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Abstract

The usage of deep learning algorithms has resulted in significant progress in auto-

matic speech recognition (ASR). The ASR models may require over a thousand hours

of speech data to accurately recognize the speech. There have been case studies that

have indicated that there are certain factors like noise, acoustic distorting conditions,

and voice quality that has affected the performance of speech recognition. In this

research, we investigate the impact of noise on Automatic Speech Recognition and

explore novel methods for developing noise-robust ASR models using the Tamil lan-

guage dataset with limited resources. We are using the speech dataset provided by

SpeechOcean.com and Microsoft for the Indian languages. We add several kinds of

noise to the dataset and find out how these noises impact the ASR performance. We

also determine whether certain data augmentation methods like raw data augmen-

tation and spectrogram augmentation (SpecAugment) are better suited to different

types of noises. Our results show that all noises, regardless of the type, had an impact

on ASR performance, and upgrading the architecture alone were unable to mitigate

the impact of noise. Raw data augmentation enhances ASR performance on both

clean data and noise-mixed data, however, this was not the case with SpecAugment

on the same test sets. As a result, raw data augmentation performs way better than

SpecAugment over the baseline models.
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Chapter 1

Introduction

Automatic Speech Recognition (ASR) technologies have been progressively used in

many modern applications like Amazon Alexa, Apple’s Siri, Microsoft’s Cortona [1].

This has been possible due to the emergence of deep learning architectures and the

advancement in computation methods and the large amounts of data available for

languages like English and Mandarin [2]. But even with these advancements, the

performance of ASR models have been poor and fragile when exposed to certain

factors like noise, acoustic distorting conditions, voice-quality. The performance of

these models worsens when trained with low-resource languages.

The motivation for this thesis is to research on the impact of several types of noise

like continuous noises, punctuated noises, background noises on various ASR models

like the GMM-HMM acoustic model, SGMM acoustic model, and the DNN model us-

ing a low-resource Tamil language dataset and find out how much each type of noise

impacts the performance of ASR. Additionally, we evaluate whether certain data

augmentation approaches, such as raw data augmentation and spectrogram augmen-

tation (SpecAugment), are particularly well suited to various types of noises, thereby

minimizing the noise impact on the low-resource dataset. We demonstrate the above

models on the low-resource Tamil language dataset provided by SpeechOcean.com

and Microsoft for a low-resource ASR challenge in Interspeech 2018 [3]. We observe

that all types of noises regardless of the acoustic model architecture impact the ASR
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Chapter 1. Introduction

performance. In the case of data augmentation techniques, raw data augmentation

outperforms SpecAugment [4] on the clean data as well as the noise-mixed data.

1.1 Objectives

The objectives of the thesis are as follows:

• To investigate how different types of common environmental noises differentially

impact ASR quality. We consider two different dimensions: (1) continuous vs

punctuated noise (e.g., a running tap vs. a door slamming); and (2) machine-

made noise (mechanical) vs. noise produced by a living being(Non-mechanical)

[e.g., a running tap vs. background party chatter].

• To explore the relationship between different data augmentation techniques

and ASR quality. In particular, we want to understand whether generic data

augmentation methods perform as well as targeted data augmentation methods.

1.2 Contributions

The main contributions of this thesis are outlined below:

• Providing researchers with information about how different types of noise dif-

ferentially impact ASR quality.

• We offer suggestions for future researchers on how to do data augmentation to

specifically target the kinds of noise that might be expected in some particular

application (e.g., in a car vs. in a personal assistant).

1.3 Document Structure

The reminder of the document is structured as follows: The Chapter 2 reviews the

background of ASR in low-resource languages, the general Acoustic and Neural Net-

3



Chapter 1. Introduction

work models, the Language models, the Kaldi toolkit, evaluation metrics, types of

noises, and related works. Chapter 3 provides a detailed description of the speech

dataset used for this thesis. Chapter 4 describes about the approach/methodology to-

wards finding the impact of several types of noises in ASR models using a low resource

language, data preparation for data augmentation and how data augmentation helps

in improving the performance of the ASR models in noisy environments.Chapter 5

discusses the results and various experiments conducted to find the impact of noise

and also how data augmentation works on different kinds of noises.Chapter 6 provides

the final conclusions and also talks about the future scope.

4



Chapter 2

Background

Automatic Speech Recognition (ASR) is the process of translation of the audio pro-

vided by the user into text via a developed software program. There are four basic

components in most ASR frameworks: an acoustic feature extraction method; an

acoustic model; a language model, and a decoder.

Figure 2.1: This figure shows the general pipeline of an Automatic Speech Recognition
System

The speech signal is passed through the feature extraction step where all the

features like Mel-Frequency Cepstral Coefficients Features (MFCC) [5], Feature Space

Maximum Likelihood Linear Regression (fMLLR) [6], and spectrograms of the raw

input waveform are extracted in short time-frames. The feature vectors are passed

into the acoustic model which makes sure that these features complement with the

phoneme classes and the models are trained and thereby passed to decoding to predict
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Chapter 2. Background

the series of text or characters. The decoding with the help of a language model which

contains the dictionary of the concerned language is used accordingly to predict the

final output text/characters.

In the following sections, we explain how each component is trained and used in

the pipeline. We then discuss evaluation metrics for ASR. We introduce the various

types of noises we will explore in this thesis. Finally, we explore some of the popular

works in Automatic Speech Recognition.

2.1 Feature Extraction

Feature extraction is used to extract features from the raw audio input that capture

the important aspects of the signal that are associated with the various human speech

sounds. These features are extracted in such a way that they are meaningful and also

robust to certain conditions. Generally, the feature extraction is done by convert-

ing the speech signals into a parametric form for processing and analysis.There are

many approaches to acoustic feature extraction and enhancement like Mel-Frequency

Cepstral Coefficients (MFCCs) [5], Linear Predictive Coding (LPC), Discrete Wavelet

Transforms (DWTs), Feature space Maximum Likelihood Linear Regression (fMLLR)

[6]. Here we describe the approach used in this research, which is the default approach

used in Kaldi [7] one of the most widely-used ASR toolkit.

Figure 2.2: This figure shows the pipeline for Feature Extraction

Before the features of the speech signal are extracted, a series of pre-processing

6



Chapter 2. Background

work is executed. This is known as Pre-Emphasis. In this step, the low-frequency

and the high-frequency components of a voiced sound signal are balanced out by

either increasing the amplitude of the high-frequency component or decreasing the

low-frequency component.After this step, the audio signals are cut into short frames

and a windowing function is applied to each frame of the audio signal.In the final

step, the features are extracted and are used to train the acoustic model.

2.1.1 Mel-Frequency Cepstral Coefficients Features

The Mel-frequency cepstral coefficients (MFCC) features are one of the popular fea-

tures used for speech recognition. The reason for its popularity is due to its ability

to imitate the behaviors of the human ear [5]. The complete process for extracting

the MFCC features are as follows [8]:

Figure 2.3: This figure shows the complete pipeline of the MFCC Feature Extraction

7



Chapter 2. Background

1. Short Frames : The audio signals are cut into short frames of 25-30 ms [5].

2. Windowing : Each short frame is multiplied by a windowing function (Ham-

ming) [5].

3. Fast Fourier Transform (FFT) : The FFT is used on each frame of N samples

to calculate the magnitude of frequency domain [5].

4. Mel frequency Wrapping : The magnitude of the frequency domain is used

to calculate the the log filter-bank energies of each bypass filter [5].

5. Discrete Cosine Transform (DCT) : The DCT is applied on the log filter-

bank energies to obtain the Mel-frequency cepstrum and the coefficients are

used as features [5].

2.1.2 Feature Space Maximum Likelihood Linear Regression

The Feature Space Maximum Likelihood Linear Regression (fMLLR) [9] features is a

type of feature transform techniques where the features are converted into a speaker

adaptive form using the transformation matrix. Only the maximum likelihood trans-

formations are considered as features for fMLLR.This type of feature is mainly used

in HMM-Based speech recognition [6][10].

Compared with other features, the fMLLR feature transforms tend to perform

better than other features techniques like MFCCs, FBANKS, etc., due to the process

of speaker adaptiveness [11].

2.1.3 Cepstral Mean and Variance Normalization

Cepstral Mean and Variance Normalization (CMVN) is a normalization technique

used for robust speech recognition where all the utterances are normalized into zero

mean and unit variance [12]. The CMVN stats are collected once the MFCC features

are extracted.
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Chapter 2. Background

2.1.4 Linear Discriminative Analysis

In ASR, the Linear Discriminative Analysis (LDA) is used to create HMM states using

the features in a low-dimensional space. LDA can be used not only for dimensionality

reduction but also as a classification as well [13]. The limitation of LDA is that the

diagonal gaussians are not represented perfectly in the low-dimensional space and

that’s the reason LDA features are followed by MLLT transforms [14].

2.1.5 Maximum Likelihood Linear Transform

Maximum Likelihood Linear Transform (MLLT) is a feature transformation technique

that transforms the data into a gaussian variated space [14]. The diagonal co-variance

property is improved in the features provided they are independent of each other [15].

MLLT takes the low-dimensional space derived from the LDA and creates transforms

with well-represented diagonal gaussian.

2.2 Acoustic models

The acoustic model uses large quantities of transcribed audio data to learn the asso-

ciations between acoustic features (e.g., MFCCs) and specific human speech sounds

(”t”, ”a”, ”v”). Most of the acoustic models are built using the probability dis-

tribution over space [16]. The usage of acoustic models is to find the correlation

between the extracted features and the phoneme labels. There are many different ap-

proaches to acoustic modeling for ASR. Here we describe only the approaches used in

this research: Hidden Markov Models, Gaussian Mixture Models, Subspace Gaussian

Mixture Models, and Deep Neural Networks.

9



Chapter 2. Background

2.2.1 Hidden Markov Model

A Markov model is a stochastic method to model randomly changing systems. It pro-

vides a way to model the dependencies of the current state as a method of predicting

the next state. A Hidden Markov Model contains two parts – hidden and observed,

where the states of the model are hidden which are not directly observed [17]. Their

presence is observed by the output that each hidden state emit. Owing to the tem-

poral structure of the speech, the HMM’s can be able to model through self-loops

and predict the speech using dynamic programming algorithms such as Viterbi algo-

rithm which provides an efficient way to make an inference or prediction of the next

character or phone. The forward-backward algorithm is used for the probabilistic

interferences of each state transition allowing for the HMM’s to update the internal

weights like the propagation in a DNN[18].

2.2.2 Gaussian Mixture Model

The Gaussian Mixture Model (GMM) is commonly used to estimate of the probabil-

ity density function used in statistical classification systems [19]. This combined with

HMM to estimate the density and maximize the likelihood of the data’s distribution.

Subspaces are preferred over larger models which are introduced to reduce the pa-

rameter estimation issues which thereby reduces the dimensionality of the system.

Though GMM’s are capable of producing high- quality results, their main disadvan-

tage is that they are inefficient at modeling non-linear data. Thus, speech, with its

inflection, tone, and other properties is not the ideal application [18].

2.3 Deep Neural Networks

Deep Neural Networks (DNN) is an extension of Artificial Neural Networks with

more hidden layers in between to learn larger sets of data and thereby providing
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better predictions. DNN’s are feed-forward networks that can be trained both via

forward and backward propagation [20]. Due to the large amount of hidden layers

and with each hidden layer having many units makes them very complex and this

potential is very much required for acoustic modelling [21].The development of end-to-

end speech recognition and generating models has been aided by deep neural networks.

Various networks like Convolutional Neural Networks (CNN) [22], Recurrent Neural

networks (RNN) [23], and transformer [24] models have accomplished excellent results.

In CNN’s, two-dimensional networks are used where the features are organized in

two-dimensions, where the dimensions represent time and frequency respectively [25]

whereas in Recurrent Neural Networks, the computations are performed in such a way

that the output predicted depends on the previous states [23]. In the transformers,

the architecture is based on encoder-decoder [24].

2.4 Language Model

Language models are one of the integral parts of speech recognition. The language

model is used to compute the likelihood probability for a sequence of n-words. Most

of the typical language models are n-gram based where n=1-5, meaning they compute

the probability of the next word given the past n-1 words [26]. The probability is

computed using the Maximum Likelihood Estimate.The phonemes and the words are

modelled into a n-gram distribution and thereby each n-gram would contain n-words.

2.5 Decoder

The decoding process takes place once the Acoustic model has been trained using the

features extracted and is used to recognize the sequence of words from the speech

data and metrics are evaluated [27]. In Kaldi, after the acoustic model is trained, a

decoding graph is created which contains all the lexicons, and dependencies, and this
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Chapter 2. Background

graph is used for decoding the sequence of words. There are two types of decoders

namely beam search decoders and greedy decoders.

2.6 Kaldi Toolkit

Kaldi [7] is a open-source toolkit used for recreating several speech recognition sys-

tems.The training and decoding are based on finite-state transducers (FST) and it

supports linear and affine transformations. This toolkit can be used for feature ex-

traction, acoustic modeling, decoding, language modeling. For feature extraction,

the features like Mel-Frequency Cepstral Coefficients (MFCC) [5], Perceptual linear

prediction (PLP), Linear Discriminant Analysis (LDA) can be extracted using Kaldi.

The acoustic models HMM-GMM, DNN, TDNN, Subspace GMM can be easily re-

created using this toolkit. N-gram language model is used in Kaldi as it is based on

FST frameworks and it has several decoders which can be used for decoding [7].

2.7 Evaluation Metrics

2.7.1 Word Error Rate

The Word Error Rate (WER) will be used as an evaluation metric to estimate the

performance of most of the ASR models. The WER is defined by the number of

errors between the predicted and the reference sentence. Lower WER implies that

the ASR model recognizes speech accurately (high accuracy) whereas Higher WER

implies that the ASR model has low accuracy. To calculate the WER, the errors

Substitutions (S), Insertions (I), Deletions (D) that occur in the recognition of a

sentence are summed up and this value is divided by the number of words spoken in

the reference sentence (N).

The equation to calculate the WER is as follows:

12



Chapter 2. Background

WER =
(S + I +D)

N
(2.1)

For example, lets say a person speaks a sentence from the transcript file, ”I

bought a table” and the recognized output is: ”I brought the table”. In

this example, the recognized output has 2 substitutions; ”bought” changes to

”brought” and ”a” changes to ”the”.

From equation 2.1, the WER in the example is :

WER =
(2 + 0 + 0)

4
= 0.50 (2.2)

The Word Error Rate for the above example is 0.50

2.8 Types of Noise in Speech Recognition

Noise is a type of unwanted sound or signal which can corrupt the whole audio signal

while transmitting or recording. Most of the ASR models find it difficult to handle

noise and may require several methods and approaches to minimize its impact. There

are many different types of noises that can impact ASR quality. Here we consider

noise on two different dimensions: continuous vs. punctuated, and mechanical vs.

produced by a living being.

2.8.1 Continuous vs Punctuated Noise

Continuous noise is a type of noise that is being produced continuously. This type of

noise can be produced from heating systems, car engines, running motors or it could

be produced from anywhere where the noise is continuous and does not have sudden

changes in volume. Noises like running tap, human chatter in the background also

come under this category. Punctuated noise is a type of noise that is being produced

variably, it consists a combination of quiet and noisy periods. Examples include dog
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barking, baby crying, door slamming.

2.8.2 Mechanical vs Non-Mechanical Noise

Mechanical noises are a type of noise that are mostly produced by machines. Ex-

amples include:heating and ventilation systems, car engine, vacuum cleaner, factory

equipment, running motors, running tap. Non-mechanical noises are a type of noise

that are produced by human beings. Examples include: crowd chatter, Ambience in

an exhibition hall/airport.

Types of Noise Continuous Noise Punctuated Noise

Mechanical Noise
Car Engine,
Vacuum Cleaner

Gun firing,
Train Passing Nearby

Non-mechanical Noise
Crowd chatter,
Ambience Noise

Dog barking,
Baby crying

Table 2.1: Different types of Noises used

Table 2.1 provides a small sample-space as to what categories/kinds of noise does

each noise belongs.

The mechanical and non-mechanical noises used in this research are as follows:

• Mechanical Noises : Running Tap (continuous noise), Dishes (continuous

noise), Door Slamming (Punctuated noise), Truck Horn (Punctuated noise).

• Non-Mechanical Noises : Party Chatter (continuous noise), Restaurant

Chatter (continuous noise), Dog barking (Punctuated noise), Cat-Meowing (Punc-

tuated noise).

In this research, we have taken this small sample space of noises that are most fre-

quently produced/created when using the ASR applications. Non-mechanical noises

like party chatter , restaurant chatter are in the frequency range of the human speech
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whereas the mechanical noises except truck horn aren’t in the frequency range of the

human speech are therefore used to find the impact of noise in ASR.

2.9 Prior Work

In ASR, various forms of Deep Neural Network models have been proposed using

several language datasets but most of these models aren’t trained using noise-mixed

data to make it more robust to noise and other external conditions. The following

papers explored the impact of noise and also on creating noise-robust ASR models.

Ayesha et.al [27] provided a comparative study on various acoustic and deep learning

models and thereby created robust models in a noisy environment. The robust models

were trained by noise-augmented training data and testing these models on both clean

and noise data. They experimented with several models only by noise augmentation

and not by other techniques whereas, in this work, we will be finding out which type

of augmentation technique is well suited to different kinds of noise. Hu et.al [28]

proposed a noise-robust speech recognition system called interactive feature fusion

network (IFF-Net) to learn the missing latent information from the enhanced feature

and original noisy feature as a fused representation. This system achieved better

results on the RATS Channel-A corpus.

Urmila et.al [29] elaborated on a few problems due to changes in environmen-

tal conditions and speaker characteristics and proposed a method to increase the

robustness of the ASR systems using speech enhancement techniques like Spectral

Normalization and Spectral Subtraction. Giurgiu et.al [30] explained how energy

normalization and speech re-synthesis can improve the performance of ASR systems

by recognizing speech signals in high-noisy conditions (negative SNR). Kinoshita et.al

[31] investigates whether the usage of single-channel time-domain neural networks can

help in the reduction of noise and thereby improve the performance. Gupta et.al [32]

proposed a Back-propogation Artificial Neural Network with feature compression us-
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ing MFCC and thereby producing improved performance with low values of SNR . Liu

et.al [33], proposed a noise-resistant speech recognition called Wavoice that merges

two unique voice sensing modalities millimeter-wave signals (mmWave) and audio

signals. This system is modeled based on the inherent correlation between mmWave

and audio signals and has performed really well in various conditions in a range of 7

meters.

2.10 Data Augmentation

Data Augmentation is the process of including additional data into the training set

artificially. The purpose of using data augmentation is to increase the performance

of the ASR models. There are several techniques by which data augmentation can be

done. This includes spectrogram augmentation and raw augmentation.

2.10.1 Spectrogram Augmentation

Spectrogram Augmentation (SpecAugment) [4] is done using spectrograms in which

certain sections of the spectral representations of the audio are blocked out. It is

performed using the log mel spectrogram of the input speech data. Spec Augment is

preferred over other augmentation techniques since it doesn’t require any extra data

as it is being applied on the log mel spectrograms and its computationally cheap as

well. SpecAugment [4] has provided the state-of-the-art results on the LibriSpeech

960h [34] and Switchboard 300h [35] datasets using the Listen Attend Spell model

[36]. There are two ways by which spectrogram augmentation can be done [4].

1. Frequency Mask: A range of frequencies is randomly erased out by adding

horizontal bars in the spectrogram. [4].
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Figure 2.4: Spectrogram Augmentation of a audio signal with frequency masking

Figure 2.4 shows the color map comparison of the original audio file with the

frequency masked audio file.

2. Time Mask: A range of time blocks is randomly erased out by adding vertical

bars in the spectrogram [4].

Figure 2.5: Spectrogram Augmentation of a audio signal with time masking

Figure 2.5 shows the color map comparison of original audio file with the time-masked

audio file.
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2.10.2 Raw Augmentation

Raw augmentation is done using the raw audio data. There are several ways by which

raw audio augmentation can be done. These include Time Shift, Pitch Shift, Time

Stretch, Adding Noise.

1. Time Shift : Shifting the audio signals to either the left or to the right for the

given amount of time in seconds.

Figure 2.6: Raw Augmentation of a audio signal by shifting the time of the audio signal

Figure 2.6 shows the color map comparison of original audio file with the time-

shifted audio file. The audio file is shifted towards the left side for a period of

0.5 seconds.

2. Pitch Shift : Changing the pitch of the audio signals by a random amount.

Figure 2.7: Raw Augmentation of a audio signal by changing the pitch of the audio signal
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Figure 2.7 shows the color map comparison of original audio file with the pitch-

shifted audio file.The audio file is shifts the pitch down without changing the

tempo.

3. Time Stretch : Stretching the audio signals (speeding up or slowing down)

for a given amount of time.

Figure 2.8: Raw Augmentation of a audio signal by stretching the pitch of the audio signal

Figure 2.8 shows the color map comparison of original audio file with the time-

stretched audio file (slowing down).The audio file is stretched without changing

the pitch.

4. Adding Noise : Adding some random noise into the audio signals.In this

research, we will be specifically using this method of augmentation by experi-

menting with various kinds of noises.

Figure 2.9: Raw augmentation of a audio signal by adding noises to the audio data

19



Chapter 2. Background

Figure 2.9 shows the original audio file with the noise-mixed audio file.The noise

sample used in this figure is dog-barking.The noise-sample with a sample rate of

16kHz is mixed with the audio file continuously till the end of the audio file.
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Dataset

The data used for the approach is a low-resource Tamil language dataset and it has

been provided by SpeechOcean.com and Microsoft for a low-resource ASR challenge

in Interspeech 2018 [3]. The dataset consists of read speech and speech conversations

that have been split into utterances and these have been transcribed as well. The

dataset contains a total of 50 hours of recorded speech data in a clean noise-free

environment. The dataset is split into the train and test splits where the train split

consists of 40 hours of speech data, the test split consists of 5 hours of speech data.

Description
Tamil

Train set Test set
Size (hours) 40 5
Unique utterances 39131 3081
Speakers 1780 118

Table 3.1: Tamil low-resource language dataset description

Table 3.1 provides the description of the Tamil low-resource language dataset like

the unique utterances, number of speakers used. All the audio files are sampled with

a sample rate of 16kHz and consists of 1 channel. A total of 1900 speakers used for

the whole dataset. The length of each of the unique utterances are in the range of

3000ms - 10000ms.There is a total of 42212 unique utterances in the dataset.

The description of the audio data in the dataset is as follows:

• Channels : 1
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• Sample Rate : 16000 Hz

• Precision : 16-bit

• Bit Rate : 256k

• Sample Encoding: 16-bit Signed Integer pulse code modulation (PCM)
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Methodology

The following sub-sections provide a description of the proposed method for this thesis

and the objectives to be achieved.

4.1 Data Preparation

All the experiments are conducted on the low-resource Tamil language dataset where

all the audio data files are sampled at 16kHz. The training dataset split contains 40

hrs of recorded speech data and the test data split contains 5 hrs of speech data.

4.1.1 Adding Noise for Raw Data Augmentation

Several kinds of noises files are mixed with the training speech data files to create the

noisy dataset. All the noise files were sampled at 16kHz. The sound level of these

noise samples were reduced by 20dB (Noise - 20dB) and are mixed with the speech

data signals. For the continuous noises, the noises were mixed directly with each

of the training data files whereas, for the punctuated noises, the noises were mixed

at a fixed time interval. The time interval is selected from a random value ranging

between 2000ms to 5000ms to each of the audio files in the training dataset. All the

experiments are conducted where the sound level is reduced by 20dB (Noise-20dB)

and is mixed with the speech data.
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Figure 4.1: Adding noise to audio file for raw data augmentation

Figure 4.1 provides the colour wave comparison of a audio file from the dataset and

the noise-mixed audio file. The noise sample used in the above figure is dog-barking.

The noise level of the dog-barking noise was reduced by 20dB and were mixed with

audio file.

4.1.2 Frequency Masking for Spectrogram Augmentation

For SpecAugment [4], the frequency of the audio data is masked for a block of the

frequency channels. The frequency is masked for all the audio files in the training

data. The clean data along with the spec-augmented data forms the new training

data set and this was used to train the baseline models.

4.2 Baseline Models

The baseline models are built using the Tamil language dataset via the Kaldi toolkit

[7]. The Kaldi recipes are used to build these models with some variations in the

data points and parameters. All the acoustic baseline models analyze the data using

the features that are extracted and their probabilities are calculated and these values

are combined. The ASR models used for baseline are GMM-HMM, SGMM, SAT

Triphones, and DNN.
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4.2.1 GMM-HMM Acoustic Model

For training the GMM-HMMModel, a series of feature extraction and acoustic models

training and alignments are done sequentially. After each stage of training the acoustic

model, the model can be used for decoding and thereby calculating the performance.

The transcription files of the speech dataset, and the language dictionary containing

the lexicons, silent and non-silent phonemes are required for the training process. The

whole training procedure for the GMM-HMM Model [27] is provided below:

1. The first step is to extract the MFCC acoustic features from the training dataset

and the test dataset is extracted. After extracting the features, the cepstral

mean and variance normalization (CMVN) statistics are calculated for both the

training and test datasets MFCC acoustic features.

2. The monophone acoustic model (Mono) is trained using the MFCC features

extracted. This monophone model does not contain any information about the

next phonemes. After training, the monophone model is aligned in such a way

that the transcripts of the speech files are aligned. The alignments are done for

the model so that the preceding/other algorithms can use this model to improve

the performance of the recognition.

3. The delta-based triphone model (tri1) is trained using the alignments and the

features of the monophone model. Extra parameters like the HMM States and

the Number of Gaussians are required for training the model. We used 4200

HMM States and 40000 Gaussians for training the tri1 model. These parameters

depend on the training data and phonemes. After training, the alignments of

the triphone model are done.

4. The delta + delta-delta triphone model (tri2a) is trained using the first and

second-order derivatives of the audio signal. We used 4200 HMM States and
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40000 Gaussians for training the tri2a model.

5. The LDA-MLLT Triphone model (tri2b) (GMM-HMM) is trained using the

LDA - MLLT features extracted for the speech data (Triphone + Delta Delta +

LDA and MLLT). We used 4200 HMM States and 40000 Gaussians for training

the tri2b model. The alignment of the LDA-MLLT triphone model is done using

the fMLLR features.

6. The Speaker Adaptive Training (SAT) [37] Triphone model (tri3b) is trained

using the SAT features along with the delta-delta and LDA-MLLT features. We

used 4200 HMM States and 40000 Gaussians for training the tri3b model. The

SAT triphone model is used for speaker and noise normalization by adapting to

each speaker. It is also used to calculate the variance in the phonemes.

The decoding can be done after each step to analyze the performance of each

acoustic model. In Kaldi, the decoding is done by creating a decoding graph once

the model is trained. The decoding graph (HCLG) is used for decoding and also

calculating the metrics. The graph consists of lexicons (L), HMM definitions (H), an

acceptor that encodes the language model (G), and the context (C) containing the

phonemes.Figure 4.3 shows the GMM-HMM acoustic model and how the model is

being trained sequentially.
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Figure 4.2: GMM-HMM Acoustic model

4.2.2 Subspace GMM Acoustic Model

Subspace GMM is a type of acoustic model where all the phoneme states use a

common Gaussian Mixture Model structure [38]. The SGMM model is trained by

using clustering the Gaussians from the GMM-HMM model that has been trained

with the HMM states and the Gaussians. The first step of training the SGMM is by

clustering Gaussians using the Universal Background Model (UBM). The UBM model

is a speaker-independent high order GMM model [39]. The next step is the training

of SGMM models using the UBM model having the state probability distribution

functions as identical. The final step of the training process is to use the EM algorithm

to train the SGMM model using the alignments from the GMM-HMM and also from

the SGMM model as well [38].
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Figure 4.3: SGMM Acoustic model

Figure 4.4 shows the pipeline in which the SGMM acoustic model is being trained

sequentially.

4.2.3 Deep Neural Networks (DNN)

Deep Neural Networks (DNN) have been producing state-of-the-art results in speech

recognition. Karel’s implementation of DNN is re-created in this research [40].Here,

the sequence discriminative training of the deep neural networks is performed. The

DNN model consists of 6 hidden layers with the output layer where each hidden

layer has 2048 nodes [41]. The DNN model can be trained using the features ex-

tracted in the GMM-HMM acoustic model. The input to the DNN model is an 11

frame window of the 40-dimensional feature map. The DNN training can be done

in several stages sequentially namely: Restricted Boltzmann Machines (RBM) pre-

training, Frame cross-entropy training, sequential discriminative training. The initial

stage is the extraction of the 40-dimensional feature map for training the DNN. This

40-dimensional feature map includes MFCC with CMVN stats, LDA-MLLT, and fM-

LLR.The first stage is pretraining of stacked Restricted Boltzmann Machines (RBM).

The first RBM in the stack uses the Gaussian-Bernoulli units and the following ones
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Bernoulli-Bernoulli units. The next stage is frame cross-entropy training. In this

stage, the DNN is trained to classify the frames into the probability distribution

functions (PDF’s). This process is completed by using mini-batch stochastic gradient

descent [41]. The final stage of the training is the state-level Minimum Bayes Risk

(sMBR) sequence discriminative training. In this stage, the neural network is trained

using stochastic gradient descent to optimize the sentences and maximize the accu-

racy of the labels derived from the reference alignments. Initially, the lattices and

alignments are generated before the neural network training starts. The decoding

for the DNN can be performed both after RBM pretraining stage as well during the

sMBR DNN training. The decoding is done using the HCLG decoding graph that is

used for the GMM-HMM model and the SGMM model.

Figure 4.4: Pipeline of the DNN model
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Results and Discussions

The above-mentioned baseline models were trained using the 40 hrs of the training

set and then tested using the test set of 5 hrs and the Word Error Rate is calculated

for the Tamil Language. Several experiments were conducted without noise (clean

data) and also with different kinds of noise to find the impact of noise and also how

it affects the performance of the Baseline models.

The baseline results without the presence of noise for the Tamil language were per-

formed using the Kaldi toolkit [7]. Table 5.1 provides the results of the top performing

acoustic models, GMM-HMM, SGMM, SAT Triphones, DNN (Karel’s implementa-

tion) [40] trained and tested using the clean data and the best WER from each model

is tabulated.

Baseline WER
GMM-HMM 44.66
SGMM 39.22
SAT-Triphones 36.15
DNN 32.58

Table 5.1: ASR Baseline Results for Tamil Language

From the table 5.1, we can infer that the DNN architecture has produced the best

WER out of all the other acoustic models. The GMM-HMM acoustic model has the

highest WER compared to the other acoustic models.

The baseline results will be used as a reference to compare the impact of noise in
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the baseline models and data augmentation techniques (Raw Augmentation, SpecAug-

ment [4]).

5.1 Impact of Noise

To find the impact of noise in ASR models, a noise sample from each kind of noise

(mechanical/non-mechanical, continuous/punctuated) was taken and this noise sam-

ple was mixed with all the audio files in the test set thereby creating a noise-mixed test

set. This modified test set is then tested with the baseline models like GMM-HMM,

SGMM, and DNN that are trained on clean/unaugmented data and the results were

tabulated. The noise sample used for this research are as follows:

• Mechanical Noises : Running Tap (continuous noise), Dishes (continuous

noise), Door Slamming (Punctuated noise), Truck Horn (Punctuated noise).

• Non-Mechanical Noises : Party Chatter (continuous noise), Restaurant

Chatter (continuous noise), Dog barking (Punctuated noise), Cat-Meowing (Punc-

tuated noise).

For the continuous noises, each of the noises were directly mixed with all the test

audio files. Each of the punctuated noises are added at a fixed time interval. The

time interval is selected from a random value ranging between 2000ms to 5000ms.

Figure 5.1: Original audio vs Noise-mixed audio
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Figure 5.1 shows the colour maps of the original audio file and the noise-mixed

audio data. The noise sample used is the restaurant chatter noise that is mixed con-

tinuously with the original audio file.

The results with the presence of several mechanical and non-mechanical noises for

the Tamil language were performed using the Kaldi toolkit [7]. Table 5.2 provides

the results of baseline models like GMM-HMM, SGMM, and DNN that are trained

on clean/unaugmented data and tested on the mechanical noise-mixed test sets and

the best WER from each of the model is tabulated.

Acoustic Model Clean Data
Continuous Noise Punctuated Noise
Run Tap Dishes Truck Horn Door Slam

GMM-HMM 44.66 61.2 55.1 50.52 50.21
SAT Triphones 39.22 69.12 61.46 48.77 47.21
SGMM 36.15 54.4 48.18 45.24 44.94
RBM Pretrained 32.88 47.89 42.98 40.75 40.55
DNN 32.58 47.18 41.54 39.44 39.12

Table 5.2: ASR results with the presence of different mechanical noises

The baseline results from Table 5.1 are used as a reference to find out the impact

of noise on the baseline models. From the table 5.2, we can infer that all the me-

chanical noises regardless of their type impact WER and improving the architecture

is not enough to overcome the impact of adding noise. The DNN architecture has

produced the best WER while the GMM-HMM acoustic model has the highest WER

as compared to the other acoustic models for all the test sets. We can see that the

continuous noises (Running Tap, Dishes) have a bigger impact on the performance

of the baseline models when compared to the punctuated noises (Truck Horn, Door

Slamming). Out of all the mechanical noises, running tap has the biggest impact on

the ASR performance whereas door slamming noise has the least impact on the ASR

performance for all the baseline models. The SAT-triphone model with the running

tap noise has produced the highest WER of 69.12 and thereby has the biggest impact
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whereas the DNN model with the door slamming noise has produced the lowest WER

of 39.12.

Table 5.3 provides the results of baseline models like GMM-HMM, SGMM, and DNN

that are trained on clean/unaugmented data and tested on the mechanical noise-

mixed test sets and the best WER from each of the model is tabulated.

Acoustic Model Clean Data
Continuous Noise Punctuated Noise
Party Restaurant Dog-bark Cat-meow

GMM-HMM 44.66 66.23 53.20 52.20 48.00
SAT Triphones 39.22 76.24 60.57 47.27 52.38
SGMM 36.15 66.05 47.75 45.19 41.26
RBM Pretrained 32.88 59.03 42.57 41.54 36.67
DNN 32.58 56.88 41.18 39.91 35.91

Table 5.3: ASR results with the presence of different non-mechanical noises

The baseline results from Table 5.1 are used as a reference to find out the impact

of noise on the baseline models. From the table 5.3, we can infer that all the non-

mechanical noises regardless of the baseline model impact the WER and improving

the architecture of these models wont help to overcome the impact of adding noise.

The DNN baseline model has given the best WER (lowest) whereas the GMM-HMM

baseline model has produced the highest WER when compared to other acoustic mod-

els for all the test sets. The continuous noises (Party and Restaurant chatter) have

a huge impact on the ASR performance of all the baseline models when compared to

the punctuated noises (Dog-bark, cat-meow). Out of all the non-mechanical noises,

party chatter has the highest impact on the WER whereas cat-meow noise has the

least impact on the WER for all the baseline models except the SAT-triphone model.

The SAT-triphone model with the party chatter noise has produced the highest WER

of 76.24 and thereby has a huge impact on the model whereas the DNN model with

the cat-meowing noise has produced the lowest WER of 35.91.
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From table 5.2 and table 5.3, we can infer that the cat-meowing noise has a least

impact on the ASR performance and the party chatter noise has the highest im-

pact on the ASR performance out of all the noise test sets. Both mechanical and

non-mechanical noises have a considerable impact on the performance of the baseline

models.

The impact of noise on the baseline models can be reduced by performing data

augmentation techniques like raw data augmentation and spectrogram augmentation.

5.2 Data Augmentation

Data Augmentation is the process of including additional data into the training set

artificially. The purpose of using data augmentation is to increase the performance

of the ASR models. A noise sample from each kind of noise was taken and this

noise sample was mixed with all the audio files in the training set thereby creating a

noise-mixed augmented training set. This training set was used to train the baseline

models and the same noise-mixed test set that was used to find the impact of noise

was used to test the baseline models that were trained on augmented train set. The

raw data augmentation was performed specifically for each type of noises. In total,

there were 6 augmentation training sets that were created and trained on baseline

models.The 6 augmentation models are:

1. Run Tap-Dishes Augmentation: Each of the audio files from the training

set were mixed with the running tap noise and also mixed with the dishes noise

thereby creating the augmented data. The clean data along with the augmented

run-tap data and the augmented dishes data formed the new augmented training

set and this was used to train the baseline models.

2. Dog bark-Cat meow Augmentation: Each of the audio files from the train-

ing set were mixed with the dog-barking noise and also mixed with the cat-

34



Chapter 5. Results and Discussions

meowing noise separately thereby creating the augmented data. The clean data

along with the augmented dog-barking data and the augmented cat-meowing

data formed the new augmented training set and this was used to train the

baseline models.

3. Truck horn - Door Slamming Augmentation: Each of the audio files from

the training set were mixed with the truck door noise and also mixed with the

door slamming noise thereby creating the augmented data. The clean data

along with the augmented truck door data and the augmented door slamming

data formed the new augmented training set and this was used to train the

baseline models.

4. Party-Restaurant chatter Augmentation: Each of the audio files from the

training set were mixed with the party chatter noise and also mixed with the

restaurant chatter noise thereby creating the augmented data. The clean data

along with the augmented party chatter data and the augmented restaurant

chatter data formed the new augmented training set and this was used to train

the baseline models.

5. Mechanical noise Augmentation: Each of the audio files from the training

set were mixed with the all the mechanical noises like run-tap, dishes, truck

horn, door slamming separately thereby creating the augmented data. The

clean data along with each of the augmented mechanical noise data formed the

new augmented training set and this training set was used to train the baseline

models.

6. Non-mechanical Augmentation: Each of the audio files from the training

set were mixed with the all the non-mechanical noises like party, restaurant

chatter, dog-barking, cat-meowing separately thereby creating the augmented

data. The clean data along with each of the augmented non-mechanical noise
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data formed the new augmented training set and this training set was used to

train the baseline models.

For SpecAugment [4], the frequency of the audio data is masked for a block of the

frequency channels. The frequency is masked for all the audio files in the training

data thereby creating the augmented train set. The clean data along with the spec

augmented data formed the new training data set and this was used to train the

baseline models.

5.2.1 Raw Data Augmentation

The results with various raw data augmentations for the Tamil language were per-

formed using the Kaldi toolkit [7]. Tables 5.4 and 5.5 provides the results of baseline

models like SGMM, and DNN that are trained on different types of augmentations

and tested on the mechanical noise-mixed test sets and the best WER from each of

the model is tabulated.

Augmentation Type Acoustic Model Clean Data
Continuous Noise
Running Tap Dishes Noise

No Data
Augmentation

DNN 32.58 47.18 41.54
SGMM 36.15 54.4 48.18

Running Tap &
Dishes

DNN 31.88 38.03 36.21
SGMM 36.16 48.81 44.23

Truck Horn &
Door Slam

DNN 31.47 35.88 39.17
SGMM 35.19 52.88 46.67

Party &
Restaurant

DNN 31.85 38.41 36.91
SGMM 35.84 50.71 44.48

Dog & Cat
DNN 31.72 38.11 39.83
SGMM 35.49 53.18 46.8

SpecAugment
DNN 35.75 50.63 43.97
SGMM 43.06 64.62 54.53

Table 5.4: ASR results for different augmentation types tested on mechanical - continuous
noises

The baseline results from Table 5.2 (SGMM and DNN) are used as a reference

to find out the performance of different augmentation types on the baseline models.
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From the table 5.4, we can infer that all the raw data augmentation types improves the

ASR performance regardless of the architectures. The spectrogram augmentation [4]

doesn’t improve the ASR performance when compared to the raw-data augmentation

types. The DNN baseline model has given the best WER (lowest) for all the test sets.

Both the continuous noises (running tap and dishes noises) have improved the ASR

performance (WER) on all the raw data augmentation types when compared with

no augmentation and both the continuous noises perform better with the running-

tap and dishes augmentation for both the baseline models than with other raw data

augmentation types. The running tap noise has the improved the ASR performance

by a big margin when compared to the dishes noise.SpecAugment [4] doesn’t improve

the ASR performance (WER) for both the continuous noises when compared with

the raw-data augmentation types.

Augmentation Type Acoustic Model Clean Data
Punctuated Noise
Truck horn Door Slam

No Data
Augmentation

DNN 32.58 39.44 39.12
SGMM 36.15 45.24 44.94

Running Tap &
Dishes

DNN 31.88 38.16 38.27
SGMM 36.16 44.38 42.87

Truck Horn &
Door Slam

DNN 31.47 36.06 35.88
SGMM 35.19 40.97 40.2

Party &
Restaurant

DNN 31.85 35.26 38.41
SGMM 35.84 41.18 44.03

Dog & Cat
DNN 31.72 38.24 38.11
SGMM 35.49 43.89 43.25

Spec Augment
DNN 35.75 44.91 42.74
SGMM 43.06 52.32 51.31

Table 5.5: ASR results for different augmentation types tested on mechanical - punctuated
noises

From the table 5.5, we can infer that all the raw data augmentation types improves

the ASR performance (WER) regardless of the architectures. Karel’s implementation

of DNN [40] outperforms the SGMM [38] due to the initial pre-training of RBM’s

(involving the labeled frames) and also due to the early stopping of the training
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thereby providing better results. The spectrogram augmentation [4] doesn’t improve

the ASR performance (WER) of both the baseline models when compared to the

raw-data augmentation types. The DNN baseline model produces the best WER

(lowest) for all the test sets. Both the punctuated noises (truck horn and door slam)

provides a small improvement in the ASR performance (WER) on all the raw data

augmentation types when compared with no augmentation and both the punctuation

noises perform better with the truck horn-door slamming augmentation for both the

baseline models when compared with other raw data augmentation types. Both the

punctuated noises improve the ASR performance by a small margin. SpecAugment

[4] doesn’t improve the ASR performance (WER) for both the punctuated noises

when compared with the raw-data augmentation types.

Tables 5.6 and 5.7 provides the results of baseline models like SGMM, and DNN

that are trained on different types of augmentations and tested on the non-mechanical

noise-mixed test sets and the best WER from each of the model is tabulated.

Augmentation Type Acoustic Model Clean Data
Continuous Noise
Party chatter Restaurant

No Data
Augmentation

DNN 32.58 56.88 41.18
SGMM 36.15 66.05 47.75

Running Tap &
Dishes

DNN 31.88 52.94 37.81
SGMM 36.16 63.42 45.87

Truck Horn &
Door Slam

DNN 31.47 55.79 39.91
SGMM 35.19 63.47 46.15

Party &
Restaurant

DNN 31.85 46.16 35.18
SGMM 35.84 57.27 41.7

Dog & Cat
DNN 31.72 54.85 38.97
SGMM 35.49 64 45.73

Spec Augment
DNN 35.75 58.86 45.02
SGMM 43.06 68.56 54.37

Table 5.6: ASR results for different augmentation types tested on non-mechanical - con-
tinuous noises

The baseline results from Table 5.2 (SGMM and DNN) are used as a reference
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to find out the performance of different augmentation types on the baseline models.

From the table 5.6, we can infer that all the raw data augmentation types improves

the ASR performance regardless of the architectures. Karel’s implementation of DNN

[40] outperforms the SGMM [38] due to the initial pre-training of RBMs (involving

the labeled frames) and also due to the early stopping of the training thereby pro-

viding better results. The spectrogram augmentation [4] doesn’t improve the ASR

performance when compared to the raw-data augmentation types. The DNN base-

line model has given the best WER (lowest) for all the test sets. Both the contin-

uous noises (party chatter and restaurant chatter) provides a small improvement in

the ASR performance (WER) on all the raw data augmentation types when com-

pared with no augmentation and both the continuous noises perform better with the

Party and restaurant augmentation for both the baseline models than with other

raw data augmentation types.The party chatter noise has the improved the ASR

performance relatively by a big margin when compared to the restaurant chatter

noise.SpecAugment [4] doesn’t improve the ASR performance (WER) for both the

continuous noises when compared with the raw-data augmentation types.

Augmentation Type Acoustic Model Clean Data
Punctuated Noise
Dog bark Cat meow

No Data
Augmentation

DNN 32.58 39.91 35.91
SGMM 36.15 45.19 41.26

Running Tap &
Dishes

DNN 31.88 38.84 35.09
SGMM 36.16 44.34 41.02

Truck Horn &
Door Slam

DNN 31.47 38.81 33.23
SGMM 35.19 44.13 40.9

Party &
Restaurant

DNN 31.85 37.35 33.87
SGMM 35.84 43.1 39.35

Dog & Cat
DNN 31.72 34.26 32.07
SGMM 35.49 38.25 36.59

Spec Augment
DNN 35.75 46.27 39.53
SGMM 43.06 51.68 47.11

Table 5.7: ASR results for different augmentation types tested on non-mechanical - punc-
tuated noises
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From the table 5.7, we can infer that all the raw data augmentation types im-

proves the ASR performance (WER) regardless of the architectures. The spectrogram

augmentation [4] doesn’t improve the ASR performance (WER) of both the baseline

models when compared to the raw-data augmentation types. The DNN baseline

model produces the best WER (lowest) for all the test sets. Both the punctuated

noises (dog-barking and cat-meowing) provides a slight improvement in the ASR per-

formance (WER) on all the raw data augmentation types when compared with no

augmentation. Both the punctuation noises perform better with the dog-barking-

cat-meowing augmentation for both the baseline models when compared with other

raw data augmentation types and spec augmentation [4]. Both the punctuated noises

improve the ASR performance by a small margin. SpecAugment [4] doesn’t improve

the ASR performance (WER) for both the punctuated noises when compared with

the raw-data augmentation types.

Figure 5.2: WER Comparison of raw data augmentations for the DNN Baseline model

Figure 5.2 visualizes the WER comparison of the raw data augmentations for the

DNN Baseline model on the running tap and dishes noises. In this graph, we can infer
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that the run-tap noise provides better performances in all of the raw augmentation

types when compared with the dishes noises.Both the noises perform better with the

run- tap and dishes augmentation when compared with other data augmentation types

and also these noises provides a better improvement in the ASR performance (WER)

on all the raw data augmentation types when compared with no augmentation. This

graph shows that targeted raw data augmentation (Running tap-dishes augmentation)

improves ASR performance. The spectrogram augmentation [4] doesn’t improve the

ASR performance when compared to the raw-data augmentation types.

Figure 5.3: WER Comparison of raw data augmentations for the DNN Baseline model on
the dog-barking, cat-meowing, and, party chatter noises

Figure 5.3 visualizes the WER comparison of the raw data augmentations for the

DNN Baseline model on the dog-barking, cat-meowing, and, party chatter noises. In

this graph, we can infer that the dog-barking and cat-meowing noises perform better

with the dog-barking and cat-meowing augmentation when compared with other data

augmentation types whereas,the party chatter noise perform better with the party

chatter and restaurant chatter augmentation. This graph shows that targeted raw

data augmentation improves ASR performance on all the three noises. All the three

noises provides a better improvement in the ASR performance (WER) on all the raw
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data augmentation types when compared with no augmentation.The spectrogram

augmentation [4] doesn’t improve the ASR performance when compared to the raw-

data augmentation types.

Figure 5.4: WER Comparison of raw data augmentations for the DNN Baseline model on
the restaurant chatter, truck horn, and, door slamming noises

Figure 5.4 visualizes the WER comparison of the raw data augmentations for the

DNN Baseline model on the dog-barking, cat-meowing, and, party chatter noises.

In this graph, we can infer that the truck horn and door slamming noises perform

better with the truck horn and door slamming augmentation type when compared

with other data augmentation types whereas,the restaurant chatter noise has a huge

improvement in the ASR performance with the party chatter and restaurant chat-

ter augmentation type. All the three noises provides a better improvement in the

ASR performance (WER) on all the raw data augmentation types when compared

with no augmentation. The spectrogram augmentation [4] doesn’t improve the ASR

performance when compared to the raw-data augmentation types.
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5.2.2 Mechanical and Non-Mechanical Data Augmentation

The results with mechanical and non-mechanical raw data augmentations for the

Tamil language were performed using the Kaldi toolkit [6]. Tables 5.8 and 5.9 provides

the results of baseline models like SGMM, and DNN that are trained on different types

of augmentations and tested on the noise-mixed test sets and the best WER from

each of the model is tabulated.

Augmentation
Type

Acoustic
Model

Clean
Data

Continuous Noise Punctuated Noise
Run-Tap Dishes Truck horn Door-Slam

No Data
Augmentation

DNN 32.58 47.18 41.54 39.44 39.12
SGMM 36.15 54.4 48.18 45.24 44.94

Mechanical
DNN 31.88 36.25 36.47 35.74 36.25
SGMM 36.16 48.84 44.43 40.56 40.52

Non-mechanical
DNN 31.47 37.41 37.88 34.76 37.41
SGMM 35.19 51.38 45.23 40.81 42.94

Table 5.8: ASR results for the mechanical and non-mechanical augmentations tested on
mechanical noises

From the table 5.8, we can infer that both augmentation type improves the ASR

performance (WER) regardless of the architectures but the mechanical augmenta-

tion types performs better than the non-mechanical augmentation type due to the

baseline models being trained on mechanical augmented data. The DNN baseline

model produces the best WER (lowest) for all the test sets in the table. Both the

punctuated noises (truck horn and door slamming) provides a better improvement

in the ASR performance (WER) than the continuous noises on both these augmen-

tation types. Both the punctuated noises improve the ASR performance by a small

margin. All the non-mechanical noises provides a better improvement in the ASR

performance (WER) on all the augmentation types in the table when compared with

no augmentation.

From the table 5.9, we can infer that both augmentation type improves the ASR

performance (WER) regardless of the architectures but the non-mechanical augmen-

43



Chapter 5. Results and Discussions

Augmentation
Type

Acoustic
Model

Clean
Data

Continuous Noise Punctuated Noise
Party Restaurant Dog-bark Cat-Meow

No Data
Augmentation

DNN 32.58 56.88 41.18 39.91 35.91
SGMM 36.15 66.05 47.75 45.19 41.26

Mechanical
DNN 31.88 52.94 37.81 38.01 33.94
SGMM 36.16 63.42 45.87 42.19 39.59

Non-mechanical
DNN 31.47 55.79 39.91 33.46 31.94
SGMM 35.19 63.47 46.15 38.06 36.46

Table 5.9: ASR results for the mechanical and non-mechanical augmentations tested on
non-mechanical noises

tation types performs better than the mechanical augmentation type due to the base-

line models being trained on non-mechanical augmented data. The DNN baseline

model produces the best WER (lowest) for all the test sets in the table. Both the

punctuated noises (dog-barking and cat-meowing) provides a better improvement in

the ASR performance (WER) than the continuous noises on both these augmenta-

tion types. Both the punctuated noises improve the ASR performance by a small

margin.All the non-mechanical noises provides a better improvement in the ASR

performance (WER) on all the augmentation types when compared with no augmen-

tation.
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Figure 5.5: WER Comparison of mechanical and non-mechanical data augmentations for
the DNN Baseline model

Figure 5.5 visualizes the WER comparison for the mechanical and non-mechanical

augmentations for the DNN baseline model.In this graph, we can infer that the me-

chanical noises (run-tap, dishes, truck-horn, door-slam) provides better performances

in mechanical augmentation and similarly non-mechanical noises perform better in

non-mechanical augmentations.
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Conclusions

The goal of this research is to investigate the impact of noise on Automatic Speech

Recognition models using a low-resource Tamil language dataset. We also look into

whether specific data augmentation techniques are better suited to different types of

noise (For example, in a car vs. a personal assistant). The baseline models like GMM-

HMM, SGMM, SAT-Triphone, DNN were trained using the low-resource dataset. We

investigated the impact of noise by mixing several kinds of noise to all the audio files

in the test data and evaluated the performance on the trained baseline models. We

discovered that all noises, regardless of kind, had an impact on ASR performance,

and that upgrading the architecture alone was unable to mitigate the impact of noise.

To reduce the impact of noise in ASR models, we implemented few of the data aug-

mentation techniques like Raw data augmentation and spectrogram augmentation

(SpecAugment)[4] using the low-resource dataset. The noise sample was mixed with

all of the audio files in the training set for raw data augmentation, resulting in a

noise-mixed augmented training set that was utilized to train the baseline models. In

the case of Spectrogram augmentation (SpecAugment)[4] , the frequency was masked

for all the audio files in the training data and this set was utilized for training. We

discovered that raw data augmentation improves the WER and thereby reduced the

impact of noise considerably when compared with the SpecAugment [4]. Raw data

augmentation improves ASR performance on the clean test data and the noise-mixed
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data with the DNN model. SpecAugment [4] produces higher WER on both clean

and noise-mixed data even without any augmentation type. We also found that tar-

geted raw data augmentation improves ASR performance in general, as evident from

most of the raw data augmentation types. Both mechanical augmentation and non-

mechanical augmentation type are helpful in recognizing data that contains any of

the mechanical noises and non-mechanical noises respectively. Therefore data aug-

mentation techniques would be a better approach to improve the ASR performance

and also reduce the impact of several kinds of noises.

6.1 Future Scope

• We can explore the data augmentation techniques on a larger dataset to find

out the ASR performance with the addition of noise.

• Investigating with a new set of different kinds of noises on the ASR architectures

as to how it affects the ASR performance.

• Evaluating additional types of data augmentations to check if there is any im-

provements with the ASR performance in the presence of noise.

• To explore SpecAugment with time-masking and a combination of time-masking

and frequency masking.
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