
Rochester Institute of Technology Rochester Institute of Technology

RIT Digital Institutional Repository RIT Digital Institutional Repository

Theses

12-15-2021

Calculating Common Vulnerability Scoring System’s Calculating Common Vulnerability Scoring System’s

Environmental Metrics Using Context-Aware Network Graphs Environmental Metrics Using Context-Aware Network Graphs

Christopher Thomas Enoch
cte6149@rit.edu

Follow this and additional works at: https://repository.rit.edu/theses

Recommended Citation Recommended Citation
Enoch, Christopher Thomas, "Calculating Common Vulnerability Scoring System’s Environmental Metrics
Using Context-Aware Network Graphs" (2021). Thesis. Rochester Institute of Technology. Accessed from

This Thesis is brought to you for free and open access by the RIT Libraries. For more information, please contact
repository@rit.edu.

https://repository.rit.edu/
https://repository.rit.edu/theses
https://repository.rit.edu/theses?utm_source=repository.rit.edu%2Ftheses%2F11072&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.rit.edu/theses/11072?utm_source=repository.rit.edu%2Ftheses%2F11072&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository@rit.edu

1

R∙I∙T
Calculating Common Vulnerability Scoring

System’s Environmental Metrics Using
Context-Aware Network Graphs

by

Christopher Thomas Enoch

A Thesis Submitted in Partial Fulfillment of the
Requirements for the Degree of Master of Science in

Software Engineering

Department of Software Engineering
Golisano College of Computing and Information

Sciences

Rochester Institute of Technology
Rochester, NY

December 15, 2021

2

Committee Approval:

__

Dr. J Scott Hawker Date

SE Graduate Program Director

__

Dr. Mehdi Mirakhorli Date

Advisor, Department of Software Engineering

__

Dr. Mohamed Wiem Mkaouer Date

Committee Member, Department of Software Engineering

__

Dr. Christian Newman Date

Committee Member, Department of Software Engineering

__

Dr. Shanchieh Yang Date

Committee Member, Department of Computer Engineering

3

Abstract

Software vulnerabilities have significant costs associated with them. To aid in the prioritization of

vulnerabilities, analysts often utilize Common Vulnerability Scoring System’s Base severity

scores. However, the Base scores provided from the National Vulnerability Database are

subjective and may incorrectly convey the severity of the vulnerability in an organization's

network. This thesis proposes a method to statically analyze context-aware network graphs to

increase accuracy of CVSS severity scores. Through experimentation of the proposed

methodology, it is determined that context-aware network graphs can capture the required

metrics to generate modified severity scores. The proposed approach has some accuracy to it,

but leaves room for additional network context to further refine Environmental severity scores.

4

Calculating Common Vulnerability Scoring System’s Environmental Metrics Using
Context-Aware Network Graphs 3

Related Works 6

Measuring CVSS Environmental Scores 9
Modeling Network Topology Through Context Aware Network Graph 10
Adding Additional Security Context to Network Devices 16
Approximating CVSS Metrics 17

Calculating Modified Attack Vector Via Modified Shortest Path 17
Measuring Modified Attack Complexity Via Modified Depth-First Search 22
Calculating Modified Privileges Required Via Modified Depth-First Search 26
Calculating Modified Confidentiality Impact and Modified Integrity Using Eigenvector
Centrality 32
Calculating Modified Availability Impact 34
Exclusion of Modified User Interaction and Scope Metrics 39

Analyzing CVSS Environmental Scores of an Example Network 39
Sample Network Topology 40
Sample Vulnerabilities 41
Node Questionnaires 43
Experimentation 45

Mutation of CVE Location in the Network 46
Mutation of Network Communications 46

Tooling 46
Findings 48

Experiment 1: Mutation of CVE Location in the Network 48
Experiment 2: Mutation of Network Communications 51
Research Question Analysis 57

Limitations 59

Future Work 61

Conclusion 62

References 63

5

Calculating Common Vulnerability Scoring System’s Environmental Metrics Using

Context-Aware Network Graphs

Software vulnerabilities are costly problems. For developers and project managers, they

can delay a project due date and subsequently drive up the cost of the project. Organizations

that identify library or driver vulnerabilities may require major software updates or custom

solutions to protect themselves. If they fail to identify or patch them, they can expose entire

sections of their network infrastructure to malicious actors, costing them millions of dollars and a

reduction in public trust.

To help track vulnerabilities and provide important vulnerability data for developers,

project managers and security analysts alike, the National Institute of Standards and

Technology (NIST) created a centralized database called the National Vulnerability Database

(NVD). Along with vulnerability descriptions, and references to external sources, the NVD

utilizes the Common Vulnerability Scoring System (CVSS) to provide severity scores to enhance

risk analysis. CVSS is an open-source scoring framework used by the software industry to score

vulnerabilities, providing context to various aspects of the vulnerability. The scoring system

relies on security professionals to analyze software vulnerabilities and make recommendations

for the scores assigned to each of the vulnerability's attributes, based on the descriptions set

forth by the framework. The CVSS specification outlines an approach for organizations to add

environmental context to a particular vulnerability. For instance, an organization may realize that

a firewall prevents a particular vulnerability from accessing the network and an analyst may

update the Attack Vector score to reflect that an attacker may need to have physical access to

the machine in order to run the exploit. One of the major downsides of this extension, is the

inputs are entirely up to the analyst or team of analysts. What one analyst may conclude from

the structure of the compromised machine or network, can be different from another analyst.

6

Consequently, the new generated score becomes very subjective and may miss elements or

include too many elements that affect the overall score, and the score may hold different

meaning to third party analysts.

The goal of this thesis is to provide an extension to the CVSS Environmental scoring

framework that performs static analysis of contextualized networks to generate modified severity

scores. The two questions that this body of work seeks to answer are the following:

R1. Can context-aware network graphs capture the required metrics to calculate CVSS

Environmental scores?

R2. Can the proposed technique accurately calculate CVSS Environmental scores?

This thesis first defines the models and methods used for capturing network context. The

network topology is converted into connectivity and communications graphs that depict the

physical and logical connections between machines. The graphs are used to determine how the

physical locations of vulnerabilities impact the overall network. To capture the context of

individual nodes, a security questionnaire is proposed. The security questionnaire provides a

method for security analysts to input metadata about each node. Following the description of the

framework and examples of the expected outcomes for each CVSS metric, two experiments

were conducted using a sample network and three vulnerabilities with different severity

classifications. The first experiment randomizes the location of each vulnerability in the network

while the second experiment places the vulnerabilities onto a single node and randomizes the

communications graph. The evaluation of vulnerabilities in a sample network shows that the

proposed framework is capable of capturing the required metrics to calculate new CVSS scores.

It also shows that introducing network and machine context increases accuracy, however there

is room for additional improvement to further increase accuracy.

7

This thesis is organized as follows. The next section summarizes the related literature.

The third section, Measuring CVSS Environmental Scores, describes the details of the network

graphs created from network topologies, the methods for capturing additional metadata about

network machines, and the proposed framework for calculating Environmental scores. The

fourth section, Analyzing CVSS Environmental Scores, provides the evaluation of the proposed

approach along with an analysis of the results. The fifth section lists the identified limitations of

this thesis. Future work is discussed in the sixth section, and the final section summarizes the

conclusions of this thesis.

Related Works

The lack of accuracy in CVSS is not a new problem and is a heavily researched topic.

Noting the problems present in CVSS severity scores, many works have been published

seeking new methods to improve the severity calculation. This section summarizes existing

work that is more closely related to the topic of this thesis.

Fruhwirth and Mannisto (2009) aimed to expand CVSS 2.0 severity calculation accuracy

by adding additional context to CVSS scores. They identify that CVSS Base scores, which are

used by the NVD and by extension organizations using the NVD to prioritize work on

vulnerabilities, lack the contextual data to accurately categorize the vulnerability in question.

This can cause organizations to add unneeded costs by potentially providing a critical response

to a vulnerability that should actually be categorized as low severity. Fruhwirth and Mannisto

thus proposed methods to estimate the missing data points using models created by Frei et al.

(2006), to calculate Temporal, Exploitability and Remediation Level scores. They also conducted

an interview of security managers to estimate the Confidentiality, Integrity and Availability of a

vulnerability. The information they gathered was then used to recalculate Base scores of various

vulnerabilities and their cost, and shown that introducing contextual data can accurately

8

categorize vulnerabilities. Overall, they showed that the more accurate categorization caused a

reduction in cost. R. Wang et al. (2011) expanded on Fruhwirth et al. by proposing

improvements to the Exploitability metric by including OS Type and Server Type in the base

algorithm. Like Fruhwirth, they identified that the current Environmental and Temporal

calculations provide subjective measures that affect the categorization of the vulnerability. The

changes they proposed to these metrics improved the CVSS severity score by adding context

about the environment the vulnerability lives in and the impact to the organization. These two

papers explored methods for improving accuracy of the CVSS framework by adding contextual

data about the organization or the machine itself in order to improve accuracy and reduce cost.

However, these papers did not consider changes to the CVSS framework to include contextual

information about the entire network. This thesis aims to improve Environmental scoring by

providing methods to evaluate an organization’s network.

The introduction of contextual data, particularly network topologies, to the CVSS

framework in order to assist in security analysis has been researched before. Nemes et al.

(2019) utilized P-Graphs to analyze the network topology and generate reliability scores based

on CVE data within the network. The P-Graph is created from the services found in the network.

They found that introducing context about services in the network, they were able to estimate

the robustness of the network under scrutiny. S. Wang et al. (2015) introduces a method to rank

the types of vulnerabilities based on an analysis of the environmental factors of a network. The

method proposed uses log information from the network to analyse the impacts of a vulnerability

and rank them. The ranking algorithm was developed to improve the risk analysis process that

penetration testers use. They found that their approach was able to dynamically rank

vulnerabilities and their CWE’s based on the configuration of the network. While these works

incorporated the network topology into their methodologies, they did not improve upon the

9

CVSS score calculation. Nemes et al. utilizes CVSS and P-graphs to generate robustness

scores, and S. Wang et al. utilizes network context to rank vulnerabilities for prioritization. The

proposed approach in this thesis aims to generate Environmental scores using static analysis of

the network topology and additional contextual data about the machines present to directly

improve the CVSS framework and categorization of vulnerabilities.

Due to the lack of accuracy in vulnerability prioritization and measuring real world impact

of CVE’s using CVSS base scores, several works proposed new methods that expand or

incorporate CVSS calculations. To help improve the vulnerability prioritization process,

Dobrovoljc et al. (2017) introduced a method that combines CVSS base metrics with attacker

characteristics. Their method for prioritizing vulnerabilities used CVSS scores and attacker

behavior to model the impact of vulnerabilities. They then tested multiple prioritization policies to

determine which method performed the best. They found that adding attacker behavior along

with CVSS metrics yielded better performance than CVSS on its own. L. Gallon and J. J.

Bascou (2011) proposed a method to measure the host and network impacts of a CVE by

integrating CVSS information into attack graphs. They developed CVSS attack graphs to

calculate the damages caused by an individual against the entire network as opposed to

individual nodes. They tested their approach against a sample network and found that by

introducing CVSS data from previous steps, they are able to more accurately estimate the

impact of an attack. They did note that their approach does not take into account CVSS

Temporal and Environmental scores and will need to address these in the future. These works

dealt with simulation of attackers in an environment. While simulations can be very useful, using

attacker behavior can be complex to understand due to its dynamic nature, so this thesis

proposes a static analysis tool for assessing the impacts of vulnerabilities and aims to assist in

risk analysis.

10

At the time of writing, there has been no research performed in generating CVSS

Environmental scores by statically analyzing a network topology with contextual data about

individual machines and their connections. None of the research that currently exists takes a

holistic approach to improving Environmental scores by incorporating network topology. The

proposed methodology in this thesis aims to fill that gap.

Measuring CVSS Environmental Scores

The CVSS scoring system aims to provide a standardized calculation of vulnerability

severity to aid in risk analysis, while providing an open framework so users can understand

scores generated by a third party. The algorithm also allows organizations to contextualize the

vulnerability in their own network. Given that the inputs can be arbitrary, this proposed approach

aims to provide a standard way of adding context to previously scored vulnerabilities.

There are many different security systems, network configurations and actors that affect

how a vulnerability can impact a network. There are also various transmission mechanisms and

transport layers that impact the reach of a vulnerability or communication between different

machines. To reduce the scope and complexity of the research, the proposed framework is

designed to handle the network at a high level, by utilizing network graphs to represent the

topology of the network and avoiding the many implementation details of network

communication. Handling the high level concepts with simple questions such as “Is the machine

connected to the internet?” makes the overall framework simpler to understand, more practical

to employ, and can handle a broad range of network designs and configurations. However, the

framework is designed such that it can be extended to include more information about the

network and become more granular in its score generation. This leaves the door open for future

work on many different portions of the framework.

11

There are a few assumptions made while developing the proposed framework. One

assumption is that the attacker can execute any attack with 100% success. Attackers have a

wide range of skills and varying degrees of knowledge about the network topology. There is a

large body of research pertaining to attacker behavior prediction and simulation. This approach

differs from other sources by removing the attacker and focusing strictly on the vulnerability and

network configurations. The framework takes a different mindset, by evaluating the influence of

network structure and providing an objective calculation to the severity of vulnerabilities in a

non-simulated environment. Because of the focus on topology of the network, incorporation of

attacker behavior simulations into the scoring framework can be left for future work. Another

assumption made is that the source of all attacks comes from outside the network. While it is a

vital portion of network security, insider threat introduces many factors external to the physical

characteristics to the network, like personnel security levels and physical access to machines

and can be left for future work.

The following sections will describe the various inputs required for the proposed

framework, and the various algorithms developed to calculate the Modified Environmental

metrics of a vulnerability. Modeling Network Topology Through Context-Aware Network Graph

defines the representation of a computer network in a form that can be consumed by the later

algorithms. Adding Additional Security Context describes the method for adding additional

metadata about machines in the network. And finally, Approximating CVSS Metrics introduces

the changes necessary to the CVSS Environmental scoring framework to incorporate the

network context into the final score.

12

Modeling Network Topology Through Context Aware Network Graph

The core of this framework begins with the representation of the network. The topology

is represented as a network graph which consists of nodes representing devices, and edges

defining relationships between those devices.

There are several types of devices that can exist on the network: routers, servers,

switches, and machines. Routers are classified as devices that route traffic through the network.

These devices typically have one to many connections to other devices on the same network,

representing physical cables, or wireless connections. Routers can also provide security

protocols that dictate communications between devices that are connected to it. Switches

represent hardware that connect multiple devices to the same network. While switches can

include software to manage traffic passing through it, switches in the network graph are

responsible for simply routing packets to other machines. Servers are devices that run remote

functionality and contain business critical applications and databases, code repositories, and

important business data, to name a few things. Servers typically do not allow physical access to

their environments, allowing access only through other network connected devices. Machines

represent any other device that does not fit into the previously defined categories. Machines can

be anything from desktop computers, to network intrusion devices, to cell phones.

As mentioned previously, edges represent relationships between machines. There are

two types of edges that illustrate different relationships. connectivity edges portray physical

connections between machines, such as LAN cables, WiFi connections, and Bluetooth

connections to name a few. Within the network graph, connection edges are undirected edges

and define the basis of the network. While connection edges illustrate physical connections,

communication edges are directed edges that represent a permission between two machines. If

a machine has permission to communicate to another, an edge will exist. Communication edges

13

are used to represent access control components of the network, such as firewall permissions.

These edges carry two attributes, the minimum permission needed to access the target

machine, and the difficulty to bypass authentication schemes and firewalls. The use of these

attributes will be addressed in the Modified Attack Complexity and Modified Privileges Required

sections.

Combining these node and edge types, two graph types can be created to fully

represent a computer network: the connectivity graph and the communications graph. The

connectivity graph is an undirected graph containing the nodes and connectivity edges and the

communications graph is a directed graph containing nodes and communications edges. These

different types of graphs of the same network allow for algorithms proposed to be specialized for

the type of graph under scrutiny. It also allows for cleaner views for an analyst to review.

A simple network containing three devices, a desktop computer, a laptop and a mobile

phone is depicted in Figure 1. The desktop computer is directly plugged into the wireless router

and laptop via an ethernet cable, and the laptop and mobile phone are connected to the

wireless router via a wireless connection. Using this network, the connectivity and

communications graphs shown in Figures 2 and 3 can be created.

14

Figure 1

Example Basic Network

The expectant connectivity graph, depicted in Figure 2, is created from the example

network in Figure 1. Each node in the network represents each of the machines from the source

network diagram, while each of the edges represent the physical connections between each

node. An edge, for example (A, D), would be interpreted as, A is physically connected to D.

15

Figure 2

Example Connectivity Graph

Note. This graph is created from the base network defined in Figure 1.

Figure 3 depicts the resultant communications graph after analyzing the logical

connections, like firewall configurations, of machines in the example network. An edge in this

directed graph can be thought of as an allowed communication from one node to another. So

the paths (A, C) and (C, A) mean that the two machines can communicate freely. Conversely,

missing direct paths between the Internet and Node D, would represent a scenario where D is

not allowed to communicate to the Internet despite having a direct connection from the

connectivity graph and vice versa.

16

Figure 3

Example Permissions Graph

Note. This graph is created from the base network defined in Figure 1.

The communication edges shown have additional metadata attached to them to help

describe the nature of the connection but have been omitted for simplicity. This additional

metadata will be described in more detail later in the paper.

Adding Additional Security Context to Network Devices

When assessing the impact of a vulnerability in a network, it is important to evaluate the

security protocols of each machine. To capture the security context of each node, the security

questionnaire was developed. The questionnaire asks various questions to gauge what data is

stored, the importance of any data that’s stored, and the protocols used to protect that

https://app.diagrams.net/?page-id=umaxUOLelUbO2cfMhofp&scale=auto#G1xDO_nKFoOlZzeqMCT9id3xqcibjaxFvQ

17

data,among others. Each question in the questionnaire can be responded to with a Yes, No or

Maybe answer and those answers translate into scores based on the impact that is being

evaluated. For this approach, the questionnaire provides the security context to calculate the

Confidentiality and Integrity impacts of a vulnerability as outlined by Table 1.

Table 1

Contents of the Security Questionnaire

ID Question Impact Type

Confidentiality Integrity

1 Do you store passwords on this Machine? X X

2 Are the Passwords stored in Plain Text? X X

3 Do you store log files on this Machine? X

4 Do you store user information? X X

5 Do you store personal data in log files? X X

6 Do you store financial information? X X

7
Is there any information stored about other
machines such as IPs or Hostnames? X

8 Does this machine contain private keys? X X

9 Do you store sensitive business data? X

10
Do you allow public users to modify data on the
machine? X

A questionnaire is used to capture the context of a node due to its ease of use and its

extensibility. Answers for the questionnaire are stored on each node as metadata for use during

impact calculations. How the questionnaire will be utilized to select impact metrics will be

discussed further in the Modified Confidentiality and Modified Integrity Impact sections.

Approximating CVSS Metrics

CVSS includes three groupings of metrics: Base, Temporal and Environmental. Base

metrics for a vulnerability describes the characteristics of a vulnerability across user

environments; Temporal metrics describe the time-based characteristics of a vulnerability,

18

independent of a user's environment. Finally, Environmental metrics describe the vulnerabilities

characteristics when analyzed in a specific environment. Typically, vulnerabilities are given Base

scores and the analyst is responsible for defining Temporal and Environmental metrics to further

refine the overall CVSS through Modified Base scores.

This framework only focuses on automatically calculating Environmental metrics to

provide a vulnerabilities Modified Base score. Temporal scores measure the level of

exploitability, availability of fixes, and the confidence in the vulnerability descriptions. These

metrics are not impacted by network configurations so they are not included in this proposed

framework. The following sections describe each metric used in this approach in detail, and how

the approach generates scores for each. The metric scores generated are then plugged into the

overall CVSS score calculation to get an updated severity score. Each section provides a

definition of the algorithm as well as a trivial example of a network to aid in explanation. The

provided examples are created using the base network in Figure 1. and the connectivity and

communications graphs in Figures 2 and 3.

Calculating Modified Attack Vector Via Modified Shortest Path

The Attack Vector (AV) describes which vector an attacker can execute the vulnerability

in question. The AV can be any of the following: Physical, Local, Adjacent Network, and

Network. An AV of Physical constitutes an attacker being able to execute a vulnerability only

when he has direct access to the component that is vulnerable. An example of this would be

executing a cold boot attack to gain access to encryption keys. When a vulnerability has an AV

of Local, the vulnerability can only be exploited locally via a component that has access to

vulnerable software. This could be something similar to exploiting a vulnerability in a Python

SQL driver to gain root access to the corresponding database. Vulnerabilities that have an AV of

Adjacent Network means that the vulnerability can be exploited on the network where it exists.

19

However, the component can only be accessed via the physical network it exists on. Finally, a

Network AV is assigned when a CVE can be exploited from outside of the network it resides on.

To determine the Modified Attack Vector (MAV) of a CVE, the connectivity graph must be

analyzed to identify a path between the infected node and the Internet. There are several rules

that were created to determine the value that the MAV can take. The first rule for the scoring

attack vector is vulnerabilities will never increase their initial attack vector. For example, a CVSS

assigned with Local will not assume Adjacent Network or Network. The assumption is made that

when the Base AV is assigned, the chosen vector is the absolute worst vector. The algorithm

does not take into account the intricacies of the vulnerability in question and as such can not

determine if it is possible for the exploit to increase its vector. Along with this rule, CVE’s that

have an attack vector of Physical will keep their respective vector. CVSS defines a Physical AV

as not bound to the network stack and requiring the attacker to exploit the vulnerability via

physical touch. The MAV can safely be assigned the initial vector of Physical because the

original score already considers that the attacker needs to physically be present to execute the

vulnerability.

CVE’s that have an AV of Network need to pass through a check to see if they are still

accessible from outside of the network. From the affected node, all paths to the internet must be

found. If there are valid paths, the paths must then be analyzed for permissions and firewall

access. If a node is physically connected to the internet and there is nothing preventing traffic to

that node, then the MAV remains Network. Figure 4. depicts an example graph where the

CVSS’ Modified Attack Vector remains Network. Node D represents a Node that contains a

vulnerability with a Base AV of Network. A path can be drawn from the Internet Node to Node D,

either through Node A or Node C, thus assigning an MAV of Network.

20

Figure 4

Example of Expected Network Modified Attack Vector

Note. The vulnerability on Node D would be assigned an MAV of Network due to a direct

connection to an Internet node.

If there are no paths to the internet, or permissions blocking traffic, then the AV gets

downgraded to Adjacent Network. From here, a valid path to an adjacent node must be made.

Figure 5. represents a network that is not connected to the Internet. Since there is no valid path

between the Internet and infected Node D, then a check is made to see if Node D has any

connected neighbors. Since Node D has two neighbors, Node A and Node C, then the MAV of

Adjacent Network can be assigned.

21

Figure 5

Example of Expected Adjacent Network Modified Attack Vector

Note. The vulnerability on Node D would be assigned an MAV of Adjacent Network due to a no

direct connection to an Internet node but connections to neighbors.

Finally, if the affected node does not have a path to an Internet Node and it does not

have any neighbors, then the MAV is assigned Local. Figure 6. depicts an example of Node D

being assigned a Local MAV.

22

Figure 6

Example of Expected Local Modified Attack Vector

Note. The vulnerability on Node D would be assigned an MAV of Local due to no connections to

any nodes

After considering these possibilities, Algorithm 1 was finalized for calculating Modified

Attack Vector.

23

Measuring Modified Attack Complexity Via Modified Depth-First Search

The CVSS specification defines the Attack Complexity (AC) as a metric that describes

the conditions beyond the attacker's control that must exist in order to exploit the vulnerability.

Expanding the modified metric to incorporate the network, Modified Attack Complexity (MAC)

can more specifically relate to the difficulty of bypassing firewalls and bypassing authentication

methods to execute a vulnerability. According to the CVSS specification, AC can take two

values: Low and High. A Low AC means that the exploit can be easily executed and the attacker

can expect repeated success when attempting to execute multiple times. If the AC is assigned

24

Low, the overall CVSS score increases. To calculate the AC value, the algorithm needs to show

there is an attack path from the affected node to the Internet that provides the smallest amount

of complexity for the attacker. If that path does not exist then the attacker may need to perform

additional steps to perform the exploit. Complexity is assigned to connectivity edges based on

the analysis of the perceived difficulty of accessing a node by analysts. For example, an edge

would be assigned a High complexity value if the analyst determines that there are several

security measures put in place that would cause some significant work to be bypassed, like

multi-factor authentication, or encrypted traffic, etc.

An example connectivity graph with complexity annotations on each edge is shown in

Figure 7. This example would produce an MAC of Low due to a valid path of Low complexity

that can be drawn between the Internet and the affected node, D. This path is represented by

the arrows in the graph and the path would read: Internet -> A -> C -> D.

25

Figure 7

Example of Expected Low Attack Complexity

Note. The vulnerability on Node D would be assigned a MAC of Low due to a direct path with

Low complexity from an Internet node, denoted by the arrows.

To show an example of an MAC of Low, the connection between Node C and Node D

can be removed. Figure 8 is an example of this removal, showing that a valid path of Low

Complexity can not be drawn, and thus the only path of Internet -> A -> D, would result in High

MAC.

26

Figure 8

Example of Expected High Modified Attack Complexity

Note. The vulnerability on Node D would be assigned a MAC of High due to no paths only Low

complexity

To calculate the MAC of the existing CVE, a modified depth-first search algorithm was

used. The depth-first algorithm was modified to search for a valid path between the affected

node and the Internet using only Low complexity edges. As shown in Algorithm 2, the

modification made to the algorithm lies in the condition to add the neighbor node to the search

list. In order for the algorithm to progress further, the edge complexity of the current node’s

neighbors must be equal to the value Low. In the event a neighbor with an edge complexity of

Low is found, then the neighbor gets added to the set of nodes to traverse in the following

iteration. If the edge complexity of a neighbor is not Low, assuming a value of High, then the

27

neighbor is rejected as the purpose of the calculation is to find the shortest path with a Low

complexity. If a neighbor is found that has a Low complexity edge, and the neighbor is an

Internet node type, then Low is accepted as the MAC. If the algorithm can not find a path with

Low complexity, then High is accepted instead.

Calculating Modified Privileges Required Via Modified Depth-First Search

The CVSS framework provides a Privileges Required (PR) metric to capture the level of

privileges needed before executing the vulnerability. To incorporate the Modified Privileges

Required (MPR) metric into the proposed approach, the MPR algorithm requires an evaluation

28

of the cumulative privileges required for each path from the afflicted node to the Internet. To fit

into the CVSS calculation, the proposed algorithm needs to identify if the privileges are either

Low, Medium, or High.

The MPR algorithm needs to quantify the amount of privileges needed to not only exploit

the vulnerability, but the privileges needed to reach the affected node. Assigning the individual

privileges, Low, Medium or High, to each connection between the nodes, the framework can

utilize a path searching algorithm to find a path from the Internet to the target node, representing

the malicious actor’s movement. The pathing algorithm should attempt to find a path of least

privilege and if it can not, should re-run the search including paths with an increased privilege.

An example of an expected MPR of None is depicted in Figure 9. If C is the afflicted Node, then

MPR is Low if the attacker is able to communicate to C with little to no privileges; Internet -> A

-> C, in this case. If the privileges along this path were updated so that the attacker could not

take this path, then a new path needs to be found.

29

Figure 9

Example of Expected None Modified Privilege Required

Note. The vulnerability on Node C would be assigned a MAV of None due to a direct path with

No privileges needed existing from an Internet node. This path is denoted by the arrows.

In Figure 10, the privileges between A and C are upgraded to High, perhaps due to a

network administrator restricting login permissions between Nodes A and C. Since there are

now no paths to the affected node with Low permissions, the algorithm should find a path with

Low or Medium privileges. In the example, a path could be drawn from C -> D -> A -> Internet

using a mix of only Low and Medium privileges resulting in a Medium MPR.

30

Figure 10

Example of Expected Low Modified Privilege Required

Note. The vulnerability on Node C would be assigned a MAV of Low because there is at least

one path from the Internet that does not require High privileges shown by the arrows.

If no path can be found where the malicious actor can reach the affected node with Low

or Medium privileges, then the algorithm should set the MPR to High, reflecting that the attacker

needs administrator privileges to execute the vulnerability. Figure 11. Shows an example of High

MPR, given that the path from the Internet Node to Node A is updated to require High privileges

to traverse.

31

Figure 11

Example of Expected High Modified Privilege Required

Note. The vulnerability on Node C would be assigned a MAV of High because there are no

paths from the Internet that do not require High privileges shown by the arrows.

Several algorithms were investigated to accomplish the expectations of the proposed

approach. Djikstra’s Shortest path was looked at first. Weights could be assigned to each

privilege type, 1 for Low, 2 for Medium, and 3 for High. The problem with using Dijkstra’s

Shortest Path algorithm to find the shortest weighted path from the Internet to the affected node

is that it is possible for the shortest weighted path to not be the path with least privilege. It’s

possible that a much longer path with a higher accumulated weight could exist. To account for

this, the final algorithm should test all paths.The resultant algorithms are shown below.

32

Algorithm 3 shows the top level algorithm for determining the MPR, while Algorithms 4 and 5

describe the searching algorithm for determining No and No and Low paths to the Internet.

33

34

Calculating Modified Confidentiality Impact and Modified Integrity Using Eigenvector

Centrality

CVSS introduces a Confidentiality Impact (CI) and Integrity Impact (II) to measure the

impacts of the vulnerability after it has been successfully exploited. Confidentiality and Integrity

impact scores describe the impact of the vulnerability in question based on the importance of

the data on the machine to the organizations.

To accurately measure the impacts, the proposed algorithm should consider the

importance of the node relative to the rest of the network. Since network security components

35

can influence the extent at which a malicious actor can access systems with important

information, the calculation should use the Communications graph. The algorithm needs to

show that network vulnerabilities that originate on machines with high importance, have a high

impact score. If the vulnerability does not exist on a machine with high importance, then the

impact score should reflect its closeness to important machines. The decision to score impact

based on the closeness of important machines was made to represent the ability of an attacker

to compromise the affected machine, and utilize that node as an entry point into the

organization’s network. To measure these two scenarios, the Eigenvector Centrality algorithm

can be used to measure the importance of nodes relative to their neighbors. This centrality

algorithm can determine the impact of an actor compromising the infected node and jumping to

neighbor nodes to access important data.

In order for Eigenvector Centrality to be calculated, each node has to be assigned a

weight. The security questionnaire previously defined can be used to generate Confidentiality

and Integrity weights for each node. This is done by first calculating the sum of questions for

each metric, and assigning them to each inbound edge as a weighted value. After calculating

Eigenvector Centrality for both confidentiality and integrity, the values are normalized to be

between zero and one. To convert the Eigenvector scores into one of None, Low and High

impacts, provided by the CVSS specification, each metric is assigned equal slices between zero

and 0:

● scores between zero and one-third inclusive are assigned None;

● scores between one-third exclusive and two-thirds inclusive are assigned Low;

● scores between two-thirds inclusive and one are assigned High;

The full algorithms for both MCI and MII are shown in Algorithms 6 and 7, respectively.

36

Calculating Modified Availability Impact

It is important that machines in a network are highly available in order for users to

access services and data that are stored in the network. The CVSS framework quantifies the

impact of the vulnerability in the context of the resource that the vulnerability exists in. The

Availability Impact (AI) is defined by the CVSS specification as the impact of the vulnerability on

37

the component’s network bandwidth, processor cycles or disk space. In order to determine

Modified Availability (MAI) impact, the proposed approach needs to expand the CVSS definition

of AI to include the impact on the resources that exist in the entire network, not just the

availability of the impacted node.

The calculation should start by showing that there is a High impact if the vulnerability can

make large portions of the network unavailable. An example of High MAI by a vulnerability in

the example network, is shown in Figure 12. In this scenario, removal of the affected Node, A,

would result in the entire network going down. No node would be able to connect to the Internet

until Node A is back online.

Figure 12

Example of Expected High Availability Impact

Note. The expected MAI in this example would be High due to the fact that removing the edges

connected to Node A, would cause Nodes B, C, and D to be disconnected from the Internet.

38

To show a vulnerability has a Low impact, the approach must show that some of the

network is no longer connected to the Internet, but not all of the machines are affected. To

demonstrate a Low MAI, the vulnerability can be moved to Node D, and an additional machine

can be added, Node E. To contextualize this change, Node E can be seen as a Virtual Machine

that exists on Node D. In this configuration, removal of the infected node results in 2 machines

no longer connected to the Internet resulting in an expected Low impact.

39

Figure 13

Example of Expected Low Availability Impact

Note. The expected MAI in this example would be Low due to the fact that removing the edges

connected to Node D, would cause only Node D and E to be disconnected from the Internet.

Nodes A, B and C are still connected.

Finally, the approach should determine a None MAI the affected node is impacted or if

only a small portion of the network is affected by the removal of the impacted node. An example

40

of a vulnerability with a None impact is shown in Figure 14. In this case, the expected MAI is

None due to the fact that removing Node B from the network only affects itself.

Figure 14

Example of Expected None Availability Impact

Note. This example would yield a MAI of None due to the fact that removing the edges

connected to Node B would not disconnect any other Node from the Internet.

There were several considerations when determining the best algorithm to cover the

above outcomes. The first attempt was to utilize the Betweenness Centrality algorithm to

calculate the importance of the node in a network. Betweenness provides a measure for the

number of shortest paths that pass through the target node. The problem with measuring

availability given the shortest paths passing through a machine in a network is that computer

networking does not care about shortest path communications between nodes. So long as there

41

exists a path between two machines, they will be connected. Betweenness will work if the

infected node is a bridge node, a node that has the only connection between two sections of the

network, such as a router or switch. However, If a node is removed, there could be an alternate

longer path to the Internet. It is entirely possible for a path to exist to the target node if the

infected node is out of commission, thus not impacting the overall availability of the nodes in the

network. Taking the above into consideration, Algorithm 8 was chosen to determine the MAI of a

vulnerability. Firstly, a count of all the nodes in the connectivity graph is taken. The node in

question is then removed from the graph and a count of remaining nodes is collected. The

remaining nodes are all nodes that still have a path to the Internet. Finally, a percentage of

remaining nodes is calculated and the MAI value determined. If more than two thirds of the

nodes are still connected, then the vulnerability has an MAI of None. If more than one third of

nodes are still connected, then the vulnerability has some impact, requiring the MAI to be Low. If

there are less than one third of nodes remaining, then the vulnerability has a catastrophic

impact on availability and must be assigned a High MAI.

42

Exclusion of Modified User Interaction and Scope Metrics

The CVSS framework provides two additional inputs for the security expert to consider:

User Interaction (UI) and Scope (S).UI captures whether or not some user needs to perform an

action in order to successfully trigger the vulnerability. An example of UI being required, given by

the CVSS Specification, would be the requirement of a user to run an installer.Scope change

occurs when an attacker can access resources outside the control sphere of the application. An

example of this would be breaking out of a Tomcat container and modifying files the container

normally does not have access to. The proposed approach focuses solely on severity metrics

that are impacted by the network configuration and as such, does not explore how the

vulnerability is exploited, or whether or not the machine configuration can impact the change in

Scope. The base scores of the vulnerability are not modified.

43

Analyzing CVSS Environmental Scores of an Example Network

To validate the approach, two experiments were devised. The goal of these experiments

is to show that introducing context about a network would have a meaningful impact on the

severity of a given vulnerability. The next section1 introduces the sample network that will be the

subject of experimentation. The following section describes the vulnerabilities selected for

experimentation and the rationale behind their selection. How the questionnaires were filled out

for each of the nodes in the network is then described. The Experimentation section sets up the

two experiments conducted and the rationale for their selection. The tool developed for

executing the experiments and gathering their results as well as the inputs to the tool are

introduced in the Tooling section. The final section analyzes the results from experimentation

and discusses how the findings answer the two research questions.

Sample Network Topology

The first step in designing the experiments is to develop the network topology. The

topology for this case study starts with the network used in the S. Wang et al. paper, shown in

Figure 15. The network used contained 8 computers and 3 routers, split into 2 subnets. The

connectivity graph created from this network is shown in Figure 16.

44

Figure 15

Diagram of Wang Paper Network

45

Figure 16

Connectivity Graph of Wang Graph

Note. Node ids used in evaluation are displayed with parentheses

The S. Wang et al. paper lacks the information required to create the communications

graph. As a result, the graph needs to be created from scratch. To limit bias in the generation

process, the edges between all of the nodes are randomly generated using the randomization

process created for Experiment 2, described below. The final communications graph adjacency

list is recorded in Table A1.

Sample Vulnerabilities

Three CVE’s were selected for the proposed experiments. Each CVE selected

represents a different level of severity: Low severity, Medium severity, and Critical severity. A

CVE chosen from each category of severity would better demonstrate how the network

configuration can affect the various severities of the selected CVE’s. It was decided that the

CVE’s should be affecting the PostgreSQL service.

46

The first CVE is CVE-2019-10209. This Low Severity CVE, when exploited, can allow a

user to read the server memory. While this vulnerability is exploitable over the network, it is

complex and requires administrative privileges to execute. The CVSS Base metrics and the

numeric score is shown in Table 1.

Table 1

CVE-2019-10209 CVSS Base Metrics

AV AC PR UI S C I A Score

Network High High None Unchanged Low None None 2.2

The second CVE selected for this experiment is CVE-2019-10129. This vulnerability has

a CVSS 3.1 severity score of 6.5, and is categorized as a Medium severity vulnerability. The

vulnerability stems from the ability for an attacker to craft an insert into a partitioned table,

leading to arbitrary bytes of the server’s memory to be read. Unlike the previous CVE, this CVE

has a lower complexity and a lower required privileges contributing to the increased score. Also

contributing to the severity score, is the High Confidentiality Impact. The CVSS metrics are

broken down in Table 2.

Table 2

CVE-2019-10129 CVSS Base Metrics

AV AC PR UI S C I A Score

Network Low Low None Unchanged High None None 6.5

The final CVE chosen is the Critically severe CVE-2018-16850. This CVE, when

exploited, allows the attacker to execute arbitrary SQL statements as a superuser. This CVE is

47

assigned a high CVSS base score due to it’s low complexity, low required privileges, and high

impacts to the affected component, as shown in Table 3.

Table 3

CVE-2019-16850 CVSS Base Metrics

AV AC PR UI S C I A Score

Network Low None None Unchanged High High High 9.8

These CVE’s were chosen for several reasons. The first reason is due to the S. Wang et

al. paper specifically mentions that they place SQL server software into their network for testing

their approach. This CVE was also chosen due to the widely used software it affects.

PostgreSQL is used in various environments, allowing the randomization of the CVE location to

seem more realistic. For example, placing a PSQL vulnerability on a network router could be

justified due to the router operating system using or allowing the installation of a PSQL server.

On the contrary, using a vulnerability that affects Microsoft Word, would not make sense if it’s

placed on the same router. A final reason is the severity score being relatively close to the

center of the scoring categories. With a CVSS score of 6.5, there is room for the score to vary

due to the network configuration. If the severity score is too low or too high, there is a greater

chance that the location of the vulnerability will not produce enough variation to validate the

approach.

Figure 17 shows the JSON structure created to capture the CVE information for use in

experimentation.

48

Figure 17

JSON Input of CVE for Evaluation

Node Questionnaires

The network topology used did not include any contextual clues to create a network

diagram similar to the Wang paper. Because of this, the contextual data required for the

questionnaire needed to be arbitrarily generated.

To limit any bias from manually entering data, a randomized approach was considered.

The idea would be to select each node, and randomly select answers to the questionnaire. The

downside of this approach is the difficulty of generating random answers that seemed realistic to

the node in question. For example, the question asking “Do you store financial information?”

with an answer of Yes would make sense for a server that stores transaction data, but would not

make sense for a router in a subnet. Using answers like this could generate data that may not

49

be representative of a real network. Therefore, It was decided to manually answer the

questionnaire for each node, adding variation to the responses to make them seem more

realistic. While this approach adds potential for bias, the realism outways the effect of the

potential bias. Below, Figure 18, shows an example of the resulting JSON structure for Node 10

in the network.

Figure 18

Example of Questionnaire Answers for Node 10

After answering the questionnaire for each of the nodes, the following weights were calculated

for Confidentiality and Integrity and organized in Table 4.

50

Table 4

List of Confidentiality and Integrity scores

Node # Confidentiality Weight Integrity Weight

2 17 17

3 17 17

4 17 17

5 13 15

6 16 18

7 8 10

8 15 12

9 12 8

10 17 17

11 10 14

12 16 16

Experimentation

Using the network provided by the Wang paper, we can run analyses on various

mutations of the network to validate the approach. For this case study, an analysis will be

performed on two mutation groups: mutation on the location of the CVE, and mutation on the

communications between machines. Each mutation type is run 5 times to allow for sufficient

randomization of the CVE location or connectivity graph, respectively. The mutation of the CVE

location is performed as a simple permutation. Every run randomly selects a number between 1

and n number of nodes, and assigns the pre-defined cve to that node. Communication mutation

occurs using the Erdos-Renyi model for random graph generation.

51

Mutation of CVE Location in the Network

The first set of tests focused on changing the initial location of a provided CVE to

different nodes. Performing this test focuses on the impact of a CVE on a network depending

upon the location and configuration of the node it resides on. The expectation of this test is that

CVE’s farther away from the Internet, with less important data will result in a downgrading of the

overall severity, while CVE’s closer to the internet, with more important data will result in an

upgrade in severity.

Mutation of Network Communications

The second set of tests focused on randomizing the communications between nodes.

These tests keep the CVE on a single node, and do not change the physical connections

between nodes. This test focuses on how adjusting the logical connections between nodes

affects the overall score. The expectation is that the more barriers in place that lengthens the

logical distance to the Internet, the lower the updated CVSS score will become. Changing the

communications between nodes simulates changing firewall permissions, or authentication

schemes to allow access to the adjacent node.

Tooling

To facilitate the process, the approach was implemented as a series of scripts. Python

was chosen as the programming language of choice. The scripts utilize the networkx graph

network library to generate the connectivity and communication graphs, as well as some of the

utility functions, such as the centrality functions, to calculate the updated CVSS. The scripts

parse a JSON file that describes the nodes in the network as outlined by the methodology. A

portion of the final JSON files used for experimentation is shown in Figure 19.

52

Figure 19

Sample of Node Definition for Random CVE Test

Note. Data truncated for brevity

53

The resulting connectivity and communication graphs are passed to the calculator, along

with the CVE data, which updates each CVSS metric. Once processing is complete, the main

script outputs each CVE’s initial score, along with each metrics base score, and outputs the

updated score generated from the calculation which is shown in Figure 20. The code for the

created tool is publically available on Github: https://github.com/cte6149/cvss-updater.

Figure 20

Sample Output of Created Tool

Findings

Experiment 1: Mutation of CVE Location in the Network

Experiment 1 was run five times, each run randomizing the location of the CVE in the

network. The set of runs for this experiment were assigned the seed, 4225731510159883032,

for repeatability. The first run places all three vulnerabilities onto Node 2 and analyzes the

changes in each modified metric, and the final modified score. The connectivity graph created

for the run along with the affected node is shown in Figure 21. The changes for each metric are

https://github.com/cte6149/cvss-updater

54

recorded in Tables 5, 6 and 7. Bolded values are metrics that have changed compared to the

base metric.

Figure 21

Connectivity Graph of Run 1 of Experiment 1

Note. The highlighted node, Node 2, is the node selected for the first run that contains the

vulnerabilities

The results from the first run show that the vulnerabilities with lower severity scores

became more severe. The calculated modified severity score is 8.8. This is an increase from the

base severity scores for CVE-2019-10129 (2.2) and CVE-2019-10209 (6.5), and a decrease for

CVE-2019-16850 (9.8). These changes can be attributed to several factors. The first factor is

the changes in MAC, and MPR. Lower levels of required permissions and decreased complexity

of traversal between nodes caused the MAC and MPR metrics for CVE-2019-10129 to increase.

The second factor relates to the data stored on node 2. Information stored on the node causes

confidentiality and integrity impacts to increase for the mild vulnerabilities but lowered for the

55

most severe vulnerability, CVE-2019-16850. This can be attributed to the node containing

various pieces of important information, such as logs, network IPs and some passwords. The

final factor for increases in the modified score relates to the availability impact from removing

the affected node from the network. The sharp increase in availability impacts for the two lower

severity vulnerabilities is expected due to the affected node being the central router of the

network and removal affects all traffic to the internet. On a positive note, the first run shows that

the modified score for CVE-2019-16850 decreased, which can be attributed to an increase in

MPR due to the node requiring some basic permissions to access.

Table 5

CVE-2019-10129 Modified Metrics of Run 1

MAV MAC MPR MUI MS MC MI MA

Network Low Low None Unchanged Low Low High

Note. Modified Metrics that have changed compared to their original metric are bolded

Table 6

CVE-2019-10209 Modified Metrics of Run 1

MAV MAC MPR MUI MS MC MI MA

Network Low Low None Unchanged Low Low High

Note. Modified Metrics that have changed compared to their original metric are bolded

Table 7

CVE-2019-16850 Modified Metrics of Run 1

MAV MAC MPR MUI MS MC MI MA

Network Low Low None Unchanged Low Low High

Note. Modified Metrics that have changed compared to their original metric are bolded

The full results of all five runs are summarized in Table 8 below. The overall results of the

runs show that scores increase when placed on nodes with higher importance and less

56

permissions or complexity, and scores decrease when placed on nodes that are furthest away

from nodes containing business critical information and have some form of security in place.

Table 8

Final Results of Random CVE Location Experiment

Run # CVE Location of
CVE

CVSS Base Score CVSS Modified Score

1 CVE-2019-10209 2 2.2 8.8

CVE-2019-10129 2 6.5 8.8

CVE-2019-16850 2 9.8 8.8

2 CVE-2019-10209 11 2.2 0

CVE-2019-10129 11 6.5 0

CVE-2019-16850 11 9.8 0

3 CVE-2019-10209 7 2.2 0

CVE-2019-10129 7 6.5 0

CVE-2019-16850 7 9.8 0

4 CVE-2019-10209 6 2.2 0

CVE-2019-10129 6 6.5 0

CVE-2019-16850 6 9.8 0

5 CVE-2019-10209 10 2.2 5.4

CVE-2019-10129 10 6.5 5.4

CVE-2019-16850 10 9.8 5.4

Note. Table grouped by location to better illustrate how location impacts CVSS modified scores

Experiment 2: Mutation of Network Communications

Experiment 2 places all CVE’s onto a single node and randomizes the communications

graph edges and the complexity and privileges needed to traverse the edge. The

communication graphs are randomly generated for each run but doing so introduces a bias in

57

that generated networks are not realistic. However, the purpose of this experiment is to

specifically test the "firewall" permissions of the network and the possibility that firewalls are

misconfigured. The connectivity graph was not changed for any tests. Like Experiment 1, this

experiment was run five times with new mutations for each vulnerability. For this experiment,

Node 10 was chosen to compare how the new scores compared to the calculated scores from

Experiment 1. Calculating different scores from the first experiment will show changes in the

communication configurations do have an impact on modified scores. Figure 22. shows the

affected node in the context of the connectivity graph. As with the first experiment, Experiment 2

was given a seed of 7210646720054949315 to allow for repeatability. An example adjacency list

of the communications graph that was randomly generated for the first run of Experiment 2 is

displayed in Table A2.

58

Figure 22

Connectivity Graph of Experiment 1, with highlighted affected node

Note. The highlighted node, Node 10, is the node selected for the all the runs that contains the

vulnerabilities

Results from the first run are shown in Tables 9, 10 and 11. The analysis shows that

despite staying on the same nodes, severities are influenced by various configurations of

communication edges. The calculated modified severity score of all vulnerabilities for the first

run is 9.1. This is an increase from the base severity scores for CVE-2019-10129 (2.2) and

CVE-2019-10209 (6.5), and a decrease for CVE-2019-16850 (9.8). The increase in the base

scores of the first two vulnerabilities is largely attributed to a path of no privileges from the

internet existing as well as a path with low complexity existing.

59

Table 9

CVE-2019-10129 Modified Metrics of Run 1

MAV MAC MPR MUI MS MC MI MA

Network Low None None Unchanged High High None

Note. Modified Metrics that have changed compared to their original metric are bolded

Table 10

CVE-2019-10129 Modified Metrics of Run 1

MAV MAC MPR MUI MS MC MI MA

Network Low None None Unchanged High High None

Note. Modified Metrics that have changed compared to their original metric are bolded

Table 11

CVE-2019-10129 Modified Metrics of Run 1

MAV MAC MPR MUI MS MC MI MA

Network Low None None Unchanged High High None

Note. Modified Metrics that have changed compared to their original metric are bolded

The full results of all five runs are summarized in Table 12 below. The adjacency lists for

each run were omitted for brevity. The overall results of the runs show that scores are directly

affected by network communication configurations.

60

Table 12

Final Results of Random Communications Experiment

CVE Run # CVSS Base Score CVSS Modified Score

CVE-2019-10209 1 2.2 9.1

2 2.2 5.4

3 2.2 6.5

4 2.2 9.1

5 2.2 0

CVE-2019-10129 1 6.5 9.1

2 6.5 5.4

3 6.5 6.5

4 6.5 9.1

5 6.5 0

CVE-2019-16850 1 9.8 9.1

2 9.8 5.4

3 9.8 6.5

4 9.8 9.1

5 9.8 0

Note. Table grouped by CVE and ordered by run to show impact of different configurations on

the same CVE

Research Question Analysis

This thesis poses two research questions to answer while developing the framework for

integrating context-aware network graphs into CVSS Environmental score calculation.

R1. Can context-aware network graphs capture the required metrics to calculate CVSS

Environmental scores?

61

The results from experimentation show that the context-aware network graphs do

capture the required metrics to calculate CVSS Environmental scores. The evaluation shows

that severity scores change greatly depending upon the configuration of the network and the

importance of the data stored on the node. Experiment 1 tests the physical location of a

vulnerability in the network. The expectation of this test is the methodology would increase a

node's severity score the closer to the entry point in the network it resides. During the first run,

the vulnerabilities were assigned to an Internet-facing router. This location is most exposed to

attackers so it would make sense for vulnerabilities to have a calculated modified severity that is

considered high. This run proves exactly that, vulnerabilities had increased their severity scores.

To contrast the scenarios where the modified severity score is expected to increase,

there were two scenarios where the score was expected to decrease. From the same run, the

most severe vulnerability, CVE-2019-16850, had a modified severity score that was calculated

lower than the base score. The original network presented contained a network firewall in

between the router and the internet. Because of this, the expectation was that introducing the

concept of a firewall into the network graphs would decrease the severity scores of

vulnerabilities to some degree. The second expectation was that a vulnerability furthest from the

Internet would have a lower modified severity score. This can be attributed to the fact that

attempting to access a device that can only be reached from other devices can make

exploitation more complex. Using Run 3 of Experiment 1 as an example, it can be seen that the

severity scores of the vulnerabilities on Node 7 were decreased to zero. This is due to the fact

this particular node is physically far away from the Internet relative to other nodes, had little

permissions to communicate to other nodes, and contained very little business data.

All the scenarios where it was expected for the modified severity score to either increase

or decrease based on the context of the network, were satisfied. From the analysis of the results

62

of experimentation, context-aware network graphs can capture the required metrics for CVSS

scoring.

The second research question this thesis poses is the following:

R2. Can the proposed technique accurately calculate CVSS Environmental scores?

The results from experimentation confirm that the proposed methodology can accurately

calculate the CVSS Environmental Scores. Looking closely at the modified severity scores, it is

evident that vulnerabilities that exist on the same network location with the same

communications configurations will yield identical scores. This observation supports the idea

that contextual data about the network affects each vulnerability in the same way. Large

variations in the modified severity score between the vulnerabilities with the same network

location and configuration would show that the additional context either did not accurately

capture the impact of security protocols or lack thereof on the severity of the vulnerability.

On the other hand, each vulnerability yielded identical severity scores compared to other

vulnerabilities of the same run. This shows that the proposed methodology needs additional

contextual data to increase the accuracy further. The expectation is that vulnerabilities in the

same environment should still keep their ranking relative to other vulnerabilities. For instance,

Run 1 in Experiment 2 for all vulnerabilities calculated modified severity scores of 9.1. While the

configuration for that run increased the scores of the Low and Medium’ severity vulnerabilities,

the modified severity score for the Low severity vulnerability should have been lower than the

Medium severity vulnerability. This result would show analysts that the Medium’ severity

vulnerability is still more severe in relation to the Low severity vulnerability and should be

prioritized first.

63

Limitations

One of the major limitations of this paper is the oversimplification of networks. Computer

networks are extremely complex with various hardware and software components that can

change the security of the overall networking. Overall, the methodology aims to provide a good

estimation of the modified severity of a CVE, however the score could become more accurate if

additional network complexities were implemented.

The device types introduced serve merely for semantic categorization of different

devices for the proposed approach and do not currently impact the scoring process. A network

with only machines will generate the same scoring as a network with carefully defined node

types. Future work can expand the list of device types, and explore how the different types of

devices change the interactions between other devices. An example of an improvement would

be to include a firewall node type and explore how hardware firewalls can be configured to lower

the impact of a vulnerability.

Currently, the methodology analyzes each vulnerability independently of each other.

However, this process ignores the fact that vulnerabilities can impact each other. It’s not unusual

for attackers to exploit stepping stone vulnerabilities to gain additional access to a system

before executing the vulnerability that is under scrutiny, and including this additional information

could help contextualize the vulnerability in question better.

When analyzing a vulnerability's attack complexity, the methodology does not consider

how the length of a path can affect the complexity. For instance, a path of five Low complexity

nodes could be more complex than a path of three High complexity nodes due to the work

needed to compromise a node and traverse to the next. This limitation could result in lower

complexity scores for long paths with Low complexity.

64

The questionnaire serves as a tool for adding context to a node to understand a

vulnerability's impact on the information stored on that particular node. While the questionnaire

covers a good spread of topics, the questions could be a bit broad and may miss important

security concepts that can affect the overall scoring of Confidentiality and Integrity impacts.

Along with the broad questionnaire questions, the scoring system for Confidentiality and

Integrity impacts is not granular enough. The questions provided are meant to identify negative

characteristics of a machine, but they miss any positive aspects in the security policies for a

particular machine. For example, the questionnaire asks if a machine contains user information

and answering Yes applies a negative score. However, the questionnaire does not ask if the

user information stored is protected in any way, a question that could lessen the overall impact if

there is.

Future Work

The methodology presented in this paper applies a holistic approach for calculating

updated severity scores and as such provides ample areas for improvement. One aspect of the

approach that could be improved is the use of various node types to refine the updated score.

The approach utilizes node types as a way to provide the analyst semantic meaning but are not

used in any way. The current approach could assign the machine type to every node, and

generate the same score. An improvement could be to provide weights to nodes based on their

type. An example would be to give a server a higherAvailability Impact weight as a down server

could affect users outside the network.

Another improvement would be to expand the security questionnaire capabilities. The

questionnaire asks questions that are meant to add additional context to a machine. However,

these questions are basic and the scoring process could be improved by crafting additional,

more complex questions that are more focused on a particular problem. Another aspect of the

65

questionnaire that could be addressed is the scoring system used to determine impacts.

Additional research could be performed to create an in-depth scoring system that applies a

variety of weights to different questions based on the context of the question. For example,

answering yes to a question regarding whether passwords are stored on a machine in plaintext,

should contribute a higher weight to overall impact than answering yes to questions regarding

whether logs are stored on a machine. The questionnaire could also be improved by devising a

scoring system that considers the relationships between the various questions asked and can

adjust the score based on the group of answers. For instance, the answer to a question asking if

the system stores log information can have a greater weight if the system also stores personal

information within the logs. On the flip side, the weight could be diminished if the user indicates

that the system encrypts the log entries that contain personal information.

The methodology outlined in the paper did not consider Scope and User Interaction

metrics due to their complexity and could provide a basis for future work. Scope in particular

could be integrated into the methodology given additional research into how system

configurations can allow or prevent an attacker from changing their Scope.

A further improvement to the scoring of severity, would be to perform analysis with all

CVE’s in mind, instead of each individually. When exploiting vulnerabilities in a network, an

attacker may utilize a variety of CVE’s to achieve their goal and as such, each environmental

score should take into consideration whether an unrelated CVE could upgrade or downgrade

the severity of the analyzed CVE.

The approach currently provides a static analysis of the network. Incorporating attacker

behavior modeling could further refine the updated scores.

66

Conclusion

This thesis proposes an approach to improve CVSS Environmental scores by

introducing and integrating the topology of the network. Various algorithms were developed to

measure the various CVSS metrics and combine their results to calculate a modified base

score. A questionnaire was introduced to capture contextual information about the information

stored on the machines under scrutiny. Through various experimentation of random CVE

locations and random permissions, adding contextual network information does impact the

environmental scores. Experiments also show that the proposed technique can accurately

calculate CVSS Environmental scores. However, the generated scores do not take into account

enough context regarding the CVE in scrutiny, so further research is needed to further refine the

approaches accuracy.

67

References

Dobrovoljc, A., Trček, D. & Likar, B. (2017) Predicting Exploitations of Information Systems
Vulnerabilities Through Attackers’ Characteristics. IEEE Access, 5, 26063-26075. doi:
10.1109/ACCESS.2017.2769063.

FIRST.Org. (2019, June) Common Vulnerability Scoring System version 3.1: Specification
Document. https://www.first.org/cvss/specification-document

Frei, S., May, M., Fiedler, U., and Plattner, B. (2006). Large-scale vulnerability analysis
Proceedings of the 2006 SIGCOMM workshop on Large-scale attack defense. 131-138.

Fruhwirth, C. & Mannisto, T. (2009). Improving CVSS-based vulnerability prioritization and
response with context information. 2009 3rd International Symposium on Empirical
Software Engineering and Measurement, 535-544. doi: 10.1109/ESEM.2009.5314230.

Gallon, L. and Bascou, J. J. (2011). Using CVSS in Attack Graphs. 2011 Sixth International
Conference on Availability, Reliability and Security. 59-66, doi: 10.1109/ARES.2011.18.

Mell, P., Scarfone, K., & Romanosky, S. (2006). Common Vulnerability Scoring System, IEEE
Security & Privacy. 4(6), 85-89. doi: 10.1109/MSP.2006.145.

Nemes, T., David, A., & Sule, Z. (2019). Proposing a decision-support system to maximize the
robustness of computer network topologies. 2019 17th International Conference on
Emerging eLearning Technologies and Applications (ICETA).

Wang, R., Gao, L., Sun, Q. & Sun, D. (2011). An Improved CVSS-based Vulnerability Scoring
Mechanism. 2011 Third International Conference on Multimedia Information Networking
and Security, 352-355. doi: 10.1109/MINES.2011.27.

Wang, S., Xia C., Gao J., & Jia, Q. (2015). Vulnerability evaluation based on CVSS and
environmental information statistics. 2015 4th International Conference on Computer
Science and Network Technology (ICCSNT), 1249-1252. doi:
10.1109/ICCSNT.2015.7490958.

68

Appendix

Table 1

Adjacency List of Permissions Network Generated for Experiment 1

Node Neighbor Complexity Needed Privilege Needed

1

2 Low Low

3 Low None

5 High Low

6 High High

10 High None

11 High None

12 High None

2

4 Low None

8 Low High

9 High None

10 Low High

3

1 Low Low

4 High None

8 High None

4

1 Low Low

2 Low None

3 High None

5 Low Low

69

6 High None

7 High High

9 Low None

12 High High

5

1 Low None

4 Low Low

9 Low High

6

1 High Low

4 High None

7

4 High High

10 Low Low

12 Low None

8

2 Low High

3 High None

12 High Low

9

2 High None

4 Low None

5 Low High

11 Low High

12 High High

10

70

1 High High

2 Low High

7 Low Low

12 Low Low

11

1 High None

9 Low High

12 Low Low

12

1 Low Low

4 High High

7 Low None

8 High Low

9 High High

10 Low Low

Table 2

Adjacency List of Permissions Network Generated for Run 1

Node Neighbor Complexity Needed Privilege Needed

1

2 Low None

3 Low Low

4 Low High

8 High None

2

1 Low None

71

3 Low High

8 High None

10 High High

12 Low High

3

1 Low Low

2 Low High

4 High None

5 High Low

6 High Low

7 Low None

8 Low None

9 Low None

10 Low Low

12 Low Low

4

1 Low High

3 High None

5 High Low

6 Low Low

7 Low None

8 High None

9 Low High

10 High None

11 Low High

12 High None

72

5

3 High Low

4 High Low

7 Low None

10 Low High

11 Low None

12 Low High

6

3 High Low

4 Low Low

7 High Low

8 High Low

9 High Low

10 Low High

12 High None

7

3 Low None

4 Low None

5 Low None

6 High Low

8 High None

9 High High

8

1 High None

2 High None

3 Low None

73

4 High None

6 High Low

7 High None

9 Low None

10 High High

11 Low None

9

3 Low None

4 Low High

6 High Low

7 High High

8 Low None

11 High None

12 High None

10

2 High High

3 Low Low

4 High None

5 Low High

6 Low High

8 High High

11 High High

12 Low Low

11

4 Low High

5 Low None

74

8 Low None

9 High None

10 High High

12 High Low

12

2 Low High

3 Low Low

4 High None

5 Low High

6 High None

9 High None

10 Low Low

11 High Low

	Calculating Common Vulnerability Scoring System’s Environmental Metrics Using Context-Aware Network Graphs
	Recommended Citation

	Thesis Document

