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Abstract 

  The COVID-19 pandemic highlights the substantial public health, economic, and societal 

consequences of virus spillover from a wildlife reservoir. Widespread human transmission of 

severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) also presents a new set of 

challenges when considering viral spillover from people to naïve wildlife and other animal 

populations. Here, we used molecular dynamic (MD) simulations to understand the transmission 

of the SARS-CoV-2 virus from bats to humans and investigate the evolution of the various 

human variants. More specifically, we used MD simulations to understand the atomic fluctuation 

dampening at the receptor-binding domain (RBD)/ angiotensin-converting enzyme 2 (ACE2) 

interface when the RBD of the different SARS-CoV-2 variants is simulated with ACE2 of bat 

origin (bACE2) or human origin (hACE2). Towards that end, we found that the RaTG13 RBD is 

more stabilized with strong atomic fluctuation dampening when bound to bACE2 than hACE2. 

Interestingly, in terms of the variants being monitored (VBM - beta, kappa, and epsilon 

variants), we saw very similar binding dynamics and MD profiles between bACE2 and hACE2.  

Of note, when either bACE2 or hACE2 was simulated with variants of concern (VOC  alpha, 

delta, and omicron variants) RBD, we saw slightly stabilized atomic fluctuation dampening when 

the RBD was simulated with hACE2. Our results indicated that the RBD of the newer human 

SARS-CoV-2 variants does not differ significantly in the atomic fluctuation dampening when 

interacting with ACE2 of either bat or human origin. As a result, reverse zoonosis events that 

cause the virus to jump back to bats are highly possible, including the emergence of new and 

different variants. Therefore, in addition to the ongoing genomic surveillance, we also advise the 

inclusion of MD simulation surveillance that investigates the binding dynamics of the new 

variants with the receptors of the different host species.  
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Introduction 

 Coronavirus disease (COVID-19) is caused by novel severe acute respiratory syndrome 

coronavirus 2 (SARS-CoV-2). The virus first emerged from the Wuhan province in China (1, 2). 

Since its emergence, the virus has had a devastating effect on the world's population, resulting in 

more than 5.5 million deaths worldwide (3). Since being declared a global pandemic by the 

World Health Organization (WHO) on March 11, 2020, the virus continues to cause devastation, 

with several countries enduring multiple waves of outbreaks of this viral illness. Infections may 

be mild or fatal. The most common symptoms include fever, coughing, shortness of breath, 

difficulty breathing, vomiting, chills, body aches, headache, sore throat, congestion/runny nose, 

loss of smell or taste, nausea, and diarrhea. The disease can also lead to pneumonia, respiratory 

failure, heart attacks, liver problems, septic shock, and death (4).  

 Most of the efforts to develop therapies and vaccines against COVID-19 aim to either 

decrease the stability or exploit some of the features of the spike (S) protein (5-7). The S protein 

triggers an immune response and plays an essential role in infecting the host. The S protein is a 

homotrimer composed of two functions subunits, S1 and S2. The S1 subunit is responsible for 

receptor binding, while the S2 subunit is responsible for fusing viral and cellular membranes. 

Most importantly, the S1 subunits contain the receptor-binding domain (RBD). The RBD domain 

alternates between a closed (down) and open (up) state. The open state exposes the receptor-

binding motif in the RBD, thus enabling the interaction and binding with angiotensin-converting 

enzyme 2 (ACE2) (8). The primary physiological function of the ACE2 is to lower blood 

pressure by hydrolyzing angiotensin II (a vasoconstrictor) into angiotensin-(1-7) (a vasodilator). 

Furthermore, ACE2 is a type I transmembrane protein expressed in various organs, 

including lungs, hearts, kidneys, and intestines (9). Recent structural studies show that ACE2 is a 
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homodimer with each monomer consisting of N-terminal peptidase domain, C terminal 

collectrin-like domain, a single pass transmembrane region, and a short cytoplasmic region (10). 

The RBD binding region on ACE2 is located in the N-terminal peptidase domain with major 

(11).  

 The outbreak of COVID-19 was initially linked to a local seafood market in Wuhan, 

China, where the sale of wild animals has been implicated as the primary source of SARS-CoV-2 

infections (12). The Current SARS-CoV-2 virus is known to have 96.2% similarity to the bat 

coronavirus RaTG13 at the whole genome level (13). Based on the viral genome sequence and 

further evolutionary analysis, Chinese horseshoe bats of genus Rhinolophus have been 

considered a natural reservoir host for the SARS-CoV-2 virus (14). However, as of now, no 

definitive intermediate host has been identified. Based on the isolation of closely related 

genomes from Malayan pangolins (Manis javanica), they are thought to be possible intermediate 

hosts of the SARS-CoV-2 (15).  

 Regardless of the bat origin, the genome of SARS-Cov-2 is prone to mutations. However, 

unlike other RNA viruses, SARS-CoV-2 encodes a proofreading domain (ExoN) that reduces its 

mutation rate (16). Therefore, the mutation rate of the SARS-CoV-2 genome has thus been 

estimated at 1.87 x 10-6 nucleotide substitutions per site per day. This is roughly 5-fold lower 

than influenza A/H3N2 viruses, which have 10.9 x 10-6 nucleotide substitutions per site per day 

(17). Thus, across the ~30,000 base pair genome, approximately 20 genetic changes occur per 

year. Since the emergence of the virus in December 2019, thousands of variants of SARS-CoV-2 

have emerged (18). The WHO defined the SARS-CoV-2 variants of concern (VOC) as a variant 

with increased transmissibility, virulence, and decreased response to available diagnostics, 
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vaccines, and therapeutics (19). Based on the recent epidemiological updated by WHO, as of 

January 10, 2022, five SARS-CoV-2 VOCs have been identified since the pandemic's beginning 

(20). Alpha (B.1.1.7) was the first VOC described in the United Kingdom in late December 

2020. Then came the beta (B.1.351) and Gamma (P.1) variants which were first reported in 

South Africa in December 2020 and Brazil in January 2021, respectively. Until most recently, 

Delta (B.1.617.2) has been the most dominant variant. It was first reported in India in December 

2020. Lastly, the Omicron (B.1.1.529) variant has become the most dominant variant, with its 

origin in South Africa in late November 2021 (19). All five reported VOCs have mutations in the 

RBD domain, of which N501Y mutation is common to all variants except the Delta variant.  

 The virus's origin from the spillover of a zoonotic pathogen, and the broad host range of 

the virus is partly because ACE2 is found in all major vertebrate groups (21). The ubiquity of 

ACE2 coupled with the high prevalence of SARS-CoV-2 in the global human population 

explains the multiple spillback infections since the emergence of the virus in 2019. In spillback 

infection, the human hosts transmit the SARS-CoV-2 virus to cause infection in non-human 

animals. In addition to threating wildlife and domestic animals, the repeated spillback infection 

may lead to the establishment of new animal hosts from which SARS-CoV-2 can then pose a risk 

of secondary spillover infection to humans through bridge hosts or new established enzootic 

reservoirs. There is a small number of reports of human to animal transmission of SARS-CoV-2 

in pet cats and dogs and gorillas, tigers, lions, and other felines in zoos in the USA, Europe, and 

South Africa (22, 23). Initial human to animal transmission has resulted in sustained outbreaks in 

farmed mink in  Europe and North America, with likely mink to human transmission reported in 

the Netherlands (24, 25). Experimental infection of Egyptian fruit bats (Rousettus aegyptiacus) 

resulted in transient subclinical infection with oral and fecal shedding (26). Given that the 
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probable sources of SARS-CoV-2 or its progenitor are bat species, the potential risk of reverse 

zoonotic transmission from humans to bats and the subsequent negative impacts have to be 

recognized and studied. Furthermore, a significant concern in such secondary spillover events is 

the appearance of a mutant strain affecting the host range or leading to increased transmissibility 

in humans, reduced sensitivity to neutralizing antibodies, and reduced vaccine efficacy.  

 Here, we utilize a simple systematic approach of comparative statistical analyses to study 

the dynamic motions of proteins generated from accelerated all-atom molecular dynamics (MD) 

simulations. We utilized an MD simulation software developed by our lab (DROIDS - Detecting 

Relative Outlier Impacts in Dynamic Simulation or DROIDS 4.0) to look at the binding 

signature between ACE2 and the RBD domain of the spike protein. Our software employs a site-

wise Kullback-Leibler (KL) divergence metric and a multiple test corrected two-sample 

Kolmogorov-Smirnov (KS) test to compare atomic fluctuations between the unbound RBD and 

RBD domain bound to ACE2.  This site-wise comparison of the virus in its bound and unbound 

state represents a direct quantitative measure of its functional fitness that can be compared across 

different variants of concern and different ACE2 orthologs. This enables us to observe the 

functional effects of mutations in different SARS-CoV-2 strains as they interact with various 

ACE2 orthologs.  As we are primarily interested in how rapidly the virus may have adapted from 

bats to humans and conversely may no longer be able to effectively interact with bat populations, 

we focused our analyses on the human ACE2 and its ortholog in the greater horseshoe bat 

Rhinolophus affinis. We specifically looked at comparative dynamics of structural models of 

different SARS-CoV-2 variants bound to human ACE2 (hACE2) and bat ACE2(bACE2). In the 

RaTG13 variant, we see comparatively better binding atomic fluctuations to bACE2 rather than 

hACE2. However, in the case of several human variants, we do not see a difference in binding 
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atomic fluctuation between the hACE2 and bACE2. Due to the similarity in binding of the 

human variants, including VOC, between bACE2 and hACE2, our results indicate that the 

reverse zoonosis of the human variants back to bats is very high probable, which could lead to 

the emergence of new variants in both humans and Rhinolophus bats.   

Materials and Methods 

PDB structure and model preparation 

 Structures of the RBD of spike protein, hACE2, and Greater Horseshoe Bat Rhinolophus 

macrotis  bACE2 were obtained from the Protein Data Bank (PDB). The summary of the 

structures used for MD simulations is listed in Table 1. Upon downloading the structures from 

PDB, any crystallographic reflections and other small molecules used in crystallization were 

removed. Furthermore, any glycans present in the structure were also removed. During the 

glycoprotein builder so that the PDB file structure regarding atom types was compatible with the 

Amber 20 preprocessing software tLeAP. See details below. When preparing the structures, we 

needed each of the variants (RaTG13, Wuhan WT, Alpha, Beta, Delta, Kappa, Epsilon, and 

Omicron) bound to hACE2 and bACE2. We were able to find structures in the PDB where the 

RaTG13 variant was bound to bACE2 and the human variants bound to hACE2. Therefore, to 

model the RaTG13 variant bound to hACE2 and the human variants bound to bACE2, we used 

UCSF Chimera's MatchMaker superposition tool to properly place the receptor belonging to the 

opposite species (27). Using pdb4amber (AmberTools20), hydrogen atoms were added, and 

crystallographic waters were removed (28). Any mossing loop structures in the files were 

inferred via homology modeling using the "refine loop" command to modeler within UCSF 

chimera (29, 30).  
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Table 1: Table summarizing the primary models (RBD variants bound to hACE2/bACE2) used 

for MD simulations. bACE2 denotes ACE2 of bat origin, and hACE2 denotes ACE2 of human 

origin. 

RBD Variant PDB ID Receptor PDB ID 

RaTG13 (BatCoV) 7CN4 bACE2 7C8J 

RaTG13 (BatCoV) 7CN4 hACE2 6VW1 

Wuhan WT (nCoV) 7C8D bACE2 7C8J 

Wuhan WT (nCoV) 7C8D hACE2 6VW1 

Alpha (B.1.1.7) 7LWV bACE2 7C8J 

Alpha (B.1.1.7) 7LWV hACE2 6VW1 

Beta (B.1.351) 7LYO bACE2 7C8J 

Beta (B.1.351) 7LYO hACE2 6VW1 

Delta (B.1.617.2) 7V7Q bACE2 7C8J 

Delta (B.1.617.2) 7V7Q hACE2 6VW1 

Kappa (B.1.617.1) 7V7E bACE2 7C8J 

Kappa (B.1.617.1) 7V7E hACE2 6VW1 

Epsilon (B.1.429) 7N8H bACE2 7C8J 

Epsilon (B.1.429) 7N8H hACE2 6VW1 

Omicron (B.1.1.529) 7T9J bACE2 7C8J 

Omicron (B.1.1.529) 7T9J hACE2 6VW1 
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Model glycosylation 

 As mentioned previously, glycans present in the original PDB structure were deleted. 

Predicted glycosylation was rebuilt for the Amber forcefield using the glycoprotein builder on 

the glycam.org web server (31). The glycans were rebuilt using the GLYCAM-06j-1 force field 

(32). 2-acetamido-2-deoxy-beta-D-glucopyranose was attached to ASN10 in the RBD of all 

variants. Similarly, 2-acetamido-2-deoxy-beta-D-glucopyranose was attached to ASN227, 

ASN264, and ASN503, and 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-

deoxy-beta-D-glucopyranose was attached to ASN720 of bACE2. Lastly, 2-acetamido-2-deoxy-

beta-D-glucopyranose was attached to ASN271, and 2-acetamido-2-deoxy-beta-D-

glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose was attached to ASN221, 

ASN258, ASN490, and ASN714 of hACE2. 

Molecular dynamic simulation protocols 

 MD simulation protocol was followed as previously described, with slight modifications 

(33-35). Briefly, for each MD comparison, large replicate sets of accelerated MD simulations 

were prepared and then conducted using the particle mesh Ewald method implemented on the 

graphical processor unit (GPU) hardware by pmemd.cuda (Amber20) (36-38). The MD 

simulations were either performed on a Linux mint 19 operating system (two RTX 2080 Ti or 

two RTX 3080 Ti) or on high performance computing cluster (A100). All comparative MD 

analysis via our DROIDS pipeline was based upon 100 replicate sets of 1 nanosecond 

accelerated MD run (i.e., 100x1ns MD run in each comparative state RBD, e.g., RBD bound to 

the receptor, unbound RBD). Explicitly solvated protein systems were first prepared using 

teLeap (AmberTools 20) using the ff14SB protein forcefield, in conjunction with the 

GLYCAM_06j-1 forcefield (32, 39). Solvation was generated using the Tip3p water model in a 
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12nm octahedral water box (40). Automated charge neutralization was also done with teLeap 

software with Na+ and Cl- ions. Each replicate set was preceded by energy minimization, 300 

picoseconds of heating to 300K, a ten nanosecond of equilibration,  followed by random 

equilibration intervals for each replicate ranging from 0-0.5 nanoseconds. All simulations were 

regulated using the Anderson thermostat at 300K and one atmospheric pressure (41). Root mean 

square atom fluctuations and atom correlations were conducted in CPPTRAJ using the 

atomicfluct and atomicorr commands (42). 

Comparative protein dynamic analyses with DROIDS 4.0 and statistical analyses 

 Comparative signatures of dampened atom fluctuation during RBD binding to ACE2 

were presented as protein site-wise divergence in atom fluctuation in the ACE2 bound versus 

unbound states for each RBD. Divergences were calculated using the signed symmetric 

Kullback-Leibler (KL) divergence calculation in DROIDS 4.0. Significance tests and p-values 

for these site-wise differences were calculated in DROIDS 4.0 using two-sample Kolmogorov-

Smirnov tests with the Benjamini-Hochberg multiple test correction in DROIDS 4.0. The 

mathematical details of DROIDS 4.0 site-wise comparative protein dynamics analysis were 

published previously by our group and can be found here (33, 35). This code is available at our 

GitHub web landing: https://gbabbitt.github.io/DROIDS-4.0-comparativeprotein-dynamics/ , 

which is also available at our GitHub repository https://github.com/gbabbitt/DROIDS-4.0-

comparative-protein-dynamics. 
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Results 

Stronger binding of RatG13 RBD to bACE2 than to hACE2  

 We performed MD simulations of RaTG13 RBD bound and unbound to bACE2 and 

RaTG13 RBD bound and unbound to hACE2. To compare atomic fluctuations between RatG13 

RBD bound and unbound structures, we used site-wise KL divergence along with multiple test 

corrected two-sample KS tests. The more negative the KL divergence value of a specific amino 

acid residue, the stronger the dampening of atomic fluctuations due to the RBD interactions with 

bACE2/hACE2. As one would expect, the bat RaTG13 RBD has a better binding with stronger 

amino acid-specific interactions with the bACE2 (Figure 1A, 1C). However, in the case of 

hACE2, dampening of atomic fluctuations is lesser at those specific sites due to ACE2 being of 

human origin (Figure 1A, 1D). Interestingly, the amino acid residues involved with the 

interactions of both bACE2 and hACE2 are very similar. This was observed in the normalized 

KL divergence graph, where the normalized KL divergence values per amino acid are similar 

between bACE2 and hACE2 (Figure 2A). Other studies have found that 26 residues of the 

bACE2 and nine residues of the RaTG13 are present at the interface. These residues create 12 H-

bonds, two salt bridges, and 157 non-bonded contacts (43). The residues of RatG13 RBD that are 

strongly dampened by bACE2 include K417, L455, F456, S477, N487, and D501 (Figure 1A). 

The weaker dampening of atomic fluctuations of RaTG13 RBD and hACE2 is primarily due to 

the lesser number of interactions between the RBD and hACE2. Compared to bACE2, hACE2 

only makes 113 non-bonded contacts and 9 H-bonds (44). Lastly, MD comparison of RaTG13 

bound to bACE2 and RaTG13 bound to hACE2 show that almost half of the amino acids in the 

RBD of RaTG13 behave statistically different (Figure 1B). When comparing RaTG13 RBD 

bound to hACE2 with RaTG13 RBD bound to bACE2, the significance tests are conducted site-
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wise. Therefore, a separate test was conducted at each given amino acid site to compare the 

significant difference in fluctuations of the backbone atoms. Thus, a separate D value from a 

two-sample KS test is obtained for each amino acid site, and a multiple test correction 

(Benjamini-Hochberg) was applied to adjust the p-value to account for multiple significance 

tests. Interestingly, there is no statistical difference in the atomic fluctuation dampening of some 

of the residues that interact with ACE2. In contrast, a majority of the interacting residues have 

statistically different atomic fluctuations between bACE2 and hACE2 (p < 0.001) (Figure 1B).  
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Figure 1: Analysis of atomic fluctuation differences of RaTG13 RBD bound to bACE2 and 

hACE2. (A) Sequence positional plotting of dampening of atom motion on RaTG13 RBD by bat 

ACE2 (bACE2, green) and human ACE2 (hACE2, pink). (B, left panel) Multiple test corrected 

two-sample KS tests of significance for the difference in atomic fluctuations of RaTG13 RBD 

bound to bACE2 and RaTG13 RBD bound to hACE2. The grey bar denotes the RBD domain 

amino acid backbone with the location of RBD residues interacting with ACE2 shown in black. 

(B, right panel) Percent of amino acid of the RaTG13 RBD with different levels of significance. 

N.S. denotes no significance. The change in atom fluctuation is due to the (C) bACE2 and (D) 

hACE2 interactions with RaTG13 RBD (PDB 7CN4). Dark blue denotes a KL divergence value 

of -5, with red denoting a KL divergence value of +5. bACE2 (PDB 7C8J) is shown in green, 

and hACE2 PDB 6VW1) shown in pink.  

 

Compared with VBM, VOCs have better binding to hACE2 than to bACE2 

 In addition to RaTG13 RBD bound and unbound to bACE2 and hACE2, we performed 

MD simulations of other variants. These variants include the original Wuhan-Hu-1 strain, alpha 

(B.1.1.7), beta (B.1.351), delta (B.1.617.2), epsilon (B.1.427), kappa (B.1.1617.1), and omicron 

(B.1.629). Similar to RaTG13, the MD simulation of the different variants included the RBD 

bound and unbound to bACE2 and hACE2. Upon calculating the site-wise KL divergence for the 

RBD bound/unbound of the different variants, we normalized the KL divergence value. The 

residue with very little atomic fluctuation dampening was set to 0, and the residue with the 

strongest atomic fluctuation dampening was set to 100 (Figure 2).  Both RaTG13 and the original 

Wuhan-Hu-1 RBDs have a similar binding dynamic between the bACE2 and hACE2. The peaks 

of normalized KL divergence values between the bACE2 and hACE2 of the two variants being 

identical corresponds to the similar amino acid residues interacting with the bACE2 and hACE2 
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(Figure 2A, 2B). We performed a similar analysis with the variants being monitored (VBM). The 

VBM includes beta, epsilon, and kappa variants. Like the original bat progenitor and the first 

human variant, the VBM show identical normalized KL divergence plots between the hACE2 

and bACE2. Even at the sites corresponding to the VBM mutation, the KL divergence values 

with bACE2 and hACE2. The VOC included alpha, delta, and omicron. Surprisingly, with the 

alpha variant, we see very similar normalized KL divergence plots between the bACE2 and 

hACE2 (Figure 2C). However, we see quite a difference in the delta and omicron variant plots. 

The normalized KL divergence values show additional peaks in the simulations with the hACE2. 

These additional peaks correspond to delta and omicron mutations (Figure 2E, 2H). 
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Figure 2: Binding interaction of the different SARS-CoV-2 variants with bACE2 and hACE2. 

Sequence positional plotting of normalized dampening of atom motion on (A) RaTG13, (B) 

Wuhan-Hu-1, (C) Alpha (B.1.1.7), (D) Beta (B.1.351), (E) Delta (B.1.617.2), (F) Epsilon 

(B.1.427), (G) Kappa (B.1.617.1) and (H) Omicron (B.1.529) RBD by bat ACE2 (bACE2, 

green) and human ACE2 (hACE2, pink). The amino mutations denoted by the arrows correspond 

to the variant mutation. The list of omicron mutations in (H) include (1) G339D, (2) S371L, (3) 

S373P, (4) S375F, (5) K417N, (6) N440K, (7) G446S, (8) S477N, (9) T478K, (10) E484A, (11) 

Q493K, (12) G496S, (13) Q498R, (14) N501Y, (15) Y505H. 

 

 Lastly, to quantify the interaction of the different variants with bACE2 and hACE2, we 

also calculated the area under the curve (AUC) of the non-normalized KL divergence values, 

true atomic fluctuation dampening due to the RBD interaction with ACE2. As expected, the bat 

progenitor strain, RaTG13, has a higher AUC with bACE2 than hACE2. Since the Wuhuna-Hu-1 

RBD is the first variant to make the transmission from bats to humans, the AUC profile is similar 

for both bACE2 and hACE2 (Figure 3A). Interestingly, all VOC (alpha, delta, omicron) have a 

higher AUC for the hACE2 than bACE2. When a paired t-test was performed to compare the 

AUC values of the VOC bound to bACE2 and hACE2, we saw a significantly higher AUC 

profile of the VOC with hACE2 (Figure 3A, 3B). And lastly, there is no clear trend for the AUC 

profile of the VBM. This is also clearly seen with no significant difference in AUC values of 

VBM between bACE2 and hACE2 (Figure 3A, 3C).  
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Figure 3: Binding dynamic differences between VOC and VBM with ACE2. (A) Area under the 

curve (AUC) values of the non-normalized KL divergence values of the different SARS-CoV-2 

RBD bound and unbound to bACE2 and hACE2. Alpha, delta, and omicron variants are 

classified as variants of concern (VOC); beta, epsilon, and kappa variants are classified as 

variants being monitored (VBM). RaTG13 and Wuhan-Hu-1 are classified as others. Data points 

in (B)VOC and (C)VBM correspond to the AUC value of the different variants bound bACE2 

and hACE2. The horizontal line corresponds to the mean value. A paired t-test was conducted to 

calculate the statistical significance. 

 

Stronger binding of Delta RBD to hACE2 than to bACE2  

The delta variant (B.1.617.2) was first identified in India in October 2020. The two mutations 

that make up the RBD of the delta variant include L452R and T478K. The site-wise KL 

divergence interaction of the delta RBD between bACE2 and hACE2, the hACE2 certainly has 

better binding dynamics than the bACE2 (Figure 4A). KS test between the delta RBD bound to 

bACE2 and delta RBD bound to hACE2 shows very few amino acids with statistically different 

atomic fluctuations (35%). About 65% of the amino acid of delta RBD behave very similarly 

when either bound to bACE2 or hACE2. At the sites corresponding to the delta variant mutation 

(L452R and T478K), we see a high level of significance in the difference in atomic fluctuation 

between the bACE2 and hACE2 (Figure 4B). As mentioned previously, when comparing delta 

RBD bound to hACE2 with delta RBD bound to bACE2, significance tests were conducted in a 

site-wise manner, with a D value from a two-sample KS test calculated for each amino acid, and 

Benjamini-Hochberg multiple test correction was applied to adjust the p-values. The test 

correction was done to account for the multiple significance tests. Lastly, compared to bACE2, 
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the binding of the hACE2 also has a dampening effect on the residues that are farther away from 

the RBD/ACE2 interface (Figure 4C and 4D).  
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Figure 4: Analysis of atomic fluctuation differences of Delta (B.1.617.2) RBD bound to bACE2 

and hACE2. (A) Sequence positional plotting of dampening of atom motion on delta RBD by bat 

ACE2 (bACE2, green) and human ACE2 (hACE2, pink). (B, left panel) Multiple test corrected 

two-sample KS tests of significance for the difference in atomic fluctuations of delta RBD bound 

to bACE2 and RaTG13 RBD bound to hACE2. The grey bar denotes the RBD domain amino 

acid backbone with RBD residues of interaction with ACE2 shown in black. (B, right panel) 

Percent of amino acid of the delta RBD with different levels of significance. N.S. denotes no 

significance. Arrows in (A) and (B) correspond to the delta variant mutations (L452R and 

T478K). The change in atom fluctuation is due to the (C) bACE2 and (D) hACE2 interactions 

with delta RBD (PDB 7V7Q). Dark blue denotes a KL divergence value of -5, with red denoting 

a KL divergence value of +5. bACE2 (PDB 7C8J) is shown in green, and hACE2 (PDB 6VW1) 

is pink. 

 

Omicron RBD mutations influence binding to hACE2 

 Unlike the delta variant, the omicron variant (B.1.529) was most recently identified in 

South Africa in November 2021. Compared to all other variants, omicron variants include 15 

mutations in the RBD. Comparison of the atomic fluctuation of the omicron RBD bound to 

bACE2 and hACE2 revealed certain amino acids with stronger dampening of atomic fluctuations 

when bound to hACE2 (Figure 5A). Furthermore, statistically significant differences in the 

atomic fluctuation of the omicron RBD bound to bACE2 and hACE2 are only observed in 30% 

of the amino acids of the omicron. Of those different amino acid positions, 9 of them correspond 

to the omicron RBD mutations (G339D, S371L, S373P, S345F, K417N, E484A, Q493K, 

G496S, and Q498R) (Figure 5B). Similar to the delta variant, the RBD of the omicron variant 



Rajendran, M. 

20 
 

was furthermore stabilized when bound to hACE2. This can be seen by the dampening of 

residues by hACE2 that are farther away from the RBD/hACE2 interface (Figure 5D). However, 

in the case of the bACE2, there is only dampening happening at the RBD/bACE2 interface 

(Figure 5C). 
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Figure 5: Analysis of atomic fluctuation differences of Omicron (B.1.529) RBD bound to 

bACE2 and hACE2. (A) Sequence positional plotting of dampening of atom motion on omicron 

RBD by bat ACE2 (bACE2, green) and human ACE2 (hACE2, pink). (B, left panel) Multiple 

test corrected two-sample KS tests of significance for the difference in atomic fluctuations of 

omicron RBD bound to bACE2 and omicron RBD bound to hACE2. The grey bar denotes the 

RBD domain amino acid backbone with RBD residues of interaction with ACE2 shown in black. 

(B, right panel) Percent of amino acid of the omicron RBD with different levels of significance. 

N.S. denotes no significance. Arrows in (A) and (B) correspond to the omicron variant 

mutations. The list of omicron mutations includes (1) G339D, (2) S371L, (3) S373P, (4) S375F, 

(5) K417N, (6) N440K, (7) G446S, (8) S477N, (9) T478K, (10) E484A, (11) Q493K, (12) 

G496S, (13) Q498R, (14) N501Y, (15) Y505H. The change in atom fluctuation is due to the (C) 

bACE2 and (D) hACE2 interactions with omicron RBD (PDB 7T9K). Dark blue denotes a KL 

divergence value of -5, with red denoting a KL divergence value of +5. bACE2 (PDB 7C8J) is 

shown in green, and hACE2 (PDB 6VW1) shown in pink. 

Discussion / Conclusion 

 Using our comparative MD simulation pipeline, we compared the binding profile of 

bACE2 and hACE2 with the RBD domains of different SARS-CoV-2 variants (RaTG13, 

Wuhan-Hu-1, alpha, beta, delta, kappa, epsilon, and omicron). MD simulations of RatG13 spike 

protein revealed a better binding profile and stronger dampening of amino acids on the interface 

of RBD and bACE2 compared to hACE2.  In the case of the RBD from Wuhan-Hu-1, the 

original 2019 SARS-CoV-2 virus, we see no difference in the binding profile between bACE2 

and hACE2. Lastly, we also observed two different profiles with the VBM and VOC. In the case 

of VBM (beta, kappa, and epsilon variants), we see a similar binding profile and atomic 
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fluctuation dampening in the RBD/bACE2 and RBD/hACE2 interfaces. On the other hand, 

VOCs (alpha, delta, and omicron variants) show preferable binding to hACE2 than to bACE2, 

indicating higher AUC values when RBD is bound to hACE2 than RBD bound to bACE2.  

 The SARS-CoV-2 virus was first reported from pneumonia patients of the Wuhan city in 

China's Hubei province. The spillover of SARS-CoV-2 from animals to humans occurred at the 

beginning of December 2019, when some of the pneumonia patients were involved in the wet 

animal market in the Hunnan district (45). Genomic sequences, homology of ACE2 receptor, and 

single intact ORF on gene 8 of the virus indicate bats as the natural reservoir of these viruses. 

However, an unknown animal is yet to be identified as an intermediate host (46, 47). It should be 

noted that even though the initial spread of the disease was due to a spillover even, the rapid 

spread of the disease was primarily due to human-to-human transmission (45).  

 The receptor usage by the corona virus has been well known to be a significant 

determinant of host range, tissue tropism, and pathogenesis. Therefore, it is reasonable to assume 

that SARS-CoV-2 can infect humans, bats, and other species. As a matter of fact, several in vivo 

infection and seroconversion studies have confirmed that SARS-CoV-2 can infect rhesus 

monkeys, feline, ferret, and canines (48, 49). Our MD simulation has shown that RaTG13 RBD 

can bind to both bACE2 and hACE2, however to bACE2 with stronger binding, shown by severe 

dampening of atomic fluctuations in the bACE2/RBD interface (Figure 1A). Even though 

hACE2 do

similar to that of bACE2, indicating the flexibility of the virus to jump hosts. Additionally, it has 

also been shown that the RaG13RBD Y493 is speculated to confer a potential steric clash to 

hACE2 (50).  
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 As mentioned previously, for zoonotic spillover events to occur, humans must be exposed 

to the viruses. This can occur through direct contact with viruses excreted from infected bats or 

bridge hosts or through other contacts with infected animals such as slaughtering or butchering. 

The nature and intensity of the bat human interface are critical to determining spillover risk. 

Human behavior is a primary determinant of exposure, which may increase contact with bats or 

with other animals (bridge hosts) that may expose susceptible humans. Little is known about the 

specific conditions of coronavirus spillovers. Still, human behaviors that may increase viral 

exposure include activities such as bat hunting and consumption, guano farming, and wildlife 

trading (51-53). Due to recent spillover events, we see an identical binding profile with both 

bACE2 and hACE2 in the case of Wuhan-Hu-1 RBD (figure 2B).  In the case of Wuhan-Hu-1 

RBD, our MD simulation shows identical dampening of the atomic fluctuations and that the 

amino acid backbone in the RBD interacts with both bACE2 and hACE2 identically.  

 Regardless, in the case of human SARS-CoV-2 strains, we see a slightly different trend. 

In the case of VOC, including alpha, delta, and omicron variants, we see a slightly higher 

binding profile with hACE2 than bACE2 (Figure 3A, 3B, 4, and 5). However, unlike RaTG13 

RBD, we do not see very strong differences in the atomic fluctuations in the bACE2/hACE2 

interface with the VOC RBDs. We don't see any significant differences in the binding profile 

with the VBM, including beta, epsilon and kappa variants. At some areas of the RBD, the atomic 

fluctuations of the VBM are very similar between bACE2 and hACE2. The ability of the recent 

VOC and VBM to bind to both hACE2 and bACE2 with only slight differences supports the 

reverse zoonosis theory.  The transmission of SARS-CoV-2 from humans to numerous animals 

and conducted in vitro infection experiments make it clear that the virus can infect and be 

transmitted between a wide range of distantly related mammal species. For example, case reports 
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North America, and South America revealed that these animals could be i

(54, 55). The reports show that 14% of tested cats in Hong Kong were SARS-CoV-2 positive by 

(56). 

.3% of dogs and 5.8% of cats were seropositive 

(57) , to some extent, in 

2 (58). Several other zoo 

animals, like tigers, lions, cougars, and gorillas, were found to test positive for the virus. Farmed 

minks are highly susceptible to SARS-CoV-2 infection, and, in some cases, they have 

ositive minks were detected in 290 fur 

farms in Denmark, 69 mink fur farms in the Netherlands, 13 of 40 mink farms in Sweden, 23 out 

of 91 mink farms in Greece, 17 fur farms in the USA, four farms in Lithuania, two farms in 

Canada, and one fur farm in Italy, Latvia, Poland, France, and Spain (59, 60). As a result of the 

virus being able to infect multiple species and is also able to jump hosts, there are concerns that 

the introduction and circulation of new virus strains in humans could result in modifications of 

transmissibility or virulence and decreased treatment and vaccine efficacy.  

 In conclusion, our MD simulations identified that the original bat progenitor RaTG13 

RBD shows preferential binding to its host bACE2 receptor than hACE2. However, some of the 

recent human variants show differential binding between bACE2 and hACE2. Lastly, the VOC 

RBD show slightly higher binding to hACE2 than the bACE2. These findings provide evidence 

that recent SARS-CoV-2 variants may infect bats and that the extensive species diversity of bats 
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may have profound effects on SARS-CoV-2 evolution. Overall, our results indicate the possible 

inclusion of MD-based surveillance of the virus and the viral receptor, in addition to genomic 

surveillance.  
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Identifying protein sites contributing to vaccine escape via statistical comparisons of short-

term molecular dynamics simulations 

Abstract  

The identification of viral mutations that confer escape from antibodies is crucial for 

understanding the interplay between immunity and viral evolution. We describe a molecular 

dynamics (MD) based approach that scales well to a desktop computer with a high-end modern 

graphics processor and enables the user to identify protein sites that are prone to vaccine escape 

in a viral antigen. We first implement our MD pipeline to employ site-wise calculation of 

Kullback-Leibler divergence in atom fluctuation over replicate sets of short-term MD production 

runs thus enabling a statistical comparison of the rapid motion of influenza hemagglutinin (HA) 

in both the presence and absence of three well-known neutralizing antibodies. Using this simple 

comparative method applied to motions of viral proteins, we successfully identified in silico all 

previously empirically confirmed sites of escape in influenza HA, predetermined via selection 

experiments and neutralization assays. Upon the validation of our computational approach, we 

then surveyed potential hot spot residues in the receptor binding domain of the SARS-CoV-2 

virus in the presence of COVOX-222 and S2H97 antibodies. We identified many single sites in 

the antigen-antibody interface that are similarly prone to potential antibody escape and that 

match many of the known sites of mutations arising in the SARS-CoV-2 variants of concern. In 

the omicron variant, we find only minimal adaptive evolutionary shifts in the functional binding 

profiles of both antibodies.  In summary, we provide a fast and accurate computational method to 

monitor hot spots of functional evolution in antibody binding footprints. 
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Introduction 

 In current attempts to prevent the spread of the Coronavirus disease 2019 (COVID-19) 

pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), clinicians 

and scientists have focused their efforts on the development of vaccines that are hoped to induce 

broad, long-lasting, neutralizing antibodies. However, the selective pressures imposed by the 

presence of the neutralizing antibodies in the host population can also drive the evolution of 

viruses towards adaptations that allow them to escape neutralization. For example, in the case of 

influenza viruses, immunity is provided by antibodies that target the hemagglutinin (HA), 

responsible for viral attachment and viral fusion to the host cell. However, these antibodies drive 

selection for amino acid substitutions in the HA, causing the influenza virus to rapidly evolve 

every year (61). Similarly, the antibody selection by the host immune system can also drive the 

emergence of new SARS-CoV-2 variants. Therefore, when developing vaccines that elicit 

antibodies against a broad range of strains, research efforts should also be aimed at identifying 

potential mutations that can facilitate viral escape from the neutralization effects of specific 

antibodies (62, 63).  

The traditional approach to identifying these mutations is by passaging the virus in the 

presence of antibodies in a directed selection experiment, followed by validation of the variants 

that arise with neutralization assays. For example, in influenza viruses, escape mutant selection 

using a panel of monoclonal antibodies (mAbs) was used to identify the five major antigenic 

regions, Sa, Sb, Ca1, Ca2, and Cb (64-66). However, a significant drawback of this approach is 

that the directed selection typically only favors one of the many potential mutations that can 

escape a given antibody. Another approach is to test antibody binding to a panel of viral variants. 

In a typical 500 residue viral protein, there are about 104 potential single amino acid mutants 
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(67). Creating all individual mutants and then testing the mutants against the antibodies is an 

impossible task, thus causing researchers to limit themselves to exploring only a small portion of 

protein space (e.g., examining only mutations to alanine) (68, 69). Such studies cannot give a 

complete picture of the mutational spectra that can allow a virus to escape neutralization by a 

given antibody (70).  

 Functional evolutionary studies of viral vaccine escape are often supplemented with 

protein structural determination via x-ray crystallography or cryogenic electron microscopy. 

While structural biology can provide a static image of how an antibody physically contacts a 

viral protein, it cannot provide complete information regarding which amino acid sites are more 

prone to single replacement mutations (i.e. hot-spot sites or residues). Prediction of hot-spot 

residues is crucial as these sites on the antibody-antigen complex have a strong propensity to 

disrupt binding interactions within the antibody-antigen interface (71, 72). Recently, it has been 

demonstrated, via site-directed selection experiments and neutralization assays, that these hot-

spot regions share a common biophysical feature. They all tend to harbor single amino acid sites 

that have significant large affects upon binding interactions in the antibody-antigen interface 

(73). Given this common feature of hot-spot residues, we hypothesize that some simple analyses 

of computer-based dynamics simulations of the antibody-antigen interface might help predict 

potential vaccine escape mutations before they happen, allowing for important functional context 

to real-time sequence-based surveillance of current and future pandemics.  

 Here we utilize a relatively simple method of comparative statistical analysis of 

molecular dynamic (MD) simulations developed by our lab (DROIDS - Detecting Relative 

Outlier Impacts in Dynamic Simulation or DROIDS 4.0) that employs a site-wise Kullback-

Leibler (KL) divergence metric and a multiple test corrected two sample Kolmogorov-Smirnov 
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(KS) test to successfully validate previously known sites of antibody escape in the influenza HA 

(33-35, 73, 74). We then utilized our site-wise comparative MD approach to identify potential 

sites prone to antibody escape in the spike protein of SARS-CoV-2. Specifically, in the omicron 

variant we were able to identify sites in the receptor binding domain (RBD) that support the 

binding efficiency to two general neutralizing antibodies and its competitive binding to the 

natural receptor, human angiotensin-converting enzyme 2 (hACE2). In summary, we present a 

method to accurately identify hot-spot residues that are prone to single point mutations with large 

functional effects upon the antibody-antigen binding interface and thus are likely pre-adapted to 

allow for vaccine escape. Identifying such residues in silico will be essential for pre-screening 

the antigenic consequences of viral genetic variations and designing better vaccines that induce 

long-term and broadly neutralizing antibodies against viral pathogens.  

Methods 

PDB structure, glycosylation, and model preparation 

 The protein structures used for the primary models for analyzing the molecular dynamics 

of antibody interactions with HA and the SARS-CoV-2-RBD are listed in Figure 6A. Any 

crystallographic reflections were removed along with any other small molecules used in 

crystallization. Hydrogens were added, and crystallographic waters were removed using 

pdb4amber (AmberTools18) (28). Glycosylation was deleted using the swapaa function in UCSF 

Chimera 1.14 (27).  Predicted glycosylation were rebuilt for the Amber force field using the 

glycoprotein builder on the glycam.org webserver and the GLYCAM06j-1 force field (31, 32). 

Any missing loop structure in the files was inferred via homology modeling using the 'refine 

loop' command to Modeler within UCSF Chimera (29, 30). The globular head domain of the 

influenza HA is stable in its monomeric form. However, the stalk domain needs to be in a trimer 
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to be stable (75). Therefore, MD simulations of PDB 4GMS was performed using trimmed 

(residues 57-270) monomeric form of the head domain. For MD simulations of the 3ZTJ and 

4HLZ, the trimeric form of the stalk domain was used. The antibodies were trimmed, and only 

the heavy and light chains of the fragment antigen-binding (Fab) were used. Lastly, for the 

Omicron (B.1.1.529) variant simulations, we used the swapaa function to model the 15 RBD 

mutations onto 7OR9.  
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Figure 6: Description of PDB files and antibodies used in this study, and the comparison 

between KL divergence and average fraction of variants surviving. (A) Table summarizing the 

protein structure used for primary models for analyzing the molecular dynamics of antibody 

interactions with the influenza HA and SARS-CoV-2 RBD, and ACE2 interactions with 

wildtype and mutated SARS-CoV-2 RBD (includes VOC mutations). The table includes amino 

acid positions and the corresponding -KL divergence value denoting atomic fluctuations 

dampening for antibody-antigen/protein 1-protein 2 MD simulations. D value and the level of 

significance for the corresponding amino acid position are also given. (B) S139/1 (green), FI6v3 

(blue), and C179 (red) epitopes are mapped onto the HA trimer, shown in grey (PDB 1RVX). 

Overlapping epitopes between FI6v3 and C179 are shown in cyan. Next to the HA trimer is a 

phylogenetic tree of HA subtypes. Circles denote reported antibody binding or neutralization 

against that subtype (C) Box and whisker plots showing the KL divergence values between 

amino acid sites that had significant average fraction of variants surviving and non-significant 

average fraction of variants in the presence of monoclonal antibody S139/1 (73). Only sites 

K156, G158, and N193 of the HA head domain had significant average fraction surviving viral 

particles. 

 

Molecular dynamics simulation protocols 

 All comparative molecular dynamics analysis via our DROIDS pipeline was based upon 

100 replicate sets of 1 nanosecond accelerated MD runs (i.e., 100x1ns MD runs in each 

comparative state, e.g., unbound vs. bound). MD simulations were conducted using the particle 

mesh Ewald method via accelerated MD (pmemd.cuda) in Amber18  and the ff14SB protein  and 

GLYCAM06j-1  force fields and implemented on two RTX 2080 Ti graphics processor units 
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controlled via Linux Mint 19 operating system (32, 36-39, 76, 77).  These replicate sets were 

preceded by energy minimization, 300 picoseconds of heating to 300K, and ten nanoseconds of 

equilibration, followed by random equilibration intervals for each replicate ranging from 0-0.5 

nanoseconds. All protein systems were prepared via tLeAP (Ambertools18) and explicitly 

solvated, and charge neutralized with Na+ and Cl- ions in a Tip3P octahedral water box set to 12 

nm beyond the surface of each protein with periodic boundaries (28, 78). All simulations were 

regulated using the Anderson thermostat at 300K and one atmospheric pressure (41). Root mean 

square atom fluctuations and atom correlations were conducted in CPPTRAJ using the 

atomicfluct and atomicorr commands (42). 

Comparative protein dynamics analyses with DROIDS 4.0 and statistical analyses 

 Comparative signatures of dampened atom fluctuation during antibody binding were 

presented as protein site-wise divergence in atom fluctuation in the antibody-bound versus 

unbound states for each viral target protein. Divergences were calculated using the signed 

symmetric Kullback-Leibler (KL) divergence calculation in DROIDS 4.0. Significance tests and 

p-values for these site-wise differences were calculated in DROIDS 4.0 using two-sample 

Kolmogorov-Smirnov tests with the Benjamini-Hochberg multiple test correction in DROIDS 

4.0.  The mathematical details of DROIDS 4.0 site-wise comparative protein dynamics analysis 

were published previously by our group and can be found here (33, 35). This code is available at 

our GitHub web landing: https://gbabbitt.github.io/DROIDS-4.0-comparative-protein-dynamics/, 

is also available at our GitHub repository 

https://github.com/gbabbitt/DROIDS-4.0-comparative-protein-dynamics. 
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Results and Discussion 

 Using our comparative MD analysis pipeline (DROIDS 4.0), we successfully identified 

and validated previously known antibody escape sites in the head and stalk domains of the 

influenza HA. We then expanded the scope of our study to identify potential mutational sites 

prone to antibody escape in the spike protein of SARS-CoV-2 RBD and its recent omicron 

genetic variant.  

Initially, we applied a Mann-Whitney U-test to compare KL divergence values, generated 

using MD simulations, to amino acid residues with significant average fraction of variants 

surviving and non-significant average fraction of variants surviving in the presence of S139/1,  

(Figure 6C) (73). In our comparative analyses of MD simulations, we found significantly higher 

KL divergence in the average fraction of variants surviving during directed selection (p < 0.001), 

suggesting that our KL divergence metric might prove as a useful quantitative measure in 

discriminating sites with mutations leading to vaccine escape. We then applied our approach to 

anti-HA antibodies with a wide range of breadth against different influenza strains. S139/1 is a 

one such monoclonal antibody known to neutralize both group 1(H1, H2, H5, H9, and H13) and 

group 2 (H3) influenza viruses (Figure 6B) (79). Crystallization studies have revealed that the 

antibody targets highly conserved residues in the RBD of the head domain (80) (Figure 6B). 

Comparative MD simulations of HA bound to S139/1 and unbound have revealed strong 

dampening of atom fluctuations occurring at sites K156, G158, and N193 of the HA, with -KL 

divergence values -4.65 (D = 0.810, p < 0.001), -5.81 (D = 0.895, p < 0.001), and -4.81 (D = 

0.807, p < 0.001), respectively (Figure 6A and 7A). Directed selection using mAb S139/1 

revealed that these three residues are sites of strong escape (Figure 7B) (73). As expected, the 

three amino acid residues with the highest negative KL divergence in our comparison of atom 
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fluctuations from MD simulations also fall directly in the empirically determined physical 

binding footprint of the antibody. And they are the same three sites where previous works have 

selected escape mutants in the H1, H2, and H3 HAs (79, 80). Residue 156 is a part of the 150 

loop of the influenza HA and forms electrostatic interactions by inserting itself into the acidic 

pocket in the Fab formed by residues GluH35 and GluH50. Another 150 loop binding 

determinant is residue 158, which has the largest dampening of atomic fluctuations. Gly158 is 

closely stacked on the light chain complementarity determining region 3 (LCDR3) of S139/1 and 

is further stabilized by a main chain hydrogen bond between S159 and AsnL92. Any mutations 

at these positions will cause clashes at the antibody interface. S139/1 also recognizes members of 

the 190 helix. In the residues of 190 helix, Asn193 plays a significant role in antibody 

recognition and is buried by heavy chain complementarity determining regions (HCDR) 1-3 of 

S139/1 (79). Furthermore, it should be noted that site 193 was known to interact with the host 

receptor molecule (sialic acid moiety), suggesting the contribution of this residue to receptor 

binding of HA (81, 82). Therefore, isolates with mutated residues at site 193 have reduced viral 

fitness due to their inability to bind to the host receptors (83). Selective pressure created by 

S139/1 on residue 193 has other secondary effects on the virus, such as the reduced binding 

activity of the influenza virus.  
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Figure 7: Epitope prediction and validation of hot-spot residues of the influenza hemagglutinin 

(HA) in the presence of neutralizing antibodies. Sequence positional plotting of dampening of 

atom motion on the influenza HA head domain by (A) S139/1 and on the HA stalk domain by 

(C) FI6v3 and (D) C179. The sequence profile of the -KL divergence between S139/1 and the 

head domain produces strong negative peaks in (A) at K156, G158, and N193. A modest 

negative peak is observed in the stalk domain in (C) at E47 in the presence of FI6v3. HA1 

numbering is used to identify the amino acid positions in (A). HA2 numbering is used to identify 

the amino acid position in (C) and (D). The grey bar on top of the -KL divergence plots denotes 

the HA amino acid backbone with the location of (A) S139/1 epitopes shown in green, (C) FI6v3 

epitopes in blue, and (D) C179 epitopes in red. (B) Logo plots of S139/1 show the amino acid 

position that has the largest effect. Letter heights are proportional to the excess fraction of virions 
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with that mutation that survive the antibody, as indicated by scale bars. The logo plot was 

prepared using deep mutational scanning data from Doud, M.B. et al. (73). 

 

Lastly, with mAb S139/1, atomic fluctuation dampening is also seen in residues 133-134 

of the influenza HA (Figure 7A). These residues are part of the 130 loop of the HA, and make a 

significant portion of the RBD of the influenza virus. Lastly, in addition to atomic fluctuation 

dampening at residues 133-134 and at residues 156/158, we also see dampening at 145-147 

(Figure 7A). Upon further examination, there lie no epitopes of S139/1 between residues 145-

147. Therefore, we believe that this dampening is an artifact caused purely by the residue's 

location between two epitope sites (130 loop and 150 loop) of S139/1. In summary, the three 

sites determined to have the largest physical effect upon antibody binding in our simulations (i.e. 

showing the largest negative KL divergence) are exactly the same three sites most likely to 

evolve antibody escape under directed selection experiments. 

 We also chose two broad antibodies that target the stalk domain of the HA (FI6v3 and 

C179) to further validate our computational approach to identify potential sites of escape. FI6v3 

was first isolated by high-throughput screening of immortalized antibody-secreting cells and was 

found to bind to both group 1 (H1, H2, H5, H6, H8, H9, and H13) and group 2 (H3, H4, H7, and 

H10) viruses (Figure 6B) (84). Antibody C179 was first isolated from a mouse that had been 

immunized with the H2N2 virus and was later found to cross-neutralize H1, H2, H5, H6, and H9 

subtypes (Figure 6B) (85). Both FI6v3 and C179 have epitopes that lie in the stalk domain and 

are known to interfere with membrane fusion (Figure 6B). Our MD simulations do not reveal 

dampening of atomic fluctuations in the stalk domain in the presence of FI6v3 or C179. When 
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we look at the difference in atomic fluctuations of the stalk antibodies on the same scale as 

S139/1, we only see a few sites with strong dampening (Figures 7C and 7D).  

Antibody selection revealed very similar results as our MD simulation, with only few 

sites in the stalk domain with slightly increased fraction of variants surviving mAbs C179 and 

(73). As a result, the authors concluded that the stalk domain is less capable of escaping 

antibodies by single mutations (73). In the presence of FI6v3, both directed selection and MD 

simulation show a small bump at site 47 (KL = -2.41, D = 0.647, p < 0.001) that is of importance 

(Figures 6A and 7C) (73). Mutational studies have demonstrated that the introduction of E47R in 

the stalk domain has increased the resistance to FI6v3 (86). Like other studies, we also conclude 

that the HA stalk is intolerant of mutations, and confirmed by us here due to the lack of sites with 

dampened fluctuations. The absence of sites with large divergences in atomic fluctuations in our 

comparative MD simulations would seem to confirm that the anti-stalk antibodies studied here 

readily target sites with high mutational tolerance as suggested by other site directed experiments 

(87). Another possible explanation could be that the binding energetics at protein-protein 

interfaces can be asymmetrically distributed across all sites, thus preventing us from identifying 

the mutational tolerant sites (71, 72).  

  We implemented our computational approach to identify potential hot spot residues in the 

RBD of the spike protein of SARS-CoV-2 in the presence of two recently published antibodies 

against the virus: COVOX-222 and S2H97 (Figure 8A). COVOX-222 is known to bind to 

different residues than S2H97 and is known to neutralize strains P.1 (Gamma) from Brazil, 

B.1.351 (Beta) from South Africa, and B.1.1.7 (Alpha) from the United Kingdom (88). Termed 

"super-antibody," S2H97 is known to bind with high affinity across all sarbecovirus clades and 

prophylactically protects hamsters from viral challenge (89, 90). In the presence of COVOX-
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222, we see the most dampening of atomic fluctuations at residues G476 (KL = -5.50, D = 0.888, 

p < 0.001), F486 (KL = -4.52, D = 0.800, p < 0.001), and N501 (KL = -4.55, D = 0.708, p < 

0.001) of the RBD (Figure 6A and 8B). We see modest amount of dampening at residues D405 

(KL = -2.57, D = 0.572, p < 0.001), K417 (KL = -3.27, D = 0.678, p < 0.001), and K458 (KL = -

3.49, D = 0.703, p < 0.001) of the RBD (Figure 6A and 8B).  
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Figure 8: Identification of hot-spot residues that escape neutralizing antibodies and the 

importance of the variants of concern mutations. (A) Crystal structure of COVOX-222 (green, 

PDB 7OR9) and S2H97(cyan, PDB 7M7W) superimposed onto the structure of RBD of SARS-

CoV-2 (grey, PDB 7M7W) (88, 89). COVOX-222 epitopes with the greatest KL divergence 

dampening are highlighted in pink, and S2H97 epitopes with the greatest KL divergence 

dampening are highlighted in olive. Sequence positional plotting of dampening of atom motion 

on the RBD of SARS-CoV-2 by (B) COVOX-222 and (C) S2H97. Amino acid positions with 

moderate to modest dampening of atomic fluctuation are identified in (B) and (C). The grey bar 

on the top of the KL divergence plots denotes the RBD domain amino acid backbone with the 

location of COVOX-222 epitopes shown in pink and the S2H97 epitopes shown in olive. (D) 

The site-wise KL divergence profiles showing the dampening of atom motion between the 

wildtype and mutated RBD of the spike protein of SARS-CoV-2 in the presence of human 

angiotensin-converting enzyme 2 (ACE2). The wildtype RBD was computationally mutated to 

include mutations from the variants of concern (VOC). (E) Multiple test-corrected two sample 

KS tests of significance for the impact of the mutations are also shown. Amino acid positions 

that correspond to the VOC mutations are highlighted and show higher level significance than 

other positions. Mutations that correspond to the four VOC in the RBD of spike protein are noted 

on top of (E). 

 

It should be noted that the residues picked up by our computational method are part of the 

epitopes of COVOX-222. Of all the residues identified by the comparison of MD simulation, the 

residues with the greatest dampening of atomic fluctuation have a higher chance of being 

classified as hot-spot residues. They are more prone to mutate, thus allowing the virus to escape 
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COVOX-222. Residue 417, one of the residues with moderate dampening of atomic fluctuation, 

makes a weak salt-bridge interaction with the HCDR3 residue E99 of COVOX-222 (88). And 

residue N501, one with residues with the most dampening of atomic fluctuations, is known to 

interact with LCDR1 residue P30 of the antibody via a stacking interactions (88, 91). In the case 

of the mAb S2H97, we see a moderate dampening of atomic fluctuations at sites D428 (KL = -

3.81, D = 0.692, p < 0.001) and K462 (KL = -3.37, D = 0.723, p < 0.001) . Sites N394 (KL = -

4.25, D = 0.760, p < 0.001), E484 (KL = -5.20, D = 0.837, p < 0.001), L518 (KL = -6.56, D = 

0.945, p < 0.001) have the most dampening of atomic fluctuations (Figure 6A and 8C).  Four of 

the five sites, except E484, fall in the epitope footprint of S2H97 (89). Like mAb COVOX-222, 

we predict that the sites with the most dampening of atomic fluctuations (i.e. negative KL 

divergence) are more prone to functionally evolve under the selection pressure of the vaccine, 

thus allowing the virus to potentially escape the binding of S2H97. Even though, E484 does not 

fall in the S2H97 footprint, it has been shown that the mutation of this site is known to enhance 

immune escape form neutralizing antibodies, and also increase affinity to hACE2 (92). 

Many of the residues identified as potential sites of escape, either in the presence of COVOX-

222 or S2H97, overlap with mutations seen in the variants of concern (VOC). At present, there 

are mainly five kinds of VOC: Alpha, Beta, Gamma, Delta, and Omicron. We employed 

comparative MD simulation of the SARS-CoV-2 RBD bound to hACE2 (PDB 6VW1 trimmed 

to only include the viral RBD) modeled with and without the recently arising VOC mutations in 

the alpha to delta variant strains. Three of the VOC mutations (417, 484, and 501) were 

identified as potential escape sites using our approach (Figure 6A, 8B, and 8C). In addition to the 

three sites, we confirmed (i.e., 417, 484, and 501), we also saw significant differences in the 

binding atomic fluctuations at the positions 452 (KL = -0.206, D = 0.155, p < 0.001) and 478 
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(KL = -0.129, D = 0.190, p < 0.001) of RBD (Figures 6A, 8D and 8E).  Investigation with 

pseudoviruses possessing RBD mutations harbored by VOC demonstrated that plasma 

neutralizing activity of vaccinated individuals showed a one-fold to three-fold significant 

decreases against E484K, N501Y, or the K417N + E484K + N501Y triple mutant (93). These 

results confirm what we have observed using our comparative MD analysis (Figures 6A and 8E). 

Furthermore, evidence from clinical trials on the impact of VOC on vaccine efficacy confirms 

what we have observed as well. For example, the ChAdOx1 nCoV-19 vaccine and the single-

dose JNJ-78436735 (Johnson & Johnson/Janssen) vaccine have reduced vaccine efficacy by 

10.4% and 57%, respectively, against the B.1.351 variant, which contains K417N, E484K, and 

N501Y mutations (94-96). Therefore, when evaluating vaccine efficacy and the effect of 

neutralizing antibodies against the SARS-CoV-2 virus, the focus should be given to amino acid 

positions that are prone to mutate and escape the antibody, as these positions might cause the 

emergence of new VOCs. 

Lastly, we also modeled the most recent VOC, Omicron. The omicron RBD is known to 

harbor 15 different mutations, with several mutations linked to greater transmissibility, lower 

vaccine efficiency, and increased risk of reinfection (Figure 9B) (97). To further understand the 

evolution of the variant, we ran comparative MD simulations with the Omicron variant bound 

and unbound to mAb COVOX-222. In the wildtype RBD we see a dampening of atomic 

fluctuation at residues that correspond to the antibody footprint (Figure 9A, 9B). Interestingly, in 

the omicron RBD, we see some increase in the atomic fluctuation dampening at several of the 

residues that correspond to the COVOX-222 epitopes (Figure 9). Furthermore, some of the 

mutations that correspond to the omicron RBD overlap with the COVOX-222 antibody footprint. 

These sites include K417N (KL = -2.60, D = 0.631, p < 0.001), S477N (KL = -3.83, D = 0.762, p 
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< 0.001), Q493K (KL = -2.84, D = 0.762, p < 0.001), N501Y (KL = -3.25, D = 0.737, p < 

0.001), and Y505H (KL = -3.16, D = 0.77, p < 0.001) (Figure 9, 10). Upon closer examination, 

the residues that overlap between the antibody footprint and the omicron mutations, are sites 

where the hACE2 is known to interact with the RBD. As a result, the increase in atomic 

fluctuation dampening might not be because of the direct evolution of stronger binding to the 

antibody, but also due to the evolution of increased binding affinity to hACE2. Other studies 

have shown that the mutations in the omicron variant increase the number of salt bridges and 

hydrophobic interactions between RBD and hACE2, resulting in a higher binding efficiency to 

hACE2 (98). Additionally, it has also been shown that the structural changes in the RBD domain, 

caused by the mutations, reduce the antibody interactions (99, 100). We present a similar 

analysis of the functional binding of the omicron variant with S2H97 (Supplemental Figure 2) 

which also indicates minimal overall effects of the genetic changes on potential antibody 

neutralization, with the exception of E484A, T478K and S477N sites, in which omicron appears 

to have lost interaction with S2H97. In summary, we observe that introduction of mutations sites 

in the omicron RBD have only slightly altered the COVOX-222 and S2H97 interactions with the 

viral RBD. Most importantly, our computational method appears to be an effective way to 

quantify these changes.  
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Figure 9: MD simulations with the Omicron variant reveal sites that promote similar binding 

affinity to hACE2. (A) Sequence positional plotting of the normalized dampening of atom 

motions on the Omicron RBD (red) and the wildtype RBD (blue) by monoclonal antibody 

COVOX-222. KL divergence values for normalization of the wild type RBD were obtained from 

Figure 3B, and for the Omicron RBD were obtained from supplemental figure 1A. The omicron 

RBD mutations are labeled in red (1-15). The sites corresponding to the COVOX-222 epitope on 
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the wildtype RBD on labeled in blue (I  VII). The amino acid residues that correspond to the 

numbers and roman numerals are listed in (B). In the omicron RBD, we see an increase in atomic 

fluctuation peaks at several of the epitope sites. Sites that overlap between the omicron mutations 

and COVOX-222 epitope (shown by *) are sites of ACE2 interaction. (B) List of omicron 

mutations modeled onto RBD, and the list of COVOX-222 epitopes. (C) Crystal structure of 

COVOX-222 Fab (green) superimposed onto the structure of the Omicron RBD (grey) (PDB 

7NXA). Some of the amino acid residues that correspond to the COVOX-222 epitopes, which 

show an increase in atomic fluctuation dampening, are shown in blue. Several of the amino acid 

residue that correspond to omicron mutations with increased atomic fluctuation dampening, 

which are sites of ACE2 interactions, are shown in red. 
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Figure 10: Molecular dynamic simulation of the omicron variant. (A) Sequence positional 

plotting of dampening of atom motion on omicron RBD domain by COVOX-222. Mutation sites 

correspond to the Omicron RBD are labeled in red (1-15) and are listed in Figure 4B. Table 

summarizing the protein structure used for primary models for analyzing the molecular dynamics 

of COVOX-222 interaction with Omicron RBD. The table also includes amino acid positions, 

the corresponding -KL divergence value denoting atomic fluctuations dampening, D value and 

the corresponding level of significance for the KL divergence values. 
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Figure 11: MD simulations with the Omicron variant reveal sites that promote similiar binding 

affinity to hACE2. (A) Sequence positional plotting of the normalized dampening of atom 

motions on the Omicron RBD (red) and the wildtype RBD (blue) by monoclonal antibody 

S2H97.. The omicron RBD mutations are labeled in red (1-15). The sites corresponding to the 

S2H97 epitope on the wildtype RBD on labeled in blue (I  VII). The amino acid residues that 
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correspond to the numbers and roman numerals are listed in (B). In the omicron RBD, we see 

alteration in atomic fluctuation peaks at several of the epitope sites.. (B) List of omicron 

mutations modeled onto RBD, and the list of S2H97 epitopes. (C) Crystal structure of S2H97 

Fab (cyan) superimposed onto the structure of the Omicron RBD (grey) (PDB 7M7W). Some of 

the amino acid residues that correspond to the S2H97 epitopes, show an increase in atomic 

fluctuation dampening, are shown in blue. Several of the amino acid residue that correspond to 

omicron mutations with increased atomic fluctuation dampening, which are sites of ACE2 

interactions, are shown in red.  NOTE: Major changes occurring E4848A, T478K, S477N. 

 

Directed selection experiments followed by confirmation through neutralization assays 

are the classical approach for identifying the location of the hot-spot residues. Not only are the 

selection experiments time consuming, they only identify one of many mutations that escape an 

antibody (101). Compared to the classical method, our simple computational approach can 

identify the locations of sites prone to vaccine escape in a matter of days. Additionally it 

identifies positions of all amino acids that could mutate to escape the antibody in a single in 

silico experiment. And compared to other computational tools, our MD-based approach does not 

require large and potentially biased machine learning training data sets. Furthermore, the de novo 

prediction is based on a given experimental structure, which enables an unprecedented close 

synergy between our computational approach and existing laboratory methods for identifying 

potential routes of viral evolution leading to enhanced transmissibility and vaccine escape. 

Additionally, some of the other tools used in epitope prediction involve sequence-based methods, 

machine-learning methods, and structure-based methods. The epitope surface accessibility to 

antibody binding is generally used by the sequence-based methods (102).  The availability of 
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antigen sequence is crucial for the sequence-based method; however, the predicted epitope 

residues are not grouped into the corresponding epitopes (103). The machine learning (ML) 

based epitope prediction methods include several steps: a collection of datasets with clean and 

comprehensive data, extraction of antigen features of the sequence (e.g., physicochemical 

properties, evolutionary information, amino acid composition), and training the model using ML 

algorithms (104).  Some of the commonly used ML tools for epitope prediction are ABCPred 

(uses artificial neural network), COBEpro (uses support vector machine), EPSVR (uses support 

vector regression method), and BepiPred (based on random forest algorithm) (102, 105-107). 

And lastly, structure-based methods identify epitopes by antigen structure and epitope-related 

propensity scales, including specific physicochemical properties and geometric attributes (108, 

109). As the evolution of antibody-antigen interactions seem largely driven by single-site 

mutations with large functional effects and because antibody-antigen binding has quite obvious 

biophysical impacts on molecular dynamics, as would the formation of any protein complex, we 

offer a simple and effective alternative computational method to studying vaccine escape in 

silico using readily available MD simulation software combined with a classic and easily 

interpretable approach to the statistical comparison of distributions of local atom fluctuations on 

virus proteins in the presence/absence of antibodies.   

In summary, we have computationally identified hot-spot residues known to mutate in a 

viral antigen in the presence of a neutralizing antibody. We first validated our approach using the 

influenza spike protein and three well-characterized antibodies against the influenza HA (73). 

We then implemented our approach to identify sites in the RBD of SARS-CoV-2 that are known 

to mutate in the presence of neutralizing mAbs S2H97 and COVOX-222 (88, 89). We further 

identified that residues known to mutate in the presence of the antibody overlap with the 
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mutations seen in the VOC. And lastly, we also identified sites in the omicron variant mutations 

that enhance binding efficiency to hACE2. While the method described here is not a complete 

substitute for laboratory-based methods we believe it can greatly complement these methods by 

allowing time and cost-saving through the computational prescreening of the underlying 

biophysics that may drive outcomes of many potential lab experiments. Determining which viral 

mutations escape from antibodies will be crucial for designing future therapeutics and vaccines 

and assessing future antigenic implications of ongoing viral evolution. 
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