
Rochester Institute of Technology Rochester Institute of Technology 

RIT Digital Institutional Repository RIT Digital Institutional Repository 

Theses 

5-2022 

Multi-modal Human Fatigue Classification using Wearable Multi-modal Human Fatigue Classification using Wearable 

Sensors for Human-Robot Teams Sensors for Human-Robot Teams 

Likhitha Nagahanumaiah 
ln2047@rit.edu 

Follow this and additional works at: https://repository.rit.edu/theses 

Recommended Citation Recommended Citation 
Nagahanumaiah, Likhitha, "Multi-modal Human Fatigue Classification using Wearable Sensors for 
Human-Robot Teams" (2022). Thesis. Rochester Institute of Technology. Accessed from 

This Thesis is brought to you for free and open access by the RIT Libraries. For more information, please contact 
repository@rit.edu. 

https://repository.rit.edu/
https://repository.rit.edu/theses
https://repository.rit.edu/theses?utm_source=repository.rit.edu%2Ftheses%2F11109&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.rit.edu/theses/11109?utm_source=repository.rit.edu%2Ftheses%2F11109&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository@rit.edu


Multi-modal Human Fatigue Classification using
Wearable Sensors for Human-Robot Teams

by

Likhitha Nagahanumaiah

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of
Science

in Electrical Engineering

Supervised by

Dr. Jamison Heard
Department of Electrical and Microelectronic Engineering

Kate Gleason College of Engineering
Rochester Institute of Technology

Rochester, New York
May 2022

Approved by:

Dr. Jamison Heard, Assistant Professor
Thesis Advisor, Department of Electrical and Microelectronic Engineering

Dr. Ferat Sahin, Department Head
Department Head, Department of Electrical and Microelectronic Engineering

Dr. Gill Tsouri, Professor
Committee Member, Department of Electrical and Microelectronic Engineering

Dr. Ferat Sahin, Department Head
Department Head, Department of Electrical and Microelectronic Engineering



Thesis Release Permission Form

Rochester Institute of Technology
Kate Gleason College of Engineering

Title:

Multi-modal Human Fatigue Classification using Wearable Sensors for Human-Robot
Teams

I, Likhitha Nagahanumaiah, hereby grant permission to the Wallace Memorial Library

to reproduce my thesis in whole or part.

Likhitha Nagahanumaiah

Date



iii

Dedication

I dedicate this work to my loving family who have supported me all the time...



iv

Acknowledgments

Firstly, I want to express my appreciation and gratitude to my advisor Dr. Jamison Heard

for his guidance and emotional support throughout my Master’s studies. His research ex-

pertise and high expectations pushed me to conduct high quality research and developed

the fundamental skills to conduct such research.

I also want to thank the members of the my Lab members at Century Mold and MABL

lab at Rochester Institute of Technology.

Lastly, I want to thank my parents, who supported me from the beginning and believed

in my abilities.



v

Abstract

Multi-modal Human Fatigue Classification using Wearable Sensors for
Human-Robot Teams

Likhitha Nagahanumaiah

Supervising Professor: Dr. Jamison Heard

Our main objective of this study is to create a fatigue detection model using real-time data

by using wearable sensors. The purpose of this research is to learn more about the way

humans experience fatigue in a supervisory human-machine environment. The goal of this

study is to evaluate machine learning algorithms that assess fatigue detection and to use

robots for adapting its interactions.

The environment itself consists of two different tasks to analyze Physical fatigue and

Mental fatigue in two different task environments that are (i) Jigsaw puzzle-solving task,

and (ii) Pick and Place task. Physical fatigue and mental fatigue are detected using wearable

sensors: MYO armband and BioPac Bioharness.

During the experiment, the Physiological metrics used are Heart rate, respiration rate,

Heart rate variability, posture, breathing wave amplitude, and EMG. All these Physiological

signals are collected simultaneously in a real-time task environment. The data collected by

these physiological signals are then processed and machine learning and deep learning

algorithms are used for further process in building a fatigue detection model.



vi

List of Contributions

• Modeled a Fatigue classification system using physiological metrics like heart rate,

heart rate variability, EMG, respiration rate, and posture.

• The study helps in detecting both physical and mental fatigue using physiological

metrics

• Approached data collection by using non- invasive wearable sensors (Zephyr Bio-

harness and MYO armband).

• Compared machine learning and deep learning algorithm to classify five fatigue levels.
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Chapter 1

Introduction

Physiological fatigue analysis is a more vital factor to contemplate in a Human-Robot

working space. Human-Robot interaction is the study of the interaction between robots

and humans. Due to the pressure involved in the work that needs continuous or continuous

physical activity, the worker experiences tiredness or sleepiness which is termed fatigue.

Fatigue is the more complicated factor to be determined because fatigue can be not only

physical but also mental.

Fatigue affects everyone, no matter their strength, experience, or preparation. This has

a direct impact on many people’s physical and mental abilities, which are required to per-

form even basic tasks. The most common fatigue symptoms are decreased task motivation,

longer response time, decreased alertness, impaired attention, poor psychometric perfor-

mance, memory, and information processing issues, and poor judgment [1]. These symp-

toms can look simple but it could be a great loss to the human robots teams. Addressing

fatigue is predominant which is ignored in most of the working environments where hu-

mans are required to interact with robots to do the work.

Fatigue is an important factor that cannot be neglected as fatigue can be both physical

and mental. Physical fatigue is the subjective feeling of muscle tiredness due to intense
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physical activity and mental fatigue is caused due to intense cognitive activity and leads to

sleepiness, lack of attention, and laziness. Physical and mental fatigue are linearly propor-

tional as mental fatigue can affect the physical activity of a person and physical exhaustion

can also result in mental fatigue. So it is important to study both mental and physical

fatigue in any working environment.

Fatigue has typically been measured using subjective approaches, where a questionnaire

is filled out after a task. However, these approaches are intrusive and have poor time reso-

lution. Thus, there has been a shift in the community to focus on physiological metrics (i.e,

respiration rate, electromyography (EMG), and heart rate). These metrics correlate to men-

tal and/or physical fatigue and can be collected unintrusively using wearable sensors. Such

a collection scheme allows continuous monitoring of an individual’s fatigue state while

minimally impacting the primary task.

Physiological metrics are often fed into machine-learning pipelines which produce a

fatigue classification (e.g., high or low fatigue). However, typical approaches focus solely

on physical or mental fatigue and only provide two fatigue. This thesis enhances the current

research works by building a machine-learning model pipeline that classifies both mental

and physical fatigue across five different levels. Data from a human-subjects experiment

are used to validate the presented pipeline.
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Chapter 2

Background Literature

The result of sleep loss disrupted cardiac rhythms, or an increase in workload is the reduc-

tion in the mental or physical activity of a person, which leads to gradual or sudden onset

of fatigue. [2]. Fatigue is also be defined as a condition characterized by a lessened ca-

pacity of work and reduced efficiency of accomplishment. The fatigued person receives a

signal from his body that the continuing activity will stop either physical activity or mental

activity. Rest reduces a person’s fatigue levels.

Mental fatigue is not able to maintain the ideal cognitive performance of a person. Men-

tal fatigue gradually increases during cognitive activity and it depends on the cognitive

ability of a person. It decreases physical performance by increasing drowsiness, lethargy,

and direct attention fatigue (a mental mechanism). This results in decreased attention and

consciousness in the workplace. Mental fatigue is dangerous during performing tasks that

require constant or continuous attention and concentration. Nonetheless, most research on

fatigue from a physiological perspective has focused on muscles [3]. Physical fatigue or

muscle fatigue is being not able to perform optimally. It is a gradual process and depends

on fitness level, age factor, sleep, and overall health. Physical fatigue is activated by an

increase in serotonin levels in the central nervous system.
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Fatigue has many effects on performance, physiology, cognition, and emotion [4]. Hu-

man fatigue has two major classification: mental and physical fatigue. Mental fatigue has

been defined as a decrease in task outcomes that require concentration, as well as the re-

covery of memory-saved information [5]. Physical fatigue is defined as the phenomenon at

which the person who is exercising is no longer able to exert the effort that is necessary to

complete a task. [6].

Analyzing how the fatigue detection metrics are used to create a fatigue detection model

which can be used to analyze fatigue level are learned in Chapters 2.1 and 2.2, which

reviews common Physiological metrics and the correlation of these metrics with fatigue,

and fatigue assessment algorithms respectively.

2.1 Physiological Metrics

Physiological metrics provide real-time information about a human’s internal state, such as

fatigue. Physiological metrics correlate with changes in human fatigue (physical or mental)

and provide the foundation for creating an effective fatigue classification algorithm. There

are many physiological metrics involved in analyzing a fatigue level of a person. The

metrics which support fatigue analysis are presented in Table 2.1.

The next section describes the definitions of each physiological metric, and in detail

how each physiological metric affects both mental and physical fatigue.

2.1.1 Correlation with Fatigue

Heart Rate is defined as the number of heartbeats in a minute or in general, it can be

said as the number of heartbeats per unity time. R-R intervals(RRI) and frequency domain
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Table 2.1 Common physiological metrics
Common physiological metrics

Heart rate
Heart-rate variability

Electromyography (EMG)
Respiration rate

Electrodermal activity (EDA)
Galvanic skin response (GSR)

Pulse oximetry
Photoplethysmography (PPG) pulse

Electroencephalogram(EEG)

characteristics changes with the level of mental fatigue due to physiological activities in a

day [7]. Tasks have resting and task periods, the mean heart rate increases in the resting

period as well as in the task period, but the difference in the mean heart rate between the

resting and task period decreases. Also, the variance decreases in both cases [8].

Brown and Steven [9] state that when mental fatigue is considered in a Physical task

the heart rate is relatively lower, and exercising cognitive control caused mental exhaustion

and hindered later physical performance. Afternoons, the heart rate increases as the power

component ratio(HRV) and low-frequency power component decreases.Evenings, when

the mental fatigue is high heart rate decreases as the power component ratio(HRV) and

low-frequency power component increase [7]. To conclude in general heart rate increases

while doing any physical task whereas for mental activity heart rate may or may not always

increase.

Heart Rate Variability(HRV) is a non-invasive method of assessing the state of auto-

nomic nervous activity that measures the variation of time between heart rates [10]. When

the power spectral of HRV is taken for the study. The results are analyzed by comparing the

pre-task and post-task spectral density of HRV[11]. The detection of R waves is done by
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the algorithm based on wavelet transforms. Indices are based on autonomic nervous func-

tions such as HRV to monitor changes in mental fatigue[11]. Therefore, Zhang, Chong, and

Xiaolin Yu conclude that as the mental fatigue increases, the HRV decreases [11]. Mental

fatigue will eventually result in varying cardiovascular functions which intern affect the

heart rate and heart rate variability. Yue, Liu, et al in [7] elaborate on the Welch spectrum

estimation, which can be used to obtain the spectrum diagram and high-frequency compo-

nent power (HF), low-frequency component power (LF), and the ratio of high-frequency

component power and low-frequency component power (LF/HF) of heart rate variability

(HRV). The ratio (LF/HF) relates to the stability of the autonomic nervous system and de-

picts the balance between the other nervous systems which is responsible for balance in the

brain(cerebellum) which in turn tells how mentally fatigue a person is. Kiryu, Motomiya,

Ushiyama, and Okada et al, conduct an experiment to demonstrate physical or muscular

fatigue during skiing[12]. Detailed HRV activities are analyzed using wavelet transform.

The ratio (LF/HF) is addressed to analyze the Physical fatigue and the ratio decreases [12].

Therefore, HRV decreases with an increase in fatigue.

Electromyography(EMG) is a technique for assessing and recording the electrical ac-

tivity of skeletal muscles. Causes for fatigue are analyzed using EMG amplitude charac-

teristics [13]. When analyzing muscular fatigue, the high pass filter’s corner frequency is

0.5 or 1 Hz. The surface detected EMG amplitude characteristics can increase even though

Intracellular action potential(IAP) amplitude decreases significantly with fatigue. Due to

the lengthening of the IAP profile and an increase in the negative after-potential [13]. EMG

signals were collected from the biceps brachii and rectus femoris from four participants as
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mentioned in [14], and as fatigue set in, the spectral modification(Change in magnitude and

phase of the EMG signals) shifts to a lower frequency.

The rate at which breathing occurs is referred to as the Respiration rate. The respira-

tory center sets and controls this, which is usually measured in breaths per minute. Breath-

ing patterns change depending on the task. Under fatigued conditions, breath frequency

almost remains stable, and respiration amplitude decreases [15]. The total variability of

respiratory rate is unaffected by cognitive fatigue, whereas the correlated fraction decreases

[16]. Therefore, the respiration rate increases with an increase in mental demand, which

leads the fatigue level to increase [17].

The property of the human body that causes continuous variation in the electrical char-

acteristics of the skin is known as Electrodermal activity(EDA). The use of the EDA met-

ric to detect muscle fatigue correlates with fatigue, providing complementary information

from EMG signals. The galvanic skin response (GSR), which is a subset of electrodermal

activity, or EDA. It is the change in sweat gland activityand it differs according to our emo-

tions. The EDA is determined by observing variations in skin conductance (SC) at specific

locations on the body where the concentration of eccrine glands is high[18]. The EDA was

obtained on the nondominant hand’s finger phalanxes. The index of sympathetic nervous

system activity increases for a fatigued person. The mean and maximum amplitude of sig-

nificant peaks of SMNA signals increases as fatigue increases. Signal patterns of GSR are

analyzed using frequency analysis with a cutoff of 50 Hz [19]. It is seen that GSR has the

peak power spectrum in the low-frequency band (0 0.08 Hz) during awake(not fatigued)

and high-frequency band during drowsy(fatigued) [19].
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Pulse oximetry measures the oxygen level (oxygen saturation) of the blood as well as

changes in blood volume in the skin, resulting in a Photoplethysmograph.Photoplethysmography

(PPG) is a simple and low-cost optical technique for detecting changes in blood volume in

the microvascular bed of tissue. It is frequently used to take measurements at the skin’s sur-

face in a non-invasive manner. Fatigue is induced by a reduced supply of oxygen. The per-

formance factor increases with an increase in blood oxygen level in the human body in nor-

mal not fatigued condition[20].PPG is also used to find the motion of the heart(calculated

based on RR intervals[21]) as PPG uses lights to grasp the motion and the difference in

light absorption rate in blood vessels [22] [23]. When the mental fatigue sets in heart rate

found using PPG increases [21].

Electroencephalography(EEG) is an electrophysiological monitoring technique that

records electrical activity on the scalp and has been shown to reflect the macroscopic ac-

tivity of the brain’s surface layer beneath. The electrodes are usually inserted along the

scalp, making it non-invasive. The mental fatigue measured using EEG signals is deter-

mined by noticing the change in the wavelet packet feature of EEG and is extracted for

every EEG data segment [11]. The results of wavelet packet entropy changes between pre-

task and post-task are compared and used for analysis. As the mental fatigue onsets, the

relative wavelet packet energy in the frequency band decreases, and wavelet packet entropy

decreases [11].
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2.2 Machine Learning Algorithms

2.2.1 Classical Machine Learning

Machine Learning is a subset of artificial intelligence and ML techniques that tries to mimic

human behavior which is very complicated for a machine to understand human activity and

ML algorithms try to learn from data sets or observations and try to predict the output for a

new similar event. Learning with available training data set is known as supervised machine

learning. Let us now see in this section the supervised machine learning algorithms that are

used to classify fatigue.

Random Forest

Random Forest is a method that considers the output of multiple decisions trees to make

the final prediction. The decision trees model tries to imitate the property of a tree(roots

branching till node) where each decision and respective outcomes are recorded to make the

best decision by checking the majority of answers from each node.

The approach by Maman, Chen, Bombard et al to explain the concept of physical fa-

tigue detection using wearable sensors is commendable [24]. Two tasks were designed in

the study, the first was the manual material handling task(MMH) and the second one is

the pick-up and insertion(PI) task. The experiment lasted 6 hours (3 hours for each task),

with the tasks being counterbalanced among the participants. There were 24 participants

involved in this experiment, 9 females and 15 males. The mean age calculated for this

experiment resulted to be 36.37 years. Five of the participants in this experiment were

manufacturing workers, and the remaining were students. The condition for recruitment

was the participants were needed to be in good mental and physical health, and they were



10

screened by using a set of physical activity questionnaires. MMH task environment in-

cludes palletizing and carrying multiple weighted containers was part of the MMH task.

Out of 24 participants, 9 participants were taken out during the data cleaning process, as

they did not meet the requirement of the experiment. This task was for 3 hours without

break and was supposed to be done with the same level of speed. Four IMUs at the ankle,

hip, wrist, and torso, as well as a heart rate monitor on the chest, was used to collect data,

and in-situ questionnaires were filled out every 10 minutes during the experiment. The sup-

ply pick-up and insertion task environment includes walking while carrying materials and

then leaning forward to unscrew and fasten bolts at the supply box. Only 13 participants

were included (instead of 15 in case 1) with reliable data after data cleaning. The sensor

position is similar to that of the MMH task. The tasks were designed in such a way that one

task was less tiring than the other. There are only two classification levels: fatigued and

not fatigued. The data was classified as not fatigued for the first 18 minutes and fatigued

for the last 10 minutes. The sensors and metrics used here were heart rate sensors, iner-

tia measurement units (IMUS), electroencephalography (EEG), electromyography (EMG),

and optical sensors. This study uses a window size of two minutes. The study extracted

42 statistical features, 10 bio-mechanical features, and 2 individual features.2 participants’

data were removed due to corruption of data. The Random Forest model outperforms the

other models in terms of accuracy (0.887) for this experiment.

The study looks into multilevel mental fatigue detection using the random forest[25].

The participants for this experiment were carefully selected. 12 healthy(no history of se-

vere disease and medication) adults with an age range of 19 and 25 years were selected
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and also they had to have education for 11 to 15 years only. The participants who had

sleep disorders were disregarded for the experiment, 8 hours sleep duration track record

was required to participate in the experiment. The experiment conducted in this study was

Auditory Vigilance Task (AVT), the participants were given random audio commands to

follow with an interval of 500ms for each command set with a total of 50 sets. This com-

mand set gave 4 commands left, right, up, and down, the participants were required to

concentrate and click these buttons within 1.5s and each session was for 3 minutes. EEG

data were collected in this experiment and after each session AVT scores were calculated

(percentage) and there was 5 fatigue level used for this task. The features were extracted

with a window of 2 and an interval of 0.5s in-between. A total of 98160 samples were

processed. Each decision tree was grown to the maximum of its depth and was weakened

and these weakened trees were used to produce a strong random forest classifier. The test

error rate was calculated to check the accuracy of the models, RF and recursive feature

elimination scheme(RFE) together had a lower error rate and least features were obtained

whereas using all RF, RFE, and heuristic initial feature ranking scheme(INIT) the error rate

was maximum but obtained highest features[25],

Support Vector machine Support Vector Machine is a supervised machine learning

algorithm and can be used for both classification and regression problems. SVM algorithm

classifies using a hyper-plane that is used to classify multi-classes.

The study by Maman, Chen, Bombard et al mentioned in the above random forest sec-

tion also estimate the result using SVM where the accuracy was 0.787 lesser than the boost-

ing, bagging, and RF models[24].
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The study by Zhang, Zheng et al are about detecting mental fatigue estimation using a

support vector machine (SVM) [26].5 male right-handed participants were taken for this

experiment. The relationship between mental fatigue and EEG descriptor was considered

and the participants were asked to read with concentration the whole afternoon and were

also asked to take notes for the readings. The EEG data were collected at 4 pm and 5 pm in

the dark (closed eyes and lights off).FIR filtering was done for the signals obtained at 0.5

to 30 Hz. Two fatigue levels were considered for this experiment. SVM and Mahalanobis

distance(MDBC) both classifiers were used to predict the fatigue levels SVM seems to give

more accuracy around 91% was obtained using this classifier.

The real-time driver’s fatigue is detected in the study by Savaş, Becerikli et al. [27].

The metrics considered here were blink rate, blink count, yawn detection, and head posi-

tion detection . 10 participants 5 male and 5 female were taken for this experiment, and

participants drove the training simulator. SVM model was trained for 80 percent of the data

and tested on 20 percent of data with a cross-validation of 10. The SVM model was used

to classify two classes: fatigue and not fatigue. The accuracy of the model was up to 97.93/

Gradient Boosted Decision tree

Boosting is a technique that combines several weak learning algorithms into a single

larger algorithm. Predictions problems can be solved using the gradient boosted decision

tree method. This method can be used to solve both classification and regression problems.

The physiological data were collected in the experiment conducted by Aryal, Ghahra-

mani, Gerber et.al [28]. 12 construction workers were considered for the material handling

experiment. Participants carried 15kg sandbags and walked for 10-meter for 200 trails.
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The participant’s helmets were fitted with infrared sensors, brainwave signal monitor, heart

rate monitor, and Garmin vivofit, which collected physiological metrics like heart rate, skin

temperature, and human thermoregulatory. Mental attentiveness was measured by a psy-

chomotor vigilance test (PVT). The experiment tried to show the real-time physical fatigue

detection in construction workers. The algorithms used to build the model are boosted

trees and decision tree algorithms. The decision tree algorithm used 100 complex trees,

20 medium trees, and 4 simple trees. The boosted trees algorithm was employed, with

medium trees serving as base learners and bagged trees serving as an ensemble of complex

trees. Boosted tree algorithm performed well compared to another algorithm. 21 features

were extracted from the sensors and 10-fold cross-validation was applied. Subjective rating

of fatigue is collected for every 10 trials using Borg’s Rating of Perceived Exertion (RPE).

RPE scale range from Level 6-to 20. Level 6-11 is considered as low fatigue, level 12-14

as medium fatigue, level 15-16 as High fatigue, and level 17-20 as Very High fatigue. The

accuracy is the average accuracy of 10 iterations, and the accuracy was based only on skin

temperature was 9% greater accuracy compared to using only heart rate, but when both skin

temperature and heart rate were taken into account the accuracy reached the maximum of

82%.

K-Nearest Neighbor(K-NN)

K-nearest-neighbor algorithm abbreviated as k-nn can also be used to classify both clas-

sification and regression problems. KNN uses a distance technique between the test data

and all training data to predict the correct class for the test data. K number points closest

to the test data are selected.
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The [29] tries to develop an objective index for anxiety based on electroencephalo-

gram (EEG) and photoplethysmogram (PPG) characteristics features obtained from wear-

able headsets and glasses. Anxiety is a psycho-physiological component related to internal

tension (mental stress) and success in sport. There were two tasks given to 20 subjects

which task1 was to ride at a comfortable speed, and task2 is to ride while competing. A

questionnaire was asked before the two tasks to measure the anxiety level of the person.

Many features were extracted from the EEG and PPG sensors, to be exact 23 EEG features

and 6 PPG features. The findings of this paper revealed that the mean value and average

strength of the wavelet alpha band coefficients and that of the beta band are strongly associ-

ated with the degree of anxiety. Partial auto-correlation of EEG features showed a moderate

correlation with anxiety level. Both 6 PPG and 23 EEG features were used to find the clas-

sification accuracy after reducing the features to 3 levels of anxiety(low, moderate, and

high) by using principal component analysis and k-nearest neighbors can achieve 62.5%

accuracy across subjects. The number of nearest neighbor (K) was set to change from

1 to 10 and a three-fold cross-validation test was conducted, to reduce randomness the

cross-validation was done for 100 rounds. There were only 5 data samples labeled as high

anxiety, 3 were assigned for training and 2 for testing. The machine learning algorithms

using PCA followed by k-nearest neighbors gave an accuracy of 62.5%.

Hidden Markov Model(HMM)

Based on probabilities The HMM is a probability model that is used to depict a

stochastic process’ statistical features [30]. Hu, Gong, Mu, Han, and Zhao et al. want

to create a hidden Markov model to reduce driving accidents caused by drivers in a normal



15

state. The driver’s vehicle control strategy is referred to as the hidden state. The experiment

takes place in a driving simulator with two straight lines and two round lines forming a road

setting [30]. The algorithms used are the LBG (Linde–Buzo–Gray) VQ(Vector quantiza-

tion) algorithm, Baum-Welch algorithm, and forward and backward algorithm. LBG VQ

algorithm is used to quantify a large amount of data. The Baum-Welch algorithm is used

to evaluate or estimate model parameters, as well as to choose and optimize HMM param-

eters. In driving state identification trials, signals collected in a driving simulator using

forward and backward algorithms are used to test the model. The iteration directions are

the only difference between forward and backward algorithms. The result analysis of [30]

says that fatigue varied the distance to the center of the lane, and the steering angle. Using

all the input data and running through all these algorithms and Hidden Markov Model, the

driving state is identified as fatigue or not fatigue. The features of driving data were consid-

ered and after FFT the vector is given to HMM model. The log-likelihood value converged

curve of driving behavior sequence with forward and backward algorithms is used to ana-

lyze the results. Based on both probabilities and Physiological signals Wearable sensors

record the electroencephalogram (EEG), electromyogram (EMG), and respiration signals

all at the same time [31]. The likelihood of fatigue is calculated using kernel distribution

which estimates at various time intervals. The experiment conducted by [31] is a real-time

road driving route for bus drivers.EEG signal was obtained by the brain skin surface, EMG

signal from the nape of drivers’ neck in differential input, and abdominal respiration signal

is a belt or strap recording device which can be put on top of clothes. The experiment is

analyzed using cases where only physiological signals are used and both signals, as well as
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probabilities of fatigue detection model, are used. This dynamic interaction between these

interrelated nearby time slices is modeled using a first-order HMM model. This means that

the current fatigue probability value is influenced by the previous value.

2.2.2 Neural Nets and Deep Learning

Deep Learning is a subset of machine learning that uses neural networks with many layers.

Deep learning tries to mimic the neural structure of the human brain.

Multi Layer Neural nets

A multi-layer neural network is made up of more than one layer of an artificial neuron.

These neural nets have one input and one output layer with multiple in-between hidden

layers.

The discussion of driver fatigue is considered the main asset [32]. The authors use many

classification methods and approach in this study. The approach of the study is on biolog-

ical laboratory data. The nervous system is used as a reliable source of information. The

relationship between these two components is represented as a biological sign by tempera-

ture, skin conductivity, and heart rate. Variation in nervous system components caused by

sleep-wake activity affects Heart Rate Viability (HRV). The problem is overcome as this

study presents a new HVR based on operator fatigue analysis. HRV is calculated by using

ECG signals. The real-time data collected is used for fatigue analysis and classification.

Fatigue is classified into two classes: low fatigue and high fatigue. They employ two super-

vised machine learning algorithms (Artificial Neural Network(ANN) and Support Vector

Machine) that gave a high accuracy in predicting fatigue. The data were pre-processed and
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analyzed using a 30-sample window low pass filter. Each sample takes one minute of win-

dow size. ANN is built and trained using 80% of the dataset and 20% for testing, with a

6 node input layer, one hidden layer, and one output layer with a tangent-sigmoid transfer

function. The accuracy of neural networks was found to be 88.3%.

Convolutional Neural Networks(CNN)

convolutional neural network (CNN), is a type of artificial neural network that is com-

monly used to analyze (process data) grid-like topology like visual images [33].

Driving is an operation that calls for great diligence. Insufficient concentration, poor

vision, insufficient retrieval of knowledge, and sub-optimal anticipation are likely to cause

low results in humans [34]. To improve traffic safety and driver well-being the study in-

cludes deep learning algorithms to detect arousal levels. Wrist wearable devices that have

PPG sensors are used to calculate the heart rate. Physiological signals were collected by

these wearable devices from 11 participants. Three classes are used for testing and training:

under arousal, normal, and over-arousal. Here the author uses 7-layers convolutional neural

network trained on raw physiological signals (that is, heart rate, skin temperature, and skin

conductance) that outperform the neural network, and denoise auto-encoder models which

are justified by comparing F-score and kappa value. The experiment uses also uses the

sliding window method to extract segments of signals with a fixed 10-second phase scale.

The 10, 30, 60, and 90-second windows (each containing samples of 100, 300, 600, and

900 respectively) were considered to find the optimum method. F-score and kappa value

found are as follows: F-score: -0.82 vs. 0.75 and kappa: -0.64 vs. 0.53.

Recurrent neural networks(RNNs) with Long Short-Term Memory (LSTM)
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Recurrent neural networks (RNN) are a type of neural network that acts as a close loop

system, that is the output of the previous loop is fed as input to the current loop, same

parameter, and same task steps are done in each trial for hidden and input layers so that the

output should be the same.

Long Short-Term Memory (LSTM) is a type of recurrent neural network (RNN). LSTM

is a sequential network that remembers the data fed into the model and helps predict future

outcomes.

The driver’s fatigue is detected using facial information or metrics in [35]. The task

environment for this study is that the participants are observed by fixing cameras and the

main focus was to observe the driver’s eyes the whole time as eyes give the relative features

which can be used to detect fatigue driver’s level. The video images were captured with 50

frames per second (fps). A real-time face detection algorithm was used to detect the driver’s

face in the video images and this algorithm is implemented by using SVM. RNNs with

LSTM are used to detect fatigue and it consists of one input, three hidden layers, and one

output layer. The LSTM model is trained using features from all of the facial parameters,

such as eye parameters, yawning frequency, and other parameters obtained from vehicle

steering and lane analysis. The parameters are then fed to the LSTM algorithm to train

and test the model. The driver fatigue system gave an accuracy of around 97.20 percent.

It is obtained with fewer epochs of around 55. This study concludes by saying that when

compared to alternative feature-based techniques for classifying monthly data, RNNs with

LSTM is more efficient.

Deep Long Short-Term Memory Autoencoders
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Autoencoders are self-supervised learning model that is a subset of artificial neural net-

work. These encoders are used to do efficient coding for the data which do not have labels.

The autoencoders learn a type of encoding for the given data and can generally be used

for dimensionality reduction. LSTM autoencoders are used in time-series sequence data,

video, text, and audio types of data.

The kinematic analysis of time series data is discussed in the study [36]. IMU sen-

sors are used to extract the data that can be used for fatigue detection in runners. A 20-

minute cardiorespiratory fitness evaluation test is used to collect kinematic data from 14

runners. A sampling rate of 200 Hz is used, and IMU sensors were attached to their lower

back and cervical region (lower neck). The communication protocols and data acquisition

from the sensors in the wearable section of the measuring equipment were controlled by

a 3-axis accelerometer (ADXL345), a 3-axis gyroscope (ITG3200), and a microprocessor

(MSP430FR5969). The raw data used for the classification process were acceleration data,

angular velocity data, and angular displacement data. A Second-order Butterworth filter is

used for the filtering process with a cut-off frequency of 10 Hz. The algorithmic flow of

this experiment includes three sub-parts i. preprocessing ii. Feature extraction iii. cluster-

ing analysis. i. In preprocessing step the data-set is split into training data and validation

data and a windowing technique was used to subsequences from the time series. ii. LSTM

neural network was used to extract features from the autoencoder for the feature extraction

step. Spectral information was derived by applying Fast Fourier Transform (FFT) to the

input sequences and then given to the LSTM model. iii. The neural network’s unlabeled

features were clustered using three clustering algorithms (KMeans, Agglomerative, and
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DBSCAN).

2.2.3 Fatigue Detection Algorithm Discussion

This thesis intends to develop a fatigue detection algorithm that is included in a system

that adapts its behavior based on fatigue levels ( mental and physical fatigue). This section

discusses how the reviewed algorithms do not meet the necessary criteria to achieve the

goal of assessing mental and physical fatigue in real-time.

The most common physiological metrics used in experiments were EEG, ECG, EMG,

and heart rate which were obtained by sensors that are more invasive in nature than the

other sensors which are used to find other physiological metrics mention in 2.1. Including

more classes increases the efficiency of the system.

The reviewed fatigue classification algorithms typically classify two levels of fatigue

and very few algorithms classify fatigue in more than three classes (levels) like in [29]

[34]. Classifying two classes is easier compared to multi-classes, but it has drawbacks of

its own. It is important for machine learning or deep learning model to be able to classify

more than two classes as it results in stronger and more efficient machine learning and deep

learning models. It is important to classify fatigue in multi-level rather than just two-level

because a person might be just about to be aroused the machine learning model might

classify that the person is in a fatigued state whereas there might still be a lot of time left

for the person to be fatigued. The person might be even more efficient at working for an

extra hour before crossing a moderate fatigue level. Therefore, using more than two classes

makes the model stronger and more efficient.

Many of the experiments mainly concentrate on drivers’ fatigue which helps in assessing
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mental fatigue only, and other few experiments concentrate only on physical fatigue. There

are no papers found that address both mental and physical fatigue from the same task.

Therefore, this thesis intends to detect both physical and mental fatigue irrespective of the

task. This study also considers the five-level fatigue classification method whereas other

studies consider either two or three classes.
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Chapter 3

Human Subject Experiment

3.1 Human Subjects

The goal of this study is to create a fatigue detection model that detects both mental and

physical fatigue by capturing Physiological signals from wearable sensors. Two tasks are

used to collect data corresponding to mental and physical fatigue: (i) Jigsaw puzzle-solving

task, (ii) Pick and Place task. Wearable sensor data consisting of the Myo and Zephyr

BioHarness is collected during each task. In-situ fatigue ratings are also collected during

each task (see Table. 3.1). The data collected from the Bio Harness device are: heart

rate, respiration rate, heartbeat interval, activity, posture, and breathing wave amplitude are

noted down for further reference. EMG and IMU data are collected from the MYO armband

device from which we get to know the direction of arm movement, muscle activity, muscle

movement,8- channel EMG data, roll, pitch, and yaw.

3.2 Experiment Design

Baselines are collected at the beginning of the experiment, the participants are asked to sit

still, and his/her constant physiological data are collected for 5 minutes. Participants then

take a break before completing the physical or mental task, where the tasks are counter-

balanced across the participants. The physical task considered is the Pick and Place task,
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Table 3.1 Subjective metrics

Fatigue Level Task Demand Boredom LevelPhysical Mental Physical Mental
1- Very low 1- Very low 1- Very low 1- Very low 1- Not bored
2- Low 2- Low 2- Low 2- Low 2- Slightly bored
3- Average 3- Average 3- Average 3- Average 3- Moderately bored
4- High 4- High 4- High 4- High 4- Highly bored
5- Very High 5- Very High 5- Very High 5- Very High 5- Extremely bored

and the mental task considered is the Jigsaw puzzle-solving task. Each physical and mental

task is conducted for an hour, and followed by a baseline collection and a 5-minute break.

Participants complete in-situ ratings after each task round (defined in 3.2.1 and 3.2.2). Each

task was designed such that each round consists of the same task demand and a round is

approximately 1 minute. A consistent task demand level allows for fatigue effects to arise

without being confounded by varying task demand levels.

3.2.1 Pick and Place task

Two adjustable dumbbells (set at 7.5 lbs each (see Fig. 3.1)) must be carried around a 10-

meter u-shaped indoor track (see Fig. 3.2). The subject performs a curl with each arm at

the beginning of the lap and walks to the end of the u-shape track and back. The weights

are then placed on a standard height table. The subject then walks the track again without

the weights, after which the lap is restarted with picking up the weights (see Fig. 3.2).

One lap with weights and one lap without weights is considered to be one complete round,

and at the end of each round, the time taken to walk with weights and without weights are

recorded using timestamps from the ultrasonic sensors(teensy board) mounted on the box

as shown in Fig. 3.1.
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Figure 3.1 The dumbbell set-up for the physical task

3.2.2 Puzzle-solving task

The subjects are given a jigsaw mind game puzzle (see Fig. 3.3) which can be designed

with varying difficulty levels, but for this experiment, we use 16 pieces(4x4) of a jigsaw

puzzle. The game is designed using the Unity game engine, where each movement of

each puzzle piece is timestamped and is recorded as a correct and wrong move, game start,

restart, game duration, and game exit. The subject completes the same puzzle repetitively

for an hour, which elicits the desired mental fatigue levels.

Each round takes approximately 60 seconds(might vary according to subjects) to com-

plete one puzzle, at the end of each puzzle completion, the subjects are asked a question-

naire about their fatigue level as described in Table. 3.1.
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Figure 3.2 Physical task setup and description

3.2.3 Participant Information

The data is captured from 22 healthy subjects of Rochester Institute of Technology, 8 fe-

male and 4 male participants. The average age of the participants was 22.27 years. There

were 11 undergrads participants, 9 Masters participants and 2 PhD participants considered

for this study. The participants were not allowed in the experiment if they were not able

to lift the weights, walk for an hour, pregnant or if they were sensitive to nickel and is

explained in detail below in this section. The requirements for the participants to perform

in this experiment are as follows: the participants need to be a non-pregnant adult (18-89

years) without a pacemaker, other metal, or any other permanent metal installations in the
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Figure 3.3 Jigsaw puzzle (4x4)

chest area, or other types of implanted electronic devices. Participants with a pacemaker

are unable to enroll, as there will be an incorrect response in the person’s heart rate and

heart-rate variability by the Bio-Harness Biopac device. Due to the physical nature of

this experiment, participants are not eligible to participate in this experiment if they are

pregnant, a person who cannot lift weights(15lb)/perform dumbbell curls( 60 curls), and a

person who cannot walk approximately 1.3 miles in an hour without any breaks. Walking

and doing curls might induce slight physical strain. Participants are also expected to com-

plete a puzzle task on the computer for an hour, which may induce eye strain. Participants

may also feel stressed during the study, although this stress level is expected to be minor.

These requirements will be checked after written consent has been obtained via a demo-

graphic’s questionnaire and verbal questions. The experimenter will ask the participant if

they have difficulty walking or seeing and explain the task environment to the participant
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so that the participant understands the physical and mental demands of the experiment. The

experimenter will then ask the participant if they believe they can deal with the physical

and mental demands and remind the participant that can withdraw from the experiment at

any time. If the participant matches all the eligibility criteria only then the data will be col-

lected else if the participant is ineligible or cannot deal with the task’s physical and mental

demands all existing data will be deleted and the participant will be withdrawn from the

study.
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Chapter 4

Methodology

4.1 Physiological metric Evaluation

This chapter tells how physiological metrics were preprocessed to get desired features and

reduce the features performed by selected features containing relevant information rather

than using the original features.Physiological metrics can be used in assisting the function-

ality of organ systems. After assessing they give the information on diseases and disabilities

and in-turn helps in better medication for a person.

The physiological metrics are collected by the wearable sensors MYO armband and

Zephyr Bio Harness 3 wireless chest strap. The data collected by both the MYO armbands

are 8-EMG channels(EMG1-EMG8), and IMU directions(Roll, pitch, and yaw). The data

collected by Zephyr Bio Harness 3 chest strap are heart rate, heart rate variability, respi-

ration rate, posture, breathing wave amplitude, and ECG amplitude. Each physiological

signal is preprocessed before inclusion in a machine-learning algorithm.

4.1.1 Data preprocessing

Data preprocessing is a technique that converts raw data into a usable format. Real-time

data is frequently incomplete, inconsistent, and/or lacking in certain behaviors or trends,

and it is rife with errors. Data preprocessing is a tried-and-true method for resolving such
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problems.

The raw EMG signals obtained from the MYO armband are sampled at the rate of 200

Hz. This signal is passed through butter worth band-stop filter with a stop-band frequency

of 60 Hz. The second-order section digital filter is applied to the output to get the data in the

vector form, then the absolute value of the Fast Fourier Transform of filtered data is used for

further feature extraction process. Fourier transform is converting continuous-time (space)

non-periodic to continuous frequency non-periodic. When only one period is considered,

the decomposition is also known as the Discrete Fourier Transform (DFT). Discrete Fourier

Transform (DFT), transforms a non-periodic discrete signal of finite length N,x[n], to a set

of N,non-periodic transform coefficients, X[k]. Example uses are in digital signal process-

ing using sampled values – fast implementations of DFT are called Fast Fourier Transform

or FFT.

X[k] =

N−1∑
n=0

x[n]e− j( 2π
N )kn. (4.1)

The segmented physiological data is preprocessed in order to fill in missing information

and reduce noise. The raw EMG signals obtained from the Myo armband are sampled at

the rate of 200 Hz. These signal are passed through a notch-filter at 60 Hz in order to reduce

power-line noise. No filter is applied to the BioHarness data, since this data is preprocessed

onboard the device. Any missing samples from the Myo or BioHarness are imputed with

linear regression techniques before features are extracted.

The filtered and transformed data is then parsed for each task round (puzzle and pick

and place in the mental and physical task, respectively). This parsed data is then used for

necessary feature extraction. The data collected from bio-harness need not be filtered, but
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the data is parsed using the techniques mentioned above.

4.1.2 Feature extraction

The feature extraction or dimensionality reduction is the next step used to reduce large raw

data set into meaning full data set.

The parsed data of heart rate, heart-rate variability, respiration rate, and posture from

bio-harness are now considered for feature extraction. The features considered for this

model are mean, standard deviation, variance, gradient, and slope. Each metric is asso-

ciated with these five features and a total of 20 features from bio-harness are obtained

for physical fatigue analysis and 20 features for mental fatigue analysis. The mean is the

arithmetic average of a set of given numbers.

Arithmeticmean =
(x1 + x2 + ... + xn)

n
(4.2)

The variance is the average of the squared differences from the mean.

σ2 =

∑n
i=1(xi − x̄)2

n − 1
(4.3)

The term “gradient” refers to a graded difference in physiological activity along an axis.

A line’s slope is the ratio of how much y increases as x increases by some amount. The

slope of a line tells you how steep it is, or how much y increases as x increases. The slope

is constant (the same) anywhere on the line.

m =
y2 − y1

x2 − x1
(4.4)

The parsed data of 8 EMG channels from the MYO armband are considered for feature
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extraction. The median frequency of each EMG channel is considered a feature. Median

Frequency (MNF ) is an average frequency calculated using the power spectrum obtained

from EMG data. The median frequency fm of a power spectrum P( f ) is defined as the

frequency satisfying the following equation [37]:

∫ fm

0
P( f )d f =

∫ ∞

fm
P( f )d f =

1
2

∫ ∞

0
P( f )d f (4.5)

Therefore, a total of 36 features for each physical and mental fatigue analysis are used and

are then given to feature reduction to resolve the over-fitting issue by using all the features

for building a model and this process is explained in the next section.

4.1.3 Feature Reduction

Reducing the feature means reducing the number of variables without losing important

information from these variables to lower the computational cost as well as to make the

computer work faster. . The chosen features are known to correlate with physical and/or

mental fatigue, where a total of 36 features are extracted. This number is reduced using

Principal component analysis (PCA), in order to develop less complex models and help

prevent overfitting.

PCA reduces dimensionality by finding projections that maximize variance (informa-

tion) along an axis. This is done by computing eigen vectors and values of a dataset.

Larger eigen values represent more information in the corresponding principle component;

thus, the proportion of variance can be computed as a ranked ratio: PoV = λ1+λ2+...+λi
λ1+λ2+...+λN

,

where λi is the ith largest eigen value. This work found the PoV corresponding to 0.9 or

explains 90% of the variance. The corresponding eigen vectors are then used to project the
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42 features into a smaller dimensional space. We can also use the sklearn decomposition

for PCA analysis, n-component is found by scaling and transforming the dataset values,

and then the explained variance ratio is calculated and is ranked in order. The sum of the

variance of features that holds 90% of the data is considered as the features which contain

most information and other features are ignored. This PCA algorithm was used to reduce

features 36 features down to 17 for the physical fatigue model and 19 for the mental fatigue

model.

4.2 Fatigue classification Algorithms

The collected, filtered and cleaned data are used to build the physical fatigue and mental

fatigue classification models. These models are built using two classical machine learning

algorithms and one deep learning algorithm. The machine learning algorithms considered

for this study are Random Forest(RF), Support Vector Machine (SVM), and a Long Short

Term Memory(LSTM). This section reads the details of the algorithms and the specifica-

tions used for our experiment.

4.3 Classical Machine Learning Algorithms

4.3.1 Random Forest

Random forest is a classification algorithm that is used to classify problems using decision

trees and the decisions are made by the majority decisions made by these trees.

The number of tree nodes and the number of decision trees are very important for using

a random forest algorithm and are represented as n estimator and max depth. The number

of trees is represented by n estimators. Generally, the more trees there are, the better the
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data can be learned. However, adding a large number of trees can significantly slow down

the training process, so we perform a parameter search to find the optimal tree length. The

max depth variable represents the maximum depth of each tree in the forest. The single

tree depth is found by using an algorithm, first, a function for fitting trees of various depths

on the training data using cross-validation(CV) of five, and tree depth is created from which

we obtain CV mean, standard deviation, and accuracy scores, next we fit the trees of depth

1 to 24, finally the depth of the tree that achieves the best mean cross-validation accuracy

on training data set is selected to be the optimal depth value for the algorithm.

• Mental Fatigue Model: n estimator of 500 and a tree depth of 5 is considered to be

optimal to create this model using a random forest algorithm.

• Physical Fatigue Model: n estimator of 500 and a tree depth of 2 is considered to be

optimal to create this model using a random forest algorithm.

4.3.2 Support Vector Machine

Support Vector Machines find a hyperplane that linearly separates the dataset with some

slack (cost). This hyperplane is determined by support vectors that maximize the margin

between the hyperplane and the edge of the examples. Similar to the random forest, a grid

search was performed by changing the cost values, gamma (influence of a sample based on

distance), and kernel (radial basis function or polynomial).

Selecting kernel type is as important as creating an SVM model. Kernels are used to

transform the input into a readable output. There are seven popular SVM kernels that are

Linear Kernel, Polynomial Kernel, Gaussian Radial Basis Function (RBF), Sigmoid Ker-

nel, Gaussian Kernel, Bessel function kernel, ANOVA kernel. The data-set for this study
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is not linearly separable, therefore we consider using radial basis function (RBF) kernel

and polynomial (poly) kernel. The parameters for these kernels are C value, gamma value,

degree, and probability. RBF is the default and most widely used kernel as it resembles the

Gaussian distribution.

The best fit parameter values are found by running an algorithm with a set of C values

and gamma values and PCA of 18, best parameters are C= 10, gamma =0.07 with true

probability for kernel= RBF. The best parameters for kernel = poly are C=10, gamma =

0.05 with true probability.

4.4 Deep Learning

4.4.1 Long Short-Term Memory (LSTM)

Long Short-Term Memory (LSTM) is a type of recurrent neural network (RNN). LSTM

is a sequential network that remembers the data fed into the model and helps predict fu-

ture outcomes. The applications in which LSTMs are used are for weather forecasts or in

predicting or auto typing words to complete sentences in emails and many more. LSTMs

perform somewhat better when it comes to memorizing specific patterns. LSTM, like any

other NN, can have multiple hidden layers, and as it passes through each layer, the relevant

information is retained while the irrelevant information is discarded in every cell. There-

fore, we use LSTM in this study to predict the fatigue level of an individual. LSTMs have

both long-term and short-term memory so to deal with this gates are used to help the mem-

orizing process. The four gates are forgotten, learn, remember and use gates. The forget

gate forgets the unnecessary information and new information are learned from short term

memory and is given as input, this information is fed to long term memory so that the
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data keeps adding to the current information, and finally use gate is used to forecast the

outcome of the current event using all the information from the memory and the output is

again saved to the memory.

The x train and x test data set are scaled and transformed, and the y train and y test are

hard encoded for 5 classes. The physical and mental fatigue model is built sequentially

with one LSTM layer, two hidden layers, and one output layer classifying 5 classes. The

LSTM layer consists of fifty neurons, a tanh activation function with a dropout value of 0.2,

and a sigmoid recurrent activation function with a recurrent dropout value of 0.2. There are

two hidden layers both with sixty-four neurons and a sigmoid activation function. The

output layer of the model has 5 neurons where each neuron represents a fatigue level (1-5)

and is given to an activation function of softmax which classifies the class according to

the maximum probability obtained from each neuron. The LSTM model is trained with a

loss function of categorical cross-entropy and the ADAM optimizer with an initial learning

rate of 0.001. This model is then fit with x train and y train values with an epoch of 70,

validation split of 0.1, and a batch size of 32.

4.5 Research questions and hypothesis

This section talks about what to expect from this study. The research questions and the

hypothesis are mentioned below.

Research Question 1: How do physiological signals differ between mental and physical

fatigue for each mental and physical task?

Hypothesis 1: Significant difference will exist between the physiological data and the

fatigue levels. The Physiological signals such as heart rate, heart rate variability, respiration
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rate, posture, and EMG middle frequency are considered for both mental tasks and physical

tasks. The heart rate is expected to increase for both tasks, whereas the heart rate variability

decreases for both tasks. The respiration rate is expected to increase for the physical task

and decrease for the mental task. These findings are verified with the actual results in the

next chapter.

Hypothesis 2: All physiological data will correlate with fatigue levels.

Research Question 2: How effectively classical machine Learning models should clas-

sify five fatigue levels?

Hypothesis 1: The accuracy of the physical task model and mental task model with

random forest classifier and SVM classifier using the Leave one out (LOO) method is

expected to be above 80%.

Hypothesis 2: The Confusion for level 4 and 5 is expected to be less as there are very

little data and for level 1,2, and 3 the confusion is expected to be higher as there is huge

data for each of these fatigue levels.

Research Question 3: How effectively classical Deep Learning models should classify

five fatigue levels?

Hypothesis 1: The accuracy of the physical task model and mental task model with the

LSTM classifier using the Leave one out (LOO) method is expected to be above 75%.

Hypothesis 2: The Confusion for level 4 and 5 is expected to be less as there are very

little data and for level 1,2, and 3 the confusion is expected to be higher as there is huge

data for each of these fatigue levels.
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4.6 Summary

The algorithms used in this study: are Random Forest, Support Vector Machine, and

LSTM. These algorithms are discussed individually in this chapter with their respective

parameter specification which helps in building an optimal model for this study. The

next chapter talks about the validation methods and the validation accuracy of each fatigue

model and discusses the experimental validation outputs.
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Chapter 5

Results and Discussions

5.1 Experimental Validation

The experiment validation gives better knowledge of the correlation between features, and

differences in the dependent variable for two independent groups. This study uses the

Mann-Whitney U test to check the correlation between features between two independent

groups or classes. There are five groups from 1-5 and the correlation between one depen-

dent variable from one group is compared with the same dependent variable from the other

group. The correlation and validation between the same dependent variables themselves

are calculated using the pandas Pearson correlation method.

Pearson Correlation: Pearson’s correlation coefficient is calculated by dividing the

covariance of the two variables by the product of the standard deviations of each data

sample. This can also be said as a measure of linear correlation between two sets of data, it

is the normalization of the co-variance between the two variables to yield an interpretable

score, and it is represented in the equation below:

γ =

∑
(xi − x̄)(yi − ȳ)√∑

(xi − x̄)2∑(yi − ȳ)2
(5.1)

Mann-Whitney U test: The Mann–Whitney U test is a non-parametric test of the null
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hypothesis that the likelihood of X being higher than Y for randomly picked values X and Y

from two populations is equal to the chance of Y being greater than X. It compares whether

the dependent variable’s distribution is the same for the two groups, implying that they are

from the same population.

5.1.1 Heart-Rate

The mean heart rate and the standard deviation are calculated for each level of mental and

physical fatigue. The mean heart rate and the standard deviation of the heart rate of the

physical fatigue task are more compared to that of the mental fatigue task. The maximum

heart rate value is found to be at level 3 (88.12) for mental fatigue and level 2 (110.16) for

physical fatigue. A detailed overview of mean and standard deviation by Fatigue Type and

Subjective Level is provided in Table. 5.1.

Table 5.1 Heart-Rate Descriptive Statistics by Fatigue Type and Subjective Level
Fatigue Type Fatigue Level Descriptive Statistics (Mean(StDev).) Count

Mental

1 77.57(4.64). 112
2 85.90 (3.47). 190
3 88.18 (4.23). 251
4 79.80 (4.95). 129
5 81.11 (4.05). 44

Physical

1 102.15 (4.80). 256
2 110.16 (5.22). 222
3 105.81 (5.24). 111
4 105.55 (3.53). 48
5 105.18 (4.19). 32

The Mann-Whitney results for heart rate with pairwise comparisons for mental fatigue

level and physical fatigue level are provided in Table 5.2 and 5.3 respectively. The table

gives an overview of the p-values of the Mann-Whitney U-test analysis and if the p-value

is below the agreed risk of 5 percent (0.05), the null hypothesis can be rejected else if the

p-value is greater than 0.05 we the null hypothesis is not rejected. For the (4 vs 5) pair and
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(2 vs 3) pair the null hypothesis is not rejected as the p-value is more than 0.05 for Mental

Fatigue. For the (4 vs 5),(1 vs 3),(1 vs 4),(2 vs 4), and (2 vs 5) pairs the null hypothesis

is not rejected as the p-value is more than 0.05 for Physical Fatigue. Therefore, we cannot

conclude that a significant difference exists between these groups.

Table 5.2 Heart-Rate Mann-Whitney Pairwise Comparisons for Mental Fatigue. Note: * indicates the differ-
ence between the groups, * p<0.05, ** p<0.001

Level 1 2 3 4 5
1
2 **
3 ** 0.167
4 ** * **
5 ** 0.136 * 0.673

Table 5.3 Heart-Rate Mann-Whitney Pairwise Comparisons for Physical Fatigue. Note: * indicates the
difference between the groups, * p<0.05, ** p<0.001

Level 1 2 3 4 5
1
2 *
3 0.090 **
4 0.079 0.816 *
5 * 0.517 * 0.105

Heart rate was negatively correlated with trial duration (r=-0.2308) and positively cor-

related with mental fatigue (r=0.0377). Heart rate was negatively correlated both with trial

duration (r=-0.179) and with physical fatigue (r=-0.00777).

5.1.2 Heart-Rate Variability

The mean and standard deviation of heart rate variability is calculated for each level of

mental and physical fatigue. Mean heart rate variability and standard deviation of heart

rate variability of mental fatigue type is more compared to that of physical fatigue type, as

heart rate variability is inversely proportional to that of heart rate, therefore, as the heart-

rate increases heart rate variability decreases. The maximum heart rate variability value is
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found to be at level 1 (60.847) for mental fatigue and level 1 (36.208) for physical fatigue.

A detailed overview of mean and standard deviation by Fatigue Type and Subjective Level

is provided in Table 5.4.

Table 5.4 Heart-Rate Variability Descriptive Statistics by Fatigue Type and Subjective Level
Fatigue Type Fatigue Level Descriptive Statistics (Mean(StDev).) Count

Mental

1 60.84(2.12). 112
2 42.52 (1.40). 190
3 46.10 (1.18). 251
4 57.04 (1.35). 129
5 53.88 (1.12). 44

Physical

1 36.20 (1.23). 256
2 28.65 (1.18). 222
3 33.30 (1.51). 111
4 24.34 (0.83). 48
5 27.65 (1.28). 32

The Mann-Whitney results for heart rate variability with pairwise comparisons for men-

tal fatigue level and physical fatigue level are provided in Tables 5.5 and 5.6, respectively.

For the (1 vs 4) pair and (4 vs 5) pair the null hypothesis is not rejected as the p-value is

more than 0.05 for Mental Fatigue. For the (4 vs 5),(1 vs 5),(1 vs 4),(2 vs 3), and (2 vs

5) pairs the null hypothesis is not rejected as the p-value is more than 0.05 for Physical

Fatigue. Therefore, we cannot conclude that a significant difference exists between these

groups.

Table 5.5 Heart-Rate Variability Mann-Whitney Pairwise Comparisons for Mental Fatigue.Note: * indicates
the difference between the groups, * p<0.05, ** p<0.001

Level 1 2 3 4 5
1
2 **
3 ** *
4 0.136 ** **
5 * ** ** 0.336

Heart-rate variability was positively correlated with both trial duration (r=0.1922) and

with mental fatigue (r=0.0283). Heart-Rate Variability was positively correlated with trial
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Table 5.6 Heart-Rate Variability Mann-Whitney Pairwise Comparisons for Physical Fatigue.Note: * indi-
cates the difference between the groups, * p<0.05, ** p<0.001

Level 1 2 3 4 5
1
2 *
3 ** 0.108
4 0.964 ** **
5 0.248 0.830 * 0.097

duration (r=0.1574) and negatively correlated with physical fatigue (r=-0.0901).

5.1.3 Respiration-Rate

The mean and standard deviation of Respiration-Rate is calculated for each level of mental

and physical fatigue. The mean Respiration-Rate and standard deviation of Respiration-

Rate of physical fatigue type is more compared to that of mental fatigue type. Heart rate and

respiration rate are directly proportional, respiration rate increases as heart rate increases.

The maximum Respiration-Rate value is found to be at level 1 (26.875) for physical fatigue

and level 5 (16.762) for mental fatigue. A detailed overview of mean and standard deviation

by Fatigue Type and Subjective Level is provided in Table 5.7.

Table 5.7 Respiration-Rate Descriptive Statistics by Fatigue Type and Subjective Level
Fatigue Type Fatigue Level Descriptive Statistics (Mean(StDev).) Count

Mental

1 15.19(1.28). 112
2 16.23 (0.83). 190
3 16.40 (0.92). 251
4 15.60 (0.93). 129
5 16.76 (0.90). 44

Physical

1 26.87 (2.51). 256
2 21.75 (1.98). 222
3 24.04 (2.60). 111
4 25.87 (3.042). 48
5 25.53 (2.77). 32

The Mann-Whitney results for respiration rate with pairwise comparisons for mental

fatigue level and physical fatigue level are provided in Tables 5.8 and 5.9, respectively. For
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the (1 vs 4),(1 vs 5),(2 vs 3),(2 vs 5),(3 vs 5), and (4 vs 5) pairs the null hypothesis is not

rejected as the p-value is more than 0.05 for Mental Fatigue. For the (4 vs 5),(1 vs 5), and (3

vs 5) pairs the null hypothesis is not rejected as the p-value is more than 0.05 for Physical

Fatigue. Therefore, we cannot conclude that a significant difference exists between these

groups.

Table 5.8 Respiration-Rate Mann-Whitney Pairwise Comparisons for Mental Fatigue.Note: * indicates the
difference between the groups, * p<0.05, ** p<0.001

Level 1 2 3 4 5
1
2 *
3 * 0.768
4 0.849 * *
5 0.255 0.797 0.836 0.359

Table 5.9 Respiration-Rate Mann-Whitney Pairwise Comparisons for Physical Fatigue. Note: * indicates the
difference between the groups, * p<0.05, ** p<0.001

Level 1 2 3 4 5
1
2 **
3 ** **
4 * ** *
5 0.071 ** 0.165 0.410

Respiration rate is negatively correlated with trial duration (r=-0.1654) and positively

correlated with mental fatigue (r=0.05789). Respiration rate was positively correlated with

trial duration (r=0.20563) and negatively correlated with physical fatigue (r=-0.0670).

5.1.4 Posture Magnitude

The mean and standard deviation of Posture is calculated for each level of mental and

physical fatigue. Mean Posture and standard deviation of Posture Magnitude of physical

fatigue type is more compared to that of mental fatigue type. There are more postures in the

physical type compared to that of the mental type. The maximum Posture value is found to
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be at level 2 (-3.416763 ) for physical fatigue and level 2 (-4.081288 ) for mental fatigue.

A detailed overview of mean and standard deviation by Fatigue Type and Subjective Level

is provided in Table 5.10.

Table 5.10 Posture Descriptive Statistics by Fatigue Type and Subjective Level
Fatigue Type Fatigue Level Descriptive Statistics (Mean(StDev).) Count

Mental

1 -10.00(1.34). 112
2 -4.08 (0.77). 190
3 -6.81 (1.00). 251
4 -19.99 (2.60). 129
5 -27.80 (0.71). 44

Physical

1 -10.57 (21.69). 256
2 -3.41 (18.02). 222
3 -9.14 (14.63). 111
4 -9.60 (15.59). 48
5 -12.30 (12.13). 32

The Mann-Whitney results for Posture Magnitude with pairwise comparisons for mental

fatigue level and physical fatigue level are provided in Tables 5.11 and 5.12, respectively.

For the (1 vs 3),(2 vs 3), and (4 vs 5) pairs the null hypothesis is not rejected as the p-value

is more than 0.05 for Mental Fatigue. For the (4 vs 5),(1 vs 5),(2 vs 4),(2 vs 5),(3 vs 4), and

(3 vs 5) pairs the null hypothesis is not rejected as the p-value is more than 0.05 for Physical

Fatigue. Therefore, we cannot conclude that a significant difference exists between these

groups.

Table 5.11 Posture Mann-Whitney Pairwise Comparisons for Mental Fatigue. Note: * indicates the differ-
ence between the groups, * p<0.05, ** p<0.001

Level 1 2 3 4 5
1
2 *
3 0.270 0.133
4 ** ** **
5 ** ** ** 0.131
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Table 5.12 Posture Mann-Whitney Pairwise Comparisons for Physical Fatigue. Note: * indicates the differ-
ence between the groups, * p<0.05, ** p<0.001

Level 1 2 3 4 5
1
2 **
3 * **
4 * 0.133 0.253
5 0.794 0.069 0.646 0.410

Posture was negatively correlated both with trial duration (r=-0.115329) and with men-

tal fatigue (r=-0.255575). Posture was negatively correlated both with trial duration (r=-

0.155628) and with physical fatigue (r=-0.050882).

5.1.5 EMG Average Middle Frequency across All Channels

The mean and standard deviation of EMG Average Middle Frequency is calculated for each

level of mental and physical fatigue. Mean EMG Average Middle Frequency and standard

deviation of EMG Average Middle Frequency of mental fatigue type is more compared

to that of physical fatigue type. The maximum EMG Average Middle-Frequency value is

found to be at level 2 (50.615146) for physical fatigue and level 1 (50.126116) for mental

fatigue. A detailed overview of mean and standard deviation by Fatigue Type and Subjec-

tive Level is provided in Table 5.13.

Table 5.13 EMG Middle-Frequency Descriptive Statistics by Fatigue Type and Subjective Level
Fatigue Type Fatigue Level Descriptive Statistics (Mean(StDev).) Count

Mental

1 50.12(2.75). 112
2 49.44 (3.05). 190
3 50.03 (3.05). 251
4 50.00 (2.77). 129
5 49.18 (3.63). 44

Physical

1 50.14 (1.88). 256
2 50.61 (2.22). 222
3 49.60 (2.55). 111
4 48.71 (2.38). 48
5 48.32 (2.21). 32
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The Mann-Whitney results for EMG Average Middle Frequency with pairwise compar-

isons for mental fatigue level and physical fatigue level are provided in Tables 5.14 and

5.15, respectively. For the (1 vs 3),(1 vs 4),(2 vs 3),(2 vs 5), and (3 vs 4) pairs the null

hypothesis is not rejected as the p-value is more than 0.05 for Mental Fatigue. For the (4

vs 5),(1 vs 2), and (2 vs 3) pairs the null hypothesis is not rejected as the p-value is more

than 0.05 for Physical Fatigue. Therefore, we cannot conclude that a significant difference

exists between these groups.

Table 5.14 EMG Middle-Frequency Mann-Whitney Pairwise Comparisons for Mental Fatigue. Note: *
indicates the difference between the groups, * p<0.05, ** p<0.001

Level 1 2 3 4 5
1
2 **
3 0.073 0.084
4 0.358 * 0.424
5 ** 0.300 ** **

Table 5.15 EMG Middle-Frequency Mann-Whitney Pairwise Comparisons for Physical Fatigue. Note: *
indicates significant difference, * p<0.05, ** p<0.001

Level 1 2 3 4 5
1
2 0.066
3 ** 0.090
4 ** ** *
5 ** ** * 0.286

Average EMG Middle-Frequency was positively correlated with trial duration (r=0.5722)

and negatively correlated with mental fatigue (r=-0.205077). Average EMG Middle-Frequency

was positively correlated with trial duration (r=0.153649) and negatively correlated with

physical fatigue (r=-0.208064).
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5.1.6 Subjective Ratings

The Fig 5.1.& 5.2. presents the plot of Mental Fatigue level and Physical fatigue level by

the number of trials, respectively. The mental plot shows that mental fatigue level increases

with an increase in the number of trials but decreases around 65th trial as there are very

little data for level 5. The physical plot shows that physical fatigue level increases with an

increase in the number of trials but decreases drastically around 55th trial as there are very

little data for level 4 and 5.

Figure 5.1 Plot of average Mental Fatigue level by trial number

The Fig 5.3.& 5.4. presents the plot of trial duration of Mental Fatigue and Physical

fatigue by the number of trials, respectively. The mental plot shows that trial duration

decreases linearly with an increase in the number of trials. The physical plot shows that

trial duration decreases with an increase in the number of trials but the decrease in trial

duration is so linear than the mental plot.
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Figure 5.2 Plot of average Physical Fatigue level by trial number

Figure 5.3 Plot of trial duration by trial number for average Mental Fatigue
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Figure 5.4 Plot of trial duration by trial number for average Physical Fatigue

The correlation of average mental fatigue with trial duration is negatively correlated

(r=-0.759923). The correlation of average physical fatigue with trial duration is negatively

correlated (r=-0.16206).

5.2 Classical Machine Learning

The random forest and support vector machine models are evaluated using the Leave One

Subject Out cross-validation(LOSOCV) method.

LOOCV: The Leave-One-Out Cross-Validation, or LOOCV, the procedure is used to es-

timate the performance of machine learning algorithms when they are used to make predic-

tions on data not used to train the model. To see how well the predictions are made we use

leave one out cross validation methodology.Generally, we can evaluate the performance of

a model also by using mean squared error (MSE). Leave one subject out(LOSO/LOOCV)

CV trains a model on all but one participant and validates on the remaining participant.
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This approach is repeated such that each participant is tested on once. The LOSO CV re-

sults provide insight into a model’s population generalizability (how well it performs on an

previously unseen human).

Table 5.16 Random Forest and Support Vector Machine Classification Accuracy by Participant and Mental
Fatigue

Participant Mental Fatigue
RF SVM

P1 0.33 0.29
P2 0.34 0.22
P3 0.08 0.08
P4 0.13 0.23
P6 0.38 0.39
P7 0.16 0.16
P8 0.42 0.5
P9 0.4 0.3

P10 0.33 0.5
P11 0.20 0.27
P12 0.18 0.13
P13 0.23 0.36
P14 0.04 0.04
P17 0.11 0.11
P18 0.19 0.22
P19 0.22 0.19
P20 0.26 0.13
P21 0.05 0.09
P22 0.08 0.08
Avg. 0.23 0.24

Table 5.17 Random Forest and Support Vector Machine Classification Accuracy by Participant and Physical
Fatigue

Participant Physical Fatigue
RF SVM

P2 0.58 0.78
P3 0.35 0.38
P6 0.20 0.35
P7 0.04 0.0
P8 0.54 0.54

P10 0.0 0.0
P12 0.09 0.05
P13 0.14 0.17
P15 0.0 0.0
P17 0.05 0.0
P19 0.02 0.23
P20 0.25 0.28
Avg. 0.25 0.27
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The confusion matrix is an accurate count of actual value to predicted value and is

represented in a matrix form. We have 5 classes in our study when the actual value of

class 1 is equal to the predicted value of class 1 it is known as true positive(TP). When

the actual value of class 2 is equal to the predicted value of class 2 it is known as true

negative(TN) and goes on till class 3,4,5 that is TN value for a class will be the sum of

values of corresponding rows except for the TP value. When class 1 is predicted as class

2 it is known as a false negative(FN), for a multi-class, the FN value of a class will be the

total of the values of all columns and rows except those of the class for which the values are

being calculated, and when class 2 is predicted as class 1 it is known false positive(FP), for

a multi-class the FP value of a class will be the sum of values of the corresponding column

except for the TP value.

The RF-confusion matrix of physical fatigue as provided in figure 5.7. has class 1 and

class 2 with maximum true positive values compared to that of the remaining 3 classes.

The RF-confusion matrix of mental fatigue as provided in figure 5.5. has class 3 and class

2 with maximum true positive values. The SVM-confusion matrix of physical fatigue as

provided in figure 5.8. has class 1 and class 2 with maximum true positive(30,24) values

compared to that of the remaining 3 classes. The SVM-confusion matrix of mental fatigue

as provided in figure 5.6 has class 3 and class 2 with maximum true positive values.

The f1-score, precision and recall of random forest, and SVM for physical and mental

classification model are represented in Table 5.19 and 5.18 respectively. A recall is defined

as the ratio of the total number of correctly classified true positive classes divide by the

total number of positive classes(TP+FN). The RF- recall shows that class 3(0.65) has been
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classified correctly compared to the other 4 classes for mental fatigue classification. The

RF- recall shows that class 1 has been classified correctly compared to the other 4 classes

for physical fatigue classification. The SVM- recall shows that class 2 has been classified

correctly compared to the other 4 classes for mental fatigue classification. The SVM- recall

shows that class 1 has been classified correctly compared to the other 4 classes for physical

fatigue classification. Precision is the ratio of the total number of correctly classified posi-

tive classes(TP) divided by the total number of predicted positive classes(TP+FP). The RF-

precision shows that classes 3 and 4 are more precise than the other 3 classes for mental

fatigue. The RF- precision shows that class 4 is more precise than the other 4 classes for

physical fatigue. The SVM- precision shows that class 3 is more precise than the other 4

classes for mental fatigue. The SVM- precision shows that class 1 is more precise than

the other 4 classes for physical fatigue. F-1 score is used to compare one class with other

classes and is defined as the ratio of the product of recall and precision values divided by

the total sum of recall and precision values. The RF-f1 score shows that class 2 has more

scores compared to the other 4 classes for mental fatigue. The RF-f1 score shows that

class 1 has more scores compared to the other 4 classes for physical fatigue. The SVM-f1

score shows that class 3 has more scores compared to the other 4 classes for mental fatigue.

The SVM-f1 score shows that class 1 has more scores compared to the other 4 classes for

physical fatigue.

Table 5.18 F-1 score,precision and recall for Mental Fatigue.
Metric Random Forest SVM

F1 score [0.07,0.33,0.28,0.10,0.00] [0.05,0.31,0.32,0.02,0.00]
Precision [0.08, 0.29,0.24,0.14,0.00] [0.09, 0.28,0.24,0.18,0.00]

Recall [0.06, 0.40,0.33,0.08,0.00] [0.03, 0.36,0.49,0.01,0.00]
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Figure 5.5 Random forest Confusion matrix- Mental fatigue

Figure 5.6 SVM Confusion matrix- Mental fatigue
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Figure 5.7 Random forest Confusion matrix- Physical fatigue

Figure 5.8 SVM Confusion matrix- Physical fatigue
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Table 5.19 F-1 score,precision and recall for Physical Fatigue.
Metric Random Forest SVM

F1 score [0.11,0.43, 0.06, 0.00,0.00] [0.02,0.44,0.04,0.00,0.00]
Precision [0.13,0.35,0.06,0.00,0.00] [ 0.04,0.33,0.05,0.00,0.00]

Recall [0.09,0.56,0.06,0.00,0.00] [0.1,0.68,0.04, 0.00,0.00]

The average accuracy of the Mental fatigue model using the Leave one subject out

(LOSO) method for the random forest is 23% and for the support vector machine is 24%

as is shown in table 5.16 based on which participant is left out. The average accuracy of

the Physical fatigue model using the Leave one subject out (LOSO) method for the random

forest is 25% and for the support vector machine is 27% as is shown in table 5.17 based on

which participant is left out. Due to sensor failure, many participants were dropped as the

heart rate was 0 and which in turn affected the model accuracy.

5.2.1 Train Physical and Test Mental

The Random Forest and SVM models are trained for physical task data considering physi-

ological signals as x-train and physical fatigue level as y-train. This trained model is tested

for mental task data considering physiological signals as x-test and the prediction accuracy

is calculated using physical fatigue level as y-test.

The Random Forest model gave an accuracy of 22.56 % and the SVM model gave an

accuracy of 25.69 % . The confusion matrix of random forest and SVM classification

model are shown in figure 5.9 and 5.10 respectively. The RF-confusion matrix of physical

fatigue has class 1 and class 2 with maximum true positive values compared to that of the

remaining 3 classes. The SVM-confusion matrix has class 1 and class 2 with maximum

true positive values compared to that of the remaining 3 classes.
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Figure 5.9 Train Physical and Test Mental- Random forest Confusion matrix

Figure 5.10 Train Physical and Test Mental- SVM Confusion matrix
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5.2.2 Train Mental and Test Physical

The Random Forest and SVM models are trained for mental task data considering physio-

logical signals as x-train and mental fatigue level as y-train. This trained model is tested for

physical task data considering physiological signals as x-test and the prediction accuracy is

calculated using mental fatigue level as y-test.

The Random Forest model gave an accuracy of 18.76 % and the SVM model gave

an accuracy of 41.67 %. The confusion matrix of random forest and SVM classification

model are shown in figure 5.11 and 5.12 respectively. The RF-confusion matrix of physical

fatigue has class 3 and class 2 with maximum true positive values compared to that of the

remaining 3 classes. The SVM-confusion matrix has class 3 and class 2 with maximum

true positive values compared to that of the remaining 3 classes.

Figure 5.11 Train Mental and Test Physical- Random forest Confusion matrix
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Figure 5.12 Train Mental and Test Physical- SVM Confusion matrix

5.3 Deep Learning

The cross-validation of the LSTM model is done using the Leave one out cross-validation

method. The procedure to calculate the validation accuracy, confusion matrix, and accuracy

score is the same as explained in RF and SVM except the model built and used here is an

LSTM model. The LOOCV leaves one participant for testing and training for the remaining

participants and this procedure is calculated n-times where n is the number of participants in

a study. The f1-score, precision, and recall of LSTM for physical and mental classification

model are represented in Table 5.20and 5.21 respectively.

The LSTM- confusion matrix of mental fatigue and physical fatigue is shown in figure

5.13. and figure 5.14. respectively. The LSTM-confusion matrix of mental fatigue has

class 3 and class 2 with maximum true positive values. The LSTM-confusion matrix of
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physical fatigue has class 1 and class 2 with maximum true positive values compared to

that of the remaining 3 classes. The LSTM- recall shows that class 2 has been classified

correctly compared to the other 4 classes for mental fatigue classification. The LSTM-

recall shows that class 1 has been classified correctly compared to the other 4 classes for

physical fatigue classification. The LSTM- precision shows that class 1 is more precise

than the other 4 classes for mental fatigue. The LSTM- precision shows that class 1 is

more precise than the other 4 classes for physical fatigue. The LSTM-f1 score shows that

class 3 has more scores compared to the other 4 classes for mental fatigue. The LSTM-

f1 score shows that class 1 has more scores compared to the other 4 classes for physical

fatigue.

Table 5.20 F-1 score,precision and recall for Mental Fatigue.
Metric LSTM

F1 score [0.09,0.34,0.31,0.20,0.04]
Precision [0.13,0.30,0.28,0.20,0.08]

Recall [0.06,0.39,0.34,0.20,0.04]

Table 5.21 F-1 score,precision and recall for Physical Fatigue.
Metric LSTM

F1 score [0.15,0.31,0.10,0.00,0.00]
Precision [0.15,0.30,0.09,0.00,0.00 ]

Recall [0.14,0.33,0.11,0.00,0.00]

The average accuracy of the Mental fatigue model using the Leave one subject out

(LOSO) method for LSTM is 23% as is shown in table 5.22 based on which participant

is left out. The average accuracy of the Physical fatigue model using the Leave one subject

out (LOSO) method for LSTM is 19% as is shown in table 5.23 based on which participant

is left out. Due to sensor failure, many participants were dropped as the heart rate was 0

and which in turn affected the model accuracy.
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Figure 5.13 LSTM Confusion matrix- Mental fatigue

Figure 5.14 LSTM Confusion matrix- Physical fatigue
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Table 5.22 LSTM Classification Accuracy by Participant and Mental Fatigue

Participant Mental Fatigue
P1 0.35
P2 0.37
P3 0.18
P4 0.29
P6 0.32
P7 0.19
P8 0.38
P9 0.5

P10 0.40
P11 0.19
P12 0.21
P13 0.23
P14 0.04
P17 0.11
P18 0.20
P19 0.20
P20 0.26
P21 0.09
P22 0.15
Avg. 0.23

Table 5.23 LSTM Classification Accuracy by Participant and Physical Fatigue

Participant Physical Fatigue
P2 0.33
P3 0.24
P6 0.15
P7 0.06
P8 0.32

P10 0.0
P12 0.14
P13 0.09
P15 0.20
P17 0.02
P19 0.02
P20 0.40
Avg. 0.19

5.4 Binary fatigue Classification

The collected physiological information is windowed for 1-minute with a 10-second stride.

This segmented data is then preprocessed to reduce noise and support feature extraction.
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The extracted features are then used in a machine-learning algorithm that classifies mental

or physical fatigue as low or high. A total of 36 features were extracted after preprocessing

the data. After PCA the features were reduced to 17 features for the physical model and 18

features for the mental model.

5.4.1 Leave One subject out cross validation

The machine learning models considered for this study are Random Forest(RF), and Sup-

port Vector Machine (SVM). Each model was trained to classify either physical or mental

fatigue as low (0) or high (1). The low labels were from the first 5-minute resting baseline

collection and the high labels were from the last 5-minutes from the mental or physical

fatigue conditions. The intuition is that a person will not be fatigued when they first come

into the experiment but will be fatigued at the end of each fatigue condition. LOSO CV

trains a model on all but one participant and validates on the remaining participant. This

approach is repeated such that each participant is tested once.

Random Forest Model: The best parameter used for the random forest classification of

mental fatigue are: 500 trees and a tree depth of 10 for the mental model and the confusion

matrix is shown in Figure. 5.17 and the f1-score, precision,support and recall is provided

in Table. 5.24. The accuracy of the Mental model is 86.2%. The best parameter used

for the random forest classification of mental fatigue is: 500 trees and a tree depth of 12

for the mental model and the confusion matrix is shown in Figure. 5.20 and the f1-score,

precision,support and recall is provided in Table. 5.24. The accuracy of the Physical model

is 84.4%.
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Figure 5.17 Mental fatigue Confusion matrix

Figure 5.20 Physical fatigue Confusion matrix

Support Vector Machine Model: The best parameter used for the support vector ma-

chine classification of mental fatigue are: the polynomial kernel and a gamma value of 0.07

for the mental model and the confusion matrix is shown in Figure. 5.17 and the f1-score,

precision,support and recall is provided in Table. 5.24. The accuracy of the Mental model

is 85.3%. The best parameter used for the support vector machine classification of physical

fatigue is: a polynomial kernel and a gamma value of 0.07 for the mental model and the

confusion matrix is shown in Figure. 5.20 and the f1-score, precision,support and recall is

provided in Table. 5.24. The accuracy of the Physical model is 83.7%.
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Table 5.24 LOSO CV Results by Model Type and Fatigue Type.

Model Fatigue Precision Recall F-1 score Support Accuracy(%)

Random Forest Mental 0.86 0.86 0.86 860 86.2
Physical 0.86 0.84 0.85 571 84.4

Support Vector Machine Mental 0.85 0.85 0.85 860 85.3
Physical 0.87 0.84 0.84 571 83.7

5.4.2 Cross fatigue validation

The Cross fatigue validation paradigm examines how a model performs classifying any

fatigue type by training on data corresponding to a baseline and one fatigue condition and

testing on the remaining condition. For example, a model may be trained on the baseline

condition and the last 5-minutes of the mental fatigue condition. The model is then eval-

uated on the last 5-minutes of the physical fatigue condition. There are two cases: Train

physical-test mental and train mental-test physical.

Random Forest Model: The best parameter used for the random forest classification

is: 200 trees and the number of features at every split is done using the sqrt function for

train physical - test mental model and the confusion matrix is shown in Figure. 5.23 and

the f1-score, precision,support and recall is provided in Table. 5.25. The accuracy of the

Mental model is 50.7%. The best parameter used for the random forest classification is:

200 trees, tree depth of 220, and the number of features at every split is done using the

auto function for train mental - test physical model, and the confusion matrix is shown in

Figure. 5.26 and the f1-score, precision,support and recall is provided in Table. 5.25. The

accuracy of the Mental model is 54.2%.

Support Vector Machine Model: The best parameter used for the random forest classi-

fication are: radial basis function(RBF) kernel, C-component of 30, gamma value of 0.005,
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Figure 5.23 Train physical test mental Confusion matrix

Figure 5.26 Train mental test physical Confusion matrix

Table 5.25 Cross-Fatigue Classification Results by Model Type and Fatigue Type.

Model Fatigue Precision Recall F-1 score Support Accuracy(%)

Random Forest Physical 1.00 0.51 0.67 430 50.7
Mental 1.00 0.54 0.70 240 54.2

Support Vector Machine Physical 1.00 0.51 0.67 430 50.7
Mental 1.00 0.54 0.70 240 54.2

and true probability for train physical - test mental model, and the confusion matrix is

shown in Figure. 5.23 and the f1-score, precision,support and recall is provided in Table.

5.25. The accuracy of the Mental model is 50.7%. The best parameter used for the ran-

dom forest classification is: radial basis function(RBF) kernel, C-component of 30, gamma

value of 0.005, and with true probability for train mental - test physical model and the
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confusion matrix is shown in Figure. 5.26 and the f1-score, precision,support and recall is

provided in Table. 5.25. The accuracy of the Mental model is 54.2%.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion and Discussion

The real-time physiological metrics such as heart rate, heart rate variability, respiration rate,

posture magnitude, and average EMG median frequency statistical results are analyzed in

this session. Each of these metrics is used to obtain the statics by fatigue type and sub-

jective fatigue levels (that is mental and physical fatigue analysis) by calculating the mean

and standard deviation of the metrics. The analysis shows that the as mean the heart rate

increases the heart rate variability decreases, for example, the fatigue level 1 of the physical

fatigue type has a mean heart rate of 102, level2- 110, and level 3- 105, the respective heart

rate variability values are level 1- 36, level 2- 28 and level 3- 33. The heart rate with the

highest mean value has the least heart rate variability mean value. Therefore, HR and HRV

are inversely proportional to the onset of fatigue. The increased respiration rate decreases

the standard deviation of heart rate as fatigue level increases. The EMG median frequency

decreases as the fatigue level increases. The Mann-Whitney U-test is used to calculate the

difference between the groups concerning each metric, it found that group 4 and group

5 always fail to reject the null hypothesis except for the average EMG median frequency
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metric. The subjective rating of average fatigue levels increases with trials and, trial du-

ration decreases with an increase in trial numbers. Mental and physical fatigue levels are

negatively correlated with trail duration with (r=-0.759923)and (r= -0.16206) respectively.

Machine Learning: The machine learning results are validated using the Leave one

out cross-validation (LOOCV) method for each mental and physical model. The train test

split is done using the LOO split. The accuracies are mentioned in Tables 5.16. and 5.17.

The accuracy using the Random Forest of Mental classification model shows that the model

gives the best accuracy of 0.42 when participant 8 is considered as a test participant, and the

Support Vector Machine gives the best accuracy of 0.5 when participant 10 is considered as

a test participant. The accuracy using the Random Forest of Physical classification model

shows that the model gives the best accuracy of 0.58 when participant 2 is considered as

a test participant, and the Support Vector Machine gives the best accuracy of 0.78 when

participant 2 is considered as a test participant. This section discusses one more method

where the RF and SVM models are trained and tested in two ways, case 1: the models

are trained for the mental task to detect mental fatigue level and tested on physical task to

detect the mental fatigue level, case 2: the models are trained for the physical task to detect

physical fatigue level and tested on mental task to detect the physical fatigue level. The

accuracy of both cases is less than 50%.

Deep Learning: The deep learning results of the LSTM model are also validated using

the Leave one out cross-validation (LOOCV) method for each mental and physical model.

The accuracies are mentioned in Table 5.22 and 5.23. The accuracy using LSTM of the

Mental classification model shows that the model gives the best accuracy of 0.40 when
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participant 10 is considered as a test participant. The accuracy using LSTM of the Physical

classification model shows that the model gives the best accuracy of 0.32 when participant

2 is considered as a test participant.

Binary classification: Two machine learning models were developed to classify mental

and physical fatigue as high or low using data collected during a human-subjects experi-

ment. Overall, both models were able to classify a previously unseen person’s fatigue level

(validated using Leave-One-Subject-Out Cross-Validation) using cardiac, respiration, and

electromyography information. This result indicates that both fatigue components can be

incorporated into a human-robot system to help monitor a human’s performance level. The

binary classification models gave better accuracy that is more than 80% which proves that

the data collected is valid and can be used to improve accuracy for the classification of 5

fatigue levels.

The ability to improve task performance in a high-intensity work environment by adapt-

ing to the fatigue level has gained considerable research interest. This study focuses both

on identifying mental fatigue and physical fatigue without being task-specific. This thesis

developed a model which detects both physical and mental fatigue levels. The experiments

were designed in which both mental and physical abilities were required to complete the

tasks. The machine learning and deep learning algorithms were validated using the exper-

imental data obtained from the tasks. A fatigue prediction model used machine learning

and a deep learning algorithm to predict the fatigue level. The developed model can be

deployed into a system that can be applied across different task domains. The system may

be able to allocate a physically demanding task to a human if the human has been classified
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as mentally fatigued (or vice-versa). Similarly, the system may invoke autonomy for the

current task to help mitigate the human’s fatigued state.

6.1.1 Limitations

This thesis developed a multi-modal fatigue classification model which is used to detect

both physical and mental fatigue in any working environment. The major limitation of this

study is that all participants used for this experiment were college students. The participants

were asked to do a repetitive task which lead to boredom which might have been confused

with fatigue level during the subjective rating. The sensor failure and assessing a limited set

of sample sizes affected the model accuracy. The fatigue classification algorithm failed to

detect the 4th and 5th fatigue level efficiently. Therefore more data supporting this problem

was required. All of the fatigue algorithms are limited to the subjective rating of fatigue

level for experiments. None of the algorithms achieve more than 80% accuracy in this

study. But to prove the valid dataset a new model was built where the dataset was divided

into two classes and the results achieved were more than 80%. Thus, said algorithms are

not completely suitable for assessing fatigue in this task environment, more accuracy might

be achieved using more data and a higher epoch and removing more noise from the data.

6.2 Future Work

The proposed algorithm can be improved to create a better fatigue classification model

which can be further used human robots team. This fatigue detecting model can be used

in a working environment where continuous mental and physical attention is required to

complete the task. For example, in an industrial environment where a worker needs to
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work with a robot to complete a task continuously for an hour or two where a minute

mistake might incur a great loss to the company, in such situations we need a model which

inputs the robot the real-time physiological data of the worker and predict the fatigue level

and change the speed of the work or take over the work according to the fatigue level of the

worker. This classification model will decrease many human-caused disasters and control

the future disaster which might affect on a small or large scale the worker and the working

environment.
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.1 Appendix

The 32 features are included for correlation of this experiment. The features are:

heart rate grad, heart rate mean, heart rate slope, heart rate std, heart rate var, pos-

ture rate grad, posture rate mean, posture rate slope, posture rate std, posture rate var, res-

piration rate grad, respiration rate mean, respiration rate slope, respiration rate std, respi-

ration rate var, EMG 1 medianfreq r, EMG 2 medianfreq r, EMG 3 medianfreq r, EMG 4

-medianfreq r, EMG 5 medianfreq r, EMG 6 medianfreq r, EMG 7 medianfreq r, EMG 8

- medianfreq r, EMG 1 medianfreq l, EMG 2 medianfreq l, EMG 3 medianfreq l, EMG 4

- medianfreq l, EMG 5 medianfreq l, EMG 6 medianfreq l, EMG 7 medianfreq l, EMG 8

- medianfreq l, Trial Duration. The Pearson correlation of physical model is shown in fig-

ure below (fig 4): The Pearson correlation of mental model is shown in figure below (fig

5): The heat map of correlation between features are represented in the fig 4 & 5, the color

encoding is mentioned in the image, the color white represents that the features are highly

correlated represented by value 1 and the black represents the features are highly not corre-

lated represented value -1. The highly correlated features are removed from the data-set to

decrease the complexity of the algorithm, thus increasing the risk of errors. The correlation

value generally range from (-1,1). We see that the diagonal value of correlation is one in

both the models as it is self correlation.The correlation is moderate in mental fatigue model

compared to that of physical fatigue model.
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Trial Duration Physical Fatigue Level
Trial Duration 1 0.167722385
heart rate grad 0.024034 0.005407575
heart rate mean -0.14294 0.211429817
heart rate slope 0.002938 0.006158822
heart rate std 0.199625 -0.15200995
heart rate var 0.149622 -0.136617702
posture grad 0.069644 -0.006414259
posture mean -0.23391 -0.09797874
posture slope 0.082718 -0.057823936
posture std -0.50377 -0.244508235
posture var -0.46005 -0.282523684

respiration rate grad -0.00082 -0.022652063
respiration rate mean 0.044905 0.205537376
respiration rate slope 0.00748 -0.020777379
respiration rate std 0.345842 0.205803033
respiration rate var 0.334056 0.207186515

EMG 1 medianfreq r -0.17662 -0.157670249
EMG 2 medianfreq r -0.08811 -0.171573736
EMG 3 medianfreq r 0.099651 -0.028367707
EMG 4 medianfreq r -0.07046 0.000245065
EMG 5 medianfreq r -0.17802 -0.094957798
EMG 6 medianfreq r -0.16632 -0.032275406
EMG 7 medianfreq r -0.10947 -0.152885078
EMG 8 medianfreq r -0.0898 -0.133358025
EMG 1 medianfreq l -0.3288 -0.093113053
EMG 2 medianfreq l -0.22786 -0.161217439
EMG 3 medianfreq l -0.10303 -0.100481988
EMG 4 medianfreq l -0.15624 -0.081715037
EMG 5 medianfreq l -0.15912 -0.03343019
EMG 6 medianfreq l -0.13553 -0.112137149
EMG 7 medianfreq l -0.18841 -0.053465367
EMG 8 medianfreq l -0.23192 -0.004894926
Physical Fatigue Level 0.167722 1



78

heart rate gradient mean slope standard deviation variance
Trial Duration 0.024034 -0.14294 0.002938 0.199625 0.149622
heart rate grad 1 0.026 0.955948 -0.11573 -0.12321
heart rate mean 0.026 1 -0.00374 -0.48821 -0.41491
heart rate slope 0.955948 -0.00374 1 -0.1046 -0.1227
heart rate std -0.11573 -0.48821 -0.1046 1 0.949972
heart rate var -0.12321 -0.41491 -0.1227 0.949972 1
posture grad -0.06506 -0.01887 -0.07424 -0.0096 -0.01569
posture mean -0.00873 0.158424 -0.01534 -0.03647 0.00061
posture slope -0.05995 0.013818 -0.07127 -0.00252 0.000757
posture std -0.03093 0.153163 -0.01439 -0.18619 -0.10762
posture var -0.03689 0.169081 -0.01795 -0.19727 -0.12233
respiration rate grad -0.06493 0.004034 -0.03822 -0.00415 -0.01003
respiration rate mean 0.016042 0.3873 0.00976 -0.31924 -0.2366
respiration rate slope -0.04145 0.005561 -0.01773 -0.00374 -0.01276
respiration rate std 0.002157 0.231938 -0.0061 -0.12483 -0.09417
respiration rate var 0.006252 0.169036 0.001639 -0.11466 -0.09531
EMG 1 medianfreq r 0.023895 0.020913 0.006222 0.02257 0.014692
EMG 2 medianfreq r -0.03177 0.091021 -0.02943 -0.0746 -0.05235
EMG 3 medianfreq r -0.06995 0.051083 -0.07135 0.011908 0.024445
EMG 4 medianfreq r -0.05798 0.037804 -0.06843 -0.01807 -0.01153
EMG 5 medianfreq r -0.07971 0.066273 -0.0803 0.003836 0.012945
EMG 6 medianfreq r -0.07004 -0.03678 -0.06388 0.018107 0.016613
EMG 7 medianfreq r -0.00437 0.054244 -0.01998 -0.00122 -0.01687
EMG 8 medianfreq r -0.02522 0.040395 -0.04169 -0.02572 -0.04082
EMG 1 medianfreq l 0.02779 0.082183 0.035459 -0.10875 -0.09783
EMG 2 medianfreq l 0.001816 -0.10138 0.00868 -0.02374 -0.02983
EMG 3 medianfreq l -0.06093 -0.12433 -0.04159 -0.0322 -0.03368
EMG 4 medianfreq l -0.04615 -0.00099 -0.03191 -0.08676 -0.0953
EMG 5 medianfreq l -0.02151 0.020715 -0.01317 -0.10076 -0.09526
EMG 6 medianfreq l -0.04968 -0.07165 -0.03092 -0.12647 -0.09535
EMG 7 medianfreq l -0.02301 0.110287 -0.03055 -0.14432 -0.12305
EMG 8 medianfreq l -0.01638 0.028378 0.005743 -0.07685 -0.06502
Physical Fatigue Level 0.005408 0.21143 0.006159 -0.15201 -0.13662
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posture gradient mean slope stand deviation variance
Trial Duration 0.069644 -0.23391 0.082718 -0.50377 -0.46005
heart rate grad -0.06506 -0.00873 -0.05995 -0.03093 -0.03689
heart rate mean -0.01887 0.158424 0.013818 0.153163 0.169081
heart rate slope -0.07424 -0.01534 -0.07127 -0.01439 -0.01795
heart rate std -0.0096 -0.03647 -0.00252 -0.18619 -0.19727
heart rate var -0.01569 0.00061 0.000757 -0.10762 -0.12233
posture grad 1 0.006711 0.958675 0.081671 0.088799
posture mean 0.006711 1 0.072154 0.377661 0.279674
posture slope 0.958675 0.072154 1 0.131131 0.130804
posture std 0.081671 0.377661 0.131131 1 0.973828
posture var 0.088799 0.279674 0.130804 0.973828 1
respiration rate grad 0.053937 -0.01063 0.038866 0.000307 0.002836
respiration rate mean -0.07741 -0.31094 -0.05158 -0.01065 0.003344
respiration rate slope 0.058462 -0.01702 0.046676 -0.003 0.000612
respiration rate std 0.026142 -0.21678 0.039865 -0.09907 -0.06117
respiration rate var 0.057407 -0.2537 0.06184 -0.14366 -0.09364
EMG 1 medianfreq r -0.09172 0.242311 -0.0722 0.102449 0.080167
EMG 2 medianfreq r -0.1182 0.068121 -0.11478 0.133624 0.151591
EMG 3 medianfreq r -0.02884 -0.04149 -0.02244 0.036268 0.0403
EMG 4 medianfreq r -0.1856 0.08493 -0.17578 0.079907 0.085516
EMG 5 medianfreq r -0.16243 0.25376 -0.14613 0.192931 0.15836
EMG 6 medianfreq r -0.05274 0.188519 -0.06731 0.090708 0.064342
EMG 7 medianfreq r -0.02884 0.190305 -0.01557 0.094723 0.093736
EMG 8 medianfreq r -0.0399 0.234695 -0.027 -0.00089 -0.00077
EMG 1 medianfreq l -0.17941 0.172206 -0.14468 0.247818 0.229491
EMG 2 medianfreq l -0.12534 -0.01258 -0.14315 0.130433 0.149334
EMG 3 medianfreq l -0.04026 -0.02704 -0.03392 0.007535 0.016586
EMG 4 medianfreq l -0.0358 0.102655 -0.0244 0.005049 -0.01943
EMG 5 medianfreq l -0.05503 0.140789 -0.04696 0.039023 0.012503
EMG 6 medianfreq l -0.03053 -0.01572 -0.05152 0.179562 0.182122
EMG 7 medianfreq l -0.11155 0.148355 -0.08822 0.170352 0.143026
EMG 8 medianfreq l -0.20333 0.219942 -0.17456 0.177912 0.147921
Physical Fatigue Level -0.00641 -0.09798 -0.05782 -0.24451 -0.28252
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respiration rate gradient mean slope standard deviation variance
Trial Duration -0.00082 0.044905 0.00748 0.345842 0.334056
heart rate grad -0.06493 0.016042 -0.04145 0.002157 0.006252
heart rate mean 0.004034 0.3873 0.005561 0.231938 0.169036
heart rate slope -0.03822 0.00976 -0.01773 -0.0061 0.001639
heart rate std -0.00415 -0.31924 -0.00374 -0.12483 -0.11466
heart rate var -0.01003 -0.2366 -0.01276 -0.09417 -0.09531
posture grad 0.053937 -0.07741 0.058462 0.026142 0.057407
posture mean -0.01063 -0.31094 -0.01702 -0.21678 -0.2537
posture slope 0.038866 -0.05158 0.046676 0.039865 0.06184
posture std 0.000307 -0.01065 -0.003 -0.09907 -0.14366
posture var 0.002836 0.003344 0.000612 -0.06117 -0.09364
respiration rate grad 1 0.005006 0.975209 0.270896 0.326074
respiration rate mean 0.005006 1 0.015907 0.515097 0.43569
respiration rate slope 0.975209 0.015907 1 0.319924 0.390639
respiration rate std 0.270896 0.515097 0.319924 1 0.93546
respiration rate var 0.326074 0.43569 0.390639 0.93546 1
EMG 1 medianfreq r 0.042742 -0.15529 0.032359 -0.08878 -0.09991
EMG 2 medianfreq r -0.02925 0.063039 -0.0429 0.062226 0.01892
EMG 3 medianfreq r 0.007962 0.128645 -0.00177 0.106838 0.065389
EMG 4 medianfreq r -0.0406 -0.0032 -0.04106 -0.03958 -0.04784
EMG 5 medianfreq r 0.031633 -0.08894 0.024852 -0.09008 -0.12317
EMG 6 medianfreq r 0.019799 -0.17779 0.003113 -0.13665 -0.13552
EMG 7 medianfreq r -0.03762 -0.1487 -0.05303 -0.10152 -0.10994
EMG 8 medianfreq r -0.02516 -0.21366 -0.0289 -0.16851 -0.15716
EMG 1 medianfreq l -0.0305 0.030902 -0.04244 -0.10543 -0.10587
EMG 2 medianfreq l -0.04032 -0.01839 -0.04308 -0.17224 -0.13255
EMG 3 medianfreq l -0.0461 0.101987 -0.05777 -0.1061 -0.09321
EMG 4 medianfreq l -0.05517 0.069194 -0.06341 -0.107 -0.11812
EMG 5 medianfreq l 0.01873 0.071915 0.011803 -0.08264 -0.07825
EMG 6 medianfreq l 0.023006 0.130592 0.015135 -0.01896 -0.0027
EMG 7 medianfreq l -0.01219 0.11971 -0.0303 -0.01514 -0.02305
EMG 8 medianfreq l 0.004981 0.013894 -0.01666 -0.10844 -0.11071
Physical Fatigue Level -0.02265 0.205537 -0.02078 0.205803 0.207187
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