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Abstract

Predicting risk of readmission in heart failure patients

using electronic health records

Pradumna Suryawanshi, M.S.

Rochester Institute of Technology, 2021

Supervisor: Dr. Linwei Wang

This thesis research investigates the prediction of readmission risk in

heart failure patients using their electronic health record (EHR) data from pre-

vious hospitalizations. We examine three primary questions. First, we study

the use of attention mechanism in readmission prediction model based on long

short-term memory(LSTM) networks, and investigate the interpretability it

offers regarding the importance of critical time during the visit in readmission

prediction. Second given that, generally dataset is curated by combining data

from multiple hospitals we investigate model generalization across multiple

sites. Finally since in real life scenario model will be trained on past data

and used to predict future readmission events ,we further investigate model

generalization across time.Along with those things, model performance across

different endpoints will be studied.
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Chapter 1

Introduction

1.0.1 Motivation

Heart failure has a considerable prevalence in western countries and

accounts for approx 1-5 % of all hospitalization and approx 30 % of avoidable

admissions[29]. Heart failure affects approx 6.5 million Americans with over

960K new cases each year. It results in approx $30.7 billion in hospitalization

and associated costs. Billions of dollars can be saved by detecting avoidable

admissions. Reducing avoidable admissions can also help to reduce stress on

hospitals and other related services and resources. Recently due to the use of

EHR(Electronic Health Data) systems the patient’s records can be digitally

saved and used for analysis later on. This has led to the accumulation of pa-

tient data which can be used to analyze and gain insights.

Recently neural networks have been use to solve complex problems like speech

recognition[30], image recognition [16], object detection[13] etc. Availability

and development of the GPU in last decade have helped the growth of neural

networks. Large neural networks are able to achieve near human level per-

formance on image recognition tasks. Leveraging the recent developments in

deep learning various methods have come up to use deep learning to predict

30-day readmission .
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Various datasets [20, 24] have been curated for the same, with minor sub-

tleties among them. Many methods have been developed to deal with EHR

data and prediction related to heart failure.Various methods of using LSTM

for EHR data modeling and predicting readmission, length of stay, mortality

have come up in recent times[1, 7, 40].They have used different subsections of

EHR data, some have used values like blood pressure, lab values (Sodium,

glucose, potassium, calcium etc) measured during the stay, some have used

diagnosis at the start and end of the visit, some have used clinical notes for

the task. Different aspects of EHR data have been studied like imputation of

missing data[34],time difference between measured data points [32] irregular

nature of time series and its modeling [33] etc.

This study mainly focuses on three things, first the use of attention mechanism

for heart failure readmission prediction and identifying important time steps

in visits, second, EHR datasets are curated by combining data from multiple

hospital sites,we investigate the generalization across hospital sites.At last,

we look into how data from the past affect the model and investigate model

generalization across time.

1.0.2 Objective

The main objective of the study is to predict the risk of heart failure

readmission patients. The study will analyze the effect of attention on hospital

readmission risk and identify the important time steps in visit, it will also

look at model generalization across various hospital sites and the effect of

2



data generalization on model across time.It will also investigate the effect of

changes in endpoint definitions on model performance.
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Chapter 2

Background

Here we will look at general terms and definitions.

2.1 2-Approaches

Modeling irregular time series can be done with 2 different approaches.

2.1.1 Discrete

In this type of modeling the data is aggregated in a bin (in this case

hours) such that all measurements of the variable within that bin is passed

through an aggregation function to get a single value. The function used is

mean/max. The experiments use discrete time series modeling.

2.1.2 Continuous

In this type of modeling the data(irregular time series) is not aggregated

in bins of some time unit , instead available data points are used to generate

a continuous representation and feed to model [21].

4



2.2 Neural Networks and its Applications in Medical
Domain

Neural networks have been used to solve real life problems like image

recognition and object detection[14].Various complex networks have been de-

veloped over the last two decades for specific applications, like CNN for image

recognition , object detection etc. Along with the development in process-

ing power and availability of large datasets [9] have helped neural networks

achieve human level performance. Neural networks have been used to solve

medical problems for the past 2 decades. [12]. CNN (Convolutional neural

network) which use the spatial data from the image to analyze the image and

gain information about objects and predict some useful information has been

used to detect tumors [3] from MRI and analyze scans for possible anomalies

[23].

RNN(Recurrent neural networks) are a type of neural network that deals with

input that has a time component, for example, output from a sensor that mea-

sures temperature [15] , humidity [11] , heartbeat of a person in hospital etc,

stock price etc [27].
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Figure 2.1: ERNN cell
[17]

2.3 Recurrent Neural Network

RNN has proved to be successful in modeling time series inputs over

traditional statistical models. It’s architecture marks a important change in

the way neural networks analyze time series data, by incorporating the tempo-

ral aspect of data. RNN was introduced in 1990 by Elman [10] , architecture

is as shown in figure 2.1.

ht = σ (Wi · ht−1 + Vi · xt + bi)
zt = tanh (Wo · ht + bo)

(2.1)

In the above equations which defines the operation of RNN ht ∈ Rd is

defined as the d - dimensional hidden state , which is updated every time step.

xt ∈ Rm is a m-dimensional input feed at each time-step to the cell.Wi ∈ Rd×d

along with Vi ∈ Rd×dis the input side weight matrix which is optimized as a

part of training process, A optional d-dimensional bias matrix bi ∈ Rd is also

present. Like wise Wo ∈ Rd×d and bo ∈ Rd are output side weight matrix and

bias matrix respectively. The cell uses two activation functions sigmoid σ and

tanh which help to convert the linear operations to non-linear operations. The

6



current hidden state is updated using the previous hidden state and current

input. These computations help the cell learn from past and better understand

the current input. The input can be arbitrarily long , as long as all examples in

training set are of same length, which can be trivially achieved using padding.

The basic cell suffers from vanishing gradients problems as the sequence gets

long , keeping track of gradient at earlier stages of sequence becomes difficult.

When the gradients are large , the gradients tend to explode causing exploding

gradient problem which limits the performance of the cell.[31] Various versions

of the cell have been proposed over time to overcome the drawback of vanishing

gradients like LSTM(Long Short Term memory) [18], GRU(Gated Recurrent

Unit) [6].
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Figure 2.2: LSTM Cell
[5]

2.4 LSTM-Long Short Term Memory

LSTMwas introduced in 1997 by Hochreiter and Schmidhuber [18].LSTM

has achieved better performance modeling time series data like music genera-

tion, speech signal analysis [8]. It has addressed the vanishing gradient issue

in ERNN to a great extend. It has a extra cell state along with the hidden

state of the ERNN cell.

it = σ (Wix
t + Uih

t−1 + bi)
f t = σ (Wfx

t + Ufh
t−1 + bf )

ot = σ (Wox
t + Uoh

t−1 + bo)
at = tanh (Wcx

t + Uch
t−1 + bc)

ct = it · at + f t · ct−1

ht = ot · tanh (ct)

(2.2)

The equations above define the structure of LSTM cell which is used for

modeling time series data like language [28] ,stocks [26], music [25], speech [39]

etc. The equations represents computation for time step t. it, ft, ot represent
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the input ,forget and output gates of the cell. Wi, Ui ∈ Rdxd are matrix of input

gate and input respectively. Wo, Uo ∈ Rdxd are matrix of output gate and input

respectively. Wf , Uf ∈ Rdxd are matrix of forget gate and input respectively.

xt ∈ Rd is the d-dimensional input at time step t. ht is d-dimensional hidden

state of the cell which is updated with every time step t. ct is the current cell

state and at is the candidate cell that decides how much information should

be propagated to future. ct−1 is previous cell state of the cell at time step t-1.

ht is the current hidden state of the cell at time step t. ht−1 is previous hidden

state of the cell at time step t-1. ht along with hidden state it can also be used

as the output of cell at time step t.

9



2.5 Attention Mechanism

Attention was introduced to overcome the drawbacks of encoder-decoder

architecture for machine translation [2]. Attention mechanism in neural net-

work has been inspired by how human brain processes image system, when

identifying a person in a room the human brain focuses it’s attention on facial

aspects of the person rather than the flower pot behind him, therefore focus-

ing a particular part of input will help gain sufficient insights from input[36].

On similar lines image have some parts that are more important than other

[35], in language a set of words are more important than others for example in

translation [2] a part of sentence has more insights than rest of the sentence.

Attention mechanism helps the model to find such important parts dynami-

cally and making it pay more attention to such part which in turn helps the

model perform better by paying less attention to other parts. Few of the main

drawbacks of encoder -decoder architecture are, it converts the entire input

sequence to a single vector at the end essentially compressing the entire se-

quence to a single vector, which results in loss of information[6], it also suffers

from the alignment modeling between input and output sequence[38]. As the

figure 2.3 shows basic difference between a traditional encoder and decoder is

the context vector that will add weight to input before feeding it to decoder.

The context vector helps introduces attention to the input.The weights are

learnable parameter and can be optimized for desired task.
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Figure 2.3: (a) traditional encoder-decoder, (b) encoder decoder with attention
[4]

2.5.1 Hierarchical Attention

This type of attention was first introduced in [37] Jan 2016, it follows

a completely different approach to attention, which does not use encoder-

decoder model. It was developed for classifying documents and has a unique

hierarchical structure that mirrors the structure of document i.e words form a

sentence , sentences form a document. It uses a cascading RNN layer where

each sentence is passed through a RNN and then a vector representing the

sentence is generated using attention mechanism on top of RNN which then is

passed through second RNN as shown in the figure 2.4. The second RNN takes

as input the transformed sentences as input and at outputs the classification

score for the document.

11



Figure 2.4: Hierarchical Attention Model
[37]
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xit = Wewit, t ∈ [1, T ]
−→
h it =

−−−→
RNN (xit) , t ∈ [1, T ],

←−
h it =

←−−−
RNN (xit) , t ∈ [T, 1]

(2.3)

The above equation defines the operations associated with first level

of RNN’s. Given a sentence with words wit , words are converted to vector

using embedding matrix We. A sentence contains T words, each sentence

is passed through a RNN to get compressed weighted representation of the

sentence.Each word is assigned a specific weight which generating the final

compression representation for that sentence.

uit = tanh (Wwhit + bw)

αit =
exp(u⊤

ituw)∑
t exp(u⊤

ituw)
si =

∑
t αithit

(2.4)

The above equation defines word level attention after first layer of RNN.

The word level vector i.e combination of hit =
−→
h it +

←−
h it (forward and back-

ward hidden states) is then passed through a single layer neural network to

get uit which is the latent representation of hit. The importance of word is

generated by measuring the similarity uit with uw as word level context vector

and normalized score ait is generated after applying softmax function. At the

end we compute the representation of sentence which is then passed to next

RNN level as S. A similar approach is used for sentence level attention at the

end of second RNN.

13



A similar approach can used in patient care model which tries to pre-

dict 30 day readmission by identifying certain hours using attention which are

more important than the other and helping the model to pay more attention

(weighted values) to those hours . The proposed modification of hierarchi-

cal attention mechanism uses only word level attention to identify important

hours.

14



Chapter 3

Methodology

3.1 Dataset

The dataset consists of EHR data from the Geisinger group and consists

of ∼15K unique patients and ∼30K visits over a span of ∼20 years. The study

will use the first 48 hours of data of a patient’s visit to predict if the patient

will have readmission in the next 30 days.The data has been aggregated to

generate 12 hr time steps from 48-hour raw data. In this case we let D =

{(xn, yn)} where yn is single dimensional target ϵ = {0, 1} where yn takes on 1

if the patient will have a readmission in next 30 days of discharge.Readmission

is defined as case where patient is admitted again within 30-days of discharge

from hospital. xn is a q dimensional combination of time series data and static

data. Time series variables used are as follows :-

• BP Diastolic

• BP Systolic

• MEWS Score

• Glasgow-Best Motor Response

• Glasgow-Best Verbal Response

15



• Glasgow-Eyes Open

• Glasgow-Total Score

• Pulse

• Urine Output

• Fi02

• Mean Arterial Pressure

• Resp

• SpO2

• Temp

Where a single time series is represented as xnq = [xqn1, xqn2, ...]. Additional

derived features extracted from time series variables such as min, max , mean

over measured interval are added as static values. Static data variables such

as demographics which includes gender, age and insurance type are also added

to the time series data.Derived features from lab results such as min, max,

mean added as static variables at end of every time step.Derived features from

patients history such as

• Number of encounters last year.

• Number of encounters in last 6 months.

16



• Number of days hospitalized last year.

• Number of days hospitalized in last 6 months.

• Number of emergency visits last year.

• Number of emergency visits exceeding 5 days last year.

are also added as a static feature along every time step These features help

track the progression of disease.Linear regression coefficients of individual time

series and lab values also added as static features.Lab values used are :-

• Glucose Meter

• Potassium

• Creatine

• Sodium

• Chloride

• CO2

• Calcium

• HGB

• HCT

17



Min-Max normalization is used to make sure the data is scaled appro-

priately. Missing data is imputed using mean of the cohort.If a variable has

multiple measurement in a hour the values are aggregated using mean func-

tion. A train test split of 80 %(80% train -20% validation)-20% is used. Varied

number of visits have been registered form different hospitals in the dataset(for

dataset version 1).

Table 3.1: Distribution of visits across hopsitals
Hospital Name Number of visits
GMC 13713
GBH 515
GLH 2336
GSACH 1688
GWV 8087
GCMC 3991
Total 30340

As seen from the table the largest hospital is GMC and the smallest

being GBH with respect to number of visits from each hospital in the dataset.

The model consists of a 2 layer deep LSTM with 4 hidden layers on top along

with the additional attention mechanism and hidden size of 1024.The optimizer

used is SGD [22] with a learning rate of lr=0.001.

3.2 Procedure

The data is curated from a global pool of visits from Geisinger data.

First, the patients with HF diagnosis at least once during their lifetime are

18



selected. All visits from such patients which span at least 48 hours are se-

lected.This forms the first set of visits. The second set consists of patients

that have heart failure diagnosis with at least 48 hours of data and a 30-day

readmission diagnosis of heart failure. The third set consists of patients who

have been diagnosed with heart failure at least once in their lifetime and have

all-cause readmission within 30 days of discharge [19]. The 3 different sets of

data define the definitions of the endpoints used in literature.

Feature extraction takes place using LSTM and a fully connected layer is used

to extract from the hidden states of the LSTM. A modified version of hier-

archical attention is used on top of LSTM to identify the important hours of

visit.

3.3 Experiments

Here we will look at the experiments conducted.

3.3.1 Experiment 1

This experiment deals with identifying a better model, LSTM or LSTM

with attention. For this we use the first set of visits as described in previous

section. A test-train-validation split is randomly generated and is used to

compare both models. Both models i.e LSTM and LSTM+ attention are

trained using the same train and validation split and tested on same test split.
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3.3.2 Experiment 2

This experiment deals with comparing performance of model trained

composite hospital data vs model trained on individual hospital data.First

set of visits as described above are used for the experiment.Both models are

trained and tested on same test-train-validation split respectively.

3.3.3 Experiment 3

This experiment tries to identify the effect of old data on the model

and its performance. The earliest visits date from 2002 and the latest dates

from 2020. In this experiment the test-train-validation splits are segregated

by year i.e data from 2010-2017 is used for training and validation, data from

2017-2020 is used for testing.Then the training data is increased by one year

and a new model is trained, based on the performance of model,effect of recent

vs old data is analyzed.Looking back 10 years from 2014 with increments of

one year the training set is generated and corresponding data after 2014 is

used for testing. The setting of this experiment represents a real life scenario

in hospitals where a patient might have old visits from recent years in the

database and prediction on his current visit is performed.

3.3.4 Experiment 4

This experiment analyzes the effect of endpoint definition. It has 3

different experiments listed below :

• Using only heart failure specific visits approx 8K vists.

20



• Using all visits which are related to heart problems from patients who

have diagnosed with heart failure at least once in lifetime , approx 31 K

visits

• Using all cause visits from patients who have diagnosed with heart failure

at least once in lifetime approx 46K visits.

These 3 are the most popular endpoints definitions, changing the definitions

affects dataset as well as readmission rate which in turn affects the models per-

formance.The experiment will analyze the effect of these endpoints on model

performance.

21



Chapter 4

Results and Discussion

4.1 Experiment 1

Here we will look at results for LSTM vs LSTM+ attention model.The

model is trained on dataset version 1 as described before(all data split into

train-validation-test).

Table 4.1: Results for LSTM vs LSTM+attention
Model Name Score-ROC
LSTM 0.61
LSTM+Attention 0.66

As we can see from table 4.1 the model with attention has performed

better than model with LSTM, A increase of approx 0.05 points or increase

of approx 8% has been observed.Attention basically helps the model to look

at time steps which are important and assign more importance to them while

predicting.

4.2 Experiment 2

In this experiment, the performance of models trained for individual

hospital vs model trained for all hospitals is analyzed. The composite in tables

22



below represents model trained on all data, and tested only for the particular

hospital. The test splits are same for composite and individual model.

Table 4.2: Results for GMC hospital
Model Name Score-ROC
Compsite 0.57
GMC 0.65

As seen in the table, model trained on individual(GMC) hospitals data

has performed better as compared to model trained on data from all hospitals

combined, the model was able to gain better insights without the noise from

other hospitals. Improvement of approx 0.08 points or a increase of 14% has

been seen.
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Table 4.3: Results for GSACH hospital
Model Name Score-ROC
Compsite 0.58
GSACH 0.66

As seen in the table, model trained on individual hospitals data has

performed better as compared to model trained on data from all hospitals

combined, the model was able to gain better insights without the noise from

other hospitals. Improvement of approx 0.08 roc points or a increase of 13%

has been seen.

Table 4.4: Results for GWV hospital
Model Name Score-ROC
Compsite 0.56
GWV 0.61

As seen in the table, model trained on individual hospitals data has

performed better as compared to model trained on data from all hospitals

combined, the model was able to gain better insights without the noise from

other hospitals.Improvement of approx 0.06 points or a increase of 10% has

been seen.

As seen in the table, model trained on individual hospitals data has

performed better as compared to model trained on data from all hospitals

combined, the model was able to gain better insights without the noise from

24



Table 4.5: Results for GCMC hospital
Model Name Score-ROC
Compsite 0.52
GMC 0.61

other hospitals.Improvement of approx 0.09 points or a increase of 17% has

been seen.

Table 4.6: Results for GLH hospital
Model Name Score-ROC
Compsite 0.58
GLH 0.73

As seen in the table, a model trained on individual hospitals data has

performed better as compared to a model trained on data from all hospitals

combined, the model was able to gain better insights without the noise from

other hospitals. Improvement of approx 0.15 points or an increase of 25% has

been seen.

The models trained on individual hospitals have outperformed model trained

on composite data by atleast 10% or atleast 0.08 roc points, which is a sig-

nificant improvement. The hospitals have varied visits proportions in the

composite dataset while GMC accounting for approx 45% of all visits vs GBH

which accounts for only 1.6% , which is also the reason GBH was not used for

analysis as training models on GBH was a difficult task.
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4.3 Experiment 3

This experiment analyses the performance of time based data i.e using

a couple of years old data to train model and analyze the effect of recent vs

old data. The models are trained using 2 year old data to 8 year old data.

Anchor year i.e year used to split train test year data, data(visits) after the

anchor year is used as test set and data(visits) before anchor year is used as a

train set. Multiple train sets are generated by changing the lookback window

i.e a set is generated by looking back 2 years from anchor year, another set is

generated by looking back 3 years in the past from the anchor year, and so on.

Table 4.7: Results (LB:look back period)
Anchor year LB-2 LB-3 LB-4 LB-5 LB-6 LB-7 LB-8
2017 0.53 0.54 0.60 0.59 0.61 0.61 0.62
2016 0.51 0.52 0.59 0.60 0.61 0.62 0.62

As seen from table 4.7 we can see the recent data from last 4-5 years

proves to be more effective as compared to old data. Data from recent past

has more effect on model than old data.

4.4 Experiment 4

This experiment deals with the analyzes of how model performance

varies with changes in end-point definitions. The experiment analyzes 3 dif-

ferent end points ,
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• Using only heart failure specific visits.

• Using all visits which are related to heart problems from patients who

have diagnosed with heart failure at least once in lifetime.

• Using all cause visits from patients who have diagnosed with heart failure

at least once in lifetime.

Table 4.8: Results for endpoint changes

Parameter HF-Specific datatset Heart Related All cause
Score 0.69 0.66 0.63
Dataset Size 8K 30K 47K
Readmission Rate 7% 13% 13%

The performance of the model fluctuates by around 0.04 points roc by

changing the end-point definitions. The changes are also a result of readmis-

sion rates and datasets size fluctuations. Including all cause visits also increase

the visits that are not related heart failure and related causes, which further

induces noise in the dataset.The readmission rate also varies a lot with end-

point changes which essentially increased by 50% for the heart related and all

cause dataset when compared to hf-specific dataset.
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Chapter 5

Conclusion

5.1 Conclusion

After completing these experiments we can conclude that using atten-

tion has its benefits and adds discrimination power to the model. Developing

a single model for a hospital performs better than using a model trained with

the composite dataset. A model trained on recent data for the last 4-5 years

performs better as compared to a model trained on older data, the model

does not improve a lot by adding older data. Changing the definitions of the

endpoints i.e how readmission is defined affects the performance of the model,

because it changes the readmission rate and size of datasets. By analyzing the

results, a stricter readmission definition related to a specific problem helps the

model perform better as compared to a loosely defined readmission definition.
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