
Rochester Institute of Technology Rochester Institute of Technology

RIT Digital Institutional Repository RIT Digital Institutional Repository

Theses

11-2021

Impact of Image Complexity on Early Exit Neural Networks for Impact of Image Complexity on Early Exit Neural Networks for

Edge Applications Edge Applications

Sharan Vidash Vidya Shanmugham
sv7190@rit.edu

Follow this and additional works at: https://repository.rit.edu/theses

Recommended Citation Recommended Citation
Vidya Shanmugham, Sharan Vidash, "Impact of Image Complexity on Early Exit Neural Networks for Edge
Applications" (2021). Thesis. Rochester Institute of Technology. Accessed from

This Thesis is brought to you for free and open access by the RIT Libraries. For more information, please contact
repository@rit.edu.

https://repository.rit.edu/
https://repository.rit.edu/theses
https://repository.rit.edu/theses?utm_source=repository.rit.edu%2Ftheses%2F11046&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.rit.edu/theses/11046?utm_source=repository.rit.edu%2Ftheses%2F11046&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository@rit.edu

Impact of Image Complexity on Early Exit Neural
Networks for Edge Applications

Sharan Vidash Vidya Shanmugham

Impact of Image Complexity on Early Exit Neural
Networks for Edge Applications

Sharan Vidash Vidya Shanmugham
November 2021

A Thesis Submitted
in Partial Fulfillment

of the Requirements for the Degree of
Master of Science

in
Computer Engineering

COE_hor_k https://www.rit.edu/engineering/DrupalFiles/images/site-lockup.svg

1 of 1 1/9/2020, 10:42 AM

Department of Computer Engineering

Impact of Image Complexity on Early Exit Neural
Networks for Edge Applications

Sharan Vidash Vidya Shanmugham

Committee Approval:

Prof Dr. Amlan Ganguly Advisor Date
Department of Computer Engineering

Prof Dr. Cory Merkel Date
Department of Computer Engineering

Prof Dr. Sai Manoj P D Date
George Mason University, Department of Electrical and Computer Engineering

1

Acknowledgments

I would like to thank my advisor Prof. Dr. Amlan Ganguly for his constant support

and guidance throughout my academic and research work and always keeping me on

track. I am thankful to Dr. Sai Manoj P D and Dr. Cory Merkel for being on my

thesis committee and providing valuable insights. I am forever indebted to my family

and friends who always believed in me and reminded me to hold on.

2

To amma, appa, mithil and my friends..Thank you for reminding me that there was

light at the end of the tunnel. Your support and belief made this work possible.

3

Abstract

The advancement of deep learning methods has ushered in novel research in the field

of computer vision as the success of deep learning methods are irrefutable when it

comes to images and video data. However deep learning methods such as convo-

lutional neural networks are computationally heavy and need specialized hardware

to give results within a reasonable time. Early-exit neural networks offer a solution

to reducing computational complexity by placing exits in traditional networks by-

passing the need to compute the output of all convolutional layers. In this thesis, a

reinforcement learning-based exit selection algorithm for early-exit neural networks is

analyzed. The exit selection algorithm receives information about the previous state

of the early-exit network to make decisions during runtime. The state of the early-

exit network is determined by the previously achieved accuracy and inference time.

A novel feature is proposed to improve the performance of the reinforcement learning

network to make better decisions. The feature is based on the input image and at-

tempts to quantify the complexity of every single input. The impacts of adding the

new feature and potential performance improvements are documented. The testing is

performed on two image classification datasets to record any variance in performance

with the dataset. A scenario with the computation of the exit selection algorithm

offloaded to a local edge server is also investigated by creating a simple analytical

edge computing model. The decision-making rate is varied in this scenario and the

potential differences in performance are documented.

4

Contents

Signature Sheet 1

Acknowledgments 2

Dedication 3

Abstract 4

Table of Contents 5

List of Figures 7

List of Tables 8

1 Introduction 9

1.1 Motivation . 10

1.2 Contributions . 11

1.3 Document Structure . 12

2 Background 13

2.1 Skipnet . 14

2.2 Branchynet . 14

2.3 Epnet . 15

2.4 Other Approaches . 15

2.5 Applications of Deep Reinforcement Learning 16

2.6 Recent works in Edge Computing . 17

2.7 Analysing Complexity in Images . 19

3 Exit Selection Algorithm with Deep Reinforcement Learning 21

3.1 Design of the Early-Exit Network . 21

3.2 Architecture of the Exit Selection Network 26

3.2.1 Overview of the Deep-Q Network 27

3.2.2 Designing the reward function 29

3.3 Adding the Image Information to the State 30

3.4 Datasets . 33

5

CONTENTS

3.5 Comparison between DQN Agents with complexity and without com-

plexity information . 35

3.5.1 Mobilenet comparison between DQN agents with complexity

and without complexity information 36

3.5.2 EENet56 comparison between DQN Agent with complexity and

without complexity . 39

3.5.3 Exit-Alexnet 32 comparison between DQN Agent with com-

plexity and without complexity 43

3.6 Exit Distribution Analysis . 46

3.7 Overhead Analysis . 47

4 Early-Exit Neural Network with Exit Selection on the Edge 49

4.1 Early-Exit Neural Network for Edge Computing 49

4.2 Relationship between Decision Update Interval and Inference Time . 51

4.3 Overhead Analysis . 54

4.3.1 Processing Delay . 55

4.3.2 Transmission Delay . 55

4.3.3 Propoagation Delay . 56

4.3.4 Queueing Delay . 56

4.3.5 Total Delay and Effect on various Decision Update Intervals . 56

5 Conclusions 59

5.1 Conclusion . 59

5.2 Future Work . 59

Bibliography 61

6

List of Figures

3.1 Exit-Mobilenet modified from Mobilenet v1 22

3.2 Depthwise Seperable Convolution . 23

3.3 Exit-Alexnet modified from a deeper Alexnet 24

3.4 Comparing a square and an irregular shape 31

3.5 Various Images of birds and fish with varying visual complexity. First

row: Silhouette Images, Second Row: Simple Images, Third Row:

Complex Images . 32

3.6 Various Images and classes from the Cifar-10 dataset 33

3.7 Various Images from the Tiny-Imagenet dataset 34

4.1 Overview diagram of the early-exit neural network on edge 50

4.2 Decision Update Interval Vs Inference Time with and without com-

plexity information . 52

4.3 Number of Decisions Vs Inference Time and Accuracy 54

4.4 Relationship between decision update interval and communication de-

lays in different networks . 58

7

List of Tables

3.1 Contour complexity scores of images of fishes and birds 31

3.2 Exit Mobilenet comparison on Cifar-10 with batch size 1 37

3.3 Exit Mobilenet comparison on Cifar-10 with batch size 10 37

3.4 Exit Mobilenet comparison on Tiny-Imagenet with batch size 1 . . . 38

3.5 Exit Mobilenet comparison on Tiny-Imagenet with batch size 10 . . . 38

3.6 Exit EENet56 comparison on Cifar-10 with batch size 1 41

3.7 Exit EENet56 comparison on Cifar-10 with batch size 10 41

3.8 Exit EENet56 comparison on Tiny-Imagenet with batch size 1 42

3.9 Exit EENet56 comparison on Tiny-Imagenet with batch size 10 . . . 42

3.10 Exit Alexnet-32 comparison on Cifar-10 with batch size 1 44

3.11 Exit Alexnet-32 comparison on Cifar-10 with batch size 10 45

3.12 Different models showing different exit distributions with different datasets 47

4.1 Single Exit Selection Accuracy and Inference Time 52

4.2 Processing delays of different networks 55

4.3 Transmission Delays . 56

4.4 Total Communication Delays . 57

4.5 Communication Delays incurred for different Decision Update Intervals 58

8

Chapter 1

Introduction

Convolutional Neural Networks (CNNs) is a well-known deep learning architecture

that is inspired by the natural visual perception process of living creatures. In the

past few years, the advancement of convolutional neural networks has ushered in novel

research in the field of computer vision as the success of convolutional neural networks

is irrefutable when it comes to images and video data. CNNs are instrumental in

solving problems of image classification, object detection, image translation, and

image segmentation to name a few. Although CNNs have high performance, they

also require a lot of computational power to provide results within reasonable times.

Early-Exit Deep Neural networks are a type of neural network which have several

exits within the network to provide faster inference time and lower computational

load.

The objective of this thesis work is to understand Early-Exit Deep Neural Net-

works and investigate the impact of changes to the exit selection algorithm and de-

cision update rate on an edge computing platform and propose a novel feature for a

deep reinforcement learning exit selection algorithm. The decision update rate is the

number of subsequent input frames for which an exit selected is updated from the

exit selection algorithm. A Deep-Q-Network based reinforcement learning algorithm

is used to choose the exits of a Early-Exit convolutional neural network in a dynamic

environment. Based on the results observed in the work done by Wilder, John et

9

Chapter 1. Introduction

al.[1], it is observed that the detection of a contour (an outline especially of a curving

or irregular figure) is more difficult to the human eye if there are more turning angles

in the said contour. If the results were put in simpler words, the more zigs and zags

in the contour, the more difficult the detection is. Since a CNN behaves similar to the

human eye in image classification, the complexity of the image based on the curves

would be a good estimation. This complexity would be a newly added feature to a

Deep-Q-Network reinforcement learning algorithm designed for choosing early exits

in a convolutional neural network. This work will be applied on modified convolu-

tional neural networks with early exits and performance would be compared with the

plain and feature added approach. The thesis also aims to investigate the impact

of decision update rate in an edge computing platform where the Deep-Q-Network

reinforcement learning algorithm would be isolated in a separate edge server to avoid

the overhead caused by the Deep-Q-Network.

1.1 Motivation

The reinforcement learning network used as an exit selection algorithm for the early-

exit neural network is proposed by using information such as the accuracy and infer-

ence time of the previous decision to estimate the future decision which would give

the optimal performance. Although these features are important in deciding the next

exit, in real-time scenarios, the image encountered also contributes to deciding if an

earlier exit would be possible. Analyzing the image’s features would contribute to

making better decisions and lower the computational cost of the early-exit network.

Although features could be extracted by running the image through convolutional

layers, the approach would add additional computational complexity which would be

counterproductive. This thesis proposes a method to estimate the image’s features to

correlate with the exit selection process by deriving a numerical value for each image

which gives an idea of the complexity of a particular image. This value is supplied as

10

Chapter 1. Introduction

an input to the exit selection algorithm to make more efficient decisions. Although the

exit selection algorithm designed in this approach is designed to be processed locally,

future work on this approach could introduce additional computational complexity

and would not be ideal for local processing. Although the network would perform

better with future work, the computation of the exit selection algorithm would be

better if offloaded to a dedicated server for computation. The traditional approach to

offload computing would be to utilize cloud computing and offload the computation

to a cloud server. Since the exit selection algorithm proposed requires lower compu-

tational resources and communication latency is required to be minimum, an edge

computing platform is a viable option to offload computing in this case. A simple

edge computing network is assumed and the effects of offloading computation to the

computing server on edge are investigated in this thesis.

1.2 Contributions

The main contributions of this thesis are outlined below:

• Traditional CNNs have been modified and restructured to act as early-exit

CNNs

• A lightweight feature is developed for improving the exit selection algorithm

and performance improvements are demonstrated

• The impact of decision update rate which is an important aspect of edge com-

puting based early-exit CNNs are investigated and documented

• The ideal decision update rate for the networks constructed are estimated and

concluded

11

Chapter 1. Introduction

1.3 Document Structure

Chapter 2 discusses the background on various works in early-exit neural networks,

applications of deep reinforcement learning, recent works in edge computing and an

overview of various approaches used to estimate complexity of an image. Chapter 3

discusses the design of early-exit neural networks, the architecture of the exit selection

algorithm and a comparison between an exit selection algorithm without the newly

added feature and and exit selection algorithm with the newly added feature. Chapter

4 shows the analytical implementation of the exit selection algorithm on an edge

computing platform and analyze the relationship between decision update rate and

the performance of the exit selection algorithm. Chapter 5 gives the conclusion and

directions for future work in the same topic.

12

Chapter 2

Background

Convolutional Neural Networks have been proven as a very effective approach in sev-

eral image-related problems such as image segmentation, image classification, object

detection, etc. Although CNN’s or deep neural networks present a lot of advantages,

they are resource hungry and require a lot of computational power with specialized

hardware such as GPUs to run the algorithms under a reasonable time. Attempts to

reduce the computational load of running deep neural networks have been recorded

before. A branch of such attempts is Multi-exit DNNs or Early-Exit networks which

design the architecture of the neural network to utilize branches that allow for earlier

exit from the network. These approaches are based on the concept that easier to

classify images need to go through lesser convolutional layers in order for accurate

classification. Multi-exit DNN approaches shown in [2],[3],[4] use static threshold

confidence at each exit to make the exit decision where the exit decision is sequential

in nature. Work presented in [2],[5] uses similar threshold-based exit criteria where

threshold comparison is performed at every exit. Skip gates and reinforcement learn-

ing were used in the work presented by [6] where certain groups of layers could be

skipped during inference via a policy-based reinforcement learning algorithm. A dy-

namic approach for the same problem was shown in Epnet[7].

The following sections will explore popular works in the field of early exit convolu-

tional networks, deep reinforcement learning, edge computing and image complexity

13

Chapter 2. Background

analysis.

2.1 Skipnet

Skipnet[6] uses a modified residual network that uses gating layers between sequential

layers to make a decision on whether to go through the layer or skip the layer. The

problem of dynamically skipping the layer is taken in the context of a sequential

decision-making process and combines supervised learning and reinforcement learning

to solve the problem. The gating layers are similar to ones used in Recurrent Neural

Networks(RNNs). The output of the previous layer or a group of layers is mapped

by the gating modules to a single binary decision on whether to skip or go through

the subsequent layer or group of layers. Since the decision to skip the layers appears

to be a sequential problem as one decision is made at each gating layer, the problem

is formulated as a policy optimization through reinforcement learning. The approach

allows for a dynamic approach to solving the problem but is limited in a distributed

system as the reinforcement learning algorithm is built into the layers of the model

itself and doesn’t allow for the algorithm to work independently. This could pose

an issue in devices where the additional complexity of adding the decision-making

process is not feasible.

2.2 Branchynet

Branchynet[2] is based on the observation that earlier layers in convolutional neural

networks will still be able to provide the same performance without compromise on

the accuracy. The network is designed with branches from the original network with

additional layers on them. The usual route for the input is considered to be the

original network without the additional branches. These branches act as the early

exits of the respective original convolutional neural network. The authors also propose

14

Chapter 2. Background

that the branches could be fitted with branches of themselves and act as a tree-like

structure but limit their work within the scope of linear branching. These branches

act as the early exits of the network and produce faster inference if the network takes

one of the earlier exits. The decision to choose a particular exit is calculated by

an entropy calculation or confidence which is checked against a given threshold to

infer the decision. The approach is limited in the aspect of taking decisions which

is static in nature and don’t allow for the state of the system to be included in the

decision-making process.

2.3 Epnet

EPNet[7] is another approach that uses a dynamic approach to creating earlier exits

and choosing them. The exit branch design is lightweight and made to be compatible

in attaching after any convolutional layer in the original network. This differs from

other approaches where early exit branches are designed with the network and are

not dynamic. The decision of choosing the location of the exit branch is designed

as a Markov decision process and the training is formalized by using policy gradient

without any sampling. Epnet does not include any state information such as the

inference time of the previous run. Such state information monitors the effectiveness

of the previous decision in energy conservation and allows for dynamic adaptability

during run time. This hinders the Epnet from performing as an energy-effective

process compared to the proposed approach.

2.4 Other Approaches

Authors in [4] propose a conditional deep learning network that attempts to place

classifiers after every convolutional layer and make decisions on which layer to exit.

The approach uses a static confidence measure from a classifier placed at every layer

15

Chapter 2. Background

and chooses to exit or continue the network based on the confidence produced. Work

presented in [3] proposes a multi-exit DNN by using the softmax output of intermedi-

ate classifiers through the network to choose the exit. The approach uses the softmax

output to determine the confidence of classification at that stage and thresholds are

dynamically set during inference time. The thresholds for confidence are determined

by taking into account the preferred accuracy degradation specified before run time.

The approach is only tested on the MNIST dataset which does not allow for complex

image inputs. “Early Exit CNNs” is proposed in [5] where the network has both

softmax branches and confidence branches which learn independently whose outputs

are used to determine the exit point when checking with a threshold value. How-

ever, during inference, the network has to flow through all consequent layers until

a threshold is met to determine the output. The training approach in this work is

used to train the network in our proposed approach using a simple loss function. The

performance of this approach is used as a benchmark comparison to test the efficiency

of our proposed approach.

2.5 Applications of Deep Reinforcement Learning

Deep reinforcement learning is an unsupervised deep learning algorithm that has

proven highly effective in problems with complex state spaces. Deep Reinforcement

learning presented in [8] is used to play Atari games and was proven to perform bet-

ter than all previous approaches to the problem. The approach uses a convolutional

neural network trained with a variant of Q-network and uses the raw pixels from the

game to predict the rewards for future actions. The proposed method in this proposal

uses a lightweight version of the same network without convolutional neural networks

and only linear layers to predict the future actions which in this case would be the

exit choosing process. Deep reinforcement learning has also been used in the naviga-

tion of a pedestrian environment in [9] with human-like actions for an autonomous

16

Chapter 2. Background

vehicle. The network also solves multiagent collision avoidance by predicting actions

such as passing, crossing, and overtaking which allows the autonomous vehicle to

safely navigate through crowded spaces. The deep reinforcement learning approach

allows solving problems without much hyperparameter tuning usually seen in tradi-

tional supervised learning approaches. The network learns on its own by training in a

simulated environment which allows for the network to accommodate unknown influ-

encing factors by only focusing on maximizing the rewards. The reward formulation

also allows for choosing which aspects need to be given more importance as in the

proposed approach, importance is varied to accuracy and inference.

2.6 Recent works in Edge Computing

The general architecture of an edge computing network consists of placing edge devices

between the end-user devices and the cloud computing layer. There are three major

layers in this network architecture namely the terminal layer, boundary layer, and the

cloud layer [10]. The terminal layer consists of all the devices connected to the edge

network such as mobile terminals and IOT devices. These devices in the terminal

layer both access data and upload data to the edge network. The boundary layer

consists of all the devices which allow for the implementation of an edge network

such as the access points, base stations, gateways, etc. This layer is the additional

layer implemented to bring computing power closer to the terminal layer from the

cloud computing layer. By placing an additional layer closer to the end-user, the

transmission of data is suitable for real-time data analysis and also brings in more

efficiency and security. The final layer is the cloud layer where the heavy computation

takes place. The cloud layer handles tasks that are not suitable for service on the

edge layer and tasks which can afford the extra communication delay incurred by

offloading the processing to the cloud layer. One of the most important areas to

handle in an edge computing environment is the offloading of tasks. The offloading

17

Chapter 2. Background

problem could be further divided into 2 sub-problems namely the offloading decision

problem and the resource allocation problem. The offloading decision consists of

choosing the optimal layer to offload the task and resource allocation consists of the

required amount of resources in terms of memory and processing nodes. There is a

tradeoff between task communication delay and the task processing load at all times

which decides the offloading layer and amount of resource allocated for the specific

task. Pushing AI applications away from local processing and towards off-device

processing is not a task to be taken lightly due to several concerns on performance,

cost, and privacy. The traditional method to implement this has been by enabling

cloud computing to transfer large amounts of data from the device to the cloud

layer for further analytics. However, such large amounts of data transfer incur heavy

monetary costs and cause huge amounts of transmission delay which are not suitable

for real-time applications. Privacy leakage is also a source of concern in this case. The

alternative of local processing is not very appealing due to the high computing power

requirements of AI applications which cause poor performance and energy efficiency.

Edge computing shows a promising way out since the transmission delays are far

lesser and computing servers in the edge layer do not require the high computational

power of cloud layer computing servers. When running AI applications, there are

various ways to accomplish the same task. An overview presented in [11] shows a

model named Edge Intelligence which curates the various implementations of artificial

intelligence on an edge computing platform. There are six layers in Edge Intelligence

where the dependency on the cloud layer varies. Level 0 consists of both training

and inference on the cloud layer with no local processing. On the other side of the

spectrum, a level 6 consists of all processing on the device and no offloading is present.

While deciding on the training of a network, the training could either be centralized,

decentralized, or a hybrid of both methods. A centralized training model consists of

all the training being done on the cloud layer and the data being fed from all the

18

Chapter 2. Background

edge nodes on the network. A decentralized model consists of each node training its

own deep neural network with local data fetched by that device. The model with

all data is achieved by communication between all nodes to share parameters. The

hybrid model falls under levels 4 and 5 where model training is co-dependent on both

the cloud layer and edge layer or partial reliance on the edge layer with the end node

also contributing to training.

2.7 Analysing Complexity in Images

Various methods have been used in recent years to assert an image’s perceived com-

plexity. Most of this work has been in the domain of human visual perception and

since the workings of a convolutional neural network used in the classification of ob-

jects have been inspired from the human visual perception, these works are a useful

parallel. The complexity of an image could be understood in various ways and several

works define it in their own way. In work done by [12], complexity is understood in

programming terms where the shortest possible program to recreate the object from

scratch is defined as the complexity of the object in question. Although this approach

could be useful in defining the complexity of many objects, defining an image’s com-

plexity in that method would not be helpful as any image of the same size could

be constructed with the same program. The complexity of an image is defined as

the number of visual features or details in the image in [13]. This definition offers

a good potential starting point for the method developed in this thesis. In experi-

ments by [14], the difficulty of providing a visual description for the image defines the

complexity of the image. When dealing with complexity, notable work is shown in

[15] where the complexity of a dataset is assessed. The approach uses a complexity

measure labeled as a cumulative spectral gradient(CSG). The probabilistic divergence

between different classes of the dataset is analyzed in a clustering framework to de-

rive the CSG. This CSG gives a numerical representation of the separability between

19

Chapter 2. Background

different classes of the dataset. The approach follows the idea that more variance in

classes offers a much lower complexity of the dataset. This is due to the nature of

classification problems as when a network trains on a dataset with more variance in

classes, the network could learn to predict classes with higher confidence. Compared

to other works in the same domain, this approach falls under complexity estimation

methods designed for neural networks in particular and hence worth mentioning in

this work. Although the CSG gives a good estimate of the complexity of a dataset,

it is limited to a particular dataset and cannot be used to derive a complexity at a

particular point during runtime.

Wilder, John et al. in [1] focuses on the visual difficulty of detecting a closed

contour from a noisy background. The contours are assumed to be curves that are

generated by a series of turning angles. The curves are represented using a gaussian

distribution defining the distribution of the turning angles. The approach focuses on

the unpredictability of the curve formed. The higher the unpredictability of the curve

formed, the more complex the resulting contour is. This unpredictability is identified

by the difference between the expected distribution of the turning angles and the

actual observation of turning angles. The work focused on simple closed contours set

against a noisy background which would be very difficult to implement for real-world

images. Images taken from the real world would contain several contours and it is

not easy to assume which would be the main contour to observe. The method also

influences heavier computation which would not be a viable approach as the work in

this thesis focuses on minimum overhead. Although there are limitations to exactly

using the same approach, the approach sets as a good prelude by the way unpre-

dictability in a contour offer information about the complexity. The unpredictability

of a contour in this thesis work has been defined by the minimum points it requires

to represent the specific contour.

20

Chapter 3

Exit Selection Algorithm with Deep Reinforcement Learning

This chapter first discusses the construction and modification of early-exit convolu-

tional neural networks. This is followed by the design of the exit selection algorithm

and the design of a new feature extracted from the input image to improve the per-

formance of the exit selection algorithm. A comparison is also presented comparing

the performance of the exit selection algorithm with and without the new feature.

3.1 Design of the Early-Exit Network

Traditional Mobilenet-v1[16] and Alexnet[17] have been modified to include early

exits as additional branches from the original network and will be referred to as

Exit-Mobilenet and Exit-Alexnet hereafter in this document. The Mobilenet- v1

architecture was designed to have lower model complexity and offers a significant

reduction in the total computational load of the model. The model has also shown

impressive performance in object detection problems providing real-time inference

times in the COCO dataset[18]. The model’s important novelty is in the use of

depthwise separable convolutions. The depthwise separable convolution is shown in

Fig 3.2. Each depthwise separable convolution consists of one depthwise convolution

and one point convolution layer. The replacement of the traditional convolutional

layer with a depthwise separable convolution offers 8-9 times lower computation in a

3x3 filter with a very small reduction of accuracy. The Mobilenet-v1 model is ideal in

21

Chapter 3. Exit Selection Algorithm with Deep Reinforcement Learning

Figure 3.1: Exit-Mobilenet modified from Mobilenet v1
22

Chapter 3. Exit Selection Algorithm with Deep Reinforcement Learning

Figure 3.2: Depthwise Seperable Convolution

this work as the model already offers lower complexity than traditional models and

offers a challenge to lower the computation in the model. The model has been modified

with 2 early exits and is shown in Fig 3.1 where an overview of the depthwise separable

convolutional layers are presented. The model has the initial layer as a convolutional

layer with batch normalization applied to it to further reduce overfitting.

The Alexnet[17] presented in this work has been modified from the original archi-

tecture to be compatible with 32x32 images from the Cifar-10 dataset and referred

to as Alexnet-32 in this work hereafter. The filter depths have been reduced for the

convolutional layers and 2 additional convolutional layers with an output depth of

96 have been added. The model is also fitted with 2 early exits which are shown in

Fig 3.3 where the overview of the convolutional layers in the network are presented.

The first exit is added after 4 convolutional layers and the second exit is placed just

before the last convolutional layer. The choice of exits ensures that exit selection

is difficult to perform due to the tradeoff between inference time and accuracy. A

23

Chapter 3. Exit Selection Algorithm with Deep Reinforcement Learning

Figure 3.3: Exit-Alexnet modified from a deeper Alexnet

24

Chapter 3. Exit Selection Algorithm with Deep Reinforcement Learning

modified Resnet-56 presented in [5] named as Eenet-56 is also used for comparison.

Exit branches are added at places in the original network where it would be possible

to attain at least a minimum accuracy at the first exit and an intermediate exit which

offers better accuracy at most times compared to the first exit while having a signif-

icant reduction in computation compared to the final exit. This model is referred to

as Exit-EENet56 in this thesis hereafter. All early exit neural networks are designed

and subsequently trained by the method observed in the work done by [5]. Each exit

branch in the network has a linear layer with output neurons equal to the number of

classes in the dataset and a softmax activation function to calculate the probability

distribution of choosing each class.

pk =
efk∑
j e

fj
(3.1)

The softmax activation function is shown in eqn 3.1 and gives an array of values

with the length as the total number of classes with each value between 0 and 1. The

array is also normalized in a way that the sum of the values equals 1. This layer is

the classification layer and is used in every exit branch to arrive at an intermediate

classification output without passing through the entire network. The network is

trained using a cumulative prediction loss across all exits to enable training of every

exit branch. Traditional deep neural networks are trained using a single loss observed

at the end of the classification layer placed as the last layer of the network. During

the forward pass of the training, each exit has a prediction loss calculated by using

the negative log-likelihood loss function.

Li = − log (pyi)

(3.2)

25

Chapter 3. Exit Selection Algorithm with Deep Reinforcement Learning

The negative log-likelihood loss shown in eqn 3.2 calculates the negative log values

of the correct class and is applied to the softmax function output. The loss function

gives lower values when the class confidence for the correct class is high and higher

values when the class confidence of the correct class is low. This forces the network

to make more right choices while also being more confident about the prediction.

The prediction losses calculated during the forward pass are cumulated from all the

branches and backpropagated. This ensures that all branches of the network are

trained and selective branch training is avoided.The training is optimized by an adam

optimization algorithm[19] that uses an adaptive learning rate instead of traditionally

maintaining a single learning rate. The algorithm is an effective replacement to classic

stochastic gradient descent and has been widely used in many problems of computer

vision.

The early exit neural network has an input parameter in the forward function to

receive the exit. The forward function has conditional statements built in to check

against the exit before passing through a block of convolutional layers. This exit

is supplied by the exit selection algorithm and the architecture of the exit selection

network is discussed in 3.2

3.2 Architecture of the Exit Selection Network

The Deep Q Network based approach for exit selection in early-exit networks which

is a reinforcement learning based approach directly builds upon the work presented

in [20]. Reinforcement learning offers the advantage of being dynamic and maps the

behavior of an environment accurately as it learns in a dynamic fashion. The learning

is unsupervised and the model learns from an environment by making actions and

26

Chapter 3. Exit Selection Algorithm with Deep Reinforcement Learning

receiving rewards based on the reward function.This ensures that the model learns

from an environment and the state of the environment during runtime instead of

static values. The environment used for training the reinforcement learning algorithm

here is the early exit network during inference. A Deep Q-Network(DQN) works

by approximating a state-value function using a neural network in a Q-Learning

framework. The state represents the previously acquired accuracy and inference time

along with the previously taken decision. The exit selection network designed in this

thesis is referred to as the DQN agent and makes decision during runtime. The DQN

agent consists of a 2 hidden layer multi-layer perceptron(MLP). The action space for

the DQN agent consists of all the possible exits for the early exit neural network and

since all models in this work contain 2 early exits, the action space is the 3 possible

exits any model contains.

3.2.1 Overview of the Deep-Q Network

The state-action value function known as the Q-function of a learned policy π, esti-

mates the expected sum of rewards when taking action ‘a’ from state ‘s’ and proceed-

ing to follow the learned policy π from that point. This notion of a Q-function is the

basis of Q-learning. The Q-function could also be simply expanded as the expected

rewards for a single state-action pair. The Q function is defined by the Bellman

equation shown in eqn 3.3.

Q∗(s, a) = E
[
r + γmax

a′
Q∗ (s′, a′)

]
(3.3)

This equation estimates the maximum return for the state-action pair is calculated

as the sum of the immediate reward and the return obtained by following the same

policy until the end of the episode. The return is simply the maximum reward from

the estimated next state. The expectation calculated is calculated with both the

27

Chapter 3. Exit Selection Algorithm with Deep Reinforcement Learning

distribution of immediate rewards and probable next states in consideration. The

equation shown in eqn [?] depicts the iterative version of the bellman equation where it

shows that the optimal Q-function would be converged when the number of iterations

tends to infinity.

Qi+1(s, a)← E
[
r + γmax

a′
Qi (s

′, a′)
]

(3.4)

Working with the Q-function as a table containing all the values for each state-action

pair is not a very efficient method for many problems. This is where a function

approximator is used to estimate the Q-values. A neural network is a type of function

approximator which when used for approximating the Q-values gives rise to the Deep

Q-Learning algorithm. The network is trained by minimizing the loss for each step

and the loss equation is shown in eqn 3.5.

Li (θi) = Es,a,r,s′∼ρ(.)

[
(yi −Q (s, a; θi))

2] where yi = r + γmax
a′

Q (s′, a′; θi−1) (3.5)

Here, yi is called the TD (temporal difference) target, and yi − Q is called the TD

error. The distribution over transitions {s, a, r, s′} collected from the environment is

represented by the behaviour distribution ρ.

The expectation calculated during the loss calculation could be simplified and

solved using a stochastic gradient descent algorithm. To improve the performance of

the network, the work in [8] introduced a technique called Experience Replay which

results in the network updates being more stable. This technique avoids using only

the last transition which simplifies the problem to standard Q-Learning. There is a

buffer of transitions of fixed size which stores a fixed number of previous transitions

at each step of the data collection. This buffer is named the replay buffer and a mini-

batch of transitions is sampled from this buffer to calculate the loss and its gradient

instead of using just the last transition during training. This helps to improve the data

efficiency by reusing each transition for several updates. The selection of transitions

28

Chapter 3. Exit Selection Algorithm with Deep Reinforcement Learning

from the buffer also allows for better stability due to using uncorrelated transitions

in a batch. Once the DQN agent has been designed, the next step is the design of

the reward function to setup training of the DQN agent.

3.2.2 Designing the reward function

The agent’s performance during training is determined by the reward function and is

the critical part of the agent’s learning. The agent uses only the reward to optimize

its decision making and hence designing an appropriate reward function holds very

high importance. The reward function in this work needs to make sure the agent

makes decisions that offer lower inference times while still giving a higher accuracy.

Reward = ((InfT imebase−InfT ime)/InfT imebase)∗α+((Acc−Accbase)/Accbase)∗β

(3.6)

The reward function used in this work is shown in Eqn 3.6. The reward function

contains the sum of differences between the accuracy and inference time with their

respective base values. The base values included in the reward function for both

inference time and accuracy are values against which the current values are compared

to. The reward function is set up in such a way that the higher the accuracy value,

the higher the reward value, and the lesser the inference time, the higher the reward

value. The base values also act as thresholds that determine the negative penalty.

When accuracy drops below the accuracy threshold or when inference time is greater

than the inference time threshold, the agent is penalized with a negative reward value.

The individual rewards from accuracy and inference time are summed together which

might skew the values as the accuracy and inference time are calculated in different

scales. To avoid this disparity, both the accuracy and inference time are normalized

to fall between 0 and 1 by dividing each difference with the base values. The steps till

now comprise of building the basic exit selection algorithm with the inference time

29

Chapter 3. Exit Selection Algorithm with Deep Reinforcement Learning

and accuracy values determining the state of the early exit network. The next step

is designing a new feature from the input image itself and is discussed in 3.3.

3.3 Adding the Image Information to the State

While deciding on the exit to choose for each frame, the accuracy, inference time and

the exit chosen for the previous frame offer important information to make an exit

selection. However, it is intuitive that the frame itself is also an important factor

on which the success of an early exit would depend. We could hypothesize that

including information about the image would help in increasing the performance of

the exit selection algorithm by reducing inference time. The direct approach would be

to build the DQN agent with added convolutional layers to extract image information

similar to work in [8]. Although this approach has been tried and tested, the added

convolutional layers add additional computational complexity and are not compatible

with adding information such as accuracy, inference time, and previous exit. The next

best approach would be to extract numerical information about an image which would

help in selecting an exit. Work done in [1] offers a prelude to working on a similar

approach where a closed contour’s complexity is assessed using the unpredictability of

the contour from a smooth distribution. The complexity calculated was with respect

to human visual perception and since the convolutional neural network used in our

work is derived from the workings of human perception, it offers a satisfactory parallel

representation. Although the algorithm discussed offers an estimate of the complexity

of a contour, when the algorithm needs to be ported for an image, the computation

involves detecting contours in an image with very little granularity and computation

for several points of each contour to determine the complexity. Therefore, we come

up with our own estimate of an image’s complexity by determining the amount of

unpredictable distribution in all the contours detected in an image. This is performed

by using the OpenCV framework to detect all contours in a respective image and count

30

Chapter 3. Exit Selection Algorithm with Deep Reinforcement Learning

Table 3.1: Contour complexity scores of images of fishes and birds

Image Contour Complexity
Simple Bird 689
Complex Bird 1897
Simple Fish 1029
Complex Fish 1990
Silhouette fish 323
Silhouette bird 459

the minimum number of points required to represent each contour. OpenCV allows

determining the minimum number of points required to represent a contour by using

a simple contour chain approximation. This number allows is very useful as a contour

with more unpredictability requires significantly more points to represent the contour.

This could be observed in Fig 3.4 where a simple polygon such as a square requires

Figure 3.4: Comparing a square and an irregular shape

only 4 points to represent whereas a much more unpredictable shape requires more

points. We extend this idea and sum the total number of points required for each

contour as shown in Eqn 3.7.

numContours∑
i=1

(len(ContourRepresentationi)) (3.7)

This number gives us an estimated complexity of the image and how many features

are there in the image. We refer to this as the contour complexity and is included in

the state information. Complying with the hypotheses that the contour complexity

31

Chapter 3. Exit Selection Algorithm with Deep Reinforcement Learning

Figure 3.5: Various Images of birds and fish with varying visual complexity. First row:
Silhouette Images, Second Row: Simple Images, Third Row: Complex Images

32

Chapter 3. Exit Selection Algorithm with Deep Reinforcement Learning

should show higher values with increased visual complexity of the images observed.

Looking at Table 3.1 and Fig. 3.5, the silhouette images have the least amount of

visual detailing and their complexity scores also concur with the same by showing

complexity values between the range of 300-500. The images with the highest visual

detail as seen in the complex fish and bird have a contour complexity in the range

of 1800-2000. These observations provide a level of confidence to apply this method

as an additional feature in the input state allowing for probable improvements in

performance.

3.4 Datasets

Cifar-10[21] and Tiny-Imagenet[22] image classification datsets have been used to test

the early exit neural networks in this thesis. The Cifar-10 dataset contains 60,000

32x32 colour images in 10 classes, with 6000 images per class. There are 50,000

training images and 10000 test images. The 10,000 images in dataset is split into 2

and the first 5000 are used for training the DQN agent while the second 5000 images

are used for testing the DQN agent. The image samples from the Cifar-10 dataset

are shown in Fig. 3.6.

Figure 3.6: Various Images and classes from the Cifar-10 dataset

33

Chapter 3. Exit Selection Algorithm with Deep Reinforcement Learning

Tiny-ImageNet[22] is a dataset derived from the ImageNet dataset. The dataset

contains 100,000 images of 200 classes (500 for each class) downsized to 64×64 colored

images. The images are further downsized to 32x32 images for compatibility with the

networks used in this work. Each class has 500 training images, 50 validation images,

and 50 test images. The 10,000 validation images in the dataset are split into 2 and

the first 5000 are used for training the DQN agent while the second 5000 images are

used for testing the DQN agent. The image samples from the tiny-Imagenet dataset

are shown in Fig. 3.7.

Figure 3.7: Various Images from the Tiny-Imagenet dataset

34

Chapter 3. Exit Selection Algorithm with Deep Reinforcement Learning

3.5 Comparison between DQN Agents with complexity and

without complexity information

Three models are used for comparison and compared over 2 different datasets. All

input images from both datasets have been scaled to 32x32 images. The parameters

alpha and beta correspond to the importance given to accuracy and inference time

during training of the exit selection algorithm. The parameters have been varied and

the resulting performances have been recorded. The reward function used while train-

ing determines the behavior of the DQN agent and this reward function is modified

with alpha and beta. There have been 3 major conditions where the reward function

has been modified and the performance after testing noted down. The first case is

where more importance is given to the inference time by altering alpha’s value to be

larger than beta. In this case, the agent should give more preference to inference time

and therefore potentially decrease inference time. In the second case, alpha and beta

are given equal values and the model is tested. In the third case, beta is set to be

larger than alpha, thereby giving more importance to accuracy and make decisions

that do not result in a loss of accuracy at all times. During inference, models have

been tested under a batch size of 1 and 10 to investigate any potential improvements

in performance. The batch size here represents the number of frames that were run

through inference at the same time with the same exit taken for every frame. To

avoid any irregularities during inference owing to background system optimizations,

the inference times are calculated analytically in proportion to the exit percentages of

each exit. To investigate the impacts of adding the contour complexity as a state, the

exit selection algorithm is trained and tested with and without the new state. Both

the model’s performances are compared in terms of accuracy and inference time.

35

Chapter 3. Exit Selection Algorithm with Deep Reinforcement Learning

3.5.1 Mobilenet comparison between DQN agents with complexity and

without complexity information

The Mobilenet-v1 architecture modified to include early exits has been trained with

the method described in [5] and also with the approach in this thesis of using a DQN

agent as the exit selection algorithm. The comparison is presented with testing on

both Cifar-10 and Tiny-Imagenet dataset on batch sizes of 1 and 10 during inference.

3.5.1.1 Training Response Analysis

In Table 3.2 and Table 3.3, the model with complexity information and without com-

plexity information respond differently to the training parameters set during training.

The model without complexity information performs in accordance with the hypoth-

esis that when importance is placed on the accuracy, the model’s exit selection per-

centage of later exits increases and when importance is placed on the inference time,

the exit selection percentage of earlier exits is more. The model with complexity in-

formation behaves differently from the traditional model where the model has lower

inference time when lesser importance is placed on the inference time. Similar be-

havior is also observed in Table 3.4 where such behavior is observed in both models

with and without complexity information. Although this behavior doesn’t conform

with the hypothesis, the explanation lies in the way the exits have been placed in the

model. Exits 1 and 2 are very close in the accuracy achieved with a similarly small

difference in the inference time obtained by choosing either exit. This causes rewards

obtained from either exit to be close enough and causes decisions during testing which

do not conform with the hypothesis. In Table 3.5 however when testing with a more

difficult dataset and using a batch size of 10 for testing, both models conform to the

hypothesis and show increasing inference time and higher later exit percentage with

the importance being placed more on the accuracy.

36

Chapter 3. Exit Selection Algorithm with Deep Reinforcement Learning

Table 3.2: Exit Mobilenet comparison on Cifar-10 with batch size 1

Model Batch Size Alpha Beta Inf Time(ms) Accuracy % Exit 1 % Exit 2 % Exit 3 %

Mobilenet v1 1 NA NA 0.1836 84.4 0.0 0.0 100.0

EENet Mobilenet 1 NA NA 0.1403 84.26 2.3 97.7 0.0

Inf-time imp with complexity 1 2 0.2 0.1762 84 0.5 16.3 83.2

Inf-time imp without complexity 1 2 0.2 0.1421 84.04 0.0 100.0 0.0

Equal imp with complexity 1 1 1 0.1767 84.28 0.0 16.4 83.6

Equal imp without complexity 1 1 1 0.1487 84 0.0 84.0 16.0

Acc imp with complexity 1 0.2 2 0.1431 84.08 0.0 97.4 2.6

Acc imp without complexity 1 0.2 2 0.1836 84.3 0.0 0.0 100.0

Table 3.3: Exit Mobilenet comparison on Cifar-10 with batch size 10

Model Batch Size Alpha Beta Inf Time(ms) Accuracy % Exit 1 % Exit 2 % Exit 3 %

Mobilenet v1 1 NA 0.1836 84.4 0.0 0.0 100.0

EENet Mobilenet 1 NA NA 0.1403 84.26 2.3 97.7 0.0

Inf-time imp with complexity 10 2 0.2 0.1565 84.24 0.0 60.0 40.0

Inf-time imp without complexity 10 2 0.2 0.1422 83.98 0.0 100.0 0.0

Equal imp with complexity 10 1 1 0.1422 83.98 0.0 100.0 0.0

Equal imp without complexity 10 1 1 0.1565 84.12 0.0 60.0 40.0

Acc imp with complexity 10 0.2 2 0.1493 84.24 0.0 80.0 20.0

Acc imp without complexity 10 0.2 2 0.1779 84.38 0.0 0.0 100.0

37

Chapter 3. Exit Selection Algorithm with Deep Reinforcement Learning

Table 3.4: Exit Mobilenet comparison on Tiny-Imagenet with batch size 1

Model Batch Size Alpha Beta Inf Time(ms) Accuracy % Exit 1 % Exit 2 % Exit 3 %

Mobilenet v1 1 NA NA 0.1836 35.24 0.0 0.0 100.0

EENet Mobilenet 1 NA NA 0.1548 34.84 3.5 59.6 36.9

Inf-time imp with complexity 1 2 0.2 0.1719 34.44 10.0 0.0 90.0

Inf-time imp without complexity 1 2 0.2 0.1478 34.76 28.6 6.2 65.2

Equal imp with complexity 1 1 1 0.1836 34.28 0.0 0.0 100.0

Equal imp without complexity 1 1 1 0.1068 33.98 66.0 0.0 33.4

Acc imp with complexity 1 1 3 0.1795 34.62 0.0 10.0 90.0

Acc imp without complexity 1 1 3 0.1253 34.42 49.4 1.7 48.9

Table 3.5: Exit Mobilenet comparison on Tiny-Imagenet with batch size 10

Model Batch Size Alpha Beta Inf Time(ms) Accuracy % Exit 1 % Exit 2 % Exit 3 %

Mobilenet v1 1 NA NA 0.1836 35.24 0.0 0.0 100.0

EENet Mobilenet 1 NA NA 0.1548 34.84 3.5 59.6 36.8

Inf-time imp with complexity 10 2 0.2 0.0692 34.7 100.0 0.0 0.0

Inf-time imp without complexity 10 2 0.2 0.0713 34.7 98.0 0.2 1.8

Equal imp with complexity 10 1 1 0.0694 34.7 99.8 0.0 0.2

Equal imp without complexity 10 1 1 0.1329 34.68 38.4 9.2 52.4

Acc imp with complexity 10 1 3 0.1422 35.92 0.0 100.0 0.0

Acc imp without complexity 10 1 3 0.1424 34.46 32.6 0.0 67.4

38

Chapter 3. Exit Selection Algorithm with Deep Reinforcement Learning

3.5.1.2 Model Performance Analysis

Looking at the results of the models performances on the Cifar-10 dataset, both

models with and without complexity information achieve a performance similar to

the comparison work in EENet and do not offer a significant performance increase.

When observing the model’s performance in testing on a Tiny-Imagenet dataset, both

exit selection algorithms make better decisions than the comparison EENet Mobilenet

model. In testing with a batch size of 1, the best performance is exhibited by the

DQN agent without any complexity analysis by having an inference time of 4.52%

lesser than the EENet Mobilenet model with no significant loss of accuracy. The best

performance in both models is exhibited in a batch size of 10. With an accuracy loss

of just 0.4%, the DQN agent has 53.94% reduced inference time without any overhead

added. Comparing between the DQN agent with complexity and without complexity

analysis, the DQN agent with complexity offers 2.94% lesser inference time than the

model without it. The model with complexity performs better on a batch size of

10 where 10 images are run through inference at the same time. During this time,

accuracy, inference time and complexity are averaged out over the 10 images when

passed as a state for the subsequent 10 images. Averaging out the complexity over

a series of images tends to give better results and shows that the model tends to

perform better if it has information of the general trend in complexity rather than

the complexity of a single frame.

3.5.2 EENet56 comparison between DQN Agent with complexity and

without complexity

The EENet56 architecture derived from the EENet work has been trained with the

EENet work [5] and also with the approach in this thesis of using a DQN agent as the

exit selection algorithm. The comparison is presented with testing on both Cifar-10

and Tiny-Imagenet dataset on batch sizes of 1 and 10 during inference.

39

Chapter 3. Exit Selection Algorithm with Deep Reinforcement Learning

3.5.2.1 Training Response Analysis

In Tables 3.6 and 3.7, where the models’ have been tested on the Cifar-10 dataset,

there is no distribution between the exit percentages of the 3 exits chosen by any exit

selection model. This simply means that the DQN agent prefers to choose the same

exit irrespective of the input state. The comparison EENet56 model also behaves

in a similar fashion by choosing Exit 1 at all times. When importance is placed on

the inference time, both models choose Exit 1 as the default exit. This behavior

could be explained by the accuracy obtained from the first exit which is lower than

the other 2 exits but the inference time increase for the additional accuracy obtained

doesn’t justify choosing the later exits. When placing more importance on accuracy,

the models choose Exit 3 as the default exit. This is due to Exit 2 not having a

sufficient increase in accuracy to justify taking Exit 2. In Tables 3.8 and 3.9, there

is a slight improvement in the exit selection distribution. The comparison EENet56

model doesn’t offer much improvement from the original Resnet56 model and chooses

predominantly the last exit. As observed in Tables 3.6 and 3.7, the middle exit is

not preferred by any model and the decisions swing between Exit 1 or Exit 3. When

importance is placed on inference time during training, the models choose Exit 1 as

the default exit as it is the only exit offering a justified decrease in inference time.

Although the exit distribution is very low, both models with and without complexity

information conform to the training hypothesis and show exit selections in line with

the parameters selected during training.

3.5.2.2 Model Performance Analysis

Looking at the results of the models’ performances on the Cifar-10 dataset, both mod-

els with and without complexity achieve a performance the same as the comparison

work in EENet56 and do not offer a significant performance increase. This behavior

can be explained by looking at the exits taken by the EENet56 model. The model

40

Chapter 3. Exit Selection Algorithm with Deep Reinforcement Learning

Table 3.6: Exit EENet56 comparison on Cifar-10 with batch size 1

Model Batch Size Alpha Beta Inf Time(ms) Accuracy % Exit 1 % Exit 2 % Exit 3 %

Resnet56 1 NA NA 0.4764 85.46 0.0 0.0 100.0

EENet 56 1 NA NA 0.0632 71.24 100.0 0.0 0.0

Inf-time imp with complexity 1 2 0.2 0.0632 72.14 100.0 0.0 0.0

Inf-time imp without complexity 1 2 0.2 0.0632 72.14 100.0 0.0 0.0

Equal imp with complexity 1 1 1 0.4764 85.46 0.0 0.0 100.0

Equal imp without complexity 1 1 1 0.4764 85.46 0.0 0.0 100.0

Acc imp with complexity 1 0.2 2 0.4764 85.46 0.0 0.0 100.0

Acc imp without complexity 1 0.2 2 0.4764 85.46 0.0 0.0 100.0

Table 3.7: Exit EENet56 comparison on Cifar-10 with batch size 10

Model Batch Size Alpha Beta Inf Time(ms) Accuracy % Exit 1 % Exit 2 % Exit 3 %

Resnet56 1 NA NA 0.4650 85.46 0.0 0.0 100.0

EENet 56 1 NA NA 0.0632 71.24 100.0 0.0 0.0

Inf-time imp with complexity 10 2 0.2 0.0628 71.14 100.0 0.0 0.0

Inf-time imp without complexity 10 2 0.2 0.0628 71.14 100.0 0.0 0.0

Equal imp with complexity 10 1 1 0.4650 86.2 0.0 0.0 100.0

Equal imp without complexity 10 1 1 0.4650 86.2 0.0 0.0 100.0

Acc imp with complexity 10 0.2 2 0.4650 86.2 0.0 0.0 100.0

Acc imp without complexity 10 0.2 2 0.4650 86.2 0.0 0.0 100.0

41

Chapter 3. Exit Selection Algorithm with Deep Reinforcement Learning

Table 3.8: Exit EENet56 comparison on Tiny-Imagenet with batch size 1

Model Batch Size Alpha Beta Inf Time(ms) Accuracy % Exit 1 % Exit 2 % Exit 3 %

Resnet56 1 NA NA 0.4650 40 0.0 0.0 100.0

EENet 56 1 NA NA 0.4599 39.44 3.9 0.1 96.0

Inf-time imp with complexity 1 2 0.2 0.0880 21.9 21.5 78.5 0.0

Inf-time imp without complexity 1 2 0.2 0.0948 22 0.0 100.0 0.0

Equal imp with complexity 1 1 1 0.4764 39.98 0.0 0.0 100.0

Equal imp without complexity 1 1 1 0.4764 39.98 0.0 0.0 100.0

Acc imp with complexity 1 0.2 2 0.4764 39.98 0.0 0.0 100.0

Acc imp without complexity 1 0.2 2 0.4764 39.98 0.0 0.0 100.0

Table 3.9: Exit EENet56 comparison on Tiny-Imagenet with batch size 10

Model Batch Size Alpha Beta Inf Time(ms) Accuracy % Exit 1 % Exit 2 % Exit 3 %

Resnet56 1 NA 0.4650 40 0.0 0.0 100.0

EENet 56 1 NA NA 0.4599 39.44 3.9 0.1 96.0

Inf-time imp with complexity 10 2 0.2 0.0628 21.4 99.8 0.2 0.0

Inf-time imp without complexity 10 2 0.2 0.0873 21.66 0.0 100.0 0.0

Equal imp with complexity 10 1 1 0.4650 39.86 0.0 0.0 100.0

Equal imp without complexity 10 1 1 0.4650 39.86 0.0 0.0 100.0

Acc imp with complexity 10 0.2 2 0.4650 39.86 0.0 0.0 100.0

Acc imp without complexity 10 0.2 2 0.4650 39.86 0.0 0.0 100.0

42

Chapter 3. Exit Selection Algorithm with Deep Reinforcement Learning

makes all decisions as the first exit and doesn’t offer any room for improving the

performance as the inference time is already very low. When observing the model’s

performance in testing on a Tiny-Imagenet dataset, both exit selection algorithms

make better decisions than the comparison EENet56 model. In testing with a batch

size of 1, the best performance is exhibited by the DQN agent including complexity

as a state by having an inference time of 80.8% lesser than the EENet56 model. Al-

though the model has a significant decrease in inference time, the model shows a very

significant loss of accuracy. The DQN agent’s decisions cause an 18.04% decrease in

accuracy from the EENet56 model. The best performance in both models is exhibited

in a batch size of 10. With almost the same accuracy loss as observed in the batch

size of 1, the DQN agent shows an 86.34% reduction in inference time. Comparing

between the DQN agent with complexity and without complexity analysis, the DQN

agent with complexity offers 28.06% lesser inference time than the model without it.

3.5.3 Exit-Alexnet 32 comparison between DQN Agent with complexity

and without complexity

The Alexnet-32 architecture modified to include early exits has been trained with the

EENet work [5] and also with the approach in this thesis of using a DQN agent as the

exit selection algorithm. The comparison is presented with testing with the Cifar-10

dataset on batch sizes of 1 and 10 during inference. The models have not been tested

on the TIny-Imagenet dataset due to very low accuracies being noted during training

since the model used here is smaller than traditional Alexnet and does not perform

well on complex datasets.

3.5.3.1 Training Response Analysis

In Table 3.10, the model with complexity information takes Exit 1 more frequently

than the model without complexity information when both models are trained with

43

Chapter 3. Exit Selection Algorithm with Deep Reinforcement Learning

more importance on inference time. This allows the model with complexity infor-

mation to perform better and achieve lower inference time while maintaining good

accuracy. The reduction in inference time is due to Exit 1 having considerably lesser

inference time while having a good level of accuracy. When the models are trained

with greater importance to accuracy, both models choose more of the later exits with

an increase in inference time observed.

Table 3.10: Exit Alexnet-32 comparison on Cifar-10 with batch size 1

Model Batch Size Alpha Beta Inf Time(ms) Accuracy % Exit 1 % Exit 2 % Exit 3 %

Alexnet-32 1 NA NA 0.1147 82.6 0.0 0.0 100.0

EENet Alexnet 1 NA NA 0.0869 76.82 75.6 14.2 10.2

Inf-time imp with complexity 1 2 0.2 0.0805 76.18 99.7 0.1 0.2

Inf-time imp without complexity 1 2 0.2 0.0879 77.56 77.5 0.0 22.5

Equal imp with complexity 1 1 1 0.1141 82.6 0.0 0.0 100.0

Equal imp without complexity 1 1 1 0.1142 82.6 0.0 0.0 100.0

Acc imp with complexity 1 0.2 2 0.1043 82.26 0.0 82.1 17.9

Acc imp without complexity 1 0.2 2 0.1142 82.6 0.0 0.0 100.0

3.5.3.2 Model Performance Analysis

When observing the model’s performance in testing on a Cifar-10 dataset, the exit

selection algorithm including complexity analysis as a state makes better decisions

than the comparison EENet Alexnet model and the DQN agent without complexity

analysis when the best performance of both batch sizes is considered. In testing with

a batch size of 1, the best performance is exhibited by the DQN agent with complexity

analysis by having an inference time of 7.36% lesser than the EENet Alexnet model

44

Chapter 3. Exit Selection Algorithm with Deep Reinforcement Learning

Table 3.11: Exit Alexnet-32 comparison on Cifar-10 with batch size 10

Model Batch Size Alpha Beta Inf Time(ms) Accuracy % Exit 1 % Exit 2 % Exit 3 %

Alexnet-32 1 NA NA 0.1147 82.6 0.0 0.0 100.0

EENet Alexnet 1 NA NA 0.0869 76.82 75.6 14.2 10.2

Inf-time imp with complexity 10 2 0.2 0.0969 82.48 0.0 100.0 0.0

Inf-time imp without complexity 10 2 0.2 0.1147 82.94 0.0 0.0 100.0

Equal imp with complexity 10 1 1 0.1005 82.56 0.0 80.0 20.0

Equal imp without complexity 10 1 1 0.1147 82.94 0.0 0.0 100.0

Acc imp with complexity 10 0.2 2 0.1147 82.94 0.0 0.0 100.0

Acc imp without complexity 10 0.2 2 0.1147 82.94 0.0 0.0 100.0

with only a 0.83% loss of accuracy. The best performance in both models is exhibited

in a batch size of 1. Comparing between the DQN agent with complexity and without

complexity analysis, the DQN agent with complexity offers 8.4% lesser inference time

than the model without it. Although the inference time is higher on the model with

complexity, the model offers higher accuracy than the other 2 models. Although

the best performance is offered in a batch size of 1, when comparing the difference

in performance between the DQN agent with and without complexity, the model

with complexity performs comparatively better in a batch size of 10. This behavior

tends to concur with the behavior observed in Exit-Mobilenet where the model with

complexity performs better comparatively in a batch size of 10. This further validates

that averaging out the complexity over a series of images tends to give better results

as the model tends to perform better if it has information of the general trend in

complexity rather than the complexity of a single frame.

45

Chapter 3. Exit Selection Algorithm with Deep Reinforcement Learning

3.6 Exit Distribution Analysis

This section looks at the exit selections made by the DQN agent with complexity

information in different datasets and different models. Certain scenarios shows differ-

ent exit percentages for different exits when the DQN agent makes exit decisions for

different early exit neural networks. Looking at the results in Table 3.12, the DQN

agent shows more variety in the selection of exits when taking decisions for the Mo-

bilenet and Alexnet models. There is distribution between exits 2 and 3 in mobilenet

and similarly in alexnet where exit 2 has been given more importance in both models.

This is due to exit 2 having sufficient accuracy while still having lower inference time

than the last exit. There is a percentage of last exits being chosen only for estimated

complex images. However for the EENet56 model, the DQN agent chooses the first

exit irrespective of the input state. This behavior is caused due to EENet56 being

a more computationally intensive model and the first exit offers enough accuracy for

the Cifar-10 dataset which has only 10 classes. The behavior is not observed when

the same model is tested on a Tiny-Imagenet dataset as it offers significantly more

complexity due to a large number of classes(200) and inherently complex images. In

this case the DQN agent chooses between Exits 1 and 2 as the accuracy observed is

low in Exit 1 and Exit 2 is chosen more to offer lower compromise on accuracy. In

the Tiny-Imagenet dataset, the DQN agent chooses 90% of the last exit in Mobilenet

as a considerable accuracy is achieved only in the last exit. This does not occur for

the EENet56 model even though the model could offer more accuracy in the last exit

as the last exit has a very high inference time which does not justify the increase in

accuracy. To conclude, the placement of exits in the network is a viable topic for

future work as the DQN agent could potentially make better decisions with better

exit placement.

46

Chapter 3. Exit Selection Algorithm with Deep Reinforcement Learning

Table 3.12: Different models showing different exit distributions with different datasets

Model Dataset Exit 1 % Exit 2 % Exit 3 %
Mobilenet Inf-time imp with complexity Cifar10 0.0 60.0 40.0
EENet56 Inf-time imp with complexity Cifar10 100.0 0.0 0.0
Mobilenet Inf-time imp with complexity TIN 10.0 0.0 90.0
EENet56 Inf-time imp with complexity TIN 21.5 78.5 0.0
Alexnet Acc imp with complexity Cifar10 0.0 82.1 17.9

3.7 Overhead Analysis

The overhead of using the DQN agent to select exits for the early exit neural network

is estimated in terms of the computational complexity represented as the total num-

ber of floating point operations(FLOPs) required to run inference of the DQN agent.

The floating point operations used here are the total number of floating operations

required to run one instance and not to be confused with floating point operations

per second(FLOPS). The DQN agent requires a total of 90 FLOPs to run inference

which is insignificant in comparison to the inference of the early exit networks such

as Exit Mobilenet which requires up to 12,026,274 FLOPs. The average inference

time for the DQN agent was 9.417 x 10−3 ms which is very low compared to the

inference time of the early exit network and could further be offset by running exit

selection on the edge which is discussed in detail in 4. The overhead for estimating

the contour complexity involves detection of the contours in the image and counting

the total number of points in each contour. When dealing with images of size 32x32,

the average time taken to process the contour complexity of a single image was found

to be 8.7022 x 10−3 ms. This number is very small in comparison to the inference

time taken for each image. This further advocates the use of contour complexity as

an efficient method to estimate the complexity of a given image without adding much

overhead.

Overall the DQN agent with complexity information performs similar or better than

47

Chapter 3. Exit Selection Algorithm with Deep Reinforcement Learning

the DQN agent without complexity information by producing reduced inference times

in select cases. This reduction in inference time is delivered without a significant re-

duction in accuracy. The DQN agents also show preference in maintaining the accu-

racy which is shown in the cases where equal importance was placed on inference time

and accuracy. In these cases, the agents took decisions which gave greater accuracy

and did not offer a significant reduction in inference time. The next chapter shows

the implementation of the DQN agent and the early exit network in an analytical

edge computing platform.

48

Chapter 4

Early-Exit Neural Network with Exit Selection on the Edge

This chapter discusses the implementation of the early-exit neural network and the

exit selection algorithm in an edge computing environment. The chapter first dis-

cusses the overview of the network model and the information flow. Further the

decision update interval is varied and the impacts on performance are investigated in

an Exit-Alexnet network. An estimation of the overheads present in this approach

are also calculated analytically and included in this chapter.

4.1 Early-Exit Neural Network for Edge Computing

An early-exit neural network is used in an image classification problem running on

a moving edge node. The edge computing network consists of a moving edge node

assumed to be an UAV in this thesis work, a computing server, and an access point to

facilitate the communication between the edge node and the server. Fig 4.1 shows the

various components of the edge computing network and the flow of decision-making

through the network. The early-exit network placed within the edge node takes an

input image and classifies it into one of the several classes depending on the dataset.

All the early-exit neural networks used in this thesis work contain 2 intermediate exits

and a final exit that goes through all the layers in the network. The objective of the

early-exit neural network is to perform image classification with lesser computational

load by taking early exits. The optimal exit is chosen by taking into consideration

49

Chapter 4. Early-Exit Neural Network with Exit Selection on the Edge

Figure 4.1: Overview diagram of the early-exit neural network on edge

observing the state of the early-exit neural network in terms of accuracy and inference

time of the previous decision along with the previous exit taken. The approximate

numerical complexity of the current frame is also taken into consideration as a novel

addition to this thesis work. The reinforcement learning algorithm is placed in a

separate server to reduce the computational load on the edge node. The algorithm

used in this work is a small network and does not add heavy computation. However,

the work could be expanded to use deeper networks and increase the performance

of the target neural network. In such cases, the deployment of the setup in an edge

computing environment offers the edge node much-needed respite from the excess

computation. The information required to make an exit selection is observed from

the edge node as a NumPy array and compressed into 128 bytes and communicated

to the access point from where it is sent to the destination computing server. The

reinforcement learning algorithm in the computing server utilizes this information

and a feed-forward operation gives the required exit to be taken. This information

consists of a single numerical value which has a size of 28 bytes. This decision is

50

Chapter 4. Early-Exit Neural Network with Exit Selection on the Edge

once again routed through the access point and transferred back to the edge node

to use that exit for the particular frame or for a series of subsequent frames. The

flow of information through the network could be observed in Fig4.1. However, in

an edge computing environment, communication delays play a crucial part in the

performance of the neural network and have to be taken into consideration. Since

the early-exit neural networks used in this work take decisions as an external input,

it is not necessary to make decisions for every frame encountered. This could be

used to make decisions for a batch of frames instead of every frame. We try to vary

the decision update interval and study the impacts on the network in the following

sections.

4.2 Relationship between Decision Update Interval and In-

ference Time

The graph in Fig. 4.2 shows the relationship between increasing decision update

interval and the corresponding analytical inference time in Exit-Alexnet with exit

selection by the trained DQN agent. The decision update interval is defined as the

interval of images between which decisions are received from the DQN agent to the

early exit neural network. The images are inferred at a batch size of 1 and the same

exit is allocated for subsequent images until the new exit is updated depending on

the decision update interval. For example, a decision update interval of 20 conveys

that decisions are made only between every 20 images or frames. The Exit-Alexnet

is tested on a Cifar-10 dataset with an image input size 32x32. There is a significant

correlation between the decision update interval and inference time in both cases,

with and without complexity information, when using the DQN agent to choose the

exit. We observe an increase in inference time with an increase in the decision update

interval. The increase in inference time is due to the DQN agent choosing the last

51

Chapter 4. Early-Exit Neural Network with Exit Selection on the Edge

Figure 4.2: Decision Update Interval Vs Inference Time with and without complexity
information

exit in a high percentage. The later exits cause added computation and cause an

increase in average inference time. This could be observed from Table 4.1 where,

when the network is forced to make the same decisions for all images, the network

has an increase in inference time with later exits.

Table 4.1: Single Exit Selection Accuracy and Inference Time

Exit Accuracy Inference Time(ms)
0 76.16 0.0804
1 81.89 0.1022
2 82.6 0.1142

Sinput = [Accuracyprev, InfT imeprev, Exitprev, Complexityprev] (4.1)

Equation 4.1 shows the constituents of each input state used to make decisions by

the DQN agent. The input which contains the information of the previous decision

as previous accuracy, previous inference time, previous Action Taken, and complexity

of the Previous Image. These input parameters allow the DQN agent to make the

52

Chapter 4. Early-Exit Neural Network with Exit Selection on the Edge

decision for a new batch of images. During inference, the DQN agent is supplied

with a starting state which describes the last taken action as the last exit and quotes

previous accuracy and previous inference to be both 0.

Reward = ((InfT imebase−InfT ime)/InfT imebase)∗α+((Acc−Accbase)/Accbase)∗β

(4.2)

Analyzing the reward function used to train the DQN agent in equation 4.2, we

could observe that the accuracy and inference time are the only factors that give an

increase in reward obtained for the decision. The inference time has an inference time

threshold value of 3 ms and causes a reward penalty for greater inference time. Since

the inference time is initialized with 0, the DQN agent does not give importance to

inference time for the first decision. When looking at the accuracy of the previous

image, the accuracy base is set to 50% accuracy and a previous accuracy of 0 gives

a large penalty to the reward. This causes the DQN agent to take the next decision

with more importance to accuracy and from the observation in Table 4.1, it could be

observed that the last exit tends to give greater average accuracy. Setting this state as

the starting allows for the DQN agent to make safer decisions and not compromise on

the accuracy of the network. Although the DQN agent makes safer decisions, it comes

with an increase in inference time and allows for lesser performance. With subsequent

decisions, the DQN agent tends to make more decisions based on reducing inference

time and therefore gives better performance. To further validate the hypothesis, the

DQN agent including the complexity information of the image as an input state was

tested on making decisions for a varying number of states, and the corresponding

accuracy and analytical inference time were recorded. In all cases, the starting state

was the same([0,0,2,0]).

Observing the graph in 4.3, we notice that the average inference time of the

network decreases when the DQN agent makes more decisions while also maintaining

53

Chapter 4. Early-Exit Neural Network with Exit Selection on the Edge

Figure 4.3: Number of Decisions Vs Inference Time and Accuracy

high accuracy. This further validates the hypothesis that the DQN agent offers a

better performance with a higher number of decisions. The same behavior is exhibited

in the chart in Fig.4.2 where more frequent decision making offers lower inference time

with minimal reduction of accuracy. The analysis shows that there is a possibility

to reduce the overhead incurred by choosing a higher decision update interval and

prevent frequent communication between the DQN agent and the early exit network.

However choosing a higher decision update interval causes reduction in performance

of the DQN agent as the DQN agent makes better decisions with a higher number of

decisions. The impact of communication delay is shown in section 4.3 which would

help to balance the trade-off between performance and overhead.

4.3 Overhead Analysis

The overhead for this approach predominantly stems from the communication delay

incurred due to communicating state information and exit information through the

network.The calculation of communication delay begins with calculating the node

54

Chapter 4. Early-Exit Neural Network with Exit Selection on the Edge

delay of the edge server. The node delay consists of processing delay, propagation

delay, transmission delay, and queueing delay as shown in eqn 4.3.

Nd = Pc+Qd+ Td+ Pg (4.3)

4.3.1 Processing Delay

The processing delay is the time taken for the access point to process each packet of

data transferred. The average processing delays for different modes of communication

is shown in Table 4.2. The processing delay in an LTE network is caused by the mobile

substation delay which would be the access point in that network. The processing

delays are derived from [23].

Table 4.2: Processing delays of different networks

Network Type Uplink delay Downlink delay Total Delay
IP Router 0.0979 ms 0.0979 ms 0.1958 ms
LTE Network 21 ms 8 ms 29 ms

4.3.2 Transmission Delay

Transmission delay is calculated using the packet length and divided by the bit rate

of the network as shown in eqn 4.4.

TD = L/R (4.4)

The packet length during transmission from the edge node to the server is 128 bytes

or 1024 bits. The packet length during transmission of action from the server to the

edge node is 28 bytes or 224 bits. The total transmission delay from both ends is

calculated and shown in Table 4.3.

55

Chapter 4. Early-Exit Neural Network with Exit Selection on the Edge

Table 4.3: Transmission Delays

Network Network bitrate Uplink delay Downlink delay Total delay
Wifi 802.11g (2.4 Ghz) 54 Mbit/s 0.0189 ms 0.0042 ms 0.0231 ms
Wifi 802.11n (2.4 Ghz) 600 Mbit/s 0.00171 ms 0.00037 ms 0.0021 ms
Wifi 802.11ac (5 Ghz) 1.3 Gbit/s 0.0000984 ms 0.000022 ms 0.00012 ms
Lte (4g) 100 Mbit/s 0.01024 ms 0.00224 ms 0.01248 ms

4.3.3 Propoagation Delay

The propagation delay is calculated using the approximate distance between the edge

node and the server and divided by the speed of propagation as shown in eqn 4.5

PD =
B − A

S
(4.5)

With an average distance between the edge node and server as 100 meters and speed

of propagation as 3 x 108 m/s which would give a propagation delay of 0.0003333 ms.

the propagation delay is negligible in comparison to the transmission delay.

4.3.4 Queueing Delay

Average queuing delay in an m/m/1 server system could be estimated using the

following equation in 4.6.

1/(µ− λ) (4.6)

The queuing delay at the access point is considered to be negligible since the load

of the network is very low.

4.3.5 Total Delay and Effect on various Decision Update Intervals

The total delay in the network is calculated by adding up the transmission delay

between an edge node and access point, and between the access point and edge server.

The processing delay of the access point is also taken into account. Other delays are

56

Chapter 4. Early-Exit Neural Network with Exit Selection on the Edge

negligible. In a 5g network with peak speeds of up to 20Gbps, the transmission delay

is negligible and proposed 5g models have a total delay of about 2 ms including all

other delays [24]. The total calculated delays are shown in Table 4.4.

Table 4.4: Total Communication Delays

Network Total Delay
Wifi 802.11g (2.4 Ghz) 0.2882 ms
Wifi 802.11n (2.4 Ghz) 0.2042 ms
Wifi 802.11ac (5 Ghz) 0.1963 ms
Lte (4G) 29.049 ms
3GPP standard 5G 2 ms

Data is transferred between intervals and regulated by the decision update interval.

Communication delay is incurred only at points where the exit decision is required.

The maximum delay for any image would be the total communication delay incurred.

However, since the inference time is averaged out over the length of all images, the

communication delay is also averaged out over the length of all samples. The average

communication delay for different decision update intervals is shown in Table 4.5.

The delays are calculated by assuming a 5Ghz Wifi access point since the delays

were found to be minimum for a 5Ghz Wifi access point. The relationship between

decision update interval and different networks are shown in 4.4. The communication

delay difference between the different networks is similar to the total delay difference

observed in 4.4.

Overall the analysis shows that the offloading of the DQN agent to an edge com-

puting network is viable due to the lower communication delays observed in higher

decision update intervals. The trade-off between communication delay and average

inference time could be achieved by choosing a decision update interval lesser than

300. The communication delay could also be potentially mitigated by using the pre-

viously received exit while waiting for the newer exit. This is essentially masking

the latency by performing computation and is commonly used in message passing

interface models for parallel computing.

57

Chapter 4. Early-Exit Neural Network with Exit Selection on the Edge

Table 4.5: Communication Delays incurred for different Decision Update Intervals

Decision Update Interval Average Communication Delay
1 0.1963
5 0.03926
10 0.01963
20 0.00982
50 0.00393
100 0.00196
200 0.00098
300 0.00065
400 0.00049
500 0.00039

Figure 4.4: Relationship between decision update interval and communication delays in
different networks

58

Chapter 5

Conclusions

5.1 Conclusion

Image features have been captured by a novel approach involving counting the repre-

sentation of contours in an image and added as an input feature to a Deep Q-Network

based exit selection algorithm. The newly added feature reduces inference time in

certain cases when tested with 2 different datasets and over 3 different multi-exit

convolutional neural networks. The new added feature offers up to 28% decrease in

inference time when compared to the DQN agent without the new information. The

experiments conclude that the newly added feature could be a valuable addition with

negligible overhead when used under right circumstances. The investigation into vary-

ing decision update interval when implemented in an edge computing network shows

that a lower decision update interval offers better performance and ideal performance

is observed around rates of 100 to 300 and higher intervals are not recommended.

5.2 Future Work

The datasets used in this work do not have images that do not have a temporal

correlation. When using the exit selection algorithm proposed, the complexity calcu-

lated for a previous state would prove more efficient in scenarios where the previous

image has a close correlation with the current image. This would enable the net-

59

Chapter 5. Conclusions

work to make fewer decisions as the decisions made for a single frame would be more

applicable to subsequent frames. This work would benefit from using a temporally

correlated dataset in the future. The edge computing framework used in this work

has been purely analytical in nature and might not be the ideal representation of a

real edge computing network. The experiments related to the edge computing plat-

form implementation of the exit selection algorithm could give additional insights

when performed on an actual edge computing network. The reinforcement learning

based exit selection model proposed in this work is trained once before applying the

model during run-time. The model’s robustness could be improved by making the

model adaptive to new changes in the environment by using online training similar

to the model implemented in [25]. This could be achieved by continuously training

the model with new data observed by the mobile edge node and use the features to

update the exit selection model.

60

Bibliography

[1] J. Wilder, J. Feldman, and M. Singh, “Contour complexity and contour detec-
tion,” Journal of vision (Charlottesville, Va.), vol. 15, no. 6, pp. 6–6, 2015.

[2] S. Teerapittayanon, B. McDanel, and H. T. Kung, “Branchynet: Fast inference
via early exiting from deep neural networks.” IEEE, 2016, pp. 2464–2469.

[3] K. Berestizshevsky and G. Even, Dynamically Sacrificing Accuracy for Re-
duced Computation: Cascaded Inference Based on Softmax Confidence. Cham:
Springer International Publishing, 2019, pp. 306–320.

[4] P. Panda, A. Sengupta, and K. Roy, “Conditional deep learning for
energy-efficient and enhanced pattern recognition,” CoRR, vol. abs/1509.08971,
2015. [Online]. Available: http://arxiv.org/abs/1509.08971

[5] E. Demir, “Early-exit convolutional neural networks,” Master’s thesis, Middle
East Technical University, 2019.

[6] X. Wang, F. Yu, Z.-Y. Dou, T. Darrell, and J. E. Gonzalez, SkipNet: Learning
Dynamic Routing in Convolutional Networks. Cham: Springer International
Publishing, 2018, pp. 420–436.

[7] X. Dai, X. Kong, and T. Guo, “Epnet: Learning to exit with flexible multi-
branch network,” in Proceedings of the 29th ACM International Conference on
Information & Knowledge Management, ser. CIKM ’20. New York, NY, USA:
Association for Computing Machinery, 2020, p. 235–244. [Online]. Available:
https://doi.org/10.1145/3340531.3411973

[8] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra,
and M. A. Riedmiller, “Playing atari with deep reinforcement learning,” CoRR,
vol. abs/1312.5602, 2013. [Online]. Available: http://arxiv.org/abs/1312.5602

[9] Y. F. Chen, M. Everett, M. Liu, and J. P. How, “Socially aware motion
planning with deep reinforcement learning,” CoRR, vol. abs/1703.08862, 2017.
[Online]. Available: http://arxiv.org/abs/1703.08862

[10] K. Cao, Y. Liu, G. Meng, and Q. Sun, “An overview on edge computing re-
search,” IEEE access, vol. 8, pp. 85 714–85 728, 2020.

[11] Z. Zhou, X. Chen, E. Li, L. Zeng, K. Luo, and J. Zhang, “Edge intelligence:
Paving the last mile of artificial intelligence with edge computing,” Proceedings
of the IEEE, vol. 107, no. 8, pp. 1738–1762, 2019.

[12] A. N. Kolmogorov, “Three approaches to the quantitative definition of
information,” International Journal of Computer Mathematics, vol. 2, no. 1-4, pp.
157–168, 1968. [Online]. Available: https://doi.org/10.1080/00207166808803030

61

BIBLIOGRAPHY

[13] J. G. Snodgrass and M. Vanderwart, “A standardized set of 260 pictures: norms
for name agreement, image agreement, familiarity, and visual complexity.” Jour-
nal of experimental psychology. Human learning and memory, vol. 6 2, pp. 174–
215, 1980.

[14] C. Heaps and S. Handel, “Similarity and features of natural textures,” Journal
of Experimental Psychology: Human Perception and Performance, vol. 25, pp.
299–320, 04 1999.

[15] F. Branchaud-Charron, A. Achkar, and P.-M. Jodoin, “Spectral metric for
dataset complexity assessment,” 2019.

[16] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand,
M. Andreetto, and H. Adam, “Mobilenets: Efficient convolutional neural
networks for mobile vision applications,” CoRR, vol. abs/1704.04861, 2017.
[Online]. Available: http://arxiv.org/abs/1704.04861

[17] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep
convolutional neural networks,” in Advances in Neural Information Processing
Systems, F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger, Eds.,
vol. 25. Curran Associates, Inc., 2012. [Online]. Available: https://proceedings.
neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf

[18] T.-Y. Lin, M. Maire, S. Belongie, L. Bourdev, R. Girshick, J. Hays, P. Perona,
D. Ramanan, C. L. Zitnick, and P. Dollár, “Microsoft coco: Common objects in
context,” 2015.

[19] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” 2017.

[20] A. Vashist, S. V. Vidya Shanmugham, S. M. P D, and A. Ganguly, “Dqn based
exit selection in multi-exit deep neural networks for applications targeting sit-
uation awareness,” in IEEE International Conference on Consumer Electronics
(ICCE), 2022.

[21] A. Krizhevsky, “Learning multiple layers of features from tiny images.” [Online].
Available: https://www.cs.toronto.edu/∼kriz/learning-features-2009-TR.pdf

[22] Y. Le and X. Yang, “Tiny imagenet visual recognition challenge,” 2015.

[23] A. Kurian, “Latency analysis and reduction in a 4g network,” Master’s thesis,
TU Delft, 2018.

[24] S. Jun, Y. Kang, J. Kim, and C. Kim, “Ultra-low-latency services in 5g systems:
A perspective from 3gpp standards,” ETRI journal, vol. 42, no. 5, pp. 724–736,
2020.

[25] S. Shukla, P. D. Sai Manoj, G. Kolhe, and S. Rafatirad, “On-device malware
detection using performance-aware and robust collaborative learning,” in 2021
58th ACM/IEEE Design Automation Conference (DAC), 2021, pp. 967–972.

62

	Impact of Image Complexity on Early Exit Neural Networks for Edge Applications
	Recommended Citation

	tmp.1673367805.pdf.2vik3

