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Abstract

A biological system is a complex network of heterogeneous molecular entities and their interactions

contributing to various biological characteristics of the system. Although the biological networks

not only provide an elegant theoretical framework but also offer a mathematical foundation to

analyze, understand, and learn from complex biological systems, the reconstruction of biological

networks is an important and unsolved problem. Current biological networks are noisy, sparse and

incomplete, limiting the ability to create a holistic view of the biological reconstructions and thus

fail to provide a system-level understanding of the biological phenomena.

Experimental identification of missing interactions is both time-consuming and expensive. Recent

advancements in high-throughput data generation and significant improvement in computational

power have led to novel computational methods to predict missing interactions. However, these

methods still suffer from several unresolved challenges. It is challenging to extract information

about interactions and incorporate that information into the computational model. Furthermore,

the biological data are not only heterogeneous but also high-dimensional and sparse presenting

the difficulty of modeling from indirect measurements. The heterogeneous nature and sparsity of

biological data pose significant challenges to the design of deep neural network structures which

use essentially either empirical or heuristic model selection methods. These unscalable methods

heavily rely on expertise and experimentation, which is a time-consuming and error-prone process

and are prone to overfitting. Furthermore, the complex deep networks tend to be poorly calibrated

with high confidence on incorrect predictions.

In this dissertation, we describe novel algorithms that address these challenges. In Part I, we design

novel neural network structures to learn representation for biological entities and further expand
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the model to integrate heterogeneous biological data for biological interaction prediction. In part II,

we develop a novel Bayesian model selection method to infer the most plausible network structures

warranted by data. We demonstrate that our methods achieve the state-of-the-art performance on

the tasks across various domains including interaction prediction. Experimental studies on various

interaction networks show that our method makes accurate and calibrated predictions. Our novel

probabilistic model selection approach enables the network structures to dynamically evolve to

accommodate incrementally available data. In conclusion, we discuss the limitations and future

directions for proposed works.
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Chapter 1

Introduction

A biological system is a complex network of heterogeneous molecular entities such as genes, pro-

teins, and other biological molecules linked together by their interactions. These biological entities

interact with each other via direct or indirect associations and contribute to various biological

characteristics of the biological system [8, 9, 10]. The study of these molecular entities and their

interactions not only plays a crucial role in understanding biological phenomena but also provides

insights into the molecular etiology of diseases as well as the discovery of putative drug targets [11].

The biological systems represent complex dynamical systems, where the interactions at a local level

give rise to the emergent dynamics on the system’s level [12, 13]. Specifically, the combination of

positive and negative feedback between heterogeneous molecular entities within a biological system

results in the non-linear dynamics of the system. The information about interactions between these

heterogeneous entities plays a crucial role to study the non-linear dynamics of the biological system.

However, the known interactions between the heterogeneous molecular entities are far from complete

due to experimental limitations and unsupervised construction from the omics dataset, i.e., the

interactions between entities are noisy, sparse, and incomplete. Such missing interactions limit the

ability to create a holistic view of the biological system and have a system-level understanding of

biological phenomena.

Over the past decade, there have been huge technological advancements in high-throughput tech-

nologies that have greatly increased the ease and significantly reduced the cost of generating bio

and medical data, resulting in ever-increasing amounts of omics data. During the same time, the

significant improvement in computational power and the development of novel methodologies capa-

ble of handling large datasets provide us with the platform for analyzing these large heterogeneous
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datasets to understand the biological system [14]. Therefore, there is a need for the development of

effective computational methods that exploit available computational power to analyze heteroge-

neous datasets and infer novel interactions between heterogeneous molecular entities in the system.

1.1 Motivating challenges

For the system-level understanding of the biological phenomena, it is crucial to know if interactions

are missing or novel interactions are likely to be identified in the future. Since the available

information about interactions within the biological system is noisy and incomplete, predicting

interactions using heterogeneous datasets is a challenging yet important problem in biology. In this

dissertation, we term the problem as “Biological Network Inference”.

Biological network inference involves the design of appropriate computational methods for extract-

ing features from heterogeneous data to represent biological entities and modeling their interactions

using extracted features. Various computational methods have been proposed over the past decades

to predict interactions between biological entities [15,16,17,18,19]. However, the interaction infer-

ence still suffers from several unresolved challenges. We summarize the major challenges associated

with the biological network inference as follows:

• Modeling known interactions: A network constructed from known interactions between

biological entities informs about the explicit structure of the biological system and computa-

tional models should make use of and learn to extract information represented in the form

of a network. A large number of publicly available databases such as BioGRID, DisGeNET

provides information for known interactions between heterogeneous entities. The main chal-

lenge in machine learning is to extract information about interactions between heterogeneous

entities from the constructed network and to incorporate that information into the machine

learning model. Since classic machine learning methods rely on summary statistics or hand-

engineered features such as centrality measures, degree distribution, average path length,

diameter, clustering coefficients, subgraphs, network motifs. These extracted patterns only

provide limited coverage about interactions.

• Integrating heterogeneous datasets: Since the factors necessary to understand biological

phenomena cannot be captured by a single data type, several machine learning approaches

for biological network inference that are only capable of examining specific data types fail to

explain such complex phenomena. This calls for methods capable of integrating heterogeneous
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datasets to gain a comprehensive understanding of a biological phenomena [20]. However,

there are several challenges associated with the integration of heterogeneous data. First,

biological data are high-dimensional but sparse. Second, these data are often incomplete

and biased to certain aspects because of the nature of measurement technology [21], and

investigative biases [22].

• Locality problem: Most biological characteristics of the system arise from the complex

interactions between heterogeneous molecular entities [23]. Also, the effect on one molecular

entity is propagated via pathways i.e. series of interactions among other molecules in the

system to form a certain product or a change in a cell. It is thus crucial to consider higher-

order network information along with local network properties to understand the structure

and behavior of the complex networks. However, various methods only consider the local

neighborhood information such as direct neighbors and fail to capture the global structure of

the network.

• Heuristically designed neural architectures: Recently, neural network approaches have

shown great success in predicting the likelihood of interaction between two molecular entities

using omics dataset [19,24]. However, such methods rely on the heuristically designed neural

network structures with manually tuned parameters: number of layers (i.e. depth) and

number of neurons (i.e. width). Although pre-determined network structures provide good

performances, deep networks are prone to overfitting and also tend to be poorly calibrated

with high confidence on incorrect predictions [25,26].

1.2 Scope and research questions

In this dissertation, we are primarily focused on developing general computational approaches for

link prediction with an application to biological network inference. To this aim, we evaluate our

novel methods across diverse datasets to demonstrate their effectiveness and also investigate their

efficiency. Starting with small and well-studied datasets such as E. coli and yeast, we explore the

applicability of our method on various datasets such as human protein-protein interactions, human

gene-disease associations, with an increased number of nodes and edges. If the number of nodes in

the network is large, it has sparser connectivity which leads to computational challenges such as

scalability, and the ability to handle sparse data. The focus of this research is structured in two

parts as summarized in Figure 1.1.

In Part I, we construct a biological network using known interactions to represent the structure of
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the biological system. We then introduce network representation learning approaches that make use

of explicit network structure and integrate other ”omics” data for biological interaction prediction.

We focus on designing neural network structures for network representation learning to predict the

probability of missing interactions.

In Part II, we present a unified Bayesian model selection method to jointly infer the most plausible

neural network depth warranted by data and modulate neuron activations via dropout regulariza-

tion simultaneously. In particular, to infer network depth we define a beta process over the number

of hidden layers which allows it to go to infinity. Layer-wise activation probabilities induced by the

beta process modulate neuron activations via binary vectors of a conjugate Bernoulli process. We

extend the joint inference framework to infer neural network depth for biological network inference.

Feature Extractor 
(Neural networks)

𝑓𝜃(. )

Decoder

Attribute similarity

Biological networks

Local structure: co-occurrence
Global structure: Shared neighbors

Topology-based Node features Higher-order neighbors

Part I: Design feature extractor 𝑓𝜃(. )

(𝐴, 𝑋) 𝑍

Fixed architecture

Part II: Infer feature extractor 𝑓𝜃(. )

(𝐴, 𝑋) 𝑍

Beta-Bernoulli Process

𝑘 = 2

Figure 1.1: Research focus of this dissertation.

In this dissertation, we aim to answer the following research questions:

Q1: Are topological properties of the biological network constructed from known in-

teractions sufficient to predict missing interactions?

We introduce BioNetEmbedding, a novel topology-preserving embedding model that captures the

topological properties of the biological network in Chapter 3. By preserving network properties,
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the model learns continuous representation for entities in the network such that the entities with

similar topological patterns are placed closer to each other in the latent representation space.

The continuous representation of biological entities significantly simplifies downstream tasks such

as interaction prediction. We demonstrate an application of the proposed model on biological

interaction networks with thousands of nodes and hundreds of thousands of edges. It improves

upon earlier work on network embeddings such as Isomap, node2vec, and LINE. Furthermore,

we apply our proposed model to biomedical networks such as drug-drug interactions, gene-disease

associations, drug-target interactions and show that our model achieves significant improvements

over 11 network representation learning approaches.

Q2: How can we incorporate additional information with network information to

improve biological interaction inference?

To answer this question, we review various approaches to learn representation by integrating a net-

work structure with additional information and realize that these models are unable to incorporate

additional information for network representation learning and fail to generalize well to nodes with

few interactions.

In Chapter 4, we extend BioNetEmbedding to address this question: Gene Network Embedding

(GNE). GNE learns the representations to unify known genetic interactions and gene expression

data for genetic interaction prediction. We demonstrate the application of this model to the task

of temporal link prediction. Furthermore, a set of novel gene interaction predictions are validated

by up-to-date literature-based database entries.

Moreover, we propose a novel interpretable deep learning framework to incorporate protein se-

quences with network information in Chapter 5. Specifically, we integrate a structured and sparse

regularization with a sequence encoder to learn representations of the sequences and demonstrate

its application on protein-protein interaction prediction. We also show that our model generates

sparse masks that align with biologically interpretable motifs from Pfam database [27].

Q3: Are higher-order neighborhood properties informative for interaction prediction?

To aggregate neighborhood features at various distances, we introduce a deep method with a

novel higher-order graph convolution (HOGC) encoder [28] and a novel bilinear decoder for link

prediction in Chapter 6. Our proposed method aggregates the features of neighbors at various

distances and learns the linear mixing of these features to obtain the informative representations of
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biological entities. We evaluate our method on various interaction networks such as protein-protein,

drug-drug, drug-target, and gene-disease interactions and show that it achieves more accurate and

calibrated predictions.

Q5: Does the neural network structure with inferred depth and neuron activations

provide benefit over heuristically designed network structure for biological interaction

prediction tasks?

The design and development of neural network structures heavily rely on expertise and experimen-

tation. Although these models have achieved promising performance, the heuristically designed

structure might be a sub-optimal one and are also prone to overfitting. Furthermore, these pre-

determined network structures cannot grow accordingly as more data are observed and requires re-

training neural network structures from scratch. Thus, in Chapter 7, we propose a unified Bayesian

model selection to infer the most plausible neural network depth warranted by data and perform

dropout regularization simultaneously. Furthermore, we extend the framework to infer the depth

of graph neural networks for biological network inference in Chapter 8.

1.3 Outline

To provide the readers with essential background knowledge, Chapter 2 provides a quick intro-

duction to biological networks and discusses related works on deep neural networks to learn the

representation of these networks. It further discusses the problem of overfitting in deep learning,

different approaches to avoid the overfitting problem, and tuning of neural network hyperparame-

ters.

In Part I, we propose novel deep neural network structures to model biological interactions from

heterogeneous biological data. In particular, we present a framework to learn representation for

biological entities by capturing local neighborhood information in Chapter 3. In the subsequent

chapters, we will extend this framework to incorporate additional information with network struc-

ture. Specifically, in Chapter 4, we discuss our method for integrating continuous features such as

gene expression data with gene network structure. Next, Chapter 5 integrates sequential attributes

such as protein sequences with network structure for prediction of protein-protein interaction.

Chapter 6 introduces a novel approach to consider higher-order network information along with

local neighborhood and additional features for biological link prediction.
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In Part II, we propose a Bayesian model selection to jointly infer the most plausible neural network

depth and dropout regularization simultaneously in Chapter 7. We further extend the framework

to infer the depth for graph neural networks for biological network inference in Chapter 8.



Chapter 2

Background

This chapter aims to provide a quick overview of biological networks, the sources of these networks,

and several related works that are extensively used throughout this dissertation. Furthermore,

we also discuss the design of deep neural network structures, the problem of overfitting and over-

confident predictions for deep networks, and various approaches to address these issues.

2.1 Biological networks

A natural way to represent the complex interactions between heterogeneous molecular entities in the

biological system is in form of a network, where the molecular entities are represented as nodes and

their pairwise relationships as edges [29]. The network representation of a biological system pro-

vides a conceptual and intuitive framework to investigate and understand the interactions between

different molecular entities in a biological system. The ultimate aim of network representation is to

provide a hypothesis to understand the cellular organization and also inform how the perturbations

on one entity propagate in the system. Furthermore, analyzing the topological properties of the

biological networks can help to uncover previously unknown relationships, identify the pathways,

and the important modulators in the networks.

Specifically, network representation of the biological system involves two important steps: (1)

identify the critical entities of the biological system (nodes) and (2) the nature of the interactions

between these entities (edges) [30]. The information about entities and their interactions comes

from various sources of data, describing various facets of the biological system:

8
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• High-throughput datasets: Various high-throughput technologies have generated large

amounts of data that provide information about the interaction between various entities in the

biological system. For example, the networks of proteins, and their physical interactions [31]

also known as protein-protein interactions can be obtained via yeast two-hybrid, affinity

purification, co-immunoprecipitation.

• Literature text-mining: The biomedical literature can serve as a resource to extract infor-

mation about interconnected proteins through their coexistence in the literature [32]. Specif-

ically, text-mining-based approaches search for statistically significant co-occurring biological

entities that can greatly increase the coverage of the biological networks.

• Manual curation of scientific literature: Scientific curators or domain experts extract

the information from the published scientific papers and store them in the database. However,

the curation process is expensive and time-consuming.

• Computational predictions: Various computational methods have been proposed to make

use of existing experimental pieces of evidence to predict novel interactions/relationships

between biological entities. Such methods provide lab-testable hypotheses by identifying novel

interactions between biological entities and also refine the space of experimentally derived

interactions.

Some of the most common types of biological networks are gene regulatory networks (GRNs),

protein-protein interaction (PPIs) networks, drug-target interaction networks (DTIs), and gene-

disease interaction networks (GDIs).

We can formally define a biological network as:

Definition 2.1. (Biological network): A biological network is defined as G = (V, E ,X) where

V denotes the set of nodes representing biological entities such as proteins, genes, drugs, diseases

and E ⊆ (V × V) denotes the set of interactions between these entities. X represents additional

information such as high-throughput functional genomics data. The interaction between biological

entities corresponds to physical binding for protein-protein interaction, regulatory relationships for

gene-gene interactions, the association between genes and diseases for gene-disease interactions,

binding of a drug to a target location such as proteins, genes for drug-target interactions.

In a biological network G = (V, E ,X), the edge eij ∈ E is associated with an interaction score sij ≥ 0

indicating the strength of the connection between entities vi and vj . If entities vi and vj is not

linked by an edge, sij = 0. We name interactions with sij > 0 as positive interactions and sij = 0
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as negative interactions. In this dissertation, we consider score sij to be binary, indicating whether

genes vi and vj interact or not. We later define sij as first-order proximity in Definition 3.1.

We express the biological network mathematically in the form of an adjacency matrix A. The

elements of A are binary values of {0, 1}, indicating the presence or absence of the edges in the

network. Figure 2.1 shows the adjacency matrix for undirected network.

E

D

CB

A

A B C D E
A 0 1 0 0 1
B 1 0 1 1 0
C 0 1 0 1 0
D 0 1 1 0 1
E 1 0 0 1 0

Figure 2.1: Biological network and its adjacency matrix representation.

2.2 Network representation learning (NRL)

Networks are becoming ubiquitous in real-world applications and have been attracting increasing

attention in recent years. The analysis of these networks plays a crucial role in a variety of appli-

cations across multiple domains. For example, social networks are analyzed to classify users into

meaningful social groups, enabling different downstream tasks such as user search, friendship, and

content recommendation, and targeted advertising; in biological networks, inferring interactions

between proteins can facilitate the drug discovery process to treat diseases.

Network representation learning (NRL) aims to learn latent lower-dimensional representations of

entities in the network while preserving network structure and additional information about nodes.

We can formally define biological network representation learning as:

Definition 2.2. (Biological network representation learning): Given a biological interaction

network G = (V, E ,X) with a set of known interactions in E, additional information about biological

entities in X, the task of network representation learning aims to learn a mapping function f that
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maps the network structure and the additional information to a latent d-dimensional space Z; v →
zv ∈ Rd. The function f preserves the original network information such that two nodes with similar

topological structures and attributes should be represented similarly in the learned representation

space.

The resulting latent low-dimensional representation of biological entities should satisfy the following

criteria:

• Low dimensionality: The dimension d of the representation space should be much smaller

d≪ |V|, providing memory efficiency and scalability of downstream network analysis tasks.

• Informative: The learned latent representation preserves the proximity between the entities

in the original network, reflected by the network structure and additional information.

• Continuous: The continuous representation of the entities supports the use of off-the-shelf

machine learning algorithms for various downstream tasks such as entity classification, clus-

tering, and link prediction.

E

D

CB

A
A

E

FG

F G

B
D

C

H

H

Clustering

Link prediction

Classification

Visualization

Network Representation
Network representation learning Applications

Figure 2.2: An overview of network representation learning.

Figure 2.2 shows the overview of network representation learning and a variety of downstream tasks.

In this dissertation, we focus on link prediction in a biological network. However, our approach can

be easily extended to other tasks. Next, we formally define the task of interaction prediction as:

Definition 2.3. (Interaction prediction): Given a biological interaction network G = (V, E ,X)

and the set of potential biological interactions E ′, we aim to learn an interaction prediction model

f to predict the interaction probabilities of E ′, f : E ′ → [0, 1].
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Additional definitions for network representation learning will be discussed in respective chapters.

2.3 Encoder-decoder perspective for NRL

We follow the encoder-decoder framework of NRL [33] to discuss various methods. The encoder-

decoder framework relies on the idea that if we can decode the graph information in the original

network from the encoded low-dimensional representations, then in principle, the representations

contain all information necessary for the downstream tasks. Encoder-decoder view of NRL includes

four methodological components:

• Proximity score sij : V × V → R+ to measure how closely connected two nodes are in the

network. In this dissertation, we define sij = Aij such that adjacent nodes have proximity of

1, otherwise 0.

• Encoder fENC(vi) to learn the representation zi of the entities of the network using the

network structure and additional information. The encoder contains trainable parameters

that are optimized via training.

• Decoder fDEC(zi, zj) to reconstruct the pairwise proximity Âij between entities from the

learned representations Z. The decoder function may or may not have trainable parameters.

For example, matrix factorization approaches use inner-product decoder (i.e. zTi zj), and end-

to-end deep learning models use parameterized pairwise decoder to decode the probability of

link existence [19].

• A loss function which determines how the reconstructed proximity scores fDEC(zi, zj)

matches with true proximity values sij .

The definition of these four components differs between various NRL methods. Encoder-decoder

framework can be summarized in Figure 2.3.

2.4 Common methods for NRL

Learning to encode the original network structure to latent representation space is a long standing

problem [15, 18, 33, 34]. Various methods have been proposed to address different objectives by

incorporating different types of information (Figure 2.4).
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2.4.1 Matrix factorization

An adjacency matrix is a common representation of the topology of the network as shown in

Figure 2.1, where rows and columns correspond to the entities in the network and the entries in

the matrix indicate their interactions. A N -dimensional row vector or a column vector from the

adjacency matrix can be used to represent the entity, where N is the number of entities in the

network. Matrix factorization (MF) methods are studied as dimensionality reduction techniques

and aim to factorize the adjacency matrix into lower-dimensional matrices to represent the network

in N -dimensional space. The manifold structure and topological properties hidden in the original

network structure are preserved in the low-dimensional space. Various MF methods that have

been applied to solve NRL tasks are Isomap [16], Locally Linear Embedding (LLE) [35], Laplacian

Eigenmaps (LEs) [36], Singular value decomposition (SVD), graph factorization (GF) [37]. Recent

methods for matrix factorization such as GraRep [34] and HOPE [38] focus on high-order proximity

between network entities to preserve the global graph structure.

2.4.2 Random walk

Building upon the promising work on learning word representations from sentences [39], random

walk-based methods generate the sequences of nodes through random walks on graphs and the

word2vec model is used to learn the representation for nodes in the network. Such representation

can preserve the structural and topological properties of the network.

DeepWalk [40] is the pioneering work in this direction that generates the truncated random walks

on a network. Improving on deepwalk, node2vec uses a biased random walk by combining breadth-

first sampling with depth-first sampling to generate node sequences. Furthermore, struc2vec [41]

models the structural identity of biological entities in the network with an assumption that nodes

with similar network structures may perform similar functions.

2.4.3 Graph neural networks

NRL, by definition, aims to learn a mapping function to encode the entities from the original

network space to a latent low-dimensional vector space. NRL was originally studied with matrix

factorization approaches as dimensionality reduction of the original network represented by adja-

cency matrix A. Since the formation process of the network is highly non-linear, the linear mapping
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assumption of matrix factorization approaches may not be adequate to learn the appropriate map-

ping function.

With the recent success of neural network models in various fields such as computer vision, natu-

ral language processing, neural networks for NRL has also gained significant interest. Variants of

neural network models such as multilayer perceptron (MLP) [18], autoencoder [42], graph convo-

lutional network (GCN) [43, 44] have been explored for these tasks. The use of network structure

information depends on the choice of neural network architecture. In particular, LINE [18] applies

a single-layer MLP model to learn vector representation by approximating first-order and second-

order proximity between entities in the biological network. DNGR [42] applies stacked denoising

autoencoders on positive pointwise mutual information (PPMI) matrix to learn low dimensional

representation. Similarly, SDNE [45] adopts Laplacian eigenmaps (LEs) to preserve first-order

proximity and deep autoencoder to reconstruct neighborhood structure for each node to preserve

second-order proximity.

Recently, graph neural networks (GNNs) have shown great success in modeling network-structured

data [43, 44, 46]. GNNs have demonstrated their ability to recursively incorporate information

from neighboring nodes in the network, naturally capturing both network structure and node

attributes. Graph autoencoder (GAE) [43] applies graph convolutional encoder to capture network

structure and node attributes by aggregating information from direct neighbors and employs inner

product decoder to reconstruct adjacency matrix representing the network structure. Unlike GAE,

SkipGNN [19] proposes to incorporate features from direct and indirect neighbors for biological link

prediction. Although there has been promising development of GNN models for node classification

across various domains, GNN methods for biological link prediction have been largely unexplored.

Furthermore, various GNN models lack interpretability and thus fail to generate explanations for

predictions, limiting their applicability in biological problems.

2.5 Design and inference of neural network structures

One crucial aspect of the deep learning progress that we have witnessed over the past decade is

novel neural network structures. The design of the complex neural network structure plays an

important role in learning the feature representation of data and the performance on the final

task. However, overly complex neural structures are prone to overfitting and may capture spurious

correlations from the data. The design of such complex structures relies heavily on prior knowledge

and experience, which is a time-consuming and error-prone process. Moreover, deep networks tend
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to be poorly calibrated with high confidence on incorrect predictions.

Figure 2.5: Demonstrations of a dropout variant (left), and structure selection methods (right). The
dropout variant defines an Indian buffet process per layer to infer width, but depth is fixed [1, 2].
Structure selection methods can only reduce depth of a pre-determined network structure [3,4,5,6].

Neural network structures are pre-determined based on prior knowledge and experience with an

expectation that the pre-determined structure results in a good performance. It requires the depth

(the number of hidden layers) and width (number of neurons in each layer) to be carefully set.

With the choice of these parameters comes the challenge of the network being prone to overfitting.

Various regularization approaches have been proposed to prevent overfitting caused by the great

flexibility of deep neural networks. These methods can be broadly classified into two groups:

2.5.1 Dropout and its variants

Dropout is an effective neural network regularization technique [47, 48]. By randomly pruning

neurons and their connections from a network structure with a dropout rate during training, it

can prevent DNNs from overfitting [49,50,51]. [52] interprets dropout from a Bayesian perspective

to quantify uncertainty. Variational dropout proposes a stochastic gradient variational inference

approach to learn the dropout rate from data with a constraint on large dropout rate values [53]. [54]

extends the variational dropout to set unbounded individual dropout rate per weight. Concrete

dropout proposes a continuous relaxation of the dropout’s discrete masks to automatically tune the

dropout probability, and obtain its uncertainty estimates [55]. Bayesian nonparametrics are also

applied to extend the variational dropout approaches by defining an Indian buffet process (IBP)

over neurons per hidden layer [1] or over channels in CNNs [2] to infer network widths, as in Figure

2.5 (left). Another body of work leverage the non-parametric Bayesian framework to infer the
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dimensionality of latent representation encoded by DNNs [56,57].

2.5.2 Structure selection methods

Structure selection methods improve training efficiency by reducing the depth of a pre-arranged

network structure, as in Figure 2.5 (right). Some lead to well-performed smaller networks, and

others achieve better uncertainty calibration. To build smaller models that perform just as well, [3]

proposes to reduce a large neural network by merging adjacent hidden layers with only linear

relationships being activated in between. A stochastic depth method randomly drops a subset

of hidden layers from a large network by bypassing them with an identity function in each mini-

batch to speed up the training session, but it still deploys the large network structure at test

time [4]. [6] shows that the multiplicative noise from dropout induces structured shrinkage priors

over a neural network’s weights, and they further extend the shrinkage framework based on ResNet

structures [58] to model the probabilities of hidden layers being used. In particular, the work also

indicates that the framework is equivalent to the stochastic depth regularization [4]. [5] proposes to

tune a hidden layer’s influence on a prediction by learning a bypass variable between adjacent-layer

connections and skip connections with a variational Bayes method. The method also prunes neurons

separately. [7] proposes a Bayesian model averaging method to down-weight deeper layers by directly

connecting every hidden layer to the output layer, and achieve competitive performances with

uncertainty calibration. [59] achieves model effectiveness and computational efficiency by inferring

a distribution of connections and units in the context of local winner-takes-all DNNs with IBP.
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Chapter 3

Representation learning for biological

networks using local network

properties

Understanding the functional aspects of genes or proteins is crucial to providing insights into

underlying mechanisms for different health and disease conditions. As discussed in Section 2.1, the

known genetic interactions between genes or proteins in the biological system can be represented

as a gene interaction network. Gene interaction networks model the complex biological phenomena

in the biological system and provide rich information to infer functional relationships among genes.

However, a comprehensive representation of topological properties of gene interaction networks, to

achieve a more accurate inference of novel genetic interactions, remains a challenge.

In this chapter, we describe a deep neural network architecture to learn the lower-dimensional

representation for each gene, by preserving direct and indirect topological proximity between genes,

that characterizes the topological context of each gene (Figure 3.1). These representations can be

plugged into off-the-shelf machine learning methods to derive deeper insights into the structure

of gene interaction networks and also functional insights about genes. In this chapter, we discuss

the model that trains on the biological network only. We evaluate the proposed model on diverse

datasets including small and well-studied E. coli and yeast datasets with large number of known

interactions readily available from public databases as well as larger datasets to demonstrate its

effectiveness and scalability.

19
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3.1 Preliminaries

We formally define the problem of gene network inference as a network embedding problem using

the concepts of network proximity as demonstrated in Figure 3.1.
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Figure 3.1: A overview of topology-preserving embedding.

According to Definition 2.1, gene network is a biological network with genes or proteins as nodes

and their interactions as edges. The interaction between genes corresponds to either a physical

interaction through their gene products, e.g., proteins, or one of the genes alters or affects the

activity of other genes. Genes directly connected with a gene vi in the gene network denote the

local network structure of gene vi. We define local network structures as the first-order proximity

of a gene.

Definition 3.1. (First-order proximity): The first-order proximity in a gene network is the

pairwise interactions between genes. Score sij indicates the first-order proximity between gene vi

and vj. If there is no interaction between gene vi and vj, their first-order proximity sij is 0.

Genes are likely to be involved in the same cellular functions if they are connected in the gene

network. On the other hand, even if two genes are not connected, they may be still related to

some cellular functions. This indicates the need for an additional notion of proximity to preserve

the network structure. Studies suggest that genes that share a similar neighborhood are also

likely to be related [60]. Thus, we introduce second-order proximity that characterizes the network

neighborhood of the genes.

Definition 3.2. (Second-order proximity): Second-order proximity denotes the similarity be-

tween the neighborhood of genes. Let Ni = {si,1,. . . , si,i−1, si,i+1,. . . , si,M−1} denotes the first-order
proximity of gene vi, where si,j > 0 if there is direct connection between gene vi and gene vj, oth-
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erwise 0. Then, the second order proximity is the similarity between Ni and Nj. If there is no path

to reach gene vi from gene vj, the second proximity between these genes is 0.

As defined in Definition 2.2, we propose to encode genes to low-dimensional vectors z ∈ Rd that

preserves their network proximities in the original network.

3.2 Biological network embedding

The proposed deep learning framework as shown in Figure 3.2 utilizes gene network structure to

learn a latent representation for the genes. Embedding of a gene network projects genes into a

lower dimensional space, known as the embedding space, in which each gene is represented by a

vector. We list the variables to specify our framework in Table 3.1.
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Figure 3.2: Overview of topology-preserving embedding framework for genetic interaction predic-
tion

Gene network modeling

The proposed framework preserves the first-order and second-order proximity of genes in the gene

interaction network. The key idea of network structure modeling is to estimate the pairwise prox-

imity of genes in terms of the network structure. If two genes are connected or share similar

neighborhood genes, they tend to be related and should be placed closer to each other in the

embedding space. Inspired by the Skip-gram model [39], we use one-hot encoding to represent a

gene. Each gene vi in the network is represented as an M -dimensional vector where only the ith

component of the vector is 1.
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Symbol Definitions

M Total number of genes in gene network

Ni The set of the neighbor genes of gene vi

v
(s)
i Network representation of gene vi

ṽi Neighborhood representation of gene vi

l Number of hidden layers

h(l) Output of lth hidden layer

Wl Weight matrix for lth hidden layer

Wid Weight matrix for network structure embedding

Wout Weight matrix for output layer

Table 3.1: Terms and Notations for Biological network embedding.

To model topological similarity between genes in the genetic interaction network, we define the

conditional probability of gene vj on gene vi using a softmax function as:

p(vj |vi) =
exp(f(vi, vj))∑M

j′=1 exp(f(vi, vj′))
(3.1)

which measures the likelihood of gene vi being connected with vj . Let function f represents the

mapping of two genes vi and vj to their estimated proximity score. Let p(N|v) be the likelihood

of observing a neighborhood genes N for a gene v. By assuming conditional independence, we can

factorize the likelihood so that the likelihood of observing a neighborhood gene is independent of

observing any other neighborhood gene, given a gene vi:

p(Ni|vi) =
∏

vj∈Ni

p(vj |vi) (3.2)

where Ni represents the neighborhood genes of the gene vi. Global structure proximity for a gene

vi can be preserved by maximizing the conditional probability over all genes in the neighborhood.

Hence, we can define the likelihood function that preserve global structure proximity as:

L =
M∏
i=1

p(Ni|vi) =
M∏
i=1

∏
vj∈Ni

p(vj |vi) (3.3)

Let v
(s)
i denote the dense vector generated from one-hot gene ID vector, which represents topological

information of that gene. Our proposed method follows direct encoding methods [15, 39] to map
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genes to vector embeddings, simply known as embedding lookup:

v
(s)
i = Widvi (3.4)

where Wid ∈ Rd×M is a matrix containing the embedding vectors for all genes and vi ∈ IM is a

one-hot indicator vector indicating the column of Wid corresponding to gene vi. The embedding

matrix Wid is the trainable parameter for direct encoding methods and is directly optimized.

Learning hidden representations

Biological network embedding (BNE) captures the topological structure of the network to learn

embeddings for genes. One hot representation for a gene vi is projected to the dense vector v
(s)
i

which captures the topological properties. The dense vector representation of genes are fed into a

multilayer perceptron with l hidden layers. The hidden representations from each hidden layer in

the model are denoted as h
(0)
i ,h

(1)
i , .....,h

(l)
i , which can be defined as :

h
(0)
i = δ(W0v

(s)
i + b0),

h
(l)
i = δl(Wlh

(l−1)
i + bl)

(3.5)

where δl and bl represent the activation function and the bias of the layer l respectively. h
(0)
i

represents initial representation and h
(l)
i represents final representation of the input gene vi.

At last, final representation h
(l)
i of a gene vi from the last hidden layer is transformed to probability

vector, which contains the conditional probability of all other genes to vi:

oi = [p(v1|vi), p(v2|vi), . . . , p(vM |vi)] (3.6)

where p(vj |vi) represents the probability of gene vi being related to gene vj and oi represents the

output probability vector with the conditional probability of gene vi being connected to all other

genes.

Weight matrix Wout between the last hidden layer and the output layer corresponds to the ab-

stractive representation of neighborhood of genes. A jth row from Wout refers to the compact

representation of neighborhood of gene vj , which can be denoted as ṽj . The proximity score
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between gene vi and vj can be defined as:

f(vi, vj) = ṽj · h(l)
i (3.7)

which can be replaced into Eq. 3.1 to calculate the conditional probability:

p(vj |vi) =
exp(ṽj · h(l)

i )∑M
j′=1 exp(ṽj′ · h

(l)
i )

(3.8)

Our model learns two latent representations h
(l)
i and ṽi for a gene vi where h

(l)
i is the represen-

tation of gene as a node and ṽi is the representation of the gene vi as a neighbor. Neighborhood

representation ṽi can be combined with node representation h
(l)
i by addition [61, 62] to get final

representation for a gene as:

zi = h
(l)
i + ṽi (3.9)

which leads to better performance.

For an edge connecting gene vi and vj , we create a feature vector by combining embeddings of

those genes using Hadamard product. Empirical evaluation shows features created with Hadamard

product gives better performance over concatenation [15]. Then, we train a logistic classifier on

these features to classify whether genes vi and vj interact or not.
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𝑧𝑗

𝑒𝑖𝑗

Yes

No

Figure 3.3: Logistic decoder for biological interaction prediction

Parameter optimization

To optimize the parameters of the proposed model, the goal is to maximize objective function

mentioned in Eq. 3.8 as a function of all parameters. Let Θ be the parameters of the model that
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includes {Wid,Wout,Wl} where Wl represents the weight matrices of l hidden layers. We train

our model to maximize the objective function with respect to all parameters Θ :

argmax
Θ

[
M∑
i=1

∑
vj ∈ Ni

log
exp(ṽj · h(l)

i )∑M
j′=1 exp(ṽj′ · h

(l)
i )

]
(3.10)

Maximizing this objective function with respect to Θ is computationally expensive, which requires

the calculation of partition function
∑M

j′=1 exp(ṽj′ · h
(l)
i ) for each gene. To calculate a single

probability, we need to aggregate all genes in the network. To address this problem, we adopt

the approach of negative sampling [39] which samples negative interactions, interactions with no

evidence of their existence, according to some noise distribution for each edge eij . This approach

allows us to sample a small subset of genes from the network as negative samples for a gene,

considering that the genes on the selected subset don’t fall in the neighborhood Ni of the gene.

Above objective function enhances the similarity of a gene vi with its neighborhood genes vj ∈ Ni

and weakens the similarity with genes not in its neighborhood genes vj /∈ Ni. It is inappropriate

to assume that the two genes in the network are not related if they are not connected. It may

be the case that there is not enough experimental evidence to support that they are related yet.

Thus, forcing the dissimilarity of a gene with all other genes, not in its neighborhood Ni seems to

be inappropriate.

We adopt Adaptive Moment Estimation (Adam) optimization [63], which is an extension to stochas-

tic gradient descent, to optimize Eq. 3.10. To address the overfitting problem, regularization like

dropout [64] and batch normalization [65] is added to hidden layers.

3.3 Experimental setup

3.3.1 Datasets

We evaluate our model using two interaction datasets from the BioGRID database (2017 version

3.4.153) [66] to evaluate the predictive performance of our model. Self-interactions and redundant

interactions are removed from interaction datasets. The statistics of the datasets are shown in

Table 3.2.

For the experimental evaluation, we split the interaction dataset into training, validation, and

test set. The best set of hyperparameters are selected based on the model’s performance on the
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Datasets No. of Genes No. of Interactions

Yeast 5,950 544,652

E. coli 4,511 148,340

Table 3.2: Statistics of the interaction datasets from the BioGRID database.

validation dataset. The interaction dataset only contains the positive interactions i.e. interactions

with pieces of evidence supporting their existence. By adopting negative sampling, we can train

the model only by taking positive interactions in the training set. However, negative interactions

are also crucial to evaluate the model on the validation and test set. To this aim, we randomly

sample an equal number of negative interactions i.e. non-edges in the network.

3.3.2 Baselines

We compare our method with three baselines for network embedding: Isomap, LINE, node2vec.

These baselines are also designed to capture the topological properties of the nodes in the network

and have demonstrated good performance on the link prediction tasks. In particular, Isomap [16]

computes all-pairs shortest distances to create a distance matrix and performs singular value de-

composition (SVD) to learn latent representations of the nodes. In contrast, LINE [18] preserves

the first-order and second-order proximity of the network separately to learn the embeddings. On

the other hand, node2vec [15] performs truncated biased random walks to generate a sequence of

co-occurring nodes in the network. Then, the representation for nodes is learned by applying the

Skip-gram model on the set of generated node sequences.

3.3.3 Hyperparameter selection

We implement the proposed model in TensorFlow [67]. We construct a neural network with single

hidden layer (l = 1). The set of hyperparameters and their possible values consider in this work

are provided in Table 3.3.

The best set of hyperparameters are selected based on empirical evaluation and Table 3.4 summa-

rizes the optimal parameters tuned on validation datasets.
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Hyperparameters Values

Batch size 8, 16, 32, 64, 128, 256
Learning rate 0.1, 0.01, 0.005, 0.002, 0.001, 0.0001
Negative samples 2, 5, 10, 15, 20
Embedding dimension d 32, 64, 128, 256

Table 3.3: Hyperparameters and the set of considered values

Hyperparameter Yeast Ecoli

Batch size 256 128
Learning rate 0.005 0.002
Negative samples 10 10
Embedding dimension (d) 128 128

Table 3.4: Optimal hyperparamter settings of the model

3.4 Results and discussion

In this section, we evaluate and compare various embedding methods for biological interaction

prediction task. We show the effect of network sparsity on the performance of the proposed model.

3.4.1 Gene interaction prediction

For this experiment, we randomly remove 50% of the interactions from the network as a test set

and train the model with the remaining interactions. Then, the trained model is evaluated on a

test set to see how well the model can predict these missing interactions. Table 3.5 shows that the

proposed model outperforms other baselines by a huge margin. In particular, our method gains

0.287 in AUROC, 0.196 in AP for yeast, and 0.371 in AUROC, 0.259 in AP for E-coli over Isomap.

Similarly, our method achieves significant improvement over node2vec.

3.4.2 Robustness to network sparsity

We further investigate the robustness of the proposed model to network sparsity. To this aim, we

create a testing set with 10% of interactions and create training sets with different percentage of

interactions. Then, we train the model on these training sets and compare their performances on

the test set. Figure 3.4 shows that the performance of the model increases with the increase in
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Datasets
Yeast E-coli

AUROC AUPR AUROC AUPR

Isomap [68] 0.507 0.588 0.559 0.672

LINE [18] 0.726 0.686 0.897 0.851

node2vec [15] 0.739 0.708 0.912 0.862

BioNetEmbedding 0.787 0.784 0.930 0.931

Table 3.5: Area under ROC curve (AUROC) and Area under PR curve (AUPR) for gene interaction
prediction.

training interactions. Specifically, for the network with less portion of training interactions (< 0.5),

the performance improves by a huge margin. However, the performance remains stable when the

percentage of training interactions is greater than 50%.

Figure 3.4: AUROC comparison of model’s performance with respect to network sparsity.

3.5 Application to biomedical networks

While biological system represents the study of living organisms and how they relate to the environ-

ment, biomedical science is specific to human biology and involves the study of interconnections be-

tween human molecular entities and various diseases. With recent advancements of high-throughput

technologies, a large number of heterogeneous datasets have been generated, informing about dif-

ferent aspects of human biological systems. As discussed before, the network representation of
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the biological system simplifies the computational modeling and analysis of these datasets. For

example, various diseases and the set of drugs used to treat these diseases can be represented as

a network and the task of link prediction, in this case, is to predict the set of novel drugs used to

treat a particular disease. In particular, network-based approaches have been explored to find a

set of potential drugs for COVID-19 diseases [69,70].

For this experiment, we explore if our proposed model for gene interaction prediction can be applied

for link prediction tasks in other biomedical networks. To this aim, we consider four datasets to

evaluate the link prediction performance (Table 3.6):

• Comparative Toxicogenomics Database Drug-Disease Association (DDA): Com-

parative Toxicogenomics Database (CTD) [71] provides information about chemical-diseases

associations. We extract the curated associations from CTD and create a network with 92,813

edges between 12,765 nodes. We term this dataset as ”CTD DDA”.

• National Drug File Reference Terminology Drug-Disease Association: Another

drug-disease association (DDA) network is constructed from the National Drug File Reference

Terminology (NDF-RT) in UMLS [72]. The association between drugs and diseases involves

may treat and may be treated by relationships in NDF-RT. The constructed DDA network

has 13, 545 nodes with 56,515 edges. We term this dataset as ”NDFRT DDA”.

• Drug-Drug interactions (DDI): Drugbank [73] is a freely accessible online database that

stores detailed information about different drugs and their associations with other drugs. We

construct a DDI network where nodes represent drugs and the edges represent the side effects

of two drugs if taken simultaneously. The DDI network has 2191 drugs as nodes and 242,027

associations between them. We term this network as ”Drugbank DDI”.

• Protein-protein interaction (PPI): Human protein-protein interaction network is con-

structed by extracting PPIs from STRING database [74]. STRING database also provides

the confidence score for each interaction indicating the possibility of that interaction to be

a true positive interaction. We selected 359,776 interactions between 15,131 proteins with a

confidence score larger than 0.7. We term this network as ”STRING PPI”.

Given a biomedical network G, we aim to predict missing interactions in the network. For this

experiment, we split the biomedical interactions as training, and test set in an 8:2 ratio. We compare

the performance of our method with five matrix factorization-based methods, three random walk-

based methods, and three neural network-based methods discussed in [24]. Table 3.7 shows that
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Dataset # Nodes # Edges

CTD DDA 9,580 drugs, 3,185 diseases 92,813

NDFRT DDA 12,337 drugs, 1,208 diseases 56,515

Drugbank DDI 2,191 drugs 242,027

STRING PPI 15,131 proteins 359,776

Table 3.6: Summary of the datasets used in our experiments.

our proposed method achieves significant improvement over several baselines. GraRep achieves the

best performance among the baselines on CTD DDA, NDFRT DDA, DrugBank DDI, and struc2vec

achieves the best performance on the STRING PPI dataset. Moreover, our method achieves 0.93%

gain in CTD DDA dataset, 1.46% in NDFRT DDA, 3.89% in Drugbank DDI over GraRep, 7.92%

over struc2vec in STRING PPI.

Method
CTD NDFRT Drugbank STRING

DDA DDA DDI PPI

MF

Laplacian 0.856±0.004 0.930±0.003 0.796±0.002 0.639±0.021
SVD 0.936 ± 0.002 0.779±0.003 0.919±0.001 0.867±0.001
GF 0.884 ± 0.004 0.720±0.006 0.882±0.003 0.817±0.005

HOPE 0.951 ± 0.001 0.949±0.001 0.923±0.001 0.839±0.001
GraRep 0.960 ± 0.001 0.963±0.001 0.925±0.001 0.894±0.001

RW

DeepWalk 0.929 ± 0.002 0.783±0.004 0.921±0.001 0.884±0.001
node2vec 0.911 ± 0.002 0.819±0.005 0.902±0.001 0.828±0.003
struc2vec 0.965 ± 0.001 0.958±0.001 0.904±0.001 0.909±0.001

NN

LINE 0.965 ± 0.001 0.962±0.002 0.905±0.002 0.859±0.003
SDNE 0.935 ± 0.010 0.944±0.004 0.911±0.006 0.884±0.008
GAE 0.937 ± 0.001 0.813±0.007 0.917±0.001 0.900±0.001

Ours 0.974 ± 0.005 0.977±0.002 0.961±0.003 0.981±0.001

Table 3.7: Average AUC score (with one standard deviation) averaged over five independent runs
for link prediction.

This demonstrates that our proposed model can be applied for various biomedical link prediction

tasks to improve the prediction performance.
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3.6 Conclusion

We introduced a neural network model for gene interaction prediction using biological network data.

Our model, termed BioNetEmbedding, learns the representation for genes by capturing the first-

order and second-order network proximity from interaction networks. Experiments on real-world

datasets suggest that our proposed model is capable of encoding network properties for interaction

prediction. Furthermore, the results indicate that our model outperforms several previously pro-

posed methods by a huge margin. Moreover, our method is applicable to other biomedical networks

that have network structure only and achieves superior performance compared to various baselines.

In following chapters, we will discuss our novel approach to integrate heterogeneous datasets with

network structure.



Chapter 4

Representation Learning of biological

networks using local network

properties and continuous node

features

Previously in Chapter 3, we explored the problem of interaction prediction using a biological net-

work constructed from known interactions. Since the constructed interaction network is noisy,

sparse, and incomplete, this limits the model’s capability to predict novel interaction for genes with

zero or few interactions. To solve this problem, we propose to integrate additional information

for entities with network properties. In particular, gene expression data has been well studied in

literature to uncover gene regulatory interactions, based on the mutual dependencies between the

expression of regulatory genes and their target genes. We thus hypothesize that the integration of

expression data allows the models to identify the pair of genes that are co-expressed. This chapter

describes the novel neural network that integrates gene expression data with gene interaction net-

works to predict novel interactions. In the next chapter, we will discuss the integration of sequential

features (e.g. protein sequences) with interaction networks.

32
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4.1 Introduction

A comprehensive study of gene interactions (GIs) provides means to identify the functional relation-

ship between genes and their corresponding products, as well as insights into underlying biological

phenomena that are critical to understanding phenotypes in health and disease conditions [8,9,10].

Since advancements in measurement technologies have led to numerous high-throughput datasets,

there is great value in developing efficient computational methods capable of automatically extract-

ing and aggregating meaningful information from heterogeneous datasets to infer gene interactions.

Although a wide variety of machine learning models have been developed to analyze high-throughput

datasets for GI prediction [75], there are still some major challenges, such as efficient analysis of

large heterogeneous datasets, integration of biological information, and effective feature engineer-

ing. To address these challenges, we propose a novel deep learning framework to integrate diverse

biological information for GI network inference [76].

Our proposed method frames GI network inference as a problem of network embedding. In par-

ticular, we represent gene interactions as a network of genes and their interactions and create a

deep learning framework to automatically learn an informative representation that integrates both

the topological property and the gene expression property. A key insight behind our gene network

embedding method is the ”guilt by association” assumption [77], that is, genes that are co-localized

or have similar topological roles in the interaction network are likely to be functionally correlated.

This insight not only allows us to discover similar genes and proteins but also to infer the properties

of unknown ones. Our network embedding generates a lower-dimensional vector representation of

the gene topological characteristics. The relationships between genes including higher-order topo-

logical properties are captured by the distances between genes in the embedding space. The new

low-dimensional representation of a GI network can be used for various downstream tasks, such as

gene function prediction, gene interaction prediction, and gene ontology reconstruction [60].

Furthermore, since the network embedding method can only preserve the topological properties of

a GI network (Chapter 3), and fails to generalize for genes with no interaction information, our

scalable deep learning method also integrates heterogeneous gene information, such as expression

data from high throughput technologies, into the GI network inference. Our method projects genes

with similar attributes closer to each other in the embedding space, even if they may not have

similar topological properties. The results show that by integrating additional gene information in

the network embedding process, the prediction performance is improved significantly.

In summary, our contributions are as follows:
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• We propose a novel deep learning framework to learn lower-dimensional representations while

preserving topological and attribute proximity of GI networks.

• We evaluate the prediction performance on the datasets of two organisms based on the em-

bedded representation and achieve significantly better predictions than the strong baselines.

• Our method can predict new gene interactions that are validated on an up-to-date GI database.

4.2 Methods

4.2.1 Preliminaries

We formally define the problem of gene network inference as a network embedding problem using

the concepts of topological and attribute proximity as demonstrated in Figure 4.1.
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Figure 4.1: An illustration of gene network embedding (GNE). GNE integrates gene interaction
network and gene expression data to learn a lower-dimensional representation. The nodes represent
genes, and the genes with the same color have similar expression profiles. GNE groups genes with
similar network topology, which are connected or have a similar neighborhood in the graph, and
attribute similarity (similar expression profiles) in the embedded space.

According to Definition 2.1, V denotes genes or proteins, E denotes interactions between genes/proteins

and X denotes gene expression data.

Genes directly connected with a gene vi in the gene network denote the local network structure of

gene vi. We define local network structures as the first-order proximity of a gene.

First-order and second-order proximity have been defined in Definition 3.1 and 3.2. Integrating first-

order and second-order proximities simultaneously can help to preserve the topological properties
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of the gene network. To generate a more comprehensive representation of the genes, it is crucial

to integrate gene expression data as gene attributes with their topological properties. Besides

preserving topological properties, gene expression provides additional information to predict the

network structure.

Definition 4.1. (Attribute proximity): Attribute proximity denotes the similarity between the

expression of genes. In this chapter, we consider the similarity in expression profiles of genes as

the attribute proximity.

We propose to map gene network structure and their attributes to a low dimensional space z ∈ Rd.

We thus investigate both topological and attribute proximity for gene network embedding, which

is defined as follows:
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Figure 4.2: Overview of Gene Network Embedding (GNE) Framework for gene interaction predic-
tion.

4.2.2 Gene network embedding (GNE) model

Our deep learning framework jointly utilizes gene network structure and gene expression data to

learn a unified representation for the genes as shown in Figure 4.2. The representations capture

the complex statistical relationships between the gene network structure and gene expression data.

We summarize GNE model as:

• One-hot encoded representation of gene is encoded to dense vector v
(s)
i of dimension d × 1
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which captures topological properties and expression vector of gene is transformed to v
(a)
i of

dimension d× 1 which aggregates the attribute information.

• Next, concatenation of two embedded vectors (creates vector with dimension 2d×1) allows to

combine strength of both network structure and attribute modeling. Then, nonlinear trans-

formation of concatenated vector enables GNE to capture complex statistical relationships

between network structure and attribute information and learn better representations.

• Finally, these learned representation of dimension d × 1 is transformed into a probability

vector of length M × 1 in output layer, which contains the predictive probability of gene vi

to all the genes in the network. Conditional probability p(vj |vi) on output layer indicates the

likelihood that gene vj is connected with gene vi.

In addition to notations listed in Table 3.1, we list additional variables for this framework in

Table 4.1.

Symbol Definitions

E Number of experiments used to measure expression levels of
genes

v
(a)
i Attribute representation of gene vi

vi Concatenated representation of network properties and ex-
pression data

Watt Weight matrix for attribute embedding

Table 4.1: Terms and Notations for Gene network embedding

Next, we discuss different components of GNE in detail.

Gene network structure modeling

GNE framework preserves first-order and second-order proximity of genes in the gene network as

discussed in Section 3.2.

Gene expression modeling

In addtion to encoding network structure, GNE encodes the expression data from microarray

experiments to the dense representation using a non-linear transformation. The amount of mRNA
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produced during transcription measured over a number of experiments helps to identify similarly

expressed genes. Since expression data have inherent noise [78], transforming expression data

using a non-linear transformation can be helpful to uncover the underlying representation. Let

xi be the vector of expression values of gene vi measured over E experiments. Using non-linear

transformation, we can capture the non-linearities of expression data of gene vi as:

v
(a)
i = δa(Watt · xi) (4.1)

where v
(a)
i represents the lower dimensional attribute representation vector for gene vi. Watt, and δa

represents the weight matrix, and activation function of attribute transformation layer respectively.

We use deep model to approximate the attribute proximity by capturing complex statistical rela-

tionships between attributes and introducing non-linearities, similar to structural embedding.

GNE integration

GNE models the integration of network structure and attribute information to learn more compre-

hensive embeddings for gene networks. GNE takes two inputs: one for topological information of

a gene as one hot gene ID vector and another for its expression as an attribute vector. Each input

is encoded to its respective embeddings. One hot representation for a gene vi is projected to the

dense vector v
(s)
i which captures the topological properties. Non-linear transformation of attribute

vector generates compact representation vector v
(a)
i . Previous work [18] combines heterogeneous

information using the late fusion approach. However, the late fusion approach is the approach of

learning separate models for heterogeneous information and integrating the representations learned

from separate models. On the other hand, the early fusion combines heterogeneous information

and train the model on combined representations [79]. We thus propose to use the early fusion

approach to combine them by concatenating. As a result, learning from topological and attribute

information can complement each other, allowing the model to learn their complex statistical rela-

tionships as well. Embeddings from topological and attribute information are concatenated into a

vector as:

vi = [v
(s)
i λv

(a)
i ] (4.2)

where λ is the importance of gene expression information relative to topological information.

The concatenated vectors are fed into a multilayer perceptron with l hidden layers. The hidden

representations from each hidden layer in GNE are denoted as h
(0)
i ,h

(1)
i , .....,h

(l)
i , which can be
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defined as :

h
(0)
i = δ(W0vi + b(0)),

h
(l)
i = δl(Wlh

(l−1)
i + b(l))

(4.3)

where δl represents the activation function of layer l. h
(0)
i represents initial representation and h

(l)
i

represents final representation of the input gene vi. Transformation of input data using multiple

non-linear layers has shown to improve the representation of input data [80]. Moreover, stacking

multiple layers of non-linear transformations can help to learn high-order statistical relationships

between topological properties and attributes.

At last, final representation h
(l)
i of a gene vi from the last hidden layer is transformed to probability

vector, which contains the conditional probability of all other genes to vi:

oi = [p(v1|vi), p(v2|vi), . . . , p(vM |vi)] (4.4)

where p(vj |vi) represents the probability of gene vi being related to gene vj and oi represents the

output probability vector with the conditional probability of gene vi being connected to all other

genes.

Weight matrix Wout between the last hidden layer and the output layer corresponds to the ab-

stractive representation of neighborhood of genes. A jth row from Wout refers to the compact

representation of neighborhood of gene vj , which can be denoted as ṽj . The proximity score

between gene vi and vj can be defined as:

f(vi, vj) = ṽj · h(l)
i (4.5)

which can be replaced into Eq. 3.1 to calculate the conditional probability:

p(vj |vi) =
exp(ṽj · h(l)

i )∑M
j′=1 exp(ṽj′ · h

(l)
i )

(4.6)

Our model learns two latent representations h
(l)
i and ṽi for a gene vi where h

(l)
i is the represen-

tation of gene as a node and ṽi is the representation of the gene vi as a neighbor. Neighborhood

representation ṽi can be combined with node representation h
(l)
i by addition [61, 62] to get final

representation for a gene as:
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zi = h
(l)
i + ṽi (4.7)

which returns us better performance results.

For an edge connecting gene vi and vj , we create a feature vector by combining embeddings of

those genes using Hadamard product. Empirical evaluation shows features created with Hadamard

product gives better performance over concatenation [15]. Then, we train a logistic classifier on

these features to classify whether genes vi and vj interact or not. We follow same optimization for

the parameters of GNE model as discussed in Section 3.2.

4.2.3 Experimental setup

We evaluate our model using two real organism datasets. We take gene interaction network data

from the BioGRID database [66] and gene expression data from DREAM5 challenge [81]. We

use two interaction datasets from the BioGRID database (2017 released version 3.4.153 and 2018

released version 3.4.158) to evaluate the predictive performance of our model. Self-interactions and

redundant interactions are removed from interaction datasets. The statistics of the datasets are

shown in Table 4.2.

#(Interactions) Expression data

Datasets #(Genes) 2017 version 2018 version #(Experiments)

Yeast 5,950 544,652 557,487 536

E. coli 4,511 148,340 159,523 805

Table 4.2: Statistics of the interaction datasets from BioGRID and the gene expression data from
DREAM5 challenge.

We evaluate the learned embeddings to infer gene network structure. We randomly hold out a

fraction of interactions as the validation set for hyper-parameter tuning. Then, we divide the

remaining interactions randomly into training and testing datasets with an equal number of inter-

actions. Since the validation set and the test set contains only positive interactions, we randomly

sample an equal number of gene pairs from the network, considering the missing edge between the

gene pairs represents the absence of interactions. Given the gene network G with a fraction of

missing interactions, the task is to predict these missing interactions.

We compare the GNE model with five competing methods. Correlation directly predicts the in-
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teractions between genes based on the correlation of expression profiles. Then, the following three

baselines (Isomap, LINE, and node2vec) are network embedding methods. Specifically, node2vec is

a strong baseline for structural network embedding. We evaluate the performance of GNE against

the following methods:

• Correlation [82]: It computes Pearson’s correlation coefficient between all genes and the

interactions are ranked via correlation scores, i.e., highly correlated gene pairs receive higher

confidence.

• Isomap [68]: It computes all-pairs shortest-path distances to create a distance matrix and

performs singular-value decomposition of that matrix to learn a lower-dimensional representa-

tion. Genes separated by the distance less than threshold ϵ in embedding space are considered

to have the connection with each other and the reliability index, a likelihood indicating the

interaction between two genes, is computed using FSWeight [83].

• LINE [18]: Two separate embeddings are learned by preserving first-order and second-order

proximity of the network structure respectively. Then, these embeddings are concatenated to

get final representations for each node.

• node2vec [15]: It learns the embeddings of the node by applying the Skip-gram model to

node sequences generated by a biased random walk. We tuned two hyper-parameters p and

q that control the random walk.

Note that competing methods such as Isomap, LINE, and node2vec are designed to capture only

the topological properties of the network. For the fair comparison with GNE that additionally

integrates expression data, we concatenate attribute feature vector with learned gene representation

to extend baselines by including the gene expression. We name these variants as Isomap+, LINE+,

and node2vec+.

We have implemented GNE with the TensorFlow framework [67]. The parameter settings for

GNE are determined by their performance on the validation set. We randomly initialize GNE’s

parameters, optimizing with mini-batch Adam. We test the batch size of [8, 16, 32, 64, 128, 256]

and learning rate of [0.1, 0.01, 0.005, 0.002, 0.001, 0.0001]. We test the number of negative samples

to be [2, 5, 10, 15, 20] as suggested by [39]. We test the embedding dimension d of [32, 64, 128,

256] for all methods. Also, we evaluate model’s performance with respect to different values of λ

[0, 0.2, 0.4, 0.6, 0.8, 1], which is discussed in more detail later. The parameters are selected based
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Hyperparameter Yeast Ecoli

Batch size 256 128
Learning rate 0.005 0.002
Negative samples 10 10
Embedding dimension (d) 128 128

Table 4.3: Optimal parameter settings for GNE model

on empirical evaluation and Table 4.3 summarizes the optimal parameters tuned on validation data

sets.

To capture the non-linearity of gene expression data, we choose Exponential Linear Unit (ELU) [84]

activation function, which corresponds to δa in Eq. 4.1. Also, ELU activation avoids vanishing

gradient problem and provides improved learning characteristics in comparison to other methods.

We use a single hidden layer (l = 1) with hyperbolic tangent activation (Tanh) to model complex

statistical relationships between topological properties and attributes of the gene. The choice of

ELU for attribute transformation and Tanh for the hidden layer shows better performance upon

empirical evaluation.

We use the area under the ROC curve (AUROC) and area under the precision-recall curve (AUPR)

[85] to evaluate the rankings generated by the model for interactions in the test set. These metrics

are widely used in evaluating the ranked list of predictions in gene interaction [75].

4.3 Results and discussion

We evaluate the ability of our GNE model to predict gene interaction of two real organisms. We

present empirical results of our proposed method against other methods.

4.3.1 Analysis of gene embeddings

We visualize the embedding vectors of genes learned by GNE. We take the learned embeddings,

which specifically model the interactions by preserving topological and attribute similarity. We

embed these embeddings into a 2D space using t-SNE package [86] and visualize them (Figure 4.3).

For comparison, we also visualize the embeddings learned by structure-preserving deep learning

methods, such as LINE, and node2vec.
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(a) (b) (c)

Figure 4.3: Visualization of learned embeddings for genes on E. coli. Genes are mapped to the 2D
space using the t-SNE package with learned gene representations (zi, i = 1, 2, . . . ,M) from different
methods: (a) GNE, (b) LINE, and (C) node2vec as input. Operons 3203, 3274, 3279, 3306, and
3736 of E. coli are visualized and show clustering patterns. Best viewed on screen.

In E. coli, a substantial fraction of functionally related genes is organized into operons, which are

the group of genes that interact with each other and are co-regulated [87]. Since this concept fits

well with the topological and attributes proximity implemented in GNE, we expect GNE to place

genes within an operon close to each other in the embedding space. To evaluate this, we collect

information about operons of E. coli from the DOOR database and visualize the embeddings of

genes within these operons (Figure 4.3).

Figure 4.3 reveals the clustering structure that corresponds to the operons on E. coli. For example,

operon with operon id 3306 consists of seven genes: rsxA, rsxB, rsx, rsxD, rsxG, rsxE, and nth that

are involved in electron transport. GNE infers similar representations for these genes, resulting in

localized projection in the 2D space. Similarly, other operons also show similar patterns.

To test if the pattern in Figure 4.3 holds across all operons, we compute the average Euclidean

distance between each gene’s vector representation and vector representations of other genes within

the same operon. Genes within the same operon have significantly similar vector representation zi

than expected by chance (p-value = 1.75e− 127, 2-sample KS test).

Thus, the analysis here indicates that GNE can learn similar representations for genes with similar

topological properties and expression.
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4.3.2 Gene interaction prediction

We randomly remove 50% of interactions from the network and compare various methods to eval-

uate their predictions for 50% missing interactions. Table 4.4 shows the performance of GNE and

other methods on gene interaction prediction across different datasets. As our method significantly

outperforms other competing methods, it indicates the informativeness of gene expression in pre-

dicting missing interactions. Also, our model is capable of integrating attributes with topological

properties to learn better representations.

Methods
Yeast E. coli

AUROC AUPR AUROC AUPR

Correlation 0.582 0.579 0.537 0.557

Isomap 0.507 0.588 0.559 0.672
LINE 0.726 0.686 0.897 0.851

node2vec 0.739 0.708 0.912 0.862

Isomap+ 0.653 0.652 0.644 0.649
LINE+ 0.745 0.713 0.899 0.856

node2vec+ 0.751 0.716 0.871 0.826

GNE (Topology) 0.787 0.784 0.930 0.931
GNE (our model) 0.825* 0.821* 0.940* 0.939*

Table 4.4: Area under ROC curve (AUROC) and Area under PR curve (AUPR) for gene Interaction
Prediction. + indicates the concatenation of expression data with learned embeddings to create
final representation. * denotes that GNE significantly outperforms node2vec at 0.01 level paired
t-test. Note that method that achieves the best performance is bold faced.

We compare our model with a correlation-based method, that takes only expression data into

account. Our model shows significant improvement of 0.243 (AUROC), 0.242 (AUPR) on yeast

and 0.403 (AUROC), 0.382 (AUPR) on E. coli over correlation-based methods. This improvement

suggests the significance of the topological properties of the gene network.

The network embedding method, Isomap, performs poorly in comparison to correlation-based meth-

ods on yeast because of its limitation on network inference. Deep learning-based network embed-

ding methods such as LINE and node2vec show a significant gain over Isomap and correlation-based

methods. node2vec outperforms LINE across two datasets. Moreover, GNE trained only with topo-

logical properties outperforms these structured-based deep learning methods (Table 4.4). However,

these methods don’t consider the attributes of the gene that we suggest to contain useful informa-

tion for gene interaction prediction. By adding expression data with topological properties, GNE

outperforms structure-preserving deep embedding methods across both datasets.
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Focusing on the results corresponding to the integration of expression data with topological prop-

erties, we find that the method of integrating the expression data plays an essential role in the

performance. The performance of node2vec+ (LINE+, Isomap+) shows little improvement with

the integration of expression data on yeast. However, node2vec+ (LINE+, Isomap+) has no im-

provement or decline in performance on E. coli. The decline in performance indicates that merely

concatenating the expression vector with learned representations for the gene is insufficient to cap-

ture the rich information in expression data. The late fusion approach of combining the embedding

vector corresponding to the topological properties of the gene network and the feature vector rep-

resenting expression data has no significant improvement in the performance (except Isomap). In

contrast, our model incorporates gene expression data with topological properties by the early

fusion method and shows significant improvement over other methods.

4.3.3 Robustness to network sparsity

We investigate the robustness of our model to network sparsity. We hold out 10% interactions as

the test set and change the sparsity of the remaining network by randomly removing a portion of

remaining interactions. Then, we train GNE to predict interactions in the test set and evaluate

the change in performance to network sparsity. We evaluate two versions of our implementations:

GNE with only topological properties and GNE with topological properties and expression data.

The result is shown in Figure 4.4.
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Figure 4.4: AUROC comparison of GNE’s performance with respect to network sparsity. (a) yeast
(b) E. coli. Integration of expression data with topological properties of the gene network improves
the performance for both datasets.
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Figure 4.4 shows that our method’s performance improves with an increase in the number of training

interactions across datasets. Also, our method’s performance improves when expression data is

integrated with the topological structure. Specifically, GNE trained on 10% of total interactions

and attributes of yeast shows a significant gain of 0.172 AUROC (from 0.503 to 0.675) over GNE

trained only with 10% of total interactions. Similarly, GNE improves the AUROC from 0.497 to

0.816 for E. coli with the same setup as shown in Figure 4.4. The integration of gene expression

data results in less improvement when we train GNE on a relatively large number of interactions.

Moreover, the performance of GNE trained with 50% of total interactions and expression data is

comparable to be trained with 80% of total interactions without gene expression data as shown

in Figure 4.4. The integration of expression data with topological properties into the GNE model

has more improvement on E. coli than yeast when we train with 10% of total interactions for

each dataset. The reason for this is likely the difference in the number of available interactions

for yeast and E. coli (Table 4.2). This indicates the informativeness of gene expression when we

have few interactions and supports the idea that the integration of expression data with topological

properties improves gene interaction prediction.

4.3.4 Hyperparameter validation

GNE involves the parameter λ that controls the importance of gene expression information relative

to topological properties of gene network as shown in Eq. 4.2. We examine how the choice of the

parameter λ affects our method’s performance. Figure 4.5 shows the comparison of our method’s

performance with different values of λ when GNE is trained on the varying percentage of total

interactions.

We evaluate the impact of λ on range [0, 0.2, 0.4, 0.6, 0.8, 1]. When λ becomes 0, the learned

representations model only topological properties. In contrast, setting the high value for λ makes

GNE learn only from attributes and degrades its performance. Therefore, our model performs well

when λ is within [0, 1].

Figure 4.5 shows that the integration of expression data improves the performance of GNE to pre-

dict gene interactions. The impact of λ depends on the number of interactions used to train GNE.

If GNE is trained with few interactions, integration of expression data with topological properties

plays a vital role in predicting missing interactions. As the number of training interactions in-

creases, integration of expression data has less impact but still improves the performance over only

topological properties.
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Figure 4.5: Impact of λ on GNE’s performance trained with different percentages of interactions.
(a) yeast (b) E. coli. Different lines indicate performance of GNE trained with different percentages
of interactions.

Figure 4.4 and 4.5 demonstrate that the expression data contributes to the increase in AUROC

by nearly 0.14 when interactions are less than 40% for yeast and about 0.32 when interactions are

less than 10% for E. coli. More topological properties and attributes are required for yeast than

E. coli. It may be related to the fact that yeast is a more complex species than E. coli. Moreover,

we can speculate that more topological properties and attributes are required for higher eukaryotes

like humans. In humans, GNE that integrates topological properties with attributes may be more

successful than the methods that only use either topological properties or attributes.

This demonstrates the sensitivity of GNE to parameter λ. This parameter λ has a considerable

impact on our method’s performance and should be appropriately selected.

4.3.5 Investigation of GNE’s predictions

We investigate the predictive ability of our model in identifying new gene interactions. For this aim,

we consider two versions of BioGRID interaction datasets at two different time points (2017 and

2018 version), where the older version is used for training, and the newer one is used for testing the

model (temporal holdout validation). The 2018 version contains 12,835 new interactions for yeast

and 11,185 new interactions for E. coli than the 2017 version. GNE’s performance trained with 50%

and 80% of total interactions is comparable for both yeast and E. coli (Figures 4 and 5). We thus

train our model with 50% of total interactions from the 2017 version to learn the embeddings for
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genes and demonstrate the impact of integrating expression data with topological properties. We

create the test set with new interactions from the 2018 version of BioGRID as positive interactions

and the equal number of negative interactions randomly sampled. We make predictions for these

interactions using learned embeddings and create a list of (Gene vi, Gene vj , probability), ranked

by the predicted probability. We consider predicted gene pairs with the probabilities of 0.5 or

higher but are missing from BioGRID for further investigation as we discuss later in this section.
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Figure 4.6: Temporal holdout validation in predicting new interactions. Performance is measured
by the area under the ROC curve and the area under the precision-recall curve. Shown are the
performance of each method based on the AUROC (A, B) and AUPR (C, D) for yeast and E.
coli. The limit of the y-axis is adjusted to [0.5, 1.0] for the precision-recall curve to making the
difference in performance more visible. GNE outperforms LINE and node2vec.

The temporal holdout performance of our model in comparison to other methods is shown in

Figure 4.6. We observe that GNE outperforms both node2vec and LINE in temporal holdout

validation across both yeast and E. coli datasets, indicating GNE can accurately predict new genetic
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interactions. Table 4.5 shows that GNE achieves substantial improvement of 7.0 (AUROC), 7.4

(AUPR) on yeast and 6.6 (AUROC), 5.9 (AUPR) on E. coli datasets.

Methods
Yeast E. coli

AUROC AUPR AUROC AUPR

LINE 0.620 0.611 0.569 0.598

node2vec 0.640 0.609 0.587 0.599

GNE (our model) 0.710 0.683 0.653 0.658

Table 4.5: AUROC and AUPR comparision for temporal holdout validation. Note that method
that achieves the best performance is bold faced.

Table 4.6 shows the top 5 interactions with the significant increase in predicted probability for

both yeast and E. coli after expression data is integrated. We also provide literature evidence

with experimental evidence code obtained from the BioGRID database [66] supporting these pre-

dictions. BioGRID compiles interaction data from numerous publications through comprehensive

curation efforts. Taking new interactions added to BioGRID (version 3.4.158) into consideration,

we evaluate the probability of these interactions predicted by GNE trained with and without ex-

pression data. Specifically, integration of expression data increases the probability of 8,331 (out of

11,185) interactions for E. coli (improving AUROC from 0.606 to 0.662) and 6,010 (out of 12,835)

interactions for yeast (improving AUROC from 0.685 to 0.707). The integration of topology and

expression data significantly increases the probabilities of true interactions between genes.

To further evaluate GNE’s predictions, we consider the new version of BioGRID (version 3.4.162)

and evaluate 2,609 yeast gene pairs (Additional file 1 Table S1) and 871 E. coli gene pairs (Additional

file 1 Table S2) predicted by GNE with the probabilities of 0.5 or higher. We find that 128 (5%)

yeast gene pairs and 78 (9%) E. coli gene pairs are true interactions that have been added to

the latest release of BioGRID. We then evaluate the predictive ability of GNE by calculating the

percentage of true interactions for different probability bins (Figure 4.7). 16% of predicted yeast

gene pairs and 17.5% of predicted E. coli gene pairs with the probability higher than 0.9 are true

interactions. This suggests that gene pairs with high probability predicted by GNE are more likely

to be true interactions.

To support our finding that GNE predicted gene pairs have high value, we manually check gene

pairs that have high predicted probability but are missing from the latest BioGRID release. We

find that these gene pairs interact with the same set of other genes. For example, GNE predicts the

interaction between YDR311W and YGL122C with a probability of 0.968. Mining the BioGRID
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Organism

Probability

Gene i Gene j

Experimental

Topology
Topology + Evidence

Expression Code

Yeast

0.287 0.677 TFC8 DHH1 Affinity Capture-RNA [88]

0.394 0.730 SYH1 DHH1 Affinity Capture-RNA [88]

0.413 0.746 CPR7 DHH1 Affinity Capture-RNA [88]

0.253 0.551 MRP10 DHH1 Affinity Capture-RNA [88]

0.542 0.835 RPS13 ULP2 Affinity Capture-MS [89]

E. coli

0.014 0.944 ATPB RFBC Affinity Capture-MS [90]

0.012 0.941 NARQ CYDB Affinity Capture-MS [90]

0.013 0.937 PCNB PAND Affinity Capture-MS [90]

0.015 0.939 FLIF CHEY Affinity Capture-MS [90]

0.017 0.938 YCHM PROB Affinity Capture-MS [90]

Table 4.6: New gene interactions that are assigned high probability by GNE and the evidences
supporting the existence of these predicted interactions.

(a) (b)

Figure 4.7: The percentage of true interactions from GNE’s predictions with different probability
bins. (a) yeast (b) E. coli. We divide the gene pairs based on their predicted probabilities to
different probability ranges (as shown in the x-axis) and identify the number of predicted true
interactions in each range. Each bar indicates the percentage of true interactions out of predicted
gene pairs in that probability range.

database, we find that these genes interact with the same set of 374 genes. Similarly, E. coli genes
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DAMX and FLIL with the predicted probability of 0.998 share 320 interacting genes. In this way,

we identify all interacting genes shared by each of the predicted gene pairs in yeast and E. coli

(Additional file 1 Table S1 and S2). Figure 4.8 shows the average number of interacting genes

shared by a gene pair. In general, gene pairs with a high GNE probability tend to have a large

number of interacting genes. For example, gene pairs with the probability greater than 0.9 have, on

average, 82 common interacting genes for yeast and 58 for E. coli. Two sample t-test analysis has

shown that there is a significant difference in the number of shared interacting genes for different

probability bins (Table 4.7).

(a) (b)

Figure 4.8: The average number of common interacting genes between the gene pairs predicted
by GNE. (a) yeast (b) E. coli. We divide gene pairs into different probability groups based on
predicted probabilities by GNE and compute the number of common interacting genes shared by
these gene pairs. We categorize these gene pairs into different probability ranges (as shown in the
x-axis). Each bar represents the average number of common interacting genes shared by gene pairs
in each probability range.

Moreover, we search the literature to see if we can find supporting evidence for predicted interac-

tions. We find literature evidence for an interaction between YCL032W (STE50) and YDL035C

(GPR1), which has a probability of 0.98 predicted by GNE. STE50 is an adaptor that links G-

protein complex in cell signaling, and GPR1 is a G-protein coupled receptor. Both STE50 and

GPR1 share a common function of cell signaling via G-protein. Besides, STE50p interacts with

STE11p in the two-hybrid system, which is a cell-based system examining protein-protein interac-

tions [91]. Also, BioGRID has evidence of 30 physical and 4 genetic associations between STE50

and STE11. Thus, STE50 is highly likely to interact with STE11, which in turn interacts with
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Probability bin Probability bin p-value p-value

for Sample A for Sample B for yeast for E. coli

0.5 - 0.6 0.6 - 0.7 9.2e− 14 6.9e− 02

0.5 - 0.6 0.7 - 0.8 3.02e− 51 1.23e− 05

0.5 - 0.6 0.8 - 0.9 6.1e− 117 7.4e− 14

0.5 - 0.6 0.9 - 1.0 2.1e− 177 3.7e− 39

0.6 - 0.7 0.7 - 0.8 8.2e− 17 1.1e− 02

0.6 - 0.7 0.8 - 0.9 3.5e− 69 9.2e− 09

0.6 - 0.7 0.9 - 1.0 2.1e− 128 1.9e− 30

0.7 - 0.8 0.8 - 0.9 4.7e− 28 4.8e− 04

0.7 - 0.8 0.9 - 1.0 6.2e− 87 7.4e− 23

0.8 - 0.9 0.9 - 1.0 4.3e− 35 5.1e− 13

Table 4.7: Results of two-sample t-test.

GPR1.

This analysis demonstrates the potential of our method in the discovery of gene interactions. Also,

GNE can help the curator to identify interactions with strong potential that need to be looked at

with experimental validation or within the literature.

4.4 Conclusion

We developed a novel deep learning framework, namely GNE to perform gene network embedding.

Specifically, we design deep neural network architecture to model the complex statistical relation-

ships between gene interaction network and expression data. GNE is flexible to the addition of

different types and several attributes. The features learned by GNE allow us to use out-of-the-box

machine learning classifiers like Logistic Regression to predict gene interactions accurately.

GNE relies on a deep learning technique that can learn the underlying patterns of gene interactions

by integrating heterogeneous data and extracts features that are more informative for interaction

prediction. Experimental results show that GNE achieves better performance in gene interaction

prediction over other baseline approaches in both yeast and E. coli organisms. Also, GNE can help

the curator to identify the interactions that need to be looked at.



Chapter 5

Representation Learning of biological

networks using local network

properties and sequential node

features

In Chapter 4, we discussed the novel neural network for network representation learning that

integrates continuous features with network structure. The proposed model takes node ID vector

and node attributes as input to learn informative representation of nodes. The major limitation

of the approach discussed in previous chapter is that these methods are not applicable to unseen

nodes. In other words, this method can’t make novel predictions for new nodes in the network

since it requires node ID to be available during training and thus requires retraining whole model

to make prediction for novel cases.

To address the problem, we design a novel neural network to learn representation of biological

entities with only the node attributes as input and employing pairwise ranking loss function for op-

timization based on latent representation of entities. In this chapter, we focus on protein sequences

as they are the most abundant and well-studied data available for proteins and thus consider to

integrate protein sequences with interaction network. Furthermore, we propose to encode sequences

as Gaussian distributions instead of vector representations to capture uncertainty associated with

the representation. The proposed sparse regularization outputs the sparse mask that aligns with

the biological motifs from pfam database, indicating the ability of our model to provide biological

52
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insights to interpret the predictions.

5.1 Introduction

Proteins are the functional units within an organism that form molecular machines organized by

their protein-protein interactions (PPIs) to carry out many biological and molecular processes.

The primary structure of a protein, the protein sequence, determines the protein’s unique three-

dimensional shape, giving rise to an assumption that knowledge of the protein sequence alone might

be sufficient to model the interaction between two proteins [92,93]. There is a longstanding interest

in predicting PPIs from protein sequences which are by far the most abundant data available for

proteins [94]. Traditional methods proposed to model PPIs involve extracting features based on

domain expertise and training machine learning model on these features [94, 95, 96]. The perfor-

mance of these methods relies heavily on the capability to select appropriate features, while the

extracted features lack enough information about the interactions.

In this work, we propose a novel method to address these challenges. Specifically, we aim to learn

a bidirectional GRU (BiGRU) model that maps variable-length sequences to a sequence of vector

representations - one per amino acid position that encodes the sequential and contextual proper-

ties of amino acids. Since proteins interact with other proteins that perform different functions

within a cell and even have different sequence patterns, we further encode the representation to the

Gaussian distribution instead of a single point to capture uncertainty about its representation. We

then define the cost function that incorporates the contrastive criteria between the latent Gaus-

sian distributions such that the similarity between these distributions effectively captures complex

interactions between proteins. It allows our model to minimize the statistical distance between

interacting proteins while maximizing the distance for non-interacting proteins.

Alongside making accurate PPI predictions, it is crucial to have interpretable models that help

domain experts understand how individual amino acids in the sequence contribute to the model’s

decisions. However, none of the state-of-the-art methods can provide such interpretability, limiting

their practicality from biological perspectives. Since only a few amino acids in the interface region

of the sequences are involved in interactions with other proteins [97], we, therefore, design a sparse

and structured gate mechanism to guide the model to selectively focus on few amino acids in the

sequence. The sparse gating mechanism outputs sparse weights - one per amino acid position -

that explains how much contribution each amino acid makes and thus enhances interpretability.
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Experimental results show that our method outperforms state-of-the-art methods on two chal-

lenging datasets: yeast and human PPIs from the BioGRID interaction database. Finally, we

demonstrate that the sparse gate values learned by our model correspond to the biologically inter-

pretable protein motifs. A literature-based case study illustrates that our model effectively learns

to identify the important residues from the sequence.

5.2 Related works

Traditional methods focus on extracting features from protein sequences such as autocovariance

(AC) [95], conjoint triads (CT) [93] and composition-transition-distribution (CTD) [94] descriptors

and training a binary classifier on these features to predict PPIs [95, 96]. Since these extracted

features only summarize the specific aspects of protein sequences such as physicochemical proper-

ties, frequencies of local patterns, and the positional distribution of amino acids, they lack enough

information about the interactions.

Recently, deep learning architectures have been developed to address PPI prediction by automati-

cally extracting useful features from protein sequences [98,99]. These methods adopt deep-Siamese

like neural networks to model the mutual influence between protein sequences. They use encoder

based on a convolutional neural network (CNN) to capture local features and recurrent neural

network (RNN) to capture sequential and contextualized features from protein sequences. The

encoder encodes a pair of sequences to lower-dimensional sequence vectors and a binary classifier

predicts the probability of interaction based on these sequence vectors.

Specifically, DPPI [98] uses a deep-CNN based Siamese architecture that focuses on capturing

local patterns from protein evolutionary profiles [100]. However, it requires extensive effort in

data-preprocessing, specifically in constructing evolutionary profiles from protein sequences using

Position-Specific Iterative BLAST (PSI-BLAST) [101]. To construct an evolutionary profile for a

protein sequence, PSI-BLAST searches against NCBI non-redundant protein database with nearly

184 million sequences, which is time-consuming and makes it unscalable to a large number of

protein sequences. However, PIPR [99] incorporates a deep residual recurrent convolutional neural

network (RCNN) for PPI prediction using only the sequences of the protein pair. PIPR uses residual

RCNN encoder that combines CNN to capture local features and RNN to capture sequential and

contextualized features from protein sequences. The sequence representation for each protein is

obtained by feeding its sequence through the deep sequence encoder with multiple layers of RCNN

units. The non-intuitive mapping from protein sequences to their sequence representation makes
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the representation difficult to interpret.

5.3 Method

A protein sequence s is a list of amino acids [a1, a2, . . . , aL] where al is the amino acid at position l

and L is the length of the sequence. We next formally define the problem of learning representation

from protein sequences.

Definition 5.1. (Protein sequence Gaussian embedding): Using Definition 2.2, a protein-

protein interaction network G = (V, E ,X) with protein sequences as node attributes X, we aim

to map a protein sequence s to a lower-dimensional Gaussian distribution with formal format as

follows: f : s → (µµµ,ΣΣΣ), where µµµ ∈ Rd, and ΣΣΣ ∈ Rd×d with d ≪ L denoting the dimension of the

Gaussian distribution.

Next, we employ the Wasserstein distance as a measure of how different are the encoded Gaussian

distributions of protein sequences. In this work, the goal of PPI prediction is to learn a model that

predicts a smaller Wasserstein distance between the Gaussian distributions of interacting proteins

and a larger difference for non-interacting proteins.

We introduce our deep learning framework for PPI prediction from sequences. The overall archi-

tecture of the proposed framework is illustrated in Figure 5.1. In step 1, the sequence encoder

incorporates a bidirectional gated recurrent unit (BiGRU) to encode the amino acid sequence to

sequence of vector representations. In step 2, the importance gate models dependencies between all

the positions in the sequence, which could allow it to directly model residue-residue dependencies.

This enables the model to compute the importance of amino acid in each position based on the se-

quence of vector representations. In step 3, the representation of sequence is encoded into Gaussian

representation with mean µµµ and ΣΣΣ. In step 4, a pairwise ranking loss is employed to minimize the

statistical distance between interacting proteins while maximizing the distance for non-interacting

proteins.

5.3.1 GRU-based sequence encoder

In step 1 as shown in Figure 5.1, the encoder takes a sequence of amino acids and encodes it to a

sequence of vector representations - one per amino acid position. In particular, a one-hot encoded
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Figure 5.1: Diagram of the model. A mini-batch of protein sequence is encoded to Gaussian distri-
bution µµµ and ΣΣΣ using BiGRU encoder with sparse regularization. Model is trained by optimizing
the pairwise Wasserstein distance between the training tuples (i.e. positive and negative interac-
tions).

representation of amino acid al is embedded to a vector representation xl through an embedding

matrix:

xl = Weal (5.1)

where We ∈ RN×d is the weight of the embedding layer.

To learn the sequential and contextualized representation of the amino acids in the sequence s, we

adopt the bidirectional Gated Recurrent Unit (BiGRU) that summarizes the sequence information

from both directions. The sequence of vector representation xl is then fed into the bidirectional

gated recurrent unit. It contains two encoding processes: a forward encoding
−−−→
GRU which processes

the sequence s from position 1 to L , and a backward encoding
←−−−
GRU which processes the sequence

s from position L to 1.
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hl = BiGRU(xl) = [
−−−→
GRU(xl),

←−−−
GRU(xl)] (5.2)

where hl represents the GRU hidden state for amino acid al. The representation of amino acid hl

is the concatenation of forward hidden state
−→
h l and backward hidden state

←−
h l which summarizes

the information of whole sequence centered around al.

5.3.2 Sparse gating mechanism

Proteins bind to each other at specific binding domains on each protein. These domains can be just

a few peptides long or span hundreds of amino acids. For this purpose, we introduce additional

gates g = {g1, g2, . . . gL} indicating the activation of each amino acid. The amino acid al is active

if gl > 0 and is inactive when gl is 0. The gate values gl for the amino acid al, i.e., gl ∈ [0, 1] with 1

representing high importance. Let S = {l|gl > 0} be the set of amino acid that are active indicated

by their respective gate values. We obtain the representation for protein sequences by scaling the

hidden state hl with their respective gates:

vl = gl ⊙ hl (5.3)

v = Concat(l∈S)(vl) (5.4)

where Concat(l∈S) represents the concatenation of sequence vectors for positions with gl > 0. ⊙
denotes the elementwise product between gate values gl and GRU hidden state hl. The sparse gate

values gl leads to the sparse representation v of the sequence. In contrast, for the positions with

gl = 0, the hidden states hl of these positions are not included in the representation v. The sparse

gates act as the controllers to selectively activate the part of the network to account only for the

subset of amino acids of the sequence.

We introduce an auxillary network that takes the GRU hidden states h(.) and generates the gate

values for each position to determine whether the amino acid at that position is important for PPI

prediction. The auxillary network models the long-range pairwise dependencies between amino

acids in the sequence. With the auxillary network, our model explicitly considers dependencies

between all position in the sequence, which could allow it to directly model residue-residue depen-

dencies. In step 2 of Figure 5.1, GRU hidden states hl is transformed to score pl as:

pl = W2(tanh(W1hl + b1)) + b2 (5.5)
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where W1 ∈ Rd×d,W2 ∈ Rd×1, b1 ∈ Rd and b2 ∈ R1 are the weight matrices and biases for

the linear layers. Let p = [p1, p2, . . . , pL] is a vector of scores for amino acids in the sequence s.

Next, we convert the vector of scores p to a probability distribution g so that
∑L

l=1 gl = 1 and

0 ≤ gl ≤ 1. This allows us to quantify the relative contribution of each amino acid for the sequence

representation. The softmax function is a simple choice to map the vector p to a probability

distribution defined as:

softmaxi(p) =
exp(pi)∑
j exp(pj)

(5.6)

Since the resulting softmax distribution has full support, i.e., softmax(pl) > 0 for every al, it forces

all the amino acids in the sequence to receive some probability mass. Sotmax distribution assigns

weights to each amino acid and even an unimportant amino acids have small weights, the weights on

important amino acids become much smaller for long sequences, leading to degraded performance.

However, not all of the amino acids in the sequence contribute towards the certain functions or

interactions.

We introduce a sparsity regularization on p to only select the important sequence patterns, the

set of amino acids, which may corresponds to the interface and may be important for interaction

prediction. We employ sparsemax [102] as gate mechanism:

sparsemax(p) := argmin
g∈∆K

∥g − p∥2, (5.7)

where ∆K := {∈ RK |g ≥ 0,1Tg = 1} and g represents the Euclidean projection of p onto the

(K−1)-dimensional probability simplex. The projection is likely to hit the boundary of the simplex,

leading to sparse outputs, which allows the encoder to select only an informative subset of amino

acids in the sequence. Although sparsemax leads to sparse representation, the sparse weights may

only capture few important amino acids but may not identify a relatively long stretches of amino

acids.

Furthermore, to enable our model to selectively focus on relatively longer stretches of amino acids,

we present fusedmax regularization [103] that not only results in the sparse representations but also

encourages the encoder to assign equal weights for contiguous sets of amino acids of the sequence

while predicting interactions:
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fusedmax(p) := argmin
g∈∆K

1

2
∥g − p

γ
∥2 + λ

L−1∑
j=1

|gj+1 − gj | (5.8)

where γ controls the regularization strength and λ is the tuning parameter that balances the

attention to produce sparse outputs and to assign equal weights to the amino acids within each

segment. From Eq. 5.8, the first part projects the scores p to the probability simplex and the second

part encourages paying equal attention to adjacent amino acids in the sequence. This allows the

model to identify long stretches of amino acids that may bind with the residues from the interacting

proteins

5.3.3 Gaussian representation of sequences

Within an organism, a given protein may be involved in a complex interplay with various proteins

that perform different functions within a cell and even have different sequence patterns. Such

differences should be reflected in the uncertainty of its representation v. To model the uncertainty

about the representation [104, 105], sequence representation v is then encoded to µµµ and ΣΣΣ in the

final layer of the architecture as shown in step 3 in Figure 5.1. To ensure that covariance matrices

ΣΣΣ is positive definite, we use Exponential Linear Unit [84] in the final layer.

µµµ = Wµv + bµ (5.9)

ΣΣΣ = ELU(WΣv + bΣ) + 1 (5.10)

where Wµ,WΣ,bµ and bΣ denote the weight matrices and biases of linear layers that project

intermediate representation v to mean µ and variance Σ of Gaussian representation of the sequence

s. We denote a protein sequence s with a d-dimensional Gaussian distribution (µµµ,ΣΣΣ), where µµµ

represents the center point of the sequence representation in the latent space and ΣΣΣ represents the

uncertainty associated with the representation. With an assumption that the different dimensions

of the latent Gaussian distribution are independent of each other, the covariance matrix ΣΣΣ is a

diagonal matrix.
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5.3.4 Loss function definition

We employ the Wasserstein distance to measure the similarity between the Gaussian distributions

of the proteins to make PPI prediction. Wasserstein distance allows the model to capture the tran-

sitivity property of PPIs that measures the tendency of proteins to cluster together into functional

modules and protein complexes [106].

The pth Wasserstein distance between two probability measures µ and ν is defined as:

Wp(µ, ν)
p = inf E[d(X,Y)p] (5.11)

where E[Z] denotes the expected value of a random variable Z and the infimum is taken over all

joint distributions of random variables X and Y with marginals µ and ν respectively. Wasserstein

distance is a well-defined measure that preserves both the symmetry and triangular inequality [107].

Wasserstein distance has a closed-form solution for two multivariate Gaussian distributions. This

allows us to employ 2-Wasserstein distance (abbreviated as W2) as similarity measure between the

latent Gaussian distributions N (µµµi,ΣΣΣi) and N (µµµj ,ΣΣΣj):

dist =W2(N (µµµi,ΣΣΣi),N (µµµj ,ΣΣΣj)) (5.12)

dist2 = ||µµµi −µµµj ||22 +Tr(ΣΣΣi +ΣΣΣj − 2(ΣΣΣ
1
2
i ΣΣΣjΣΣΣ

1
2
i )

1
2 ) (5.13)

Since we focus on diagonal covariance matrices, thus ΣΣΣiΣΣΣj = ΣΣΣjΣΣΣi:

dist2 = ||µµµi −µµµj ||22 + ||ΣΣΣ
1
2
i −ΣΣΣ

1
2
j ||

2
F (5.14)

According to the above equation, the time complexity to compute the 2-Wasserstein distance (W2)

between two multivariate Gaussian distributions is linear with the embedding dimension d. Since

the computation of W2 no longer constitutes a computational challenge, we choose W2 to measure

the distance between latent representations.

We use a pairwise ranking formulation with respect to the Wasserstein distance W2 to model PPIs:

W2(N (µµµi,ΣΣΣi),N (µµµj ,ΣΣΣj)) < W2(N (µµµi,ΣΣΣi),N (µµµk,ΣΣΣk)) (5.15)

where N (µµµi,ΣΣΣi) is the latent Gaussian distribution of sequence si, and (si, sj) and (si, sk) represents
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positive and negative interaction respectively. Specifically, the idea of ranking formulation is to

penalize ranking errors based on the the Wasserstein distances between the pairs. The smaller the

Wasserstein distance, the larger the possibility of interactions.

Finally, we employ square-exponential loss [108] to enable learning from the known pairwise interac-

tions. Mathematically, the energy between the protein pairs can be defined as Eij =W2(N (µµµi,ΣΣΣi),N (µµµj ,ΣΣΣj)).

Then, the loss function to be optimized is:

L =
∑
i

∑
(i,j)∈Y+

∑
(i,k)∈Y−

(Eij
2 + exp(−Eik)) (5.16)

where Y+ represents set of positive interactions and Y− represents set of negative interactions.

Positive interactions are the interactions with experimental evidence but negative interactions are

randomly sampled from missing interactions. We can further increase the coverage of Y+ and

Y− by running random walk to generate node sequences and use a window to select positive

interactions [15]. Furthermore, we can also follow similar node-based sampling strategy as [104].

For this experiment, we only consider the pairwise interactions from BioGRID database as positive

interactions. In our setting, the objective function penalizes the pairwise errors by the energy of the

pairs, such that the energy of positive interactions is lower than the energy of negative interactions.

Equivalently, this will make the possibility of interactions between the interacting proteins larger

than that of non-interacting proteins.

Finally, we can optimize the parameters Θ (i.e. weights and biases) of the model such that the loss

L is minimized and the pairwise rankings are satisfied. Specifically, for each protein, the distance

with interacting proteins should be smaller than with non-interacting proteins. We term this as

the ranking approach since interacting proteins have smaller W2 distance and are ranked higher

than non-interacting proteins.

5.3.5 PPI prediction

The Wasserstein distances between the latent Gaussian distributions of protein sequences corre-

sponds to the possibility of their interaction. However, predicting PPIs by only computing the

Wasserstein distance fails to take into account the homodimers, the proteins with identical se-

quences [98]. The encoded Gaussian representations of these protein sequences will be the same

and their Wasserstein distance will be 0 indicating they must interact.

To overcome this limitation, we define pairwise features for all protein pairs by the concatenation of



CHAPTER 5. NETWORK EMBEDDING WITH SEQUENTIAL NODE FEATURES 62

the absolute element-wise differences of means and variances and the element-wise multiplications

of the means of their Gaussian representations, [|µµµi − µµµj |; |ΣΣΣi −ΣΣΣj |;µµµi ⊙ µµµj ]. This featurization is

effective in modeling the symmetric relationship between proteins. To predict binary interactions,

we train a binary classifier on these pairwise features to learn a decision boundary δ that separates

interacting proteins from non-interacting pairs.

5.3.6 Efficient training

Siamese networks are suitable to train with contrastive loss mentioned in Eq. 5.16. However, it

is inefficient to train Siamese networks when the amount of PPIs increases. In particular, the

possible number of interactions for N proteins is (N2 + N)/2 (including self-interactions), which

is computationally intensive to train with Siamese architecture. A mini-batch of m interactions in

Siamese training may have multiple occurrences of the same proteins, leading the protein sequence

to be feed-forwarded for each interaction. It is sufficient to feed-forward each protein sequence

once to compute the loss in the batch. To address this problem, we encode the minibatch of n

protein sequences and retrieve positive and negative interactions that involve them to compute the

loss in the minibatch. With this setting, we are only required to feed-forward N protein sequences

compared to (N2 + N)/2 pairs in the Siamese setting, which makes our method computationally

efficient and scalable to a large number of interactions.

5.4 Experiments

We evaluate our method on two real-world datasets: yeast and human proteins to predict their

interactions. We use the area under the ROC curve (AUROC) and the average precision (AP)

scores as the evaluation metrics. With these evaluation metrics, we expect the positive protein pair

to have higher interaction probability compared to negative protein pair.

5.4.1 Experimental setup

Datasets

The datasets for protein sequences of yeast and human proteins are from the EMBL-EBI Reference

Proteome [109]. The information about the subcellular localization of proteins is extracted from
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UniProt database [110]. The evolutional protein profiles for yeast and human protein sequences are

collected from Rost Lab [111]. We evaluate our proposed model with two types of protein features:

(a) amino acid sequences and (b) evolutionary protein profiles constructed from these sequences.

To evaluate the performance of deep learning models, the interaction datasets are downloaded

from the up-to-date BioGRID interaction database (Release 3.5.169) [112]. The BioGRID database

provides a large number of PPIs allowing us to evaluate the scalability of different approaches as

well. Only the interactions that correspond to the physical binding between the protein pairs (say

Y+) are considered since these interactions are supported by experimental evidence. The negative

samples Y− are generated by randomly sampling from all protein sequence pairs ((si, sj) ̸∈ Y+),

that are not yet confirmed by experimental evidence. Furthermore, these negative interactions are

filtered based on their subcellular localization, assuming that proteins in the different locations are

unlikely to interact although some proteins do translocate [111].

Also, we perform the cluster analysis with the CD-HIT [113] to cluster protein sequences based on

a certain similarity threshold that represents sequence identity. We remove the interactions such

that no two proteins have a pairwise sequence identity greater than 10%. Table 5.1 shows the

statistics of the interaction datasets.

Data
No. of No. of No. of
proteins positive pairs negative pairs

Yeast 3,651 50,344 50,376
Human 7,028 73,624 73,628

Table 5.1: Statistics of interaction datasets

Hyperparameters and training details

For both datasets, we train a sequence encoder with the same configuration. The best hyperparam-

eters of our model are selected based on validation performance. The maximum length of the input

sequence to the encoder is 1024 for efficient training. In the datasets, 91.2% of yeast sequences and

86% of human sequences are shorter than 1024 residues.

The encoder consists of a BiGRU layer with 16 hidden units each, to map a protein sequence

to a sequence of 32-dimensional representation, one per amino acid. Then, this representation is

encoded to a latent Gaussian distribution with dimension ddd = 256 (ddd = 2× d = 128 for the mean
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Method Data
Yeast Human

AUROC AP AUROC AP

DPPI [98] Profiles
0.891 0.857 0.870 0.835
±0.004 ±0.007 ±0.004 ±0.005

PIPR [99] sequences
0.909 0.912 0.878 0.882
±0.003 ±0.004 ±0.002 ±0.003

Ranking
Profiles

0.882 0.888 0.884 0.893
±0.003 ±0.002 ±0.003 ±0.004

Sequences
0.901 0.904 0.881 0.889

Our method ±0.002 ±0.002 ±0.002 ±0.001
(sparsemax)

Random Forest
Profiles

0.908 0.913 0.891 0.896
±0.002 ±0.003 ±0.005∗ ±0.005∗

Sequences
0.924 0.925 0.887 0.894
±0.002∗ ±0.001∗ ±0.002 ±0.001

Ranking
Profiles

0.882 0.885 0.873 0.881
±0.006 ±0.006 ±0.09 ±0.01

Sequences
0.898 0.900 0.874 0.883

Our method ±0.001 ±0.002 ±0.002 ±0.001
(fusedmax)

Random Forest
Profiles

0.906 0.912 0.872 0.877
±0.004 ±0.005 ±0.015 ±0.015

Sequences
0.919 0.921 0.881 0.886
±0.003 ±0.002 ±0.002 ±0.001

Table 5.2: Average AUROC and AP scores (with standard deviation) averaged over five independent
runs for PPI prediction. * represents statistically significant differences with PIPR (P-value <
0.005).

and 128 for the variance of the Gaussian).

All the weight matrices of the encoder layer are initialized using Xavier initialization [114]. The

model is trained on a single NVIDIA GeForce RTX 2080 Ti GPU for all experiments using Adam

optimizer [63] with learning rate 0.003 and other default parameters provided by PyTorch [115].

Our unique approach of encoding unique sequences allows us to train the model efficiently even

with large batch sizes. We empirically find that our model converges in a small number of iterations

(≤ 50 for all shown experiments).
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5.4.2 Results on PPI prediction

We compare our method against the state-of-the-art deep learning methods on the up-to-date

BioGRID interaction datasets. We split the interactions into training, validation, and test sets

(0.6:0.2:0.2). All the models are trained on the same training set and the best set of hyperparameters

are selected based on their performances on the validation set. Finally, the models are evaluated on

independent test sets. Table 5.2 reports the mean AUROC and AP and their standard errors on five

independent runs. We perform a two-tailed Welch’s t-test and Benjamini-Hochberg procedure to

adjust p-value and find that the improvement over PIPR, the state-of-the-art method is statistically

significant.

With the ranking approach, we expect our model to rank positive interactions higher than negative

interactions, i.e. the probability of interactions between interacting protein pairs is greater than

that of non-interacting protein pairs. Table 5.2 demonstrates that our model ranks positive inter-

actions higher than negative interactions. The ranking based model with sparsemax regularization

achieves comparable performance with PIPR. Furthermore, the random forest classifier trained to

account for homodimeric interactions improve the model’s performance on both datasets. The best

parameters for random forest classifier are selected via grid search.

Furthermore, we evaluate our proposed method on evolutionary protein profiles. Protein profiles

constructed from protein sequences capture the correlation between different proteins as well as

between different parts of the sequences [116]. Our model trained with protein profiles outperforms

DPPI, the state-of-the-art deep architecture that uses profiles as the input to their deep Siamese

model. Table 5.2 shows that our model with sequences achieves comparable or better performance

compared to profiles across both datasets. This demonstrates that our model is capable of extracting

useful information about interactions from protein sequences and alleviates the expensive process

of profile construction from sequences.

5.4.3 Ablation study of framework components

We next evaluate individual model components on the PPI prediction task with yeast dataset.
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Gaussian representations outperform point representations

We first explore whether the Gaussian representation of sequences improves the performance of the

model over point representation. For this experiment, we encode intermediate representation v of

sequence s to point representation z = Wzv+bz instead of Gaussian representation (as in Eq. 5.9

and 5.10) and define L2 norm as the similarity between the point representations of sequences si

and sj instead of Wasserstein distance (in Eq. 5.12):

dist2 = ||zi − zj ||22 (5.17)

where z represents point representation of sequences s. Table 5.3 shows that Gaussian representa-

tions are better predictors of PPIs compared to point representations.

Model configuration AUROC AP

No gating 0.880±0.001 0.875±0.003

Point + RF
Softmax 0.881±0.001 0.877±0.001
Fusedmax 0.909±0.001 0.912±0.002
Sparsemax 0.913±0.001 0.916±0.002

Gaussian + RF
Softmax 0.882±0.001 0.879±0.002
Fusedmax 0.919±0.003 0.921±0.001
Sparsemax 0.924±0.002 0.925±0.001

Table 5.3: Study of individual model components on Yeast dataset. The model trained without
any gate mechanism (No gating), with different representations (point vs Gaussian) coupled with
different regularization strategies and random forest (RF) classifier.

Sparse gating mechanism improves performance

We further demonstrate the importance of the proposed sparse gating mechanism by comparing

the performance of the sequence encoder trained with and without various gating mechanism. We

train models with different settings of the gate mechanism. Table 5.3 demonstrates that the sparse

gating mechanism provides a significant improvement over no gate mechanism and softmax in PPI

prediction. This indicates that sparse regularization helps the model to selectively activate the

important stretches of amino acids that are important to model and predict PPIs.
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Dimension of Gaussian distribution is important

Finally, we investigate how the dimensionality of the latent Gaussian distributions can affect the

model’s performance. Figure 5.2 shows the plot of the AUROC and the AUPR scores of our method

across the two organisms. When the dimension ddd(= 2 × d) of the Gaussian distribution increases

from 2 to 256, the performance also increases. When ddd ≥ 128, two regularization strategies result

in similar performance. Moreover, the performance also remains stable when ddd ≥ 256.

(a) (b)

Figure 5.2: Effect of dimension of latent Gaussian distributions on the model’s performance with
different sparse gating mechanism for (a) yeast (b) human.
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5.4.4 Training time comparison

Here, we compare the training time of our method and PIPR, the state-of-the-art deep learning

model [99]. We report the average training time per epoch in Figure 5.3. For the fair comparison,

we train both models in the same machine on the same dataset and compare only the average

training time per epoch. For this experiment, we randomly sample 8k, 16k, 24k, 32k, 40k, 48k,

56k, 64k, 72k, 80k, and 88k training interactions.

Figure 5.3: Average training time per epoch. Our method is much faster than PIPR. Encoding the
unique set of protein sequences to their latent Gaussian distribution and optimizing the loss based
on their interactions makes our model efficient.

Figure 5.3 shows that our method is efficient in comparison to PIPR. PIPR uses a pairwise training

process that requires a higher number of matrix multiplications for each interaction. On the other

hand, given the large batch of interactions, our model finds the unique set of protein sequences

involved in these interactions and encodes them, which significantly reduces the number of matrix

multiplication. Once we have the embeddings for these sequences, we can compute the loss based

on their respective interactions. As discussed in Section 5.3.6, for instance, if there are 1000

interactions in a batch with 100 unique proteins, our model encodes only 100 protein sequences

instead of 1000 protein pairs as in PIPR. Note that this approach allows our model to train on a

large batch of interactions, and thus takes less time to train. This demonstrates that our method

scales with the number of interactions and is significantly faster than other sophisticated models

such as PIPR.
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5.4.5 Qualitative evaluation

Since our proposed model selectively activates the part of a given sequence, it is important to

evaluate whether the selected parts are important. To explore this, we perform the quantitative

evaluation on how the amino acids selected by the sparse gating mechanism in our proposed method

align with the motifs from the Pfam motif library [27] from GenomeNet [117]. The gate vector g

for a sequence s helps us interpret how much contribution an amino acid on that position signaled

by GRU hidden state makes. Since our model computes gate values between 0 and 1 for each

amino acid, we consider amino acids with gl > 0 to be active i.e. used by the model for the

representation of proteins. Table 5.4 shows the average percentage of amino acids selected by

the sparse gating mechanism and their alignment with motifs having biological significance. For

instance, for yeast dataset, only 19.24% amino acids (on average) are selected with fusedmax

and 59.05% of these selected amino acids aligns with the motif. This illustrates that the amino

acids in the sequence selectively activated by our model to learn protein representation align with

biologically interpretable motifs.

Dataset Gating
Selected Alignment

amino acids (%) with motifs (%)

Yeast
Sparsemax 8.06 49.96
Fusedmax 19.24 59.05

Human
Sparsemax 9.15 48.33
Fusedmax 23.33 65.63

Table 5.4: Comparison of selected amino acids with the motifs from Pfam motif database

In addition, we visualize the amino acids selected by our model and the motifs from Pfam motif

library [27] from GenomeNet [117] in Figure 5.4. For this experiment, we select three proteins:

LSM8, SMD2, and RPC11 from the yeast dataset with motifs in different parts of the sequences.

We train the model with fusedmax and obtain the gate values for each amino acid in these sequences.

Red lines in each subfigure of Figure 5.4 are the regions identified to be important by our model.

In particular, LSM8 with the sequence of length 109 has two motifs: PF01423, LSM domain at

the position from 4 to 65, and PF14807, adaptin AP4 complex epsilon appendage platform at the

position from 9 to 65 shown in Figure 5.4a. The gate value learned by our model corresponds to

the subset of amino acids from position 1 to 65 and aligns with motifs. Similarly, the selected parts

of sequences for SMD2 and RPC11 aligns with their motifs even though the motif lies in different

parts of sequences. The quantitative and qualitative evaluation of gate vectors shows that our

model successfully identifies important amino acids in the sequence for PPI prediction.



CHAPTER 5. NETWORK EMBEDDING WITH SEQUENTIAL NODE FEATURES 70

(a)

(b)

(c)

Figure 5.4: Visualization of motifs and the amino acids selected by our model for three proteins (a)
LSM8 (b) SMD2 and (c) RPC11. The legend includes the motif identifier from Pfam database. The
alphabet on the x-axis is the amino acid at the respective position. The line segments corresponds
to the part of sequence that is model’s prediction (red) or motifs (other color). The selected subset
of amino acid sequences aligns with motifs from Pfam motif library.

Case study for interpretability

Here, we evaluate whether there exists hydrogen bonds between the interacting protein pairs in

the region selected by our model. For this experiment, we select a protein complex 1YKE, the

mediator MED7/MED21 subcomplex [118] that contains two interacting proteins: Q08278 and

P47822. The interaction between these proteins is supported by experimental evidence. We exclude

the interaction between Q08278 and P47822 from the training interactions and train our model with

fusedmax regularization. We obtain the gate vectors that corresponds to the region selected by

our model for both proteins. We visualize the 3D structure of the complex using Chimera [119] in

Figure 5.5. Also, the selected residues are highlighted with green and yellow in the protein chains

based on their respective gate vectors from the trained model.

Figure 5.5(a) shows the residues selected by our method in the chains of protein complex 1YKE.
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[7-20]

[75-85]

[88-100]

[156-166]

Chain A

Chain B

(a)

Pro 81.B

Tyr 165.A

Arg 166.A

Gln 9.B

Chain A

Chain B

(b)

Figure 5.5: Important residues predicted by our method in mediator MED7/MED21 subcomplex
(1YKE) interface. (a) Only chain A (Q08278) and chain B (P47822) are shown, in which the
important regions predicted by our method are shown in yellow and green, respectively. (b) Shown
is the zoom-in view of the area surrounded by dashed lines in the 1YKE structure. Two hydrogen
bonds (shown in black lines marked by black circle) are formed between chain A and B.

Our method selects the amino acids from position 7 to 20, 75 to 85, and 88 to 100 for P47822

and position 156 to 166 for Q08278. The importance of these amino acids for PPIs are clearly

illustrated in the structure. There is at least one hydrogen bond between the regions selected in

these sequences (chain A and B). Specifically, Glutamine (Gln) at position 9 (shown in purple) and

Proline (Pro) at position 81 (shown in red) of chain B (P47822) has a hydrogen bond with Arginine

(Arg) at position 166 (shown in cyan) and Tyrosine (Tyr) at the position of 165 (shown in blue) of

chain A (Q08278) respectively (Figure 5.5(b)). Thus, our model provides reasonable cues on the

important interface residues for the PPI.

5.5 Conclusion

We present a novel deep neural network to model and predict PPIs from variable-length protein

sequences. Our proposed framework adopts a recurrent neural network to capture contextualized

and sequential information from the primary amino acid sequences. By incorporating a structured

and sparse gating mechanism into the sequence encoder, our model successfully selects the im-

portant residues on the sequence to learn the sequence representation. Furthermore, our novel

approach of encoding sequences to their representation makes the model efficient and scalable to

a large number of interactions. Extensive experimental evaluations on various up-to-date datasets

show its promising performance on binary PPI prediction task. Various case studies demonstrate

the ability of our model to provide biological insights to interpret the predictions.



Chapter 6

Representation Learning of biological

networks using higher-order network

properties

In previous chapters, we developed network representation learning methods for interaction predic-

tion by integrating network properties with additional information such as gene expression data,

protein sequences. However, these methods only consider the local neighborhood information with

first-order and second-order proximity. Since the effect on one molecular entity is propagated via

pathways to form certain products or give rise to emergent characteristics of the biological system,

the model that only captures local network structure cannot give a comprehensive view of the

biological system.

In this chapter, we discuss that the model capable of capturing information from farther neighbor-

hood is crucial to capture the global context of the entities in the biological network. To this aim,

we propose a novel deep learning framework that aggregates information from various neighbor-

hood to learn representation for each biological entity in the network. We evaluate the proposed

model across datasets such as protein-protein interactions (PPIs) [120], drug-drug interactions

(DDIs) [121], drug-target interactions (DTIs) [122] and gene-disease associations (GDIs) [123] with

varying number of nodes and edges to demonstrate its effectiveness and scalability.

72



CHAPTER 6. ENCODING HIGHER-ORDER NETWORK PROPERTIES 73

6.1 Introduction

Recently, the generalization of deep learning to the network-structured data [46] has shown great

promise across various domains such as social networks [124], recommendation systems [125], chem-

istry [126], citation networks [43]. These approaches are under the umbrella of graph convolutional

networks (GCNs). GCNs repeatedly aggregate feature representations of immediate neighbors to

learn the informative representation of the nodes for link prediction. Although GCN based methods

show great success in biomedical interaction prediction [24, 121], the issue with such methods is

that they only consider information from immediate neighbors. SkipGNN [19] leverages skip graph

to aggregate feature representations from direct and second-order neighbors and demonstrated im-

provements over GCN methods in biomedical interaction prediction. However, SkipGNN cannot be

applied to aggregate information from higher-order neighbors and thus fails to capture information

that resides farther away from a particular interaction [28].

To address the challenge, we propose an end-to-end deep graph representation learning framework

named higher-order graph convolutional networks (HOGCN) for predicting interactions between

pairs of biomedical entities. HOGCN learns a representation for every biomedical entity using

an interaction network structure G and/or features X. In particular, we define a higher-order

graph convolution (HOGC) layer where the feature representations from k-order neighbors are

considered to obtain the representation of biomedical entities. The layer can thus learn to mix

feature representations of neighbors at various distances for interaction prediction. Furthermore,

we define a bilinear decoder to reconstruct the edges in the input interaction network G by relying on

feature representations produced by HOGC layers. The encoder-decoder approach makes HOGCN

an end-to-end trainable model for interaction prediction.

We compare HOGCN’s performance with that of state-of-the-art network similarity-based meth-

ods [127], network embedding methods [15, 40], and graph convolution-based methods [19, 43, 44]

for biomedical link prediction. We experiment with various interaction datasets and show that

our method makes accurate and calibrated predictions. HOGCN outperforms alternative methods

based on network embedding by up to 30%. Furthermore, HOGCN outperforms graph convolution-

based methods by up to 6%, alluding to the benefits of aggregating information from higher-order

neighbors.

We perform a case study on the DDI network and observe that aggregating information from

higher-order neighborhood allows HOGCN to learn meaningful representation for drugs. More-

over, literature-based case studies illustrate that the novel predictions are supported by evidence,
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suggesting that HOGCN can identify interactions that are highly likely to be a true positive.

In summary, our study demonstrates the ability of HOGCN to identify potential interactions be-

tween biomedical entities and opens up the opportunities to use the biological and physicochemical

properties of biomedical entities for a follow-up analysis of these interactions.

6.2 Related works

With the increasing coverage of the interactome, various network-based approaches have been

proposed to exploit already available interactions to predict missing interactions [17,127,128,129].

These methods can be broadly classified into (1) network similarity-based methods (2) network

embedding methods (3) graph convolution-based methods. We next summarize these categories of

methods for biomedical interaction prediction.

Given a network of known interactions, various similarity metrics are used to measure the similarity

between the biomedical entities [128] with an assumption that higher similarity indicates interaction.

Triadic closure principle (TCP) has been explored in biomedical interaction prediction with the

hypothesis that biomedical entities with common interaction partners are likely to interact with

each other [129]. TCP relies on a common neighbor algorithm to count the number of shared

neighbors between the nodes and is quantified by A2 where A is the adjacency matrix. Recently, L3

heuristic [127] shows the common neighbor hypothesis fails for most protein pairs in PPI prediction

and proposes to consider nodes that are similar to the neighbors of the nodes and can be quantified

by A3. This indicates that higher-order neighbors are important for interaction prediction.

Next, network embedding methods embed the existing networks to low-dimensional space that

preserves the structural proximity such that the nodes in the original network can be represented as

low-dimensional vectors. Deepwalk [40] is a popular approach that generates the truncated random

walks in the network and defines a neighborhood for each node as a set of nodes within a window of

size k in each random walk. Similarly, node2vec performs a biased random walk by balancing the

breadth-first and depth-first search in the network. The random walks generated by these methods

can be considered as a combination of nodes from various order of neighborhoods such as 1-hop to

k-hop neighborhood. In other words, DeepWalk and node2vec learn the embeddings for the nodes in

the network from the combination of A1,A2,A3, . . .Ak where Ai is the ith power of the adjacency

matrix. These embeddings can then be fed into a classifier to predict the interaction probability.

These methods are only limited to the structure of the biomedical networks and cannot incorporate
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additional information about the biomedical entities. Also, they cannot learn the feature difference

between nodes at various distances.

Furthermore, graph convolution-based methods use a message-passing mechanism to receive and ag-

gregate information from neighbors to generate representations for the nodes in the network. Graph

convolutional networks (GCNs) [44] and variational graph convolutional autoencoder (VGAE) [43]

aggregate feature representation from immediate neighbors to learn the representation of biomedical

entities in an end-to-end manner using link prediction objective. These methods are only limited to

the average pooling of the neighborhood features [28]. SkipGNN [19] therefore proposes to use skip

similarity between the biomedical entities to aggregate information from second-order neighbors.

However, these methods cannot aggregate feature representations from higher-order neighbors and

also cannot learn feature differences between neighbors at various distances.

6.3 Preliminaries

A biomedical network is defined as G = (V, E ,X) where V denotes the set of nodes representing

biomedical entities (e.g. proteins, genes, drugs, diseases) and |V| denotes the number of nodes.

E ⊆ (V × V) denotes a set of interactions between biomedical entities. X ∈ R|V|×F is the features

of biomedical entities where F is the dimension of features.

Let A denote the adjacency matrix of G, where Aij indicates an edge between nodes vi and vj . We

assume the case of binary adjacency matrix Aij ∈ {0, 1}n×n where Aij represents the existence of

edge between the nodes vi and vj , indicating the presence of the experimental evidence for their

interaction (i.e. Aij = 1) or the absence of the experimental evidence for their interaction (i.e.

Aij = 0). Note that the same notation of adjacency matrix can be used to represent weighted

graphs such that Aij = [0, 1]. Table 6.1 shows the notations and their definitions used in the paper.

6.3.1 Message passing

Given a biomedical network G, message passing algorithms learn the representation of biomedical

entities in the network by aggregating information from immediate neighbors [126]. Additional in-

formation about biomedical entities can be used to initialize the feature matrixX. These algorithms

involve the message passing step in which each biomedical entity sends its current representation to,
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Notation Definition

G : {V, E ,X} Graph with nodes V, edges E and features P
E ′ Test edges

A ∈ R|V|×|V| Adjacency matrix of graph G
D ∈ R|V|×|V| Degree matrix with Dii =

∑
iAij

I ∈ R|V|×|V| Identity matrix

Â ∈ R|V|×|V| Symmetrically normalized adjacency matrix

X ∈ R|V|×F F -dimensional feature matrix
Aij ∈ {0, 1} Ground-truth interaction between nodes i and j
pij ∈ [0, 1] Probability of interaction between nodes i and j

Z ∈ R|V|×d∗ Final node embeddings

W
(i)
(l) Weight matrix for ith adjacency power for layer l

L Number of HOGC layers
T Number of training epochs
k The order of neighborhood
P A set of integer adjacency powers P = {0, 1, . . . , k}
O

(l)
j Representation of neighbors at distance j in layer l

Table 6.1: Terms and notations for higher-order graph convolutional network
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Figure 6.1: Block diagram of proposed HOGCN model with L HOGC layers. Given a biomedical
interaction network G with initial features X for biomedical entities, the encoder mixes the feature
representation of neighbors at various distances and learn final representation Z. The decoder takes
the representation zi and zj of nodes vi and vj to learn the representation eij for the edge (denoted
by ?) and predict probability pij of its existence.

and aggregates incoming messages from its immediate neighbors. Representation for each biomedi-

cal entity can be obtained after L steps of message passing and feature aggregation. However, such

message passing operation is limited to average pooling of features from immediate neighbors and

thus is unable to learn feature differences among neighbors at various distances [28].



CHAPTER 6. ENCODING HIGHER-ORDER NETWORK PROPERTIES 77

Neighborhood nodes at various distances provide network structure information at different granu-

larities [34,130,131,132,133]. Taking k-hop neighborhoods into consideration, we aim at aggregating

information from various distances at every message passing step. Different powers of adjacency

matrices such as A1,A2,A3, . . . ,Ak provide information about the network structure at different

scales. Higher-order message passing operations can therefore learn to mix their representations

using various powers of the adjacency matrix at each message passing step.

6.3.2 Graph convolutional networks (GCNs)

Graph convolutional networks (GCNs) are the generalization of convolution operation from regular

grids such as images or texts to graph structured data [46, 134]. The key idea of GCNs is to learn

the function to generate the node’s representation by repeatedly aggregating information from

immediate neighbors. The graph convolutional layer is defined as:

H(l) = σ(ÂH(l−1)W(l)) (6.1)

where H(l−1) and H(l) are the input and output activations, W(l) is a trainable weight matrix of

the layer l, σ is the element-wise activation, and Â is a symmetrically normalized adjacency matrix

with self-connections Â = D− 1
2 (A+ I|V|)D

− 1
2 . A GCN model with L layers is then defined as:

H(l) =

X if l = 0

σ(ÂH(l−1)W(l)) if l ∈ [1, . . . , L]

and H(L) can be used to predict the probability of interactions between biomedical entities.

6.4 Higher-order graph convolution network

In this work, we develop a higher-order graph convolutional network (HOGCN) that takes an

interaction network G as input and reconstruct the edges in the interaction network (Fig. 6.1).

HOGCN has two main components:

• Encoder: a higher-order graph convolution encoder that operates on an interaction graph G
and produces representations for biomedical entities by aggregating features from the neigh-

borhood at various distances and
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• Decoder: a bilinear decoder that relies on these representations to reconstruct the interac-

tions in G.

6.4.1 Higher-order graph encoder

We first describe the higher-order graph encoder, that operates on an undirected interaction graph

G = (V, E ,X) and learns the representations for biomedical entities.

We develop an encoder with higher-order Graph Convolution (HOGC) layer to mix feature rep-

resentations from neighbors at k-distances. Specifically, HOGC layer considers the neighborhood

information at different granularities and is defined as:

H(l) = ∥
j∈P

σ
(
ÂjH(l−1)W

(l)
j

)
(6.2)

where P is a set of integer adjacency powers, Âj denotes the adjacency matrix Â multiplied j times,

and ∥ denotes column-wise concatenation [28]. Graph convolutional network [44] only considers the

1st power of adjacency matrix and can be exactly recovered by setting P = {1} in Equation (6.2).

Similarly, SkipGNN [19] considers direct and skip similarity and can be recovered by setting P =

{1, 2} in Equation (6.2).

Fig. 6.2 shows a HOGC layer with P = {0, 1, . . . , k} where k is maximum order of neighborhood

considered in each HOGC layer. If k = 0, HOGC layer only considers the features of the biomedical

entities and can capture the feature similarity between various biological entities. This is equivalent

to a fully connected network with features of biomedical entities as input. For the HOGC layer, Â0

is the identity matrix I|V| where |V| is the number of nodes in the network. This allows the HOGC

layer to learn the transformation of node features separately and mix it with feature representations

from neighbors.

The maximum order of neighborhood k and the number of trainable weight matrices |P|, one

per each adjacency power, can vary across layers. However, we set the same k for neighborhood

aggregation and the same dimension d for all the weight matrices across all layers.

Neighborhood features from different adjacency powers j ∈ {0, 1, . . . , k} at layer (l−1) are column-

wise concatenated to obtain feature representation H(l−1). As shown in Fig 6.2, weight W
(l)
(·) at

layer l can learn the arbitrary linear combination of the concatenated features to obtain H(l).

Specifically, the layer can assign different coefficients to different columns in the concatenated
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Figure 6.2: High-order graph convolution (HOGC) Layer with P = {0, . . . , k}. The feature rep-

resentation H(l) is a linear combination of the neighbors ÂjH(l−1) at multiple distances j. O
(l)
j

represents feature representation of neighbors at j distances for layer l.

matrix. For instance, the layer can assign positive coefficients to the columns produced by certain

power of Â and assign negative coefficients to other powers. This allows the model to learn feature

differences among neighbors at various distances. We apply L HOGC layers to learn the latent

representation Z ∈ R|V|×d∗ for biomedical entities in the network, where d∗ = d × |P| and d is the

dimension of node’s representation for each adjacency power.

6.4.2 Interaction decoder

We introduced the encoder based on HOGC layers that learns feature representation Z for biomedi-

cal entities by mixing neighborhood information at multiple distances. Next, we discuss the decoder

that reconstructs the interactions in G based on the representation Z.

We adopt a bilinear layer to fuse the representation of biomedical entities vi and vj and learn the

edge representation eij . More precisely, we define a simple bilinear layer that takes the representa-
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tion zi and zj as input:

eij = ELU(zTi Wbzj + b) (6.3)

where Wb ∈ Rd×d∗×d∗ represents the learnable fusion matrix, eij is the representation of edge eij

between nodes vi and vj , b denotes the bias of the bilinear layer. ELU is non-linearity.

The edge representation eij is then fed into 2-layered fully connected neural network to predict

probability pij for edge eij :

pij = sigmoid(FC2(ELU(FC1(eij)))) (6.4)

where FC1(eij) = W1 · eij + b1 denotes fully connected layer with weight W1 and bias b1, pij

represents the probability that biomedical entities vi and vj interact.

So far, we have discussed the encoder and decoder of our proposed approach. Next, we describe

the training procedure of our proposed HOGCN model. In particular, we explain how to optimize

the trainable neural network weights in an end-to-end manner.

6.4.3 Training HOGCN

During HOGCN training, we employ binary cross entropy loss to optimize the model parameters

L(vi, vj) = −Aij log(pij)− (1−Aij) log (1− pij) (6.5)

and encourage the model to assign higher probability to observed interactions (vi, vj) than to

randomly selected non-interactions. pij is the predicted interaction probability between vi and vj

and Aij denotes the ground-truth interaction label between these nodes. The final loss function

considering all interactions is

L =
∑

(i,j)∈E

L(vi, vj) (6.6)

We follow an end-to-end approach to jointly optimize over all trainable parameters and backprop-

agate the gradients through encoder and decoder of HOGCN.
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Algorithm

HOGCN leverages biomedical network structureA along with additional information about biomed-

ical entities as the initial feature representation X. In this paper, we initialize the initial features X

to be one-hot encoding i.e. I|V|. The feature matrix X can be initialized with properties of biomed-

ical entities or pre-trained embeddings from other network-based approaches such as DeepWalk,

node2vec.

Algorithm 1 Training of HOGCN for biomedical interaction prediction

1: Inputs: Â, X, k
2: H(0) = X
3: for t = 1 to T do
4: Sample mini-batch of training edges and their interaction labels
5: for l = 1 to L do
6: B := H(l−1)

7: for j = 1 to k do
8: B := ÂB
9: O

(l)
j := BW

(l)
j

10: H(l) := ∥
j∈P

O
(l)
j

11: Z := H(L)

12: pij := Interaction Decoder(Z)
13: Compute loss in (6.6)
14: Update model parameters via gradient descent

Given an adjacency matrix A and the initial node representations X, higher-order neighborhood

indicated by the higher power of the adjacency matrix is iteratively computed that makes the model

more efficient. By adopting right-to-left multiplication, for instance, we can calculate Â3H(i) as

Â(Â(ÂH(i))) (Line 8 in Algorithm 0). Representation O
(l)
j learned for the neighborhood at j

distances are concatenated to obtain the representation H(l) as shown in Fig. 6.2 (Line 11 in

Algorithm 0). After passing through L HOGC layers, we obtain the final representation Z for

biomedical entities. With the final representations Z and the mini-batch of training edges, we

retrieve the embeddings for the nodes in training edges and feed them into the interaction decoder

to compute their interaction probabilities.

The parameters of HOGCN are optimized with a binary cross-entropy loss (Equation (6.6)) in an

end-to-end manner. Given two biomedical entities vi and vj , the trained model can predict the

probability of their interactions.
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6.5 Experimental design

We view the problem of biomedical interaction prediction as solving a link prediction task on an

interaction network. We consider various interaction datasets and compare our proposed method

with the state-of-the-art methods.

6.5.1 Datasets

We conduct interaction prediction experiments on four publicly-available biomedical network datasets:

• BioSNAP-DTI [135]: DTI network contains 15,139 drug-target interactions between 5,018

drugs and 2,325 proteins.

• BioSNAP-DDI [135]: DDI network contains 48,514 drug-drug interactions between 1,514

drugs extracted from drug labels and biomedical literature.

• HuRI-PPI [120]: HI-III human PPI network contains 5,604 proteins and 23,322 interactions

generated by multple orthogonal high-throughput yeast two-hybrid screens.

• DisGeNET-GDI [136]: GDI network consists of 81,746 interactions between 9,413 genes

and 10,370 diseases curated from GWAS studies, animal models and scientific literature.

Table 6.2 provides summary of datasets used in our experiments. Also, the table includes the

average number of interactions for each biomedical entity which can be computed as 2|E|
|V| .

Dataset # Nodes # Edges Avg. node degree

DTI 5,018 drugs, 2,325 proteins 15,139 4.12

DDI 1,514 drugs 48,514 64.09

PPI 5,604 proteins 23,322 8.32

GDI 9,413 genes, 10,370 diseases 81,746 8.26

Table 6.2: Summary of the datasets used in our experiments.

6.5.2 Baselines

We compare our proposed model with the following network-based baselines for interaction predic-

tion:
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• Network similarity-based methods

– L3 [127] counts the number of paths with length-3 normalized by the degree for all the

node pairs.

• Network embedding methods

– DeepWalk [40] performs truncated random walk exploring the network neighborhood of

nodes and applies skip-gram model to learn the d-dimensional embedding for each node

in the network. Node features are concatenated to form edge representation and train a

logistic regression classifier.

– node2vec [15] extends DeepWalk by running biased random walk based on breadth/depth-

first search to capture both local and global network structure.

• Graph convolution-based methods

– VGAE [43] uses graph convolutional encoder with two GCN layers to learn representation

for each node in the network and adopts inner product decoder to reconstruct adjacency

matrix.

– GCN [44] uses normalized adjacency matrix to learn node representations. The represen-

tation for nodes are concatenated to form feature representation for the edges and fully

connected layer use these edge representation to reconstruct edges, similar to HOGCN.

Setting P = {1} in our proposed HOGCN is equivalent to GCN.

– SkipGNN [19] learns the node embeddings by combining direct and skip similarity be-

tween nodes. Setting P = {1, 2} in our proposed HOGCN is equivalent to SkipGNN.

6.5.3 Experimental setup

We split the interaction dataset into training, validation, and testing interactions in a ratio of

7:1:2 as shown in Table 6.2. Since the available interactions are positive samples, the negative

samples are generated by randomly sampling from the complement set of positive examples. Five

independent runs of the experiments with different random splits of the dataset are conducted to

report the prediction performance. We use (1) area under the precision-recall curve (AUPRC) and

(2) area under the receiver operating characteristics (AUROC) as the evaluation metrics. With

these evaluation metrics, we expect positive interactions to have higher interaction probability

compared to negative interactions. So, the higher value of AUPRC and AUROC indicates better

performance.
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We implement HOGCN using PyTorch [137] and perform all experiments on a single NVIDIA

GeForce RTX 2080Ti GPU. We construct a 2-layered HOGC network with k = 3 for each layer.

At each HOGC layer, the node mixes the feature representations from neighbors at distances

P = {0, 1, 2 and 3}. The dimension of all weight matrices in HOGC layers is set to d = 32. All

the weight matrices are initialized using Xavier initialization [114]. We train our model using

mini-batch gradient descent with Adam optimizer [138] for a maximum of 50 epochs, with a fixed

learning rate of 5 × 10−4. We set the mini-batch size to 256 and the dropout probability [64] to

0.1 for all layers. Early stopping is adopted to stop training if validation performance does not

improve for 10 epochs. The dimension of the edge feature eij from the bilinear layer is 64 followed

by linear layers to project the edge features to edge probabilities. For baseline methods, we follow

the same experimental settings discussed in [19].

6.6 Results

In this section, we investigate the performance and flexibility of HOGCN on interaction prediction

using four different datasets. We further explore the robustness of HOGCN to sparse networks.

Finally, we demonstrate the ability of HOGCN to make novel predictions with literature-based case

studies.

6.6.1 Biomedical interaction prediction

We compare HOGCN against various baselines on biomedical interaction prediction tasks using four

different types of interaction datasets including protein-protein interactions (PPIs), drug-target

interactions (DTIs), drug-drug interactions (DDIs) and gene-disease associations (GDIs).

We randomly mask 20% of interactions from the network as a test set and 10% as a validation set.

We train all models with 70% of interactions and evaluate their performances on test sets. The best

set of hyperparameters is selected based on their performances on the validation dataset. Finally,

the experiment is repeated for five independent random splits of the interaction dataset and the

results with ± one standard deviation are reported in Table 6.3. All of our models used for the

reported results are of same capacity (i.e. P = {0, 1, 2, 3} and d = 32).

Table 6.3 shows that HOGCN achieves huge improvement over network embedding methods such

as DeepWalk and node2vec across all datasets. Specifically, HOGCN outperforms Deepwalk on
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Dataset Method AUPRC AUROC

DTI

DeepWalk 0.753 ± 0.008 0.735 ± 0.009

node2vec 0.771 ± 0.005 0.720 ± 0.010

L3 0.891 ± 0.004 0.793 ± 0.006

VGAE 0.853 ± 0.010 0.800 ± 0.010

GCN 0.904 ± 0.011 0.899 ± 0.010

SkipGNN 0.928 ± 0.006 0.922 ± 0.004

HOGCN 0.937 ± 0.001 0.934 ± 0.001

DDI

DeepWalk 0.698 ± 0.012 0.712 ± 0.009

node2vec 0.801 ± 0.004 0.809 ± 0.002

L3 0.860 ± 0.004 0.869 ± 0.003

VGAE 0.844 ± 0.076 0.878 ± 0.008

GCN 0.856 ± 0.005 0.875 ± 0.004

SkipGNN 0.866 ± 0.006 0.886 ± 0.003

HOGCN 0.897 ± 0.003 0.911 ± 0.002

PPI

DeepWalk 0.715 ± 0.008 0.706 ± 0.005

node2vec 0.773 ± 0.010 0.766 ± 0.005

L3 0.899 ± 0.003 0.861 ± 0.003

VGAE 0.875 ± 0.004 0.844 ± 0.006

GCN 0.909 ± 0.002 0.907 ± 0.006

SkipGNN 0.921 ± 0.003 0.917 ± 0.004

HOGCN 0.930 ± 0.002 0.922 ± 0.001

GDI

DeepWalk 0.827 ± 0.007 0.832 ± 0.003

node2vec 0.828 ± 0.006 0.834 ± 0.003

L3 0.899 ± 0.001 0.832 ± 0.001

VGAE 0.902 ± 0.006 0.873 ± 0.009

GCN 0.909 ± 0.002 0.906 ± 0.006

SkipGNN 0.915 ± 0.003 0.912 ± 0.004

HOGCN 0.941 ± 0.001 0.936 ± 0.001

Table 6.3: Average AUPRC and AUROC with ± one standard deviation on biomedical interaction
prediction

AUPRC by 24.44% in DTI, 28.51% in DDI, 30.07% in PPI, and 13.79% in GDI. Although node2vec

achieves better performance compared to DeepWalk by adopting a biased random walk, HOGCN

still outperforms node2vec by a significant margin. DeepWalk and node2vec consider different

orders of neighborhood defined by the window size and learns similar representations for the nodes
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in that window. In contrast, HOGCN learns feature differences between neighbors at various

distances to obtain feature representation for the node and thus achieves superior performance. The

improved performance suggests that feature differences between different order neighbors provide

important information for interaction prediction.

A network similarity-based method, L3 [127] outperforms network embedding methods across four

datasets but is limited to a single aspect of network similarity i.e. the number of paths of length

3 connecting two nodes. So, L3 cannot be applied when other similarities between nodes such as

similarity in features and common neighbors at various distances need to be considered. HOGCN

overcomes these limitations and outperforms L3 across all interaction datasets with huge gain. In

particular, HOGCN gains 3.5% AUPRC and 7.09% AUROC on PPI over L3 [127], which recently

outperformed 20 network science methods in the PPI prediction problem.

Graph convolution-based methods such as GCN and VGAE achieves significant improvements over

network embedding approaches but achieves comparable performance with L3. SkipGNN shows

improvement over all other methods by incorporating skip similarity to aggregate information

from second-order neighbors. Moreover, HOGCN with k = 3 achieves an improvement over all

graph convolution-based methods. Specifically, HOGCN achieves improvement in AUPRC over

VGAE [43] by 6.3%, GCN [44] by 4.8% and SkipGNN [19] by 3.6% on DDI dataset.

As HOGCN can learn the linear combination of node features at multiple distances, it can extract

meaningful representations from the interaction networks. The results in Table 6.3 demonstrate

that our approach with higher-order neighborhood mixing outperforms the state-of-the-art methods

on real interaction datasets.

6.6.2 Exploration of HOGCN’s drug representations

Next, we evaluate if HOGCN learns meaningful representation when feature representations of

higher-order neighbors are aggregated. To this aim, we train GCN, SkipGNN, and HOGCN models

on the DDI network to obtain the drug representations Z. The learned drug representations are

mapped to 2D space using t-SNE [86] and visualize them in Fig. 6.3.

Drugbank [73] provides information about drugs and their categories based on different character-

istics such as involved metabolic enzymes, class of drugs, side effects of drugs, and the like. For this

experiment, we collect drug categories from Drugbank and limit the selection of drug categories

such that the training set doesn’t contain any interactions between the drugs in the same category.
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The selected drug categories are ACE Inhibitors and Diuretics (DBCAT002175), Penicillins (DB-

CAT000702), and Antineoplastic Agents (DBCAT000592) with 10, 24, and 16 drugs respectively.

Although these drugs don’t have direct interactions in the training set, we assume that these drugs

share neighborhoods at various distances and can be explored accordingly with HOGCN.

(a) (b) (c)

Figure 6.3: Visualization of learned representation for drugs with (a) GCN (b) SkipGNN (c)
HOGCN. Drugs are mapped to the 2D space using t-SNE package with learned drug representa-
tions. Drugs categories such as DBCAT002175, DBCAT000702 and DBCAT000592 are highlighted.
The number of drugs in each categroy is reported in legend. Best viewed on screen.

Fig. 6.3 shows the clustering structure in drugs’ representations as neighborhood information at

multiple distances are considered. Examining the figure, we observe that drugs in the same category

are embedded close to each other in the 2D space when the model aggregates information from

farther neighbors. For example, 24 drugs in the Penicillins (DBCAT000702) category (marked

with blue triangles in Fig. 6.3) are scattered in the representation space learned by GCN that

only considers feature aggregation from immediate neighbors (Fig. 6.3a). Note that these drugs

don’t have any direct interaction between themselves in the training set. Since GCN-based models

can only average the representation from immediate neighbors, these drugs are mapped relatively

farther to each other and closer to other interacting drugs. SkipGNN considers skip similarity

to aggregate features from second-order neighbors and show relatively compact clusters compared

to GCNs (Fig. 6.3b). On the other hand, HOGCN considers the higher-order neighborhood and

learns similar representations for drugs that belong to the same category demonstrated by compact

clustering structure in Fig. 6.3c even though no information about categorical similarity is provided

to the model. This analysis demonstrates that HOGCN learns meaningful representation for drugs

by aggregating feature representations from the neighborhood at various distances.

Next, we test if the clustering pattern in Fig. 6.3 holds across many drug categories. With this aim,
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we consider all drug categories in DrugBank and compute the average Euclidean distance between

each drug’s representation and representations of other drugs within the same drug category. We

then perform 2-sample Kolmogorov–Smirnov tests and found that HOGCN learns significantly more

similar representations of drugs than expected by chance (p-value = 4.93e−106), GCNs (p-value =

5.05e−56) and SkipGNN (1.29e−12). Thus, this analysis indicates that HOGCN learns meaningful

representations for drugs by aggregating neighborhood information at various distances.

6.6.3 Robustness to network sparsity

We next explore the robustness of network-based interaction prediction models to network sparsity.

To this aim, we evaluate the performance with respect to the percentage of training edges varying

from 10% to 70%. We make predictions on the rest of the interactions. We further use 10% of test

edges for validation to select the best hyperparameter settings. For a fair comparison, we compare

with graph convolution-based methods that aggregate information from direct and/or second-order

neighbors.

Fig. 6.4 shows the robustness of HOGCN to network sparsity. HOGCN achieves strong performance

in all tasks with different network sparsity. The performance of HOGCN steadily improves with the

increase in training edges. The mixing of features from a higher-order neighborhood in HOGCN

and SkipGNN shows improvement over GCN and VGAE that only consider direct neighbors. Since

HOGCN can learn the linear combination of features from a 3-hop neighborhood for this experiment,

it shows improvement over SkipGNN in almost all cases. This demonstrates that features from

farther distances are informative for interaction prediction in sparse networks.

6.6.4 Calibrating model’s prediction

All graph convolution-based model proposed for biomedical link prediction predicts the confidence

estimate pij for interaction between two biomedical entities vi and vj . We thus test if a predicted

confidence pij represents the likelihood of being true interaction. In other words, we expect the

confidence estimate pij to be calibrated, i.e. pij represents true interaction probability [139]. For

example, given 100 predictions, each with the confidence of 0.9, we expect that 90 interactions

should be correctly classified as true interactions.

To evaluate the calibration performance, we use reliability diagrams [139] and Brier score [140].

In particular, the reliability diagram provides a visual representation of model calibration. These
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(a) (b)

(c) (d)

Figure 6.4: AUPRC comparison of HOGCN’s performance with that of alternative approaches with
respect to network sparsity. HOGCN consistently achieves better performance in various fraction
of training edges.

diagrams plot the expected fraction of positives as a function of predicted probability [139]. A

model with perfectly calibrated predictions is represented by a diagonal in Fig. 6.5. In addition to

reliability diagrams, it is more convenient to have a scalar summary statistics of calibration. Brier

score [140] is a proper scoring rule for measuring the accuracy of predicted probabilities. Lower

Brier score indicates better calibration of a set of predictions. It is computed as the mean squared

error of a predicted probability pij and the ground-truth interaction label Aij . Mathematically, the
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Figure 6.5: Reliability diagrams for different graph convolution-based methods. The calibration
performance is evaluated with Brier score, reported in the legend (lower is better).

Brier score can be computed as:

Brier score =
1

|E ′|

|E ′|∑
(i,j)=1

(pij −Aij)
2 (6.7)

where |E ′| denotes the number of test edges.

Fig. 6.5 shows the calibration plots for GCN, SkipGNN and HOGCN (k = 3). For DTI dataset,
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SkipGNN show better calibration compared to GCN and HOGCN (Fig. 6.5a), indicating that

second-order neighborhood information is appropriate and aggregating features from farther away

makes model overconfident. For other datasets, GCNs are relatively overconfident for all predicted

confidence. For example, approximately 20% − 30% of interactions are true positives among the

interactions with high predicted confidence 0.8 in PPI (Fig. 6.5c) and GDI dataset (Fig. 6.5d). In

contrast, HOGCN achieves a lower Brier score in comparison to the GCN and SkipGNN across DDI,

PPI, and GDI datasets, alluding to the benefits of aggregating higher-order neighborhood features

for calibrated prediction. This analysis demonstrates that HOGCN with higher-order neighborhood

mixing makes accurate and calibrated predictions for biomedical interaction.

6.6.5 Impact of higher-order neighborhood mixing

In Section 6.6.3, we contrast HOGCN’s performance with that of alternative graph convolution-

based methods in varying fraction of edges. In this experiment, we aim to observe the performance

of HOGCN when the order k is increased to allow the model to aggregate neighborhood information

from farther away. We follow a similar setup as discussed in 6.6.3.

Fig. 6.6 shows the comparison of HOGCN with higher-order neighborhood mixing k = {3, 4, 5}.
The prediction performance of HOGCN improves with the increase in the number of training

interactions for all cases. The results show that HOGCN’s performances are not sensitive to the

hyperparameter settings of k for all datasets since for settings k = {3, 4, 5}, we achieve comparable

performances across the datasets. This analysis indicates that the 3-hop neighborhood provides

sufficient information for interaction prediction across all datasets and the performance remains

stable even with a large value for k.

6.6.6 Investigation of novel predictions

Next, we perform the literature-based validation of novel predictions. Our goal is to evaluate the

quality of HOGCN’s novel predictions compared to that of GCN and SkipGNN and show that

HOGCN predicts novel interactions with higher confidence. We consider GDIs and DDIs for this

evaluation.

We first evaluate the potential of the HOGCN to make novel GDI predictions. We collect 1,134,942

GDIs and their scores from DisGeNET [136]. The score corresponds to the number and types of

sources and the number of publications supporting the associations. With the score threshold of
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Figure 6.6: AUPRC comparison for higher-order message passing with different fractions of training
edges. The values of k for different HOGCN models are reported in the legend.

0.18, we obtain 17,893 new GDIs that are not in the training set. We make predictions on these

17,893 GDIs with GCN, SkipGNN, and HOGCN (k = 3). Out of 17,893 GDIs, HOGCN predicts

a higher probability than GCN for 17,356 (96.99%) GDIs and than SkipGNN for 11,418 (63.8%)

GDIs. Table 6.4 shows the top 5 GDIs with a significant increase in interaction probabilities when

higher-order neighborhood mixing is considered. We also provide the number of evidence from

DisGenNet [136] to support these predictions. Improvement in predicted probabilities by HOGCN
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models shows that aggregating feature representations from higher-order neighbors make HOGCN

more confident about the potential interactions as discussed in Section 6.6.4.

Probability No. of
Gene Disease 1 2 3 Evidence

PTGER1 Gastric ulcer 0.087 0.519 0.721 1
ANGPT1 Gastric ulcer 0.173 0.583 0.657 2
ABO Pancreatic carcinoma 0.265 0.615 0.770 26

VCAM1 Endotoxemia 0.294 0.529 0.639 5
GPC3 Hepatoblastoma 0.307 0.540 0.598 17

Table 6.4: Novel prediction of GDIs with the number of evidence from DisGenNet supporting the
interaction. GCN, SkipGNN and HOGCN are denoted by 1, 2 and 3 respectively.

We select two predicted GDIs with a large number of supporting evidence and investigate the reason

for the improvement in predicted confidence with HOGCN. Specifically, we choose gene-disease pairs

(a) ABO and Pancreatic carcinoma (26 pieces of evidence) and (b) GPC3 and Hepatoblastoma

((17 pieces of evidence). To explain the prediction, the subnetworks containing all shortest paths

between these pairs are selected. In particular, there are 49 shortest paths of length 3 between

ABO and Pancreatic carcinoma including 6 diseases and 15 genes (Fig. 6.7a). Similarly, there

are 20 shortest paths of length 3 between GPC3 and Hepatoblastoma including 6 diseases and 9

genes (Fig. 6.7b). Since these nodes are 3-hop away from each other and GCNs can only consider

immediate neighbors, GCNs assign low confidence to these interactions.

Examining the subnetwork in Fig. 6.7a, we found that most of the diseases are related to a cancerous

tumor in the pancreas and the prostate. Furthermore, pancreatic carcinoma is associated with other

diseases such as Pancreatic neoplasm, malignant neoplasm of pancreas, and malignant neoplasm

of prostate [136]. Since ABO is linked with diseases that are related to pancreatic carcinoma and

other genes are related to these diseases as well, HOGCN captures such association (Fig 6.7a) even

though they are farther away in the network. Similarly, HOGCN predicts association for GPC3

and Hepatoblastoma (Fig. 6.7b).

Next, we perform a similar case study for DDIs and evaluate the predictions against DrugBank [73].

For this experiment, we make a prediction for every drug pair with GCN, SkipGNN and HOGCN

and exclude the interactions that are already in the training set. Table 6.5 shows the top 5

interactions with an increase in interaction probabilities when highers orders of the neighborhood

are considered. As discussed in Section 6.6.4, HOGCN makes predictions with higher confidence

compared to GCN and SkipGNN for the interactions that are likely to be a true positive.



CHAPTER 6. ENCODING HIGHER-ORDER NETWORK PROPERTIES 94

(a) (b)

Figure 6.7: Subnetwork with predicted interactions (marked by bold dashed lines) between (a)
ABO and Pancreatic carcinoma (b) GPC3 and Hepatoblastoma and all shortest paths between
these pairs. The known interactions are presented as gray lines. Diseases are presented as dark
circles and genes are presented as white circles.

Drug 1 Drug 2
Probability

1 2 3 Evidence

Nelfinavir Acenocoumarol 0.192 0.318 0.417 [141]
Praziquantel Itraconazole 0.609 0.721 0.811 [142]
Cisapride Droperidol 0.618 0.725 0.823 [143]
Dapsone Warfarin 0.632 0.720 0.885 [144]

Levofloxacin Tobramycin 0.663 0.760 0.823 [145]

Table 6.5: Novel prediction of DDIs with the literature evidence supporting the interaction. GCN,
SkipGNN and HOGCN are denoted by 1, 2 and 3 respectively.

Moreover, we validate the false positive DDI predictions of GCNs and investigate the subnetwork

for these drugs in DDI networks to reason the predictions. Table 6.6 shows the top 5 interactions

with a significant decrease in predicted confidence compared to GCN-based models. Since these

DDIs are false positives [73], GCN-based models make overconfident predictions for such DDIs. In

contrast, HOGCN significantly reduces the predicted confidence for these DDIs to be true positive,

indicating that the higher-order neighborhood allows HOGCN to identify false positive predictions.

In particular, HOGCN can identity false positive DDI between Belimumab and Estazolam even

though they are 3-hop away from each other.
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Drug 1 Drug 2
Probability with k
1 2 3

Tranylcypromine Melphalan 0.925 0.478 0.065
Belimumab Estazolam 0.912 0.477 0.178

Methotrimeprazine Cloxacillin 0.907 0.406 0.065
Hydrocodone Melphalan 0.905 0.193 0.012
Ibrutinib Mecamylamine 0.899 0.398 0.353

Table 6.6: Predicted probability for negative DDIs. GCN, SkipGNN and HOGCN are denoted by
1, 2 and 3 respectively.

We select subnetwork involving the drugs to investigate the reason for such predictions. Fig. 6.8

shows the subnetwork with all shortest paths between the drugs in Table 6.6. Examining the figure,

we observe that the drugs in these false positive DDIs have common immediate neighbors for all

cases. GCN makes wrong predictions for these DDIs with high confidence. However, SkipGNN

becomes less confident about the interaction being true positive by considering the skip similarity.

HOGCN further reduces the predicted confidence for Tranylcypromine and Melphalan to 0.065,

indicating that there is no association between these drugs.

(a) (b) (c) (d)

Figure 6.8: Subnetwork containing false positive predictions (marked by dark dashed lines) and all
shortest paths between (a) Tranylcypromine and Melphalan (b) Methotrimeprazine and Cloxacillin
(c) Hydrocodone and Melphalan and (d) Ibrutinib and Mecamylamine. Other known interactions
are presented as gray gray lines. Dark circles denotes drugs.

These case studies show that HOGCN with higher-order neighborhood mixing not only provide

information for the identification of novel interactions but also help HOGCN to reduce false positive

predictions.



CHAPTER 6. ENCODING HIGHER-ORDER NETWORK PROPERTIES 96

6.7 Conclusion

We present a novel deep graph convolutional network (HOGCN) for biomedical interaction predic-

tion. Our proposed model adopts a higher-order graph convolutional layer to learn to mix the fea-

ture representation of neighbors at various scales. Experimental results on four interaction datasets

demonstrate the superior and robust performance of the proposed model. Furthermore, we show

that HOGCN makes accurate and calibrated predictions by considering higher-order neighborhood

information.

There are several directions for future study. Our approach only considers the known interactions

to flag potential interactions. There are other sources of biomedical information such as various

physicochemical and biological properties of biomedical entities that can provide additional infor-

mation about the interaction and we plan to investigate the integration of such features X into

the model. As HOGCN aggregates the neighborhood information at various distances and can flag

novel interactions, it would be interesting to provide interpretable explanations for the predictions

in the form of a small subgraph of the input interaction network G that are most influential for the

predictions [146,147].
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Chapter 7

Joint inference for neural network

depth and neuron activations

In part I, we designed and developed neural network architectures to learn representation for

biological entities and demonstrated the effectiveness of these networks in predicting novel biological

interactions. These neural network architectures are crucial in learning the feature representation

from data. However, the design of such complex networks relies heavily on the prior’s knowledge

and experience. This process is not only time consuming and error-prone, but also may lead to

complex models that are prone to overfitting. Specifically, finding the optimal number for hidden

layers (depth) involves computationally expensive and time-consuming search process such as grid

search or random search. Moreover, various structure selection methods [2,49,50] and regularization

techniques [48,64] are used which requires the hyperparameter to be set carefully to determine the

best configuration for a given dataset and avoid overfitting.

To address this problem, we develop a Bayesian model selection method to jointly infer the most

plausible network depth warranted by data and perform dropout regularization simultaneously.

In particular, to infer network depth we define a beta process over the number of hidden layers

which allows it to go to infinity. Layer-wise activation probabilities induced by the beta process

modulate neuron activation via binary vectors of a conjugate Bernoulli process. Experiments

across domains show that by adapting network depth and dropout regularization to data, our

method achieves superior performance comparing to state-of-the-art methods with well-calibrated

uncertainty estimates.

98
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7.1 Introduction

Both dropout regularization and network depth are critical to the success of deep neural networks

(DNNs) [3, 7, 148, 149]. Finely tuned or selected structures empower DNNs with proper model

capacity that can not only efficiently capture statistical regularities in data but also avoid being

deceived by random noise into “discovering” non-existent relationships.

Dropout as an effective regularization method sparsifies a neural network’s structure by randomly

deleting neurons along with their connections in training to prevent it from overfitting [47, 150].

Recent studies extend the method from a Bayesian perspective to allow automatic tuning of the

dropout probability in large models [1, 52, 53, 54, 55, 149]. Although dropout and its variants can

effectively govern model capacity, without uncertainty calibration deep models tend to be overly

confident with their predictions [7, 151]. Probabilistic inference approaches for network structure

selection propose to bypass or down-weight certain hidden layers to reduce training cost and build

smaller models that perform just as well as larger ones [4, 5, 6, 7]. These methods lead to more

efficient or better-calibrated models only by reducing the depth of a pre-determined network struc-

ture. They cannot scale the network structure up to accommodate incrementally available data

beyond the upper limit of its capacity.

We thus propose a novel Bayesian model selection framework to jointly infer network depth and

perform dropout regularization simultaneously. In particular, we model the depth of a network

structure as a stochastic process by defining the beta process [152,153] over the number of hidden

layers to enable it to go to infinity in theory, as in Figure 7.1a (left). The beta process induces

layer-wise activation probabilities, which allows its conjugate Bernoulli process to generate a binary

vector per hidden layer to prune neurons for regularization, as in Figure 7.1b. The probabilistic

inference framework automatically balances network depth and dropout regularization by com-

puting a marginal likelihood over the hidden layers and their neuron activations, and provides

well-calibrated uncertainty estimates for predictions. The exact computation of the marginal like-

lihood is intractable due to the nonlinear nature of neural networks with a potentially infinite

number of hidden layers. We thus employ the structured stochastic variational inference [154,155]

with a continuous relaxation on the Bernoulli variables to efficiently approximate the integral with

a continuum of lower bounds. The relaxation allows to maintain differentiability and mitigate over-

fitting via model averaging of the sampled hidden layers and neuron activations. Benefiting from

theoretical analysis, we readily integrate the joint inference with the parameter learning process

through an alternating approach to efficiently update the parameters, and perform hidden-layer

sampling and dropout regularization.
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We analyze the behavior of our joint inference framework over multilayer perceptrons (MLPs)

and convolutional neural networks (CNNs), and evaluate their performance across domains. The

experiments show that our method leads to a compact neural network by balancing its depth and

dropout regularization with uncertainty calibration, and achieves superior performance comparing

to state-of-the-art dropout and structure selection methods. We also demonstrate our method on

a continual learning task. By enabling both network depth and neuron activations to dynamically

evolve to accommodate incrementally available data, we can alleviate catastrophic forgetting.

(a) (b)

Figure 7.1: (a) Demonstrations of our proposed framework (left), a dropout variant (middle),
and typical structure selection methods (right). Our framework enables depth goes to infinity by
modeling the number of hidden layers with a beta process. The dropout variant defines an Indian
buffet process per layer to infer width, but depth is fixed [1, 2]. Structure selection methods can
only reduce depth of a pre-determined network structure [3, 4, 5, 6]. (b) On top, random draws
from two beta processes with α > β on the left and β > α on the right over hidden layer function
space H = {hl |l → ∞}. An atom location is δhl

indexing a hidden layer function hl, and the
height denotes its activation probability πl. For both cases, the conjugate Bernoulli processes at
bottom are obtained by random filled dots zml = 1 with probability πl and empty dots zml = 0
with probability 1− πl. So each column is a binary vector zl corresponding to layer l.

7.2 Related work

Dropout is an effective neural network regularization technique [47, 48]. By randomly pruning

neurons and their connections from a network structure with a dropout rate during training, it

can prevent DNNs from overfitting [49,50,51]. [52] interprets dropout from a Bayesian perspective

to quantify uncertainty. Variational dropout proposes a stochastic gradient variational inference

approach to learn the dropout rate from data with a constraint on large dropout rate values [53]. [54]

extends the variational dropout to set unbounded individual dropout rate per weight. Concrete

dropout proposes a continuous relaxation of the dropout’s discrete masks to automatically tune the

dropout probability, and obtain its uncertainty estimates [55]. Bayesian nonparametrics are also

applied to extend the variational dropout approaches by defining an Indian buffet process (IBP)
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over neurons per hidden layer [1] or over channels in CNNs [2] to infer network widths, as in Figure

7.1a (middle). Another body of work leverage the non-parametric Bayesian framework to infer the

dimensionality of latent representation encoded by DNNs [56,57].

Structure selection methods improve training efficiency by reducing the depth of a pre-arranged

network structure, as in Figure 7.1a (right). Some lead to well-performed smaller networks, and

others achieve better uncertainty calibration. In order to build smaller models that perform just

as well, [3] proposes to reduce a large neural network by merging adjacent hidden layers with

only linear relationships being activated in between. A stochastic depth method randomly drops

a subset of hidden layers from a large network by bypassing them with an identity function in

each mini-batch to speed up the training session, but it still deploys the large network structure

at test time [4]. [6] shows that the multiplicative noise from dropout induces structured shrinkage

priors over a neural network’s weights, and they further extend the shrinkage framework based on

ResNet structures [58] to model the probabilities of hidden layers being used. In particular, the

work also indicates that the framework is equivalent to the stochastic depth regularization [4]. [5]

proposes to tune a hidden layer’s influence on a prediction by learning a bypass variable between

adjacent-layer connections and skip connections with a variational Bayes method. The method

also prunes neurons separately. [7] proposes a Bayesian model averaging method to down-weight

deeper layers by directly connecting every hidden layer to the output layer, and achieve competitive

performances with uncertainty calibration. [59] achieves model effectiveness and computational

efficiency by inferring a distribution of connections and units in the context of local winner-takes-

all DNNs with IBP.

7.3 The joint inference framework

We propose to model network depth as a stochastic process, and jointly perform dropout regu-

larization upon the inferred hidden layers. Theoretical analysis shows that by approximating its

marginal likelihood the inference framework achieves an optimal balance between network depth

and neuron activations as Bayesian model selection.
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7.3.1 Network structure with infinite hidden layers

Let hl denote the l-th hidden layer composed of neurons (i.e., non-linear activation functions) σ(·).
The neural network has the form:

hl = σ(Wlhl−1)
⊗

zl + hl−1 l ∈ {1, 2, ...,∞} (7.1)

where Wl ∈ RM×M is the layer l’s weight matrix with a Gaussian prior p(W) = N (W|0, s2wI),
⊗

denotes element-wise multiplication of two vectors, and M is the maximum number of neurons in a

layer. For simplicity, we setM to be the same for all hidden layers. In particular, we prune the l-th

layer’s outputs by multiplying them elementwisely by a binary vector zl where its element variable

zml ∈ {0, 1}. Each random variable zml takes the value 1 with πl ∈ [0, 1] indicating activation

probability of the l-th layer, as in Figure 7.1b. The combination of the previous layer’s outputs

with the current layer’s via skip connections not only avoids vanishing gradient but also propagates

the output of the last hidden layer with activated neurons directly to the output layer f(·).1

Given a dataset D = {(xn,yn)}Nn=1 with N input-output pairs (xn,yn) as training examples, for a

regression task we express the likelihood of the neural network as:

p(D|Z,W) =

N∏
n=1

N (yn|f(xn;Z,W), s2I) (7.2)

where Z is a binary matrix whose l-th column is zl, and W = {Wl} denotes the set of the weight

matrices. s2 denotes likelihood noise with I as an identity matrix with the same dimensionality as

the training examples’ outputs. For classification tasks, we replace f(·) with a softmax function

and the normal distribution with a multinoulli distribution.

7.3.2 Beta process over layer number

We treat the number of hidden layer functions hl as a stochastic process by defining a beta process

over their space H = {hl}∞l=1, as shown in Figure 7.1b.

Conceptually, we generate a beta process B from its base measure B0 as B ∼ BP(c,B0) by drawing a

set of samples (hl, πl) ∈ H×[0, 1] from a non-homogeneous Poisson process [152]. Let B =
∑

l πlδhl
,

where δhl
is a unit point mass at hl. In our setting, a pair (hl, πl) corresponds to a hidden layer

1A graphical demonstration of the network structure is in Appendix.
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function hl ∈ H and its activation probability πl ∈ [0, 1]. We define a conjugate Bernoulli process

Zm· ∼ BeP(B) as Zm· =
∑

l zmlδhl
at the same locations δhl

as B where zml are independent

Bernoulli variables with a probability that zml = 1 equals to πl. As in (7.1), zml = 1 activates the

m’th neuron in layer l.

Computationally, we employ the stick-breaking construction of beta-Bernoulli processes [153, 156]

as

zml ∼ Ber(πl), πl =

l∏
j=1

νj , νl ∼ Beta(α, β) (7.3)

where νl are sequentially drawn from a beta distribution. According to the formulation, πl is

decreasing with l. α and β are the hyperparameters governing preference over a balance between

network depth and dropout regularization. In particular, if α > β > 1, the hidden layers tend to

have lower activation probabilities with less number of activated neurons, as in Figure 7.1b left. The

setting thus prefers a narrower but deeper network structure. On the other hand, β > α > 1 favors

shallower but wider network structure, where fewer hidden layers tend to have higher activation

probabilities with more neurons being activated, as in Figure 7.1b right.

We thus define a prior over Z via the beta process as

p(Z,ν|α, β) = p(ν|α, β)p(Z|ν) =
∞∏
l=1

Beta(νl|α, β)
M∏

m=1

Ber(zml|πl) (7.4)

7.3.3 Marginal likelihood over network structures

By combining the beta process prior over hidden layers in (7.4) with the neural network structure in

(7.2), we can infer the number of hidden layers L by integrating over Z = {zl}Ll=1 and ν = {νl}Ll=1:

p(D|W, L, α, β) =

∫
p(D|Z,W)p(Z,ν|α, β)dZdν (7.5)

The exact computation of this marginal likelihood is intractable due to the non-linearity of the

neural network and L→∞.
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7.3.4 Efficient inference with SSVI

We employ structured stochastic variational inference (SSVI) to approximate the marginal likeli-

hood with a variational lower bound (ELBO) retaining the dependence between network structures

and hyperparameters [154,155,157]. In particular, we define the variational distribution as

q(Z,ν|{ak}Kk=1, {bk}Kk=1) = q(ν)q(Z|ν) =
K∏
k=1

Beta(νk|ak, bk)
M∏

m=1

ConBer(zmk|πk) (7.6)

where πk =
∏k

j=1 νj , and {ak, bk}Kk=1 are variational parameters of q(ν), andK denotes a truncation

level, which can be relaxed as in [158]. We relax the constraint of the discrete variables with

continuous ones by reparameterizing the Bernoulli distribution into a concrete Bernoulli distribution

[159,160]:

ConBer(zmk|πk) = τ
πk(zmk)

−τ−1(1− πk)(1− zmk)
−τ−1

(πk(zmk)−τ + (1− πk)(1− zmk)−τ )2
(7.7)

where τ is a temperature controlling the distribution smoothness. We generate random samples

from the distribution by first sampling from a logistic distribution as the external source of ran-

domness and then putting the samples through a logistic function as follow:

zmk =
1

1 + exp(−τ−1(log πk − log(1− πk) + ϵ))
ϵ ∼ Logistic(0, 1) (7.8)

This reparameterization of the Bernoulli distribution allows us to backpropagate the gradients of

the lower bound with respect to the parameters while sampling from it.

We derive a lower bound of the log marginal likelihood in (7.5) as:

log p(D|W, L, α, β) ≥
∫
q(Z,ν) log p(D|Z,W)dZdν +

∫
q(Z,ν) log

p(Z,ν)

q(Z,ν)
dZdν (7.9)

The ELBO from the right-hand side of (7.9) becomes our objective function:

L(Z,ν,W) = Eq(Z,ν)[log p(D|Z,W)]−KL[q(Z|ν)||p(Z|ν)]−KL[q(ν)||p(ν)] (7.10)

The first term of the ELBO in (7.10) is the averaged log-likelihood. The second and the third

terms are the KL divergence between the variational distribution and the true prior, respectively.

In particular, for the second term we relax the prior p(Z|ν) with a concrete Bernoulli as in (7.7) with

different temperatures. For the third term the KL divergence between the variational distribution
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and the prior distribution over ν is:

KL[q(ν)||p(ν)] =
∑
k

ln

(
B (α, β)

B(ak, bk)

)
+ (ak − α)ψ(ak)

+ (bk − β)ψ(bk) + (α− ak + β − bk)ψ(ak + bk)

(7.11)

where ψ(·) denotes a di-gamma function.

Theorem 1. Assume Ŵ is the optimized value of the variable, and the likelihood and the in-

duced prior on ΠZ for Z are specified in (7.2) and (7.4), in the large sample limit, the limiting

of the ELBO in (7.10) becomes equivalent to the Bayesian information criterion [161], such that

BIC(Z) = log p(D|Z,Ŵ) − |Z|
2 log N

2π , where |Z| denotes the number of activated neurons in the

network structure.

To prove Theorem 1, let the binary matrix Z index the activated neurons with its non-zero ele-

ments, and we denote their weights as WZ. We employ a Gaussian approximation to the posterior

distribution as follows. Let

p(WZ|D) =
1

p(D)
p(WZ, D) =

1

C
e−E(WZ) (7.12)

where E(WZ) is equal to the negative log of the unnormalized log posterior:

E(WZ) = − log p(WZ, D) (7.13)

with C = p(D) being the normalization constant. We expand E(WZ) around the mode ŴZ with

the Taylor series as

E(WZ) ≈ E(ŴZ) + (WZ − ŴZ)
T g

+
1

2
(WZ − ŴZ)

TH(WZ − ŴZ)
(7.14)

where g is the gradient and H is the Hessian of the energy function evaluated at the mode:

g = ∇E(WZ)|ŴZ
H =

∂2E(WZ)

∂WZ∂W
T
Z

|ŴZ
(7.15)

The second term in (7.14) can be dropped, since the gradient term (WZ − ŴZ)
T g = 0 due to the
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mode ŴZ. We thus have

p(WZ|D)

=
1

p(D)
p(WZ, D)

=
1

C
e−E(WZ)

≈ 1

C
e−E(ŴZ)−0− 1

2
(WZ−ŴZ)

TH(WZ−ŴZ)

=
e−E(ŴZ)

C
exp[−1

2
(WZ − ŴZ)

TH(WZ − ŴZ)]

= N(WZ|ŴZ, H
−1)

C = p(D)

=

∫
p(WZ, D)dWZ

= e−E(ŴZ)(2π)
|Z|
2 |H|−

1
2

(7.16)

We abuse the notation a little by using |Z| to denote the number of non-zero elements.

The log marginal likelihood can thus be approximated with the Gaussian approximation as follows:

log p(D) ≈ −E(ŴZ)−
1

2
log |H|+ |Z|

2
log 2π

= log p(D|ŴZ) + log p(ŴZ)−
1

2
log |H|+ |Z|

2
log 2π

(7.17)

The penalization terms following log p(D|ŴZ) are a measure of model complexity. The second

term can be ignored by assuming a uniform prior. By approximating each Hi by a fixed matrix Ĥ

in the third term, H =
∑N

i=1Hi, where Hi = ∇∇ log p(Di|WZ), we have

log |H| = log |NĤ|

= log(N |Z||Ĥ|)

= |Z| logN + log |Ĥ|

(7.18)

where we assume H is a full rank matrix. log |Ĥ| term can be ignored due to its independence of

N . We thus have the Bayesian information criteria (BIC) score:

log p(D) ≈ log p(D|ŴZ)−
|Z|
2

log
N

2π
(7.19)

Optimizing the ELBO produces the best approximation to the true posterior within the space of
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distributions, as well as the tightest lower bound on the true marginal likelihood. Our variational

inference framework optimizes a lower bound to this BIC with respect to Z in order to have the

most plausible network structure size.

This theorem indicates that optimizing the limiting case of our SSVI framework can therefore

be seen as optimizing the popular model selection criteria. We adopt the implicit differentiation

of beta distribution for backpropagation [162], which allows us to stochastically optimize L with

respect to the variational parameters every time we sample a network structure. We iteratively

maximize ELBO with respect to the variational parameters and weights W, and approximate the

ELBO using random samples from the variational distribution.

We approximate the posterior predictive distribution by sampling from the variational posterior

distribution for predictions. Thus, the predictive distribution for new data x∗ is

p(y∗|x∗,Ŵ, {âk}, {b̂k}) =
∫
p(y∗|x∗,Z,Ŵ)q(Z,ν|{âk}, {b̂k})dZdν (7.20)

where Ŵ is the MAP estimate of the neural network weights based on mini-batch gradient descent.

7.4 Experiments

We analyze the behavior of our framework by applying it to MLPs and CNNs on a variety of tasks.

We study how it enables network depth to adapt to dataset sizes, and capture different types of un-

certainty on a synthetic dataset. Our framework outperforms state-of-the-art methods on the UCI

datasets with uncertainty estimation. To obtain performance comparison, we perform Bayesian

Optimisation and Hyperband (BOHB) to determine the best configurations for each method [163].

We also investigate the effect of truncation level K and M , and show that their settings have

no influence on the performance as long as they are reasonably large. The experiments with im-

age datasets show that our framework improves CNN performances with more compact network

structures and well-calibrated predictive distributions. Lastly, we demonstrate our method in two

continual learning tasks, and show that by allowing network depth to dynamically augment to

accommodate incrementally available information we can effectively alleviate catastrophic forget-

ting. 2

2Implementation details of all the experiments are in Appendix.
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7.4.1 Synthetic experiments

We analyze our method’s behaviors given different dataset sizes, and its uncertainty estimation.

We incrementally generate 20, 500 and 2000 data points from a periodic function [5]:

y = sin (6x) + 0.4x2 − 0.1x3 − x cos (9
√
exp(x)) + ϵ (7.21)

where ϵ ∼ N (0, 0.12) with 20% for validation. The data are shown in Figure 7.2a bottom row. We

set the maximum number of neurons per layer M = 20, and use leaky ReLU activation functions

in the input and hidden layers with batch normalization to retain stability. We simulate 5 samples

per mini-batch to approximate the ELBO in (7.10), and evaluate convergence by computing the

cross-correlations of the sample values over 3000 epochs.

(a)

(b)

(c)

Figure 7.2: (a) Top row shows the activation probabilities πk (black bars) of the inferred hidden
layers, and the neuron activations Z (filled dots denote activated neurons). The network becomes
deeper with more activated neurons as the training dataset size increases. Bottom row shows the
predictive distributions overlaying the data points, and the green bands are±one standard deviation
over the predictions of 5 sampled network structures. (b) Predictive performance evaluation of our
method and vanilla dropout with different dropout rates for the three cases. (c) Our method’s
estimates of different uncertainties as the number of data points increases.

As shown in Figure 7.2a, to accommodate more information from larger datasets, the neural network

becomes deeper with more activated neurons. Although we set the truncation level K = 100 for all

the training cases, only the first few hidden layers have activated neurons (i.e., 1 layer, 3 layers, and

4 layers for the respective cases). Figure 7.2a bottom row shows how the predictive distributions
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in (7.20) are capturing the true function and estimating uncertainty as the dataset size increases.

We compare our method’s performance with vanilla dropout [47] whose backbone structure sizes

are the same as the respective ones inferred by our method. The predictive performances on 700

held-out data points in Figure 7.2b indicate that by obtaining the critical balance between network

depth and neuron activations our method achieves more stable performance with less variance on

the small dataset, and significantly better performance on the larger ones.

The datasets generated with a known variance allow us to assess the different types of uncertainty of

our method’s predictions. In particular, the epistemic uncertainty is obtained by drawing multiple

samples of the inferred depth and neuron activation, and evaluating them on the test set of 700

data points from the same data distribution. Figure 7.2c shows that the epistemic uncertainty

decreases as the amount of data points increases. The aleatoric uncertainty approaching the true

uncertainty (0.1) shows an increasingly improved estimate as more data is given. Our method’s

predictive uncertainty obtained by combining epistemic and aleatoric uncertainties converges to a

constant value.

7.4.2 Performance comparisons on UCI datasets

We evaluate all methods on UCI datasets [164] using standard splits [165], and report their per-

formance in terms of log-likelihood (LL) and root mean square error (RMSE). In particular, we

compare the performances with vanilla dropout (Dropout), concrete dropout (CD) [55], Indian

buffet process dropout (IBPD) [1], Bayesian architecture learning (BAL) [5], stochastic depth

(SDepth) [4], depth uncertainty networks (DUNs) [7], and Deep Ensembles (DeepEns) [166]. We

perform hyperparameter optimization with Bayesian Optimisation and Hyperband (BOHB) to de-

termine the best configurations including backbone-structure depths and hyperparameter settings

for each method [163], as suggested in [7]. The detailed implementation is in Appendix.

In Figure 7.3, we rank the methods from 1 to 8 based on their mean performance across each dataset

and metric, and report mean ranks with ± one standard deviation. Our joint inference framework

outperforms other methods in terms of both test log-likelihood (LL) and RMSE by achieving the

best rank across all datasets. In particular, LL measures both accuracy and uncertainty calibra-

tion [167]. The narrower standard deviations of our method indicate its robustness. The vanilla

dropout achieves the second-best rank followed closely by the Deep Ensembles in terms of LL and

concrete dropout in terms of RMSE.
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Figure 7.3: Mean values with ± one standard deviation for test log-likelihood (LL) and RMSE on
UCI standard splits. Average ranks are computed across datasets. For LL, higher is better. For
rank and RMSE, lower is better. The metrics are defined as in [7] with the codes generating the
plots. Details are in Appendix.

7.4.3 Effect of truncation level

We further investigate the effect of truncation level K on our method’s performance, and compare

it with the backbone-structure depth L of dropout variants and structure selection methods.

Figure 7.4: Analysis of the influence of our method’s truncation level K and other methods’
backbone-structure depth L in CNNs with the four image datasets. As long as K is reasonably
large (≥ 10), it no longer has an influence on our method’s performances. On the contrary, the per-
formance of the other methods depends on L. As L becomes large, they tend to have an overfitting
problem with increased test errors. By jointly inferring network depth and neuron activations, our
method is robust to overfitting, and achieve the best performances.
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All the methods have the same maximum width M = 64 (i.e., the maximum number of feature

maps in convolutional layers). In Figure 7.4, we apply all the methods on CNNs with the backbone-

structure depth L and the truncation levelK over the range L = K ∈ {5, 10, 15, 20, 25, 30, 35, 40, 45, 50}
for classification tasks of four image datasets: MNIST [168], FashionMNIST [169], SVHN [170], and

CIFAR10 [171]. When L = K = 5, all the methods have an underfitting problem due to the lim-

ited model capacity, although our method still achieves competitive or better performances. As the

truncation level becomes reasonably large (≥ 10), it no longer affects our method’s performance.

The results are consistent with Theorem 1, as our joint inference essentially works as Bayesian

model selection on a network structure truncation. On the contrary, the depths of backbone struc-

ture L affect the other methods to a great extent. The increase of the test errors shows that they all

have an overfitting problem when the backbone-structure depths become large. Individual method

reaches its own best performance, as L increases. Our method outperforms them for all these cases

with orders of magnitude less computing resources across the four datasets. The respective evalu-

ations in Figure 7.6 (i.e., M = 64) show that our method only activates neurons in 6, 6, 10 and 6

hidden layers for predictions on MNIST, FashionMNIST, SVHN, and CIFAR10, respectively. Only

10% of total neurons in the truncation level are activated for all the cases. This suggests by jointly

inferring network depth and neuron activations our method is quite robust to overfitting, and the

balance between the two also leads to superior performances with compact network structures. In

contrast, the backbone-structure sizes of the dropout variants and structure selection methods have

to be set carefully to determine the best configuration for a given dataset.

(a) Rotated MNIST (b) Corrupted CIFAR10

Figure 7.5: Evaluation of uncertainty estimates for (a) MNIST for varying degrees of rotation
and (b) CIFAR10 at varying degrees of corruption severities with log-likelihood (LL) and expected
calibration error (ECE), as in [7].

We also evaluate the uncertainty calibration of our framework and other methods with their best

settings in Figure 7.4. In Figure 7.5a, we train all methods on MNIST and evaluate their predictive

distributions on increasingly rotated digits [172]. The uncertainty calibration of our method is more
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robust to the data with large angle rotations than other methods, and it achieves the performance

with the lowest expected calibration error (ECE) [173]. In Figure 7.5b, to make a fair and rigorous

comparison as in [7], we also evaluate the corruption robustness of all methods on the CIFAR10

dataset with 16 types of algorithmically generated corruptions [174]. Each type of corruption

has 5 levels of severity. The Deep Ensembles outperform other methods, and our model achieves

comparable performance at all corruption levels.

7.4.4 Effect of M

We next assess the influence of the maximum number of neurons/feature maps (M) on our method

with classification tasks on the four image datasets. Figure 7.6 shows the evolution of the number

of inferred convolutional layers as M increases. When M = 16, we tend to have deeper network

structures to compensate for the relatively narrow layers. As M increases, the structures become

shallower. When M is reasonably large, it has no influence on the inferred structure depth. The

percentage of activated neurons in the truncation level remains relatively stable across different

values of M . This suggests that our method can adapt both the network depth and the neuron

activations to maintain the best performances as M changes.

Figure 7.6: Influence of the maximum number of feature maps (M) on our method with four image
datasets. When M is small, we tend to have deeper network structures (blue). As M becomes
reasonably large (e.g., ≥ 128), it tends not to have influence on the inference of network structure
sizes. Meanwhile, the percentages of activated neurons in the truncation level are stable (orange).

7.4.5 Case study on Continual learning

Continual learning is an important application since real-world tasks are dynamic and non-stationary.

Machine learning models need to learn consecutive tasks without forgetting how to perform previ-

ously trained ones. Assuming the pre-determined backbone structures are sufficient to accommo-
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date all information from the continual tasks, network regularization approaches alleviate catas-

trophic forgetting by regularizing the updates of neural weights [175]. Dropout and its vari-

ants are applied to learn an implicit gating mechanism that activates different gates for different

tasks [176,177]. However, the rigid backbone structure constrains the applicability of these methods

in real-world settings.

We slightly modify our method to enable network depth and neuron activations to dynamically

evolve to accommodate incrementally available data. Given a set of sequentially arriving datasets

{Dt} where each may contain a single datum, we update our ELBO in (7.10) as:

Lt = Eqt(Z,ν)[log p(Dt|Z,ν,W)]−KL[qt(Z|ν)||qt−1(Z|ν)]−KL[qt(ν)||qt−1(ν)] (7.22)

by replacing the priors p(Z|ν) and p(ν) with their variational approximation for the previous dataset

qt−1(Z|ν) and qt−1(ν). We initialize them as q0(Z|ν) = p(Z|ν) and q0(ν) = p(ν). The variational

distribution in (7.6) after seeing the t-th dataset is recursively updated by taking the distribution

after seeing the (t− 1)-th dataset, multiplying by the likelihood and re-normalizing.

(a) (b)

Figure 7.7: (a) The validation accuracy averaged over five runs for each task after training on all
tasks in sequence. (b) Evolution of layer-activation probabilities (πk) with the five tasks.

We compare the performance of our method with baseline continual learning methods including

elastic weight consolidation (EWC) [175], orthogonal gradient descent (OGD) [178], and stochastic

gradient descent with dropout (SGD + dropout). We conduct an extensive grid search on the

hyperparameter setting of these methods, and evaluate them on two popular continual learning

benchmarks: permuted MNIST [175] and rotated MNIST datasets [179]. Permuted MNIST at each

time step Dt consists of labeled MNIST images whose pixels undergo a fixed random permutation.

Rotated MNIST is generated by the rotation of the original MNIST images. Figure 7.7a shows

our method outperforms the other methods on the first four tasks, and is only slightly worse than
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some (i.e., SGD for Permuted MNIST). Over the five tasks, our method achieves the highest average

accuracies (95.16% on Rotated MNIST and 92.34% on permuted MNIST). Although some methods

perform well on the fifth task after being trained on it, they fail to preserve the knowledge learned

in previous tasks. In contrast, our method can preserve the knowledge from old tasks and achieves

comparable or better accuracy on new tasks. Figure 7.7b shows the evolution of network structures

for the five sequential tasks, as our method activates more neurons in the inferred hidden layers. In

particular, the first hidden layer tends to be full from the first task with its activation probability

close to one, the activation probabilities of the second and the third layers go up as the tasks are

coming.

7.4.6 Case study on Genetic interaction inference

We apply our method on genetic interaction inference to show the improvements over heuristically

designed neural network structure. The study of genetic interactions plays a crucial role in under-

standing biological phenomena and provides insight into the molecular etiology of diseases as well

as the discovery of drug targets [8, 9].

We evaluate our method for biological network predictions as a binary classification task in terms

of edges (genetic interactions) to be present or absent. Table 7.1 gives the number of genes and

number of interactions for each dataset. The state-of-the-art method GNE [17] uses a single hidden

layer with M = 128 neurons and a dropout rate of 0.5 to integrate interactions information with

gene expression data for yeast and Ecoli dataset. We follow the model setting strategy similar

to GNE and apply our model to infer the number of hidden layers and the number of activated

neurons in each layer. We use 0.8− 0.1− 0.1 train-validation-test split to split the interactions and

randomly sample an equal number of negative interactions. Moreover, the prior is set to α = 1.1

and β = 3 to encourage shallow model. We set the maximum number of neurons in each layer

M = 128 and the truncation level K+ = 15.

Table 7.1: Performance comparison of our method and GNE model with dropout regularization

Yeast (5638, 977k) Ecoli (3688, 294k)

Method AUROC AUPR AUROC AUPR

GNE + dropout 0.825 0.821 0.940 0.939
Our method 0.920 ± 0.005 0.933 ± 0.004 0.994 ± 0.001 0.994 ± 0.001

Table 7.1 shows that the inferred network structure Z (depth and dropout regularization) outper-
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forms the heuristically designed state-of-the-art method. For the Ecoli dataset, our model learns 3

hidden layers with 45, 15, and 4 active neurons, which improves AUROC by 11.5% and AUPR by

13.7%. Similarly, 2 hidden layers with 30 and 6 active neurons are inferred for yeast dataset that

improves AUROC by 5.7% and AUPR by 5.86%. For both datasets, our model infers deeper and

narrower neural network structure compared to GNE [17]. The result suggests that the appropriate

choice of the number of hidden layers, and the number of neurons in each layer is crucial to design a

neural network structure that achieves good performance. Our method employs Beta-Bernoulli pro-

cesses to govern these parameters and infers the most plausible neural network structure warranted

by data. This makes it applicable to tasks across various domains.

Figure 7.8: Genetic interaction network visualization for GNE with our method (left) and with
dropout (right) for E-coli dataset. We use 0.5 as the threshold for the predicted probabilities. The
black-colored nodes represent genes and the edges indicate their interactions. True positives (TPs),
false negatives (FNs) and false positives (FPs) are highlighted and the counts are provided in the
legend.

In Fig. 7.8, we plot the GI network inferred by GNE with our method and with dropout. Our

method correctly identifies more true positives and predicts fewer false positives and false negatives

than a dropout.

7.5 Conclusion

The proposed general joint inference framework can be applied to various neural networks. The

experiments on MLPs and CNNs show that our method balances network depth and neuron activa-

tions to achieve superior performance. By enabling neural network structures to dynamically evolve

to accommodate incrementally available data, we effectively alleviate catastrophic forgetting.



Chapter 8

Probabilistic Depth Selection for

Graph Neural Network

Graph neural networks (GNNs) have achieved great success over recent years across various applica-

tions such as node classification, link prediction and graph classification. For link prediction, GNNs

first compute node representations and aggregate representation of two nodes as the representation

for edge/link. GNNs have been proposed to effectively learn representations for biomedical entities

and achieved state-of-the-art results in biomedical interaction prediction. The success of GNNs in

biomedical interaction prediction relies on the carefully designed and fine-tuned structure of GNNs,

which is time-consuming and computationally expensive. Furthermore, deep GNNs with relatively

large number of layers suffer from over-smoothing problem and thus indicate that the number of

GNN layers is a critical parameter that have to be chosen carefully.

In Chapter 7, we developed a general framework for Bayesian Model Selection to jointly infer the

most plausible depth warranted by data and dropout regularization simultaneously. We extend the

framework to infer the depth for graph neural networks for biological interaction prediction.

8.1 Introduction

Biomedical interaction networks represent the complex interplay between heterogeneous molecu-

lar entities such as genes, proteins, drugs, and diseases within a biological system. The study of

interaction networks advances our understanding of system-level understanding of biology [180]

116
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and the discovery of biologically significant novel interactions including protein-protein interac-

tions (PPIs) [120], drug-drug interactions (DDIs) [121], drug-target interactions (DTIs) [122] and

gene-disease associations (GDIs) [123]. There have been huge technological advancements in high-

throughput technologies that have produced ever-increasing amount of omics data and resulted in

the identification of novel interactions. Despite this, current biological networks are noisy, sparse

and incomplete, that limits our ability to study the biological phenomenon at system level.

Various computational methods have been developed to predict novel interactions in biomedical

interaction networks. Recently, deep learning approaches on network datasets have shown great

success across various domains such as social networks [124], recommendation systems [125], chem-

istry [126], citation networks [43]. Specifically, graph convolutional networks (GCNs) have shown

great success in biomedical interaction prediction [19,181]. GCN-based encoder aggregates the in-

formation from its immediate neighbors to learn the informative representation for each molecular

entity and use these representations to predict biomedical interactions.

Despite the enormous success of GCN models in biomedical interaction prediction, the neural

network structure of GCN models is a critical choice and needs to be carefully set. Most of the

recent GCN models such as GCN [44] and GAT [182] define shallow network structures (i.e., 2-layer

models) to achieve their best performance. The ability of GCN models with shallow structures is

limited and fails to extract information from higher-order neighbors. Although stacking multiple

GCN layers and non-linearity enable the model to capture information from higher-order neighbors,

such deep GCN models tend to face the over-smoothing problem as the performance of deep models

degrades with the increase in the number of layers [44]. In particular, 2-layered GCN and GAT

models outperform deep models.

To address the challenge, we propose Bayesian model selection [183] to jointly infer the depth

of GCN models warranted by data and perform dropout regularization simultaneously [183]. To

enable the number of GCN layers in the encoder to go to infinity in theory, we model the depth of

GCN models as a stochastic process by defining the beta process over the number of GCN layers.

The beta process induces layer-wise activation probabilities that modulate neurons activations

for regularization via a conjugate Bernoulli process. The proposed framework balances the GCN

model’s depth and neuron activations and provides well-calibrated predictions.

We evaluate the performance of our inference framework and compare it with GCN-based models

for biomedical interaction prediction. We demonstrate that the GCN-based encoder suffers from the

over-fitting problem as the depth increases but our model infers the most plausible depth and is quite

robust to the overfitting problem. Furthermore, experiments on sparse interaction networks with an



CHAPTER 8. INFERRING DEPTH AND DROPOUT REGULARIZATION 118

increasing number of interactions show that our method achieves superior performance by enabling

the structure of the GCN-based encoder to dynamically evolve to accommodate incrementally

available information.

In summary, our contributions are as follows:

• We propose a Bayesian model selection to jointly infer the most plausible depth and their

neuron activations for encoder warranted by data simultaneously to learn representation for

biomedical entities.

• We empirically demonstrate that our inference framework achieves superior performance by

dynamically balancing the depth and their activation for the encoder.

• Our method enables the structure of the encoder to dynamically evolve to accommodate the

information from an increasing number of interactions.

• We further show that our method is capable of making novel predictions that are validated

using up-to-date literature-based database entries.

8.2 Materials and Methods

8.2.1 Biomedical interaction prediction

A biomedical network is a network with biomedical entities as nodes and their interactions as edges.

Formally, a biomedical network can be defined as G = (V, E ,X) where V denotes the set of nodes

representing biomedical entities such as proteins, genes, drugs, diseases and E represents the set of

interaction between these entities. We follow the definition of biomedical interaction prediction in

Definition 2.3.

8.2.2 Probabilistic model selection for graph convolutional networks

In this work, we propose a probabilistic model selection to infer the depth of graph convolutional

encoder and their neurons activations to learn the representation for each entity in the network.

In addition, we employ a bilinear decoder to reconstruct the edges in the interaction network. We

adopt the encoder-decoder framework for biomedical interaction prediction [181]. Figure 8.1 shows

the block diagram of the model.
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• Encoder: a graph convolution encoder with potentially infinite hidden layers that takes an

interaction graph G and generates representation for each entity in the interaction network.

In particular, we propose to model the depth of graph convolution encoder as a stochastic

process and jointly perform dropout regularization upon the inferred hidden layers.

• Decoder: a bilinear decoder that takes the representation of two nodes vi and vj and compute

the probability of their interaction eij .

We next discuss the details of each component of the proposed framework.

Figure 8.1: The block diagram of our prosed model with potentially infinite number of hidden
layers in encoder. The input to the network is a biomedical interaction network G with edges E
between entities V and feature matrix X. The encoder with infinite hidden layers learns the final
representation Q. the bilinear decoder takes the representation (qi,qj) for two entities (vi, vj) and
predict the probability pij of their interaction based on the edge representation eij .

Graph convolutional encoder with infinite layers

Graph convolution (GC) layer [44] generates representation for nodes in the network by repeatedly

aggregating information from immediate neighbors. GC layer can be defined as:

Hl = σ(ÂHl−1Wl) (8.1)

where Â is a symmetrically normalized adjacency matrix with self-connections Â = D− 1
2 (A +

I|V|)D
− 1

2 . Let Wl is a trainable weight matrix for layer l, Hl−1 and Hl are the input and output
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Figure 8.2: The block diagram for a layer in the encoder. The output Hl−1 from the previous layer
l − 1 is passed into graph convolutional layer at layer l and the output from layer l is pruned by
multiplying if with a binary vector zl element wisely. Since there is a potentially infinite number of
hidden layers in the encoder between the input and latent representation Q, the skip connections
pass the output from the last activated hidden layer to the bilinear decoder layer.

activations respectively. We can then define a GCN model with L layers can be defined as:

H(l) =

X if l = 0

σ(ÂHl−1Wl) if l ∈ [1, . . . , L]
(8.2)

HL ∈ R|V|×D represents the representation for each entity in the network. We denote this repre-

sentation as Q.

Deep GC encoder faces the issue of overfitting such that 2-layer models perform better than deeper

models [44]. The depth (L) of the GC encoder is a critical choice and needs to be carefully set. To

address this challenge, we propose to model the depth of encoder as a stochastic process by defining

a beta process over the hidden layers [153, 156, 183]. We adopt the stick-breaking construction of

the beta-Bernoulli process as:

zml ∼ Bernoulli(πl), πl =
l∏

j=1

νj , νl ∼ Beta(α, β) (8.3)

where νl are sequentially drawn from beta distribution and πl represents the activation probability

of layer l that decreases with layer l. zml represents Bernoulli variable with a probability that

zml = 1 equals to πl. Specifically, zml = 1 indicates that m’th neuron in layer l is activated. With
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beta process over the hidden layers, the GC encoder takes the form:

Hl = σ(ÂHl−1Wl)
⊗

zl +Hl−1, l ∈ {1, 2, . . .∞} (8.4)

whereWl ∈ RM×m is the weight matrix of layer l. We regularize the output of layer l by multiplying

it elementwisely by a binary vector zl where its element zml ∈ {0, 1}. Figure 8.2 shows the network

structure with binary vector zl applied to the output of layer l and skip connection.

Bilinear interaction decoder

We adopt bilinear decoder [181] to use representations obtained from the encoder and predict

the probability of interactions between biomedical entities. Specifically, we define a bilinear layer

that maps the representation of entities qi ∈ RM×1 and qj ∈ RM×1 to their edge representation

eij ∈ Rd∗×1 as:

eij = ELU(qiWbqj + b) (8.5)

where eij denotes the representation of edge between entities vi and vj , Wb ∈ Rd∗×M×M repre-

sents the learnable fusion matrix, and b denotes the bias of bilinear layer. The probability pij of

interaction between entities vi and vj is obtained by passing the edge representation eij through

the fully-connected (FC) layer.

pij = sigmoid(FC2(ELU(FC1(eij))) (8.6)

8.2.3 Efficient variational approximation

Given an interaction dataset D = {A,X} with adjacency matrix A ∈ R|V|×|V| and feature matrix

X, we aim to reconstruct the edges in the input network. For the problem of classifying the edges,

we express the likelihood of the neural network as:

p(D|Z,W) =
N∏

n=1

Bernoulli(Aij |f(A,X;Z,W)) (8.7)

where f(·) represents the softmax function, Z is a binary matrix that represents the network

structure for GC encoder whose l-th column is zl, and W denotes the set of weight matrices.
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We define a prior over network structure Z via beta process as

p(Z, ν|α, β) = p(ν|α, β)p(Z|ν)

=
∞∏
l=1

Beta(νl|α, β)Bernoulli(zml|πl) (8.8)

The marginal likelihood obtained by combining beta process prior in Equation 8.8 and the likelihood

in Equation 8.7 is:

p(D|W, L, α, β) =

∫
p(D|W,Z)p(Z, ν|α, β) (8.9)

The exact computation of marginal likelihood is intractable because of the non-linearity of the

neural network and L→∞.

We then use a structured stochastic variational inference framework introduced by [154, 157] to

approximate the marginal likelihood. The lower bound for log marginal likelihood is:

log p(D|W, L, α, β) ≥ Eq(Z,ν)][log p(D|W,Z)]−KL[q(ν)||p(ν)]

−KL[q(Z|ν)||p(Z|ν)] (8.10)

where q(ν) and q(Z|ν) represent variational beta distribution and variational Bernoulli distribution

resepectively. Formally, we define q(ν) = Beta(νk|ak, bk) with ak and bk as variational parame-

ters. We next define q(Z|ν)) = ConcreteBernoulli(zmk|πk). For variational approximation, we use

truncation level K to denote potentially infinite number of layers.

Training algorithm

Our proposed framework leverages biomedical interaction network A and feature representation of

biomedical entities X. For all experiments, we set X to be one-hot encoding I|V|. If features are

available for biomedical entities, we can initialize X accordingly. We can also initialize the feature

matrix using pre-trained embeddings from other network embedding approaches such as DeepWalk,

node2vec.

To compute the expectation in Equation 8.10, we make Monte-Carlo estimation with S samples of

encoder structure Z (encoder depth with layer-wise activation probabilities). The stick-breaking

construction of beta-Bernoulli process induces that the probability of being activated in hidden

layer l decreases exponentially with K. With a large K, a small number of hidden layers in the
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encoder has activated neurons which can be obtained as

lc = maxl{l|
M∑

m=1

zml > 1} (8.11)

where
∑M

m=1 zml represents total activation of neurons in layer l. We can compute the expectation

of log-likelihood based on S samples of encoder structure:

Eq(Z,v)[log p(D|Z, ν)] =
1

S
[log p(D|Zs, ν)] (8.12)

We summarize the algorithm to train our proposed framework in Algorithm 2.

Algorithm 2 Training of our proposed method

Input {Di}Bi=1: B mini batches of interaction data

Input S: the number of samples of encoder structures Z

1: for i = 1, . . . , B do

2: Draw S samples of encoder structures {Zs}Ss=1 from q(Z,ν)

3: for s = 1, . . . , S do

4: Compute the number of layers lc from Zs using (8.11)

5: Compute log p(Di|Zs,W) with lc layers

6: Compute Eq(Z,ν)[log p(Di|Z,W)] using (8.12)

7: Compute ELBO

8: Update {ak, bk}l
c

k=1and {W}l
c

k=1 using backpropagation

The parameters of our proposed framework are learned by optimizing the ELBO in Equation 7.10

in an end-to-end manner. With the trained model, we can predict the probability of interaction

between any pair of entities in the interaction network.

8.3 Results and discussion

We evaluate the performance of our proposed framework by applying it to infer the neural network

structure for graph convolutional encoder on biomedical interaction prediction. We investigate our

method’s performance and compare it with the heuristically designed encoder structure. We further

demonstrate that the settings of truncation
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8.3.1 Biomedical interaction prediction

We evaluate various models on biomedical interaction prediction tasks using four interaction datasets

such as protein-protein interactions (PPIs), drug-target interactions (DTIs), drug-drug interactions

(DDIs), and gene-disease interactions (GDIs). In particular, we compare the performances of our

proposed method with DeepWalk [40], node2vec [15], L3 [127], and graph convolutional network [44]

with graph convolutional encoder and bilinear decoder.

For the prediction task, we split the interaction dataset in ratio 7:1:2 as a training, validation,

and testing set. This procedure is repeated five times to generate five independent splits of the

interaction dataset. We train all methods on the training dataset and evaluate their performance

on the testing set. The validation dataset is used to select the best set of hyperparameters. The

evaluation is done across five independent splits and the results with ± one standard deviation are

reported in Table 8.1.

Table 8.1 shows that our proposed inference framework achieves significant improvement over other

methods. In comparison to network embedding approaches such as DeepWalk and node2vec, our

method gains 22.84% AUPRC gain in DTI, 40.83% in DDI, 26.85% in PPI, and 13.09% in GDI over

DeepWalk. Although node2vec uses biased random walk and outperforms DeepWalk, our method

achieves 19.97% AUPRC gain in DTI, 22.72% in DDI, 17.34% in PPI, and 12.82% in GDI over

node2vec. We also observe that L3 outperforms all other methods but is limited to a specific aspect

of network property, i.e., the path length of length 3 between two nodes in the network.

To investigate the advantage of inferring the most plausible network depth warranted by data, we

compare our method with a predetermined GC encoder with 3 layers. We observe that the prede-

termined GC encoder achieves superior performance in comparison to network embedding methods

such as DeepWalk, node2vec, and network similarity methods such as L3. We further observe that

our proposed framework jointly infers the most plausible network structure for GC encoder and

gains improvement over predetermined GC encoder. Specifically, our proposed framework achieves

3.35% AUPRC improvement in DTI, 2.29% in DDI, 1.45% in PPI, and 2.64% over GCN.

Since stacking more layers enable the encoder to capture information from high-order neighbors, the

performance improvement indicates that our method aggregates information from the appropriate

set of high-order neighbors by inferring the most plausible depth for graph convolutional encoder.
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Table 8.1: Average AUPRC and AUROC with ± one standard deviation on biomedical interaction
prediction

Dataset Method AUPRC AUROC

DTI

DeepWalk 0.753 ± 0.008 0.735 ± 0.009

node2vec 0.771 ± 0.005 0.720 ± 0.010

L3 0.891 ± 0.004 0.793 ± 0.006

GCN 0.896 ± 0.006 0.914 ± 0.005

Ours 0.925 ± 0.002 0.933 ± 0.002

DDI

DeepWalk 0.698 ± 0.012 0.712 ± 0.009

node2vec 0.801 ± 0.004 0.809 ± 0.002

L3 0.860 ± 0.004 0.869 ± 0.003

GCN 0.961 ± 0.005 0.962 ± 0.004

Ours 0.983 ± 0.002 0.982 ± 0.003

PPI

DeepWalk 0.715 ± 0.008 0.706 ± 0.005

node2vec 0.773 ± 0.010 0.766 ± 0.005

L3 0.899 ± 0.003 0.861 ± 0.003

GCN 0.894 ± 0.002 0.907 ± 0.006

Ours 0.907 ± 0.003 0.918 ± 0.002

GDI

DeepWalk 0.827 ± 0.007 0.832 ± 0.003

node2vec 0.828 ± 0.006 0.834 ± 0.003

L3 0.899 ± 0.001 0.832 ± 0.001

GCN 0.909 ± 0.002 0.906 ± 0.002

Ours 0.933 ± 0.001 0.945 ± 0.001

8.3.2 Effect of truncation level K

We next investigate if the performance of the model with a predetermined graph convolutional

encoder depends on the depth (L) of the encoder. Furthermore, we also evaluate the effect of the

truncation level K on our model’s performance.

For this experiment, we train predetermined encoder with different depths L over the range L ∈
{1, 5, 10, 15, 20}. Similarly, we train our proposed framework with truncation level K over the same

range K ∈ {1, 5, 10, 15, 20}. For both methods, we set the maximum number of neurons D in each

hidden layer in the encoder to 64. When L =M = 1, our method has an underfitting problem due

to limited model capacity, although our method achieves better performance (Figure 8.3). When

the truncation level K becomes sufficiently large (K ≥ 5), the performance of our model does not
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depend on K. Our method essentially works as the Bayesian model selection over the encoder

depth which is consistent with the Theorem in [183].

(a) (b)

(c) (d)

Figure 8.3: AUPRC comparison for our methods with different truncation and GCNs with different
number of layers.

In contrast, the performance of the GC encoder depends on the depth to a great extent. Figure 8.3

shows that the GC encoder with predetermined depth suffers from an overfitting problem with the

increase in the depth of the encoder. Shallow models with a single hidden layer perform better

compared to deeper counterparts. The result in Figure 8.3 suggests that our method is quite robust

to overfitting by jointly inferring the encoder depth and their neuron activations. In addition, our

method balances the encoder depth and their network activations to achieve better performances.
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Furthermore, Figure 8.4 shows the comparison of percentage of activated neurons with respect to

truncation K or depth L. For GCN models with predetermined encoder structure, all neurons are

activated and thus faces overfitting problem. On the contrary, our proposed method regularizes

neuron activations and only activates relatively small number of neurons. With the settingsK = 20,

our model activates only 5% neurons.

(a) (b)

(c) (d)

Figure 8.4: Comparison of activated neurons for our methods and GCNs when trained with different
truncation K or depth L.
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8.3.3 Calibrating model’s prediction

We further evaluate if the predicted confidence pij represents the true likelihood of being true

interaction. In this experiment, we expect the predicted confidence pij to be true interaction

probability. To this aim, we compare our method with a predetermined graph convolutional network

and compare the calibration results.

To compare the calibration of the model, we compute the Brier score [167] that is a proper scoring

rule for measuring the accuracy of predicted probabilities. A lower Brier score represents better

calibration of predicted probabilities. Mathematically, we compute Brier score as the mean squared

error of the ground-truth interaction label Aij and predicted probabilities pij :

Brier score =
1

|E|
∑

(i,j)∈E

(Aij − pij)2 (8.13)

where |E| is the number of edges in the test set.

Table 8.2: Brier scores for GCN and our method

Method GCN Ours

DTI 0.112± 0.001 0.109± 0.002
DDI 0.139± 0.003 0.042± 0.001
PPI 0.181± 0.046 0.119± 0.002
GDI 0.165± 0.035 0.111± 0.001

Table 8.2 shows the comparison of the Brier score obtained with the predetermined encoder and

our inferred structure. Our method gains 2.68% in DTI, 69.78% in DDI, 34.25% in PPI, and

32.73% in GDIs. The results indicate that GCN with a predetermined encoder structure makes

overconfident predictions. In contrast, our method achieves a lower Brier score, alluding to the

benefits of inferring encoder structure for calibrated prediction. In conclusion, our method makes

accurate and calibrated predictions for biomedical interaction.

8.3.4 Inferring encoder structure with respect to network sparsity

We next evaluate the robustness of our proposed method and GCN with a predetermined encoder.

To this aim, we train the model on the varying percentage of training edges from 10% to 70%. We

consider 20% of the interaction dataset as the test set to evaluate the predictions.



CHAPTER 8. INFERRING DEPTH AND DROPOUT REGULARIZATION 129

(a) (b)

(c) (d)

Figure 8.5: AUPRC comparison for our methods and GCNs when trained with different fractions
of training edges.

Figure 8.5 shows that our proposed method is more robust compared to the alternative method.

For all datasets, our model’s performance increases with an increase in the number of training

interactions. The inference of appropriate depth and their neuron activations enables our model to

achieve better performance across all interaction dataset with varying sparsity.

In addition, our proposed method infers an appropriate structure for an encoder for biomedical

interaction prediction. Figure 8.6 shows that the neural network structure dynamically evolve for

DTI prediction task with increase in percentages of interactions, as our method activates more

neurons in the inferred hidden layers. We observe similar behavior for all datasets.



CHAPTER 8. INFERRING DEPTH AND DROPOUT REGULARIZATION 130

(a) (b)

(c) (d)

Figure 8.6: Comparison of activated neurons for our methods and GCNs when trained with different
number of training interactions.

8.4 Conclusion

We present an inference framework to infer the structure of graph convolution-based encoder. The

experiments on GC-based encoder for biomedical interaction prediction show that our method

achieves accurate and calibrated predictions by balancing the depth of encoder and neuron activa-

tions. We further demonstrate that our framework enables the encoder’s structure to dynamically

evolve to accommodate the incrementally available number of interactions. Our inference frame-

work infers a compact network structure of encoder with a relatively smaller number of parameters.



Chapter 9

Conclusion and Future works

Although high-throughput data generation and computational power have made tremendous progress

over the past few decades, there are still many unresolved challenges to analyzing these ever-

increasing heterogeneous data to identify potential links/interactions. Network-based computa-

tional approaches presented in this dissertation address the challenges such as integration of het-

erogeneous and high dimensional data, the inclusion of relational structure in the data, and the

design of complex neural network structures appropriate for given data. To solve the problem in

the biological domain, the relational inductive bias plays an important role by imposing constraints

on relationships and interactions among entities in a learning process. By directly encoding the re-

lational inductive biases present in the data, we develop the models that are data-efficient, scalable

and also demonstrate the leap in their predictive power.

This dissertation focuses on the network-based computational approaches in application to biolog-

ical network inference. The key contributions can be briefly summarized as:

• Design of deep neural network structures for interaction prediction using network representa-

tion of available interactions (Chapter 3), integration of continuous features with interaction

network (Chaper 4) and integration of sequential features with network (Chapter 5).

• Design of higher-order graph convolutional network to capture local as well as higher-order

network information from interaction network (Chapter 6).

• In Chapter 7, I have focused on the problem of inferring the neural network structure, realiz-

ing that the previously proposed methods require a predetermined neural network structure.

131
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Experimental studies demonstrate the method’s robustness, superior performance, and appli-

cation to continual learning setup. Chapter 8 discusses the application of inference framework

to infer the structure of the encoder for graph convolutional network.

9.1 Future works

Integration of heterogeneous omics data with higher-order graph convolutional net-

work (HOGCN) In Chaper 6, the framework expects the node features X to be continuous.

However, as discussed in Chapter 5, protein sequences are the most abundant data available for

proteins. To include such features into the model, the sequences should be preprocessed to convert

them to continuous features and information may be lost during this phase. The goal is to extend

HOGCN to take various types of data such as sequences or images to enable end-to-end learning.

Inference of network neighborhood for higher-order graph convolutional network The

order of HOGCN in Chapter 6 is a hyperparameter and needs to be carefully set. The hyperpa-

rameter search needs to be performed to identify the best order but this process is time-consuming

and expensive for large datasets. The next step is to develop a novel probabilistic model selection

approach to infer the appropriate order for HOGCN.

Interpretability of graph-based deep learning methods for interaction prediction In-

terpretability of deep neural networks is crucial for their practical applications in the biological

domain. However, none of the current methods can provide such interpretability for biological in-

teraction prediction. Besides the good performance of the model, it is also crucial for graph-based

neural networks to be interpretable and explainable that help domain experts understand the in-

ner working of the model. A future direction is to enable the model to generate explanations for

the prediction to answer the questions such as ”what contributes to the prediction” and ”why the

model makes certain predictions”.

Biological network with heterogeneous nodes and edges types A broader future direction

is to focus on biological networks of heterogeneous entities with different types of edges/interactions

(Figure 9.1). The representation of biological systems as heterogeneous networks opens the door

for a lot of potential research avenues. The heterogeneous network provides a more complete

representation of a biological network compared to a network with a single type of nodes or edges.
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Figure 9.1: A network representation with different biological entities and different interaction
types.
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Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever,

Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol

Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng.

TensorFlow: Large-scale machine learning on heterogeneous systems, 2015. Software available

from tensorflow.org.

[68] Ying-Ke Lei, Zhu-Hong You, Zhen Ji, Lin Zhu, and De-Shuang Huang. Assessing and pre-

dicting protein interactions by combining manifold embedding with multiple information

integration. In BMC bioinformatics, volume 13, page S3. BioMed Central, 2012.

[69] Yadi Zhou, Yuan Hou, Jiayu Shen, Yin Huang, William Martin, and Feixiong Cheng.

Network-based drug repurposing for novel coronavirus 2019-ncov/sars-cov-2. Cell discovery,

6(1):1–18, 2020.
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