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Abstract

Robust L1-norm Singular-Value Decomposition and Estimation

Duc H. Le

Supervising Professor: Dr. Panos P. Markopoulos

Singular-Value Decomposition (SVD) is a ubiquitous data analysis method in engineering,

science, and statistics. Singular-value estimation, in particular, is of critical importance in

an array of engineering applications, such as channel estimation in communication systems,

EMG signal analysis, and image compression, to name just a few. Conventional SVD of a

data matrix coincides with standard Principal-Component Analysis (PCA). The L2-norm

(sum of squared values) formulation of PCA promotes peripheral data points and, thus,

makes PCA sensitive against outliers. Naturally, SVD inherits this outlier sensitivity. In this

work, we present a novel robust method for SVD based on a L1-norm (sum of absolute val-

ues) formulation, namely L1-norm compact Singular-Value Decomposition (L1-cSVD). We

then propose a closed-form algorithm to solve this problem and find the robust singular val-

ues with cost O(N3K2). Accordingly, the proposed method demonstrates sturdy resistance

against outliers, especially for singular values estimation, and can facilitate more reliable

data analysis and processing in a wide range of engineering applications.
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Chapter 1

Introduction

1.1 Singular-Value Decomposition

The Singular-Value Decomposition (SVD) has established itself as a powerful tool ubiquitous

in various engineering applications. One example is multiple-input multiple-output (MIMO)

channel capacity estimation, where applying SVD onto the channel matrix decomposes the

MIMO channel into multiple single-input single-output (SISO) channels with gains corre-

sponding to singular values (SVs), enabling efficient power allocation and channel capacity

estimation [2, 3]. Furthermore, SVD has been used for watermarking [4, 5], direction of

arrival (DOA) estimation [1, 6, 7], restructuring of deep neural network acoustic models [8],

electromyography (EMG) signal analysis [9], etc.

The SVD decomposes a D ×N matrix into [10, 11]

X = UΣVT , (1.1)

where U (D×d) and V (N×d), defined as the left and right singular vectors respectively,
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are orthonormal matrices while Σ (d× d) is a diagonal matrix whose diagonal elements are

the SVs, (·)T denotes the transpose operation, and d = rank(X). Throughout this thesis, we

will work with “fat” matrices with D < N , where D can be understood as the number of

dimensions and N can be understood as the number of data points. Eq. (1.1) refers to the

“compact” SVD (cSVD) where the left or right singular vectors corresponding to zero SVs

are disregarded [10, 11]. For simplicity reason, we will refer to the “compact” SVD as SVD

from now on.

The SVD can be easily found by performing the Eigenvalue Decomposition on XXT =

UΣ2UT and XTX = VΣ2VT , whose eigenvectors are U and V, respectively, and whose

eigenvalues are the square of the SVs.

1.2 Principal-Component Analysis

In this section, we look at another mathematical tool closely related to SVD, which is the

Principal-Component Analysis (PCA). PCA seeks to find K unit vectors such that the kth

vector, or principal component (PC), maximizes the variance of the data projected on it while

being orthogonal to the first (k − 1) PCs. PCA is mainly used for dimensionality reduction

by only keeping the first few PCs as the new data dimensions, thus preserving most of the

data variance while having the benefit of working with fewer dimensions. Therefore, it has

found use in a number of disciplines such as machine learning, signal processing, and pattern

recognition [12, 13, 14].

The standard SVD is very closely related to PCA, since the first K (K ≤ d) left singular

vectors of U are also the first K PCs of X, which satisfy the following L2-norm (or Frobenius

2



norm) optimization problem

QL2 = argmax
Q∈SD×K

||QTX||2,2, (1.2)

where S denotes the Stiefel manifold, i.e, Q ∈ RD×K ,QTQ = IK and the Lp,q norm is defined

for a matrix A ∈ RD×N to be

||A||p,q =

 N∑
j=1

(
D∑
i=1

|ai,j|p
)q/p

1/q

. (1.3)

This problem essentially maximizes the L2-norm of the dimensionality-reduced data QTX.

Thus, the variance of the original data is actively preserved in the projected data. Alterna-

tively, PCA can be formulated as

QL2 = argmin
Q∈SD×K

||X−QQTX||2,2, (1.4)

which minimizes the energy of the residue between the original data matrix X and its pro-

jection onto the low-rank subspace spanned by Q. Finally, the PCA problem can also be

written as an L2-norm closest rank-K matrix problem

RL2,ZL2 = argmin
R∈RD×K ,Z∈RK×N ,

||X−RZ||2,2. (1.5)

Under the L2-norm, the 3 mentioned optimization problems are equivalent, meaning that

RL2ZL2 from Eq. (1.5) is equal to QL2Q
T
L2X from Eq. (1.4), where QL2 is also the solution

of Eq. (1.2). This is known as the Projection Theorem [10, 11].
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1.3 Mathematical properties of SVD and PCA

1.3.1 Low-rank approximation

One important application of SVD is its ability for low-rank approximation. Specifically, the

product of the matrices UK ,ΣK ,VK containing the first K left singular vectors, singular

values and right singular vectors, respectively, is the closest rank-K matrix to X in the L2

sense, i.e.

UK ,ΣK ,VK = argmin
U∈SD×K ,Σ diag,V∈SN×K ,

||X−UΣVT ||2,2. (1.6)

This is known as the Eckart-Young theorem [15].

1.3.2 Scalability

In addition, the PCs, or left singular vectors, found by solving the projection maximization

problem Eq. (1.2) with K = k1 are also the first k1 PCs found by solving the same problem

with K = k2 where k1 < k2. In other words, the PCs are not affected by the number of PCs

to be found, or equivalently the matrix rank to be approximated down to. This is known as

the scalability property of PCA.

1.3.3 Diagonality

Furthermore, the PCs QL2 found by solving Eq. (1.2) can also diagonalize X, meaning

QT
L2XXTQL2 is a diagonal matrix, or equivalently the projected coordinates of X in the

orthonormal basis defined by QL2, i.e., QT
L2X, is readily orthogonal. In this work, an “or-

thogonal” matrix is one whose column vectors are orthogonal but not necessarily normalized.

Interestingly, QL2 is the only orthonormal matrix that can diagonalize X in that manner.
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This property enables a simple extension from PCA to SVD, since according to Eq. (1.1),

UTX = ΣVT , who are conveniently both orthogonal.

1.4 Issues with traditional PCA and SVD

The traditional PCA method seeks to maximize the L2-norm of the variance of the projected

coordinates on the PCs or equivalently to minimize the Euclidean distance between the

original data points and their projection onto the subspace spanned by the PCs. However,

because of its emphasis on the square of residues or projections, any data analysis methods

that involve the L2-norm are prone to corruption from outliers.

As a result, there have has been considerable research effort in reformulating the con-

ventional PCA problem to make it more robust, including weighted PCA (WPCA) [16, 17],

where a weight is assigned to every entry of the residual matrix, which is supposed to con-

verge to zero for outliers and and missing data and thus remove their adverse effect on the

low-rank approximation. Another approach is Robust Subspace Learning [18], which is a

continuous optimization framework based on robust M-estimator.

However, among all robust PCA approaches, the simple replacement of the L2-norm in

traditional PCA formulation by the elementwise L1-norm (sum of absolute values) stands

out as the approach with the most straightforward algebraic expression, which makes room

for closed-form solutions and algorithms [19, 20, 21, 22]. By not enforcing squared emphasis

on the residuals or projections, the effect of extreme data points are curtailed and the PCs

found are thus more outlier-resistant.

Another line of research with a comparably simple mathematical formulation is the Robust

Principal-Component Analysis (RPCA) [23], which decomposes an outlier-corrupted data

5



matrix into a low-rank and sparse component, whose nuclear and L1- norms are maximized,

respectively. This approach has been proven to be the state-of-the-art in the world of robust

low-rank approximation and will be compared against throughout this thesis.

6



Chapter 2

Technical background

2.1 L1-norm Principal-Component Analysis (L1-PCA)

This project builds on existing progress in the field of L1-norm based PCA, which is math-

ematically stated by replacing the L2-norms in the 3 optimization problems in section 1.1

with the L1-norms, under which they are no longer equivalent due to loss of the Projection

Theorem [21]. One formulation that has attracted considerable attention is the L1-norm

projection maximization problem, which will be referred to as “L1-PCA” going forward.

The problem is written to be

QL1 = argmax
Q∈SD×K

||QTX||1,1. (2.1)

2.1.1 Properties of L1-PCA

The L1-PCs found by L1-PCA no longer inherit certain attractive properties of the conven-

tional PCs. First of all, it is no longer scalable, meaning that the values of the individual

PCs now depend on the number of PCs being found. For example, the first PC q1 found

7



by maximizing ||qT1 X||1,1 is not necessarily one column vector of QL1 from Eq. (2.1) for any

K > 1. Thus, there now exists a chasm between a greedy solution where each PCs are found

individually knowing the previous PCs and a non-greedy solution where the PCs are found

jointly.

In addition, the diagonality property no longer holds true, i.e., QT
L1XXTQL1 is not diag-

onal or QT
L1X is not orthogonal. This is due to the conventional PCs QL2 being the only

orthonormal matrix that can diagonalize X in that fashion.

2.1.2 Optimal Algorithm for L1-PCA

Problem Eq. (2.1) is non-convex due to the orthonormality constraint on Q. However, a

path to the optimal solution can be revealed by proving that the problem is equivalent to

[21]

Bopt = argmax
B∈{±1}N×K

||XB||∗, (2.2)

where Bopt is an antipodal binary matrix and (·)∗ denotes the nuclear norm, which is the

L1-norm of the SVs of the argument. The optimal QL1 for Eq. (2.1) can be found by

QL1 = U(XB) = U′V′T where (U′,Σ′,V′) = SVD(XBopt) and U(·) means to find the

closest orthonormal matrix using the Procrustes theorem [11].

From Eq. (2.2), the L1-PCA problems simply becomes a combinatorial problem by testing

the metric ||QTX||1,1 on 2NK possible instances of B. However, the exponential complexity

of such a brute-force approach renders it infeasible even for small data size.

Thus, to reduce the exponential complexity of the optimal algorithm, Markopoulos et. al.

[21] proposed a method to reduce the search range of B to a subset of {±1}N×K in which an

8



optimal solution must exists. This optimal algorithm incurs a lower cost of O(NDK−K+1).

2.1.3 Suboptimal Algorithms to find the first L1-PC

Alternatively, optimality has been sacrificed in favor of lower computational complexity.

This section looks at such algorithms for the simplest case of K = 1. When finding the first

L1-PC, the problem in Eq. (2.1) becomes a vector optimization problem

qL1 = argmax
q∈SD×1

||qTX||1,1, (2.3)

which is similarly proven to be equivalent to [21]

bopt = argmax
b∈{±1}N×1

||Xb||2. (2.4)

The optimal qL1 can be approximated from bopt by

qL1 =
Xbopt

||Xbopt||2
. (2.5)

Fixed-point iterative algorithm

Kwak [19] proposed an iterative algorithm to solve Eq. (2.3) via finding the antipodal binary

vector bopt from Eq. (2.4). The algorithm can be summarized to be

b(t) = sgn
(
XTXb(t−1)

)
, t = 2, 3, 4, ..., (2.6)

where b(1) ⊂ {±1}N is a binary vector that can be randomly initialized. The iteration is

guaranteed to converge to a fixed b as soon as b = sgn
(
XTXb

)
. The first L1-PC is then

found following Eq. (2.5). The time complexity of this algorithm is O(MDN) where M is

9



the maximum number of iterations. If M is considered to be bounded by N , the complexity

becomes O(DN2) [19, 22].

Bit-flip algorithm

Markopoulos et al. [22] proposed an algorithm that calculates the effect of flipping any of

the N bits of the binary vector b on the optimization metric of Eq. (2.4). First, it is proven

that the metric in Eq.(2.4) is equivalent to

||Xbopt||2 = ||Ybopt||2, (2.7)

where Y = ΣVT and U,Σ,V = SVD(X). The effect of flipping the nth bit of b is

δ||Yb||2(n) = 2
(
bny

T
nYb− ||yn||22

)
, (2.8)

which can be calculated at a lower cost than directly finding the difference of ||Yb||2 at 2

different b values. Then, the algorithm decides to flip the bit with the highest δ||Yb||2(n)

among all N possible bit-flips, until no further bit-flips can increase ||Xb||2.

2.1.4 Suboptimal Algorithms to find multiple L1-PCs

Greedy algorithms based on Successive Nullspace Projection

When finding multiple L1-PCs (K > 1), one can use a greedy approach in which the kth PC

can be successively found on the projection of X onto the nullspace of the previous k − 1

L1-PCs, i.e. solving [19]

qk = argmax
q∈SD×1

∣∣∣∣∣
∣∣∣∣∣qT

(
ID −

k−1∑
i=1

qiq
T
i

)
X

∣∣∣∣∣
∣∣∣∣∣
1,1

, (2.9)
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using any of the approaches in section 2.1.3. It is important to note that because L1-PCA is

not scalable, meaning the PCs themselves are dependent on the number of PCs being found,

the greedy approaches are less optimal than finding the PCs qi jointly, whose algorithms

will be discussed in the next sections.

Iterative Alternating Algorithm

Nie et. al [20] made the first significant contribution to finding the column vectors of Q

jointly. The iterative algorithm can be summarized to be

B(t) = sgn(XTQ(t−1)),Q(t) = U(XB(t)) (t = 2, 3, 4, ...), (2.10)

and B(1) ⊂ {±1}N×K is an antipodal binary matrix that can be randomly initialized. Note

that for K = 1, the algorithm is identical to the approach of [19] in the previous section.

The complexity of this algorithm is O[M(DN + K2)] where M is the maximum number of

iterations. By considering M to be of the same order of magnitude as NK, the complexity

becomes O(DN2K +NK3) [20, 22].

Bit-flipping Algorithm

The bit-flipping algorithm [22] can be extended to jointly find the K L1-PCs. Similarly,

the effect off flipping the (n, k) bit of the now N × K antipodal binary matrix B on the

optimization metric ||XB||∗ = ||YB||∗ is

δ||YB||∗(n, k) = ||YB− 2Bn,kyne
T
k,K ||∗, (2.11)
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where ek,K is the kth column of the identity matrix IK . Similarly, the algorithm decides to

flip the bit with the highest δ||YB||∗(n, k) among all possible NK bit-flips. This algorithm

converges to the optimal L1-PCs with high frequency and achieves the highest value in the

optimization metric of Eq. (2.1) than any previously known L1-PCA algorithms with similar

computational costs. The complexity of this algorithm isO(NDmin{N,D}+N2K2(K2+d))

where d = rank(X).

2.2 L1-low-rank approximation (L1-LR)

As mentioned in the previous sections, an alternative approach to find the L1-PCs is solving

the L1-norm equivalence of Eq. (1.5), i.e.,

RL1,ZL1 = argmin
R∈RD×K ,Z∈RK×N ,

||X−RZ||1,1, (2.12)

which we shall refer to as the L1-factorization or L1-low-rank approximation problem (L1-

LR).

Alternating convex optimization

The problem in Eq. (2.12) is non-convex when R and Z are found concurrently. Thus, Ke

and Kanade [24] came up with an alternating algorithm to solve Eq. (2.12) suboptimally.

When R is fixed to find Z, the problem becomes

Z = argmin
Z∈RK×N ,

||X−RZ||1,1, (2.13)
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which is convex and can be solved using standard convex optimization methods [25]. As soon

as an optimal Z is found, it can be used to find R by solving the same convex optimization

problem, whose result is then used to update Z. The algorithm is iterated until R and Z

converge.

Uniform feature preservation

Tsagkarakis et. al. [26] proposed another suboptimal algorithm to solve Eq. (2.12) by tak-

ing advantage of the fact that any column vector of the optimal solution [RL1ZL1]:,n will

be equal to xn in at least K entries. The algorithm is simplified to achieve low computa-

tional complexity by enforcing uniform feature preservation, i.e., forcing the indices d where

[RL1ZL1]d,n = xd,n to be the same across all N columns, which is not always the case but

has been nevertheless observed to happen with high frequency. In doing so, the search range

for the indices combination can be substantially limited, thus reducing the computational

complexity.

2.3 Robust Principal-Component Analysis (RPCA)

Another line of research to the problem of robustly estimating a low-rank matrix from a

corrupted matrix is the Robust Principal-Component Analysis (RPCA) [23]. This approach

seeks to decompose a matrix X into a low-rank component L and a sparse component S,

the latter of which models the outliers that we refer to throughout this work. Ideally, these

criteria can be satisfied by solving the problem

Lopt,Sopt = argmin
L,S,L+S=X

rank(L) + λ||S||0,0, (2.14)
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where the zero-norm || · ||0,0 gives the number of non-zero entries. Unfortunately, both the

rank function and the zero-norm are both known to be non-convex and the problem is NP-

hard, leading to no efficient solutions existing in literature. However, the problem can be

reformulated by replacing the rank function with the nuclear norm (·)∗ and the zero-norm

by the L1-norm, which are both convex, i.e.,

Lopt,Sopt = argmin
L,S,L+S=X

||L||∗ + λ||S||1,1. (2.15)

The problem essentially promotes the sparsity of S by minimizing its L1-norm and minimizes

the rank of L by enforcing sparsity of its SVs by minimizing their L1-norm, or equivalently

the nuclear norm of L. A popular choice for the parameter λ is 1/
√
M where M is the larger

dimension of X and we will use this parameter value when implementing RPCA [23].

The optimization problem in Eq. (2.15) is convex and thus solvable by standard convex

optimization methods [25]. Some algorithms for RPCA can be found in [23, 27, 28, 29, 30].

RPCA can be used for robust SVD by simply taking the conventional SVD of the extracted

low-rank component L.

2.4 L1-norm Singular Spectrum Analysis

One approach that aims to utilize the robustness of the L1-norm for SVs estimation is

the L1-norm Singular Spectrum Analysis (L1-SSA) [31], in which conventional SVD is first

performed on the data matrix X to obtain the left and right singular vectors U ∈ SD×K and

V ∈ SN×K . Then, the L1-SSA method robustifies the SVs in case outliers are present by
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solving the following L1-norm minimization problem

ΣL1−SSA = argmin
Σ∈diag(RK)

||X−UΣVT ||1,1. (2.16)

This is a convex problem and is solvable by standard convex optimization methods [25].

15



Chapter 3

Proposed solution

Besides making the PCs, or equivalently the left singular vectors of SVD, more robust against

sparse and gross outliers, a robust, outlier-resistant acquisition of singular values is also of

great interest. There currently exists some robust SVD approaches, including one that

utilizes the least-trimmed square (the sum of squares of a subset of data points) to eliminate

the influence of erroneous data points [32], a robust regularized SVD that develops a fast

iterative reweighted least square algorithm [33], and an Lp-norm SVD (0 < p < 1) where

the Lp-norm of the weighted residual matrix is minimized [34].

However, these robust SVD methods mainly focus on finding the low-rank matrix without

any elaborate discussion on the robustness of SVs estimation, which is the main focus of this

work. In addition, we aim to derive an algebraically straightforward SVs estimation scheme

akin to the existing L1-PCA approaches and attempt to find a closed-form algorithm to

tackle the formulated problem.

Regretfully, the orthonormal basis QL1 found by L1-PCA, while robust against outliers,

does not possess the attractive property of its L2-norm counterpart to diagonalize the data

matrix X [35], thus making the extension from L1-PCA to SVs estimation non-trivial.
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First, we formulate our L1-norm based SVD approach to be

X ≈ UL1ΣL1V
T
L1, (3.1)

where the left and right singular vectors UL1 and VL1 are still orthonormal and ΣL1 is

still diagonal. As a result, this decomposition has to be approximated because the only

exact decomposition with such constraints on UL1,ΣL1 and VL1 would be the solution of

conventional SVD due to its uniqueness property. We carry over the property of SVD that the

left singular vectors are also the PCs and make UL1 the L1-PCs, which has been thoroughly

examined in the previous section. The main contribution of this thesis will be to find the

SVs ΣL1 and the right singular vectors VL1.

3.1 Naive approaches

3.1.1 Direct extension of L1-PCA

Naively, as soon as the L1-PCs are found by solving Eq. (2.1) using one of the mentioned

method, one may perform conventional SVD on the data projected on the L1-PCs, i.e.,

QL1Q
T
L1X = UL1ΣL1V

T
L1. We will refer to this SVD approach as “L1-PCA” in the rest of

the discussion.

However, the SVs ΣL1 found using this method is very close to the SVs found by the

conventional L2-cSVD and thus are not robust against outliers, as will be demonstrated in

section 4, which calls for more sophisticated methods to find new (ΣL1,VL1) combinations.

17



3.1.2 Direct extension of L1-low-rank approximation (L1-LR)

In addition, from the solutions to the L1-low-rank approximation problem in Eq. (2.12), we

can simply perform the conventional SVD on the low-rank matrix RL1ZL1 closest to X in

the L1-norm, i.e. UL1,ΣL1,VL1 = SVD(RL1ZL1) to obtain our L1-norm based SVD. How-

ever, like L1-PCA, this simplistic approach will be empirically proven incapable of robustly

estimating SVs.

3.2 Preliminary algorithm: L1L2-cSVD

In this section we experiment with a simple alternative to finding the SVs from the left

singular vectors UL1, which is chosen to be the L1-PCs from the L1-projection maximization

problem

UL1 = argmax
U∈SD×K

||UTX||1,1. (3.2)

This choice of UL1 ensures that the subspace found is robust against outliers [21, 22]. As

mentioned in section 2.1, the problem in Eq. (3.2) has been studied extensively and there

are multiple algorithms available to choose from, the importance of which will be discussed

in detail in section 3.4. For now, we assume that a good UL1 can be found.

As discussed in section 1.3.3, conventional SVD can diagonalize X, i.e., UT
L2X = ΣL2V

T
L2

is an orthogonal matrix, while an orthonormal UL1 from Eq. (3.2) generally cannot. On the

other hand, the definition of L1-cSVD in Eq. (3.1) also requires that ΣL1V
T
L1 be orthogonal.

Thus, the problem of L1-cSVD becomes finding the closest orthogonal matrix ΣL1V
T
L1 to

UT
L1X. In this algorithm, we experiment with a quick approach to optimize this criteria with
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the L2-norm, hence the name “L1L2-cSVD”,

(ΣL1,VL1) = argmin
V∈SN×K ,Σ∈diag(RK)

||UT
L1X−ΣVT ||2,2. (3.3)

This is a non-convex problem due to the orthonormality constraint on VL1 [25]. Thus, we

will employ an alternating method to find a solution for a diagonal ΣL1 and an orthonormal

VL1. When V is fixed to find Σ, the problem becomes K individual problems

σi = argmin
σi

||(XTUL1):,i − σivi||2 (i = 1, 2, ..., K), (3.4)

where σi = Σi,i is the ith SV. This problem is simply asking for a multiplying coefficient σi

to minimize the Euclidean distance between 2 vectors (XTUL1):,i and σivi. The solution is

achieved when the projection of the latter on the former is exactly the same as former, in

other words

σi =
[(XTUL1):,i]

Tvi
||vi||2

∀ i = 1, 2, . . . , K. (3.5)

On the other hand, when Σ is fixed to find V, the problem in Eq. (3.3) becomes

V = argmin
V∈SN×K

||XTUL1 −VΣ||2,2, (3.6)

which can be proven to be equivalent to

V = argmin
V∈SN×K

||XTUL1Σ
−1 −V||2,2. (3.7)

This problem asks to find an orthonormal matrix V closest to XTUL1Σ
−1, better known

19



as the Orthogonal Procrustes problem, whose solution is V = U′V′T where (U′,Σ′,V′) =

SVD(XTUL1Σ
−1) [11]. Thus, the algorithm can be summarized in the pseudocode provided

below.

Algorithm 1 L1L2-cSVD

Input: Data matrix XD×N , number of SVs K,
1: U = L1PCA(X)
2: A = XTU
3: initialization Σ = zeros(K,K), orthonormal V
4: while not converged do
5: for i = 1 to K do
6: [Σ]i,i = [A]T:,i[V]:,i/||[V]:,i||2
7: end for
8: (U′,Σ′,V′) = SVD(AΣ−1)
9: V = U′V′T

10: end while
Output: U,Σ,V

Running K instances to find the SVs σi costs O(KN). The SVD of the N ×K matrix

XTUΣ−1 and the subsequent matrix multiplication U′V′T to solve the Procrustes problem

costs an extra O(NK2). Thus, the complexity of finding ΣL1 and VL1 is O(MNK2), where

M is the number of iterations. Consider M to be bounded by NK, the total complexity of

L1L2-cSVD is O(N2K3) in addition to the complexity of the L1-PCA algorithm chosen to

find UL1.

3.3 Proposed Algorithm: L1-cSVD

In this section, we detail the proposed algorithm that further improves the robustness of

ΣL1 and VL1 by finding the closest orthogonal matrix to the projected coordinates on the

L1-PCs UL1X in the L1-norm instead of the Frobenius norm like in L1L2-cSVD, i.e.,

(ΣL1,VL1) = argmin
V∈SN×K ,Σ∈diag(RK)

||XTUL1 −VΣ||1,1. (3.8)
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Figure 3.1: An example of how the L1-norm metric in Eq. (3.9) changes with different σ. The blue circles
mark the candidates σ, in between which the metric can be seen to change linearly and thus cannot attain
a minimum. Note that A = XTUL1.

We call our algorithm L1-cSVD to emphasize that we only collect K ≤ D ≤ N SVs

and singular vectors from X. We will solve for the matrices ΣL1 and VL1 suboptimally by

an alternating method. When fixing V to find Σ, the problem can be decomposed into K

individual problems

σi = argmin
σi

||(XTUL1):,i − σivi||1, (i = 1, 2, ..., K), (3.9)

where σi = Σi,i is the ith SV. This problem is simply asking for a scaling factor σi that

minimizes the L1-distance between 2 vectors (XTUL1):,i and σivi. This problem is proven
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in [21] to be equivalent to

jopt = argmin
j∈{1:N}

∣∣∣∣∣
∣∣∣∣∣(XTUL1):,i −

(XTUL1)j,i
vj,i

vi

∣∣∣∣∣
∣∣∣∣∣
1

(i = 1, 2, ..., K), (3.10)

which performs exhaustive search on N candidates σi chosen such that (XTUL1):,i is equal

to σivi on the jth entry. From the N candidates, the one that returns the least L1 error will

be chosen to be the optimal σi. On the other hand, when Σ is fixed to find V, the problem

in Eq. (3.8) becomes

V = argmin
V∈SN×K

||XTUL1 −VΣ||1,1, (3.11)

which is essentially a L1-Procrustes problem. A solution to this problem using a smoothed

version of the L1-norm has been studied in [36]. However, in this work, for lower computa-

tional complexity, we will use the solution to the L2-Procrustes problem instead, since it is

empirically observed that the L1-Procrustes solution gives similar results to the L2- counter-

part while taking much longer to solve. Thus, similarly from section 3.2, V = U′V′T where

(U′,Σ′,V′) = SVD(XTUL1Σ
−1). The iterations are continued until Σ and V converge. The

algorithm can be summarized in the pseudocode below.

Finding A costs O(NDK). Finding ||A:,i − sV:,i||1 costs O(N) for a candidate s. Since

there are N candidates for K SVs, finding ΣL1 costs O(N2K) in total. Finally, V is found

with cost O(NK2). Because N ≥ D ≥ K, the complexity of finding ΣL1 and VL1 is

O(MKN2), where M is the number of iterations. By considering M to be bounded by NK,

the complexity of this L1-cSVD algorithm is O(N3K2) in addition to the cost of the L1-PCA

algorithm chosen to find UL1.
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Algorithm 2 L1-cSVD

Input: Data matrix XD×N , number of SVs K
1: U = L1PCA (X)
2: A = XTU
3: initialization Σ = zeros(K,K), orthonormal V
4: while not converged do
5: for i = 1 to K do
6: for j = 1 to N do
7: sj = ([A]j,i/[V]j,i)
8: Mj = ||[A]:,i − s[V]:,i||1
9: end for

10: jopt = argmin
j∈[1:N ]

{Mj}

11: [Σ]i,i = sjopt

12: end for
13: (U′,Σ′,V′) = SVD(AΣ−1)
14: V = U′V′T

15: end while
Output: UL1 = U,ΣL1 = Σ,VL1 = V

3.4 Importance of Choosing Left Singular Vectors UL1: Joint vs

Greedy

As previously mentioned, there are many algorithms to solve the L1-PCA problem of Eq. (3.2)

to find the left singular vectors UL1, on which ΣL1 and VL1 are dependent. The main dif-

ference is between the Greedy solutions, such as in [19] and Non-greedy or Joint solutions,

such as in [20] and [22]. Because L1-PCA is not scalable, the Joint solutions have a higher,

more optimal ||UT
L1X||1,1 metric. However, it is observed that while the Joint solution finds

a better subspace, the L1-PCs found from the outliers-corrupted matrix, is not necessarily

more aligned to the L2-PCs of the clean data. The reason for this is that maximizing the

L1-norm in Eq. (3.2) promotes balance in ||uTi X||1, meaning that apart from maximizing the

data L1-projection, the Joint L1-PCA algorithms also inadvertently rotate the basis vectors,

i.e., the individual L1-PCs, to make the L1-projections more balanced. On the other hand,

this issue is ameliorated by the Greedy solution since it focuses on maximizing the L1-norm

of the projection to one particular L1-PC without having to balance with other L1-PCs.
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Coincidentally, since this work is concerned with SVD, particularly the approximation of

SVs under corruption by outliers, finding good PCs should be given a priority to finding a

good subspace. The reason is that for SVD, the SVs are directly tied to their corresponding

PCs, so the SVs found with good PCs are more meaningful than the SVs found in a good

subspace where the bases have been rotated, which is often the case with Joint L1-PCA. As

a result, we elect to choose the Greedy approach to find UL1 in Eq. (3.2). The proof for this

discussion using a numerical study is available in section 4.2.3.

Figure 3.2: The 2 PCs found by PCA (red, dashed), Joint L1-PCA (blue, dotted) and Greedy L1-PCA
(green) for the case of D = 3, N = 100 and the data has rank K = 2. The subspaces spanned by the 2 PCs
(in this case the planes) using 3 approaches follow the same color code. The length of the PCs are scaled by
the respective SVs found by SVD or L1-cSVD.

For example, in Fig. 3.2, the Greedy L1-PCs are aligned almost perfectly with the con-

ventional L2-norm based PCs. On the other hand, the Joint L1-PCs, despite spanning the
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same subspace as the data, are rotated by about 45◦ to balance the projections on either

PCs due to the L1-norm. As a result, the subsequent SVs found from the Joint L1-PCs will

be almost equal, not reflecting the actual structure of the data.

25



Chapter 4

Experimental Studies

4.1 Algorithm Analysis

Convergence

To assess the convergence of the preliminary L1L2-cSVD algorithm, we define the normalized

performance measurement

MP(L1L2− cSVD) =
||UTX−ΣVT ||2,2
||UTX||1,1

(4.1)

and plot its evolution for 4 different initializations on the same 8×50 data matrix X (K = 5

SVs are obtained) in Fig. 4.2, according to which the L1-cSVD does converge to the same

level.
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Figure 4.1: Evolution of the performance metric MP for the L1L2-cSVD algorithm

Similarly, to assess the convergence of the proposed L1-cSVD algorithm, we define the

normalized performance measurement,

MP(L1− cSVD) =
||UTX−ΣVT ||1,1
||UTX||1,1

(4.2)

and plot its evolution for the same setup.
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Figure 4.2: Evolution of the performance metric MP for the L1-cSVD algorithm

4.2 Performance Analysis with Synthetic Dataset

In this section, we will compare the SVs estimation criterion of the preliminary L1L2-cSVD

and the proposed L1-cSVD algorithms against the conventional SVD, the simplistic L1-PCA

and L1-LR approaches, and the state-of-the-art RPCA algorithm.

4.2.1 Signal Model

Suppose there is a clean data matrix Xclean ∈ RD×N with a rank-K structure (K ≤ D ≤ N).

The clean data lies in the subspace spanned by an orthonormal U0 ∈ SD×K , which is

kept constant for the experiment. V0 ∈ RN×K is a random orthonormal matrix and the

common logarithm of the SVs Σ0 are drawn from a uniform distribution between 0 and

1. First, Xclean is corrupted by Gaussian noise N with a signal-to-noise ratio defined as
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SNR = ||N||22,2/||Σ0||22,2. Then, the noisy data matrix is further corrupted by outlier O.

Xcorrupted = Xclean + N + O = U0Σ0V
T
0 + N + Γ�RoSo. (4.3)

The outlier O is modelled as subspace outlier coming from a subspace spanned by an or-

thonormal Ro ∈ SD×Ko , which is also kept constant for the experiment. The outlier corrupts

random data points (column vectors in Xcorrupted) with probability Po. Thus, Γ ∈ {0, 1}D×N

is a matrix with Po chance of a column vector being 1 while the rest are 0. The outlier

strength is also defined by an outlier-to-signal ratio defined as OSR = ||O||22,2/||Σ0||22,2.

4.2.2 Algorithms to compare

Name Problem formulation
SVD (conventional) U,Σ,V = SVD(X)

L1-PCA Q = argmax
Q∈SD×K

||QTX||1,1. then U,Σ,V = SVD(QQTX)

L1-LR R,Z = argmin
R∈RD×K ,Z∈RK×N ,

||X−RZ||1,1 then U,Σ,V = SVD(RZ)

RPCA L,S = minimize
L,S,L+S=X

||L||∗ + λ||S||1,1 then U,Σ,V = SVD(L)

L1L2-cSVD (preliminary) U = argmax
U∈SD×K

||UTX||1,1. then Σ,V = argmin
Σ∈diag(RK),V∈SN×K

||XTU−VΣ||2,2

L1-cSVD (proposed) U = argmax
U∈SD×K

||UTX||1,1. then Σ,V = argmin
Σ∈diag(RK),V∈SN×K

||XTU−VΣ||1,1

Table 4.1: Brief summary of all SVD algorithms to be compared in this numerical study

In this section, we detail and motivate the algorithms being compared in the following

experimental study. The main baseline algorithm is of course the conventional (L2-norm

based) SVD. We then look at the performance of the L1-PCA and L1-LR approaches for

SVD, which are the natural extension of existing L1-PCA and L1-low-rank approximation

algorithms, in order to demonstrate that an extension to finding the L1-norm based SVs and

right singular vectors is not trivial.

The main robust SVD approach in the literature to compare against is RPCA, whose
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robustly extracted low-rank component is readily decomposable to find the SVs. The pre-

liminarily developed algorithm L1L2-cSVD using a L2-norm to find Σ and V using the

L2-norm is compared against the proposed L1-cSVD algorithm, which uses the L1-norm for

the same purpose, to emphasize the effect of the L1-norm in finding robust SVs.

4.2.3 Subspace and PCs robustness

To corroborate the discussion in section 3.4 on the merits of different approaches, the robust-

ness against outlier of the subspace spanned by the PCs found by different PCA methods

detailed in Table 4.2 is evaluated.

Name Problem formulation to find the PCs Uopt

PCA (conventional) Uopt = argmax
U∈SD×K

||UTX||2,2
RPCA Lopt,Sopt = argmin

L,S,L+S=X
||L||∗ + λ||S||1,1, then Uopt,Σopt,Vopt = SVD(Lopt)

L1-LR Ropt,Zopt = argmin
R∈RD×K ,R∈ZK×N ,

||X−RZ||1,1, then Uopt,Σopt,Vopt = SVD(RoptZopt)

L1-PCA (Joint) Uopt = argmax
U∈SD×K

||UTX||1,1

L1-PCA (Greedy) uopt
k = argmax

u∈SD×1

∣∣∣∣∣∣uT
(
ID −

∑k−1
i=1 uiu

T
i

)
X
∣∣∣∣∣∣
1,1

Table 4.2: Brief summary of all PCA approaches to be compared in this numerical study

The L1-PCA problems are solved using the bit-flipping algorithm [22] for both the K = 1

(Greedy) and K > 1 (Joint) cases, since it converges to the optimal result with the highest

frequencies among all suboptimal L1-PCA algorithms of similar computational complexity.

To evaluate the robustness of the subspace spanned by U, the normalized difference RU

(defined below) between the projection matrix UUT evaluated with corrupted data and clean

data is plotted at different outlier strengths.

RU =
||(UUT )corrupted − (UUT )clean||2,2

||(UUT )clean||2,2
. (4.4)

In addition, since the SVs are tied to the PCs, it is also important to examine the
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robustness of the individual PCs, instead of the subspace they define as a whole. To that

end, we defined the normalized PCs alignment metric, which takes the absolute values of

the dot product between the PCs pairs with the same significance found from the corrupted

and clean data, downscaled by K to ensure RPC does not exceed 1.

RPC =
1

K

K∑
i=1

∣∣∣∣(ucorrupted
i

)T
uclean
i

∣∣∣∣ . (4.5)

Figure 4.3: The normalized subspace error RU for the different PCA approaches at multiple OSR dB values
averaged over 200 experiments. The synthetic dataset has dimension D = 10, number of data points
N = 50,K = 4 SVs are captured, and noise level is SNR = 10 dB. Probability of corruption is Po = 0.04
and outliers are drawn from a 4-dimensional subspace (Ko = 4).

From Fig. 4.3, it can be observed that all L1-norm based approaches find a more outlier

resistant subspace than the conventional PCA at high OSR, with Greedy L1-PCA over-

performing L1-LR at most OSR values and Joint L1-PCA at OSR < 5 dB. RPCA has a

practically constant RU at every outlier strength, overtaking all L1-norm approaches at -

10 dB. However, RPCA is known to be significantly more computationally expensive than
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L1-PCA, so its PCs are not used to find the L1-SVs.

In addition, despite achieving a higher ||UT
L1X||1,1 metric than the Greedy approach, the

Joint L1-PCA does not necessarily find a more robust subspace. Yet, the main issue with

the Joint approach resides in the robustness of individual PCs, as exhibited next.

Figure 4.4: The normalized PCs alignment metric RPC for the different PCA approaches at multiple OSR
dB values for the same experiment setup as Fig. 4.3

Fig. 4.4 shows the poor alignment between the jointly found L1-PCs of the corrupted

data with the clean PCs, consistent with the prediction in section 3.4. On the other hand,

the Greedy L1-PCA approach, being capable of finding decisively more robust PCs than

L1-LR and PCA at high outlier strength while maintaining reasonably low computational

complexity, is consequently chosen to find the L1-SVs.
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4.2.4 Singular Values Preservation

All SVs

We then define the normalized SVs estimation error metric to evaluate how well the different

algorithms can preserve the SVs of the clean dataset when corrupted with subspace outlier

Rsv =
||Σestimated −Σclean||2,2

||Σclean||2,2
, (4.6)

where Σclean is calculated by applying the conventional SVD on the clean data matrix Xclean

while Σestimated is the estimated SVs from the corrupted dataset Xcorrupted by applying the

different SVD algorithms.

Figure 4.5: The normalized total SVs error Rsv for the different SVD approaches at different OSR dB
values averaged over 200 experiments. The synthetic dataset has dimension D = 10, number of data points
N = 50,K = 4 SVs are captured, and noise level is SNR = 10 dB. Probability of corruption is Po = 0.04
and outliers are drawn from a 4-dimensional subspace (Ko = 4).

From Fig. 4.5, the deviation from clean SVs of SVs found by L1-PCA and L1-LR from

corrupted data is very close to that of the conventional SVD. Thus, the robustness of the L1-
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PCs or the L1-low-rank approximation is not readily transferable to the SVs. The preliminary

L1L2-cSVD does provide marginally better performance in estimating SVs from corrupted

data. However, the OSR where its SVs estimation error starts to spiral out of control is

still relatively low, hindering any practical applications. Thus, an L2-norm to orthogonalize

UT
L1X to find the SVs and right singular vectors is not sufficiently robust.

On the other hand, L1-cSVD has much better performance, maintaining a normalized

SVs approximation error of 5 − 25% for OSR between -10dB and 5dB, in which the SVs

estimated by SVD start to deviate strongly. In addition, L1-cSVD follows SVD very closely

at low OSR, indicating that it is in effect the same as SVD at this regime.

RPCA has the same performance at every OSR due to its ability to separate the sparse

component effectively. However, the reconstructed low-rank component is not necessarily

robust, since its SVs estimation error is about 40%. This can be attributed to Xcorrupted

being noisy, since the formulation in Eq. (2.15) does not take into account noise, which is

neither low-rank nor sparse. In addition, the SVs found by L1-SSA are robust at high OSR,

but still suffer roughly the same SVs estimation error as SVD before OSR = 0 dB.

Individual SVs

We are also interested in comparing the preservation of the individual SVs, defined by

Rsv,i =
(σestimated

i − σclean
i )2

(σclean
i )2

(i = 1, 2, ..., K). (4.7)
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Figure 4.6: The normalized first, second, third and fourth SV errors Rsv,1, Rsv,2, Rsv,3 and Rsv,4 for the
different SVD approaches.

The most significant finding is that the robustness of L1-cSVD is clearly demonstrated in

the estimation of the first and also most important SV, which only deviates less than 10%

from the clean SV for OSR up to almost 10dB. On the other hand, RPCA incurs a constant

30-70% error on all SVs across different OSR values.

The estimation of subdominant SVs by L1-cSVD is less robust because the task of finding

subdominant SVs is more challenging than the first SV, explainable by the fact they they

are tied to the subdominant L1-PCs. In Greedy L1-PCA, if the first L1-PC is not recovered

perfectly, it is unlikely that the second L1-PC is recovered perfectly either because it has

to be orthogonal to the 1st L1-PC, which is not readily orthogonal to the 2nd clean PC as
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the 1st and 2nd clean PCs are already orthogonal. Nevertheless, L1-cSVD still consistently

attains lower subdominant SVs estimation error than the other approaches.

4.2.5 Low-rank Approximation

Another criterion to evaluate the different SVD algorithms is how well UΣVT low-rank

approximates X. To that end, we will define a low-rank approximation error metric

RLR =
(UΣVT )corrupted −X(clean)

X(clean)
. (4.8)

It is important to clarify that the main objective of this Thesis is to robustly estimate SVs

from corrupted data instead of approximating the whole low-rank data itself. Nevertheless, it

is still interesting to observe how the robustness of SVs extends to the low-rank approximated

matrix.

Figure 4.7: The normalized low-rank approximation error metric RLR for the different SVD approaches.

From Fig. 4.7, the L1-PCA and L1-LR approach does not offer any robustness in the
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low-rank approximation of the corrupted data compared to conventional SVD. Once again,

L1L2-cSVD only shows marginally better performance in this criterion.

On the other hand, the proposed L1-cSVD algorithm indeed provides a much more robust

low-rank approximation of the corrupted data matrix than conventional SVD. RPCA also

picks out a consistent low-rank component unaffected by the outlier strength. However,

for this criterion, the crossover between the performance of RPCA and L1-cSVD happens

at a lower OSR of −5 dB, meaning that RPCA arguably does a better job in low-rank

approximation than SVs estimation.

4.3 Performance Analysis with Real World Dataset

In this section, the robust L1-cSVD method is applied to the Bayesian classifier for the

“Vowel” dataset from Penn Machine Learning Benchmarks (PMLB), which includes hun-

dreds of datasets to evaluate supervised machine learning algorithms [37]. The chosen dataset

has C = 11 vowels to be classified using D = 11 numerical features available. There are

N = 990 samples to be used as either training or test data.

We will apply a Bayesian Classifier on the 11 features given without using the kernel

trick. Of the 90 samples of each of the 11 vowels, 75 is used for training and 15 is reserved

for testing. For each training dataset X(i) of the ith vowel (i = 1, 2, ..., 11), we can obtain

the median vector mi ∈ RD (chosen instead of the conventional mean to soften the effect of

outliers) and the SVD of X(i) = U(i)Σ(i)V(i)T . It is important to note that U(i) and Σ(i) are

also the eigenvectors and the square root of the eigenvalues of the covariance matrix of X(i).

According to the Bayesian Classifier, a given test data point y is classified to the vowel
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whose distribution it has the smallest Mahalanobis distance di from, where [14]

di =

√√√√ D∑
j=1

(
u

(i)T
j (y −m(i))

σ
(i)
j /
√
N

)2

. (4.9)

The robustness of L1-cSVD is then evaluated by corrupting 3 out of 75 samples from each

vowel of the clean dataset X with outliers coming from a Gaussian distribution N (0, σ2)D.

We choose the outlier strength σ2 to be 25 times the average energy of entries in X, which

means the outlier has the same energy as the clean data since the OSR in this case can be

calculated to be 0 dB.

The vowels are then classified based on the parameters trained by the corrupted training

data using the left singular vectors U(i) and SVs Σ(i) from either SVD or L1-cSVD and

compare the correct prediction ratios. From Fig. (4.8), it can be observed that the SVs of

corrupted data are much better estimated by L1-cSVD compared to the traditional SVD.

Importantly, the first SV is reconstructed almost exactly by L1-cSVD. On the other hand,

RPCA tends to underestimate the SVs, which can be attributed to the overpromotion of the

sparsity of SVs. Because of its high computational cost, RPCA is only used to observe the

SVs instead of training the classifier.

Thus, we proceed to train the corrupted dataset with L1-cSVD and compare its perfor-

mance SVD. Fig. (4.9) shows the decisively higher correct prediction ratio that L1-cSVD

can achieve compared to conventional SVD, demonstrating its robustness against gross and

sparse outliers.

38



Figure 4.8: The SVs of each vowel training dataset for clean data using SVD (blue, circles), compared to the
SVs estimated from corrupted data using SVD (red, triangles), RPCA (orange, stars) and L1-cSVD (green,
squares).

Figure 4.9: The histogram of the correct prediction ratio when the corrupted data is trained with the tradi-
tional SVD (green) and L1-cSVD (red, dashed) for 1000 experiments with different corruption realizations.
The correct prediction ratio using SVD on clean data is marked by the blue dotted line.
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4.4 Direction-of-arrival estimation

In this experiment, we choose a linear array with M = 8 sensors uniformly spaced by λ/2

taking T = 200 snapshots of 3 incoming signals with directions of arrival (DOAs) −45◦, 0◦

and 60◦. The received signal at the sensor array can be written to be [1]

Y = AS + N, (4.10)

where Y ∈ CM×T is a complex matrix whose rows are the received signal at each sensor

and whose columns represent the different time snapshots, A ∈ CM×Nθ is the array manifold

matrix, which describes the gain information from each of the Nθ DOAs to each of the M

sensors. Here, we choose a grid of DOAs from −90◦ to 90◦ with 1◦ spacing, so Nθ = 180.

The (m, k) element of the array manifold matrix can be written to be

am,k = exp [−jmπ sin(θk)] . (4.11)

The noise is represented by N with SNR = 10 dB. The task of DOA estimation is to

reconstruct the matrix S ∈ CNθ×T , which includes the amplitude of the incoming signals

from Nθ DOAs at T time snapshots. To better distinguish between spatially close sources,

Malioutov et. al [1] proposed a method that enforces sparsity within every column of S,

since signal sources can be considered sparse in space but not in time, using the L1-norm in

the columns and L2-norm in the rows of S.

minimize
S∈CNθ×T

||Y −AS||2,2 + λ||S||1,2, (4.12)

where λ is a regularization parameter. However, solving for S can be expensive since the
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number of time snapshots can be very large. Thus, a dimensionality reduction on the received

signal matrix Y using conventional SVD has been proposed [1], i.e., Y = UΣVT . Then, Y in

Eq. (4.12) is replaced with YSV = UKΣK , where UK includes the firstK left singular vectors,

ΣK includes the first K SVs, and K = 3 is the expected number of sources. Eq. (4.12) is

rewritten to be

minimize
SSV∈CNθ×K

||YSV − ASSV||2,2 + λ||SSV||1,2, (4.13)

which is a convex problem solvable by standard convex optimization methods [25]. This

method is called `1-SVD [1], since it uses an L1-norm to enforce spatial sparsity and SVD

for dimensionality reduction. It is not to be confused with L1-cSVD in this work, which

formulates a compact SVD scheme using the L1-norm.

Unfortunately, using conventional SVD for dimensionality reduction means that YSV can

be sensitive to outliers. To demonstrate, we corrupt Y with jammer signals coming from

DOAs −30◦, 30◦ and 50◦. Each jammer corrupts 10 time snapshots at random with power

of 20 times the signal of interest power, so that the OSR as defined in earlier sections is 0

dB. We first reconstruct SSV using the corrupted received signal with the `1-SVD method

in [1] to obtain a baseline result.

We then propose to amend the original `1-SVD method by using our L1-cSVD for di-

mensionality reduction so that YSV is less affected by the jammers. Because our L1-cSVD

is developed for real data, we define a real 2M × T matrix Ỹ = [Re(Y); Im(Y)] concate-

nating the real and imaginary components of Y, on which L1-cSVD is applied to obtain the

dimensionality reduced ỸSV ∈ R2M×K . We similarly define the real array manifold matrix
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Ã = [Re(A); Im(A)] ∈ R2M×Nθ . Finally, we solve

minimize
SSV∈CNθ×K

||ỸSV − ÃSSV||2,2 + λ||SSV||1,2 (4.14)

to obtain the robust spatial spectrum.

In Fig. 4.10 (top), we plot the spatial spectrum for the clean signal, showing 3 peaks at

the expected DOAs. Then, we plot the spatial spectrum when jammers are on using the

original `1-SVD methods with conventional SVD (middle), which is clearly affected by the

jammers evident by the extra peaks at −30◦ and 50◦. On the other hand, by using L1-

cSVD for dimensionality reduction before applying `1-SVD for DOA estimation (bottom),

the jammers’ peaks in the spectrum are efficiently suppressed. The reconstructed power of

the 3 signals of interest (height of the peaks) is also well-preserved by using L1-cSVD for

preprocessing.
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Figure 4.10: Spatial spectra produced by the `1-SVD method [1] for uncorrelated sources at DOAs −45◦, 0◦

and 60◦ with (top) no jammers, (middle) jammers at DOAs −30◦, 30◦ and 50◦, using conventional SVD for
dimensionality reduction, and (bottom) the same jammers, using L1-cSVD for dimensionality reduction.
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Chapter 5

Conclusion

We present a novel L1-norm based SVD algorithm which, for the first time, extends the

robustness against outliers of the well-studied L1-PCA problem to finding robust SVs. We

prove that such an extension is not obvious and propose a problem formulation to achieve

more robust SVs estimation. We experiment with orthogonalizing UT
L1X by an L2-norm to

find the SVs corresponding to the L1-PCs in a preliminary algorithm called L1L2-cSVD,

which is later found to not provide enough robustness in SVs estimation.

Thus, we came up the L1-cSVD algorithm, which utilizes the more robust L1-norm to

find the closest orthogonal matrix ΣL1V
T
L1 to UT

L1X. We propose an iterative algorithm

that finds ΣL1 and VL1 alternatingly with closed-form solutions. The proposed algorithm

has an additional complexity of O(N3K2) on top of L1-PCA. We also provide an in depth

discussion on the pros and cons of different L1-PCs estimation schemes for more consistent

SVs estimation and conclude to use the Greedy approach.

Our algorithms are tested on a synthetic dataset with corruption coming from subspace

outliers and noise along with a real world data experiment where the PCs and SVs estimated

are applied to a Bayesian Classifier with a dataset corrupted by outliers. Both experiments
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demonstrate the robustness of the L1-cSVD approach in SVs estimation compared to the

conventional SVD, the direct extension from L1-PCA and L1-low-rank approximation, and

the state-of-the-art RPCA. We expect our algorithm to find use in applications where the

SVs play a strong role.
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