
Rochester Institute of Technology Rochester Institute of Technology

RIT Digital Institutional Repository RIT Digital Institutional Repository

Theses

12-2021

Test Naming Failures. An Exploratory Study of Bad Naming Test Naming Failures. An Exploratory Study of Bad Naming

Practices in Test Code Practices in Test Code

Zachariah Wigent
zxw4320@rit.edu

Follow this and additional works at: https://repository.rit.edu/theses

Recommended Citation Recommended Citation
Wigent, Zachariah, "Test Naming Failures. An Exploratory Study of Bad Naming Practices in Test Code"
(2021). Thesis. Rochester Institute of Technology. Accessed from

This Thesis is brought to you for free and open access by the RIT Libraries. For more information, please contact
repository@rit.edu.

https://repository.rit.edu/
https://repository.rit.edu/theses
https://repository.rit.edu/theses?utm_source=repository.rit.edu%2Ftheses%2F11053&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.rit.edu/theses/11053?utm_source=repository.rit.edu%2Ftheses%2F11053&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository@rit.edu

Test Naming Failures. An
Exploratory Study of Bad Naming

Practices in Test Code

by

Zachariah Wigent

A Thesis Submitted in Partial Fulfillment of the Requirements for the

Degree of Master of Science in Software Engineering

Supervised By

Dr. Mohamed Wiem Mkaouer

Dr. Christian Newman

Department of Software Engineering

B. Thomas Golisano College of Computing and Information Sciences

Rochester Institute of Technology

Rochester, NY

December 2021

Committee Approval:

__

Dr. J Scott Hawker Date

SE Graduate Program Director

__

Dr. Christian Donald Newman Date

Assistant Professor

__

Dr. Mohamed Wiem Mkaouer Date

Assistant Professor

To my family and friends, for their continued support and encouragement.

Acknowledgments

Accomplishing this work would not have been possible single-handedly. I am

grateful to the many individuals who supported, advised, and encouraged me

throughout this process.

My thanks to my advisors, Dr. Mohamed Wiem Mkaouer and Dr. Chris-

tian D. Newman, for their dedication and guidance with this research. This

work would not have been possible without their knowledge and experience.

Thank you to all the friends and colleagues who provided me with en-

couragement and support throughout my Maser’s program. Many thanks also

to my family for their continued support and encouragement in pursuing my

Maser of Science in Software Engineering.

i

Abstract

Unit tests are a key component during the software development process,

helping ensure that a developer’s code is functioning as expected. Develop-

ers interact with unit tests when trying to understand, maintain, and when

updating code. Good test names are essential for making these various pro-

cesses easier, which is important considering the substantial costs and effort

of software maintenance.

Despite this, it has been found that the quality of test code is often lacking,

specifically when it comes to test names. When a test fails, its name is often

the first thing developers will see when trying to fix the failure, therefore it is

important that names are of high quality in order to help with the debugging

process.

The objective of this work was to find anti-patterns having to do with test

method names that may have a negative impact on developer comprehension.

In order to do this, a grounded theory study was conducted on 12 open-

source Java and C# GitHub projects. From this dataset, many patterns were

discovered to be common throughout the test code. Some of these patterns fit

the necessary criteria of anti-patterns that would probably hinder developer

comprehension. With the avoidance of these anti-patterns it is believed that

developers will be able to write better test names that can help speed the time

to debug errors as test names will be more comprehensive.

ii

Contents

1 Introduction 1

2 Related Work 3
2.1 Importance of Method Names 3
2.2 Patterns in Method Names . 3
2.3 Test Method Patterns . 4
2.4 Grounded Theory . 5

3 Research Objective 6
3.1 Motivation . 6
3.2 Contribution . 6
3.3 Research Questions . 7

4 Methodology 8
4.1 Literature Review . 8

4.1.1 Importance of Method Names 9
4.1.2 Patterns in Method Names 9
4.1.3 Test Method Patterns 10

4.2 Data Collection & Analysis . 10

5 Analysis & Discussion 14
5.1 RQ1: What Test Naming Trends can be Identified by Examin-

ing the Name of a Test and Comparing it to its Implementation? 14
5.1.1 Discovered Test Naming Patterns 14

5.2 RQ2: Are There Test Naming Patterns that Violate the Found
Trends? . 21
5.2.1 Potential Anti-Patterns 22

5.3 Takeaways . 24

6 Threats to Validity 26
6.1 Construct Validity . 26
6.2 Internal Validity . 26
6.3 External Validity . 27

7 Conclusion & Future Work 28

iii

List of Figures

4.1 The template followed when analyzing each test method. 11

5.1 Example test method with ”and” in the test name. 15
5.2 Example test method with ”all” in the test name. 16
5.3 Example test method with both ”exception” and ”throws” in

the test name. 17
5.4 Example test method where the object under test is in the test

name. 18
5.5 Example test method with the expected result stated in the test

name. 19
5.6 Example test method with inputs stated in the test name. . . . 19
5.7 Example test method where the test name is a single word. . . 20
5.8 Example test method with the object under test specified in the

file name. 21
5.9 Example test method with an enumerated test name. 22

iv

List of Tables

4.1 Overview of the data collected 11
4.2 Projects surveyed for test data 12

v

Introduction

Unit tests are a key component during the software development process,

helping ensure that a developer’s code is functioning as expected. Developers

interact with unit tests when trying to understand, maintain, or update code.

Good test names are essential for making these processes easier to carrier out

consistently and quickly, which is important considering the substantial costs

and effort of software maintenance [20].

Despite this, it has been found that the quality of test code is often lacking

[24]. One of these areas that is often lacking is test names. When a test fails,

or when the test base requires maintenance, the test names are the first thing

developers will generally attempt to understand before they apply changes to

the test or the code being tested. If test names are poor quality, developers

will need to spend time reading the code and determining how the test’s actual

behavior is related to its name [36].

Determining whether a test name is high- or low-quality is difficult due to

the subjective nature of identifier names. However, there are some objective

ways to measure the quality of a name. Specifically, when an identifier name

is contrary to the behavior of the entity it represents. That is, if a test name

is contrary to the test behavior, we can objectively say that the name can

be improved. Thus, this thesis aims to discover patterns in test names that

may limit developer comprehension using grounded theory to help us gain a

qualitative and quantitative perspective on what a normal test name looks like

and what test name anti-patterns look like. These anti-patterns are common

practices used by developers that may be detrimental to their comprehension

1

2

of test code. The goal of this thesis is to create a taxonomy of test naming

patterns and anti-patterns based on an empirical, grounded-theory study.

Paper Structure Section 2 provides an overview of the related work. Section

3 discusses the research objectives. Section 4 goes through the methodology

used to conduct this study. The results are discussed in section 5. The validity

aspects of the study are discussed in section 6 and the paper is concluded in

section 7 with a summary of the results and a discussion of future work.

Related Work

Several studies have looked at how to improve software maintenance through

either detecting bad programming practices [2,4,8,25,30,31,33], or correcting

them [5,6, 7, 9, 10,10,11,12,13,29,34].

This section discusses related work, concerning (i) the importance of method

names (Section 2.1), (ii) patterns in method names (Section 2.2), (iii) patterns

in test methods (Section 2.3, and (iv) grounded theory (Section 2.4).

2.1 Importance of Method Names

Identifiers are an important aspect of programming comprehension, and

they are often the starting point for program comprehension as shown by

Merlo et al. [26], Caprile and Tonella [18,19], and Anquetil and Lethbridge [14].

Further, Wu and Clause [36] show that test method identifiers are often the

first thing a developer will look at when trying to understand a test failure.

Lin et al. [24] looked at the quality of identifiers in test suites and compared

them to production identifiers, showing that identifiers in test suites are of

poor quality. Automatically generated test suites demonstrated even more

quality concerns.

2.2 Patterns in Method Names

Linguistic anti-patterns were defined by Arnaoudova et al. [16] as patterns

in code identifiers and comments that are misleading to the developer. Ar-

naodova et al. evaluated these anti-patterns in another study [15] where it

3

4

was found that the majority of developers perceived these patterns as poor

practices that should be avoided. Further research has been done on how often

these linguistic anti-patterns occur [17], how to detect them [1] and how they

can be used to improve automated naming tools [3].

In an empirical study on 5,000 open-source projects, Zhang et al. [39] ob-

served that nouns, verbs, and adjectives are three of the most common part

of speech tags utilized by developers in crafting identifier names. Newman et

al. [28] found similar results looking at grammar patterns in identifier names

developers used to describe program behavior. They observed a set of gram-

mar patterns included: noun phrases as one of the most common grammar

patterns, function identifiers are more likely to be represented by a verb phrase,

and collection types frequently utilize a plural head-noun. Peruma et al. [32]

looked at grammar patterns in test method names and found that certain

words are frequently used with specific code behaviors. Høst and Østvold [23]

proposed a set of naming rules based on their examination of unusual method

names. These rules take utilize part of speech tags along with the return type,

control flow, and parameters of the method to detect naming violations based

on their set of rules.

2.3 Test Method Patterns

Zhang et al. [37] used natural language techniques to parse test method

names in order to automatically generate templates for the test methods. They

used the action phrase and the predicate phrase found in the test method

name in order to generate their templates with over 80% accuracy. In another

5

study [38] they took the body of a test method and generated descriptive names

for that test method. In their approach, the authors analyzed the statements

within the test method to determine the action, expected outcome, and sce-

nario under test. An approach to automatically generate short descriptive test

method names was developed by Daka et al. [20] based on API-level coverage

goals. The results of using these naming patterns were evaluated by surveying

47 students and found to be as descriptive as manually created test names. Wu

and Clause [36] utilized a set of test patterns to identify non-descriptive test

method names and provide developers with information for a more descriptive

name. These test patterns allow for the extraction of the action, predicate,

and scenario from the current test name and body so they can be evaluated

for descriptiveness.

2.4 Grounded Theory

Grounded theory is a research method that allows for systematic and evi-

dence based development of theories. This research pattern was developed by

Glaser and Strauss [21] in order to create theories rather than validate existing

ones. Applying this to software engineering is becoming more and more com-

mon but has many challenges as noted by Klaas-Jan et al. [35]. They analyzed

98 computer science articles that claimed to use grounded theory and found

them to be lacking, leading them to develop guidelines for future researchers

using grounded theory in software engineering. Socio-technical grounded the-

ory is a specific branch of grounded theory developed by Hoda [22] in order

to provide concrete guidelines for research in software engineering.

Research Objective

3.1 Motivation

Test code and its comprehension is an important part of the software de-

velopment cycle. Test names are often the first clue that developers have to

assist them in determining what happened during a test failure [36] or what

parts of the system have already been tested when they are attempting to

add or maintain tests, so high-quality identifier names are highly important

to developer productivity and comprehension. There have been many studies

on what qualifies as a good test name [20, 24, 24], but no studies that have

explicitly explored whether test names have their own linguistic anti-patterns.

An increased understanding of test linguistic anti-patterns can highlight how

developers use test names to understand behavior. It can also highlight the

difference between production code and test code anti-patterns, making it very

important to fully document and understand test code anti-patterns so that

we may then compare how test and production code differ or are similar in

how their names convey code behavior.

3.2 Contribution

The main contribution of this study is the creation of a comprehensive tax-

onomy of unit test naming patterns. These patterns have then been analyzed

in order to find common patterns, and anti-patterns, based on available open

source test suites. This in-depth analysis of the test naming patterns to find

6

7

the common flaws in test naming conventions is a valuable addition to test

naming research.

3.3 Research Questions

These patterns in unit test names were analyzed through a grounded theory

study in order to answer the following research questions:

• RQ1: What test naming trends can be identified by examining

the name of a test and comparing it to its implementation?

This question seeks to find if unit test names that can be categorized

into specific patterns. In order to find anti-patterns in test naming, it

first needs to be shown that test names follow specific patterns. This

study found a variety of trends that commonly occur in test code.

• RQ2: Are there test naming patterns that violate the found

trends? The study found that there are test naming trends that are in

opposition to one another. There are also many common patterns that

are used, but not followed in many cases.

Methodology

Grounded theory is a research method that allows for systematic and

evidence-based development of theories. Socio-technical grounded theory [22]

is a specific branch of grounded theory that was used to conduct this study on

naming patterns within test code. The first step in this process is to conduct

a small literature review and come up with initial research questions that will

evolve as the study progresses. After this review data collection begins along

with the coding and memoing of the data. Once enough data is collected

analysis is done to see what conclusions can be drawn and the research ques-

tions are updated accordingly. The dataset for this study included 12 projects,

shown in figure 4.2, with a total of 457 tests analyzed.

4.1 Literature Review

A light literature review was conducted in order to ensure that the topic

would be a viable research contribution. The review was kept small in order

to prevent existing concepts from influencing the patterns that are discovered

during the study. This allowed for an area to be chosen and research to begin so

that more literature could be analyzed as the theory emerged to help validate

the results found. The review is divided into three areas: the importance of

method names, grammar patterns found in method names, and patterns in

test method names

The review showed that while many studies have been conducted on the

good practices and patterns used in test naming, there have been no studies

8

9

that have specifically looked at anti-patterns present in test names. Anti-

patterns have been discovered in other areas of source code [16], but this

research is lacking when it comes to test code.

4.1.1 Importance of Method Names

Identifiers are an important aspect of programming comprehension, and

they are often the starting point for program comprehension as shown by

Merlo et al. [26], Caprile and Tonella [18,19], and Anquetil and Lethbridge [14].

Further, Wu and Clause [36] show that test method identifiers are often the

first thing a developer will look at when trying to understand a test failure.

4.1.2 Patterns in Method Names

In an empirical study on 5,000 open-source projects, Zhang et al. [39]

observed that nouns, verbs, and adjectives are three of the most common

part of speech tags utilized by developers in crafting identifier names. New-

man et al. [28] found similar results looking at grammar patterns in identifier

names developers used to describe program behavior. They observed a set of

grammar patterns included: noun phrases as one of the most common gram-

mar patterns, function identifiers are more likely to be represented by a verb

phrase, and collection types frequently utilize a plural head-noun. Høst and

Østvold [23] proposed a set of naming rules based on their examination of un-

usual method names. These rules take utilize part of speech tags along with

the return type, control flow, and parameters of the method to detect naming

violations based on their set of rules.

10

4.1.3 Test Method Patterns

Zhang et al. [37] used natural language techniques to parse test method

names in order to automatically generate templates for the test methods. They

used the action phrase and the predicate phrase found in the test method

name in order to generate their templates with over 80% accuracy. In another

study [38] they took the body of a test method and generated descriptive

names for that test method. In their approach, the authors analyzed the

statements within the test method to determine the action, expected outcome,

and scenario under test. Wu and Clause [36] utilized a set of test patterns

to identify non-descriptive test method names and provide developers with

information for a more descriptive name. These test patterns allow for the

extraction of the action, predicate, and scenario from the current test name

and body so they can be evaluated for descriptiveness.

4.2 Data Collection & Analysis

There are two main aspects to data collection in a socio-technical grounded

theory study: coding and memoing. Coding is the process of taking raw

data and capturing it in a way that best captures its essence and meaning.

Memoing is the documenting of the researcher’s thoughts and ideas regarding

the emerging concepts, categorizing them, and looking for links between them

[22].

The first step in this research was to do open coding on random test code

to see what data and patterns may arise. After this was done, a template, seen

in figure 4.1, that better captured the main factors that impacted test naming

11

of Test in Population 16035

of Tests Coded 457

of Memos Created 317

of Patterns Discovered 11

of Anti-Patterns Discovered 4

Table 4.1: Overview of the data collected

was constructed to begin more advanced coding. This template is designed to

gather all relevant project details, so the test method can be properly traced

to its source, collect all necessary test naming information, and collect relevant

information about the contents of the tests. The aspects of the template were

continuously improved in order for the template to accurately capture whether

there was an anti-pattern or not. This stage of the data collection took a total

of 9 weeks with approximately 50 tests coded per week and a resulted in a

statistical sample with a 95% confidence level with a 4.52% confidence interval.

Projects were selected at random from previous research into curating

repositories for research [27] along with popular GitHub repositories. These

Figure 4.1: The template followed when analyzing each test method.

12

Project Name Contributors Language KLOC

Bazel 726 Java 1900

druid 150 Java 585.1

Dubbo 363 Java 359.6

ExoPlayer 200 Java 2900

HBase 360 Java 1400

jclouds 230 Java 739.6

Keycloak 507 Java 2900

NewPipe 616 Java 141.9

Pulsar 460 Java 2500

FileSystem 30 C# 14.7

MonoGame 314 C# 252.4

VIPR 8 C# 39.9

Table 4.2: Projects surveyed for test data

projects are listed in table 4.2. For each project the template was applied to

an average of 37 tests across multiple files in order to gather an appropriate

dataset.

Once these more advanced codings were collected it was possible to begin

memoing the data. The first step was just to document for each coding what

the factors influencing the method name were, if any. These were then placed

into a spreadsheet and compared to one another in order to find potential

patterns. This analysis was done manually by searching through and finding

memos that documented similar phenomenon with test method names. These

groupings of basic memos were then further analyzed and refined in order to

come up with actual patterns that were common among many of the test names

was done. The resultant pattern set from this analysis is described in section

5.1.1. Once these initial patterns were documented, they were compared and

further analyzed to see if they represented good coding practices or what the

13

researcher would consider anti-patterns. The anti-patterns that resulted from

this analysis are described in section 5.2.1.

Analysis & Discussion

The goal of this research was to find common anti-patterns that occur

in test names. In order to accomplish this, a study was conducted to find

general test naming trends, which were used to help identify potential test

naming anti-patterns. The rest of this section goes over the results of the data

analysis and the research questions.

5.1 RQ1: What Test Naming Trends can be Iden-

tified by Examining the Name of a Test and

Comparing it to its Implementation?

There were many naming trends discovered throughout the course of this

study. These trends showed themselves throughout many of the projects and

test files analyzed. The rest of this section describes the various trends that

were discovered as a result of this study.

5.1.1 Discovered Test Naming Patterns

”Test” Prefixed on the Method Name

One common pattern that was seen in 54% of the tests analyzed was the

method name starting with ”test”. This shows a common practice of many

developers when coming up with tests name is to explicitly state that a method

is a test.

14

15

”And” in Test Name

There were 13 tests found with the word ”and” in their method name. The

majority of these tests were larger functions that contained multiple asserts

showing that having ”and” in a test name leads to a specific test behavior.

An example of this is shown in figure 5.1 which shows the relativeURIsAnd-

Contexts test method which has multiple asserts on the populate method.

Figure 5.1: Example test method with ”and” in the test name.

16

”All” in Test Name

”All” was not a commonly found word in test names, but it was strongly

tied to a specific test behavior. While only seen in 3 of the tests analyzed,

each of the tests either had loops or iterated over a collection in some way.

This showed that ”all” is a word used by developers when a test has some sort

of loop or iteration on data. Figure 5.2 shows the testAll function from the

jclouds project, which loops over the apiMetadata object.

Figure 5.2: Example test method with ”all” in the test name.

”Exception” in Test Name

The word ”exception” was seen in 9 test names, and each of these tests were

expected to throw or test for a specific exception. This is a logical pattern to

find, as it makes clear the test behavior is to test for an exception. BuildMani-

17

fest ThrowsInvalidOperationException WhenTryingToAddAFileWithTheSame

NameAsAFolder is a method in the FileSystem project shown in figure 5.3

which exhibits this behavior.

“Throws” in Test Name

Very similar to having ”exception” in the test name, ”throws” in the test

name was present in 7 tests that threw exceptions. These patterns often oc-

curred together but did occasionally occur separately, which is why they are

counted as two separate patterns. BuildManifest ThrowsInvalidOperation

Exception WhenTryingToAddAFileWithTheSameNameAsAFolder is a method

in the FileSystem project shown in figure 5.3 which exhibits this behavior.

Figure 5.3: Example test method with both ”exception” and ”throws” in the
test name.

18

Test Names Contain the Name of the Function Under Test

Having the name of the function under test included in the test method

name is a common practice among the tests analyzed. This practice allows

the test runner to know what function is being tested by any given test, which

helps with comprehension. An example from the ExoPlayer project is shown

in figure 5.4 where the method open is being tested in the requestOpen method.

Figure 5.4: Example test method where the object under test is in the test
name.

Test Names State the Expected Test Result

Many of the tests that were analyzed stated the expected results of the

test. This practice ensures that the person running a test knows the result

that is expected on a test failure. Figure 5.5 shows an example from the

Bazel project where an empty string is the result tested for in the function

emptyStringYieldsEmptyList.

Test Names State the Required Inputs

Stating the inputs for a test is a pattern that should help to improve de-

veloper comprehension. If a developer knows the inputs or preconditions for a

19

Figure 5.5: Example test method with the expected result stated in the test
name.

test method, it makes the method behavior much more clear. For example, the

method testIsValidDirectoryPathWithEmptyString from the NewPipe project,

shown in figure 5.6, clearly states that the expected input is an empty string.

Figure 5.6: Example test method with inputs stated in the test name.

Single Word Test Name or ”Test” and a Single Word Test Name

A pattern that was seen among 40 test names was for them to contain

either a single word or a single word and the word ”test”. This pattern was

shown to have a variety of different test behaviors, ranging from very simple

to highly complex. An example of this is shown in figure 5.7. The testHas

function just states the method under test, has, but the body of the method

tests multiple different types of inputs.

20

Figure 5.7: Example test method where the test name is a single word.

Object Under Test is Specified in the File Name

There were some test files, specifically those in the Vipr project where

this pattern occurred for all tests, that had good descriptions, but the object

under test was unclear. These tests were often structured in a it returns X

pattern where it is the file name. An example of this is shown in figure 5.8.

The test method It returns an odcm model is clear about the return type, but

the object that should be making this return is ambiguous. With the file

name Given a valid edmx when passed to the ODataReader it becomes clear

that the object under test is the ODataReader.

Enumerated Test Names have Similar, But Different Functionality

There were at least 10 tests found that had enumerated names. These

are tests with similar names, but only differing by an enumeration number or

letter. All of these tests tended to have similar functionality within the same

21

Figure 5.8: Example test method with the object under test specified in the
file name.

file, but they tested slightly different things. The example shown in figure 5.9

shows one such instance of this.

5.2 RQ2: Are There Test Naming Patterns that

Violate the Found Trends?

Of the many patterns discovered, some are considered to be anti-patterns.

These are patterns that the researcher feels limit developer comprehension

or are in opposition to some other patterns found. These anti-patterns are

discussed in the rest of this section.

22

Figure 5.9: Example test method with an enumerated test name.

5.2.1 Potential Anti-Patterns

”And” in Test Name

Having ”and” in the test name is considered an anti-pattern as these meth-

ods tend to be large functions testing multiple different things. A true unit

test should only be testing one type of functionality, but these ”and” functions

are often testing many test cases.

23

Single Word Test Name or ”Test” and a Single Word Test Name

Single word test names are not descriptive, and test names need to be

descriptive in order to provide comprehensive value to the developer. A single

word does not offer enough information about what a test is doing, which

forces a developer to look at the test in order to understand it. The range

of behavior that was found with tests that exhibited this pattern is another

reason this is considered an anti-pattern. Methods following this pattern were

shown to be very short, containing just a single assert statement, or very long,

being well over 50 lines. This showed that there was no real pattern between

the behavior inside the test and the test name, other than the potential for

the one word to be the method under test.

Object Under Test and is Specified in the File Name

This could be considered a valid pattern. Many of the methods following

this pattern were very comprehensive as long as the file name was known.

However, it is considered an anti-pattern because it contradicts two of the

other found patterns: test names contain the name of the function under test

and test name states the required inputs. While both the object under test

and sometimes potential preconditions were found in the file name for test

following this pattern, the it returns X pattern is still unclear to someone who

is unaware of this test naming scheme.

24

Enumerated Test Names have Similar, But Different Functionality

Enumerated test names are a known bad practice. It is almost impossi-

ble to know the difference in what they are testing without looking at their

implementation. This defeats the main purpose of a test name in helping a

developer comprehend a test. Even with some more descriptive test names for

the example in figure 5.9, like testSampleFailureA and testSampleFailureB, it

would not be possible to know the difference between these methods without

looking at their implementations.

5.3 Takeaways

Tests Names Share Common Words With Their Implementation

Out of the 12 projects and 457 tests surveyed, it was shown that 52% of the

assert statements analyzed had words in common with the method name. This

shows that the patterns test names contain the name of the function under

test, test names state the expected result, and test names state the required

inputs are all fairly common. These patterns are also viewed as some of the

best practices to follow for improved developer comprehension.

Test Names Should be More than One Word

Single word test names are not descriptive, and test names must be de-

scriptive to provide comprehensive value to developers. A single word does not

offer enough information about what a test is doing, which forces a developer

to look at the test in order to understand it. About 9% of the tests analyzed

25

fell into the single word test name or ”test” and a single word test name, which

show that this pattern is not followed in the majority of test names.

Some Words Correlate to Specific Types of Behavior

While many of the grammar patterns shown did not have a high rate of

occurrence, when they did occur it was almost always linked to a specific type

of behavior. This was true for all of the following patterns: ”and” in test

name, ”all” in test name, ”exception” in test name, ”throws” in test name.

The anti-patterns ”and” in test name and enumerated test names have similar,

but different functionality did have this high correlation between behavior

and test name, but the exhibited behavior and names respectively are viewed

negatively.

Threats to Validity

This section goes over factors that may impact the applicability of the

observations to the real world. It is split into 3 sections: construct, internal,

and external validity.

6.1 Construct Validity

This goes over challenges faced that validate whether the findings of this

study reflect real-world conditions. The main threat here is whether the sam-

ple of 12 open-source projects, 3 being written in C# and 9 written in Java,

represent real-world conditions. With a total of 457 unit tests being extracted,

this sample is considered accurate as this is an appropriate statistical sample

with a 95% confidence level and a 4.52% confidence interval. Therefore, the

results of this study should be accurate for other open-source projects, but

may not correlate to proprietary systems. Another threat is that the analysis

and collection of the test data was done solely by the author. This is mitigated

through the use of grounded theory in order to take this subjective data and

objectify it through coding and memoing. Having multiple people collect and

review the data would have helped to mitigate this threat.

6.2 Internal Validity

Internal validity pertains to the uncontrolled factors that interfere with

the results of the study. The main threat here is bias from the author in

the finding of test naming patterns. This is mitigated through the use of

26

27

grounded theory in order to take this subjective data and objectify it through

coding and memoing. Having multiple people collect and review the data also

would have helped to mitigate this threat. Another threat was the experience

of the developer with test naming practices. This was mitigated through

the literature review conducted, allowing the author to gain experience with

current test naming practices.

6.3 External Validity

The main external threat to validity with this study was that only open

source projects publicly available on GitHub were analyzed for this study.

These projects are not representative of all projects in the field, but do provide

a good base for finding the preliminary trends that can be analyzed in future

work. Also, the random selection of test files analyzed in each of the projects

runs the risk of not being a representative selection of the test code, which

further limits the generalizability.

Conclusion & Future Work

The objective of this work was to find anti-patterns having to do with test

method names that may have a negative impact on developer comprehension.

In order to do this a grounded theory study was conducted on 12 open-source

Java and C# GitHub projects. From this dataset many patterns were dis-

covered to be common throughout the test code. Some of these patterns fit

the necessary criteria of anti-patterns that would probably hinder developer

comprehension. With the avoidance of these anti-patterns, it is believed that

developers will be able to write better test names that can help speed the time

to debug errors, as test names will be more comprehensive.

There are many things that can be done in order to improve upon this

research. The first is to verify these anti-patterns are correct, both with ex-

pert analysis and with a more diverse sample. This would mitigate many of

the threats to the accuracy and generalizability of this research. The other

potential for future work with these patterns is on improving automatic test

naming tools. By following the good practices found and avoiding the use

of the anti-patterns discovered, better test names and naming tools can be

created.

28

Bibliography

[1] Emad Aghajani, Csaba Nagy, Gabriele Bavota, and Michele Lanza. A
large-scale empirical study on linguistic antipatterns affecting apis. In
2018 IEEE International Conference on Software Maintenance and Evo-
lution (ICSME), pages 25–35. IEEE, 2018.

[2] Wajdi Aljedaani, Anthony Peruma, Ahmed Aljohani, Mazen Alotaibi,
Mohamed Wiem Mkaouer, Ali Ouni, Christian D Newman, Abdullatif
Ghallab, and Stephanie Ludi. Test smell detection tools: A system-
atic mapping study. Evaluation and Assessment in Software Engineering,
pages 170–180, 2021.

[3] Miltiadis Allamanis, Earl T Barr, Christian Bird, and Charles Sutton.
Suggesting accurate method and class names. In Proceedings of the 2015
10th Joint Meeting on Foundations of Software Engineering, pages 38–49,
2015.

[4] Eman AlOmar, Mohamed Wiem Mkaouer, and Ali Ouni. Can refactoring
be self-affirmed? an exploratory study on how developers document their
refactoring activities in commit messages. In 2019 IEEE/ACM 3rd In-
ternational Workshop on Refactoring (IWoR), pages 51–58. IEEE, 2019.

[5] Eman Abdullah AlOmar, Hussein AlRubaye, Mohamed Wiem Mkaouer,
Ali Ouni, and Marouane Kessentini. Refactoring practices in the con-
text of modern code review: An industrial case study at xerox. In
2021 IEEE/ACM 43rd International Conference on Software Engineer-
ing: Software Engineering in Practice (ICSE-SEIP), pages 348–357.
IEEE, 2021.

[6] Eman Abdullah AlOmar, Ben Christians, Mihal Busho, Ahmed Hamad
AlKhalid, Ali Ouni, Christian Newman, and Mohamed Wiem Mkaouer.
Satdbailiff-mining and tracking self-admitted technical debt. Science of
Computer Programming, 213:102693, 2022.

[7] Eman Abdullah AlOmar, Mohamed Wiem Mkaouer, Christian Newman,
and Ali Ouni. On preserving the behavior in software refactoring: A
systematic mapping study. Information and Software Technology, page
106675, 2021.

[8] Eman Abdullah AlOmar, Mohamed Wiem Mkaouer, Ali Ouni, and
Marouane Kessentini. On the impact of refactoring on the relationship
between quality attributes and design metrics. In 2019 ACM/IEEE In-
ternational Symposium on Empirical Software Engineering and Measure-
ment (ESEM), pages 1–11. IEEE, 2019.

29

30

[9] Eman Abdullah AlOmar, Anthony Peruma, Mohamed Wiem Mkaouer,
Christian Newman, Ali Ouni, and Marouane Kessentini. How we refactor
and how we document it? on the use of supervised machine learning
algorithms to classify refactoring documentation. Expert Systems with
Applications, 167:114176, 2021.

[10] Eman Abdullah AlOmar, Anthony Peruma, Mohamed Wiem Mkaouer,
Christian D Newman, and Ali Ouni. Behind the scenes: On the relation-
ship between developer experience and refactoring. Journal of Software:
Evolution and Process, page e2395, 2021.

[11] Eman Abdullah AlOmar, Anthony Peruma, Christian D Newman, Mo-
hamed Wiem Mkaouer, and Ali Ouni. On the relationship between devel-
oper experience and refactoring: An exploratory study and preliminary
results. In Proceedings of the IEEE/ACM 42nd International Conference
on Software Engineering Workshops, pages 342–349, 2020.

[12] Eman Abdullah AlOmar, Philip T Rodriguez, Jordan Bowman, Tianjia
Wang, Benjamin Adepoju, Kevin Lopez, Christian Newman, Ali Ouni,
and Mohamed Wiem Mkaouer. How do developers refactor code to im-
prove code reusability? In International Conference on Software and
Software Reuse, pages 261–276. Springer, 2020.

[13] Eman Abdullah AlOmar, Tianjia Wang, Raut Vaibhavi, Mohamed Wiem
Mkaouer, Christian Newman, and Ali Ouni. Refactoring for reuse: An
empirical study. Innovations in Systems and Software Engineering, pages
1–31, 2021.

[14] Nicolas Anquetil and Timothy C Lethbridge. Assessing the relevance of
identifier names in a legacy software system. In CASCON, volume 98,
page 4, 1998.

[15] Venera Arnaoudova, Massimiliano Di Penta, and Giuliano Antoniol. Lin-
guistic antipatterns: What they are and how developers perceive them.
Empirical Software Engineering, 21(1):104–158, 2016.

[16] Venera Arnaoudova, Massimiliano Di Penta, Giuliano Antoniol, and
Yann-Gael Gueheneuc. A new family of software anti-patterns: Lin-
guistic anti-patterns. In 2013 17th European Conference on Software
Maintenance and Reengineering, pages 187–196. IEEE, 2013.

31

[17] Nemania Borovits, Indika Kumara, Parvathy Krishnan, Stefano Dalla
Palma, Dario Di Nucci, Fabio Palomba, Damian A Tamburri, andWillem-
Jan van den Heuvel. Deepiac: deep learning-based linguistic anti-pattern
detection in iac. In Proceedings of the 4th ACM SIGSOFT International
Workshop on Machine-Learning Techniques for Software-Quality Evalu-
ation, pages 7–12, 2020.

[18] Bruno Caprile and Paolo Tonella. Restructuring program identifier
names. In icsm, pages 97–107, 2000.

[19] C Caprile and Paolo Tonella. Nomen est omen: Analyzing the language of
function identifiers. In Sixth Working Conference on Reverse Engineering
(Cat. No. PR00303), pages 112–122. IEEE, 1999.

[20] Ermira Daka, José Miguel Rojas, and Gordon Fraser. Generating unit
tests with descriptive names or: Would you name your children thing1
and thing2? In Proceedings of the 26th ACM SIGSOFT International
Symposium on Software Testing and Analysis, pages 57–67, 2017.

[21] Barney G Glaser and Anselm L Strauss. Discovery of grounded theory:
Strategies for qualitative research. Routledge, 2017.

[22] Rashina Hoda. Socio-technical grounded theory for software engineering.
arXiv preprint arXiv:2103.14235, 2021.

[23] Einar W Høst and Bjarte M Østvold. Debugging method names. In
European Conference on Object-Oriented Programming, pages 294–317.
Springer, 2009.

[24] Bin Lin, Csaba Nagy, Gabriele Bavota, Andrian Marcus, and Michele
Lanza. On the quality of identifiers in test code. In 2019 19th Interna-
tional Working Conference on Source Code Analysis and Manipulation
(SCAM), pages 204–215. IEEE, 2019.

[25] Licelot Marmolejos, Eman Abdullah AlOmar, Mohamed Wiem Mkaouer,
Christian Newman, and Ali Ouni. On the use of textual feature extraction
techniques to support the automated detection of refactoring documen-
tation. Innovations in Systems and Software Engineering, pages 1–17,
2021.

[26] Ettore Merlo, Ian McAdam, and Renato De Mori. Feed-forward and
recurrent neural networks for source code informal information analysis.
Journal of Software Maintenance and Evolution: Research and Practice,
15(4):205–244, 2003.

32

[27] Nuthan Munaiah, Steven Kroh, Craig Cabrey, and Meiyappan Nagappan.
Curating github for engineered software projects. Empirical Software
Engineering, 22(6):3219–3253, 2017.

[28] Christian D Newman, Reem S AlSuhaibani, Michael J Decker, Anthony
Peruma, Dishant Kaushik, Mohamed Wiem Mkaouer, and Emily Hill. On
the generation, structure, and semantics of grammar patterns in source
code identifiers. Journal of Systems and Software, 170:110740, 2020.

[29] Christian D Newman, Michael J Decker, Reem Alsuhaibani, Anthony
Peruma, Mohamed Mkaouer, Satyajit Mohapatra, Tejal Vishoi, Marcos
Zampieri, Timothy Sheldon, and Emily Hill. An ensemble approach for
annotating source code identifiers with part-of-speech tags. IEEE Trans-
actions on Software Engineering, 2021.

[30] Anthony Peruma, Khalid Almalki, Christian D. Newman, Mo-
hamed Wiem Mkaouer, Ali Ouni, and Fabio Palomba. On the distribution
of test smells in open source android applications: An exploratory study.
In Proceedings of the 29th Annual International Conference on Computer
Science and Software Engineering, CASCON ’19, page 193–202, USA,
2019. IBM Corp.

[31] Anthony Peruma, Khalid Almalki, Christian D. Newman, Mo-
hamed Wiem Mkaouer, Ali Ouni, and Fabio Palomba. Tsdetect: An
open source test smells detection tool. In Proceedings of the 28th ACM
Joint Meeting on European Software Engineering Conference and Sympo-
sium on the Foundations of Software Engineering, ESEC/FSE 2020, New
York, NY, USA, 2020. Association for Computing Machinery.

[32] Anthony Peruma, Emily Hu, Jiajun Chen, Eman Abdullah Alomar,
Mohamed Wiem Mkaouer, and Christian D Newman. Using gram-
mar patterns to interpret test method name evolution. arXiv preprint
arXiv:2103.09190, 2021.

[33] Anthony Peruma, Christian D. Newman, Mohamed Wiem Mkaouer, Ali
Ouni, and Fabio Palomba. An exploratory study on the refactoring of
unit test files in android applications. In Proceedings of the IEEE/ACM
42nd International Conference on Software Engineering Workshops, IC-
SEW’20, page 350–357, New York, NY, USA, 2020. Association for Com-
puting Machinery.

[34] Anthony Peruma, Steven Simmons, Eman Abdullah AlOmar, Christian D
Newman, MohamedWiemMkaouer, and Ali Ouni. How do i refactor this?

33

an empirical study on refactoring trends and topics in stack overflow.
Empirical Software Engineering, 27(1):1–43, 2022.

[35] Klaas-Jan Stol, Paul Ralph, and Brian Fitzgerald. Grounded theory in
software engineering research: A critical review and guidelines. In Pro-
ceedings of the 38th International Conference on Software Engineering,
ICSE ’16, page 120–131, New York, NY, USA, 2016. Association for Com-
puting Machinery.

[36] Jianwei Wu and James Clause. A pattern-based approach to detect and
improve non-descriptive test names. Journal of Systems and Software,
168:110639, 2020.

[37] Benwen Zhang, Emily Hill, and James Clause. Automatically generating
test templates from test names (n). In 2015 30th IEEE/ACM Inter-
national Conference on Automated Software Engineering (ASE), pages
506–511. IEEE, 2015.

[38] Benwen Zhang, Emily Hill, and James Clause. Towards automatically
generating descriptive names for unit tests. In Proceedings of the 31st
IEEE/ACM International Conference on Automated Software Engineer-
ing, pages 625–636, 2016.

[39] Jingxuan Zhang, Siyuan Liu, Junpeng Luo, Jiahui Liang, and Zhiqiu
Huang. Exploring the characteristics of identifiers: A large-scale empirical
study on 5,000 open source projects. IEEE Access, 8:140607–140620,
2020.

	Test Naming Failures. An Exploratory Study of Bad Naming Practices in Test Code
	Recommended Citation

	tmp.1640277029.pdf.Ch7hm

