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Abstract

A silent speech interface is a system that allows people doing speech communication

without using their own speech sounds. Today, a variety of speech interfaces have

been developed using biological signals such as the eye movement, and the articu-

latory. These interfaces are mainly for supporting people who have speech disorder

to communicate with others, yet there are many speech disorder that have not been

addressed by the current technologies. The possible cause of the issue is the limited

numbers of the biological signals used for the speech interface. The uncovered issues

with speech disorders can be addressed through identifying new biological signals for

speech interface development. Therefore, we aim to find new biological signals that

can be used for speech interface developments. The biological signals we focused

on were the vibration of the vocal folds and brain waves. After measuring the data

and extracting the features, we verified whether this data can be used to classify

speech sounds through machine learning models: Support Vector Machine for the

vocal folds vibration, and Echo State Network for the brain waves. As a result, us-

ing the vocal folds vibration signals, Japanese vowels could be classified with 71 %

accuracy on average. Using the brain waves, five different consonants were classi-

fied with 28.3 % accuracy on average. These findings indicate the possibility that

the vocal folds vibration signals and the brain waves can be used as new biological

signals for speech interface developments. From this study, we were able to discover

some needed improvements that should be considered in the future that may lead to

further improvement in the classification accuracy.
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Chapter 1

Introduction

1.1 Motivation

A silent speech interface is a system that allows people doing speech communication

without using their own speech sounds. Today, there has been a lot of research on new

communication tools and systems (speech interface) [1] that use biological signals such

as the eye movement [2], or the articulatory movement [3] to help people who have

language disorders to communicate with others. However, the current speech interface

technologies still have challenges, such as low recognition accuracy, instability, and

difficulty in controlling, which leaves numerous cases where existing interfaces cannot

help individuals with certain speech disorders. [4, 5].

Some current limitations with speech interfaces may be attributed to limitations

in the technology but another contributing factor is the limited number of biological

signals that have been explored so far. Therefore, in this study we aim to find new

biological signals that could be used in silent speech interfaces.

1.2 Research Question

To find new biological signals useful in new speech interfaces, we analyzed biological

signals that contain features associated with speech. Furthermore, we verified if these

biological signals can be used to discriminate speech or not using machine learning

2



Chapter 1. Introduction

models. In this study, we focused on two biological signals: (1) the signal from the

vocal folds vibration measured by an acceleration sensor, and (2) the brain waves

measured by an EEG (electroencephalogram). We considered vocal folds vibration

because there are people with speech impediments whose vocal cords work normally

[6], so that the signal from the vocal folds vibration can be used as the biological

signals of speech interfaces for many language disorders. Secondly, the vocal folds

vibration is the first stage when producing speech. [7]. Hence, we expect the vocal

folds vibration can be used as a new effective information source for speech interface

developments for various language disorders. Regarding the brain waves, the brain

controls many functions of the body including speech production [8], which makes

conceivable that signals from the brain could be used to develop a speech interface.

Therefore, we studied whether brain waves carry speech features or not, and whether

it is possible to discriminate speech from the aforementioned biological signals using

machine learning model. Specifically, for machine learning model we considered an

Echo State Network (ESN).

As part of our research methodology, we measured, we measured biological signals

while human subjects vocalized some specific words that contained certain speech

sounds of interest.

1.3 Contribution

Our first study resulted 71% accuracy for Japanese vowels’ classification by an ac-

celerometer and a Support Vector Machine. This result showed a new finding that

vocal fold vibration signals can be used for speech recognition in the field of speech

interface research. Moreover, we found that an accelerometer can measure sufficient

data from the vocal folds vibration.

In the field of speech and hearing science, the relationship between pre-speech

brain activity and speech has been paid much attention. We implemented speech

3



Chapter 1. Introduction

sound classification using pre-speech Electroencephalography (EEG) data and found

the possibility that EEG data contain features that discriminate speech sounds. In

the field of computer engineering, optimal machine learning models for speech clas-

sification using EEG data have been researched. In this study, we built an Echo

State Network model and found some tips for the implementation of speech sound

classification using EEG data.

1.4 Document Structure

Chapter 2 provides a background of vocal folds vibration, brain waves, and machine

learning models. Chapter 3 highlights and analyzes vocal folds vibrations for Japanese

vowels classification using Support Vector Machine. Chapter 4 highlights and analyzes

pre-speech EEG data for prediction of words using Echo State Network. Chapter 5

concludes by summarizing the key findings of this study and discuss future work.

4



Chapter 2

Background

2.1 Vocal Folds Vibration

2.1.1 What Is Vocal Folds Vibration

Vocal folds vibration is when the vocal folds produce a sound by vibrating during the

exhalation of air from the lungs. Figure 2.1 shows an illustration of the larynx. The

vocal folds are located within the larynx (voice box) at the top of the trachea. The

vibration of vocal folds is measured as their frequency (Hz). For example, when vocal

folds vibrate 100 cycles per second, the frequency is 100 Hz. In addition, the average

fundamental frequency for a male voice is 125Hz, and for a female voice it is 200Hz.

Figure 2.1: Illustration of the larynx: The part of b is vocal folds, a is Epiglottis, c is
tracheae, d is ventricular fold [9].

5



Chapter 2. Background

2.1.2 Relations Between Vocal Folds Vibration and Speech

Sounds can be divided into two categories: Voiced and unvoiced. Voiced sounds are

produced when the vocal folds vibrate during the vocalization of a phoneme. By

contrast, unvoiced sounds do not require the use of the vocal folds. Voiced sounds

are produced by vocal folds as described in the previous section. Secondly, the voiced

sounds are amplified and altered by the vocal tract resonators (vocal tract, mouth

cavity, and nasal passages) to produce a person’s recognizable voice. Thirdly, the

voiced sounds are modified by the vocal tract articulators (the tongue, soft palate,

and lips) to produce recognizable words. For example, as shown in Figure 2.2, each

form of resonators and articulators (vocal tract, mouth cavity, and nasal passages)

are unique corresponding with the sounds of /a/ and /i/.

Figure 2.2: Articulatory forms when human speaks /a/ and /i/ sounds: The left is when
speaking /a/, the right is when speaking /i/ [9].

2.1.3 Speech Interface Study Using Vocal Folds Vibration

As we highlighted above, speech and vocal folds vibration have a strong relationship

and can be considered as biological information containing key features of speech.

There exists a number of techniques to capture the speech features embedded

in vocal folds vibration. One of the methods is Electroglottograph (EGG), which

measures the degree of contact between the vocal folds by measuring the electrical

impedance from two electrodes plates placed on the neck at the level of the larynx

6



Chapter 2. Background

(Figure 2.3) [10] . As shown in Figure 2.4, when the electrical impedance is low, the

degree of contact between the vocal folds is small (open) while when the impedance

is high, the degree of contact is large (closed). In general, EGG is mainly used for

diagnosis of larynx disorders.

Another method is electromyography (EMG). It measures the electrical poten-

tial with wire electrodes inserted in the different muscles. [11]. This technique is

commonly used to evaluate the health condition of muscles and the nerve cells that

control them.

At the same time, it is important to note that it is difficult for these methods to

obtain the speech features that can be used for speech interface, which discriminate

speech.

Figure 2.3: EGG device placed on throat

7



Chapter 2. Background

Figure 2.4: The EGG wave of impedance measured by EGG device. The x axis represents
time, and y axis represents impedance)

2.2 Electroencephalography

2.2.1 What Is Electroencephalography

Electroencephalography (EEG) is a method to record the electrical activity of the

brain using electrodes placed on the scalp. The electrical activity is produced by

neurons communicating in the brain’s cortex as shown in Figure 2.5. When neutrons

communicate their information to each other, they generate an electrical potential

(action potential and postsynaptic potential). The electrical potential fluctuations

are measured by the EEG electrodes.

As described above, EEG signals represent patterns of brain activities. For exam-

ple, EEG signals in the frequency of 8-14 Hz (called alpha wave) are detected when

someone is relaxed; beta waves (14-30 Hz) appear when someone is actively thinking;

gamma wave (30-50Hz) appears during meditation [13].

2.2.2 Relations Between EEG and Speech

The brain controls all the body’s functions including speech [8]. In the brain, several

areas are corresponding with each function. As shown in Figure 2.6, Broca’s area,

located in the left hemisphere, is associated with speech production and articulation.

8



Chapter 2. Background

Figure 2.5: Measuring electrical activity of synapses in the cortex [12].

The speech information from the Broca’s area is transmitted to the motor cortex

located in the front lobe and the motor cortex tells the muscles of the mouth, tongue,

lips, and throat how to move to form speech [14].

2.2.3 Study of Speech and EEG

Some studies verified that EEG signals have features associated to speech. For ex-

ample, Ghane et al. [16] collected EEG signals while participants imagined English

vowels without moving the oral cavity or jaws. With the EEG signals, they examined

whether the vowels could be recognized or not, and the overall accuracy was 76.6 %.

For another study, Moses et al. [17] recorded cortical activity while the participant

attempted to say individual words from a vocabulary set. As a result, using the

cortical activity data, they classified words with 47.1 % accuracy.

9



Chapter 2. Background

Figure 2.6: Broca’s area in the brain [15].

From these studies, it was verified that EEG signals have features associated

with speech, and could contribute to a new speech interface development by further

improvements of the accuracy and the variety of words’ recognition.

2.3 Machine Learning Models

Machine learning models have been used as tools for speech analysis and classifica-

tion. In this study, we plan to utilize machine learning models to process vocal folds

vibration and EGG signals [1]. We can consider two possible classifications for time

series data. One is to utilize a machine learning model that uses features that ignore

the temporal context of the data (e.g., the average Intensity of the data), and the

other is to use machine learning that preserves the temporal context of the data. In

this chapter, we highlight Support Vector Machines (SVMs) as the representation of

the feature-based model, and describe Recurrent Neural Network, and Echo State

Network as the time-maintained model.

10



Chapter 2. Background

2.3.1 Support Vector Machine

Support Vector Machines (SVMs) [18] is one of the algorithms often used for training

a classifier which, given a training dataset with a set of features, can predict the class

for previously unseen samples. Figure 2.7 highlights how SVM works for a binary

classifier. When we have a two-class dataset, an SVM will find a hyperplane that will

divide the space of features between the two classes. This hyperplane is chosen so

that it maximizes the margin between itself and the closest data. Thus, all the points

at one side of the hyperplane will belong to one class, and all the points at the other

side will belong to the other class. This is how SVM classifies.

Figure 2.7: SVM classification of two class dataset.

Classification through a hyperplane is also possible for non-linearly separable data

through a method called the kernel trick.. The kernel trick enables SVM to deal with

non-linear separating hyperplanes since the input data are transposed to a higher-

dimensional space (called the feature space) where a separating hyperplane is found.

Figure 2.8 illustrates this principle.

Although SVM is an effective classifier in a wide array of classification tasks, it is

11



Chapter 2. Background

unable to retain the ordering in time of the sequence of inputs present at an input

data. For this purpose, Recurrent Neural Networks (RNN) is commonly used for time

series and sequential data classification.

Figure 2.8: The kernel method finds a hyperplane in a higher dimensional space (feature
space) of input data for classification.

2.3.2 Recurrent Neural Network

For time series pattern recognition, machine learning models, which can approximate

a dynamic system, are necessary. One of the models is Recurrent Neural Network

(RNN). In this section, we highlight the concept of RNN and its features.

Figure 2.9 illustrates a general recurrent neural network model consisting of the

input layer, recurrent layer, and output layer. Nu, Nx, and Ny represent the number

of nodes in the input layer, the recurrent layer, and the output layer, respectively.

Due to handling time series data, each node state changes over a discrete time n

(n = 0, 1, 2, ...). Input vector u(n), the state vector of a node in the recurrent layer

x(n), and the output vector y(n) are represented as:

u(n) = (u1(n), ..., uNu(n))
T ∈ RNu (2.1)

x(n) = (x1(n), ..., xNx(n))
T ∈ RNx (2.2)

12



Chapter 2. Background

y(n) = (y1(n), ..., yNy(n))
T ∈ RNy (2.3)

Figure 2.9: General Recurrent Neural Network Model

The weight connectivity between the input layer and recurrent layer is:

W in = (win
ij ) ∈ RNx×Nu (2.4)

The weight connectivity of the inside recurrent layer is:

W = (wij) ∈ RNx×Nx (2.5)

The weight connectivity between the recurrent layer and output layer is:

W out = (wout
ij ) ∈ RNy×Nx (2.6)

At time n+ 1, the node state vector in the recurrent layer is:

x(n+ 1) = f(W inu(n+ 1) +Wx(n)) (n = 0, 1, 2, ...) (2.7)

Here, f() represents the activation function for the artificial neuron nodes. Using

the node state vector in the recurrent layer, the output vector is:

13



Chapter 2. Background

y(n+ 1) = f(W outx(n+ 1)) (2.8)

The standard algorithms used for training the RNN model is Backpropagation

Through Time (BPTT) [19]. This algorithm updates the parameters of weight con-

nectivity sequentially based on the gradient descent method. However, this algorithm

may cause technical problems such as vanishing gradient or exploding gradient for

long length input sequences. To solve this problem, RNN models have been designed

such as LSTM [20], and GRU [21]. Since those methods are a combination of existing

methods like BPTT, they still need to perform a very large number of calculations

when applied on a model of large size. Therefore, there is a special model of RNN,

called Echo State Network (ESN), which is an approach that drastically reduces the

computational complexity for training with a different training algorithm. For our

second study, this ESN was used for speech classification.

2.3.3 Echo State Network

Echo State Network (ESN) model belongs to the class of reservoir computing models

discussed by [22]. In ESN model, an RNN model with fixed weights chosen randomly

(reservoir) is used to generate a state in which the past information of the time series

input remains echoed (echo state), and features of the input are read out (readout).

To adjust the readout, a linear learner with low computational complexity is used as

an output layer. The goal of the ESN model is to achieve both high computational

performance and fast learning.

The basic model structure of ESN is shown in Figure 2.10. This is the same struc-

ture as that of a general recurrent neural network, except that the weight connectivity

of the recurrent layer is fixed and the recurrent layer is used as a reservoir. For the

learning algorithm, the output weight matrix Wout is only adjusted. The reservoir is

a transformer of the input data, and the readout is a learner to properly read out the
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input features from the state of the reservoir.

Figure 2.10: The general Echo State Network model: The same structure as that of a
general recurrent neural network, except that the weight connectivity of the recurrent layer
is fixed and the recurrent layer is used as a reservoir.

ESN performance depends on specific hyper-parameters. The sparsity of the reser-

voir weight matrix connectivity allows for signals to more easily propagate and ter-

minate inside the reservoir. The sparsity is determined by setting the percentage of

connectivity. The spectral radius of the reservoir is used to determine how much the

previous time series information should be retained, and satisfy with the property of

the reservoir, called Echo State Property (ESP) which is a condition of asymptotic

state convergence of the reservoir network under the impact of controlling inputs [23].

The spectral radius ρ(W ) represents the maximum absolute value of the eigenvalues

of W, as in the following Equation.

ρ(W ) = max
i

(|λi|) (2.9)

The leaky rate α defines the speed of reservoir updating dynamics, described by

Wu et al. [24]. With the leaky rate, the output of the reservoir state vector is written

as:
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y(n+ 1) = (1− α)x(n) + αf(W outx(n+ 1)) (2.10)

Where α ∈ (0, 1] is leaky rate.
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Chapter 3

Japanese Vowel Discrimination From Vocal Folds Vibration

3.1 Introduction

Chapter 1 described the the need to find new biological information for speech in-

terface developments, and Section 2.1 highlighted that the vocal folds vibration and

speech have a relationship so that the vocal folds vibration can be a useful biological

information because it includes speech features. However, we also noted that the

existing methods for the measurement of the vocal folds vibration (EGG, MEG, and

so on) cannot be used enough for the development of speech interfaces because they

cannot measure features that can discriminate speech.

Therefore, in this part of study, we focused on using an acceleration sensor to

measure the vibration of the vocal folds. By attaching the acceleration sensor to

the throat, data can be measured without the need for invasive medical procedures.

In addition, we verified whether the acceleration data can be used to discriminate

specific speech sounds with the application of a Support Vector Machine model. This

chapter presents this research in the following order: The measurements, the feature

extraction, the classification method, and the result.
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3.2 Measurements

3.2.1 Overview

To measure the vocal folds vibration data with an acceleration sensor, the sensor

was attached to the throat at the level of Adam’s apple. The acceleration data were

recorded while the subject was vocalizing specific sounds (Japanese vowels in this

study). The following sections explain the devices we used, data collection procedure,

and the measured data.

3.2.2 Devices for Experiment

To measure the acceleration data, we used the TSND121 sensor (Figure 3.1), which is

manufactured by the ATRAdvanced Telecommunications Research Institute Interna-

tional. This device consists of a small wireless multi-functional sensor, including an

acceleration measurement. We can select the sampling frequency and the acceleration

range. The acceleration sensor obtains the three dimensional acceleration data (x,

y, z) but we only used the z-axis data. For sampling the vibration data clearly, the

higher sampling rate should be set. Therefore, the sampling frequency was set 1000

to Hz (maximum). For the acceleration range, because the vibration of the vocal

folds is quite small, the range was set ±2G (minimum).

Figure 3.2 illustrates the flow diagram for the data measurement. For collecting

the acceleration data from the sensor, we used the dedicated software, ALTIMA. As

shown in Figure 3.3, the collected data sent to ALTIMA is displayed in the software

and saved to an excel file.
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Figure 3.1: The small wireless multi-functional sensor (TSND121), which can measure
the acceleration data and transmit it through a Bluetooth wireless link.

Figure 3.2: Flow diagram of the data measurement. The acceleration data, measured by
the sensor, is converted into digital signal and is sent to ALTIMA via a Bluetooth wireless
link. The voice data, measured by the microphone, is converted into digital signal and is
sent to ALTIMA via a wired audio interface. The software, ALTIMA, saves both data to
an MS Excel file.

Figure 3.3: The software ALTIMA: The collected data are sent to this software and is
displayed as shown on the right side. On the left side, the video is displayed although we
did not use it in this study.
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On account of the fact that we measure the acceleration data when the subject vo-

calizes, the voice data ought to be collected to detect the speech onset. For recording

the voice data, we used SONY Dynamic Microphone F-720 at a sampling frequency

of 44.1 kHz. This recorded voice data were converted into digital signal and was sent

to ALTIMA.

3.2.3 Data Collection Procedure

To measure the acceleration data from the vocal folds vibration, the sensor was at-

tached to the throat at the level of Adam’s apple where the larynx is located as shown

in Figure 3.4.

Figure 3.4: The acceleration sensor was attached to the throat at the level of Adam’s
apple where the larynx is located. We only used the z-axis acceleration data for measuring
the vibration in this study.

The phonemes that the subject was asked to vocalized were Japanese vowels (/a/,

/i/, /u/, /e/, and /o/). The reason why we used only (Japanese) vowels in this

study is that there have not been any studies verifying the possibility of even vowel

discrimination. In addition to this, since the vowels are the fundamental speech

sounds, we decided to examine the vowel discrimination with the acceleration data

of the vocal folds vibration.

20



Chapter 3. Japanese Vowel Discrimination From Vocal Folds Vibration

The procedure of the measurement is shown in Figure 3.5. With the acceleration

sensor attached to the throat, the subject was asked to vocalize each vowel in order.

To ensure that the pitch of each vowel sound is the same, the subject listened to a

tone (100 Hz tone) every time before the subject vocalizes. This process was repeated

10 times. For this experiment, a 22-year-old man participated in this study.

Figure 3.5: The procedure of the acceleration measurement. The participant was asked to
vocalize each vowel sound in order. To ensure that the pitch of each vowel is the same, the
subject listened to the 100 Hz tone every time before the subject vocalizes. This process
was repeated 10 times.

3.2.4 Collected Data

Figure 3.6 shows the collected acceleration data when the participant vocalized each

vowel once. The x-axis represents the time, and the y-axis represents the acceleration

data. Because the five vowels were vocalized once in one block, we can see five large

amplitude signals in the plot. From the left side, the phonemes follow /a/, /i/, /u/,

/e/, and /o/.

To verify whether each signal has its unique wave form, we zoomed in on the part

of the vocal folds vibration with the largest amplitude during each vowel vocalization

to a range of 10 ms since one cycle is 10 ms. As seen in Figure 3.7 - 3.11, we could

see the vibration form of the vocal folds in one cycle by taking a closer look at an

interval of 10 ms though the sampling rate might not be sufficient rate to clearly

observe useful details. It can be seen that the degree of kurtosis and concavity differs

slightly for each vowel. However, we cannot still see significant differences among the

21



Chapter 3. Japanese Vowel Discrimination From Vocal Folds Vibration

Figure 3.6: The plot of the acceleration data, collected when the participant vocalized
each vowel once. The x-axis represents the time and the y-axis represents the acceleration
data. From the left side, the order is /a/, /i/, /u/, /e/, and /o/.

signals, so that it may be challenging to discriminate each speech from the raw data.

Therefore, we applied a feature extraction step before feeding the data to the machine

learning model for speech classification.
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Figure 3.7: Acceleration data within 10 ms
when the subject vocalized Japanese vowel
/a/.

Figure 3.8: Acceleration data within 10 ms
when the subject vocalized Japanese vowel
/i/.

Figure 3.9: Acceleration data within 10 ms
when the subject vocalized Japanese vowel
/u/.

Figure 3.10: Acceleration data within 10
ms when the subject vocalized Japanese
vowel /e/.

Figure 3.11: Acceleration data within 10 ms when the subject vocalized Japanese vowel
/o/.
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3.3 Feature Extraction

3.3.1 Overview

A common procedure for classification implementations follows data capture, feature

extraction, and classification as shown in Figure 3.12. In the previous section, we de-

scribed the data capture with the accelerometer. For the next, the feature extraction

method we carried out is addressed in this section, and the classification method is

explained afterwards.

Figure 3.12: Flow for classification implementation

As described in Section 2.3.1, SVM needs a set of features to find an appropriate

hyperplane that can discriminate classes. A common approach to extract features

with time series data is to convert it to the frequency domain [1, 25, 26]. There exists

lots of methods for the conversion [27, 28, 29, 30]. In this study, we used one of the

methods called Yule-Walker method. This method generates the frequency features

from time series signals and also was used for biological signal analysis in [31, 32].

Thus, we applied this technique to the acceleration data we collected.

In this section, we highlight the techniques we used for feature extraction, and

how to apply it. At the end, we examine which features we decided to utilize for

classification.
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3.3.2 Signal Processing

There exists many techniques that estimate information in the frequency domain of

a signal from the time series data, such as zero-crossing method mentioned in [27],

auto-correlation method [28], and Cepstrum method [29, 30]. In this study, the Yule-

Walker method was used to estimate the power spectral density (PSD) in view of the

fact this method can deal with both stationary, and non-stationary [33], and is used

for time series feature extraction. Kallas et al. [31] examined the prediction of signal

changes in electrocardiograms (ECG) and used the Yule-Walker method to estimate

the feature values. More details of the Yule-Walker method are discussed in [32].

The Yule-Walker method assumes an auto-regressive model. Therefore, using

Yule-Walker method, we have to set the order of the AR (auto-regressive) model

used to generate the PSD estimate as well as the input data and the number of

samples to use in the Discrete Fourier Transform (DFT).

Before performing PSD estimation, we preprocessed the acquired data. First, 0.3-

second (300 samples) intervals of the acceleration data during each vowel vocalization

were cut from the measured data. The Hamming window was applied to each of the

cut signals for the same number of samples. After the preprocessing, we performed

the spectral analysis on the data to estimate its frequency components. To implement

the Yule-Walker method, we used the function given in MATLAB:

[pxx,f] = pyulear(x,order,nfft, Fs)

This function requires the input signal, x, the arguments of the order of the AR

(auto-regressive) model used to generate the PSD estimate, order, the number of

samples to use in the Discrete Fourier Transform, nfft, and the sampling rate, Fs.

We set the order as 10, and the number of samples as 2048. This procedure has been

applied for all the acceleration data.
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3.3.3 Extracted Data

As a result of the signal processing procedure just explained, we got the PSD output

pxx with 1025 samples. Figure 3.13 shows the plot of the output (vowel /a/).

To choose from the frequency-domain information a useful feature for our intended

classification purpose, we selected the frequency values of the first two peaks appearing

on the plot (first and second harmonics with largest power content). These frequency

values were extracted from all data.

Figure 3.13: Power spectral density, obtained from the acceleration data of the vowel /a/.
The x-axis represents the frequency and the y-axis represents the power spectral density.
The first two peaks are chosen as the feature values (at about 115 Hz, and 220 Hz for this
plot).
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3.4 Classification Using Machine Learning

3.4.1 Overview

Thus far, the acceleration data were collected by the sensor placed on the throat and

an spectral analysis was applied to extract the feature values. The feature values

are the first and second harmonics with larger power content. In this section, using

the feature values, we verified whether the feature values are useful in providing

information to classify speech sounds using an SVM model.

3.4.2 Methodology

The purpose of this study was to verify if the acceleration data can discriminate each

vowel, nevertheless there have not been any studies of vowel discrimination by vocal

folds vibration. Therefore, we arranged the pattern of discrimination for the two-class

classification between the vowel /a/ and the other vowels (i.e. /a/ vs. /i/, /a/ vs.

/u/, /a/ vs. /e/, /a/ vs. /o/) to start with as simple classification as possible. The

total number of samples we collected was 50 samples (10 samples per vowel).

Figures 3.14 – 3.17 show the plots of each feature values’ pair to examine whether

the feature values are appropriate for classifying classes visually. The x-axis (F1)

and y-axis (F2) represent the first and second larger-power harmonic waves (feature

values), respectively.
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Figure 3.14: Feature map with 2 class
dataset: /a/ and /i/. The blue dots repre-
sent the feature of /a/, and the orange dots
represent the feature of /i/.

Figure 3.15: Feature map with 2 class
dataset: /a/ and /u/. The blue dots repre-
sent the feature of /a/, and the orange dots
represent the feature of /u/.

Figure 3.16: Feature map with 2 class
dataset: /a/ and /e/. The blue dots repre-
sent the feature of /a/, and the orange dots
represent the feature of /e/.

Figure 3.17: Feature map with 2 class
dataset: /a/ and /o/. The blue dots repre-
sent the feature of /a/, and the orange dots
represent the feature of /o/.

Using the classifier, SVM, the discrimination accuracy was tested for each two-

class dataset. We implemented SVM by using the Classification Learner app in MAT-

LAB. We trained the SVM model using cross-validation and labeled dataset. Labels

were assigned in the dataset in the following way: 1:/a/, 2:/i/, 3:/u/, 4:/e/, 5:/o/.

Figure 3.18 shows the table that contains feature values and corresponding labels. For

cross validation, because we did not have many sample data, we set it with 5 folds;

The given dataset is split into five partitions of ten samples each, where each fold is

used as a testing set at some point. Moreover, as shown in Figures 3.14 – 3.17, dots
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of each class are mostly grouped together; Therefore, we used a linear SVM for the

classification.

Figure 3.18: Classification Learner app setting: The first and second columns show the
feature values, the first and second larger-power harmonic components, respectively. The
third column represents the labels assigned to each sample in the dataset. Each class in the
dataset, a vowel, was designated with a number 1 to 5 as follows: 1:/a/, 2:/i/, 3:/u/, 4:/e/,
5:/o/.

3.5 Result

Here, we implemented classifications between /a/ and other vowels (/i/, /u/, /e/,

/o/); We have not examined patterns such /i/ vs. /o/ or /u/ vs. /e/. For each

two-class classification, the discrimination accuracy calculated by the classifier (SVM)

is shown in Table 3.1. As a result, the average discrimination accuracy was recorded

as 71 %.

The accuracy of /a/ vs. /i/, /a/ vs. /u/, and /a/ vs. /o/ were fairly high,

while that of /a/ vs. /e/ was low. There are two possible reasons of the low classi-
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Table 3.1: Accuracy of Japanese vowel discrimination

Pattern Accuracy [%]
/a/ vs. /i/ 75
/a/ vs. /u/ 85
/a/ vs. /e/ 55
/a/ vs. /o/ 70

fication accuracy between /a/ and. /e/.

First, the similarity of the frequencies associated with both input features might

cause the low accuracy. Rue et al. [34] investigated the frequency differences of

vowels and Figure 3.19 shows the frequency distribution. As we can see in the figure,

the position of vowels /a/ and /e/ are close compared to others; their frequencies

are similar. In addition to this, observing the feature map between /a/ and /e/

(Figure 3.16), we can tell most of feature dots of both classes are overlapped and

not separated well as others were. Hence, although we used the frequency data as

the feature values in this study, the frequency data may not be the best choice for

the classification of this pair. To improving the accuracy, we need to find other

feature values besides frequency that can can help to better discriminate /a/ and

/e/. For example, another feature extraction method we can apply is Mel Frequency

Cepstrum Coefficients (MFCC). MFCC is a method that was used to extract voice

features values which have been widely used in the field of speech analysis, for speech

recognition [35, 36, 37]. To apply the MFCC method, it requires Mel-cepstrum which

is also one of the most preferred speech recognition features. The basic idea of the Mel-

cepstrum reflects the human auditory perception mechanism for speech recognition.
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Figure 3.19: Frequency distribution of vowels. The y-axis (F1) represents the first formant
frequency, and the x-axis (F2) represents the second formant frequency. The part circled
in red is the Japanese vowel /a/, the part circled in yellow is the Japanese vowel /e/. The
position of these two is close compared to others. [34]

Secondly, the number of samples we used for the classification might not be large

enough. Since we only had 50 samples in total, we chose to use the machine learning

model, SVM, that requires a few samples to train itself. But as shown in Figure 3.16

(the feature map between /a/ and /e/), the two classes are not sufficiently separated.

Therefore, with more samples the SVM may be able to find an appropriate hyperplane

that can separate the two classes better.

3.6 Conclusion

In this part of the thesis, the vocal folds vibration data of Japanese vowels were

measured from the throat using an acceleration sensor, and the first and second

harmonics with larger power content were extracted and used for the classification.

As a result, we saw that following this procedure we were able to discriminate vowels

using a biological signal (the vibration of the vocal folds).
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In addition, as described in Section 2.1.3 , there is the method for the vocal folds

vibration analysis called EGG to measure the degree of contact between the vocal

folds by measuring the electrical impedance. In [38] and [39], it was described that

it is possible to identify only whether the person speaks modal voice or falsetto voice

by seeing the difference of the wave forms recorded by EGG. However, no further

identification of speech has been done using EGG or any other method of measuring

vocal fold vibration data. Through our study, the result shows the possibility that

the vocal fold vibration data measured by the acceleration sensor provides feature

data to discriminate speech. Though we only classified simple patterns such as /a/

and other vowels, we aim to address more variety of classification patterns as a future

work.

The main purpose of this study is to find a new biological signal to develop new

speech interfaces. As a result, we identified a new biological signals, the vibration data

of the vocal folds measured by the acceleration sensor, that could classify Japanese

vowels. Nevertheless, as most words are composed of a combination of vowels and

consonants, it is necessary to discriminate consonants as well as vowels. However, it

can be difficult to recognize consonants only by the vocal folds vibration data since

the vocal folds vibration generates the fundamental frequency (vowels). Therefore,

we focused on using Electroencephalography (EEG) because it is associated with the

speech production process and has the potential to recognize consonants. This part

of the study is further elaborated in the following chapter.
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Unvoiced Consonant Prediction from Pre-Speech EEG Data

4.1 Introduction

Our research goal was to find new biological signals that can be used for speech inter-

face development. In the previous chapter, we focused on the vocal folds vibration,

and verified the discrimination accuracy of Japanese vowels using the vibration signals

from the vocal folds measured by the acceleration sensor. As a result, the accuracy

of discriminating /a/ versus the rest of four vowels was 71 % on average. Thus, we

found the possibility that the vocal folds vibration data can be used as a new bio-

logical signal for the development of speech interface. However, because most words

are composed of vowels and consonants, it is necessary to discriminate consonants as

well as vowels.

Therefore, for the next study we focused on the electroencephalogram (EEG)

data as biological signals to recognize the consonants. This is because it is known

that EEG signals, because of being originated in the brain during the process of

speaking, contain the speech features as described in Section 2.2.2. Also, there have

already been some studies that attempted to recognize what a human test subject

wanted to say using EEG data [16, 17]. However, most studies have not presented

high accuracy yet, and none of these studies carried out specifically the classification

of consonants. For the study in this chapter, we measured EEG data while the
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participants were vocalizing the words, and extracted the pre-speech EEG data (EEG

data right before the vocalization). Using the pre-speech EEG data, which can be

considered to have less noise, the classification of consonants has been conducted. To

perform the classification of the EEG signals into certain target consonants, an Echo

State Network (ESN) model, which is a subset of recurrent neural networks (RNN)

and can deal with time series data well was utilized.

This chapter is organized in the following way: Firstly, the devices and software

used for data measurement and the content of the experiment are introduced. Sec-

ondly, a preprocessing method to the measured data is explained, followed by the

explanation for ESN model and the setting of the parameters. Thirdly, the result and

discussion about the consonant classification are examined. Lastly, the conclusion is

highlighted.

4.2 Measurement

4.2.1 Overview

In this study, the measured data was (pre-speech) EEG data. The participants were

asked to wear a EEG head cap and vocalized words. While they were vocalizing, we

measured their EEG data. In addition to EEG data, we recorded the voice data and

trigger signals to calculate the speech onset (the timing when they have vocalized).

4.2.2 Devices and Software for Experiment

For EEG data measurement, an EPOC X EEG cap from Emotiv Inc. was used. The

headset is shown in Figure 4.1. The sensor positions of EPOC X EEG cap are shown

in the Figure 4.2. The brain activity at the Broca’s area, which is known to process

languages in the brain, can be measured through the combined 14 channels from

the EPOC X EEG scalp. The EPOC X EEG cap measures measures with sampling
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frequency of 256 Hz, a configurable bandwidth between 0.16 to 43 Hz, and digital

notch filters at 50Hz and 60Hz.

Figure 4.1: EEG cap (EPOC X) with 14 channels. The sensor felts are hydrated with
a saline solution, and then are inserted into each channel for improving the conductivity,
reducing the skin-electrode impedance.

Figure 4.2: This image shows the sensor locations for EPOC X using the international
10-20 system. The green points are the electrode locations, and the orange points are the
references.

The data collection process makes use of a dedicated software, EMOTIV PRO

that receives the EEG data measured by the EPOC X EEG cap and displays the real
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time EEG data stream on the screen as shown in Figure 4.3.

As part of the data collection process, we also recorded the voice data and trigger

signals for detecting the speech onset. To record the voice data, an USB microphone

was used. For the trigger signals, we built a program to send trigger signals when

a word is displayed on a screen. The presentation of prompts for the words to be

spoken on the screen was created by PsychoPy 3 [40].

Figure 4.3: EEG data sent from the EEG cap is displayed on the screen. The window
shows all 14 channels EEG activities as a time series.

To collect all data (EEG data, voice data, and trigger signals) together, we used

a software called LabRecorder [41], that enables multiple signals to be recorded at

the same time through the Lab Streaming Layer (LSL) protocol. For the setup, we

set all data to be sent with LSL. For EEG data, we used the LSL Outlet mode in

EMOTIV PRO to configure EMOTIV data streams that can communicate with the

LabRecorder software. For the voice data, we used a software called AudioCapture

[42] that enables the voice data to be sent through the LSL protocol. The sample

rate was set to 44100 Hz. For the trigger signals, we used functions built in PsychoPy

that we adapted to our own needs (PsychoPy program is in https://github.com/

sg1021/Thesis). Figure 4.4 shows the LabRecorder’s window where we can select
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signals we want to record together.

Figure 4.4: Setup window of Lab Recorder to select the data that we want to record
together. Here we selected (checked) EEG data from EPOC X, audio data, and trigger
data in order as we can see on the left side of the window.

4.2.3 Experiment

The experiment was carried out with 7 adult participants with no speech impairments,

in the laboratory at Kanazawa Institute of Technology.

Wearing the EEG cap, each one of the participants were seated at approximately

40 cm from a 13-inch display monitor, and the microphone was located at 20 cm

apart from the participant’s mouth as shown in Figure 4.5.

37



Chapter 4. Unvoiced Consonant Prediction from Pre-Speech EEG Data

Figure 4.5: Seen in the figure how the participant wears the EEG cap. The microphone is
set in front of the participant and a word to be spoken appears on the screen of the laptop.

Table 4.1 shows the word list that the participants were asked to vocalize during

the EEG data measurement. This list contains 25 different words, and each word

has only one syllable and are 3-5 letters long. For the purpose of this study, five

different kinds of words, starting with a specific unvoiced consonant (F,B,P,M,S),

were selected.

Table 4.1: Word prompts for the experiment

Phoneme Category Word Prompt

F Face, Fox, Fly, Faith, Free
B Box, Bike, Body, Boom, Born
P Pan, Pink, Push, Pool, Peace
M Milk, Mix, Mind, Mood, Max
S Sing, Soul, Sea, Six, Sweet

The participants wore the EEG cap and spoke words displayed on the screen

following the instruction. As shown in Figure 4.6, each trial starts with a target

fixation cross placed in the middle of the screen that is presented for 2 s. A word

then appears for 2 s. A speech cue follows in the form of “((( > ”, and “< )))” for

3 s. Participants are to speak the displayed word following the speech cue. The cue
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is followed by the fixation cross of the next trial. This experiment ran in 250 trials

per block, for two blocks. This is because the one block takes around 25 minutes and

to allow the participants to have a rest. The trigger signals were sent every time the

speech cue appeared on the screen.

Figure 4.6: Experimental procedure: Each trial starts with a target fixation cross in the
middle of the screen that is presented for 2 s. The word then appears for 2 s. A speech
cue follows in the form of “((( > ”, and “< )))” for 3 s. Participants are to speak the
displayed word following the speech cue. The cue is followed by the fixation cross of the
next trial. The experiment ran in 250 trials per block, for two blocks. The trigger signals
corresponding with words were sent every time the speech cue appeared on the screen.

Before each recording session, the EEG measurement quality was calibrated by

asking participants to look up, down, left and right to check whether each corre-

sponding EEG signal was captured by the real time stream of EMOTIV PRO. Also,

to record correctly, the participants practiced pronouncing each word with an English

native speaker before the recording.

4.3 Preprocessing

The raw EEG data are preprocessed to enhance its quality so that features are more

prominent. In this study, as we focused on the pre-speech EEG data, the EEG data

were segmented into pre-defined time ranges and its amplitude was transformed into

different amplitude ranges.

For the segmentation of EEG data, we used MATLAB and the EEGLAB toolbox
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[43]. Before the segmentation, each speech onset of vocalization was calculated and

found by using the voice data and trigger signals (the code for speech onset detection

is in https://github.com/sg1021/Thesis). In addition, since LabRecorder causes

a difference in the measurement starting time of each data, we implemented the seg-

mentation by taking into account the time error (details are in https://github.com/

sg1021/Thesis). Using the function built in EEGLAB, EEG data of each vocaliza-

tion was segmented (epoched) into the range from -1000 ms to 0 ms with respect

to the onset of speech. After the data were segmented, a technique called baseline

correction was applied to remove the offset. The baseline interval was selected from

-500ms to 0ms which is the first onset of speech. The features appearing in EEG data

vary from person to person [44]. Therefore, the appropriate measurement location

and analysis method should be chosen considering this fact. For this study, the am-

plitude of the EEG data was scaled into the range from -1 to 1 through the min-max

scaling method. After this scaling process, we applied an IIR high pass filter with

order 8 using the highpass MATLAB function, and cutoff frequency of 2 Hz to the

EEG data. This is because high frequency EEG data have been observed for speech

analysis [17, 45] rather than the low frequency EEG data; low frequency EEG data

are ignored (removed) for EEG data analysis [16].

4.4 Classification using machine learning

4.4.1 Overview

In this part of study, we focused on verifying that the pre-speech EEG data can be

used to recognize the consonants using a machine learning model called Echo State

Network (ESN). We first highlight the data structure and how the hyper-parameters

of ESN were adjusted based on the algorithms. Next, the evaluation method for the

time series data classification is explained.

40

https://github.com/sg1021/Thesis
https://github.com/sg1021/Thesis
https://github.com/sg1021/Thesis


Chapter 4. Unvoiced Consonant Prediction from Pre-Speech EEG Data

4.4.2 Data Structure

In total, we collected 3500 samples of pre-speech EEG data. Figure 4.7 shows how the

data were arranged after preprocessing. The length of each EEG data is 1 second;

Each EEG data contain 256 samples because of the sampling rate (256 Hz). The

EPOC X EEG cap samples over 14 channels, so that the y-axis of each EEG data

shows 14 different EEG signals. As our focus is to classify between the classes (F,

B, S, P, M), there were five classes for classification, each class has 700 sets. For

this classification, we randomly assigned 90 % of samples as the training sample, and

10 % as the test sample. With the data arrangement, we examined the consonant

classification.

Figure 4.7: The illustration of the data structure after preprocessing: The data length
of each EEG data is 256 samples (x-axis), and that of channels is 14 (y-axis). Each class
of consonants has 700 samples. From the complete dataset, one EEG data were randomly
picked and was processed through ESN model. This process was repeated to train the ESN
model.

4.4.3 Echo State Network Model

To classify the five consonants F,B,P,M,S, we decided to use Echo State Network

(ESN) model. As described in Section 2.3, the ESN model is a type of reservoir

computing that uses RNN and is suitable for time series data analysis, such as EEG
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data. Moreover, the ESN model dramatically reduces the computational complexity

by training only the weights of the output layer. Therefore, we used a normal equa-

tions method to train the weights of the output layer. The normal equations method

calculates the weights through the expression,

w = (MTM)−1MTy (4.1)

where M is the training data matrix, y is the target data vector, and w is the weight

vector. However, in order to achieve high computational performance with such a

method, the reservoir layer needs to be set appropriately. One of the most important

settings is the hyperparameter setting.

4.4.4 Hyperparameter Adjustment

Many hyperparameter settings are required for ESN. Table 4.2 shows a list of hyper-

parameters we set in this part of study. We now describe the values we set for each

hyperparameter, and the reason of the values. First, the number of nodes Nx, which

represents the size of the reservoir, affects the number of training parameters because

it is related to the size of the output weight matrix from the reservoir to the output

layer, as in Equation 2.6. The larger Nx is, the more expressive the model becomes,

but if Nx is too large, the computational complexity of training increases, which may

lead to overfitting. Also, if Nx is too large compared to the length of the time series

data T used for training, the calculations in the output layer may have negative af-

fects [46]. Therefore, it is necessary to set Nx to as large a value as possible within

the range where the computational cost of learning does not become a problem and

where it is not too large compared to the length of the time series data T . Taking

these factors into consideration, we set Nx = 100 in this study. In addition, as for the

activation function, tanh is generally used to satisfy the ESN model requirements, so

tanh was also set as the activation function in this study.
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Secondly, the network structure can be set arbitrarily, but sparse and random

networks are often used to eliminate arbitrariness [47]. It also prevents the uniformity

of node states that tends to occur in dense networks, and allows each node to obtain

a variety of responses to inputs data. However, if it is too sparse, the network may

become unconnected. In this study, we set 90 %, which is relatively large value for

the connectivity density. The reason is that the resulting network with more dense

connections recorded better accuracy than the sparse network for the EEG data.

Also, to determine the recurrent connectivity weight matrix in reservoir W , it is often

generated randomly from some probability distribution to eliminate arbitrariness, and

uniform, normal, and binary distributions are mainly used. In this study, the uniform

distribution of [-1 1] was used.

Table 4.2: The list of hyperparameters we set for our study

Parameter Meaning Value

Nu Number of input layer nodes 14
Nx Number of reservoir layer nodes 100
Ny Number of output layer nodes 5
W Recurrent connectivity weight matrix in the reservoir [-1 +1]
d Density of connections in the reservoir 0.9

W in Input connectivity weight matrix [-1 +1]
α Leaky rate 0.009
ρ Spectral radius of ρ 0.9

Next, we describe three hyperparameters that have a significant impact on ESN,

and we have tuned these hyperparameters based on the ESN algorithm. To explain

these hyperparameters, the node state vector in the recurrent layer described in Sec-

tion 2.3 is noted again in Equation 4.2. We used a general model of ESN without the

output feedback since the output feedback potentially cause a negative affect to the

reservoir state vectors [47].
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x(n+ 1) = f(W inu(n+ 1) +Wx(n)) (n = 0, 1, 2, ...) (4.2)

The first parameter we looked into was the input weightW in. For the input weight,

random numbers following an uniform distribution between -1 and +1 are used. W in

is one of the main parameters that affect the computational performance of ESN.

The impact of W in is determined by the combination of the activation function of

each node in the reservoir. In this part of our study, the activation function was

the tanh function. As shown in Figure 4.8, when the W in interval is small ( 1○),

the transformation is likely to be performed in the almost linear part around the

origin, while when it is large ( 2○), the transformation is likely to be performed in the

part with strong non-linearity. In general, the optimal range of W in is determined

empirically.

Figure 4.8: Tanh graph: The range of the tanh function is from -1 to 1. X axis represents
the input of the activation function. 1○ When the W in interval is small, the transformation
is likely to be performed in the almost linear part around the origin. 2○ When it is large,
the transformation is likely to be performed in the part with strong non-linearity.
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After nodes of the reservoir computed all input data with the activation function,

all these outputs were stored in array. By plotting a portion of these stored outputs,

we could check whether each section of speech has a characteristic patterns. With this

method, we searched for appropriate values of hyperparameters. Figure 4.9 shows the

output plot when the input weight’s interval was set in the range [-0.01 0.01]. Tanaka

et al. [46] demonstrated the speech recognition using ESN model, and the recognition

accuracy was fairly high with an interval of the input weight as the same range as

that of the recurrent weight. Therefore, we also set the interval in the range [-1 1] in

the same range as the recurrent weight. Figure 4.10 shows the output plot when the

input weight’s interval is the range between [-1 1].

Figure 4.9: Part of the combined output of the EEG computed by the activation function
of reservoir nodes with the input weight’s interval was between [-0.01 0.01]. The x-axis
shows the sample number, and the y-axis shows the output of the activation function. The
vertical dashed lines indicates the duration when a single word was vocalized.
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Figure 4.10: Part of the combined output of the EEG computed by the activation function
of reservoir nodes with the input weight’s interval was between [-1 1]. The x-axis shows the
sample number, and the y-axis shows the output of the activation function. The vertical
dashed lines indicates the duration when a single word was vocalized.

From the observation of these plots, we found that the output of Figure 4.9 ex-

presses no difference between the sections. On the other hand, the output of Figure

4.10 shows the characteristics of the waveform in each section. Furthermore, we

learned that when the interval range was set to more than [-1 1], the waveform be-

comes too expressive and no difference could be seen in each section as shown in

Figure 4.11.
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Figure 4.11: Part of the combined output of the EEG computed by the activation function
of reservoir nodes with the input weight’s interval was between [-100 100]. The x-axis shows
the sample number, and the y-axis shows the output of the activation function. The vertical
dashed lines indicates the duration when a single word was vocalized.

The second hyperparameter was the spectral radious of the recurrent weight ma-

trixW . As described in Section 2.3.3, this parameter satisfies the Echo State Property

(ESP). In addition, as we can see from Equation 4.2, the larger W gets, the more

information each node retains from the previous state. Because we wanted nodes to

keep the past state information of EEG data, the parameter was set to 0.9. However,

though we tried changing W to several different values, we could not see significant

changes from the outcome of classification and the output plot.

The third parameter was the leaky rate. As noted in Section 2.3.3, the leaky rate

α defines the speed of reservoir updating. This is why the smaller α is, the slower the

reservoir updating speed gets. By looking into the output plots, the parameter was

set to 0.009, which consistently produced high discrimination accuracy. Regarding

this hyperparameter adjustment, we found that within a small range of values, small

changes in α have a large effect on the results. For example, if we set α < 0.001, the

predictions become scattered, as we can be seen in the confusion matrix of Figure
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4.12. When we set α > 0.1, there was a tendency for the predictions to be heavily

concentrated on class 1 (F), as shown in Figure 4.13. This could be due to the fact

that EEG data do not need to update the reservoirs as fast as it should, since the

frequencies it handles are lower than those of voice data.

Figure 4.12: Confusion matrix when α < 0.001: The x-axis is the prediction class, and
the y-axis is the true classes. From 1 to 5, the numbers represent the following consonants:
F, B, P, M, S.
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Figure 4.13: Confusion matrix when α > 0.1: The x-axis is the prediction class, and the
y-axis us the true classes. From 1 to 5, the numbers represent the following consonants: F,
B, P, M, S. There was a tendency for the predictions to be heavily concentrated on class 1
(F).

4.5 Evaluation method

In a time series classification task, one class label is assigned to a part or the whole of

the time series input data. In our case, one class label was given to each entire time

series data. Therefore, in order to evaluate the classification performance, we need to

convert the output of the trained model to a single class label.

For example, one class label c ∈ 1, . . . , Nc is given to the time series input data

u(n) (n = 1, .., T ) in a certain time range, where Nc represents the number of classes.

To evaluate classification accuracy, the trained model’s output y(n) (n = 1, .., T )

should be converted to one class label. As the target output was applied with one-

hot encoding, only the output of the c-th node yc(n) is expected to be close to 1 after

training, while the other nodes are expected to be close to 0. Then, the class label
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assigned to a sample u(n) is the index to the output node with the largest output

value.

k̂(n) = argmax
k∈1,...,Ny

ŷk(n) (4.3)

Next, the most frequent value k̂(n) for n = 1, .., T is:

k̂(n) = MODE(k̂(1), ..., k̂(T )) (4.4)

This is considered as the class label, classified by the trained model. If this element

matches the correct class label k̂ = c, then the classification within the time range

is successful. This procedure was performed to each time range in which the correct

class label was assigned. After this process was applied, we evaluated the classification

using the confusion matrix.

4.6 Result

To verify whether the pre-speech EEG data can discriminate the consonants, we mea-

sured the pre-speech EEG data and verified the classification using ESN model. We

assessed classification performance by measuring the accuracy, which is the percent-

age of samples correctly classified by the model out of the total samples, as shown in

Equation 4.5, where the correct label is i, the class label of the model is j, and such

a sample is denoted as sij. The measured accuracy of consonant classification using

pre-speech EEG data by ESN was 28.3% (compared to 20 % for random classifica-

tion).

Accuracy =

∑Nc

i=1 sii∑Nc

i=1

∑Nc

j=1 sij
(4.5)

Also, we measured the precision, calculated as shown in Equation 4.6, which
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represents the percentage of samples that are correctly classified among the samples

whose model classification label is j. Table 4.3 shows the measured precision rate

for each of the classifications. The results show that B, P, and F were classified

with relatively high precision among the classified consonants, while the classification

precision for S was small.

PRE =
sjj∑Nc

i=1 sij
(j = 0, 1, ..., Nc) (4.6)

Table 4.3: Precision rate of each consonant classification

Consonant Precision [%]
F 29.1
B 33.8
P 29.5
M 24.1
S 22.0

With regards to the above results, we note that one study found a similar, but

not identical, tendency: Moses et al. [17] measured the brain activity of an anarthria

participant while the participant was vocalizing to classify the specific words. Some of

the words began with the five consonants that we used in our study. When we looked

at their classification results for words starting with any of those five consonants, we

found that, as in our study, the classification accuracy for words starting with F and

B was relatively high, and the classification accuracy for word starting with S was the

lowest. This could suggest that features of speech starting with B or F (consonants)

are more likely to show up in the brain activity, while features of speech beginning

with S (consonants) are less likely to be reflected in the brain activity.

Another possible explanation for our results of the consonant classification may

be the differences in the movement of the articulators that form each speech sound.
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There are two categories of consonants: Plosive and fricative. A plosive is a sound

produced by completely blocking the path of the breath and then suddenly opening

it as if to burst. In this part of study, P and B are examples of this. A fricative

sound is made by narrowing the path of the breath and pushing the sound out of it.

This is the case with F and S in this part of study. This means that when (right

before) a plosive consonant is vocalized, the articulators become tense by blocking

the path of the breath. Such movements of the articulators might be included in

the EEG data as EMG activity, which appeared as a feature in the classification and

affected the accuracy between B and P. Conversely, since the frictional sound F is

vocalized with a breath path, there is no significant change in the movement of the

articulatory organs, and as a result of it not being included in the EEG data as EMG

signals, it has features of less significance than the plosive consonants, which may

have reduced the classification accuracy. However, there are some contradictions in

this consideration. This is because F, another friction sound, has a relatively high

classification accuracy, and P, a plosive sound, recorded a relatively low classification

accuracy in the study by Moses et al. Therefore, it may be difficult to conclude

that in general the differences of the articulator movements affects the classification

accuracy.

4.7 Discussion

Regarding the results of the consonant classification using ESN, there are several

possible reasons and suggestions for improvement. The first possible reason is the

training algorithm we used. This time we trained the model using linear regression,

which is an off-line training algorithm (or called batch algorithm) to reduce the com-

putational complexity. We speculate that the classification accuracy can be higher

by a gradient-based learning algorithm with ESN model. For example, we can use

another training algorithm called online training algorithm. In this algorithm, the
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output weight W out is updated adaptively over time. Wen et al. [48] stated that

one of the online training algorithms called Least Mean Square (LSM) algorithm

is suitable for ESN and easier to be achieved rather than other learning methods.

They implemented a system with ESN using the LMS method. The LMS method

calculates the error between the model output and the target output each time, and

updates W out iteratively by the gradient descent method to minimize the squared

error. Therefore, applying this training algorithm to our ESN may lead to better

classification accuracy.

Regarding EEG measurement, the location and number of the electrodes used in

this study might not be the best for speech analysis. In [49], in order to capture the

brain signals from the language area of the brain, 21 electrodes were located on the

left hemisphere, over the area of Wernicke and Broca; these areas are related with

prosecution of brain language. The EEG we used also has electrodes located close to

those two areas, but not placed enough electrodes in those areas compared to their

measurement. In addition, Montoya-Mart́ınez et al. [50] determined the optimal

number of electrodes, and the best position to place a limited number of electrodes

on the scalp for language analysis. Regarding the number of electrodes, they have

reported that 32 electrodes is the best, while the EEG we used has only 14 channels,

which may be insufficient to fully measure EEG information for language analysis.

Also, when we compared the best positions they reported with the positions of the

electrodes used in our study, the EEG we used did not have the electrode at the top

of the brain, and other positions were also slightly off.

Regarding preprocessing, in the fact that we initially wanted to see what the

output would look like if we analyzed and classified the data as is, we did not conduct

significant preprocessing. However, more preprocessings might be necessary to extract

rich data from the EEG data. As artifacts from eye blinking or eye movements

(known as EOG signals) are included in the EEG data measurement, these artifacts
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are removed by preprocessing [51]. Moreover, as Jenson et al. [52] carried out for EEG

data analysis, the multiple artifact rejection algorithms (MARA) could be applied to

identify and remove components identified as an artifact.

4.8 Conclusion

To discriminate the consonants from pre-speech EEG data, we measured the EEG

data and applied preprocessings, and then classified the consonants F, B, P, M, and

S using an ESN model. As a result, the overall accuracy was 28.3 %. Through con-

ducting this study, several challenges have been addressed. First of these challenges

is the analysis of pre-speech EEG data. Studies of measuring and analyzing EEG

data before and during speech are generally rare, but such implementation has been

examined in studies of stuttering. For example, Toyomura et al. [53] recorded EEG

data of participants receiving auditory feedback from their own voices during instruc-

tion in which they vocalized one vowel, and conducted an analysis of the EEG data in

speech condition. Daliri et al. [54] examined whether different types of auditory stim-

uli have different effects on auditory processing of speech planning in an experiment

in which participants were presented with sound stimuli prior to the onset of speech,

and their EEG data were acquired during speech production. In a study using mag-

netoencephalography(MEG), another method used to analyze brain activity different

from EEG, Mersov et al. [55] acquired and analyzed brain activity prior to speech

to characterize neural oscillations in the speech motor network during preparation

for and execution of overt speech production. However, most of these studies have

focused on brain waves during and after speech, or even if they have measured brain

waves before speech, they have not addressed the characteristics of speech and its

classification. In this part of our study, we were able to examine speech classification

by focusing on the pre-speech EEG data and the speech features, which has not been

done before.
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Another challenge challenge was how to apply an ESN model to classify speech

from EEG data. There have not been many studies of speech identification from

EEG data using an ESN model. The ESN has been used in classification research

largely for speech data, 1-dimensional sensor data, and image data [56, 57, 58, 59].

In classification studies using EEG data, which is relatively complex in terms of

the number of dimensions and the amount of noise, ESN has been often used to

classify specific psychological states [60] or emotion recognition [61], but not speech

classification. Through this part of our study, we were able to analyze the relationship

between speech and the (pre-speech) EEG data through an ESN.

At the same time, in terms of speech classification accuracy, we need more im-

provements. Ghane et al. [16] examined vowel classification from EEG data, in which

the EEG data of participants were measured while the participants were imagining

vowels. As a result, the vowels were recognized with an accuracy of 76.6 %. In an-

other study, though this focus was also not the pre-speech EEG data, Moses et al.

[17] recorded cortical activity while the participant attempted to say individual words

from a vocabulary set. The model classified words with 47.1 % accuracy. Though it

is hard to compare our study with these studies because the data (pre-speech EEG)

we used and the purpose (consonant classification) we focused on were different than

their studies. Yet, the classification accuracy for consonant in this study cannot be

considered as high. Therefore, we should address the improvements we described

earlier as the future work for enhanced classification accuracy.
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Conclusion and Future Work

In this study, we have conducted two studies to find new biological signals that can

be used for speech interface. First study was the Japanese vowel classification using

the vocal folds vibration data. We measured the acceleration data of the vocal folds

vibration from a sensor attached to the neck over the throat and applied the spectral

analysis to the measured data to extract the feature values. We selected the first and

second harmonics with larger power as the feature values to train the machine learning

model. For the two-class classification, we used linear SVM for the classification of

Japanese vowels. The classifier performance was of 71 % accuracy on average. All

classification instances yielded fairly high accuracy, except that of between /a/ and

/e/. This can be because both frequency values are similar, so that it was difficult

to discriminate them in the frequency domain. Therefore, we observed that the

combination with other features besides harmonics can lead to better accuracy.

The second study was the unvoiced consonant recognition using pre-speech EEG

data. We measured the EEG data while the participants were vocalizing words. The

words the participants vocalized were 25 different words, which start with a specific

consonant (F, B, P, M, S). The EEG data were segmented and their amplitudes were

transformed to a certain range. For the unvoiced consonant classification, we used

an ESN model as the classifier, which processes fast and is able to handle time series

data. As a result, the classification accuracy of 5 classes was 28.3 % (better than

56



Chapter 5. Conclusion and Future Work

the 20% accuracy corresponding to random classification). The possible reason for

the accuracy is the training algorithm because the simple linear training method was

used for reducing the computational complexity in this study. To obtain the better

classification accuracy, another training algorithm such as a gradient-based learning

algorithm can be addressed.

Through these two studies, we verified and found the possibility that two biolog-

ical signals (the vocal folds vibration and the pre-speech EEG data) can be used to

discriminate speech though there still is room for improvement. By enhancing the

recognition accuracy more, these biological signals can be used for new developments

of speech interfaces to help people who have speech disorders. In addition, this thesis

describes a new method to capture the characteristics of vocal folds vibration from

acceleration data, and to analyze the brain waves before speech to predict speech

sound. We believe that these results together with further improvements would lead

to advanced developments of speech interface.

In the future, we plan to combine the two biological signals that were studied

in this thesis(the vocal folds vibration and the pre-speech EEG data) together to

verify the accuracy of speech classification. We also plan to build a real-time speech

classification system using these biological signals with the improvements we have

learned.
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