proceedings of the ACM 6th International
Conference on Web Search and Data Mining, WSDM, pages 365-374, 2013.

Klaus Pohl. Requirements Engineering: Fundamentals, Principles, and Techniques. Springer

Publishing Company, Incorporated, 1st edition, 2010.

Anand Rajaraman and Jeffrey David Ullman. Mining of Massive Datasets. Cambridge
University Press, New York, NY, USA, 2011.

Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bert-
networks. In EMNLP/IJCNLP (1), pages 3980-3990. Association for Computational Lin-

guistics, 2019.

Georgios Rizos, Symeon Papadopoulos, and Yiannis Kompatsiaris. Predicting news popu-
larity by mining online discussions. In ACM 25th International Conference on World Wide
Web, WWW, pages 737-742, 2016.

Martin P. Robillard, Walid Maalej, Robert J. Walker, and Thomas Zimmermann, editors.

Recommendation Systems in Software Engineering. Springer, 2014.

Andrew Rosenberg and Julia Hirschberg. V-measure: A conditional entropy-based external
cluster evaluation measure. In EMNLP-CoNLL 2007, Proceedings of the 2007 Joint Con-
ference on Empirical Methods in Natural Language Processing and Computational Natural
Language Learning, June 28-30, 2007, Prague, Czech Republic, pages 410-420. ACL, 2007.

Andrea Di Sorbo, Sebastiano Panichella, Carol V. Alexandru, Junji Shimagaki, Cor-
rado Aaron Visaggio, Gerardo Canfora, and Harald C. Gall. What would users change in
my app? summarizing app reviews for recommending software changes. In Proceedings of
the 24th ACM SIGSOFT International Symposium on Foundations of Software Engineering,
FSE, pages 499-510. ACM, 2016.

BIBLIOGRAPHY 99

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

Andrea Di Sorbo, Sebastiano Panichella, Carol V. Alexandru, Corrado Aaron Visaggio, and
Gerardo Canfora. SURF: summarizer of user reviews feedback. In Proceedings of the 39th
International Conference on Software Engineering, ICSE, pages 55-58. IEEE Computer So-
ciety, 2017.

Gébor Szabd and Bernardo A. Huberman. Predicting the popularity of online content. Com-
mun. ACM, 53(8):80-88, 2010.

Pang-Ning Tan, Michael Steinbach, and Vipin Kumar. Introduction to Data Mining. Addison-
Wesley, 2005.

Alexandru-Florin Tatar, Panayotis Antoniadis, Marcelo Dias de Amorim, and Serge Fdida.
Ranking news articles based on popularity prediction. In IEEE International Conference on

Advances in Social Networks Analysis and Mining, pages 106110, 2012.

Alexandru-Florin Tatar, Marcelo Dias de Amorim, Serge Fdida, and Panayotis Antoniadis.
A survey on predicting the popularity of web content. J. Internet Services and Applications,
5(1):8:1-8:20, 2014.

Michael E. Tipping. The relevance vector machine. In Advances in Neural Information
Processing Systems 12, [NIPS Conference, Denver, Colorado, USA, November 29 - December
4, 1999/, pages 652-658. The MIT Press, 1999.

Michael E. Tipping and Anita C. Faul. Fast marginal likelihood maximisation for sparse
bayesian models. In Christopher M. Bishop and Brendan J. Frey, editors, Proceedings of
the Ninth International Workshop on Artificial Intelligence and Statistics, AISTATS 20083,
Key West, Florida, USA, January 3-6, 2003. Society for Artificial Intelligence and Statistics,
2003.

Manos Tsagkias, Wouter Weerkamp, and Maarten de Rijke. Predicting the volume of com-
ments on online news stories. In Proceedings of the ACM 18th Conference on Information
and Knowledge Management, CIKM, pages 1765-1768, 2009.

Gias Uddin and Foutse Khomh. Automatic summarization of API reviews. In Proceedings
of the 32nd IEEE/ACM International Conference on Automated Software Engineering, ASE,
pages 159-170. IEEE Computer Society, 2017.

Henk van der Schuur, Slinger Jansen, and Sjaak Brinkkemper. Becoming responsive to ser-
vice usage and performance changes by applying service feedback metrics to software mainte-

nance. In 23rd IEEE/ACM International Conference on Automated Software Engineering -

BIBLIOGRAPHY 100

[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

Workshop Proceedings (ASE Workshops 2008), 15-16 September 2008, L’Aquila, Italy, pages
53-62. IEEE, 2008.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In NIPS, pages 59986008,
2017.

Lorenzo Villarroel, Gabriele Bavota, Barbara Russo, Rocco Oliveto, and Massimiliano Di
Penta. Release planning of mobile apps based on user reviews. In Proceedings of the 38th
International Conference on Software Engineering, ICSE, pages 14-24. ACM, 2016.

Phong Minh Vu, Tam The Nguyen, Hung Viet Pham, and Tung Thanh Nguyen. Mining
user opinions in mobile app reviews: A keyword-based approach (T). In Proceedings of the
30th IEEE/ACM International Conference on Automated Software Engineering, ASE, pages
749-759. IEEE Computer Society, 2015.

Phong Minh Vu, Hung Viet Pham, Tam The Nguyen, and Tung Thanh Nguyen. Phrase-based
extraction of user opinions in mobile app reviews. In Proceedings of the 31st IEEE/ACM
International Conference on Automated Software Engineering, ASE, pages 726-731. ACM,
2016.

Yao Wan, Liang Chen, Jian Wu, and Qi Yu. Time-aware API popularity prediction via
heterogeneous features. In IEEFE International Conference on Web Services, pages 424431,
2015.

Chong Wang, Maya Daneva, Marten van Sinderen, and Peng Liang. A systematic mapping
study on crowdsourced requirements engineering using user feedback. J. Softw. Evol. Process.,
31(10), 2019.

Artinat Wattanaburanon and Nakornthip Prompoon. Method for classifying usability quali-
ties and problems for action games from user reviews using text mining. In 15th IEEE/ACIS
International Conference on Computer and Information Science, ICIS 2016, Okayama,
Japan, June 26-29, 2016, pages 1-6. IEEE Computer Society, 2016.

Grant Williams and Anas Mahmoud. Mining twitter feeds for software user requirements.
In Ana Moreira, Joao Araidjo, Jane Hayes, and Barbara Paech, editors, 25th IEEE Inter-
national Requirements Engineering Conference, RE 2017, Lisbon, Portugal, September 4-8,
2017, pages 1-10. IEEE Computer Society, 2017.

BIBLIOGRAPHY 101

[106]

[107]

[108]

[109]

[110]

[111]

Jonas Paul Winkler, Jannis Gronberg, and Andreas Vogelsang. Predicting how to test re-
quirements: An automated approach. In Daniela E. Damian, Anna Perini, and Seok-Won
Lee, editors, 27th IEEE International Requirements Engineering Conference, RE 2019, Jeju
Island, Korea (South), September 23-27, 2019, pages 120-130. IEEE, 2019.

Bo Wu, Tao Mei, Wen-Huang Cheng, and Yongdong Zhang. Unfolding temporal dynamics:
Predicting social media popularity using multi-scale temporal decomposition. In Proceedings
of the AAAI 30th Conference on Artificial Intelligence, AAAI pages 272-278, 2016.

Han Xiao. bert-as-service. https://github.com/hanxiao/bert-as-service, 2018.

Xiaohui Yan, Jiafeng Guo, Yanyan Lan, and Xueqi Cheng. A biterm topic model for short
texts. In Daniel Schwabe, Virgilio A. F. Almeida, Hartmut Glaser, Ricardo Baeza-Yates,
and Sue B. Moon, editors, 22nd International World Wide Web Conference, WWW ’13,
Rio de Janeiro, Brazil, May 13-17, 2013, pages 1445-1456. International World Wide Web
Conferences Steering Committee / ACM, 2013.

Zijun Yao, Yanjie Fu, Bin Liu, Yanchi Liu, and Hui Xiong. POI recommendation: A temporal
matching between POI popularity and user regularity. In Proceedings of the IEEE 16th
International Conference on Data Mining, ICDM, pages 549-558, 2016.

Peifeng Yin, Ping Luo, Min Wang, and Wang-Chien Lee. A straw shows which way the wind
blows: ranking potentially popular items from early votes. In ACM International Conference
on Web Search and Web Data Mining, pages 623-632, 2012.

Appendices

102

Appendix A

Panichella Labeling Instructions

This Appendix contains a short summary of the guide that was provided to two graduate students

groups as part of our effort to label the Panichella dataset with requirements related labels.

Table A.1: Meta data for the reviews in Panichella dataset

Column Explanation

id The review id (3439 reviews in total)

app_name The application name (17 total applications)

version The application version.

userid The id of the user who wrote the review
date The review date

rating The review rating (1-5)

title The review title

text The review body

The provided dataset contains 3439 user reviews collected from 17 different applications with the
metadata shown in Table A.1. First, you are expected to read the description of each application, go
over their screen images, and make sure you understand the application functionality and purpose

before you do any data labeling.

Second, you are expected to go over each review and provide a 0/1 value for each of the three
labels.

103

APPENDIX A. PANICHELLA LABELING INSTRUCTIONS 104

Has_User_Experience. To set this binary column’s value to 1, a review must contain at least a
single sentence that discusses or expresses emotions towards a specific aspect of the application.
They key idea here is that it describes a specific aspect/feature of the app that the user likes/hates,
i.e., to capture reviews that tell the developers what features/aspects of the app are liked /hated

by their users. In Table A.2 we provide some examples to help guide you in this process.

Table A.2: Examples of how to label a review with Has_User_Experience

Review Has_User_Experience?

The Ul is amazing Yes. The sentence clearly describes a specific aspect of
the app, i.e., the UL In other words, the user is giving
us information that he likes the UI or User Interface

of the application

I like the predictive text Yes. The expresses that he likes the aspect of the app

where ‘predictive text’ is used

I love this app No. While the sentence is describing an experience,

it does NOT contain a specific aspect/feature of the
app

Has _Feature_Request. To set this binary column’s value to 1, a review must contain at least
a single sentence expressing ideas, suggestions or needs for improving or enhancing the app or its

functionalities. In Table A.3 we provide some examples to help guide you in this process.

Table A.3: Examples of how to label a review with Has_Feature_Request

Review Has_Feature_Request?
It’s a pity it doesn’t support Chinese. Yes. The user is asking to add Chinese
support.

Messing around, wish there was a paint Yes. The user wants a ‘paint bucket’ fea-
bucket, couldn’t fill in face... ture added to the app

Facebook Login? Nope. App immediately Yes. The user wants a ‘facebook login’
deleted. feature added to the app

APPENDIX A. PANICHELLA LABELING INSTRUCTIONS 105

Has_Bug_Report. To set this binary column’s value to 1, a review must contain at least a single
sentence describing technical issues with the app or unexpected behaviors. In Table A.4 we provide

some examples to help guide you in this process.

Table A.4: Examples of how to label a review with Has_Bug_Report

Review

Has Bug _Report?

The pop-up ads block the actual game

area.

Yes.

issue. The ads are blocking the game view

The user is describing a technical

When I put in a photo to edit. I want it
to be full screen. After the edit the im-

Yes.

issue. The edit feature seem to have a bug

The user is describing a technical

age just looks weird and small. That’s a

problem I've had with the app.

Really enjoyed it till IOS8, can’t get it to Yes. The user seem to have problems
load properly now. opening the application after iOS version
8

Why were those labels selected? Well, the user is providing information on a specific aspect
of the application, i.e., not liking the ads (user experience). The review also does not have any

feature requests and no application technical problems (no feature request and no bug report).

Important notes

e Please be aware that those label columns are inclusive. This means that a review can be
labelled as Has_User_Experience and as Has_Feature_Request at the same time as a review
may consist of several sentences each may fall under a different label. You’re not supposed to
pick one label per review, but rather analyze each sentence and find all the labels that apply

to the given review.

e Please note that this a real-world dataset so you may have empty values for any of the review

columns.

	Modeling Users Feedback Using Bayesian Methods for Data-Driven Requirements Engineering
	Recommended Citation

	tmp.1652275709.pdf.tGlwz

