
Rochester Institute of Technology Rochester Institute of Technology

RIT Digital Institutional Repository RIT Digital Institutional Repository

Theses

5-2022

Investigating Vector Space Embeddings for Database Schema Investigating Vector Space Embeddings for Database Schema

Management Management

Goldy Malhotra
gxm6116@rit.edu

Follow this and additional works at: https://repository.rit.edu/theses

Recommended Citation Recommended Citation
Malhotra, Goldy, "Investigating Vector Space Embeddings for Database Schema Management" (2022).
Thesis. Rochester Institute of Technology. Accessed from

This Thesis is brought to you for free and open access by the RIT Libraries. For more information, please contact
repository@rit.edu.

https://repository.rit.edu/
https://repository.rit.edu/theses
https://repository.rit.edu/theses?utm_source=repository.rit.edu%2Ftheses%2F11080&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.rit.edu/theses/11080?utm_source=repository.rit.edu%2Ftheses%2F11080&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository@rit.edu

Investigating Vector Space Embeddings

for Database Schema Management

by

Goldy Malhotra

THESIS

Presented to the Faculty of the Department of Computer Science

Golisano College of Computer and Information Sciences

Rochester Institute of Technology

in Partial Fulfillment

of the Requirements

for the Degree of

Master of Science in Computer Science

Rochester Institute of Technology

May 2022

Abstract

Investigating Vector Space Embeddings

for Database Schema Management

Goldy Malhotra, M.S.

Rochester Institute of Technology, 2022

Dr. Michael Mior, Supervisor
Dr. Alexander G. Ororbia II, Reader

Dr. George Zion, Observer

Text generation in the area of natural language processing as part of

the artificial intelligence field has been greatly improving over the last several

years. Here we examine the application of vector space word embeddings to

provide additional information and context during the text generation process

as a way to improve the resultant output through the lens of database nor-

malization. It is known that words encoded into vector space that are closer

together in distance generally share meaning or have some semantic or sym-

bolic relationship. This knowledge, paired with the known ability of recurrent

neural networks in learning sequences, will be used to examine how vectorizing

words can benefit text generation. While the majority of database normaliza-

tion has been automated, the naming of the generated normalized tables has

ii

not. This work seeks to use word embeddings, generated from the data columns

of a database table, to give context to a recurrent neural network model while

it learns to generate database table names. Using real world data, a recurrent

neural network based artificial intelligence model will be paired with a context

vector made of word embeddings to observe how effective word embeddings

are at providing additional context information during the learning and gen-

eration processes. Several methods for generating the context vector will be

examined, such as how the word embeddings are generated and how they are

combined. The exploration of these methods yielded very promising results in

line with the overall goals of the performed work. The benefit of incorporating

word embeddings to supply additional information during the text generation

process allows for better learning with the goal of generating more human-

useful names for newly normalized database tables from their data column

titles.

iii

Table of Contents

Abstract ii

List of Figures vi

Chapter 1. Introduction 1

Chapter 2. Background 4

2.1 Word Embeddings . 4

2.2 Recurrent Neural Networks . 7

2.3 Gradient Descent . 14

Chapter 3. Architecture 15

3.1 Data Preprocessing & Cleaning 16

3.2 Neural Network Model Design 18

3.3 Neural Network Model Training 20

3.4 Neural Network Model Output 23

3.5 Model Hyper-parameter Optimization 25

Chapter 4. Evaluation 28

4.1 Evaluation Metrics . 28

4.2 Evaluation Process . 29

Chapter 5. Results and Discussion 31

5.1 Word Embedding Verification 31

5.2 Context Vector Visualizations 33

5.3 Model Results . 34

5.4 Final Model . 40

Chapter 6. Related & Future Work 43

iv

Chapter 7. Conclusion 46

Bibliography 49

Vita 53

v

List of Figures

2.1 Mikolov et al. [12] Proposed Word2vec Architectures 7

2.2 Softmax Function Equation 11

2.3 RNN Hidden State & Output Layer Equations 11

2.4 LSTM Hidden State & Output Layer Equations 11

2.5 GRU Hidden State & Output Layer Equations 11

2.6 RNN gradient flow during BPTT [20] 13

2.7 LSTM gradient flow during BPTT [20] 13

2.8 RNN-Based Architecture Node Diagrams, from dProgrammer
Lopez [6] . 13

3.1 Single Sample Data Flow . 16

3.2 High-level architecture for RNN model with context vector . . 20

3.3 Modified RNN Hidden State & Output Layer Equations . . . 22

3.4 Modified LSTM Hidden State & Output Layer Equations . . . 22

3.5 Modified GRU Hidden State & Output Layer Equations . . . 23

4.1 Categorical Cross-Entropy Loss Equation 29

4.2 Fuzzy Jaccard Similarity . 30

5.1 2D Plots of Word Embeddings Using t-SNE[22] 33

5.2 2D plot of context vectors of the highest frequency tables using
t-SNE [22] . 34

5.3 Plot comparing the training and validation losses of a model
with the context vector and a model without the context vector 36

5.4 Training and validation losses of models with summed and av-
eraged word embeddings as a context vector 38

5.5 Training and validation losses of models using fastText and
BERT word embeddings . 40

5.6 Training and validation losses of the RNN model 41

5.7 Table Results with data columns of RNN model 42

vi

Chapter 1

Introduction

A frequent process when formulating a database schema or improving

an existing one is database normalization. When database normalization is

performed, existing tables are reorganized into a set of new relational tables.

These newly formed tables are assigned distinctive names, based on the data

attributes being stored there. The data attributes are known as columns in

databases and have names that do not change when performing normalization.

The step of assigning new table names currently is done manually during the

normalization process by the developer of the database schema. While much of

the normalization process can be automated programmatically, the creation of

these relevant and human useful names is generally by the database developer

after normalization. Instead of relying on the database developer to assign

names to the newly normalized tables, that step can be automated through

the use of a neural network model trained for text generation. This thesis seeks

to explore and evaluate the use of vector space embeddings with a recurrent

neural network to create meaningful and coherent title names.

Words encoded into a high-dimensional vector space, called word em-

beddings, offer additional information about the relationship between some

1

words. This additional information can be learned by a neural network model

to improve its understanding of how words relate, which is especially help-

ful during natural language processing tasks such as text generation. This

thesis examines the use of word embeddings to offer additional contextual in-

formation for words during the neural network learning process towards the

generation of text.

The following section will briefly cover the prerequisite knowledge for

this thesis work, namely the two primary concepts being tackled, the use of

word embeddings and recurrent neural networks. Section 3 will cover the work

in more detail, including the overall architecture of the built system. That

section will also cover the training data preprocessing and cleaning, as well as

the design and training processes for the recurrent neural networks being used.

Section 4 will cover the evaluation system as well as the custom evaluation

metric being used to properly evaluate the model for both quantitative and

qualitative performance. Section 5 will explore and discuss the results of this

thesis work. The penultimate section, Section 6, will cover related work already

being explored as well as possible future work that can be drawn from the work

described in this paper. Finally, Section 7, will cover a conclusive overview of

the work performed as well as the results obtained.

The contributions made in this work primarily focus on extending RNN-

based architectures to leverage context vectors made by combining word em-

beddings. This includes the testing of the effect of leveraging a context vector

for text generation, the word embedding generation methods, and methods

2

for combining word embeddings into context vectors. Additionally, the contri-

butions include the creation of a Python language toolkit for dataset prepro-

cessing and cleaning, model object creation, training, and evaluation, and for

hyper-parameter optimization.

3

Chapter 2

Background

The thesis work is multidisciplinary, combining together the fields of

artificial intelligence and data science. The neural network and word em-

bedding techniques being used are from the natural language processing area

of artificial intelligence. The training process, handling of the large training

dataset, and possible implementations of data analysis pulls techniques from

the big data aspect of data science. The two major technologies being explored

through this thesis work are the use of vector space encodings for words, known

as word embeddings, and the use of recurrent neural networks to learn natural

language sequences for text generation. These two technologies are further

described below.

2.1 Word Embeddings

Humans have a well learned understanding of words and their use,

mostly through their immersion in language and its use. We understand the

way words are put together in sentences and the way the meaning and context

changes depending on the words used. The use of distributed representations

of words, or word embeddings, allows for this understanding of relationships

4

between words to be applied to neural network learning models. Instead of

limiting the learning of the neural network through the use of other tech-

niques, most of which offer “no notion of similarity between words” as stated

by Mikolov et al. [12], word embeddings provide more information about each

word by accounting for the connection between words. Instead of using words

“in terms of discrete units that have no inherent relationship to one another,”

words encoded into vector space can benefit from their similarity or relation

to other words as “similar words are likely to have similar vectors” [14]. More

concretely, these relationships between words in a continuous vector space is

measured through metrics such as Euclidean distance or cosine similarity. Ad-

ditionally, word embeddings are often encoded into higher dimensional vector

space as more information can be attached to a single word, generally through

the ability to provide multiple relations and additional semantic context. The

increase in word embedding dimensionality also leads to increased computa-

tional complexity.

The process for forming distributed representations of words today

is generally handled through the use of a trained neural network whose in-

put layer weights for a given word input make up the word embedding it-

self. Some of the more popular models for embedding formation are Google’s

Word2vec [12], Stanford’s GloVe [16], and Facebook AI Research’s fastText [3].

Mikolov et al. [12] proposed two major architecture’s for Word2vec, a “con-

tinuous bag-of-words model” (CBOW) and a “continuous skip-gram model”

(Skip-gram). These proposed architectures, shown in Figure 2.1, take oppos-

5

ing paths on how they predict the output result. The CBOW model attempts

to predict the output word given context words, while the Skip-gram model at-

tempts to predict context words given a single word. The GloVe model draws

from the Word2vec models but also incorporates statistical data of the train-

ing corpus, similar to global matrix factorization methods which “effectively

leverage statistical information” but tend to “do poorly on the word analogy

task” [16]. The fastText model is derived from the Word2vec model but learns

on n-grams and instead seeks to “represent words as the sum of the n-gram

vectors” [3]. Due to learning on n-grams, fastText also can attempt to formu-

late word embeddings for words it has never seen before, which is primarily

why it is the proposed process for the word to embedding conversion for this

thesis work. A different approach that is examined in this work is the idirec-

tional ncoder epresentations from ransformers (BERT) model [5], also devel-

oped at Google. The BERT model proposed an entirely different architecture

from the previously mentioned vector space encoding models, partially lever-

aging the Transformer encoder architecture. A Transformer is a deep learning

model that functions by “relying entirely on an attention mechanism to draw

global dependencies between input and output” [23]. The BERT model bor-

rows the encoder portion of the Transformer architecture, featuring several

layers of these bidirectional encoders in a single BERT model. BERT uses

a masked language model (MLM) pre-training objective, where some words

in the model input are masked and the model must predict them using only

the context words, to train the bidirectional Transformer layers. The model is

6

also trained at the same time using the next sentence prediction (NSP) task,

where a pair of sentences are input and the model must predict if they are se-

quential sentences in the original source corpus. Because of these mechanisms,

the BERT model creates sub-word representations of its training vocabulary,

allowing it to generate word embeddings for out of vocabulary words, similar

to the fastText model.

Figure 2.1: Mikolov et al. [12] Proposed Word2vec Architectures

2.2 Recurrent Neural Networks

Given the natural language processing task at hand, the most clear

choice for neural network type was a recurrent neural network, or RNN, and

its derivatives. Since most NLP tasks involve variable-length input and output

sequences, the recurrent neural network with its ability to store and learn from

past information is the most logical choice. Having the ability to learn the

temporal dynamic behavior of language and communication is critical for text

generation tasks. Language learning can be thought of as a time-series, where

the connections between words or even characters is a reoccurring observation,

7

which leads to the idea that once those connections are learned, new words

and sentences can be formed. RNNs can take an input sequence, learn the

connection between the pieces of the input sequence, and then use that learning

to predict future possible values during word or sentence generation. RNN

nodes contain a connection to themselves, effectively giving the architecture a

form of “memory” [24] of past sequences it has seen before. This is the main

feature that allows the model to learn sequential data, as the hidden state

can be updated over individual time steps per sample. The hidden state and

output equations at each time step for a RNN can be seen in Figure 2.3.

The major differences between other popular neural network architec-

tures, such as convolutional neural networks, and RNNs, are the RNNs’ ability

to learn through time using the backpropagation through time (BPPT) learn-

ing algorithm. Backpropagation is a very popular learning algorithm used

during the neural network training process with another algorithm known as

gradient descent, described further in Section 2.3, to update “the weights of

the connections in the network so as to minimize a measure of the difference

between the actual output vector. . . and the desired output vector” [18]. Back-

propagation is used to calculate the derivatives of the loss or error during a

defined training period. These are then used to update the parameters of the

model. BPTT is derived from the Backpropagation learning algorithm as an

effort to apply it throughout the time-steps of a recurrent neural network,

capturing the temporal qualities of the RNN architecture.

There do exist several possible problems with the use of recurrent neural

8

networks. A major problem that can be faced is model instability, usually

caused by when the loss gradient either explodes or vanishes. An exploding

gradient is where the gradient term continually increases towards infinity, while

a vanishing gradient is where it decreases rapidly to zero. Both of these result

in instability for the model, resulting in the model only producing erroneous

values, due to floating point arithmetic overflow or underflow, or not learning

at all in some cases. Thankfully there exist variations of the RNN, primarily

the LSTM (long-short term memory) and the GRU (gated recurrent unit),

which improve upon the design of a simple RNN and attempt to alleviate the

majority of the instability issues using gate-based architectures. The hidden

state, gate, and output equations at each time step can be seen for these two

architecture in Figures 2.4 and 2.5.

As explained previously, below are the forward propagation equations

for the three architectures explored in this work. To fully grasp the function

and use of these equation, a base knowledge of linear algebra and statistics is

necessary, as the majority of variables involved are matrices and techniques

often rely on probabilities. One primary operation is the matrix multiplication,

represented using a ∗ in the equations below. Matrix multiplication involves

two matrices of sizes m x n and n x p, respectively. The size of the columns

of the first operand must match the size of the rows of the second. The

elements of the rows of the first operand are multiplied by the element in the

columns of the second operand, resulting in a matrix of size m x p. This

operation is commonly used to handle learnable weights for inputs, but also to

9

linearly map operands in cases of size mismatching for future operations like

element-wise addition, where the two matrix operands must be the same size.

Another common operation is element-wise multiplication, represented below

by a ·, where the operands must be the same size as well. Additionally, an

important operation when dealing with neural networks is activation functions.

These functions are used to introduce non-linearity to the calculations in an

effort to better fit the model to the input data set. Some of the activation

functions used in the equations below are the sigmoid (σ) function and the

hyperbolic tangent (tanh) functions. ϕ is also shown below, representing a

developer selected activation function, generally tanh or the rectified linear

unit (ReLU) activation functions. A major function used in these architectures

is the softmax function, which is used to achieve the output result xt+1.

The calculations before the softmax is applied results in unnormalized log

probabilities, known as logits. This probability distribution is a categorical

multinomial distribution over a set number of classes per time step. This

categorical distribution represents the discrete probability distribution over k-

classes for the next character in the sequence being predicted or generated.

The softmax function is applied to the logits to normalize them, resulting in

probabilities over k-classes that sum up to 1. The softmax function, shown

for a single element xi in Figure 2.2, normalizes by applying the exponential

function to each element in the K length input vector and then dividing each

element by the sum of all the exponentials for the input vector. A parameter β

is used to influence the balance between probability classes and the uniformity

10

of the distribution.

softmax(x)i =
eβxi∑K
j=1 e

βxj

Figure 2.2: Softmax Function Equation

ht = ϕ(W ∗ xt + V ∗ ht−1 + bh)

x̂t+1 = softmax(ht ∗ U + bq)

Figure 2.3: RNN Hidden State & Output Layer Equations

gt = tanh((xt, ht−1) ∗Wg + bg)

it = σ((xt, ht−1) ∗Wi + bi)

ft = σ((xt, ht−1) ∗Wf + bf)

ot = σ((xt, ht−1) ∗Wo + bo)

statet = gt ∗ it + statet−1 ∗ ft
ht = ot ∗ ϕ(statet)

x̂t+1 = softmax(ht ∗ U + bq)

Figure 2.4: LSTM Hidden State & Output Layer Equations

ut = σ(xt ∗ Ux + ht−1 ∗ Uh + Ub)

rt = σ(xt ∗Rx + ht−1 ∗Rh +Rb)

statet = ϕ(xt ∗ Sx + rt · (ht−1 ∗ Sh))

ht = ut · ht−1 + (1− ut) · statet
x̂t+1 = softmax(ht ∗ U + bq)

Figure 2.5: GRU Hidden State & Output Layer Equations

The primary goal of the LSTM architecture, as stated by Hochreiter

and Schmidhuber, was to “construct an architecture that allows for constant

11

error flow through special, self-connected units without the disadvantages” [7]

during BPTT. Figures 2.6 and 2.7 show the flow of the gradient during BPTT.

They also highlight how the error flow is broken up in the RNN node by the

multiplication of the weight and the input stack, juxtaposed to the uninter-

rupted flow of the error in the LSTM node. The LSTM node features gate

units to better control the plasticity and stability of the learning process. The

first gate is known as the forget gate, as it controls how the cell state of the

previous node affects the current node. The next gate unit, the input gate, is

made up of two operations to incorporate the inputs to the current node into

the cell state of said node. The final gate, the output gate, then controls how

the cell state and inputs affect the output hidden state of that node.

The GRU, shown alongside the RNN and LSTM in Figure 2.8, uses a

gated architecture similar to the LSTM. Instead of using three gates like the

LSTM, the GRU features only two gates, the update and reset gates. Unlike

the LSTM, the GRU does not feature a cell state, instead maintaining only

a hidden state. The update gate primarily influences how much the previous

state and input will affect the hidden state going forward. The reset gate

influences how much of the previous information to remove or forget from the

hidden state going forward. These gates together allow the GRU some of the

benefits of the LSTM while being slightly more computationally efficient due

to the lower number of overall computations.

12

Figure 2.6: RNN gradient flow during BPTT [20]

Figure 2.7: LSTM gradient flow during BPTT [20]

Figure 2.8: RNN-Based Architecture Node Diagrams, from dProgrammer
Lopez [6]

13

2.3 Gradient Descent

Equally as important as the individual model architecture is the way by

which the model learns. Gradient descent, combined with the backpropagation

algorithm, is “by far the most common way to optimize neural networks” [17].

Once the backpropagation step is completed during a training period, the re-

sultant derivatives can be used with gradient descent or a derived optimization

technique to update the learnable parameters of the model. Effectively, back-

propagation is used to find the gradient of the loss and gradient descent is then

used to follow that gradient downward to minimize the loss. There are a num-

ber of optimization techniques that employ gradient descent to yield differing

learning results. Updating the model parameters after every sample is known

as stochastic gradient descent and generally yields very messy and more ran-

dom changes to the loss curve. Batch gradient descent is updating the model

parameters only once, after collecting the gradients of every training sample.

This yields less random results but can be either too weak or too strong in

updating the parameters. The middle ground between these approaches is

mini-batch gradient descent, which updates the model parameters after a de-

fined number of samples, which is considered a hyper-parameter during the

training phase.

14

Chapter 3

Architecture

The majority of the work described here centers on the creation, train-

ing, and evaluation of a recurrent neural network model. The primary contri-

butions here are the implementations of the modified RNN-based architectures

which take advantage of context vectors made from word embeddings. There

are four major portions of the implemented high-level architecture: the col-

lection of valid real-world data, the creation of the model, the training of the

model, and the evaluation of the trained model. Figure 3.1 gives a brief high-

level view on the data flow for a single data sample during the text generation

process. Since the model is focused on generating table names at the character

level given context for data column names, the training data used is made of

real-world examples of database table names along with their associated data

columns. These examples were obtained from crawling open source repositories

on GitHub. The collected data does include less desirable, messy data which

required cleaning and preprocessing before being used to train the model; that

step is detailed in Section 3.1. The basis for the model is a recurrent neural

network being trained to generate words at the character-level based on seed

text input including a context word embedding. The details of the neural

network model’s design are explained further in Section 3.2. After both data

15

collection and model creation, the next major portion of the architecture is the

training of the model to perform its intended task of character-level text gener-

ation; that process is described in Section 3.3. After training the model on the

collected data, the model’s output results were evaluated for both quantita-

tive and qualitative performance, described in Section 4. These steps together

formed the larger process for creating a recurrent neural network based model

to learn sequential data through the use of word embeddings and to perform

character-level text generation.

Figure 3.1: Single Sample Data Flow

3.1 Data Preprocessing & Cleaning

Due to the inclusion of real-world collected data for neural network

training, the collected data needs to be properly cleaning and preprocessed

before being used. Real-world data allows for the model to learn from the

habits and styles of real users and developers in the world, but also contains

significant amounts of dirty or useless data from leftover work or testing. The

dataset, pulled from the Google BigQuery [8] Project, consists of any SQL

table creation statements from scraped open-source GitHub repositories, which

were then saved as table name followed by data column names with one line

16

per table creation statement found. This data was selected as Structured

Query Language (SQL) is the primary language used to create and modify

relational databases. A SQL create statement, such as CREATE TABLE Person

(SSN int, LastName varchar(255), FirstName varchar(255)), contains

the database table name and the data column names, highlighted in blue,

that are necessary for the training of the neural network model. The first step

employed in the data pipeline for this work was to properly filter and clean

this collected data set. The data was filtered on five conditions which were set

to remove the majority of the data which would not help or even detract from

the intended learning of the model without also removing too much of the valid

data samples. This results in still having a significant amount of usable data,

but does preserve some inherent dirtiness associated with human generated

data. The filtering first checks for any non-alphanumeric characters and if

the table name contains any numbers. Those that contain non-alphanumeric

characters or numbers are removed from the data set. Then, the filtering

process compares the first two characters of the table name and checks the

length of the table name. If the first two characters are the same or if the table

name is smaller than two characters, the sample is then removed from the data

set. The final filtering condition is based on a probabilistic splitting technique

from the Word Ninja module. The module is able to split a single non-spaced

string into individual words based on the probability distribution as learned

through the “English Wikipedia unigram frequencies” [2]. The table name is

split using this module and the resultant list of words is counted for proper

17

words in the English language using the NLTK module’s English Corpus as

reference. If 50% of the words are part of the English language, then the

sample is kept, otherwise it is removed from the data set. This allows for some

samples, such as “useraccounts”, to be kept while still removing others, like

“ac ak profiles”. This filtering pipeline greatly reduces the amount of dirty or

messy samples in the dataset while still allowing for plenty of real-world data

to be included for the neural network model to learn from.

After filtering, the next major step in preprocessing the data for train-

ing is tokenization. Tokenization is the process by which generally a string is

reduced to a list of tokens. Since the RNN model is targeting character-level

generation, the tokens are the individual characters. Using the Keras tokenizer

module, a tokenizer object is created and is fit to the post-filtered data set.

The data set contains 42 unique characters, each of which also has a unique

integer assigned to it in the tokenizer. The tokenizer will be used to convert

strings into arrays of integers based on the tokens of that string. This tok-

enization process allows for the transformation of string input data into a list

of numerical values that can be used as input during the training of the RNN

model as the model itself can only take in numerical values to be incorporated

into the forward propagation phase of training.

3.2 Neural Network Model Design

The neural network models being applied to generate text in conjunc-

tion with word embeddings are fairly simple architectures, shown in Figure 3.2.

18

The three RNN-based model types implemented feature the same architecture

with the only major difference being the forward propagation step during train-

ing. The model designs feature an initial input layer which is equivalent in

size to the number of unique characters in the training data as the input data

must be sequences of one-hot encoded characters. For this work, the number

of unique characters found in the dataset is 42 characters. The input layer

then connects to a hidden layer with a variable number of nodes. There is no

concrete solution for finding the optimal value for this hyper-parameter other

than trial and error, though values between 128 and 256 have been found

to give the best results for this particular work. Another hyper-parameter

for this hidden layer is the activation function used to add non-linearity to

the data. The two activation functions that proved most functional for this

application are the hyperbolic tangent (tanh) and the Rectified Linear Unit

(ReLU). The hidden layer then connects to the final output layer, which takes

the un-normalized log probability (logits) produced by the hidden layer and

normalizes them into predictions using the softmax function. The output layer

is also equivalent in size to the number of unique characters in the data set.

The final output of the model is then a set of softmax predictions for each of

the possible characters to be generated next for the given input sequence.

19

Figure 3.2: High-level architecture for RNN model with context vector

3.3 Neural Network Model Training

The training of a neural network model is a very important step which

focuses on fitting the model’s internal parameters to some task using some

training data for it to learn from. Training usually consists of two major

steps. First is the forward pass, known as forward propagation, where the

input data is propagated forward through the network. Second is the back

propagation, where the results of the forward pass are compared to the actual

true answer for that input data, and that result is then used to update the

weights or internal parameters of the model. This allows it to get closer to

producing the correct answer with each iteration. The training process is

generally done in terms of epochs, where each epoch is a single pass through

the entire dataset. The training process used in this work consists of two

datasets, one for training and one for validation. The model is first trained

on the training dataset, which does include updating the weights through

20

backpropagation, and then validated using the validation set, which does not

update the weights. Validation is done to check the progress of the model as

training progresses.

The training implementation consists of, for each epoch, converting

every single line from both the training and validation datasets into batches

to employ mini-batch gradient descent, which updates the internal model pa-

rameters after each batch, instead of using stochastic gradient descent, which

updates the parameters after every single training sample. Each sample in

the batch is then converted into a list of one-hot encoded vectors for the table

name portion and a context vector, made up by summing the word embed-

dings for the data columns. The word embeddings used during the training

process are generated using the fastText model from Facebook Research [3],

primarily for its ability to generate embeddings for unknown words. These

two pieces will serve as the training inputs during the forward propagation

stage of the learning process. Because the model is based on a RNN, the list

of one-hot encoded characters is treated as a sequence, where each one-hot

encoded character is the input at a single time-step and the next character

in the table name is the label. The context vector is directly included dur-

ing the hidden state calculations, shown in Figure 2.3 for the RNN model,

Figure 2.4 for the LSTM model, and Figure 3.5 for the GRU model. These

equations are the result of extending the standardized base architectures de-

scribed in Section 2.2 to allow for the inclusion of the context vector. After

forward propagation is completed, the TensorFlow [1] gradient tape API is

21

used to handle backpropagation through time. This allows for the calculation

of gradients per sample, which are then averaged for the entire batch and the

resulting gradient is then applied with the ADAM optimizer [9] to update

the internal parameters of the model. With the training step concluded, the

validation step then runs and evaluated the performance of the model on the

much smaller validation dataset. The implemented training process employs

a technique known as early stopping, which stops the training of the model if

the model does not improve over some threshold of epochs by a defined metric.

In this work specifically, if the model’s validation loss does not improve over

a set number of epochs, the model stops training.

ht = ϕ(W ∗ xt + V ∗ ht−1 +M ∗ c+ bh)

x̂t+1 = softmax(ht ∗ U + bq)

Figure 3.3: Modified RNN Hidden State & Output Layer Equations

gt = tanh((xt, ht−1) ∗Wg + bg +M ∗ c)
it = σ((xt, ht−1) ∗Wi + bi +M ∗ c)
ft = σ((xt, ht−1) ∗Wf + bf +M ∗ c)
ot = σ((xt, ht−1) ∗Wo + bo +M ∗ c)

statet = gt ∗ it + statet−1 ∗ ft
ht = ot ∗ ϕ(statet)

x̂t+1 = softmax(ht ∗ U + bq)

Figure 3.4: Modified LSTM Hidden State & Output Layer Equations

22

ut = σ(xt ∗ Ux + ht−1 ∗ Uh + Ub +M ∗ c)
rt = σ(xt ∗Rx + ht−1 ∗Rh +Rb +M ∗ c)

statet = ϕ(xt ∗ Sx + rt · (ht−1 ∗ Sh))

ht = ut · ht−1 + (1− ut) · statet
x̂t+1 = softmax(ht ∗ U + bq)

Figure 3.5: Modified GRU Hidden State & Output Layer Equations

3.4 Neural Network Model Output

After the model has been trained to fit the input data, the model can

then be applied to its original task of character-level text generation. Gener-

ally, a model should be tested and evaluated for its performance on data it

has not seen before to observe how well the model generalizes on the data and

ensuring the model does not suffer from issues such as over-fitting on the input

data. These steps are covered in greater detail in Section 4. The generative

process using the trained model still involves running input data through the

forward pass step but does not involve the backpropagation step, as learning

is no longer the goal for this new input data. The forward pass step results

in both logits (unnormalized log probabilities for each of the possible output

classes) and a softmax normalized probability distribution over each of the

possible output classes. We explored several algorithms to use these results

in generating qualitatively excellent database table names, based on manually

observing the output and comparing to the truth table name and the data

column names used. The first algorithm explore was straight-forward greedy

search, which consists of simply choosing the character with the greatest prob-

23

ability in the softmax distribution at every generative step. Depending on the

training of the model, this approach resulted in coherent but qualitatively

awful results. While it was impressive that the model was able to generate

complete words, the words generally were unrelated or far from the meaning of

the true table names when tested on samples from the training data. The next

approach was beam search, which selects k best candidates from all possible

options at every generation step for every candidate already selected to some

max depth or end goal. Beam search uses the cumulative log probabilities for

each generated character as a way of scoring each candidate, returning the k

best candidates when the algorithm reaches the end goal or max search depth.

This algorithm resulted in fairly incoherent results without any qualitative

benefit. Thankfully, the third algorithm tried, sampling, would have great

results. The multinomial categorical distribution represented by the logits are

randomly sampled, with the resulting class being the next character in the se-

quence being generated. Random sampling works because classes with larger

log probabilities are more likely to be randomly selected during the sampling

process. Sampling often also results in more qualitatively interesting results, as

compared to the two other approach tested here. The sampling algorithm re-

sulted in coherent and qualitatively pleasing results where the generated table

name was much closer to the intended table name for samples of good quality

data. The method used for sampling also contained an optional tempera-

ture parameter, used to influence the sampling process. A higher temperature

value leads to more variety, while a lower temperature value would lead to the

24

higher probability classes being selected more often. This parameter was not

applied in the sampling process used in this thesis work, primarily since the

quality and coherency of the results was sufficient for the intended goals being

examined.

3.5 Model Hyper-parameter Optimization

An important part of every language model is the selection of hyper-

parameters used. These hyper-parameters are essentially the settings of the

neural network model outside of its design, such as number of nodes in hid-

den layers or the type of activation function used during forward propagation.

They are selected by the developer prior to training the model in the aim

of achieving a model that better fits the non-linear function or relationship

targeted by the intended task for the model. The hyper-parameter selec-

tion should generally yield better results, generally measured quantitatively

through some metric, such as loss, during training or evaluation.

A hyper-parameter optimization process was implemented during this

work to efficiently obtain the best hyper-parameters to minimize the final eval-

uation loss of the model during training. The implemented process makes use

of Bayesian optimization [21], which has been shown to work well to optimize

neural networks. This algorithm works by “assuming the unknown function

was sampled from a Gaussian process and maintains a posterior distribution

for this function” [21]. The optimization algorithm contains a Bayesian sta-

tistical model, which is based on a Gaussian process. This statistical model

25

contains the posterior probability distribution, a probability distribution that

is updated when new information is acquired, that is used to fit on the re-

sults of the function being optimized and used to select future inputs to the

function. Per iteration, the results of the function being optimized are used to

update the posterior probability distribution in the Bayesian statistical model,

which is then used to determine the inputs from the search-space used for the

next iteration following the Gaussian process.

The unknown function used with the Bayesian optimization algorithm

is a black box function from the perspective of the optimization algorithm

where it inputs the next set of hyper-parameters from a given search space

and simply receives a loss value after that unknown function’s processes have

completed. In this work specifically, the unknown function creates and trains

a RNN-based neural network on the same dataset for each, using the hyper-

parameters supplied by the optimization algorithm at that optimization step.

The algorithm effectively maps the input set of hyper-parameters to their

resultant loss value for each successful optimization iteration and uses this

data, assumed to be based on the Gaussian distribution, to determine the

set of input hyper-parameters for the next optimization iteration until the

loss is successfully reduced to it optimized value or the algorithm hits the

maximum number of iterations. The search space supplied to the optimization

algorithm covered the learning rate of the model from 0.0001 to 0.005 in a log-

uniform fashion, the batch size of each training batch from 16 samples to 128

samples, the choice of activation function between tanh and ReLU, and the

26

dimensionality of the model and context vector from 64 up to 256 dimensions.

27

Chapter 4

Evaluation

4.1 Evaluation Metrics

Evaluation of a neural network is a significant step in confirming the

performance of a created model. The evaluation process for the models created

here include the use of collected and cleaned real-world data for proper valida-

tion and testing. Currently, the two metrics used to quantitatively evaluate the

performance of the models were loss and accuracy, but these do not account

for qualitative results. The loss is a measure of how far the model’s predictions

were to the actual truth value for that input data. There exists different loss

types which are applicable for different prediction tasks, with the loss for this

task being categorical cross-entropy. This loss was chosen due to the task of

text generation being effectively predicting the class of the next character in a

sequence which is done as a multi-class classification problem. Cross-entropy is

used to measure the difference between two probability distributions, with cat-

egorical cross-entropy used to apply that concept to multiple possible output

classes. The loss equation for categorical cross-entropy is shown in Figure 4.1,

where i signifies an individual sample and j represents a particular class for

that sample. In that same figure, y is the true values and ŷ is the predicted

values. This allows for the probability distribution of the truth values to be

28

compared to the probability distribution of the predicted values over the de-

fined number of classes. In addition to the loss and accuracy metrics, the

evaluation process will include other forms of measuring the performance of

the model, which also take into account the qualitative performance of the

model. As the results of this model are for the benefit of human usefulness

and readability, the qualitative performance of the model is a high priority.

lossi = −
J∑
j

(yi,j ∗ log(ŷi,j))

Figure 4.1: Categorical Cross-Entropy Loss Equation

4.2 Evaluation Process

One evaluation method includes using the fuzzy Jaccard similarity to

compare sub-words made from the generated table name and the true table

name as a way of accounting for syntactic and semantic variations. The Jac-

card similarity is a statistical measure of how similar two sets are. For sets S

and T , the Jaccard similarity is achieved through “the ratio of the size of the

intersection of S and T to the size of their union” [10]. Both the Jaccard equa-

tion and the adapted fuzzy Jaccard equation are shown in Figure 4.2. Given

the generated table name and the true table name, the evaluation script would

first split those inputs into sub-words which are then processed into synsets

from the NLTK Wordnet Python library [4]. A synset is a method of grouping

words that have the same meaning as well as providing methods to getting

29

from a single word to its group of hypernyms and hyponyms. The two sets

of synsets are then used to calculate a syntactic and semantic score for each

set, represented by P and R in Figure 4.2, which are then used in the fuzzy

Jaccard similarity equation to achieve an evaluation metric for how similar

those two sets were. A higher score indicates that the two sets were more

similar, syntactically and semantically, while a lower score shows that they

were further apart.

Jaccard = (S ∩ T)/(S ∪ T)

fuzzyJaccard = (2 ∗ P ∗R)/(P +R)

Figure 4.2: Fuzzy Jaccard Similarity

30

Chapter 5

Results and Discussion

The results attained throughout this work in exploring the use of word

embeddings to provide context to a recurrent neural network in the text gener-

ation process are examined here. First, the main conceit of word embeddings

are explored and shown through plotting after processing with dimensionality

reduction techniques. Words with similar meanings are meant to be mapped

closer in vector space, which can be confirmed through the plotting process

described in Section 5.1. Similarly, context vectors for the same table name

but with differing data column names should also be closer together when plot-

ted on a 2D axis, as explored in Section 5.2. Section 5.3 covers the results of

several trials testing the use, generation, and combination of word embeddings

to provide context as models as trained, validated, and evaluated for the task

of text generation. The results attained through that testing and this work

overall are combined into a single model, which is described in Section 5.4.

5.1 Word Embedding Verification

As a major component to this work, the actual generation and resource-

fulness of the word embeddings used were evaluated. This process involved

31

generating and using a dimensionality reduction technique to plot word em-

beddings to ensure that they encapsulated meaningful relational data to each

other at minimum in a 2D space. Using a fastText model trained specifically

on the collected dataset, each table name was converted into a 256 dimensional

word embeddings. Since it would be very computationally intensive and quiet

impractical to generate a 256 dimensional visualization for these embeddings,

a dimensionality reduction technique, in this case using T-distributed stochas-

tic neighbor embedding [22], or t-SNE, was applied to the word embeddings to

map each embedding to a 2D point for better visualization. t-SNE performs a

non-linear mapping of the high-dimensional data to a lower dimension, adapted

from the work on the Stoachastic neighbor embedding by Hinton and Roweis,

with improvements to specifically reduce “the tendency to crowd points to-

gether in the center”[22] that other previous techniques suffered from. Since

this technique’s memory and computational complex increase exponentially

with the number of points, the plots described in Figure 5.1 only show 1000

samples instead of the entire dataset. The first plot in Figure 5.1 shows a

overview of the spread of the plotted embeddings, while the second plot is a

closer look at a small cluster from the first plot. Each point is labeled with

the table name used to generate the original embedding and, as visible in the

second plot in Figure 5.1, words with similar meanings or semantic connec-

tions are indeed closer together in vector space than more dissimilar words.

This shows that the vectorization of the table names through the use of the

fastText model was able to well capture the relationship between the words in

32

the dataset.

Figure 5.1: 2D Plots of Word Embeddings Using t-SNE[22]

5.2 Context Vector Visualizations

Using t-SNE, Figure 5.2 shows the context vectors for every occur-

rence of the top 10 most frequent tables used in the training phase of this

work. While some of the more generic table names, such as ‘test’ in purple,

have a large spread, the more well-defined tables are naturally more clustered

together, such as ‘user’ in coral. As the associated data columns for each

occurrence of these tables generally refer to the same object or meaning, the

associated context vectors would be closer in vector space as well. Just as with

the plotted embeddings in Section 5.1, strongly related vectors are closer in

distance than other, less-related vectors. This quality formed the basis for how

this inclusion benefits the neural network training process for text generation.

The model is able to better learn the relation between the words used to create

the context vector and able to better differentiate between what table names

to generate based on the context vector values.

33

Figure 5.2: 2D plot of context vectors of the highest frequency tables using
t-SNE [22]

5.3 Model Results

Through the use of vector space embeddings, a recurrent neural net-

work model capable of character-level text generation has been successfully

created. Each of the models used throughout the trials were created newly at

the start of each trial and then trained and evaluated using the same process,

as described in Section 3.3. Each of the models were trained on a Ubuntu

Linux-based system, leveraging NVIDIA Tesla P4 GPUs with Google’s Ten-

sorFlow platform [1] to speed up and optimize the training process. The

models examined here also used the same set of hyper-parameters: 100 epochs

of training and validation, a learning rate of 0.001, a batch size of 64, and

the tanh activation function. The inclusion of vector space embeddings as a

context vector has allowed the model to better learn the difference between

input data samples and the relationship between individual words as charac-

34

terized through the vectorization process used. If there was no context vector

included, since each table generation begins with the same start token, there

is no information available for the model to generate text closer to what the

desired results are. Instead of relying on the model to decide what should

be generated, the context vector gives the model significantly more informa-

tion to rely on for what should be generated compared to having none for the

context-less generation process.

Shown below are sample results which offer a look at a few of the

various model examined throughout this work in the process of creating a

model well suited towards the specific target task of generating database table

names from data column names. Figures 5.3 - 5.5 show the training curves

and output results of several models examined throughout this work. Each

set focuses on comparing some of the different ways to incorporate the context

vector into the model training and text generation process. Each of the trial

results were averaged over three trials for each of the models being tested.

Along with the trials described below, additional model improvements were

separately attempted, such as jointly tuning the embeddings during model

training, but did not yield useful results.

Figure 5.3 acts as a baseline by showing the effect of adding the con-

text vector to the model alongside a model without a context vector at all.

The figure shows how the context-less trials achieved lower loss values quicker

than the trials using context vectors but also how those trials without context

vectors plateaued. The trials with context vectors did eventually achieve lower

35

loss in both training and validation. The trials with context vectors are able to

more often generate the true table name compared to the context-less trials,

which while able to generate coherent words often, generate words pseudo-

randomly without any connection to the intended meaning or purpose of the

database columns. As shown in the table next to the plot, the trials with the

context vector produces coherent results that are generally in the same vein

as the true table. The trials without the context vector often produces near

coherent words, but the resulting table name is not semantically close to the

true table name. Using the evaluation method described in Section 4.2, both

sets of trials were evaluated with the trials using the context vector averaging

an evaluation score of 14.4% and the context-less trials averaging an evaluation

score of 11.4%. While the titles generated by the context-less model are not

as consistently coherent as the other model, the output it produces in being a

standard RNN are still of decent quality.

Model Outputs

Truth Context No Context
user user mue
project asset customer
account user event
trophy meta torg
cart map persones
lane file ball

Figure 5.3: Plot comparing the training and validation losses of a model with
the context vector and a model without the context vector

Figure 5.4 compares two models that both take advantage of context

36

vectors, but generate those context vectors in differing ways. The first set

of trials, shown as the Summed Model, incorporates a context vector made

by summing up the word embeddings of the data columns for each training

sample. The second set of trials, shown as the Averaged Model, uses a con-

text vector that is generated by averaging the word embeddings for the data

columns for each training sample. The averaged model does have consistently

lower loss values per epoch, but both models perform about the same qual-

itatively. The table of results show that both models generate table names

that are both coherent and semantically close to the intended meaning of the

true table name, usually. As in the second to bottom result, both models were

close to the true table name but in differing ways. The Summed Model pro-

duced map, presumably linking the associated context vector to cartography,

while the Averaged Model produced a word that was only one letter away from

matching the true table name. The Summed Model trials achieved an averaged

score of 14.4% during the evaluation process, while the Averaged Model trials

achieved an averaged score of 15.3%. Both models produced qualitatively fine

results and given more training time, could produce even better results.

37

Model Outputs

Truth Summed Averaged
user user user
project asset project
account user user
trophy meta tag
cart map card
lane file media

Figure 5.4: Training and validation losses of models with summed and averaged
word embeddings as a context vector

Figure 5.5 compares two sets of trials that both use the summing

method for generating context vectors but use differing word vectorization

sources. One set uses fastText [3] to generate word embeddings for the data

columns, while the other set uses Google’s BERT [5]. Both word embedding

generation models support out-of-vocabulary words as they both use sub-word

representations to better map words into high-dimensional vector space. While

fastText primarily uses n-grams as it’s sub-word representation during learn-

ing, BERT uses a transformer encoder system to encode and then learn the

sub-words for the input training data. The fastText model used in the fastText

trials was trained using the pre-processed and cleaned dataset, while a pre-

trained BERT model with 8 Transformer layers was used for the BERT trials.

Each data column was individually converted into a word embedding using

each of the models to synchronize the context vector combination method be-

tween the trials. In the BERT model, the generated word embeddings were

context-free embeddings grabbed from the model’s final hidden layer, since

38

the input sequence to the model was just the single word instead of an en-

tire sentence. The BERT model also featured positional encodings, which are

primarily used for the model to understand word order in an input sentence,

added to the generated word embeddings. As the input to the model were indi-

vidual words, this positional encoding was not removed. Both models trained

in this trial used context vectors created by summing up the generated word

embeddings for each of the data columns in a sample. As shown in the results,

the trials using BERT word embeddings, surprisingly, performed significantly

worse than the fastText approach. The BERT trials had consistently higher

loss values per epoch during training and validation and produced very inco-

herent results during generation and evaluation. The primary theory behind

this disparity is likely the difference in how the two vector encoding models

were trained. fastText was likely able to generate better word embeddings

due to its more limited and focused corpus, whereas the BERT model was

pre-trained using significantly larger amounts of training data across several

languages.

39

Model Outputs

Truth fastText BERT
user user s
project asset os
account user ouh
trophy meta bstebn
cart map crot
lane file gagtcrued

Figure 5.5: Training and validation losses of models using fastText and BERT
word embeddings

5.4 Final Model

After combining the results of the hyper-parameter optimization pro-

cess and the testing examined for Section 5.3, a final model was produced as

the exemplification of the work performed here. This model used the base

RNN architecture which consists of a dimensionality of 256, 64 samples per

batch, a learning rate of 0.001, used the ReLU activation function, and lever-

aged context vectors made by averaging the data columns associated with the

sample table name. This model was trained over 300 epochs, instead of just

the 100 epochs used through the other model testing. As shown in Figure 5.6,

the losses are similar to the ones seen in Figure 5.4 for the Averaged Model

trials. Even past the 100 epoch point, the training loss continues to decrease,

but the validation loss remains fairly constant. The model performs slightly

better than both of those models, achieving an evaluation score of 16% on the

test dataset using the evaluation process discussed in Section 4.2. Figure 5.7

40

serves to highlight that the majority of the generated tables are coherent with

the quality of the title generated depending on the quality of the input sample.

The quality of the generated title depends significantly on the quality of the

data columns. Samples with messier or overly generic columns, such as the

‘cache’ or ‘ban’ samples, will still produce near coherent results associated with

the provided data columns. These generations may even be more useful than

the original table title associated with the used context vector, such as the

‘mytable’ sample in Figure 5.7. Samples with clear and well-defined columns

will generally produce qualitatively good results.

Figure 5.6: Training and validation losses of the RNN model

41

Model Outputs

Truth Generated Columns
user user id user, login, pwd, name, comments
ban post id, ip, time
catalogue series catalogueid, loguserid, source, isbn, bookname, . . .
edge branch edge id, child node id, parent node id
mytable employee id, lname, fname, age, gender
cache pasentest f1, f2, t, url, data

Figure 5.7: Table Results with data columns of RNN model

42

Chapter 6

Related & Future Work

As the need for better Natural Language Processing (NLP) solutions

is needed in an exponentially expanding field, the need for better and more

useful word vectorization also increases. Vector space embeddings are already

a major possible avenue for developers to leverage in allowing machine learning

and neural network models to closer understand words or at bare minimum, the

relationship between words. While the work on already done on and with these

techniques are great, there is still plenty that can be improved. Section 2.1

examined several different word vectorization methods and there still exists

plenty of alternative options targeted towards other NLP tasks.

A significant related work that inspired the work performed here is

the Column2vec project [15]. Column2vec described two possible models for

generating table names based on database column names. The project pro-

posed two separate model architectures which also leveraged the use of word

embeddings. One possible avenue suggested in that work for improving the

generative abilities of the model would be to also incorporate statistical data

from the database columns into the training process, such as calculating and

applying the mean or standard deviation of numerical columns in addition to

43

the context vector. This, however, would require a larger training corpus in

terms of size, as accurate additional metadata would be required in addition to

the existing table name and column names. The additional metadata would

need to be calculated already and included in the dataset, or the database

data would need to be included to calculate the relevant metadata to be used

in the training phase.

Other attempts at incorporating context into the text generation pro-

cess have been done. Santhanam explores applying context in text generation,

highlighting the issue that “without any such context, there is no semantic con-

sistency among the generated sentences” [19]. Santhanam’s work explores two

processes for the application of context. The two primary methods explored in

that work are word importance and word clustering. Word importance picks

the word in a training sample with the highest overall frequency and simply

one-hot encodes it. Simply one-hot encoding a word doesn’t too much to pre-

serve the semantic relationship between the words in the sample, but does give

some additional context across several samples. The word clustering approach

is similar to the summed context vector explored in this work, with their vec-

torization source being the Word2vec. The major difference is that instead of

using the summed context vector as the context source during training, the

distributed representations in vector space are clustered and the vectors in

the cluster center of the summed vector are combined into a context vector.

This allows similar sentences to have the same context vector, which increases

the separation between sentences belonging to other clusters, but removes all

44

differing context for sentences in the same vector space cluster.

Additional future work that can be explored using this work as a basis

include research and exploration into alternative neural network models. A dif-

ferent sequential model, such as a encoder-decoder Seq2Seq style model could

be used. In the Seq2Seq architecture, a separate model layer could be devoted

to learning the context vectors, with the result of that layer combining with the

input table name learning layer to produce the desired output. This approach

would also greatly increase the computational complexity of the model and

lead to increased training times. There has also been some promise discovered

recently in the use of Generative Adversarial Network (GAN) models for text

generation tasks apart from their already significant promise in image gener-

ation tasks. Additionally, the use of the BERT vector space encoding model

could be re-examined to change the generation of the word embeddings, such

as using context-based embeddings instead of the context-free ones used.

45

Chapter 7

Conclusion

Through the lens of database normalization, this work has explored

the use of word embeddings to offer additional contextual and relational in-

formation during the text generation process for creating a new table name

after a database has been normalized. Currently, normalization of database

tables results in new tables with data column names carried over from the

source table, but no table name. Meaningful table names are vitally impor-

tant for ensuring the overall schema is human readable and useful towards

other tasks. This thesis examines the use of word embeddings, generated from

the data column names, to offer additional semantic information during the

neural network learning process to improve the text generation performance

of the model.

The primary technologies used throughout this work consist of material

from the artificial intelligence field, the data analysis field, and natural lan-

guage processing field. A large portion of the work stemmed from the creation

and training of a recurrent neural network based model to achieve character-

level text generation. The most straightforward choice for model architecture

was a recurrent neural network-based model, either a simple RNN or a long

46

short term memory (LSTM) model. These were chosen primarily for their abil-

ity to learn over sequences, exhibiting significant dynamic temporal behavior,

which is essential for natural language processing tasks like text generation.

The training phase included the collection, cleaning, processing of real-world

table creation data from public open source GitHub repositories. This data is

filtered and tokenized to remove the majority of the dirty data that would oth-

erwise detract from the model’s learning. The training phase also included the

processing of the training data through the forward propagation, backprop-

agation, and gradient descent steps to allow for model to fit on the training

data. This portion of the training process sought to incorporate the use of

word embeddings as a context vector for each training sample to allow for the

relationships and semantics between words to be learned by the model.

After the training of the model was completed, the equally important

process of evaluating the model and its results was performed. In addition to

using the loss and accuracy of the model over a test set of samples, a more

qualitative approach was also done. A script applying the fuzzy Jaccard sim-

ilarity between the synsets of the true table name and the generated table

name was used to give a score to the performance of the model, taking into

account the readability and human meaningfulness of the results, in addition

to the numeric results from the loss and accuracy. A higher score showed that

the two table names were close, both semantically and syntactically, while a

lower score showed that they were not as similar or related. This evaluation

process was applied to the models discussed in Section 5 to offer a better com-

47

parison metric between the models that accounted for the human usefulness

of the generated labels instead of simply relying on the quantitative metrics

calculated during training and validation. There, it was shown that models

that did take advantage of context vectors lead to significantly better text

generation results.

Through this work, a neural network model was successfully created

that was capable of character-level text generation and incorporated vector

space representations of the data column titles into the learning process. Com-

pared to language generation models that did not include some form of context,

a model that did produced qualitatively better results during database table

name generation. By integrating the database column titles into the learning

process, the created language models were able to generate higher quality and

more human useful database table titles.

48

Bibliography

[1] Mart́ın Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis,

Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael

Isard, Manjunath Kudlur, Josh Levenberg, Rajat Monga, Sherry Moore,

Derek G. Murray, Benoit Steiner, Paul Tucker, Vijay Vasudevan, Pete

Warden, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. Tensorflow: A

system for large-scale machine learning. In 12th USENIX Symposium on

Operating Systems Design and Implementation (OSDI 16), pages 265–

283, Savannah, GA, November 2016. USENIX Association.

[2] Derek Anderson and Scott Randal. Word ninja. https://github.com/

keredson/wordninja.

[3] Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov.

Enriching word vectors with subword information, 2017.

[4] NLTK developers. Source code for nltk.corpus.reader.wordnet. https:

//www.nltk.org/_modules/nltk/corpus/reader/wordnet.html.

[5] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.

Bert: Pre-training of deep bidirectional transformers for language under-

standing, 2018.

49

[6] dProgrammer Lopez. Rnn, lstm gru. http://dprogrammer.org/

rnn-lstm-gru, 2019.

[7] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory.

Neural Computation, 9(8):1735–1780, 1997.

[8] Felipe Hoffa. Github on bigquery: Analyze all the open source code, Jun

2016.

[9] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic

optimization, 2017.

[10] Jure Leskovec, Anand Rajaraman, and Jeffrey David Ullman. Mining of

Massive Datasets. Cambridge University Press, USA, 2nd edition, 2014.

[11] Leland McInnes. Uniform manifold approximation and projection. https:

//github.com/lmcinnes/umap.

[12] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient

estimation of word representations in vector space, 2013.

[13] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean.

Distributed representations of words and phrases and their composition-

ality. In C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and

K. Q. Weinberger, editors, Advances in Neural Information Processing

Systems, volume 26. Curran Associates, Inc., 2013.

50

[14] Tomas Mikolov, Wen tau Yih, and Geoffrey Zweig. Linguistic regular-

ities in continuous space word representations. In Lucy Vanderwende,

Hal Daumé III, and Katrin Kirchhoff, editors, HLT-NAACL, pages 746–

751. The Association for Computational Linguistics, 2013.

[15] Michael J. Mior and Alexander G. Ororbia II. Column2vec: Structural

understanding via distributed representations of database schemas, 2019.

[16] Jeffrey Pennington, Richard Socher, and Christopher D. Manning. Glove:

Global vectors for word representation. In Empirical Methods in Natural

Language Processing (EMNLP), pages 1532–1543, 2014.

[17] Sebastian Ruder. An overview of gradient descent optimization algo-

rithms, 2016.

[18] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learn-

ing representations by back-propagating errors. Nature, 323(6088):533–

536, October 1986.

[19] Sivasurya Santhanam. Context based text-generation using lstm net-

works, 2020.

[20] Leonid Sigal. Topics in ai: Rnns (part 2). University Lecture, 2020.

[21] Jasper Snoek, Hugo Larochelle, and Ryan P. Adams. Practical bayesian

optimization of machine learning algorithms. In Peter L. Bartlett, Fer-

nando C. N. Pereira, Christopher J. C. Burges, Léon Bottou, and Kil-

ian Q. Weinberger, editors, Advances in Neural Information Processing

51

Systems 25: 26th Annual Conference on Neural Information Processing

Systems 2012. Proceedings of a meeting held December 3-6, 2012, Lake

Tahoe, Nevada, United States, pages 2960–2968, 2012.

[22] Laurens van der Maaten and Geoffrey Hinton. Visualizing data using

t-sne. Journal of Machine Learning Research, 9(86):2579–2605, 2008.

[23] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion

Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Atten-

tion is all you need, 2017.

[24] P. Werbos. Backpropagation through time: what does it do and how to

do it. In Proceedings of the IEEE, volume 78, pages 1550–1560, 1990.

52

Vita

Goldy Malhotra was born in New Delhi, India on January 23, 1998,

the son of Ramanjeet Singh Malhotra and Ramit Kaur Malhotra. He re-

ceived the Bachelor of Science degree in Computer Engineering Technology

from Rochester Institute of Technology, Rochester, New York in 2021. He

is currently pursuing his Master of Science degree in Computer Science from

Rochester Institute of Technology, Rochester, New York. His research inter-

est includes Machine Learning, Artificial Intelligence, and Data Science and

Analytics. His current research includes combining word embedding context

vectors with recurrent neural networks to improve text generation for database

schema management.

Permanent address: 455 Richard Way
North Plainfield, New Jersey 07062

This thesis was typeset with LATEX
† by the author.

†LATEX is a document preparation system developed by Leslie Lamport as a special
version of Donald Knuth’s TEX Program.

53

	Investigating Vector Space Embeddings for Database Schema Management
	Recommended Citation

	tmp.1643308238.pdf.u5tAV

