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Abstract

Deep learning and Computer vision are extensively used to solve problems in wide

range of domains from automotive and manufacturing to healthcare and surveillance.

Research in deep learning for food images is mainly limited to food identification

and detection. Food segmentation is an important problem as the first step for

nutrition monitoring, food volume and calorie estimation. This research is intended

to expand the horizons of deep learning and semantic segmentation by proposing

a novel single-pass, end-to-end trainable network for food segmentation. Our novel

architecture incorporates both channel attention and spatial attention information

in an expanded multi-scale feature representation using the WASPv2 module. The

refined features will be processed with the advanced multi-scale waterfall module

that combines the benefits of cascade filtering and pyramid representations without

requiring a separate decoder or postprocessing. The code is made available at: https:

//github.com/uditsharma29/GourmetNet
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Chapter 1

Introduction

1.1 Introduction

In the last decade, the application of deep learning and computer vision have grown

exponentially to the point that it is used in a range of application domains. Au-

tomotive industry is applying computer vision and reinforcement learning to build

self-driving cars [1], [2], [3]. Manufacturing plants are using computer vision bots to

build critical equipment and eliminate infrastructure faults which might arise due to

human errors [4]. Retail giants, Walmart and Amazon are using computer vision,

deep learning and 3D reconstruction technologies for self checkout and theft detec-

tion [5] [6]. The financial services sector are adopting computer vision to resolve

billing disputes and facial recognition to allow users to withdraw money from ATMs.

There are diverse applications of computer vision in security and surveillance domain

as well where it is being used for facial recognition, speeding vehicle detection and

illegal parking detection [7], [8].

Even though the applications of deep learning have a presence in most of the

domains, methods for food segmentation are still lagging in development and this

thesis aims to advance the state-of-the-art in this field. Existing methods for food

analysis primarily focus on food and ingredient recognition. In this fast-paced world,

it is difficult to maintain a healthy lifestyle which is causing a number of illnesses.
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CHAPTER 1. INTRODUCTION

According to experts [9], it is predicted that 38% of the adults will be overweight and

20% will be obese by 2030. Due to the rising obesity rates, the awareness around

diet management and nutrition has increased. Obesity causes chronic illnesses like

diabetes and other heart diseases that are getting increasingly common among the

younger generation which is alarming. Fortunately, obesity and other diet related

illnesses are preventable if we are more aware and make informed decisions using the

tools available to maintain a healthy diet.

This thesis presents GourmetNet for semantic segmentation of food images using

deep learning techniques. The GourmetNet results outperform the current state-of-

the-art and can be used as a reliable input to volume estimation and calorie estimation

tasks.

Semantic segmentation is an important computer vision task that has advanced

significantly due to deep learning techniques. Food segmentation methods would

enable a variety of capabilities including nutrition monitoring [10] [11] [12], food

volume estimation [13] [14], calorie estimation [15] [16], ingredient detection [17] [18],

recipe generation [19] [20] and quality control of food preparation.

The application of nutrition monitoring using smartphones can significantly ben-

efit from accurate food segmentation by alleviating the user from manually entering

food labels and portion size for each meal. In this context, the user takes a picture

of the meal and food segmentation model placed underneath automatically detects

each food item and provides an estimate of the portion size. This information can

be further used to assess the nutritional content of a meal and monitor the nutrition

intake of an individual over a time period in order to provide recommendations for

dietary improvements for health benefits. This scenario is supportive of the World

Health Organization’s Sustainable Development Goals (SDGs) to achieve improved

nutrition, ensure sustainable consumption patterns, ensure healthy lives and promote

well-being for all at all ages.
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CHAPTER 1. INTRODUCTION

Food segmentation is a challenging problem due to high intra-class variability and

low inter-class variability. A food element can be presented in a widely diverse set of

shapes, sizes, colors, and combinations with other ingredients. The examples in first

row of Figure 1.1 shows a food class ‘Chicken Rice’ in the UECFoodPix dataset. The

presentation in each of the instances is different from the other making it difficult to

find definite and characteristic patterns for a food class. Similarly, we observe low

inter-class variability among some classes examples of which are shown in bottom

row in Figure 1.1. Images in classes ‘Spaghetti’ and ‘Fried Noodles’ are very close in

appearance to each other just like the classes ‘Croissants’ and ‘Roll Bread’. Another

characteristic of food analysis, is that some food items are routinely paired, allowing

the network to infer correlations between the occurrence of different classes.

Figure 1.1: Top row: Examples of high intra-class variability in food images (‘Chicken
Rice’). Bottom row: Examples of low inter-class variability (‘Spaghetti’ & ‘Fried Noodles’
and ‘Croissants’ & ‘Roll Bread’.

We propose a single-stage network for food segmentation, that is end-to-end train-

able and generates state-of-the-art results without requiring multiple iterations, in-

termediate supervision or postprocessing. Our method is inspired by recent advances

in multi-scale feature representations [21], [22] and dual attention methods [23] to

create a contextual multi-scale framework that improves the pixel-level detection of

different foods for segmentation.
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CHAPTER 1. INTRODUCTION

The main aspect of our novel architecture is the extraction of both channel atten-

tion and spatial attention information for an expanded multi-scale feature represen-

tation using the advanced Waterfall Atrous Spatial Pooling (WASPv2) module [22].

The WASPv2 module generates multi-scale representations by increasing the Field-of-

View (FOV) for the network while better describing shapes, colors, and textures from

images, resulting in a significant improvement in accuracy for food segmentation.

Figure 1.2: Sample GourmetNet results on the UNIMIB2016 dataset

Examples of food segmentation obtained with GourmetNet are shown in Figure

1.2. Our method predicts the location of multiple food classes and performs segmen-

tation of multiple food items based on contextual information due to the multi-scale

feature representation. The contextual approach allows our network to include infor-

mation from the entire image, including all channels and shapes, and consequently
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CHAPTER 1. INTRODUCTION

does not require post analysis based on statistical or geometric methods, e.g., there is

no need to use the computationally expensive Conditional Random Fields (CRF’s).

1.2 Contributions

The main contributions of this thesis are as follows:

• Developed a single-pass, end-to-end trainable, multi-scale approach integrated

with channel and attention modules for refinement of features for enhanced

contextual learning.

• Proposed an integration of channel and attention modules with waterfall spa-

tial pyramids, which is expected to result in increased performance due to an

improved extraction of information combined with the multi-scales approach to

produce a larger FOV.

• Performed tests and reported results on three publicly available food segmen-

tation datasets, namely UNIMIB 2016, UEC FoodPix and the FoodSeg103.

• Published the work to MDPI Sensors journal, Nov 2021 edition.

1.3 Document Structure

The rest of the document is structured as follows: Chapter 2 discusses the background

and current state of research in neural networks, convolutional neural network for

semantic segmentation and food segmentation. Specifically, we discuss the application

of multi-scale features and attention mechanisms for image segmentation and how

these innovations have helped advance the domain. Chapter 3 discusses the proposed

methodology that includes an explanation on the choice of backbone, atrous spatial

pooling module and the dual attention mechanisms employed in our architecture.

Chapter 4 will elucidate the datasets used and the relevant implementation details

6



CHAPTER 1. INTRODUCTION

such as hyperparameter tuning, loss functions and evaluation metrics used in our

experiments. Chapter 5 discusses the results obtained, its comparison with the current

state of the art, class-wise analysis and discussion on failure cases. Finally, we provide

a conclusion outlining the key takeaways as well as provide some directions for future

work in the domain in Chapter 6.

7



Chapter 2

Background

2.1 Convolutional Neural Netowrks

Deep learning is a subset of machine learning, which is essentially a neural network

with more than two hidden layers. Convolutional Neural Networks (CNN) are a

class of neural networks which are inspired by the working of the visual cortex in the

human brain and use convolution and pooling operations to extract features from the

input. A typical CNN consists of a convolutional layer, pooling layer, activation layer

and a few fully connected layers as depicted in Figure 2.1. The convolutional layer

applies a filter to the input to create an activation map that summarizes the presence

of detected features in the input. The filter slides through the entire image with a

prespecified stride and applies convolution on the entire image. Pooling operations are

useful in reducing the spatial dimensions of the activation maps by clubbing together

a group of pixels in a patch with the summary statistic of those pixel values. Max

pooling performs a max operation on the nearby pixels and average pooling takes the

mean of the nearby pixels are the most popular pooling operations. Activation layers

apply a non-linearity in the output and helps the network to learn more complex

representations. Fully connected layers form the last few layers of the network and

are basically a simple feed forward neural network. The output from the last pooling

layer is flattened and fed to the fully connected layers.

8



CHAPTER 2. BACKGROUND

Figure 2.1: A high level diagram showing essential components of a typical Convolutional
Neural Network.

CNNs gained massive popularity because of their ability to recognize complex

underlying patterns without any prespecified rules. This was complemented by the

improvements in computing power and the availability of large datasets. Major break-

through was achieved in 2012 when AlexNet [24] won the ILSVRC2012 challenge [25]

by outperforming the traditional machine learning models by a huge margin. They

adopted 5 convolutional layers and 3 fully connected layers, used a fixed input size of

224x224 and trained on ImageNet dataset. This work further led to a surge in interest

and belief in CNNs. VGG [26] hypothesize that increasing the number of layers will

help the model to learn more complex representations. They build a network with

19 layers and using filters of size 3x3 to achieve 2nd best results in the ILSVRC2014

challenge. Szegedy et. al. [27] introduced the GoogLeNet which is also a Deep CNN

consisting of 22 layers. In contrast with the VGG network ,they utilize 1x1 filters and

performed global average pooling instead of the fully connected layers. GoogLeNet

was the winner of ILSVRC2014 ImageNet challenge. Simply increasing layers further

was not improving the results anymore as the network was becoming too large to train

and it suffered from the vanishing gradient problem. He et. al. [28] came up with a

novel approach using skip connections which allowed the network to skip some layers.

The hypothesis is that letting stacked layers learn a residual mapping is easier than

9



CHAPTER 2. BACKGROUND

learning the underlying mapping directly. They backed their hypothesis by building

and successfully training a ResNet network with upto 152 layers.

The developments discussed till now largely concerns with classification tasks but

the applications of CNNs are not limited to classification. They have been adapted

to perform other complex tasks such as object detection, semantic segmentation,

pose estimation, etc. Since this research is about semantic segmentation on food

images, we review the most notable developments in semantic segmentation and food

segmentation in the next sections.

2.2 Semantic Segmentation

Researchers have implemented different approaches for semantic segmentation, an

overview of which is shown in Figure 2.2. Semantic segmentation methods have

improved significantly following the breakthrough introduction of the Deconvolution

Network [29] and Fully Convolutional Networks (FCN) [30], where the traditional

fully connected layers at the end of the network were replaced by deconvolutional

stages, allowing the network to output a higher resolution response, and enabling the

high accuracy implementation of the semantic segmentation task.

The U-Net architecture [31] extended the convolution-deconvolution framework

by concatenating features from the convolution layers with their counterparts in the

deconvolution part of the network. The architecture consists of an expansive path

and a contracting path. The contracting path incorporates convolutional layers and

is rich in features while the expansive path incorporates deconvolutional layers and

concatenates the features and spatial resolution using a series of up-convolution op-

erations and then concatenation with the result from the contracting path. Using an

encoder-decoder approach, SegNet [32] used the initial layers of the VGG backbone

[26] in the encoder stage with up-sampling deconvolution layers in the decoder stage.

SegNet was further developed in [33] to include Bayesian techniques to model uncer-

10
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Figure 2.2: Overview of current semantic segmentation methods.

tainty. Aiming to expand the learning context of the network, Pyramid Scene Pars-

ing (PSPnet) [34] combined scene parsing with semantic segmentation. The Efficient

Network (ENet) approach [35] sought to develop a real-time semantic segmentation

method, resulting in a significant improvement in processing speed compared to other

methods.

2.2.1 DeepLab family

DeepLab [36] is a popular architecture that gained a significant improvement in per-

formance by utilizing the Atrous Spatial Pooling Pyramid (ASPP) module which

leverages the use of atrous convolutions [37] and Spatial Pyramid Pooling (SPP) [38].

Atrous convolutions, also known as dilated convolutions are a type of convolutions

that are used to increase the field of view to incorporate larger context. While per-

forming this type of convolution, we place holes between adjacent elements in the

filter which help us to serve two purposes: we have the control over the resolution of

the feature maps and we are able to capture a larger context of the image. Figures

11
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2.3 shows the basic difference between a standard convolution and a atrous convo-

lution. In the case of a standard convolution, each output is the linear combination

of k adjacent pixels where k is the kernel size. On the other hand, when an atrous

convolution is performed with rate r, r − 1 zeros are inserted between adjacent filter

values which effectively enlarges the kernel size of a k×k filter to

ke = k + (k − 1) ∗ (r − 1) (2.1)

There is no increase in the number of parameters or the amount of computation.

For example, a 3x3 filter will have the same receptive field as a 5x5 filter while having

the same number of parameters as a 3x3 filter.

Figure 2.3: (a) Standard convolutions using a 3 x 3 kernel (b) Atrous Convolutions using
a 3 x 3 kernel and a dilation rate of 2.

ASPP incorporates branches with different rates of dilation for their convolu-

tions, increasing its field of view and better learning global context. Specifically, the

DeepLab [36] architecture uses dilation rates of 6, 12, 18 and 24 with each branch

12
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arranged in parallel as shown in Figure 2.4. The input from the backbone is fed to

the 4 branches where atrous convolutions are performed using a 3x3 kernel with dif-

ferent dilation rates. The higher the dilation rate the higher is the field of view that

is captured by the branch. Finally, outputs from each branch are concatenated and

the resulting output is upsampled to match the input dimensions. DeepLabv3 [39]

improved this approach by applying atrous convolutions in a cascade manner, progres-

sively increasing the dilation rates through the layers. This makes the architecture

computationally lighter. A further improvement was reported in the DeepLabv3+ [40]

which, instead of performing an upsampling operation after the ASPP module, adds

a simple but effective decoder to the architecture in DeepLabv3. The DeepLabv3+

also introduced the use of separable convolutions to decrease the computational cost

of the network without a significant drop in performance.

2.2.2 Waterfall Multi-scale Features

Building on the research and application of ASPP in DeepLab, Artacho [21] proposed

an improvement to the module by proposing the Waterfall Atrous Spatial Pooling

(WASP) module. The WASP module, shown in Figure 2.5, leverages the reduced size

of cascaded atrous convolutions while maintaining the larger FOV through multi-scale

features in the pyramid configuration resulting in the best of both worlds for feature

extraction.

Arranging the atrous spatial pooling module in a pyramid fashion addresses the

issue of high memory requirement of the parallel configuration by reducing the number

of parameters by over 20% while also improving segmentation performance. As shown

in Figure 2.5, the input from the backbone is only fed to the atrous convolution block.

Instead of passing the features from the backbone, the output of the first atrous

convolution block is passed to the next block resulting in the cascaded structure.

An improved version of the WASP module, the WASPv2 module was proposed for

13
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Figure 2.4: Architecture for the Atrous Spatial Pooling Module (ASPP)

the task of multi-person pose estimation in the the OmniPose framework [22]. The

novel module combines the learning of the multi-scale features using the waterfall

approach while also making use of low-level features from the backbone to embed

spatial information, maintain the high resolution throughout its layers. WASPv2

shows increased performance for pose estimation and further reduction in computa-

tional cost, presenting promising potential to be applied for semantic segmentation.

14
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Figure 2.5: Architecture for the Waterfall Atrous Spatial Pooling Module (WASP)

The architecture of WASPv2 is discussed in detail in Chapter 3 as we adopt a modified

WASPv2 in our proposed method.

Driven by the success of using multi-scale features, ZigZagNet [41] and ACNet

[42] proposed the use of intermediate features combined with high level features from

the network backbone, creating a multi-level features context for the decoder.

2.2.3 Attention mechanisms

The use of attention for machine learning tasks was first proposed in [43] and further

expanded in [44] by introducing attention to computer vision tasks. The introduction

of the transformer model [45] brought a major breakthrough in Natural Language

Processing (NLP). The multi-head self-attention layer in the transformer aligns words
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in a sequence with others, calculating a representation of the sequence.

The use of attention to improve semantic segmentation methods was explored

by [46], training attention heads across scales for semantic segmentation. Similarly,

the Dual Attention Network (DANet) [47] uses the channel and spatial attention to

improve the network’s understanding of the global context for the image, while [48]

performs the reverse operation for attention, also aiming to better understand the

entire context of the image.

Expanding on attention decoders, BiSeNet [49] fuses two branches for low and high

level features bilaterally aiming to construct a real-time approach for segmentation.

In similar fashion, the Dual Attention Decoder [23] applies the low-level features to

perform its attention module on high level features while creating a channel mask to

its low-level features. Our method leverages the promising use of attention decoders

to further improve its multi-scale approach.

2.3 Food segmentation

Food segmentation methods were initially developed using image processing and com-

puter vision techniques. Local variation and normalized graph cut [50] were used by

[51] to extract the segmentation, while [52] focused its evaluation on the coloring and

shape of the food items for its segmentation using JSEG [53]. The biggest challenge in

food segmentation and consequently volume estimation are due to the high intra-class

variability regarding texture, density, colors, and shapes in food images.

The introduction of deep learning methods has proven to be more effective than

rule based methods for food segmentation. Initial applications for food segmentation

with deep learning include the mobile application of im2calories [16], having a long

list of non-integrated steps for the food segmentation task. It relies on the GoogleNet

model [27] to detect instances of food, followed by another GoogleNet trained to

detect the food type, and finally performs the classification through DeepLab [36].
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Bolanos et al. [54] used the GoogleNet [27] architecture to first predict food

and no-food regions and then work on the predicted bounding boxes to classify each

bounding box with the food class. CNNs are used to detect the food borders of already

identified food items assisted by the growing/merging technique in [55]. Wang et al.

[56] employed a graph-based segmentation approach for binary food segmentation,

leveraging the class activation map output from VGG-16 as prior knowledge trained

on food datasets. Shimoda et al. [57] proposed a new architecture for food image

segmentation using food region proposals obtained by selective search and bounding

box clustering. This is a region segmentation technique using Region-CNN and does

not require pixel-wise annotations. DepthNet [58] accomplishes instance segmentation

of food images using Mask R-CNN. The work also provides an extension of their

method to incorporate volume estimation.

Besides introducing the UEC Foodpix dataset, [59] also proposed a multi-step

approach for food segmentation applying YoloV2 [60] for food detection followed by

segmentation using the DeepLabv3 method [?].

Slightly increasing the integration of networks and approaching the task of food

segmentation, [61] applies an encoder-decoder architecture to perform binary segmen-

tation on food images. The method combines the first 3 layers of the ResNet-101 [28]

and a decoder. DeepLab [36] and SegNet [32] architectures are adopted by [62] and

[63] respectively to perform semantic segmentation on the UNIMIB 2016 dataset [64].
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Methodolgy

In this section, we provide a detailed description of the attention modules that refine

the features from the backbone before passing them to the spatial pooling module for

extracting multi-scale representations.

3.1 Proposed Method

The proposed GourmetNet [65] framework, illustrated in Figure 3.1, is a single pass,

end-to-end trainable network for food segmentation. Inspired by [23], we introduce

attention mechanisms for refining the features from the feature extractor with the

multi-scale feature extraction of the WASPv2 module. GourmetNet re-purposes the

dual attention module to extract context prior to the multi-scale feature extraction

and decoder stage from the WASPv2 module and the spatial pooling modules.

We determine that attention is more useful when it operates on features coming

directly from the backbone, as opposed to its application after feature extraction

during the spatial pooling modules. This is done because features from the backbone

are richer in information and the attention modules have more to work with. Further,

GourmetNet combines the improvements in feature representations from WASPv2

and the attention extraction of information from both channel and spatial attention

modules.

The processing pipeline of GourmetNet is shown in Figure 3.1. The low-level
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Figure 3.1: The proposed GourmetNet architecture for food segmentation. The input
image is fed through a modified ResNet backbone and the features are refined by the spatial
and channel attention modules before the multi-scale WASPv2 module which produces the
output semantic segmentation result.

features are extracted from the input image through a first block of the modified

ResNet feature extractor and includes a dilated last block for the generation of a

large FOV. The high-level features are the output of the last block of the modified

ResNet feature extractor. The low-level and high-level features are then processed

through the attention modules that aim to extract the spatial understanding from the

low-level features and richer understanding of channel information from the high-level

features.

Low-level features are used to create a mask for refining spatial information be-

cause they have a larger resolution by virtue of being early on in the network. Since

the low-level features are closer to the actual resolution of the image, they have a

better spatial understanding. As we go deeper into the network, the resolution of

feature maps is reduced and spatial information is lost. We perform spatial attention

to mitigate this issue and to reinforce spatial context into the high level features.

High-level features are the output from the final block of the backbone. They

are obtained after 4 blocks of convolutions and pooling operations and hence are

rich in information about the objects in the image. Therefore, we leverage the high-

level features to create the channel attention mask which is applied on the low-level

features.
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In conclusion, both the low and high-level features complete each other as low-level

features help the high-level features to understand the spatial position of the subject,

while high-level features support the low-level features in discerning the features of

the subject.

3.1.1 Backbone

We employ the ResNet backbone modified with atrous convolutions as done in [36].

For feature extraction, the first 4 blocks of ResNet-101 are used. However, the last

block is modified for multi-scale feature learning. Instead of using regular convolu-

tions, this block uses atrous convolutions. Further, each convolution in this block uses

different rates of dilation to capture multi-scale context. The output size of the fea-

ture maps is determined by the output stride. For an output stride of s, the output is

reduced by s times from the original image. Having a higher output stride affects the

quality of dense predictions but reduces the size of the model. For practical reasons,

we use an output stride of 16 in our experiments.

3.1.2 Attention Modules

GourmetNet utilizes two attention modules to generate masks and refine the low-level

and high-level features extracted from the modified ResNet backbone. The placement

of the attention modules in the GourmetNet framework is illustrated in Figure 3.1.

The spatial attention branch uses the low-level features from the backbone to create

a mask containing spatial information to refine the high-level features prior to the

waterfall module. The channel attention branch uses the high-level features to create

a mask containing channel information from the feature maps, and applies it to refine

the the low-level features.
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Figure 3.2: Channel attention module architecture.

Figure 3.3: Spatial attention module architecture.

3.1.2.1 Channel Attention

Channel attention utilizes high-level features which consist of 2048 feature maps with

width and height reduced by a factor of four compared to the original dimensions of

the input image. Our modified channel attention module progressively reduces the

number of feature maps to 256. These maps produce the channel attention mask used

as one of the inputs to the WASPv2 module after pixel-wise multiplication with the

low-level features from the backbone.

The channel attention module architecture is shown in Figure 3.2. The 2048
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high-level feature maps from the modified ResNet backbone are processed with 1×1

convolutions to reduce the number of feature maps to 512, followed by a global average

pooling layer and another 1×1 convolution stage, reducing the number of feature

maps to 256. The output of the module is then multiplied pixel-wise with the low-

level features from the backbone, producing the refined low-level features with 256

channels. The channel attention module operation can be expressed as follows:

frl = fl ∗ (K1 ~ AP (K1 ~ fh) (3.1)

where ~ represents convolution, frl represents the refined low-level features, fl are

the low-level features extracted from block 1 of the backbone, ∗ represents element-

wise multiplication, K1 is a kernel of size 1×1, AP denotes Average Pooling, and fh

represents the high-level features extracted from backbone. The dimensions of the

channel mask are 1× 1× c where c is the number of channels in the low-level feature

space. This mask is broadcast to all the pixels in the low-level feature maps.

3.1.2.2 Spatial Attention

Spatial attention utilizes low-level features that are extracted from the first block of

the modified ResNet backbone, by converting features maps into the spatial attention

mask. This mask is then used to refine the high-level backbone features using element-

wise multiplication.

The spatial attention module is shown in Figure 3.3. It receives the 256 channels

of low-level features from the first block of the modified ResNet backbone, and reduces

them to 128 channels via 1×1 convolution. This is followed by a set of two parallel

pooling operations, one for spatial average pooling (SAP) and one for spatial max

pooling (SMP). The outputs of both spatial pooling operations are then concatenated

and processed through a 5×5 convolution in order to extract spatial information with
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a larger FOV. The output of the module is then multiplied pixel-wise with the high-

level features from the backbone, producing the refined high-level features with 2048

channels. The mathematical representation of the spatial attention module can be

described as follows:

frh = fh ∗ (K5 ~ (SAP (K1 ~ fl) ⊕ SMP (K1 ~ fl))) (3.2)

where ~ represents convolution, frh represents the refined high-level features, fh

are the high-level features extracted from the backbone, * represents element-wise

multiplication, K1 and K5 are kernels of size 1×1 and 5×5 respectively, SAP and SMP

denote Spatial Average Pooling and Spatial Max pooling operations, respectively, ⊕

is a concatenation operation, and fl represents the low-level features extracted from

block 1 of the backbone. The dimensions of the generated spatial mask are h×w× 1

where h and w are the height and width of the low-level feature maps. The same

mask is broadcast across all feature maps in the high-level features space.

3.1.3 Multi-Scale Waterfall Features

Following the refinement of the low-level and high-level features via the attention mod-

ules, we perform multi-scale feature extraction and decoding through the WASPv2

module [22]. The WASPv2 module, depicted in Figure 3.4, increases the FOV by

applying a set of atrous convolutions with dilation rates of [1, 6, 12, 18] assembled in

a waterfall configuration.

The waterfall architecture utilizes progressive filtering in an efficient cascade archi-

tecture, while maintaining the multi-scale FOV found in the spatial pyramid config-

urations. The refined low-level features are concatenated with the high-level features

to obtain a multi-scale representation with increased FOV. The final layers with 1×1

convolutions acts as an inbuilt decoder, generating the final segmentation maps for our
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Figure 3.4: The advanced waterfall (WASPv2) module architecture with channel attention
and spatial attention refined features.

GourmetNet model without requiring a separate decoder module or postprocessing.
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Implementation Details

This section discusses the datasets we used to perform our experiments, the hyperpa-

rameter settings such as learning rate, batch size and decay used in the experiments

and the metrics used to evaluate the performance of the model.

4.1 Datasets

We perform food segmentation experiments with GourmetNet on three datasets: the

UECFoodPix dataset [59], UNIMIB2016 dataset [64] and the FoodSeg103 [66]

4.1.1 UEC FoodPix

The UEC FoodPix dataset [59] is a large scale dataset for food segmentation. It

consists of 9,000 images for training and 1,000 images for testing, labelled with man-

ually annotated masks to segment 102 food categories. Due to its origin and nature,

this dataset has frequent occurrences of Japanese dishes. The main challenges of the

UEC FoodPix dataset include the presence of multiple food types in the same plate

without a significant separation, diverse camera angles, various arrangements of the

plates, and variation of the image size. This is a harder dataset as it contains images

of food in which there are more than one food items per plate. Sample images and

their corresponding ground truth segmentation masks are shown in Figure 4.1. An-

notations for the UECFoodPix dataset were generated using a coarse automated tool
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and manually refined by the authors.

Figure 4.1: Sample images and corresponding annotated segmentation masks in the UEC
FoodPix dataset.

4.1.2 UNIMIB 2016

The UNIMIB 2016 dataset [64] is a popular food dataset, especially for the tasks of

food classification and recognition. It consists of 1,027 tray images, consists of 73

different food categories with a total of 3,616 food instances. This dataset provides

food region information as polygons that can be converted to masks for performing

semantic segmentation. Due to its origin and nature, UNIMIB 2016 contains a variety

of Western food items, with a large proportion of Italian dishes. The images are shot

in a controlled environment of a canteen. Most images contain several plates on a tray

with each plate containing one food item. All images are shot from a constant angle

and at the same high resolution (3,264×2,448). The dataset is divided into 650 images

for training and 360 images for testing. Annotations were created using an automated
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tool [67] to generate polygons using the Douglas-Peucker algorithm [68] . A draw back

of this method is the more coarse borders resultant from the polygon method. Figure

4.2 shows some example images and the corresponding masks generated from polygon

annotations.

Figure 4.2: Sample images and corresponding annotated segmentation masks in the
UNIMIB 2016 dataset.

4.1.3 FoodSeg103

The FoodSeg103 dataset [66] consists of 7,118 images with manual annotations for

103 different ingredients. Each image is annotated with 6 ingredients on average.

The images are sourced from an existing recipe dataset called the Recipe1M [20].

The Recipe1M dataset has 900k images and more than 1500 ingredient annotations

but most of these ingredients are present in very few images. The authors have

taken the most occurring 103 ingredients to build the new dataset. Following con-

ditions are applied to select images: Image should have at least 2 ingredients and
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no more than 16 ingredients. Further, the ingredients should be visible and easy to

annotate. Contrary to the UEC FoodPix and UNIMIB2016 datasets which provided

dish-level annotations, the FoodSeg103 dataset provides ingredient-level annotations.

Sample images and their corresponding ground truth segmentation masks from the

FoodSeg103 dataset are shown in figure 4.3.

Figure 4.3: Sample images and corresponding annotated segmentation masks in the Food-
Seg103 dataset.

4.2 Parameter Setting

We train GourmetNet in all experiments for 100 epochs by applying a batch size of

8. We implement a multi-step learning rate routine with a base learning rate of 10−5

and steps of 0.3 at epochs 40 and 70. The model is trained with the Cross-Entropy

(CE) loss using the Stochastic Gradient Descent (SGD) optimizer [69]. The weight

decay is set to 5 ∗ 10−4 and momentum to 0.9 [70]. All experiments were performed
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using PyTorch on Ubuntu 16.04. The workstation has an Intel i5-2650 2.20GHz CPU

with 16GB of RAM and an NVIDIA Tesla V100 GPU.

The experiments are performed with an input size of 320×320 for the UEC Food-

Pix [59] dataset, image size of 480×360 for the UNIMIB2016 [64] dataset and a

resolution of 512x512 is used for the FoodSeg103 dataset in order to match resolution

with prior literature during performance comparisons. Since the code for the dual

attention decoder is not publicly available, we have written our own code based on

the architecture described in [23].

4.3 Evaluation Metrics

The evaluation of the GourmetNet experiments were based on the Mean Intersection

over Union (mIOU), a standard metric used for semantic segmentation. As shown in

Figure 4.4 and in the context of our problem, Intersection over Union is the ratio of

overlap between the prediction and ground truth and union of prediction and ground

truth for each class. The IOU can be mathematically represented as follows:

IOU =
TP

TP + FP + FN
(4.1)

where TP, FP and FN represent True Positives, False Positives and False Negatives,

respectively. The mIOU is obtained by the simple average score of IoU for all classes

and instances in the dataset.

4.4 Loss function - Cross-entropy loss

A loss function in a neural network is used to adjust the weight values after each

iteration. We penalize the model for incorrect predictions, guiding it in the right

direction in the process. GourmetNet uses the Cross Entropy loss which is a popular

loss function for classification problems. Semantic segmentation can be treated as a
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Figure 4.4: Visual representation of the Intersection over Union metric.

classification problem because we classify each pixel in the image to a class. Cross

entropy can be calculated for binary classification as shown in the equation below:

−(y log(p) + (1 − y) log(1 − p)) (4.2)

where y is the ground truth label and p is the probability predicted for the class.

Cross entropy loss increases as the prediction diverges from the ground truth and

decreases when the predicted value is closer to the ground truth value. Figure 4.5

shows the variation of loss with predicted values. As we approach closer to the correct

value, the loss decreases slowly. On the other hand, when the prediction is off from

the ground truth by a large margin, it penalizes the model heavily.

Semantic segmentation is a multi-class classification problem. Therefore, we need

to calculate the cross-entropy for all the class labels and sum them up to get the total

loss as represented in the equation below:

−
M∑
c=1

yo,c log(po,c) (4.3)
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Figure 4.5: Depiction of the relation between Log loss and predicted probability.
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Results

We evaluate GourmetNet on the UEC FoodPix, UNIMIB2016 and the FoodSeg103

datasets, and compare our results with other methods and the current state-of-the-art.

5.1 Ablation Studies

During our experiments, we performed a series of ablation studies to analyze the per-

formance gains due to different components of GourmetNet. Tables 5.1, 5.2 and 5.3

present our ablation results on the UNIMIB2016, UEC FoodPix datasets and Food-

Seg103 datasets respectively. In these ablation studies GourmetNet is used with the

following options: no module, Dual Attention Decoder [23], ASPP [36], WASP [21],

WASPv2 [22], our Channel Attention and Spatial Attention modules and channel and

spatial modules coupled with the Dual Attention Decoder [23]. All of the experiments

are performed with a modified ResNet-101 backbone for feature extraction.

The results of Table 5.1 show that the mIOU performance of GourmetNet progres-

sively increases with the inclusion of the multi-scale modules and attention modules.

The WASPv2 presented the largest gain to the network as a single contribution, in-

creasing the mIOU by 1.6% (from 68.25% to 69.17%). The dual attention decoder

results in a 0.8% mIOU increase when added to the network in combination to the

WASPv2 module to 70.29%. When individually utilizing our modified channel atten-

tion and spatial attention modules in addition to the WASPv2 module, the mIOU
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Dual Channel Spatial ASPP WASP WASPv2 GFLOPs #Params mIOU
Attention Attention Attention

87.20 47.95M 68.25 %
X 51.56 45.58M 69.44%
X X 54.60 59.41M 69.73%
X X 46.98 47.49M 69.25%
X X 48.81 47M 70.29%

X 47.02 46.9M 69.17%
X X 53.62 48.7M 70.28%

X X 72 46.9M 70.58%
X X X 78.6 48.8M 71.79%

X X X X 78.6 49M 69.79%

Table 5.1: Results of GourmetNet ablation experiments for various configurations on the
UNIMIB2016 dataset. The segmentation accuracy is indicated by the mIOU score, while
the model complexity is described by the number of parameters and GFLOPS.

Dual Channel Spatial ASPP WASP WASPv2 GFLOPs #Params mIOU
Attention Attention Attention

51.33 47.95M 62.33%
X 30.21 45.58M 62.48%
X X 31.89 59.41M 62.49%
X X 27.47 47.49M 61.95%
X X 28.91 47M 63.14%

X 27.5 46.9M 63.54%
X X 31.4 48.7M 64.30%

X X 42.3 46.9M 64.29%
X X X 46.2 48.8M 65.13%

X X X X 31.9 49M 63.92%

Table 5.2: Results of GourmetNet ablation experiments for various configurations on the
UEC FoodPix dataset. The segmentation accuracy is indicated by the mIOU score, while
the model complexity is described by the number of parameters and GFLOPS.

increased to 70.28% and 70.58%, respectively. The most effective configuration was

found to be the inclusion of both our modified channel and spatial attention mod-

ules in addition to the WASPv2 module, resulting in the highest mIOU of 71.79%

for the UNIMIB2016 dataset, a significant increase of 2.06% compared to the results

obtained with Dual Attention and ASPP.

Table 5.2 shows the performance of GourmetNet for the UEC FoodPix dataset

with the same variations in its components. Consistent to the results for the previous

dataset, GourmetNet shows a progressive increase in performance with the addition
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Dual Channel Spatial ASPP WASP WASPv2 GFLOPs #Params mIOU
Attention Attention Attention

X 30.21 45.58M 32.27%
X X 31.89 59.41M 32.6%
X X 27.47 47.49M 32.65%
X X 28.91 47M 33.99%

X 27.5 46.9M 33.62%
X X 31.4 48.7M 34.41%

X X 42.3 46.9M 34.12%
X X X 46.2 48.8M 34.66%

Table 5.3: Results of GourmetNet ablation experiments for various configurations on the
FoodSeg103 dataset. The segmentation accuracy is indicated by the mIOU score, while the
model complexity is described by the number of parameters and GFLOPS.

of each component. The best results achieve an mIOU of 65.13% when incorporating

both Channel and Spatial attention modules in addition to the WASPv2 module.

For completeness, we perform the experiment where we combine both the dual

attention decoder [23] and the channel and spatial attention modules in our proposed

configuration. This configuration was not optimal, as we observe that the performance

diminishes by 1.8% from 65.13% by our proposed architecture to 63.92% for the UEC

FoodPix dataset (Table 5.2). In this configuration, we apply attention twice: once

before the waterfall module and once in the dual attention decoder. However, the

WASPv2 module performs better without the dual attention decoder, as indicated

in the results of Table 5.2. A similar observation was made from the results of the

UNIMIB 2016 dataset in Table 5.1.

The results of experiments for the FoodSeg103 dataset are shown in Table 5.3.

Similar to the other datasets, we observe that the performance increases progressively

as multi-scale features and attention mechanisms are added to the network. Our

proposed method, leveraging the use of both the attention blocks and the multi-scale

features from WASPv2 produces the best performance. We reinforce the effectiveness

of the dual attention blocks by proving that using one or none of the blocks achieve

an inferior performance.
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Figure 5.1: Segmentation examples using GourmetNet for the UNIMIB2016 dataset.

Comparing the results for each experiment in Tables 5.1 and 5.2, we observe that

the absolute values of mIoU are better in Table 5.1. This is due to two reasons. First,

the images in the UECFoodPix dataset may contain more than one food item per

plate. This fact makes it harder for the model to differentiate the boundaries of the

different food items lying over or beside each other in the same plate. In contrast, the

UNIMIB2016 contains only one item per plate in most of the images in the dataset.
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Figure 5.2: Successful examples from the UEC FoodPix dataset. Left column - Images,
middle column - Ground truth masks, right column - GourmetNet predictions.

Further the plates are set sufficiently apart which helps the model in recognizing the

pattern. Another reason is related to how the dataset is collected. The UNIMIB2016
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Figure 5.3: Successful examples from the FoodSeg103 dataset. Left column - Images,
middle column - Ground truth masks, right column - GourmetNet predictions.

dataset is shot in a controlled environment of a lab. The same camera, lighting,

camera angle and background setting is used to capture all images in the dataset
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while the UECFoodPix dataset has images with different camera angles, backgrounds,

lighting and resolution. These factors introduce necessary variation in the dataset and

make it harder for the model to recognize patterns. Finally, the UECFoodPix dataset

consists of 102 food classes against 73 in the UNIMIB2016 dataset which results in a

higher chance of the model getting confused between classes.

Similarly, the results in Table 5.3 are numerically lower than in Tables 5.1 and

5.2 because the FoodSeg103 dataset contains ingredient-level annotations as opposed

to dish-level annotations in the UNIMIB2016 and the UECFoodPix datasets. It is

harder to recognize and localize each ingredient from the dish than the dish itself.

Figure 5.3 displays some of the successful segmentation results on the FoodSeg103

dataset. We observe that our trained mode is good at recognizing food boundaries

between classes and is able to identify some irregular shapes well.

To assess the GourmetNet model complexity, we present the GFLOPS and number

of parameters for each configuration. These results show that the top performing

WASPv2 module requires fewer parameters and is more computationally efficient than

the popular ASPP architecture. The addition of the channel and spatial attention

modules slightly increases the number of parameters but significantly increases the

computational load.

5.2 Comparison to State-of-the-art

Following our ablation studies, we compared our GourmetNet method with the cur-

rent state-of-the-art for food segmentation, when results were available. We also

included results using top performing methods for semantic segmentation, such as

DeepLabv3+ and WASPnet. The IOU results obtained for the UNIMIB2016 dataset

are shown in Table 5.4. GourmetNet achieves top performance, showing signifi-

cant mIOU gains in comparison to other methods. For the UNIMIB 2016 dataset,

GourmetNet achieves 71.79% mIOU, compared to 68.87% achieved by DeepLabv3+,
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which is a 4.2% improvement. It is important to note that References [62] and [63]

do not provide details about their experimental settings while the training for [21]

and [40] were performed from scratch using the code available online.

Method mIOU
DeepLab [62] 43.3%
SegNet [63] 44%

WASPnet [21] 67.50%
DeepLabv3+ [40] 68.87%

GourmetNet (Ours) 71.79%

Table 5.4: GourmetNet results and comparison with SOTA methods for the UNIMIB2016
dataset.

Example results for the UNIMIB2016 dataset are shown in Figure 5.1. These ex-

amples illustrate that GourmetNet successfully identifies the location of food groups

with accuracy for challenging scenarios including food items that share irregular bor-

ders and shapes. Challenging conditions include the detection of food items that

overlap but are described by a single segmentation mask, e.g., pasta containing grated

cheese on it.

Method mIOU
UEC FoodPix [59] 55.55%
DeepLabv3+ [40] 61.54%

WASPnet [21] 62.09%
GourmetNet (Ours) 65.13%

Table 5.5: GourmetNet results and comparison with SOTA methods for the UEC FoodPix
dataset.

We next performed testing on the UEC FoodPix dataset, which is more challenging

due to occurrences of multiple food items in proximity, different angles, and different

resolutions for training and testing images. The mIOU results are shown in Table 5.5.

GourmetNet outperforms the current state-of-the-art achieving 65.13% mIOU, a sig-

nificant performance increase of 5.8% compared to DeepLabv3+ and 17.2% compared

to the dataset baseline set by [59]. Similar to the results for the UNIMIB dataset in
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Table 5.4, the training for [21] and [40] were performed from scratch using the code

available online. The examples in Figure 5.2 demonstrate successful segmentations for

the UEC FoodPix dataset. These examples show that GourmetNet deals effectively

with food accuracy, localization, and shape.

Method mIOU
CCNet [71] 35.5%
FPN [72] 27.8%
SeTR [73] 41.3%

GourmetNet (Ours) 34.7%

Table 5.6: GourmetNet results and comparison with SOTA methods for the FoodSeg103
dataset.

State-of-the-art results on the FoodSeg103 dataset are presented in Table 5.6.

GourmetNet outperforms the results from the FPN [72] but was unable to match

the performance with the SeTR [73]. This was due to two reasons: other works

employ the processing of recipe information as additional parameters for the semantic

segmentation. Secondly, they use a larger resolution and 8 times more computational

resources than this research.

5.3 Food Classes Performance Analysis

Table 5.7 lists the performance of GourmetNet for different food classes at both ends

of the performance spectrum for the UEC FoodPix dataset. Food items that present

constant shape and color, that are displayed with separation from other items, present

a more solid consistency and achieve a higher mIOU from the GourmetNet model.

Examples of classes containing these characteristics are croquette and pancakes. An-

other important factor for high accuracy is the fact that the class is visually distinct

from the other classes, i.e. udon noodle and goya chanpuru. Food classes that are

routinely served in a separate bowl, such as mixed rice, also achieve a high mIOU

score.
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Food name mIOU Food name mIoU
Croquette 92.16% Fried Fish 16.29%
Pancake 91.67% Tempura 17.46%

Udon Noodle 88.67% Vegetable Tempura 18.23%
Goya Chanpuru 88.61% Salmon Meuniere 30.28%

Mixed Rice 87.54% Chip Butty 31.03%

Table 5.7: Comparison and analysis of food segmentation performance class-wise for the
UEC FoodPix dataset. The left section mentions classes with the highest mIOU while the
right section mentions the classes with the lowest mIOU.

On the low performing side of Table 5.7, classes that present food items in close

proximity to other food items have the lowest scores. For example, fried fish has a

significant overlap and cross-error with other fried food items. A similar cross-error

is observed for tempura and vegetable tempura, as well as chip butty being more

routinely mistaken with other types of chips from the dataset. Another source of

error is the presence of sauces or garnishing, altering the shape and color of the food

item, and consequently increasing its variability. One example of this occurrence is

salmon meunière.

Food name mIOU Food name mIoU
Broccoli 85.79% Eggplant 4.25%

Corn 81.64% Cashew 6.22%
Green beans 80.56% Cheese Butter 7.28%

Carrot 79.74% Crab 7.6%
Strawberry 77.51% Red beans 13.52%

Table 5.8: Comparison and analysis of food segmentation performance class-wise for the
FoodSeg103 dataset. The left section mentions classes with the highest mIOU while the
right section mentions the classes with the lowest mIOU.

It is interesting to analyze the class-wise performance for the FoodSeg103 dataset

since it is an ingredient dataset. The best performing classes are shown on the left

side of Table 5.8 while the worst performing classes are shown on the right side of

the same table. ‘Broccoli’ and ‘Strawberry’, owing to their distinct shape, color and

low variance in appearance, were the easiest to recognize while we observe that green

beans and carrots were served as sides and cut roughly in the same way in most of
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the images. ‘Corn’ is served in 2 different ways: the entire corn or boiled corn kernels

served as sides. The model is able to identify these variations.

The model struggles to identify some ingredients like ‘Cashew’ due to their size

and their nature of being used as an ingredient in dishes making them harder to

recognize. ‘Cheese butter’ has a high intra-class variability as it is used in different

forms based on the type of cuisine. ‘Eggplant’ has a lower occurrence in the training

set which is not enough to recognize the variance of the class.

5.4 Failure cases

While GourmetNet produces state-of-the-art results for food segmentation, just like

any other deep learning model, it has its limitations mainly owing to the challenging

problem of food segmentation. Food segmentation is challenging problem due to

different food types overlapping and are placed in close proximity with different items

composing a single dish, e.g., a bowl of soup containing vegetables and tofu in its

broth. Figure 5.4 shows some instances when our method did not too well. The

boundaries of different ingredients in the burger (1st row) were captured correctly

but there was an error in guessing the class correctly. The model guessed the filling

as ‘steak’ instead of ‘pork’. This confusion reinforces our hypotheses of low intra-

class variablity among food classes. Low occurrence of some classes in the training

set caused the model to miss the ‘candy’ in the 2nd row. Occlusions are one of the

common reasons for classifications in food segmentation. This is illustrated in last

row of Figure 5.4 where the model is struggling to draw boundaries between different

food items as they are placed randomly on top of each other.

Some failure cases produced from the UEC FoodPix dataset are illustrated in

Figure 5.5. In some cases, model is unable to recognize the correct food item while

in others it is unable to detect the food item itself. For example, in the 2nd and last

row, we observe that the model is unable to detect some food items. Poor lighting
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conditions and camouflage with background could be some plausible reasons of missed

detections. The model tried to identify more classes in row 1 because of some other

classes visible on ‘Ramen Noodle’. The model confused ‘Cabbage roll’ with ‘Fish

shaped pancake’ on 3rd row. Such cases can easily be confused even by a human

being as the two classes are visually similar to each other. This shows that there is

room for improvement in food segmentation.
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Figure 5.4: Failure cases from the FoodSeg103 dataset. Left column - Images, middle
column - Ground truth masks, right column - GourmetNet predictions.
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Figure 5.5: Failure cases from the UEC FoodPix dataset.
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Conclusion and Future Work

6.1 Conclusion

We presented GourmetNet, a novel, end-to-end trainable architecture for food seg-

mentation. GourmetNet incorporates the benefits of feature refinement from the

channel and spatial attention modules with the improved multi-scale feature repre-

sentations of the WASPv2 module. We performed extensive experiments to establish

the effectiveness of this model. Our model outperforms the current state-of the-art for

the UEC FoodPix dataset by 10%. We also compare our model with the DeepLabv3+

[40] and report an improvement of 4.2% on the UNIMIB2016 dataset and 5.8% on

the UECFoodPix dataset. The goal of GourmetNet is to achieve improved food seg-

mentation accuracy, consequently improving the performance of related tasks, such as

automatic nutrition monitoring, food volume estimation, recipe extraction, or meal

preparation.

6.2 Future Work

The GourmetNet framework can be improved by making the process more compu-

tationally efficient and increasing segmentation accuracy, so that food segmentation

can be incorporated in a larger system for food volume estimation for dietary recom-

mendations or assistance for meal preparation.
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More concretely, after their success in Natuaral Language Processing (NLP) tasks,

transformers are being adapted to be used with images. Recent advances have shown

that Vision Transformer [74] produces state-of-the-art performance with images for

some tasks. Vision transformer splits an image into patches, arranges these patches

linearly and adds positional embedding as input to the transformational embedding.

The embeddings are used as input to the transformer encoder consisting of multi-

headed self attention, MLP and layer norm blocks. Our architecture can be modified

as shown by Wu et.al. [75] where a CNN is used to extract low-level features and the

Vision Transformer is used to extract the high-level features. Therefore, the vision

transformer is used as a feature extractor and rest of the architecture can be used

as it is. Although the vision transformer has proved to outperform CNNs by using

smaller number of parameters, it is harder to train and requires large amounts of data

for training. If these limitations are overcome, it would be interesting to to note the

results.
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