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Abstract

Our society is increasingly evolving to rely on computer mechanisms that perform a variety

of tasks. From a self-driving car to a satellite in space relaying data from Mars rovers, we

need these systems to perform optimally and without failure. One such point of failure

these systems can encounter is tactic volatility of an adaptation tactic. Adaptation tactics

are defined workflows that allow systems to navigate their environment. Tactic volatility

is the variance in the behavior in the attribute of a tactic, such as cost and latency and/or

the combination of the two. Current systems consider these tactic attributes to be static.

Studies have shown that not accounting for tactic volatility can adversely affect a system’s

ability to operate effectively and resiliently.

To support self-adaptive systems and address their limitations, this paper proposes a

Tactic Volatility Aware solution that utilizes eRNN (TVA-E) and addresses the limitations

of current self-adaptive systems. For this research, we used real-world data that has been

made available for use by researchers and academics. This data contains real-world volatil-

ity and helps us demonstrate the positive impact TVA-E when used in self-adaptive systems.

We also employ the use of uncertainty reduction tactics and how they can assist in account-

ing for tactic volatility. This work will serve as an evaluation and a comparison of using

different machine learning methods to predict and account for tactic volatility.

We will study different predictive mechanisms in this paper: Auto-Regressive Moving

Average (ARIMA), Evolving Recurrent Neural Network (eRNN), Multi-Layer Perceptron

(MLP) and Support Vector Regression (SVR). These methods will be studied with our TVA-

E process and we will analyze how they can enhance a self-adaptive system’s performance

when it accounts for tactic volatility.
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Chapter 1

Introduction

The world is evolving to rely on computer systems that are self-adaptive, autonomous and

require minimal to no human input and assistance. An example of these systems include

self-driving cars, IoT devices such as smart thermostats and medical devices such as smart

insulin pumps. These systems are required to adapt to changes in internal and external

environments. For example, an insulin pump will have to change the rate of flow of insulin

according to it’s hosts blood glucose level. A self driving car will have to adapt its power to

accelerate according to the number of passengers with in the vehicle. These self-adaptive

systems are required to adhere to rigorous operating standards to maintain functionality, ef-

fectiveness and safety. These operating standards are defined in a Service Level Agreement

(SLA) which layout the exact requirements a system should meet [41].

Self-adaptive systems react to the changes in environment with the help of adaptation

tactics. Adaptation tactics are defined workflows that allow systems to navigate their en-

vironment. These tactics are pre-defined according to each system’s Service Level Agree-

ment (SLA) [41]. Example for such adaptaion include a server farm adding new Virtual

Machines (VM) to the stack to meet demand. The amount of machines added and the type

(computational power) depends on the demand. Another example of this is Unmanned

Ariel Vehicles(UAVs) that need to perform an over the air-update (OTA).

These tactics have several attributes such as cost and latency associated with them [52,

57, 49]. Tactic cost is the consumption of resources to perform the said tactic. This can be

in the form of energy or the monitory value of wear and tear of hardware. Tactic latency

is the time between the initiation of a tactic and its completion [52, 56, 57, 49]. Palmerino
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et al.has previously demonstrated how considering tactic latency can lead to improvement

in system performance [62].

Tactic volatility is the variance in the behavior of the attribute of a tactic, such as cost

and latency and/or the combination of the two. Tactic volatility has shown to have a signif-

icant impact on the performance of a decision making system [51, 57, 55]. For example,

the decision by a drone to go “1 level” up or down can have variable outcome as it will not

always take the same amount of time every time due to changes in external and internal

environment of the drone. Performing the same action can also have variable cost as the

drone might be assisted by a wind draft in certain scenarios and worked against in others.

Another example is that of a smart insulin pump. The pump has to take into account the

life of its battery (cost) while pumping insulin and maximizing its life while also taking

into account the time (latency) it will take to inject a full dose of insulin.

The system’s SLA also specifies the decision metrics of a system. For example, it

specifies how the system should calculate the utility of taking an action and measuring it

against a pre-defined threshold. This utility is calculated by taking into account the tactic

attributes such as cost and latency.

Real-world systems don’t account for tactic-volatility [51, 57, 55]. They usually con-

sider tactic attributes such as cost and latency as fixed as fixed quantities. This is counter-

intuitive to a system’s decision making abilities in a dynamic and variable environment.

Studies have shown that not accounting for tactic volatility to also negatively effect a sys-

tem’s effectiveness, resiliency and security. [33, 69, 39, 61].

This paper addresses the limitations of current self-adaptive systems processes. We

propose a Tactic Volatility Aware solution that utilizes neuroevolution algorithm, capable

of evolving recurrent neural networks, (TVA-E) and addresses the limitations of current

self-adaptive systems. Our solution takes into account tactic volatility and also maintains

system requirements defined in the SLA. This solution utilizes prediction mechanisms that

predict the cost and latency of an adaption. This solution results in the system making more

optimal decisions and satisfy the requirements in the SLA. This work also uses real-world
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data that has been made available for use by researchers and academics. This data contains

real-world volatility and helps us demonstrate the positive impact TVA-E when used in

self-adaptive systems. We will study different predictive mechanisms in this paper to sup-

port our work: Auto-Regressive Moving Average (ARIMA), Evolving Recurrent Neural

Network (eRNN), Multi-Layer Perceptron (MLP) and Support Vector Regression (SVR).

These methods will be studied along with eRNN to compare and analyze its performance

when used with our TVA-E process.

This work also employs the use of Uncertainty Reduction Tactics (URTs) and demon-

strates how they can assist in accounting for tactic volatility. We studied the performance

of TVA-E with and without URTs and we demonstrate why they are useful.

To summarize, this paper makes the following contributions:

1. Problem Demonstration: We demonstrates the negative impact to system perfor-

mance for not accounting for tactic volatility.

2. Concept: This is the first known work to apply the novel eRNN approach to

predict tactic volatility and is the first to incorporate and evaluate the use of Un-

certainty Reduction Tactics [53]. It also compares the performance of eRNN to

other machine learning models. We also provide the CELIA simulation tool for

analyzing the performance of self-adaptive systems. We used CELIA to evaluate

the performance of TVA-E using the predictions from different machine learning

models enhanced by uncertainty reduction tactics.

3. Experiments: We demonstrate the positive impact that our eRNN-based process

and uncertainty reduction tactics have in accounting for tactic volatility. This work

demonstrates the usefullness of our eRNN-based TVA process and uncertainty

reduction tactics when accounting for tactic volatility by running experiments and

a statistical analysis on the results.

4. Tool and Dataset: This work was done with future research in mind. CELIA cre-

ates both tactic volatility data and evaluates tactic volatility prediction processes.

CELIA will enables researchers to I) evaluate the effectiveness of their own tactic
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volatility aware prediction processes, and II) the CELIA data generation tool with

their tactic volatility aware processes. Therefore we are making all the tools, data

and results public to encourage research and growth in this domain.
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Chapter 2

Problem Definition

The tactic attributes are used to calculate the utility, or usefullness [2], for a system to

execute a specific tactic [51, 56]. These attributes will frequently experience unexpected

change or tactic volatility that will impact the performance of a system [61]. This study

will focus on two forms of tactic volatility: latency and cost. These two forms of tactic

volatility have been found to be prevalent throughout self-adaptive systems [61, 51, 54].

2.1 Tactic Latency Volatility

Tactic latency is the amount of time a tactic takes to execute i.e. the span of time be-

tween the moment the tactic is called into action to the time it is finished producing an

effect [56, 51, 15]. For example, a server farm detects incoming load and to manage this

workload, it decides to turn on a new server. The tactic latency in this case would be the

time between when the system decides to turn on a server to the moment the server is

turned on and ready to accept incoming requests. Another example would be the time it

takes for a system to download a file from a server across a network. Recent studies have

demonstrated the usefulness of accounting for these latency times in self-adaptive decision

making systems [14, 51, 56]. Many sate-of-art adaptation systems discount the use tactic

latency volatility in their decision making processes by considering them as a static value

i.e. one that does not change [61, 54, 55]. However, real-world self-adaptive systems will

frequently encounter tactic latency volatility. For example, a UAV will not always take the

same amount of time to go up and down or complete a journey. The time to destination
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will depend on several factors such as wind-draft, temperature and humidity. Therefore,

accounting for tactic latency volatility is one of several important reasons for a system to

perform optimally, including:

1. Determine the most appropriate tactic(s): Accounting for tactic latency can be a

significant determining factor in anticipating the most appropriate tactic to be executed

by the system. It can help significantly increase the performance of a system [54].

2. Augment a slower tactic with a faster one: Sometimes a self-adaptive system will

supplement the optimal tactic with a less optimal, but a faster one [54, 51]. This is

done to maintain service and accumulate the reward of an adaptation decision while the

system waits for the slower tactic to be ready for execution. The proactive nature of

tactic execution can be done by accounting for tactic latency volatility and allows the

self-adaptive systems to meet SLA requirements.

3. Understanding when to start a tactic: A good self-adaptive system process will be

proactive with regards to its decision making. It will make optimal decisions beforehand

to allow for sufficient time for tactic latency. A self-adaptive system that is unable to

account for tactic latency volatility will likely make tactic decisions that start too early

and incur cost [61, 51], or too late and incur penalties imposed by the SLA

4. Incompatible tactics, and tactics that must be run in unison or succession: Tactics

may be incompatible with one another and might not be able to run together. Many

times, self-adaptive systems would be required to deploy and run multiple tactics in uni-

son. Suppose two or more tactics that are incompatible with each other due to use of

resources, latency, or other reasons, are run in unison. In that case, it can result in un-

desired behaviour and loss of utility. Understanding this behaviour is very important for

the operation of self-adaptive systems. When tactics are incompatible with one another,

it is imperative to plan their execution ahead of time to make sure they don’t cause any

system instability or loss of utility. For this, accounting for latency volatility is very

important in any decision-making process.
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2.2 Tactic Cost Volatility

The definition of tactic cost is domain specific and varies from system to system. It can

range from energy consumption to monetary value of completing a tactic. For example,

a UAV would consider a tactic cost to be percentage of total energy consumed from the

battery while a server farm will define it in terms of total power consumed at the wall

and the resources spent cooling the computing hardware[12]. Evaluating tactic cost be-

forehand is a primary concern for self-adaptive system, as they sometimes have a defined

resource limitation and are required to prioritize maximizing reward at the lowest cost

possible [56, 55, 54]. However, despite cost volatility being a primary determining factor

when it comes to tactic selection, most existing self-adaptive systems consider tactic cost as

a static value and do not consider it to be volatile when making tactic-selection based deci-

sions. Therefore, it is imperative for self-adaptive systems to consider tactic cost volatility

for several reasons.

1. Tactic Cost can be a determining factor when making tactic-selection decision: A

tactic’s cost may be the determining factor for the best viable tactic a system should

select and execute. Therefore, it is imperative for self-adaptive systems to accurately

estimate tactic cost to make the best decision with respect to the tactic and its viability.

2. The predicted tactic may impact the system’s ability to perform subsequent or con-

current tactics: Systems usually have limited resources and must utilize them effi-

ciently. Therefore, it is of utmost importance to correctly predict the cost of an action

to: I) Determine if there are enough resources to execute the tactic or sequence of tactics,

II) Select tactics that attain the highest possible amount of utility for the system.

3. Cost may exceed reward: When systems determine the expected cost of executing a

tactic and the operations associated with it, they also predict the reward in conjunction

to assess whether the tactic is worth deploying and executing. If the cost exceeds the

reward, then it may not be feasible for the system to execute the tactic in terms of the

parameters defined by the SLA.
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2.3 Uncertainty Reduction Tactics

Self-adaptive systems frequently use tactics to respond to events and achieve system goals [51,

45, 37]. Uncertainty reduction tactics (URT) are tactics or workflows that are designed to

increase the system’s decision-making knowledge and reduce its uncertainty [53] 1. An ex-

ample of an uncertainty reduction tactic is probing a sensor that has been inactive to ensure

its availability. Another example is the mechanics of a motor vehicle and its fuel priming

system, where the internal combustion engine is supplied with fuel when the car senses

that it is about to be started. This allows the engine to start quickly and be immediately

availability. Uncertainty reduction tactics can provide the system with different kinds of

data depending on the domain. This can include information like the availability, health,

response time, and reliability of the system.

There have been numerous uncertainty reduction tactics proposed for self-adaptive sys-

tems. However, to our knowledge, there has been very limited work done on implement-

ing or evaluating uncertainty reduction tactics. We hypothesize that uncertainty reduction

tactics can augment and supplement machine learning-based predictive processes such as

eRNN to help them make more accurate tactic attribute predictions and, therefore, posi-

tively impact the system’s decision-making process. We have further discussed and de-

scribed the uncertainty reduction tactics used in our evaluation (model drift, sampling rate)

in Section 5.1.

2.4 Evolved Recurrent Neural Networks

Recurrent Neural networks (RNNs) are generally superior to traditional statistical methods.

On data that is highly non-linear, acyclic, and not seasonal, RNNs outperform models such

as the auto-regressive integrated moving average (ARIMA) family of models. Furthermore,

1Take note, Uncertainty reduction tactics differ from the conventional tactics as defined in this study. Their
primary objective is to gather data and reduce the uncertainty of the system’s decision-making process. They
provide the system with additional metadata regarding an operation or a tactic without necessarily exposing
the system to the cost and risks of the operation or the tactic itself.
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RNNs are also more suited to time series forecasting, which incorporates multiple corre-

lated time series of input data. Classical statistical models usually struggle with such kinds

of data. These features of RNNs make them a much better choice for providing predictions

for self-adaptive systems.

However, building efficient and effective Recurrent Neural networks structures is a

time-consuming, expensive, and relatively difficult process. RNN model building has to

go through multiple iterations of training and testing before a good model can be selected

for use. This is where the neuro-evolution of models comes into play. Neuro-evolution

can be used to train models by selecting, connecting, and combining potential architectural

components instead of simply evaluating standard RNN architectures. This results in a

more comprehensive and thorough search for available model architectures and automates

the design, training, and testing processes [60].

For this study, the Evolutionary eXploration of Augmenting Memory Models (EX-

AMM) algorithm [60] was selected for the neuro-evolution process. EXAAM was chosen

due to several reasons and benefits:

1. EXAAM uses a minimal seed architecture to progressively grow larger Artificial

Neural Networks (ANNs). This method is similar to the popular Neuro-Evolution

of Augmenting Topologies (NEAT) algorithm [70]. This method tends to generate

more efficient and smaller architectures.

2. Compared to NEAT, EXAAM utilizes Lamarckian weight initialization (or the reuse

of parental weights), higher-order node-level mutation operations, and backpropaga-

tion through time (BPTT) to conduct a local search. This combination of features has

been shown to speed up the model training and the overall evolutionary process [22].

3. EXAAM operates by utilizing an extensible suite of memory cells not found in

other ANN algorithms such as Minimal Gated Unit (MGU), Long short-term mem-

ory (LSTM), Gated Recurrent Unit (GRU) Update Gate Recurrent Neural Network

(UGRNN) and ∆-RNN cells. More importantly, it evolves deep recurrent connec-

tions over large, variable time lags.
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4. EXAAM has demonstrated that it can more quickly and reliably evolve RNNs in

parallel compared to sequentially training traditional layered RNNs [27, 30, 29].

2.5 Motivating Example

We will be using a cloud-based multi-tier web application with a self-adaptive component

as a motivating example in this study. This self-adaptive system approach is based on the

works of Moreno et al.[51, 56]. This is a real-world use-case that is regularly utilized in

real-world systems [74, 63, 54]. The goal of the system is to minimize cost and maximize

utility. The application consists of Virtual Machines (VM) servers in a server farm that are

handling incoming web requests. Each Virtual Machine, in this case, has a fixed cost asso-

ciated with it and is added or removed to the server pool according to the traffic and load of

incoming requests. The system also emulates a dimmer feature where the optional content

in requests is delivered based on variable workloads, i.e., the more bandwidth available to

the server, the more content is delivered. If the system is facing restricted resources, the

optional content will be reduced or ”dimmed.”

Figure 2.1: Web Application with VM Pool
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The system’s Service Level Agreement (SLA) defines how the target response time (T )

and utility (U ) is calculated (Equation 2.1). The system is penalized every time the target

response time is not met, while it is rewarded for meeting or exceeding the target average

response time against the measurement interval. The average response time is represented

by r, the average response rate is listed as a, the length of each interval is defined as τ , and

the maximum request is denoted as k. The cost (C) is proportional to the number of active

VMs, and a dimmer (d) reduces provided content as needed.

U =

 (τa(dRO + (1− d)RM)/C r ≤ T

(τ min(0, a− k)RO)/C r > T
(2.1)

In this motivating example, we can consider two tactics that the system can deploy to

account for an increase in user traffic: Add a new VM server to the cluster, or II) Utilize the

dimmer to reduce the optional content proportional to the specific response. In this case,

the first tactic of adding a new server can take several minutes to execute, while the second

tactic has negligible latency.

Tactic latency volatility

During operation, if the system starts to sense that the response time threshold will be

surpassed in the immediate future, the system could proactively start the tactic of adding

a VM server to the cluster in order to meet the SLA-defined response time threshold. If

the system overestimates the latency and the system is running in the cluster longer than

required, it could incur additional costs. Similarly, if the system underestimates the latency,

it will incur penalties according to the SLA. Therefore, the system could take the more

appropriate action of utilizing the ”dimmer” tactic and reducing the optional content in the

request while it waits for the new VM to be added. Incorrect tactic latency predictions can

harm the system, its operation, and its ability to satisfy the SLA. It can result in scenarios

where tactic execution occurs too early or too late. It could also lead to the execution

of unsuitable tactics for the scenario at hand. Accounting for tactic latency volatility is a

paramount concern, especially when utilizing a proactive adaptation approach or when
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utilizing complementary tactics.

Tactic cost volatility

The cost of a tactic is vital for determining the utility of a tactic. Therefore, accounting

for tactic cost volatility is of utmost importance. If the cost of executing a tactic is defined

lower than what is actually experienced by the system, then it could result in scenarios

where the optional content in a request is frequently being full-filled. This will incur the

system penalties according to the SLA. Conversely, if the tactic’s cost is defined to be higher

than what the system is encountering, it could result in inaccurate utility calculation. This

leads to a scenario where the optional content is being shown too infrequently even though

the system has the resources to do so. This leads to less reward, and the system will again

incur penalties according to the SLA. A volatility aware solution that enables the system

to more accurately predict cost will enable the system to make decisions that lead to more

optimal outcomes.

Tactic Utility

Utility is as defined as the quality or state of being useful [2]. This work expands this def-

inition to cater to tactics. This study defines Tactic Utility as the usefulness of performing

an action or a series of actions. Tactic Utility can be calculated by taking into consideration

pre-existing conditions and attributes of a tactic(s) and a system’s operating environment.

This study mainly uses the equation listed in Equation 2.2 as the basis of the calculation of

tactic utility. Equation 2.2 takes into account the latency and cost, which are the attributes

of a tactic. It also takes into account Reward which is an attribute derived from the system’s

SLA. It refers to the potential reward the system can achieve by performing an action at a

particular junction.

ˆUtility = (
Reward

( ˆLatency + ˆCost)
) (2.2)
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Uncertainty Reduction Tactics

Uncertainty reduction tactics (URTs) are system actions or workflows that are designed to

increase a system’s decision-making knowledge and reduce its uncertainty [53]. An exam-

ple of an uncertainty reduction tactic is probing a sensor that has been inactive to ensure

its availability. Another example is in terms of the mechanics of a motor vehicle and its

fuel priming system, where the internal combustion engine is supplied with fuel when the

car senses it is about to be started. This allows the engine to start quickly and immedi-

ate availability in terms of driving. Uncertainty reduction tactics can provide the system

with different kinds of data depending on the domain. This can include information like

the availability, health, response time, and reliability of the system. Uncertainty reduction

tactics can provide insight into determining the internal and external variables that affect

our system. In our case, predicting the cost and latency of a tactic that adds a new VM to

a cluster correctly could help the system maintain smooth operation, maximize utility and

minimize cost according to the parameters defined by the SLA. There have been numerous

uncertainty reduction tactics proposed for self-adaptive systems. However, to our knowl-

edge, there has been very limited work done on implementing or evaluating uncertainty

reduction tactics. Uncertainty reduction tactics may provide a lightweight, supportive in-

put mechanism into making more accurate predictions regarding tactic volatility.
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Chapter 3

Proposed Tactic Volatility Aware Pro-
cess

Traditionally, self-adaptive processes that are used by autonomous intelligent agents use

adaptation control loops [54, 42, 36]. An adaption control loop is responsible for cycling

through all possible adaption decision options at specific intervals and selecting the best

adaption strategy(s) that would yield the highest utility. An adaption strategy composes

of adaptation tactics(s). Using the motivating example of a server farm as described in

Section 2.5, the adaption control loop selects the adaption strategy, which is expected to

return the highest utility. This process also takes into account tactic cost volatility and

tactic latency volatility. As described in Section 2, tactic cost volatility and tactic latency

volatility is a crucial component of decision making as the quality of their prediction can

have a huge impact on the performance of the system, its effectiveness, and its ability to full

fill its goals [61]. The Tactic Volatility Aware Process (TVA) described in this study does

not present a new adaption-making process, but rather a more accurate information aware

process that can provide higher utility when making self-adaptive decision processes.

In this section of the study, we examine how the TVA-E process fits into a workflow of

a self-adaptive system. We describe the TVA-E approach in the following steps:

1. An examination of the use of prior data and uncertainty reduction tactics to Forecast

Tactic cost and latency

2. The use of eRNN as a prediction mechanism for TVA-E processes

3. Step-by-step breakdown of TVA-E inside an adaption control loop.
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3.1 Data, URTs and Forecasting

Data

TVA-E uses prior time-series data to anticipate future tactic variability. This time-series

data is usually domain-specific. However, most basic forms of time series data utilized

in systems include observed tactic latency and cost values. The presence of existing data

is paramount for the success of TVA-E. Our TVA-E is powered by data-driven prediction

models rather than a rule-based model. This allows for easy adaptation and integration

of TVA-E into any adaptation control loop of the self-adaptive system. Section 4 does a

further deep dive into how the data for this study was generated.

URTs

This study also incorporates the idea of Uncertainty Reduction Tactics(URTs). As dis-

cussed in Section 4, URTs are system actions or workflows that are designed to increase the

system’s decision-making knowledge and reduce its uncertainty [53]. URTs are domain-

specific and therefore are integrated in conjunction with the prediction mechanism rather

than being hard-wired into the TVA-E process. This also allows TVA-E processes to func-

tion in case of the absence of URTs. Section 5 further analyses the performance of TVA

with and without URTs.

eRNN

Predicting the volatility of the tactic is a key aspect of a decision-making process in a Tac-

tic Volatility Aware processes [61]. A good prediction model can have a huge impact on

the system’s effectiveness, resiliency, and ability to complete system and mission-critical

operations [61]. For this study, we used eRNN with our TVA-E process. eRNN has pre-

viously shown its ability to make accurate and reliable predictions using limited data in

comparison to other methods [27, 30, 29, 28]. We will also be using other comparative

mechanisms such as Long short-term memory neural networks (LSTM), Multi-Layer Per-

ceptron and a Support Vector Regressor (SVR). We will also be using an Auto Regressive



16

Integrated Moving Average (ARIMA) as a baseline prediction mechanism due to its use in

previous studies [61]. The use of myriad prediction methods will demonstrate our TVA-E

processes’ ability to integrate with any suitable prediction mechanism. For this study, we

will be conducting a study of how eRNN is suitable for use with TVA-E inside adaption

control loops to account for tactic volatility.

3.2 Tactic Volatility Aware Process

Adaptation Control Loops

Self-adaptive systems have a control cluster which is responsible system’s run-time decision-

making in self-adaptation [21]. Control loops realize the adaptation of software systems

and can be used in parallel and in series to each other. Adaptation control can consist of a

simple sequence of four activities: monitor, analyze, plan, and execute (MAPE). These ac-

tivities form a feedback control system from control theory [68]. MAPE-K [21] (K stands

for shared knowledge base) is the most influential reference control model for autonomic

and self-adaptive systems [9, 67, 7, 25]. TVA-E can easily integrate into the Analyze com-

ponent of MAPE-K by using existing time-series data to make predictions regarding the

attributes of the tactic (e.g.latency, cost, etc.) and provides enhanced tactic values to the

Plan component.

TVA-E Algorithm

The TVA-E process is featured in Algorithm 1. The TVA-E process proposed by this

study integrates into a system’s existing adaption control loop(L2). It loops through all

the available adaptation decision options (L3). While it is iterating through the possible

tactic decisions, it performs predictions regarding the attributes of the tactics (e.g.latency,

cost, etc.) using time-series data (L4). These predictions are used to determine the quality

of each adaption decision option (L5) by plugging them into the system’s utility equation

as specified by the Service Level Agreement (SLA). These results are then used as a pri-

mary input into the system’s self-adaptive decision-making process (L6) to select the tactic
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Algorithm 1 Integration of TVA-E into Adaptation Loop

Input: Time series data
Output: Adaptation decision

1: —Existing adaptation control loop—
2: procedure ADAPTATION DETERMINATION

3: for each Adaptation Option do
4: ˆTacticV ariables← prediction(TimeSeriesData)

5: ˆpredictedUtility ← UtilityCalc( ˆTacticV ariables)

6: adaptationToExecute← getmax(predictedUtility)

7: executeMaxAdaptation(adaptationToExecute);

8: TimeSeriesData← ObservedTacticAttributes()

9: TimeSeriesData← UncertaintyReductionTactic()

10: —Existing adaptation control loop—

with the highest utility or as according to the specifications in the system’s SLA. Once

the system executes the tactics in the strategy, the observed tactic attributes are recorded

as a time-series data (L8). The algorithm also documents the data from the execution of

the uncertainty reduction tactic in the form of a time series (L9). This is done for future

predictions and allows the system to learn from its previous actions.

3.3 Usage

TVA-E is built by keeping integration with popular adaptation control loops in mind. TVA-

E can be easily integrated into the Analysis component of MAPE-K and provides en-

hanced tactic values to the Plan component. MAPE-K [21] is the most influential refer-

ence control model for autonomic and self-adaptive systems [9, 67, 7, 25], and can easily be

integrated with TVA-E. TVA-E has the ability to easily integrate into well-known adaption

processes such as Proactive Latency-Aware (PLA) [54, 55, 51]. This has been enabled with

the help of using existing data to perform predictions and then providing improved tactic

predictions to the system’s existing decision-making process. Due to these features, TVA-E
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is highly applicable to a vast number of existing self-adaptive processes and systems, rang-

ing from simple cyber-physical systems to autonomous Unmanned Ariel Vehicles (UAVs).
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Chapter 4

Tactic Simulation Tool and Dataset

Self-adaptive systems react to the changes in the environment with the help of adaptation

tactics. These systems frequently encounter tactic volatility. Academic research in this

domain is observing that there is a need to account for tactic volatility [56, 61, 57, 55].

However, they also note that the research is limited by a lack of I) Simulation tools for

evaluating self-adaptive processes and II) Suitable data to evaluate tactic volatile-aware

processes. [61, 51]

During the course of the study, we developed a tool to assist in our experiments and

address this problem. The CELIA (taCtic EvaLuator sImulAtor) tool emulates a simple,

hypothetical intelligent self-adaptive system that autonomously performs i/o operations and

computational tasks while adhering to its configurable Service Level Agreement (SLA).

The main objective behind developing CELIA was not to mimic any specific system but to

provide researchers with a platform with a reasonably general simulation tool and dataset

that can cater to a diverse range of autonomous processes and evaluations.

CELIA assesses prediction techniques by comparing achieved vs. predicted utility, the

number of correct vs. incorrect adaption decisions, and the achieved system goals. To

assess the success of machine learning approaches, predictions created with provided or

user-supplied machine learning components and data can be easily compared to the ground

truth.
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To summarize, CELIA consists of the following two components:

1. Generated Tactic Volatility Data: A publicly available dataset that will benefit

researchers in their work on tactic volatility aware processes.

2. Simulation Tool: An easily configurable simulation tool emulating a self-adaptive

system that provides researchers with a platform to evaluate their own tactic volatility

aware processes.

4.1 Data Generation Component

For any research, data is very important. This study contributes to the area of Tactic Volatil-

ity with a data generation tool that accounts for a system’s tactic volatility. The dataset

generated by this tool is intended for high-level research and therefore does not emulate

any specific system.

The operations carried out by the CELIA dataset generation tool are commonly carried

out by real-world autonomous self-adaptive systems. These steps are included to replicate

communication, i/o, and computational processes that are being performed by any self-

adaptive system. CELIA emulation of a self-adaptive system consists of multiple steps:

1. Download file: : Download a compressed file hosted on multiple remote servers across

the world. This emulates the tactic of communication or a file transmission operation.

This operation is invaluable to the data creation process as it introduces the notion of

tactic latency volatility due to the variability in network traffic and server availabil-

ity encountered during each operation. CELIA provides configuration files to change

the specific file to download and the servers to download from. During this operation,

CELIA monitors the time taken to download a file, and the CPU resources used and

considers them as Latency and Cost of doing the operation, respectively.

2. Extract the file’s contents: Decompress the file and extract its content to the disk.

This operation emulates the tactic of performing a simple file I/O operation. During this

operation, CELIA monitors the time taken to extract the contents of the file and the CPU
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resources used during the operation. It considers them as Latency and Cost of doing the

operation, respectively.

3. Perform Grep operation: CELIA performs a grep on the extracted file contents,

emulating the tactic of performing a simple function or system task. grep was used

because it always performs a similar operation every time it searches through each file

in the directory for a specific pattern

4. Compress the file: CELIA then re-compresses the extracted file using the tar com-

mand in GNU. This operation provides an additional data point of a file I/O operation.

5. File deletion: CELIA removes the downloaded, and the re-compressed compressed

files (step 1 & 4). This operation provides an additional data point of a file I/O operation.

6. Ping Server: Ping the download server to check for its availability and response time.

This action is an example of a simple uncertainty reduction tactic .

The data generated by CELIA is then output to a csv file and can be either fed into

CELIA’s simulation tool or used with other Simulation and statistical analysis tools. Figure

4.2 shows the workflow of the Data generation tool.

CELIA’s operations are fundamentally variable and uncertain because they are carried

out on ”live” servers distributed all over the world, resulting in effects such as periodic

latency and communication problems, just as they would in any real-world activity. We

utilized mirrors of the same file situated in the USA, Canada and Switzerland, to generate

our dataset. The amount of time it takes to conduct each operation is known as tactic

latency, and the average CPU resources utilized for the operation is known as tactic cost.

The dataset generated by CELIA includes information about all tactics and servers used

through out the data generation process. Fig 4.1 demonstrates a sample of datapoints in the

data generated by the tool. The dataset contains a timeseries containing the timestamps and

the associated information of those timestamps. The information includes the:

1. Tactic performed,

2. Server involved (1,2,3),

3. Cost of the action,
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Timestamp Server Tactic Cost(%) Latency(s) Reliability Ping(ms)
16:32:53.358 1 1 1.7166788 15.9 1 111.847
16:33:01.897 1 2 8.5347721 12.3 1 111.847

16:33:02.0817 1 3 0.17643117 28.8 1 111.847
16:33:08.508 1 4 6.4260485 26.7 1 111.847
16:33:17.875 1 5 9.3658041 2.1 1 111.847
16:33:24.318 2 1 1.7081530 5.3 1 85.731
16:33:27.836 2 2 3.5130341 25.4 1 85.731
16:33:28.017 2 3 0.1732807 25.0 1 85.731
16:33:34.476 2 4 6.45843195 26.6 1 85.731

.

.
.
.

.

.
.
.

.

.
.
.

.

.

Table 4.1: This table provides the sample of the dataset. Each datapoint has an associated informa-
tion of the operation performed at that moment. Take note, the ping column is concate-
nated with the main log later on as it is monitored separately. The ping column represents
a URT.

4. Latency of the action,

5. Ping of the server,

6. Reliability of the action (i.e.whether the action was successful or not).

The dataset contains subsets of these repeated actions where each subset represents one

operation cycle of the data generation tool (demonstrated in figure 4.2). For the purpose

of the experiment, only tactic 1 was used from each of these subsets due to time and re-

source constraints. We only utilized the 1st tactic (Download File) because it demonstrated

the highest amount of volatility. After cleaning and preparing the dataset, 52,106 tactic-1

records were used from all the data obtained after iterating over the system operations for

around two weeks. We discarded the Reliability feature which specified whether a specific

action failed or not. The only volatile action or tactic in our process was Download/Tactic-

1, which had a failure rate of less than 0.01%. Therefore, we didn’t use it in our study. The

Ping feature was used as an uncertainty reduction tactic. Figure 4.1 demonstrate the spread

of the Cost and Latency features in our dataset using box plots. Table 4.1 breaks down the

dataset in detail and discusses the spread of Cost and Latency.
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Figure 4.1: The box plots show the spread of the data. The physical distance of the servers is
demonstrated in the spread of costs and latencies of the servers. Server 1 is USA and
thus has the lowest center of mass. While Switzerland is the furthest away and its center
of mass is the highest. The cost also corroborate the nature of tactic volatility of our
dataset. This is because downloading a file from Switzerland takes the longest time and
results in the average CPU usage being low.
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Latency Cost
Server 1 2 3 1 2 3
mean 1.800578 1.953712 8.042404 8.939763 5.673922 3.130603

std 0.432465 0.595287 5.917548 0.692191 0.800211 1.029041
min 1.678576 1.684291 0 0.8 1.4 0.6
25% 1.704469 1.836947 5.08959 8.5 5.1 2.6
50% 1.740055 1.958758 6.150736 8.8 5.6 3.2
75% 1.844233 2.033431 8.576069 9.3 6.1 3.6
max 27.771008 43.323958 113.186285 16.9 20.4 50

Table 4.2: Various metrics regarding the dataset we used. The dataset consists of real-world data
of Tactic-1, captured during the operations of the Data generation tool. The latency is in
seconds while the cost is a percentage value of the CPU usage. The differences among
the standard deviations of the servers demonstrates the volatility in our dataset.

CELIA is a data creation process and a simulation tool that improves upon the features

of existing simulation software. For example, the Rice University Bidding System (RU-

BiS) [3] and ‘ZNN.com’ [19] are multi-tiered web programs that have been used to evaluate

self-adaptive processes but do not feature an adaptation component. DARTSim [50] does

not include volatility in its decision-making process and solely considers static latency. Ex-

isting resources, such as ‘The Internet Traffic Archive’ [1], do not contain both latency and

cost for executed actions. Hence CELIA’s data is critical. The project website 1 provides

our produced data, source code, and Docker image.

This tool and dataset are the first to include uncertainty reduction tactics, as far as

we know. The uncertainty reduction tactic performs the data gathering operation of prob-

ing a remote server, collecting information about its availability and response time for the

demonstration of capabilities conducted in this work. Future researchers and practitioners

can use our CELIA tool to incorporate their own uncertainty reduction tactics. The pre-

cise functionality conducted by uncertainty reduction tactics will be domain-specific, as

with most tactics in each implemented system, and it is, therefore, unreasonable to assume

1https://github.com/valet-tool/valet-tool
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Figure 4.2: CELIA ETL data generation process

that any evaluation system could account for all the functionality and variations of uncer-

tainty reduction operations in all systems. Furthermore, one of the goals of this project is

to demonstrate the fundamental capabilities of uncertainty reduction operations; it is not

intended to be a comprehensive assessment of every type of uncertainty reduction tactic.

4.2 Simulation Component

The simulation component of CELIA makes it possible to evaluate tactic volatility-aware

processes in a robust and simple way. The tactic volatility data, utility equation and SLA

values can be customized according to need.
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CELIA simulates an autonomous intelligent agent that is responsible for making critical

decisions with system-wide dependencies. The goal of CELIA’s simulation component is

to collect an updated version of a file from a remote location on a regular basis in order to

maximize utility.

CELIA’s simulation component iterates through provided data records making deci-

sions with the utility equation serving as a determining factor as to the decisions made by

the system. The system evaluates the user-supplied tactic volatility data from a predic-

tion algorithm against the user-supplied ground truth data and observes different metrics

resulting from the different data points. The primary components of the CELIA simulation

component are highlighted in Figure 4.3 and are described below:

1. Time-series data: CELIA’s ability to evaluate various tactic volatility-aware processes

is one of its main advantages. The expected tactic attributes (e.g., latency, cost, etc.)

that each tactic operation will encounter are a central component of many self-adaptive

processes. CELIA allows users to use their own time-series-based data. The CELIA

simulation tool takes as input two sets of time-series data. The first dataset is the data

from a prediction algorithm that will be used to make adaptation decisions. The second

is the ground truth dataset which will be used to analyze the performance of the system

on the prediction dataset.

2. Calculate Utility: The goal of CELIA’s simulation component is to collect an updated

version of a file from a remote location on a regular basis in order to maximize utility.

CELIA uses the equation supplied in Equation 4.1 to determine whether the expected

utility in comparison to update threshold warrants the file download and extraction op-

erations, or if the system should ‘pass’ and wait for another decision-making iteration.

ˆUtility = (
Reward

( ˆLatency + ˆCost)
) (4.1)

3. Adaptation Decision: The expected utility is measured against a pre-determined

threshold value according to the system’s SLA. If the utility to perform the update is

greater than the pre-defined threshold value in the SLA, the system performs an update.
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Figure 4.3: CELIA Simulation Component

If it is lower than the threshold value, it ignores the update.The Reward for performing

an update increases as the time since the last update is performed increases. This feature

has been implemented to emulate a time-based risk factor into CELIA’s process that

penalizes the system for making a bad decision.

4. Assess evaluated TVA process: The simulation component takes two files as input

when assessing whether the system should undertake tactic operations:

(a) Projected values for each tactic attribute (delay, cost), and

(b) Observed tactic attributes (which serve as the ground truth).
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With the help of the ground truth values, CELIA is able to provide several evaluation

metrics to assess the ability of the evaluated tactic volatility aware process. These met-

rics add to the robustness of the evaluation by including metrics like achieved utility and

frequency of correct decisions. This allows for a comparison of techniques in a more

real-world setting rather than relying solely on statistical analysis. The following are the

evaluation metrics:

(a) Expected vs. achieved utility: The system’s ability to achieve the predicted

utility level is recorded. Accurately anticipating the achieved utility is critical for

systems in their decision-making processes when deciding on the best tactic(s) and

adaptation strategies for the situation at hand [57, 56, 51].

(b) Ability to make correct decisions: Self-adaptive systems must be able to make

a variety of decisions correctly. CELIA identifies when the system fails by com-

paring predicted vs. ground truth tactic attributes.:

i. Performed an action when the system should not have.

ii. Performed an action when the system should have.

iii. Didn’t perform an action when it should not have.

iv. Didn’t perform an action when it should have.

(c) Expected utility not achieved: Inaccurate tactic predictions can lead to situations

where the system anticipates gaining a certain amount of utility. However, due

to inaccurate tactic predictions, this utility will never be realized, resulting in a

number of adverse repercussions, including an increase in general uncertainty and

unexpected outcomes [55, 32].

(d) Utility missed by taking incorrect action: When systems fail to perform actions

when they should, they may experience ’missed opportunity’ utility. For example,

if a system should have performed action X , which would have provided a utility

of 5 points, but instead chose incorrectly not to do so, the system would have lost

an opportunity to accrue a utility value of 5.

5. Record output: CELIA outputs the results of this evaluation in a .csv file.
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6. Perform next adaption decision-making iteration: The system will then perform

the next adaptation loop, and the adaptation and evaluation procedure will be repeated

indefinitely until all provided data has been iterated.

4.3 Usage

CELIA can help researchers in a variety of self-adaptive research domains. The tool will

help researchers evaluate tactic volatility aware processes and their capacity to operate

effectively and resiliently. Adopters will be able to modify the tool due to its easily con-

figurable nature, such as its utility equation, SLA, and adaption processes. This will allow

researchers to test how changes to the self-adaptive decision-making process affect the sys-

tem’s capacity to respond appropriately to tactic volatility.

For this study, we used the different prediction mechanisms (described in Section 5.1)

as the input for CELIA. For this analysis, we used values with both with and without

uncertainty reduction tactics. The output from CELIA is later used to perform an analysis

in this study.
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Chapter 5

Evaluation

Our evaluation addresses the following research questions:

RQ1. Is eRNN effective for predicting tactic volatility? We demonstrate the effective-

ness of eRNN for predicting tactic volatility. With the help of uncertainty reduction

tactics, eRNN is able to out perform other prediction mechanisms when predicting

latency by 6%(MAE) and cost by 46%(MAE).

RQ2. Does eRNN effectively transfer the tactic volatility predictions to effective deci-

sions compared with other baselines? We demonstrate that eRNN is the best method

for predicting volatility compared to other prediction techniques. We also observe

that uncertainty reduction tactics provide useful information that can help the system

to make more accurate decisions.

RQ3. Are Uncertainty Reduction Tactics effective in helping to predict tactic volatil-

ity? This work demonstrates the potential benefits of uncertainty reduction tactics

in self-adaptive systems. Specifically, helping to make more accurate predictions

regarding tactic latency and cost. While the potential benefits of Uncertainty Reduc-

tion Tactics(URT) are model-specific, eRNN is able to leverage it by improving its

Mean Squared Error(MSE) by 50%. URTs act as regularization for model training

and help make models more generalizable.
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5.1 Experimental Design

5.1.1 Prediction Mechanism

We tested the following prediction mechanisms against our eRNN solution to see how

effective it is in comparison to other options:

1. Long Short-term Memory recurrent neural networks (LSTM): The Long Short-

term Memory (LSTM) used was a fully connected model with one hidden layer.

The hidden layer consisted of 1,000 LSTM nodes followed by an output layer. We

used LSTM due to its gated memory cells that utilize information from previous

network pass-throughs to make current predictions [24, 64]. It is an efficient and

extremely powerful Recurrent Neural Network(RNN) for forecasting sequential time-

series multivariate data.

2. AutoRegressive Integrated Moving Average (ARIMA): ARIMA stands for Au-

toregressive(AR) Integrated(I) Moving Average(MA). It is also denoted by ARIMA(p,

d, q) where p stands for the number of lag observations included in the model(AR),

d represents the degree of differencing(I), and q represents the size, or order of the

moving average window(MA). For our experiment, we used ARIMA with a differ-

encing order of d = 1 as the time-series data was non-stationary. Autocorrelation

plots were used to determine autoregressive (p=1) and moving terms (q = 0). We

incorporated ARIMA in this work due to its use is previous studies [61] and used it

as a baseline.

3. Support Vector Regressor with a Radial Basis Function kernel (SVR-RBF): The

Support Vector Regression SVR model was used with a radial bias function RBF and

a linear kernel as standard machine learning model. For the kernel function, we used

the default values of 1.0 and 0.1 for the regularization and other hyper-parameters.

We used (SVR) in this study as it is a sophisticated model that performs well on time

series data predictions [47, 59].

4. One layer Multi-layer Perceptron (MLP): The Multi-Layer Perceptron MLP neural
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network model was a fully connected model with one hidden layer of 100 nodes

and an output layer that predicted cost and latency. Multi-layer Perceptron (MLP)

are basic feed-forward neural networks that consist of fully connected hidden layers

and do not utilize recurrent connections (e.g.data from previous passes through the

network), and will serve as a baseline neural network model.

We compared these techniques to our eRNN-based prediction mechanism due to their

prevalence in the research space and their prowess at time-series forecasting [6]. For this

study, we used a total of 52,106 records. From this 36,472 records were used for model

training, 7,819 were used for testing, and 7,815 were reserved for validation of the models.

The EXAMM(eRNN) models we used for the study were very efficient. The largest one

only had 44 nodes in total and 590 weights. All the models, including ARIMA were trained

using the training dataset. The testing dataset was used to optimize the hyper-parameters

and converge on the optimal model and stop the training process. The validation dataset

was used to gauge the viability of the models and make sure they were generalized. It was

not used in the training process.

5.1.2 Uncertainty Reduction Tactics

We evaluated the benefits of using uncertainty reduction tactics in conjunction with our

eRNN-based methodology after proving the benefits of eRNN compared to other evaluated

machine learning options. We only used eRNN to analyze URTs because it was found to

be the most effective prediction mechanism that could use URTs. Moreover, ARIMA is a

univariate model that can’t take advantage of data from other sensors (URT # 1). Therefore,

it was not considered in the URT analysis.

This evaluation was carried out using two uncertainty reduction tactics that were chosen

for their real-world applicability [48, 72, 35, 8] and discussion in a prior paper [53]. In our

evaluation, we employed the following two URTs:

URT #1: Reducing uncertainty due to model drift - Due to various forms of internal
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and external volatility, the models utilized by a self-adaptive system may progressively be-

come incompatible with the system’s environment. Additional sensors or data collection

operations can be used to address this uncertainty [8, 17, 75, 53]. We simulate this uncer-

tainty reduction activity in our evaluation by pinging the remote server on a regular basis

to obtain information about its availability and response time. This data is subsequently

fed into the tactic prediction mechanism of the system.

URT #2: Changing the sampling rate of a parameter - A confidence interval for the

value of the monitored parameter can be generated using the mean and variance of the ob-

servations. One way of controlling the width and uncertainty of the interval is to adjust the

sampling rate [8, 35, 72, 48]. We emulated this uncertainty reduction tactic by incorporat-

ing every nth observation from the data into our prediction process. The nth value would

be determined according to system-level agreement SLA and the system specifications. For

this evaluation, we chose n as 5, 10, and 20. These values were chosen to represent the loss

of information that would occur if the sampling rate was changed in relation to the size of

the dataset. Due to the size of our data, values below 5 did not result in a significant reduc-

tion in sample size. We also chose a sampling rates of 10 and 20 by doubling the previous

sampling rate. We didn’t use values greater than 20 because our dataset became too sparse

after doubling the sampling rate to 40. URT2 is a versatile framework that enables us to

tailor the best URT technique to individual learning problems. For optimal prediction im-

provement, we use extensive cross-validation and use n=5 for latency prediction and n=20

for cost prediction in this experiment. Considering utility is only decided by two parame-

ters (i.e.latency and cost), the benefit of such flexibility may not be significant in this study.

However, in a more complicated simulation environment, where utility is determined by

hundreds or thousands of factors, we can employ customized sample rates to reduce the

uncertainty in each factor input, resulting in a significant impact on the utility score.

5.1.3 Evaluation Criteria

In our analysis, we employed the following evaluation criteria
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1. Ability to accurately predict tactic attributes: The predicted features of a tactic

have a substantial impact on the system’s decision-making process since they can

directly influence if and when a tactic is picked and implemented [51, 57, 55]. As

a result, a system’s ability to properly forecast the attributes of a tactic is critical

for ensuring effective, efficient, and robust operation [61]. For our evaluation, we

compared the predicted tactic latency and cost values against the observed ground

truth values.

2. Expected vs achieved utility: We looked at the system’s ability to deliver the an-

ticipated amount of utility while operating in a dynamic environment by using vari-

able data. Accurately anticipating the achieved utility is very critical for a system’s

adaption-decision process to choose the most appropriate tactic(s) [57, 54, 56, 38,

51]. For our evaluation, we compared the predicted utility with the actual utility

(ground truth) of performing adaption decisions and tactics.

3. Ability to make correct decisions: The ability to make accurate and correct deci-

sions is critical for self-adaptive systems and processes. Therefore, we collected data

for the following system actions:

(a) Performed an action when the system should not have.

(b) Performed an action when the system should have.

(c) Didn’t perform an action when it should not have.

(d) Didn’t perform an action when it should have.

For our evaluation, we compared the action that the system should have taken by

using observed values (ground truth) against the actions recommended by the pre-

diction system. We performed qualitative and quantitative studies of the impact of

each prediction mechanism on a system’s decision-making process.

5.1.4 Analysis Using Simulation Tool

Using the CELIA simulation tool and dataset (Section 4), we compared our TVA-E pro-

cedure to existing techniques. A simulation tool gives a more robust evaluation than a
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statistical study, offering measures like frequency of correct decision and utility achieved

from making decisions. To emulate variations in system design, and reflect more realistic

scenarios and environments, we ran simulations against varied threshold values (Section 4).

For this study, we used the ‘download’ tactic described in Section 4. This process

involves repeatedly downloading the Apache installation file 1. We chose this technique to

evaluate the ability of the methods under consideration because it featured the most real-

world volatility, emulating the behaviors that a file transfer activity in a self-adaptive system

would resemble. Due to a variety of reasons, such as variability in network traffic and

server load, this tactic has constantly exhibited real-world volatility. Additional grounds for

focusing on this technique were: I) the server’s latency and cost variations were sufficient

for a proper evaluation, and II) to simplify the analytic output/examination. Overall, we

used a total of 52,106 tactic operations in our evaluation and measured the latency and cost

of performing this action.

We used three different server locations (Switzerland, Canada, USA) from across the

world that host the Apache installation file to collect the tactic operation’s cost and latency

values. We chose these particular servers due to their prevalence and their location. The

physical distance was bound to introduce variability in a myriad of factors (e.g.network

traffic, server resource availability, etc.) and experience real-world volatility. We are mak-

ing this dataset available for use by anyone to promote further studies in this domain.

5.2 Experimental Results

RQ1: Is eRNN effective for predicting tactic volatility?

In this study, we demonstrate eRNN’s capacity in general prediction processes and

those processes that benefit from accounting for tactic volatility. Predicting the volatility

of the tactic is a key aspect of decision-making in a Tactic Volatility Aware processes [61].

A good prediction model can have a huge impact on the system’s effectiveness, resiliency,

1https://downloads.apache.org/httpd/httpd-2.4.43.tar.gz
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and ability to complete system and mission-critical operations [61]. For this study, we used

eRNN with our TVA-E process.

We used the data from the CELIA data creation tool to train various models along

with eRNN. The dataset was split into three different sets: training, testing, and validation.

After the training and testing of these models, we evaluated their performance using the

validation dataset.

We used the mean squared error (MSE) to evaluate the predicted tactic cost and latency

against the ground truth. MSE is a well-used loss function for regression tasks. We also

used Mean Absolute Error (MAE) as an alternate error measurement because MSE can be

sensitive to the scale of data and outliers. This will allow us to comprehensively study and

compare the results. MSE and MAE are defined as following:

MSE =
1

N

N∑
i=1

(ti − t̂i)2 MAE =
1

N

N∑
i=1

|ti − t̂i|

Where N is the total number of data points, t is the ground truth value (e.g.cost or

latency), and t̂i is the predicted value. We tested each model on the three different sets

of data from the Apache download servers described in Section 4, and reported the per-

formance of each model. Note that ARIMA utilizes uni-variate time-series data to make

predictions, and therefore data from uncertainty reduction tactics can not be incorporated

into the model. Consequently, the results for that are not reported.

After taking into consideration Table 5.1, 5.2 & Figure 5.3, we came to the following

conclusions:

• Table 5.1 and 5.2 show that eRNN has the best performance in terms of predicting

latency and cost. The uncertainty reduction tactic (URT) does not benefit eRNN in

improving its predictive power in terms of MSE, but it does so in terms of MAE.

• The predicted latency has a large number of outliers in the observed values, as shown

in Figure 5.2 (ground truth). We, therefore, report the MAE for each compared model

to better evaluate the model in this case because it is less sensitive to outliers. From
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Table 5.1: Demonstration of the capabilities of eRNN in predicting tactic latency in relation to com-
pared methods. MSE of eRNN with URTs is around 7% than without URTs applied.
MAE of eRNN with URTs is around 6% than without URTs applied. It also consistently
matches or outperforms other predictive mechanisms at predicting tactic latency.

URT Tactic Model MSE MAE

eRNN 0.00061 0.016
ARIMA 0.00069 0.017
LSTM 0.00083 0.016
MLP 0.00086 0.016

SVR Linear 0.0087 0.035

noURT

SVR rbf 0.009 0.036
URT Combine(Sample rate=5%) eRNN 0.00057(7%↑) 0.0015(6%↑)

Table 5.2: Demonstration of the capabilities of eRNN in predicting tactic cost in relation to com-
pared methods. MSE of eRNN with URTs is around 65% than without URTs applied.
MAE of eRNN with URTs is around 46% than without URTs applied. It also consis-
tently matches or outperforms other predictive mechanisms at predicting tactic cost.

URT Tactic Model MSE MAE

eRNN 0.00032 0.013
ARIMA 0.00027 0.013
LSTM 0.00051 0.014
MLP 0.00085 0.014

SVR Linear 0.0028 0.052

noURT

SVR rbf 0.0022 0.052
URT Combine(Sample rate=20%) eRNN 0.00011(65%↑) 0.007(46%↑)

a more aggregate level, a small percentage of outliers would likely have little impact

on the system’s functionality (e.g., it doesn’t matter if the prediction that leads to

a non-optimal action is slightly wrong or very wrong; the incorrect action was still

taken). RQ2 expands on our claim that eRNN’s higher MAE does not prevent it from

making effective decisions.

• The added uncertainty reduction tactic information has a major impact on eRNN’s

cost prediction. When uncertainty reduction tactic information is used to train the

eRNN, the MSE is lowered by around half.
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• Using the uncertainty reduction tactic information during training also serves as reg-

ularization for the models. Figure 5.3 demonstrates that eRNN often provides more

predictions that are close to the outliers without uncertainty reduction tactic infor-

mation (which are likely to systematic noises). Using uncertainty reduction tactics

allows us to address overfitting issues which can cause a problem with the generaliz-

ability of models.

• eRNN also generates networks that are significantly more efficient in terms of the

number of nodes. EXAAM is not only able to compete and beat the other models in

terms of predictions, but it also uses an order of magnitude lesser number of nodes.

This highlights the inefficiency of using traditional fixed neural network model ar-

chitectures. Due to the varying limitations of embedded systems like power, storage,

and size, it can be highly beneficial to use eRNNs in place of other models as they

can be easier to integrate with such systems [44, 71, 11].

Outcome: Our findings demonstrate that eRNN is effective at both making predictions,

and specifically at predicting tactic cost and latency volatility.
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Figure 5.1: Predicted tactic cost(on server1)
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Figure 5.2: Predicted tactic latency(on server1)

Figure 5.3: Demonstration of the ability of uncertainty reduction tactics to make the prediction
distribution similar to the ground truth with sparse outliers.
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RQ2: Does eRNN effectively transfer the tactic volatility predictions to effective deci-

sions compared with other baselines?

The predicted utility’s value is not well scaled, unlike tactic cost and latency, which

have values that are commonly dispersed around 1 (range from 0 to 16,441.9). As a result,

we evaluate the utility prediction through using a scale-independent measurement rather

than MSE: mean absolute percentage error (MAPE). The MAPE formula is as follows:

MAPE =
1

N

N∑
i=1

|ti − t̂i
ti
| (5.1)

As shown in Table 5.3 the MAPE exceeding 100%, suggests that the model is likely to

overestimate the utility, particularly when the actual utility is minimal (close to zero). This

is typically seen as a major prediction error. Large prediction failures have a high chance

of leading to inaccurate adaptation decisions in self-adaptive systems. We discovered that

eRNN performs comparably to state-of-the-art algorithms like ARIMA, LSTM, and MLP

and that its performance can be improved further using URT operations.

For systems to choose the most relevant tactic(s) and adaption techniques for the ob-

served scenario [57, 54, 56, 38, 51], it is critical to accurately predict utility. The benefits

can be improved even more by using the uncertainty reduction data during the training

phase, particularly for eRNN, where the URT improves by 24

final decision-making procedure can be thought of as a binary classification exercise.

As a result, the system can be evaluated as a binary classifier. We’ll start by defining a

few terms. The number of correct ’update’ decisions made by the system is represented by

the true positive (TP). The true negative (TN) represents the system’s correct ’not update’

decisions. The number of inaccurate ’update’ decisions is the false positive (FP), and the

number of incorrect ’not update’ decisions is the false negative (FN). We can assess the

classification accuracy of the system output with the help of these metrics. This accuracy

calculation indicates the percentage of correct decisions in the system output. We use

false positive rate (FPR = FP
TP+FP

) for wrong decisions and false negative rate (FNR =

FN
FN+TN

) for evaluating the frequency of wrong ’update’ and ’not update’ decisions. Using



41

Table 5.3: Evaluation of utility prediction, demonstrating the how predicted utility deviates from
the true utility. This utility calculation is from the Simulation tool which uses the Utility
equation. The utility equation is a product of two functions. Therefore, for analyses of
the differences in utility among the prediction mechanisms, we utilized MAPE to scale
it proportionally.

Model MAPE

eRNN 21%
ARIMA 13%
LSTM 16%
MLP 14%
SVR linear 57%
SVR rbf 57%
eRNN+URT Combine
(Sample rate=5)

16%

Table 5.4: This table compares the decisions made by the CELIA simulation tool using the evalu-
ated prediction mechanisms. The CELIA simulation had a reward threshold of 1000 in
the SLA. This table breaks down the decisions according to different evaluation criteria.
This table shows how eRNN with URT has the lowest False Positive Rate.

Model FPR FNR U gain U loss Acc

eRNN 15% 7% 2.10E+07 1.40E+05 88%
ARIMA 6.6% 5.6% 2.1E+07 9.3E04 94%
LSTM 7% 11% 2.00E+07 1.90E+05 91%
MLP 9.20% 6% 2.00E+07 9.00E+04 92%
SVR linear 0% 54% 2.00E+07 1.80E+06 59%
SVR rbf 0% 56% 2.00E+07 1.90E+06 58%
eRNN+URT Combine
(Sample rate=5)

0.53% 17% 2.30E+06 3.40E+02 99%

Table 5.4, we can conclude:

• In our eRNN-based TVA-E approach, the uncertainty reduction information helps im-

prove accuracy by 13%, resulting in the highest accuracy.

• The FPR of the eRNN-based process is the lowest. This is in line with the prior observa-

tion about the utility prediction’s small MAE. Our eRNN-based approach is less likely
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to deliver a false update tactic action since it rarely overestimates small utility values.

• When compared to other baselines, the eRNN-based system has a moderate FPR and

FNR but low prediction accuracy. We see that URTs are able to rebalance the two types

of errors (FPR and FNR) in such a way that the overall benefit (accuracy) is maximized.

If the amount of utility missed by incorrect ’not update’ decisions is small, URT chooses

to tolerate an increase in FNR in the rebalanced decision-making procedure because

this type of mistake will only have a minor negative impact. Utility loss can be used

to quantify the negative impact. The utility loss is the sum of all incorrect ’not update’

decisions’ ground truth utility scores. The utility loss is an intuitive measure of how

much utility a system could have gained if the system made the right ’update’ decision.

It can be argues that eRNN has a relatively higher FPR. However, despite the higher

FNR value of eRNN+URT, it lost the least amount of utility compared to others. It is

able to access the risk of not updating and ”plays it safe” while not losing a lot of utility.

• The eRNN-based system’s high FNR rate has a minor negative impact on final decision-

making. When compared to other methods, the false-negative decisions made by an

eRNN-based system have the least utility loss.

• Our eRNN-based TVA-E process can be used with uncertainty reduction information to

reduce utility loss to 0.1%. This means URTs helps eRNN to minimize the expected

loss during the decision-making process. Similar to utility loss, we can use utility gain

to quantify the positive impacts made by correct decisions. The utility gain is the sum

of the true utility scores for all correct ‘update’ decisions.

Our general observations are that:

• For latency and cost predictions, eRNN is the best candidate. The model’s accuracy and

robustness are both excellent.

• The strength of eRNN cost and latency prediction can be well transformed to utility

prediction.

• Our eRNN-based decision-making process not only makes the best decisions, but it also

maximizes utility gain and minimizes utility loss.
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• The uncertainty reduction information can be used to regularize model prediction, and

reduce model output uncertainty.

• Uncertainty reduction information can be used to reduce utility loss.

Outcome: In comparison to existing prediction techniques, our analysis shows that eRNN

is the best method for predicting volatility. We also notice that uncertainty reduction tactics

provide useful information that can aid the system in making more accurate decisions.

RQ3: Are Uncertainty Reduction Tactics effective in helping to predict tactic volatil-

ity?

While the potential benefits of uncertainty reduction tactics have been explored previ-

ously [53], no documented efforts have been made to demonstrate or evaluate their po-

tential benefits in simulated self-adaptive systems. As discussed earlier and demonstrated

in RQ1 & RQ2, we discovered that uncertainty reduction tactics helped eRNN deliver im-

proved tactic latency and cost predictions.

• The effectiveness of URT varies by the prediction model. While all of the prediction

models improve when URT is added, eRNN takes advantage of the uncertainty informa-

tion and improves its MSE by 50%.

• Using uncertainty reduction tactic information when training model also serves as reg-

ularization. As demonstrated in figure 5.3, eRNN predictions tend to be relatively more

inaccurate and closer to the outliers without uncertainty reduction tactic information.

Using uncertainty reduction tactic information allows eRNN to address this issue and

perform a very well.

Outcome: This study highlights the potential benefits of uncertainty reduction tactic, par-

ticularly in terms of making more reliable predictions regarding tactic volatility.
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5.3 Discussion

General application of TVA-E

Self-adaptive systems will be required to work efficiently, effectively, and resiliently in

volatile environments, as they become more ubiquitous. This research highlights the im-

portance of self-adaptive systems in properly accounting for tactic volatility. Accounting

for tactic volatility has been shown to reduce uncertainty and enhance a system’s ability to

make more optimal decisions. Self-adaptive systems with an adaptation control loop will

be required to routinely make predictions regarding the attributes of a tactic. These predic-

tions will allow the system to understand its current and future environment and, therefore,

will impact the current and future state of the system. TVA-E decently complements a

MAPE-K adaptation control loop. It is able to account for tactic cost and latency volatil-

ity and help make better decisions regarding tactic adaptation and deployment. It does so

by using data-driven prediction and uncertainty reduction tactics. The nature of TVA-E

also allows system administrators to integrate additional tactic attributes besides cost and

latency.

Processes such as those targeting the reduction of large adaptation spaces [73] may

be able to benefit from and integrate with our findings. Our work can help in this area

by providing systems more accurate tactic information that can be used to both eliminate

improbable adaptation options (e.g., those that are impracticable due to cost/latency) and

improve the utility equations that are used to choose the best adaptation options.

eRNN

Predicting the volatility of the tactic is a key aspect of a decision-making process in a Tac-

tic Volatility Aware processes [61]. A good prediction model can have a huge impact on

the system’s effectiveness, resiliency, and ability to complete system and mission-critical

operations [61]. Recurrent Neural networks (RNNs) are generally superior to traditional

statistical methods. On data that is highly non-linear, acyclic, and not seasonal, RNNs out-

perform models such as the ARIMA family of models. Furthermore, RNNs are also more
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suited to time series forecasting, which incorporates multiple correlated time series of input

data. Classical statistical models usually struggle with such kinds of data. These features of

RNNs make them a much better choice for providing predictions for self-adaptive systems.

However, building efficient and effective Recurrent Neural networks structures is a

time-consuming, expensive, and relatively difficult process. Neuro-evolution algorithms

allow for selecting, connecting, and combining potential architectural components instead

of simply evaluating standard RNN architectures. This results in a more comprehensive

and thorough search for available model architectures and automates the design, training,

and testing processes.

For this study, we used The Evolutionary eXploration of Augmenting Memory Models

(EXAMM) [60] or eRNN (as referenced throughout this study) with our TVA-E process

and compared its performance against other methods. This work shows the value of eRNN

in anticipating tactic volatility in self-adaptive systems, as well as the general capabilities

of our TVA-E method based on eRNN. This study exhibits eRNN’s capabilities and lays the

groundwork for its future use in other fields of machine learning. As a result, the findings

of this study promote research not just in self-adaptive systems but also in a wide variety

of other fields where machine learning may be used.

URTs

While the advantages of uncertainty reduction tactics have been explored from a theoreti-

cal standpoint [53], this is the first attempt to test them in a simulated environment. This

study lays the groundwork for future research, such as I) investigating uncertainty reduc-

tion tactics in more simulated and physical locations and settings, II) further evaluating

them, and III) developing new uncertainty reduction tactics for a wide variety of applica-

tions. The benefits of the supplemental information offered to eRNN through uncertainty

reduction strategies have been established, demonstrating the value of this additional infor-

mation to this model. Uncertainty in information is widely acknowledged as being harmful
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to decision-making processes in systems [53, 16, 34], and this work shows the value of un-

certainty reduction tactics in reducing the amount of uncertainty encountered by a system.

CELIA

This experiment also highlighted the usefulness of CELIA’s simulation tool and data cre-

ation tool. The demand for tactic volatility-aware processes will grow in tandem with

the growing recognition of the need for systems to function well in volatile environments.

Researchers, academics, and practitioners will be able to use the provided dataset and sim-

ulation tool to create and evaluate their own tactic volatility aware processes and contribute

to this research space. CELIA’s modifiable nature and ability to accept any utility equa-

tion allowed us to integrate the tactic volatility data. The output from the simulation tool

allowed us to thoroughly test and evaluate TVA-E and the dataset.
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Chapter 6

Related Works

Several works have demonstrated the importance of accounting for tactic volatility [51, 55].

A great majority of state-of-art decision-making processes don’t adequately account for

tactic volatility. These processes usually assume that tactics have static and unchanging

attributes [61, 51]. This constraint has the ability to have a considerable negative impact

on the system’s efficacy, efficiency, and robustness [54, 55]. The need for processes such

as our proposed TVA-E technique that account for tactic volatility has been discussed pre-

viously [54, 55]. Although Proactive Latency Aware (PLA)-based [54] techniques such

as PLA-PMC [46], SB-PLA [51] and PLA-SDP [56] account for tactic volatility, exist-

ing PLA-based processes consider latency to be a static value [61, 51]. This work extends

and advances existing proactive-focused processes by providing more accurate information

that can be used to make higher-quality decisions. Another process, Model Predictive Con-

trol (MPC) [13] choose control inputs to optimize forecasts of process behavior [66, 51].

Our volatility-aware process can help techniques like MPC through a more informed and

accurate control input.

Palmerino et al.[61] used ARIMA time series forecasting to account for tactic volatility

in self-adaptive systems. The TVA-E method we propose improves on existing work in

that: I) TVA-E utilizes eRNN, which has been demonstrated to be superior to ATIMA for

predicting tactic volatility in our evaluations, II) This study performs a much more robust

and detailed analysis and comparison of methods for predicting tactic volatility, and III)

TVA-E also incorporates and assesses the use of uncertainty reduction tactics in decision-

making processes.
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Machine learning has previously been used to help determine the most efficient config-

urations for self-adaptive systems and to aid adaptation planning. Quin et al.[65] improved

the MAPE-K [21] feedback loop by using a learning model. This model selects subsets of

adaption options, allowing the system to make better decisions. Jamshidi et al.[40] used

machine learning to identify Pareto-optimal configurations to avoid having to explore ev-

ery possible configuration. This work also limited the search space to make planning more

manageable. However, these works differ from ours in the sense that they do not address

tactic volatility and its challenges.

Esfahani’s et al.[31] work proposed a process that seeks to improve the self-adaptive

process by using machine learning. This work incorporated online learning to assist in

the decision-making process. Elkhodary [26] conducted a preliminary study to combine

learning, dynamic optimization, and feature-orientation techniques to develop and propose

a new class of self-adaptive systems that could update their adaptation logic on run-time.

Our study differs in the sense that it is more proactive by employing learning to predict

tactic volatility at run-time.

Kinneer et al.[43] devised a novel method for utilizing prior planning information to

help self-adaptive systems adjust to new and unexpected scenarios. This study accounted

for tactic failures and also argued for tactic latency and its pitfalls. Although this method

is useful for overall system design, it lacks a mechanism to assist the system with learning

and predicting tactic latency and cost value. Our TVA-E approach, on the other hand, is

very good with learning and predicting tactic latency and cost values.

There have been several datasets utilized in prior self-adaptive systems research. The

FIFA 98 dataset [10, 5] is a collection of requests made to the FIFA website over the course

of four months. This dataset has been widely utilized in self-adaptive research for a number

of purposes, including mimicking the need for more servers owing to increased network

traffic [23, 20, 76, 18]. However, this dataset is not suitable for research for tactic volatility

problems as it does not have the concept of latency or cost in it. Our study provides a

dataset along with a simulation tool to create and evaluate tactic volatility aware processes.
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Palmerino et al.[61] demonstrated the importance of accounting for tactic volatility

and developed called VolAtiLity EmulaTor (VALET). Our proposed CELIA tool provides

several improvements, variations, and advantages over VALET. Some of these advan-

tages include easier and more detailed user customization and additional evaluation outputs

(e.g.frequency of correct decisions, utility difference, expected utility not achieved, missed

utility). The ongoing research in these areas demonstrates the need for a robust dataset and

evaluation tool to support the research. CELIA also integrates the notion of performance

penalties and propagation. This is where any wrong actions can have repercussions in the

near future.

This research space has a few tools that have been used in the evaluation and analysis of

self-adaptive decision-making processes. The ‘ZNN.com’ [19] and Rice University Bidding

System (RUBiS) [3] are multi-tiered web applications that have been used in the evaluation

of self-adaptive processes as target systems. However, these tools are not simulation tools

and require actual hardware and software to emulate web servers such as Apache HTTP.

This makes use of these tools increasingly challenging and time-consuming. Moreover,

they don’t have a self-adaptive system component and require an additional layer of modi-

fications to be used for research purposes [51]. DARTSim [50] is another tool that could be

used as it provides a high-level simulation of a team of unmanned aerial vehicles (UAVs)

conducting a reconnaissance mission in a hazardous and unknown environment. Simulator

for Web Infrastructure and Management (SWIM) [58] simulates a web application such

as Znn or RUBiS. Although DARTSim and SWIM have a concept of tactic latency, it is

not volatile. CELIA differs from them as it is able to readily account for tactic volatility.

CELIA is also easier to implement and can be easily customized to support a range of

evaluations and configurations (datasets, utility equations, SLA).

Existing artifacts and model problems (exemplars) [4] for self-adaptive systems contain

artifacts that act on real-world data and/or maybe accessible remotely for experimentation.

However, no existing exemplars are known to have datasets with considerable degrees of

tactic cost or latency volatility.
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Chapter 7

Threats and Future Work

In many systems, the tactic cost may be a fuzzy and difficult-to-define metric. This inability

to assess cost precisely could limit the quality and quantity of observed input values into

our prediction process, limiting the adoption of our process. Furthermore, the cost might

be a relative concept, and we consider it a quantitative value in our TVA-E approach. One

could argue that the ’cost’ of executing a tactic is the general wear and tear on a device’s

hardware. In most cases, such a cost is difficult to estimate. As a result, while utilizing

TVA-E, the concept of cost must be confined to a value that is easily quantifiable.

We have showcased how our proposed TVA-E works both in a simulation tool and

analyze its performance with statistical analysis. Despite demonstrating the benefits of our

TVA-E approach with real-world experimental data, implementing processes in real-world

scenarios and hardware can introduce its own sets of unforeseen unique challenges. Our

adaptation approach will be integrated into physical equipment such as Internet of Things

(IoT) devices, small unmanned aerial vehicles (UAVs) and drones, and self-adaptive online

services in the future.

Although TVA-E allows for the monitoring of requirements indicated in a Service Level

Agreement (SLA) for self-adaptive systems, time-series analysis does not always allow for

the measurement of all needs. For example, a system might be required to be available

for X percent of the time. This is not something that can be quantified or predicted using

time-series analysis. Therefore, using this TVA-E process will require SLA requirements

to be in a time-series format for this process to perform adequately.

Real-world uncertainty reduction tactics may involve trade-offs such as cost or risk,



51

which we did not take into account. However, we do not believe this is an issue because

most uncertainty reduction techniques, including the one utilized in this study, are meant to

be low-cost and low-risk by nature. As a result, we do not believe that incorporating cost

or risk into our analysis would have significantly altered the conclusion of our findings.

Furthermore, one of the goals of this project was to illustrate the benefits of uncertainty

reduction tactics from a theoretical standpoint. In the evaluation of our work, we used

the uncertainty reduction tactic of querying a decentralized resource. Further strategies for

reducing uncertainty should be included in future studies.

This study has demonstrated TVA-E’s ability to account for tactic volatility. However,

there are limitations to this work. TVA-E may not be a significant improvement over current

processes in the early stages of implementation. The performance of machine learning

models depends heavily on the existence of data. As a result, due to a lack of prior data

to consider, tactic attributes may still need to be predetermined. Furthermore, because of

the need for historical data for machine learning models, observing tactic volatility might

be impractical for any tactics that are sparsely deployed. This means that traditional pre-

defined processes will still be necessary.

The goal of this project is to show the fundamental capabilities and benefits of uncer-

tainty reduction techniques. This study did not have the goal of implementing and evaluat-

ing a variety of uncertainty reduction tactics because the primary goal was to demonstrate

the foundational benefits of uncertainty reduction tactics. Moreover, uncertainty reduction

tactics employed by a system will be domain-specific. However, further research is needed

to determine the impact and potential benefits of additional uncertainty reduction strategies

for a system.

Machine Learning algorithms, including EXAAM, require and perform offline training,

testing, and validation. They typically require an extensive amount of data to generate

models that can operate at an acceptable level. These machine learning algorithms also

require an extensive amount of time on high-performance computing systems that result in

excessive energy consumption. Algorithms such as LSTM and MLP also require a large



52

number of nodes in order to generate good working models. This can further slow down the

training and run-times of these models. After the training, testing, and validation processes

of neural network models are completed, the best model architectures are used, but they

cannot be updated or improved further. However, EXAAM has recently been shown to be

capable of allowing transfer learning to different architectural structures [28, 30]. EXAAM

is also a lot more efficient once the model architectures are finalized, as it results in a

lot fewer nodes compared to other algorithms such as LSTM and MLP. Future work with

EXAAM and TVA-E will allow the online evolution of the algorithms. This is where the

evolutionary process, learning, and optimization of the models can continue in an online

fashion as the model is exposed to new information and learns from its actions.

The eRNNs trained by the EXAAM algorithm, that were used for the purpose of this

research, was more prone to the effect of outliers compared to other algorithms. This was

shown by its higher Mean Squared Error than ARIMA compared to the Mean Absolute Er-

ror. This needs to be taken into consideration while designing systems where data outliers

can have high ramifications. It may be that in some scenarios, this characteristic of eRNN

might not suit the case at hand. However, EXAAM is in its early stages of its development.

As it sees more adoption, it will be fine-tuned to fit more use-cases. This will be very ben-

eficial due to its efficient architecture. Moreover, future works with EXAAM, TVA-E and

online learning should allow us to overcome this problem.

This work realizes that any uncertainty reduction operations utilized inside a system

will be domain-specific; hence no work may presume that it will be able to implement and

assess every type of uncertainty reduction operation. In our analysis, we factored in every

fifth uncertainty reduction value. Changes to this sampling rate value could be made and

evaluated in the future.

The data used in this study was generated by the CELIA tool we developed in conjunc-

tion with this study. The empirical results reported in this study should be considered in

light of the limitations of the CELIA data generation tool. The tool gathers the data by

downloading the same file from three different locations across the world. The tool was
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run over a span of months. While the data gathering algorithms were thoroughly vetted as

proof-of-concept and the data was cleaned according to industry standards, it may still be

limited by its nature. Future studies can use independent hardware nodes spread across a

network to capture higher volatility.

The evaluations performed in this study were done using statistical analysis on the re-

sults of the CELIA simulation tool we developed with this paper. This simulation tool was

developed in light of the absence of other tools that could take into regard tactic volatility.

Nonetheless, these results from this evaluation must be interpreted with caution. CELIA is

a configurable simulation tool emulating a self-adaptive system that provides researchers

with a platform to evaluate their own tactic volatility aware processes. It needs an external

source of time-series data that it can iterate through to run the simulation. The quality of

the evaluation is dependant on the data itself. Future studies can develop a tactic volatil-

ity aware solution such as DARTSim [50] that is a sandbox simulator that simulates the

physical environment.
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Chapter 8

Conclusion

We studied and proposed a new TVA-E process, which utilizes uncertainty reduction tac-

tics. We also tested our TVA-E process with multiple learning methods including ARIMA,

LSTM, MLP and evolved Recurrent Neural Networks. We came to a conclusion that eRNN

is the most suitable for our TVA-E process because of its ability and general computing

requirements. Our process in combination with eRNN (TVA-E) can easily integrate into

mainstream adaptation processes, allowing it to have a positive impact on a wide range of

self-adaptive systems. Our simulations and analysis, which used 52,106 records, show that:

1. TVA-E can account for tactic volatility adequately,

2. eRNN demonstrates its effectiveness compared with other leading machine learning

alternatives. eRNN with URT is more than 65% more accurate than the next best

model at predicting tactic cost in terms of MSE. It is also 7% better than the next

best model at predicting latency in terms of MSE.

3. Uncertainty reduction tactics can be very useful, particularly in terms of making

more reliable predictions regarding tactic volatility. eRNN takes advantage of the

uncertainty information the best and improves its MSE by 50%

This study also contributes the CELIA data generation and simulation tool. CELIA

can help researchers in a variety of self-adaptive research domains. The tool will help re-

searchers and practitioners evaluate their tactic volatility aware processes as well as their
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capacity to operate effectively and resiliently. This project makes all of the results, eval-

uation software, and other information available to the public at https://github.com/valet-

tool/valet-tool.
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