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Abstract

Over the last few years quantum computers have rose to prominence as a solution

for increasing computing power and tackling problems intractable by classical com-

puters. Classical computers have struggled to meet the ever-increasing demand for

data processing and modeling. Thus, quantum computers would meet the demand

for heavy computing tasks that classical computers could never achieve. Today there

exist two promising quantum technologies that have the potential to prove quantum

supremacy in the near future: super-conducting qubits and Continuous Variable (CV)

model. Out of the two, superconducting qubits have been at the forefront of quan-

tum computing research. NISQ (Noise intermediate-scale quantum) are the existing

superconducting qubit computers, and are defined by having small number of qubits

with high inaccuracies due to quantum noise. The CV approach utilize photons in

Gaussian states, qumodes, as the main processing unit. CV-based quantum comput-

ers present similar computation benefits to superconducting qubit devices. The ease

of manufacturing and operation – due to being able to operate at room temperature

– of CV-based quantum computers make it a likely candidate for wide adoption and

accessibility compared to superconducting qubit systems. But because of the under-

lying differences in the two technologies, research and development of their software

stacks have differed greatly, with a lack-thereof for CV devices. The goal of this

thesis is to explain and analyze the compilers implemented by Strawberry Fields –

cross platform python library to simulate and execute programs on photonic hardware

– and propose an additional compilation step that will enable future, more flexible

hardware implementations.
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Chapter 1

Introduction

1.1 Motivation

In recent years quantum computing has evolved from a theoretical research subject

to reality. Companies and scientists around the world are creating physical quantum

systems using different quantum technologies to advance the field. Current quan-

tum computing systems are classified as Noisy Intermediate-Scale Quantum (NISQ)

Computers, and are mainly implemented using superconducting qubit technologies.

These quantum computers utilize a small number of qubits (50-100) to perform tasks

which can potentially surpass the capabilities of today’s classical computers, although

technology is limited in the amount of qubits in a circuit, due to the inherent noise in

the quantum gates. Even with these limitations, quantum supremacy over classical

computers in specific computing tasks has been demonstrated [1]. Now, this current

state is not regarded as the end goal for quantum computers, rather it is a step toward

creating more powerful quantum technologies.

There are multiple technologies in development that target different computing

problems and utilize different quantum properties. The differences in the underly-

ing technologies causes their implementations to differ greatly. An example gaining

traction in recent years are photonic based quantum computers, which utilize the

Continuous Variable (CV) model instead of superconducting qubits. Photonic based
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CHAPTER 1. INTRODUCTION

quantum devices introduce their own set of benefits, mainly in ease of manufacturing

and operation, compared to NISQ. Moreover, the two quantum systems have been

developed independently and thus their software stack differ greatly. With the soft-

ware stack of photonic devices lacking thorough documentation of its software stack

and the design decisions behind it.

1.2 Quantum Bits and Modes

Two novel paradigms that have the potential to bring quantum computing to reality

are quantum bits (qubits) and quantum modes (qumodes). Both have the ability to

solve similar compute-intensive tasks while having significantly different implementa-

tions. Qumodes take the approach of creating a quantum Continuous Variable (CV)

model. In a CV model, the basic information-processing unit is represented by an

infinite-dimensionless bosonic mode [2], its physical implementations requires the use

of bosons (i.e. photons). While more prevalent, the qubit model, uses supercon-

ducting qubits to represent a discrete two state system. The inherent difference in

how data is stored and computed means that quantum circuits performing similar

tasks differ in logic and quantum gates. These differences have impacted how their

software stacks are designed and implemented. For example, the Open Quantum

Assembly Language (OpenQASM) was designed for superconducting qubits, while

Blackbird assembly language was developed for photonic based quantum states [2].

This thesis seeks to compare qubits and qumodes and the software development stack.

1.3 Objectives

The objective of this research is to analyze and improve the software stack of Straw-

berry Fields (SF). While not an issue currently, as SF programs increase in size and

complexity the overhead of simulation and execution will increase. We introduce a

3



CHAPTER 1. INTRODUCTION

compiler that will merge of Gaussian operations in a SF program with non-Gaussian

and Gaussian operations. Thus the resulting program will contain the minimum

amount of Gaussian operations required to keep the same functionality.

4



Chapter 2

Background

2.1 Qubits

In classical computing, a bit is the fundamental concept of computation and infor-

mation. Qubit quantum computers build upon this concept with a quantum bit.

Similarly to a classical bit, two possible states of a qubit are |0〉 or |1〉 due to it

being represented in the standard or computational basis. The difference being that

qubits can be in a state, superposition of |0〉 and |1〉. It is possible to form linear

combination of states, called superpositions [3]: |ψ〉 = α |0〉 + β |1〉. Where α and

β are complex numbers. This means a qubit can be represented as a vector in a

two-dimensional vector space. In the computational basis, a quantum state can be

measured with an outcome of |0〉 or |1〉, which can then be mapped to classical states

through measurement.

Furthermore, measuring qubits is remarkably different from measuring classical

bits. In a classical computer, millions of bits are determined to have a value of 0

or 1 per second. But in quantum mechanics, rather a quantum state measurement

is regarded as the projection of the state vector (qubit state) onto a vector of the

orthonormal measurement basis (classical bit). This projection is inherently proba-

bilistic. Meaning that there is a probability that classical ’0’ or ’1’ is measured. To

obtain useful information about the quantum state, we must perform this measure-

5



CHAPTER 2. BACKGROUND

ment multiple times. Multiple measurements allows us to determine the probabilities

of obtaining a given state when measuring a qubit state. For example, a qubit state

where both states |0〉 and |1〉 have an equal chance of being projected unto the mea-

surement basis is denoted by |+〉 = 1√
2
|0〉+ 1√

2
|1〉. When measured multiple times it

can be determined that states |0〉 and |1〉 have a ( 1√
2
2 ) equal chance of being measured.

Qubit quantum computers use the superposition of states to store data, while

performing operations is achieved with quantum gates. For example, analogous to

the classical NOT operation is a NOT quantum gate, which interchanges the states

of |0〉 and |1〉. Suppose we define a matrix X to represent the quantum NOT gate:

X =

0 1

1 0

 (2.1)

The quantum state α |0〉+ β |1〉 can be represented by a vector as:

α
β

 (2.2)

Thus, the gate operation can be calculated using a matrix multiplication of the

gate matrix and the state vector. The corresponding output of the quantum NOT

gate is:

X

α
β

 =

β
α

 (2.3)

2.2 Continuous Variable Model

The Continuous Variable (CV) model is a quantum computing approach that re-

tains the same computational power of the qubit model. The main information-

processing unit differ greatly, the CV model utilizes a infinite-dimensional bosonic

6



CHAPTER 2. BACKGROUND

mode (qumode). The underlying quantum operators of this model work in a contin-

uous spectra. The difference between qubit and CV systems is most evident in the

basis expansions of quantum states [2]:

Qubit: |φ〉 = α |0〉+ β |1〉 (2.4)

Qumode: |ψ〉 =

∫
dx ψ(x) |x〉 (2.5)

The qubits utilize a discrete set of coefficients, while the CV model has a con-

tinuum that models a bosonic harmonic oscillator, which is defined by the canonical

mode operators â (annihilator) and â† (creation), and satisfy the relation [â, â†] = I.

Additionally, we define the position & momentum quadrature operators – operate on

the phase space and have special properties, i.e. x̂ |x〉 = x |x〉 – as such [?]:

x̂ :=

√
~
2

(â+ â†), (2.6)

p̂ := −i
√

~
2

(â− â†), (2.7)

where [x̂, p̂] = i~Î (follows Uncertainty Principle). Furthermore, the position state

|x〉 depicted in Equation 2.5 are the eigenstates of the x̂ quadrature, x̂ |x〉 = x |x〉.

The same property applies for the momentum state |p〉. The quadrature operators

– position & momentum – are able to create and annihilate Hamiltonian’s called

Gaussian states (ground or thermal), which are the medium for storing information

in CV computation.

Gaussian states are non-classical states with Gaussian Wigner quasi-probabilistic

functions. The Wigner function is a representation of the relationship between the

position and momentum in the phase space that behaves similarly to a probability

7



CHAPTER 2. BACKGROUND

Figure 2.1: Squeezing and Displacement Visual representation of Gaussian state for single
qumode. The shape and orientation are defined by the displacement α and squeezing z
= rexp(iφ) parameters [2].

function, with some differences such as that the Wigner function can take negative

values. The Gaussian distribution in a pure state can be centered in zero and be

equally distributed around, but by interacting with it in the right way, the Gaussian

can be shifted, displaced and squeezed [4, 5]. Therefore, these special Gaussian states

are parameterized –in a single qumode–, by two continuous complex variables: dis-

placement α and squeezing z= s · exp(iφ) parameters. The authors of [2] created a

visual representation of a Gaussian state for a qumode, which can be seen in Fig. 2.1.

While, Table 2.1 shows a summary of pure Gaussian states used in the CV model,

with their corresponding parameter values.

To create a comparison with qubit systems, the CV model implements discrete

Fock states that are complementary to the continuous Gaussian states. Each of the

pure Gaussian states mentioned in Table 2.1 can be expanded to the Fock-basis. For

example, coherent states can be expressed in the form:

|α〉 = exp(−|α|
2

2
)
∞∑
n=0

αn√
n! |n〉

, (2.8)

8



CHAPTER 2. BACKGROUND

Table 2.1: Qumode pure Gaussian states and their relation
to the displacement and squeezing parameters [2].

State Family Displacement Squeezing

Vacuum State |0〉 α = 0 z = 0

Coherent States |α〉 α ∈ C z = 0

Squeezed States |z〉 α = 0 z ∈ C

Displaced Squeezed

States |α, z〉
α ∈ C z ∈ C

x̂ eigenstates |x〉
α ∈ C,

x = 2
√

~
2
Re(α)

φ = 0, r →∞

p̂ eigenstates |p〉
α ∈ C,

x = 2
√

~
2
Im(α)

φ = π, r →∞

where |n〉 are the Fock states (number of states) of which n are non-negative integers.

Fock based measurements, photon counting, are essential to the CV model as it allows

the discretization of Gaussian states, which allow for heterogeneous computing of

classical and CV computers.

In the CV model, gates work as unitary operators (i.e |ψ〉 = U |0〉 , U := exp(−itH))

that apply a bosonic Hamiltonian (H) over a certain amount of time (t). Unitaries

are composed of operations that act on the momentum and position operators (x̂i

and p̂i). Gaussian operations contain at most quadratic operators (i.e. Squeezing;

Si(z) = exp(1
2
(z∗â2i − zâ†2i ))) while Non-Gaussian contain three degrees or more (i.e.

Cubic Phase; Vi(γ) = exp(i γ
3~ x̂

3
i )).

However, Hamiltonians in qubit systems use non-Gaussian operators called Pauli

operators. These act on the discrete spin (1/2 and -1/2) of the fermions rather than

on the position and momentum of the particles, which allows for discrete operations

and measurements as seen in the computational basis. Qumodes on the other hand

are operated upon and measured using their position and momentum, which are

9



CHAPTER 2. BACKGROUND

continuous variables.

Multi-qumode operators can be created by applying a sequence of Gaussian or

Non-Gaussian gates, which can act on one or two modes. A CV quantum computer

is said to be universal if its able to to implement any unitary which is contains a

polynomial in the mode operations. Gaussian and non-Gaussian gates, the elementary

CV gates, are presented Table 2.2.

Table 2.2: Some useful CV gates. Beamsplitter is the only
two-mode gate and Cubic phase is the only Non-Gaussian gate.
α, φ, z, θ, γ are the parameters that affect the outcome of the op-
erations.

Gate Unitary

Displacement Di(α) = exp(αâ†i − α∗âi)

Rotation Ri(φ) = exp(iφn̂i)

Squeezing Si(z) = exp(1
2
(z∗â2i − zâ†2i ))

Beamsplitter BSij(θ, φ) = exp(θ(eiφâiâ
†
j − e−iφâ

†
i âj))

Cubic Phase Vi(γ) = exp(i γ
3~ x̂

3
i )

There are three measurement types in the CV model. They can be distinguished

between Gaussian and non-Gaussian, much like states and gates. There are two Gaus-

sian (continuous) measurement types: homodyne and heterodyne measurements, with

the third non-Gaussian measurement being photon counting. Homodyne detecting

involves projecting a measurement onto the eigenstates of the quadrature operator x̂.

Whereas heterodyne is a simultaneous measurement of both x̂ and p̂. But because

these operators do not commute – canonical commutation relations [6]–, there exists

some uncertainty when heterodyne measurements are performed. Both measurements

are defined as Gaussian due to the fact that their results are inherently continuous

and unmeasured qumodes remain Gaussian (in multimode Gaussian states). Lastly,

the photon counting measurement makes use of the particle-like nature of qumodes.

It achieves this by projecting measurements onto a number of eigenstates |n〉. A

10



CHAPTER 2. BACKGROUND

single mode photon-counting measurement of a multimode Gaussian state will cause

the remaining modes to lose their Gaussian state.

Table 2.3: Key measurement types and operators for the CV model.

Measurement
Measurement

Operators

Measurement

Values
Notes

Homodyne |xφ〉 〈xφ| x ∈ R

Where the Hermetian operator

x̂φ = cosφ x̂+ sinφ p̂.

Which performs a rotation of

the state clockwise by φ before

measuring.

Heterodyne 1
π
|α〉 〈α| α ∈ C

Referred as the projection onto

the coherent states.

Photon Counting |n〉 〈n| n ∈ N
Particle-like measurement,

non-Gaussian.
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CHAPTER 2. BACKGROUND

2.3 Applications: Qubit vs Qumodes

The qubit models has been the main candidate to achieve quantum supremacy. This

model was first introduced by Richard P. Feynman in [7], as a theoretical computing

model. Since then there has been great deal of research into solving the hurdles of

creating a physical qubit computer. Currently, there exists quantum processors that

contain a small number of qubits (< 100), that have been developed by IBM and

Google. There is still much research to be done as its been challenging to fit more

qubits into a processor while retaining high fidelity. But this model (NISQ) has proven

quantum supremacy and is the candidate for the first commercial quantum computers.

Furthermore, there is plenty of research into creating quantum algorithms; which

have significant computational speedups for factorization[8], search [9], or Fourier

transform [10] when compared to its classical counterparts.

Meanwhile, the CV model is in its early development stages, with Xanadu being

one of the only companies focusing in its development. This model has its merits

when compared to qubits. The CV model retains the computational power of the

qubit model while adding unique features. A CV quantum computer could simulate

bosonic systems (Bose-Einstein condensates, photons, harmonic oscillators, electro-

magnetic fields) and model systems where continuous operators (position and mo-

mentum) are present. Additionally, CV and qubit systems can potentially tackle

similar problems, such as graph-based problems and point processes [11]. So while

in the premature stages, the CV model has the potential to model systems and ac-

celerate computation tasks similar to that of qubits. Because of this it would be

beneficial to explore the similarities and differences in the software implementation

of CV and NISQ Quantum computers, while determining the possibility of creating

software that can apply to both systems. There has been work on defining a unified

formalism to conduct logical qubit operations using continuous variables [12]. But

12



CHAPTER 2. BACKGROUND

it mainly focuses on the mathematical implementation rather than on the software

stack. To the writers knowledge, there is no research that focuses on comparing the

software for these technologies, due to CV computing being a new technology even

in the quantum computing research community.

2.3.1 Boson Sampling

Boson sampling is a model for non-universal quantum computing that is relatively

simple to implement using current technologies. Its simplicity stems from boson sam-

pling devices being strictly passive, requiring only single-photon sources, linear optics

(i.e. beamsplitters and phase-shifters), and photodetection. In a strict sense it lacks

many of the requirements other quantum computers (i.e. memory, feedforwarding)

at the cost of a limited range of applications.

All boson sampling devices begin by preparing an input state comprising of n

single photons in m modes. The concept of modes is a state that simplifies the

mathematical model of how light propagates and is able to describe the transport of

energy and information using the quantity of photons in a mode [13]. The number

of modes is generally scaled quadratically with the number of photons, m = O(n2).

The input state can be mathematically expressed as,

|φin〉 = â†1...â
†
n |01, ..., 0m〉 = |11, ..., 1n, 0n+1, ..., 0m〉 (2.9)

where |1i〉 and |0i〉 represent if a photon is in mode i or if this mode is in the vacuum

state. and â†i is the photon creation operator for the ith mode. The input state is

evolved through a linear optics network (linear interferometer), which implements a

unitary map on the creation and annihilation operators,

Û â†i Û
† =

m∑
j=1

= Ui,j â
†
j (2.10)

13



CHAPTER 2. BACKGROUND

Figure 2.2: Boson-Sampling model, where n single photons are prepared in m modes.
The modes are passed through a linear optics network Û . Lastly, the output statistics is
sampled using photodetection, which are sampled many times to reconstruct the output
distribution PS [14].

where Û is a unitary matrix describing the linear transformation performed by the

linear optics network. The output state is a superposition of the different configura-

tions – paths photons take to get to an output mode – of how the n photon reached

the output nodes,

|φout〉 =
∑
S

γS |n(S)
1 , ..., n(S)

m 〉 (2.11)

where S is a configuration, n
(S)
i is the number of photons in the ith mode association

with the configuration (S), and γS is the amplitude associated with the configura-

tion. The probability of measuring the configuration S is given by PS = |γS|2. The

amplitudes γS are related to matrix permanents

γS =
Per(US)√
n
(S)
1 !...n

(S)
m !

(2.12)

where US is an n × n sub-matrix of Û , and Per(US) is the permanent of US.

14
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Figure 2.3: Two-photon boson sampling, where figuring out the amplitude (“probability”)
of measuring a photon at output modes two and three involve both bosons passing straight
through, or swapping. [14]

The permanent is the mathematical representation of the paths taken by the

photons. Consider a five-mode boson sampling device in which the first two modes

have single photons, with the remaining ones in the vacuum state. Lets consider the

case where one photon is measured at the output mode 2 and another at output mode

3. There are two ways this could happen. Either the first photon reaches mode 3 and

the second, mode 2, or vice versa, i.e. the photons pass through or are swapped, see

Figure 2.3. Therefore, there are 2! = 2 ways in which the photons could reach the

outputs. Thus, the amplitude can be written as a 2× 2 matrix permanent:

γ2,3 = U1,2U2,3 + U1,3U2,2 = Per

U1,2 U2,2

U1,3 U2,3

 (2.13)
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We can expand the paths the photons take as the model is enlarged. Generally,

with n photons, there will be n! ways in which photons can reach the output modes.

The associated amplitude will relate to a n × n matrix permanent. Simulating a

boson-sampling model would involve calculating the permanent matrix, which is know

to be #P- complete. Even the best known algorithm – by Ryser [15] – requires

O(2nn2) runtime. Thus, we can conclude that classically simulating boson-sampling

by calculating matrix permanents would require exponential classical resources [14].

Additionally, because the number of photons scales quadratically with the number

of photons (m = O(n2)), for large systems it is statistically guaranteed that all

photons arrive at different output modes. The number of configurations – paths

photons can take to get to output mode – in the output mode scales as,

|S| =

n+m− 1

n

, (2.14)

which is exponentially driven by n. Thus, with an ’efficient’ (i.e. polynomial) number

of trials, we are unlikely to sample a given configuration more than once. This implies

that we are unable to determine any given Ps with more than binary accuracy. Thus,

boson-sampling devices do not let us compute matrix permanents, as doing so would

require determining the amplitudes with a high level of precision, which requires an

exponential number of measurements. Generally, boson-sampling experiments are run

many times, each time performing photodetection at the output modes. For each run

we sample from the distribution PS, this yields the so-called sampling problem, where

the goal is to sample a statistical distribution using a finite number of measurements.

Because boson-sampling is a sampling problem, it can tackle a limited number of

applications.

16



CHAPTER 2. BACKGROUND

Figure 2.4: Squeezed Gaussian state viewed as a quasi-probability Wigner distribution
function

2.3.1.0.1 Gaussian Boson Sampling

In Gaussian Boson Sampling (GBS), a Gaussian state – see Figure 2.4 – is taken as the

input and photon number statistics are generated as the output, to efficiently sample

distributions that are computational hard to sample in a classical implementations.

The reason to use Gaussian states stems from the difficulty of generating accurate

single-photon sources. Pure Gaussian states can emulate their behavior, and can be

manipulated in the phase space.

Early devices utilizing this technology make use of postselected photon-pair states

from probabilistic photon-pair sources (such as two-mode squeezed states) to emulate

single photon input states. However these devices ignore the Gaussian nature of

Gaussian states, as only a specific number of single photons are retained from the

complete distribution and the squeezers are driven in low gain (mean photon number

〈n〉 � 1). Ideally lifting this constraint on pure single photons input states and

considering squeezed states with higher gain (〈n〉 ≈ 1) will allow for a wider range

of applications – such as simulating vibronic spectra – and in some special cases will

be able to solve the sampling problem with the use of multi-mode thermal states and

nonlinear-continuous variable quantum states [16].

17
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Figure 2.5: Model for Gaussian Boson Sampling device. The three main building blocks
are: n Squeezed Gaussian input states, m-mode linear interferometer composed of beam-
splitters and phase shifters – which can implement any linear transformation–, and photon
count detectors on each of the output modes [17].

Furthermore, encoding information in GBS devices isn’t analogous to how infor-

mation is stored/used in traditional computers. In a traditional computer we store

and perform operations on information stored in variables, meanwhile a photonic

based quantum computer creates a continuous variable system – models harmonic

oscillators – that would be too difficult for a traditional computer to simulate. Both

devices would reach the same results but traditional computers have to perform math-

ematical algorithms that model the quantum systems. These algorithms generally

perform and scale poorly.

2.4 Traditional Compilers vs Quantum Compilers

Traditional compilers for classical computers translate source code written in a high-

level language into a set of machine-language instructions that can be understood by

a digital computers CPU. They contain error-checking and optimization abilities that

ensures source code can be executed correctly by the CPU in an efficient manner. A

18
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compiler is essential to abstract out the most basic machine instructions (machine-

language) to higher level concepts that can be easily understood and implemented.

An example of such compiler is the GNU Compiler Collection (GCC); which sup-

ports compilation for multiple programming languages, hardware architectures and

operation systems and has been in development for three decades.

Comparatively, compilers targeting quantum systems differ depending on the un-

derlying technology when compared to traditional compilers. For example, IBM qubit

systems can only apply operations between qubits that are connected together. So

to abstract out this mapping problem from the user writing a quantum program, the

compiler will restructure the quantum code so that it can be executed with the qubit

configuration targeting. These compilers still fall under what a traditional compilers

is defined, as its still handling all the logic needed to transform a high-level program

to code that can be understood by the hardware.

On the other hand, – as we will explore later in the thesis – Strawberry Fields

compilers do not meet all the definitions of traditional compilers. They do enable

compilation of higher-level programs into lower-level understood by hardware and

simulators, but to an extend. SF compilers behave more like helper structures that

define decompositions and primitives allowed in the compilation process. Some do

contain compilation logic but they behave as helper methods that can be called upon

by other compilers performing more complex logic. This creates a hierarchical struc-

ture not seen in traditional high-level programming language compilers.
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Hardware

3.1 X8 Devices

Xanadu has developed and manufactured a photonic quantum chip using the CV

model, called X8. Being such a novel device, it has many restrictions. While great

for Gaussian Boson Sampling (GBS) type problems, it is restricted in the operations

it can perform, meaning it cannot perform universal computing. Furthermore, the de-

vice contains eight qumodes – Xanadu’s name for their high-dimensional/continuous

qubits – which are divided into two groups, idler and signal modes. Qumodes 0 to 3

are the signal modes and qumodes 4 to 7 are the idler modes. Each of the qumodes

are paired with one of the other group through a beam splitter, with the pairs being:

(0, 4), (1, 5), (2, 6), (3, 7), as seen in Figure 3.1. Both groups are implemented

identically but are categorized to emphasize that the operations that happen on the

signal modes must be replicated to the idler modes.

3.1.1 Initialization of States

The X8 hardware initializes the qumode states by strictly enforcing the use of two-

mode squeezing gates (S2gate). The S2gates serve to create a superposition of

squeezed states between qumode pairs. As a comparison, this is similar to how su-

perposition of qubits is achieved using Hadamard gates followed by CNOT gates. In
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Figure 3.1: X8 Chip Topology. Currently, only the parameters (r = 1, φ = 0) and
(r = 0, φ = 0) (corresponding to no squeezing) are allowed in the two-mode squeezing gates
between signal and idle more pairs. Eventually, a range of squeezing amplitudes r will be
supported.

this case the superposition is enforced, meaning a quantum program compiled to run

on X8 must initialize with these operations. Though, the parameters of the squeezing

gates can be specified by the strawberry fields program. Currently, the only param-

eters allowed for the S2gate are (r = 1, φ = 0) and (r = 0, φ = 0) (no squeezing),

although Xanadu mentions that a range of squeezing amplitudes r will be supported

in the future.

The S2gate can be decomposed into two opposite local squeezers sandwiched be-

tween two 50% beamsplitters. Mathematically it can be defined as:

S2(z) = B†(π/4, 0) [S(z)⊗ S(−z)]B(π/4, 0) (3.1)
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Where z = reiφ with r ≥ 0 and φ ∈ [0, 2π). Using unitary definitions of the

elementary gates, provided in Table 2.2. The definition can be expanded to:

S2(z) = exp(r(eiφa†1a
†
2 − e−iφa1a2)) (3.2)

For the X8 chip, this can be further simplified by restricting the squeezing param-

eters (r = 1 or 0, φ = 0).

φ = 0→ e±iφ = 1 (3.3)

S2(r, φ = 0) = exp(r(ei0a†1a
†
2 − e−i0a1a2)) (3.4)

S2(r) = exp(r(a†1a
†
2 − a1a2)) (3.5)

S2(r = 0) = exp(0) = 1 (3.6)

S2(r = 1) = exp(a†1a
†
2 − a1a2) (3.7)

3.1.2 Programmable Interferometers

The actual processing for this quantum circuit takes place in the programmable 4x4

unitary block seen in Figure 3.1. The limitation in the processing is that the same

operations are applied to each pair of qumodes, meaning that the U4 transformations

depicted in Figure 3.1 have to be programmed identically. These U4 transforma-

tions are composed of BSgate (Beamsplitter), MZgate (Mach-Zehnder Interferome-

ter), Rgate (Rotation Gate), and Interferometer operators. Xanadu defines these as

primitive operations, but interferometer and BSgate operations are further decom-

posed to Mach-Zehnder Interferometers and Rotation gates.
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3.1.2.1 Interferometer Meshes and Decompositions

The interferometer used by the X8 chip is implemented using universal multiport

interferometers. An ideal multiport interferometer between N channels performs op-

tical transformations which are described by a N xN unitary matrix U acting on

electrical fields as Eout = UEin. In quantum optics, U describes the transforma-

tion on the operators (position & momentum) of the input modes to those of the

output modes. The authors of [18] propose a programmable multiport interferom-

eter that is able to apply any linear transformation (U) between multiple channels

(qumodes). The interferometers are composed of a mesh of beamsplitters and phase

shifters which are scalable and straightforward to manufacture. A mesh, example

seen in Figure 3.3, is composed of lines corresponding to an optical mode, and in-

tersections between two modes correspond to a variable beam splitter, which are

implemented using a Mach-Zehnder interferometer consisting of two 50:50 directional

couplers (50% Beamsplitter), preceded by a phase shift at one input port [18].

Figure 3.2: Mach-Zehneder interferometer diagram decomposition

The four interferometer meshes that Strawberry Fields supports are:

• Rectangular: rectangular mesh, with local phase shifts applied between in-

terferometers. Uses the scheme described in [18], resulting in a rectangular

array consisting of M(M-1)/2 beamsplitters, where M is the number of channels

(qumodes) acted upon by the interferometer. By default this mesh decomposes

the interferometer into beamsplitter gate (BSgate) operations.

• Rectangular Phase End: rectangular mesh that applies local phase shifts

after all interferometers. Decomposed into beamsplitter gate operations.
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Figure 3.3: Interferometer Rectangular Mesh

• Rectangular Symmetric: Similar to rectangular phase end mesh but all

beamsplitter gates are decomposed into pairs of symmetric beamsplitters and

phase shifters. This is the mesh implemented in the X8 hardware.

• Triangular: triangular array of M(M-1)/2 beamsplitters. While identical to

rectangular mesh, in amount of beamsplitters, [18] mentions that this design

suffers from propagation loss, due to the top modes propagating for some dis-

tance before interacting with other nodes. In addition, the high symmetry of

the rectangular mesh improves the loss tolerance when compared to the trian-

gular mesh. Because of these factors, it’s not expected for this mesh to be used

in hardware implementations.

Figure 3.4: Interferometer Triangular Mesh

3.1.2.2 Mach-Zehnder Interferometer

The Mach-Zehnder interferometer is one of the elementary gates used by the X8 ar-

chitecture. Its primary purpose is to determine relative phase shift variations between
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Figure 3.5: Schematic Diagram of a Mach-Zehneder Interferometer

two sources of light. It achieves this by having a two-mode light state get mixed on

a 50/50 beamsplitter. Then, a relative phase θ is performed on one of mixed light

beams. Lastly, the two light sources are mixed again using a 50/50 beamsplitter,

from then on the sources of light can be passed through another interferometer or be

measured using photon counters. The schematic showing the process can be seen in

Figure 3.5.

From a mathematical perspective, Xanadu defines the Mach-Zehneder gate (MZ-

gate) operation as:

MZ(φin, φext) = BS
(π

4
,
π

2

)
(R(φin)⊗ I)BS

(π
4
,
π

2

)
(R(φext)⊗ I) (3.8)

This gate is similar to that shown in Figure 3.2. Where θ = φin and φ = φext.
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With the difference being that the φext is applied at the end of the interferometer,

rather than before it.

As mentioned in Section 3.1.2.1, the X8 architecture implements the rectangular

symmetric interferometer, this means two things:

1. Local phase shifts are performed after all interferometers. This phase shift is

represented by φext in (3.8).

2. All beamsplitters are decomposed into pairs of symmetric beamsplitters

BS
(
π
4
, π
2

)
, and phase shifters, which are achieved with the rotations on the

Mach-Zehnder interferometer and elementary rotation gates.

3.2 Scalable Fault-tolerant Photonic Hardware

Figure 3.6: Visual Comparison between CV states Relevant to Future Photonic Hardware

Xanadu intents the X8 chip family to be the stepping stone to fault-tolerant

scalable photonic hardware. The X8 chip, while perfect for GBS problems, is not

a universal quantum computer, due to lacking the ability to perform non-Gaussian

operations. The authors of [19] present a design for a photonic universal quantum

computer, which use qubits encoded with a state of light mentioned in a method pro-

posed by Gottesman, Kitaev and Preskill (GKP) in [20]. These qubits have several
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benefits: quantum gates, operations and measurements on these states can be per-

formed with Gaussian resources, which are natively available in photonic devices; they

are robust against noise and optical losses; and can be operated at room-temperature

making the design perfect for scalable fabrication and easy operation.

Figure 3.7: (left) GBS device for GKP state preparation. The purple lines represent
classical logic for determining integrity of the GKP state. (right) Simplified representation
of GBS device.

GKP states can be created using GBS devices (i.e. X8 hardware), when photons

in all but one mode of light are counted, as seen in Figure 3.7. The light in the

unmeasured mode emerges with something resembling little playing pieces arranged

in a checkerboard pattern (GKP), as seen in Figure 3.6. This procedure is inherently

probabilistic, which raises a concern as GKP qubits need to be readily available for

a photonic quantum computer to work. To fix this, many GBS devices will have to

be run simultaniously to increase the likelihood of making a GKP qubit, termed by

[19] as multiplexing. Even with this method, too many GBS devices would be needed

to create reliable GKP states, which would hinder the scalability of photonic archi-

tectures. Xanadu proposes a hybrid resource state composed of GKP and squeezed

states. Multiplexed GBS devices will generate GKP states; however when these de-

vices fail, the mode is instead prepared in a squeezed state, as seen in Figure 3.8. The

squeezed mode is entangled with the other modes and can be operated upon much

like a GKP state. With this method the number of GBS devices no longer becomes

a hindrance.

The introduction of Gaussian neighbours (squeezed states) to the GKP modes

creates another issue. When measured, the intrinsic structure of a GKP mode helps
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Figure 3.8: Multiplexed state generation. A successfully generated GKP state is directed
from a GBS device to the output port. If no GBS device produces a GKP state, the output of
the multiplexing device is swapped for a deterministically generated squeezed state (depicted
by the ellipse on the bottom left). Right-hand side shows simplified diagram for the hybrid
quantum light source [19].

reduce noise in the quantum state through GKP error correction. On the other

hand, measuring a squeezed state introduces a known amount of random noise into

neighbouring nodes, which if not accounted for will reduce the accuracy of the compu-

tation. Thus, to remedy this the authors of [19] propose a novel decoding procedure

for the hybrid cluster state. The decoder takes the noisy measurements and uses the

knowledge of the squeezed state locations to produce higher quality qubit readout

values.
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Figure 3.9: Photonic quantum computation using hybrid resource states. A planar chip
(top) generates the states required for fault-tolerant quantum computation. The modes
comprising the lattice are either GKP (red dots) or squeezed states (blue dots). The light
is measured at the homodyne detectors (bottom), whose output is decoded [19].
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3.3 Quantum Supremacy of GBS Devices

Quantum supremacy has been a focus point of researchers working on novel quantum

technologies. Showing computation advantages of quantum devices over classical

computers is essential to proving the feasibility of the quantum technologies. To

achieve quantum supremacy with Gaussian Boson Sampling devices, a considerable

amount of input squeezed states (qumodes) need to be prepared and operated upon.

For example, the authors of [21] have proven quantum supremacy using a GBS device

containing: 50 input states, a 100-mode interferometer, and 100 single-photon detec-

tors. The researchers claim that the resulting output states were sampled at a rate

∼ 1014 faster than using state-of-the-art simulation strategies and supercomputers.

Their success was short-lived, as the release of the paper encouraged researchers to

improve the simulation algorithms to a point that a classical computer could achieve

better performance than the GBS device. Even with this setback, it is apparent that

as GBS devices grow in size they will be better suited to tackle quantum supremacy

problem.
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Strawberry Fields

4.1 Compilers

Part of the objective of this thesis is to get a better understanding of what compilation

entails in a continuous variable quantum computing environment entails. The compi-

lation process is highly dependent on the underlying technology implemented and/or

simulated by the SF environment. So to understand the design decisions and code

of these compilers, one must have knowledge of the quantum concepts used by the

hardware, specifically see 2.2 and 2.3.1. In particular, this work looks at the Straw-

berry Fields programming environment for Gaussian Boson Sampling developed by

Xanadu. The compilation process for a Strawberry Fields program is initiated when

Program.compile() is called. This compilation process can be simplified into three

stages:

1. Validation: Validates properties of the design, such as the number of qumodes,

operations, measurements.

2. Decomposition: Once the design has been validated, certain gates are trans-

formed into sequences of simpler gates. Optimization – the action of simplifying

the circuit to make it execute faster – takes place in this stage if specified by

user.

3. General Compilation: If the program specifies a target device, the compiler
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Figure 4.1: Compilation Steps Followed by all Strawberry Fields Programs. If a device is
specified, extra steps take place to compile program for use in hardware
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will execute some combinational logic for transforming the proposed design into

an equivalent design which can be executed in the target device.

Every Strawberry Fields (SF) program goes through the process depicted by Fig-

ure 4.1. The parameters passed to program.compile() decide the compilation process

for the SF program. The relevant parameters are:

• compiler: String that specifies the compiler used for general compilation (i.e.

“Xunitary”), see Section 4.1.0.1 for more info. If not specified defaults to None.

• warn connected: Boolean, when true, warns the user if a circuit is weakly con-

nected, meaning a circuit when converted to a DAG (Directed Acyclic Graph)

is weakly connected. A weakly connected DAG means that one or more of its

subgraphs are not connected by an edge. It is meant to warn the user that there

might be errors in their program. For example, when compiling the program in

Listing 4.1, it is converted to the DAG shown in Figure 4.2, which clearly shows

the two disconnected subgraphs. To get rid of the warning, one could add a

Beamspliter gate between q0 and q3, ops.BSgate(0.5, 0.125) | (q(0), q(3)). The

default value of warn connected is False.

1 prog = sf.Program (4)

2 with prog.context as q:

3 ops.S2gate (1.0) | (q[0], q[4])

4 ops.Rgate (0.453) | q[0]

5 ops.Rgate (0.453) | q[3]

6 prog_compiled = prog.compile(warn_connected=True)

7

Listing 4.1: Weakly Connected Circuit Compilation

• optimize: Boolean, when true, optimizes the program. The optimizations are

based on algebraic properties of the operations constituting the circuit. This
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Figure 4.2: Weakly Connected Directed Acyclic Graph (DAG)

includes combining two consecutive gates of the same gate family and removing

pair of gates that perform inverse operations. Thus, the simplified circuit is

cheaper (resource wise) and faster to execute. The default value of optimize is

False.

• device: Device specification object that describes the target device (hardware)

in which the program will be run on. This object contains: target device name,

the default general compiler (i.e. “Xunitary”), Black Bird template depicting

layout of hardware, gate parameters allowed by hardware. Listing 4.2 shows

how the device specification is obtained – given one has access to the hardware

– and used to compile the program.

1 prog = sf.Program (8)

2 # Add operations ....

3 eng = sf.RemoteEngine("X8")

4 device = eng.device_spec

5 prog_compiled = prog.compile(device=device , compiler="Xcov")

6

Listing 4.2: Compiling Program for X8 hardware
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4.1.0.1 Compilation Steps

The compilation process, when specified, utilizes a general compilation step that

validates and modifies a SF program to match a certain structure. This step is

essential for compiling programs that run on the X class devices. The restrictions set

in place by X class devices require the program to match a specific gate structure,

which is achieved by the logic implemented in the compilers. There are three types of

compilers that have a hierarchical structure (some serve others), as seen in Figure 4.3:

backend, general, and X class.

All of the general compilers define primitive operations (operations allowed in the

compiled program), and decompositions allowed to be performed by the compiler. If

a program contains an operation not defined in the primitive or decomposition of the

compiler being used, then the compiler will throw an error and will not allow you

to compile your program. Furthermore it is important to note that if an operation

is defined as primitive in a compiler, it does not mean that it wont be modified or

removed from the compiled program. For example, Xcov supports squeezing gate

(Sgate) as a primitive operation but because it compiles programs for X8 devices, –

which do not contain Squeezing gates – no such operation is allowed in the compiled

program. Primitives and decomposition operations can be seen in Table 4.1 and

Table 4.2, respectively.

4.1.1 Backend Compilers (Gaussian, Fock)

These compilers define certain primitives and decompositions (see Table 4.1), but do

not change structure of program. They are mainly used for programs running on the

simulation backends. They are building blocks for the next layers of the compiler

hierarchy, like the Gaussian Unitary compiler and the X Class compilers.
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Figure 4.3: Strawberry Fields General Compiler Hierarchy

Table 4.1: Primitive Operations Allowed by General Compilers

Primitives

Gates Gates
State Preparations

Single Mode Multi-Mode
Measurements

Gaussian
Vacuum, Coherent, Squeezed,

Displaced Squeezed,
Thermal, Gaussian

Displacement,
Squeezing,
Rotation

Beamsplitter
Homodyne, Heterodyne,

Fock, Threshold

Fock
Vacuum, Coherent, Squeezed,
Displaced Squeezed, Thermal,

Fock, Catstate, Ket, Density Matrix

Displacement, Squeezing,
Rotation. Cubic Phase,

Kerr

Cross-Ker, Beamsplitter,
Two-Mode Squeezing

Homodyne, Fock

Gaussian Unitary
Displacement,

Squeezing,
Rotation

Mach-Zehnder (MZgate), Beamsplitter,
Two-Mode Squeezing, Interferometer,

Gaussian Transform

GBS Same as Gaussian
Displacement, Squeezing,

Rotation, Fourier
Beamsplitter Same as Gaussian

Xunitary Rotation
Beamsplitter, MZgate,

Interferometer, Two-Mode Squeezing
Fock

Xcov Squeezing, Rotation
Beamsplitter, MZgate, Interferometer,

Two-Mode Squeezing
Fock

Xstrict Rotation MZgate, Two-Mode Squeezing Fock

4.1.2 General Gaussian Compilers

These General Gaussian compilers implement compile methods that can be used by

other general compilers. They currently serve as helper functions for the X class

compilers. Their main job is to organize the computations in a canonical way that

is suitable for the next compilation steps. The requirements to be able to implement

the circuit description on actual hardware are two: on one hand, that the overall
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Table 4.2: Decompositions Allowed by General Compilers

Decompositons

Gaussian
Interferometer, GraphEmbed, BipartiteGraphEmbed,

Gaussian Transform, Gaussian, Pgate, CZgate,
CXgate, MZgate, Fouriergate, Two-Mode Squeezing

Fock
Interferometer, GraphEmbed, BipartiteGraphEmbed,

Gaussian Transform, Gaussian, Pgate,
CZgate, CXgate, MZgate, Fouriergate

Gaussian Unitary
GraphEmbed, BipartiteGraphEmbed,

Gaussian, Pgate, CXgate, CZgate,
Xgate, Zgate, FourierGate

GBS Xgate, Zgate, Two-Mode Squeezing
Xunitary

Xcov
BipartiteGraphEmbed

implementation can be expressed as symplectic matrices (see 4.1.2.1), and on the

other, measurements that will reveal the final count on the modes need to be separated

and implemented at the end of the circuit, as opposed to interleaved with other

operations.

4.1.2.1 Gaussian Unitary

The Gaussian Unitary attempts to arrange a quantum program into the canonical

symplectic form matrix. The symplectic matrix encapsulates the phase-space repre-

sentation of the Gaussian transformation performed by the program [22]. Being able

to compute the sympletic matrix ensures that the circuit can be implemented as a

sequence of Gaussian operations. After compilation, the circuit will consist of two

operations, a Gaussian transform and a displacement operation.

1 circuit = sf.Program (1)

2 with circuit.context as q:

3 Xgate (0.4) | q[0]

4 Zgate (0.5) | q[0]

5 Sgate (0.6) | q[0]

6 Dgate (1.0+2.0j) | q[0]

7 Rgate (0.3) | q[0]

8 Sgate (0.6, 1.0) | q[0]
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9

10 compiled_circuit = circuit.compile(compiler="gaussian_unitary")

11 >>> compiled_circuit.print()

12 GaussianTransform ([[ 0.3543 -1.3857]

13 [ -0.0328 2.9508]]) | (q[0])

14 Dgate ( -1.151+3.91j, 0) | (q[0])

Listing 4.3: Compilation of a random allgaussian SF program into a Gaussian Transform

operation and Displacement gate which are mathematically identical as the initial program.

Single-mode gates supported: Displacement, Squeezing, Rotation.

Multi-mode gates supported: MZgate, Beamsplitter, Two-mode Squeezing.

4.1.2.2 Gaussian Boson Sampling (GBS)

Validates and arranges quantum circuit into a form suitable for Gaussian Boson Sam-

pling circuits, see Section 2.3.1. This involves:

1. Identifying the Fock measurement out of the list of computations

2. Re-organize Fock measurements to ensure that they are consecutive and take

place at the end of the circuit.

3. Combines all Fock measurements into a MeasureFock command.

4.1.3 Xstrict

Besides defining the primitive operations of the X8 architecture, Xstrict ensures that

the circuit matches the structure of a Gaussian Boson Sampling problem, see 2.3.1.

Xstrict achieves this by calling the compile method from the GBS compiler class,

creating its dependency as seen in Figure 4.3.
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4.1.4 Xunitary

Xunitary is the default compiler used for compiling programs running on X8 devices.

It is tasked with:

• Decomposing interferometer unitary into Mach-Zehnder and rotation gates in

a symmetric rectangular mesh structure, see Section 3.1.2.1.

• Ensuring all two-mode squeezer (S2gate) operations are performed on the cor-

rect signal and idler qumode pairs. If a pair is missing the S2gate command,

an S2 gate is inserted, with a squeezing parameter of zero (r=0). See Section 3.

• Converting multiple Fock measurement commands into one MeasureFock com-

mand at the end of the circuit.

Figure 4.4: Xunitary compilation steps. The step that drives the cubic growth in compi-
lation time is outlined in red, see Section 4.1.6.

Furthermore, the canonical symplectic form returned by the Gaussian Unitary

compiler is used to construct the adjacency matrix of the interferometer unitary.

A circuit running on hardware must have an adjacency matrix with the following

structure:
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A =

 0 B

BT 0


Where B is the adjacency matrix of a graph representing the rectangular symmet-

ric interferometer in the X8 device. The edges represent the operations performed

by the interferometer and squeezing gates, while the vertices represent the qumodes.

Xanadu refers to this type of matrix as a embedded bipartite graph. In this case the

bipartite graph is said to be the matrix representation of the interferometer. Thus,

it can be decomposed to extract a sequence of MZ and rotation gates, which is used

to create the compiled program, as seen in Figure 4.4. The sequence extracted (op-

erations in the U1 interferometer in Figure 3.1) applies only to the signal modes, to

match the hardware, the sequence is copied and qumodes are re-mapped following

signal and idler mode pairs. For example, the command MZgate(3.14, 0) (q[2], q[3])

is copied and modified to MZgate(3.14, 0) (q[5], q[6]).

Lastly, the compiled program is packaged by combining the S2 gates, interferom-

eter on signal & idler modes, and measurement commands, in that order.

4.1.5 Xcov

Figure 4.5: Xcov compilation steps. The step that drives the cubic growth in compilation
time is outlined in red, see Section 4.1.6.

The Xcov compiler serves as an alternative to Xunitary for compiling quantum
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programs targeting X8 hardware. Even though, these compilation steps perform the

same task, their outputs can differ even if given the same SF program. In Xunitary,

the adjacency matrix – an embedded bipartite graph in Xanadu’s terminology – is

calculated from the Symplectic Matrix (SM). Alternatively, Xcov uses the covariance

matrix of the SM to create the adjacency matrix. The main difference is being able

to include the squeezing gates (S2gates) Gaussian operations into the SM matrix – as

seen in Figure 4.5 – rather than excluding them from the SM matrix, and having to

deal with them beforehand. The issue with this method is that it is guaranteed that

the first squeezer is the one with the largest squeezing parameter, with the second

squeezer containing the second largest and so on. This implies that for trivial circuits

where the original unitary is the identity, the Xcov compiler will end up reordering

the squeezers causing the unitary to become a permutation matrix, which may or

may not be a desirable feature. This behaviour can be shown by compiling the SF

program in Listing 4.4. Figure 4.6 shows that the output programs for Xunitary and

Xcov differ when given the same input, shown in Listing 4.4.
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1 prog = sf.Program (8)

2 U = np.identity (4)

3 with prog.context as q:

4 # Initial squeezed states

5 ops.S2gate (1.0) | (q[0], q[4])

6 ops.S2gate (0) | (q[1], q[5])

7 ops.S2gate (1.0) | (q[3], q[7])

8 # Identity Interferometer on the signal modes (0-3)

9 ops.Interferometer(U) | (q[0], q[1], q[2], q[3])

10 # Identity interferometer on the idler modes (4-7)

11 ops.Interferometer(U) | (q[4], q[5], q[6], q[7])

12 ops.MeasureFock () | q

13

14 xcov_prog = prog.compile(compiler="Xcov")

15 xuni_prog = prog.compile(compiler="Xunitary")

Listing 4.4: Identity Interferometer Example Program

(a) Xcov (b) Xunitary

Figure 4.6: Compilation Results from Program shown in Listing 4.4
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4.1.6 Timing Comparisons between Xcov and Xunitary

Compilation time for SF programs targeting X8 devices is irrelevant at current circuit

sizes (8 qumodes). But what would happen to the execution time of SF compilers

for larger GBS circuits? This is a specially important question for researchers – i.e.

[21] – attempting to prove quantum supremacy using a hundreds of modes in GBS

devices, refer to Section 3.3. If there is ever work on creating large GBS devices using

the SF environment, it would be useful to examine how the SF compilers perform at

large circuit sizes.

The compilers that will be analyzed, Xcov and Xunitary, were chosen due to their

complexity and their role in compiling programs targeted for X8 devices. The most

essential part of performing timing analysis is developing SF programs that can be

generated at different qumode sizes and be random per iteration of the timing test.

To achieve this a python function was created, whose parameter defined the qumodes

in the program, that would populate the S2gate operations on all qumode pairs –

specified by X8 architecture – and generate a random interferometer for the unitary.

The parametrization of SF programs allowed for a wide range of samples which in

turn make for more precise profiling of the compilers.

1 def create_prog(qumodes =8):

2 half_qmode = qumodes // 2

3 U = random_interferometer(half_qmode)

4 prog = sf.Program(qumodes)

5

6 @operation(half_qmode)

7 def unitary(q):

8 ops.Interferometer(U) | q

9

10 with prog.context as q:

11 # Initial squeezed states
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12 for i in range(half_qmode):

13 ops.S2gate (1.0) | (q[i], q[i+half_qmode ])

14

15 unitary () | q[: half_qmode]

16 unitary () | q[half_qmode :]

17

18 ops.MeasureFock () | q

19 return prog

Listing 4.5: Function for SF program creation used in timing analysis of compilers

The timeit python module was used to perform the timing measurements. One

of the issues with python timing analysis is that a python programs performance is

often affected by background processes. This module addresses this issue by imple-

menting a method that repeats a function call timing measurement and returns a list

of measurements results, which gives us more samples to choose from. Generally for

our purposes compiler timing measurements for each circuit size were run 10 times,

with bigger circuits (i.e. > 150 qumodes) only running five times per compiler. The

minimum compilation time of these iterations was stored, as recommended by the

documentation of the timeit module. The measurement results were stored in a csv

file, for easier data plotting and analysis.

The data was plotted, in logarithmic scale, using the matplotlib python module,

and can be seen in Figure 4.7. Compilation time for the biggest circuit size (300

qumodes) took around 20 seconds, while the smallest (8 qumodes) took 4ms to com-

pile. The big spike in the data corresponds to a spike in execution time from 64

to 66 qumodes, which were 74ms and 477ms, respectively. The 650% increase in

compilation time was caused by the interferometer unitary decomposition into Mach-

Zehnder (MZgate) and Rotation operations. The probable cause for the spike is a lack

of cachable memory in the decomposition function that takes place for circuits larger

than 64 qumodes. This behaviour could be explored further but it was concluded
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Figure 4.7: Execution time for Xunitary and Xcov compiler at various qumode program
sizes, in logarithmic scale.

that the spike will have negligible effects on the compilation of large programs, which

is the focus of this timing analysis.

The data points from 66 qumodes and on follow cubic growth, allowing for data

extrapolation. Figure 4.8 shows the extrapolation of the timing data up to 1000

qumodes. The compilation time with 1000 qumodes would theoretically take 1000

seconds and 966 seconds – ∼ 16 minutes – for Xcov and Xunitary, respectively. Com-

piling for 1000 qumodes takes a considerable amount of time, but the difference

between Xcov and Xunitary is negligible. This concludes that execution time is not

an important characteristic when trying to differentiate between Xcov and Xunitary.
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Figure 4.8: Extrapolated execution time for Xunitary and Xcov compilers.

Consequently, software profiling was used to find the operations that drive the

compilation time, as well as the cause of the spike in compilation time seen in the

timing analysis results. The cProfile python module was used to achieve this. This

module allows us to create a profile – set of statistics that describes how often and

for how long various parts take of the program executed – that can be formatted into

reports. In this case the reports seen on Figure 4.9 and Figure 4.10 shows 30 function

calls that had the longest cumulative time (time spent from invocation till exit) for

compiling a 200 qumode SF program in Xcov and Xunitary, respectively. Using these

results it is apparent that the compilation spent most of its time decomposing the

interferometer unitary into Mach-Zehnder and rotation gates. Specifically for Xcov,

the Mach-Zehnder decomposition calls took 4.4 seconds out of the 6.2 seconds for the

whole compilation, which accounted for 70% of the overall compile time. As expected
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the same behaviour can be seen for Xunitary in Figure 4.10, due to both compilers

utilizing this decomposition function in their compilation steps, see Figure 4.5 and

Figure 4.4.

Figure 4.9: Xcov compiler software profile for compilation of 200 qumode program. The
red box outlines the function call that drives the cubic growth in compilation time.

Software profiling helped determine that the compilation time spike, in Figure 4.7,

was caused by the interferometer decomposition function. In the case of Xcov, at 66

qumodes the interferometer decomposition function had a cumulative time of 0.471

seconds, while at 64 qumodes it only took 0.065 seconds. That corresponds to a 625%

increase in computation time, which explains the spike behaviour in the plot shown

in Figure 4.7.
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Figure 4.10: Xcov compiler software profile for compilation of 200 qumode program. The
red box outlines the function call that drives the cubic growth in compilation time.

4.2 Gaussian Merge Compiler

As shown in the previous sections, the simulation of Gaussian states using classical

computers is a resource and compute intensive task, which limits the size of programs

that can be run. A way to alleviate this issue is to reduce the amount of separate

Gaussian operations in a SF program to be processed in simulation by merging all

possible Gaussian operations together into their symplectic matrices. A new SF com-

piler function was created for this purpose, called Gaussian Merge. The compiler

utilizes Direct Acyclic Graphs (DAGs) to determine which operations can be merged

and then are merged using the Gaussian Unitary compiler. The resulting program will

contain only non-Gaussian, Gaussian Transforms (symplectic matrix), and Displace-

ment operations. Currently, there is no performance benefit of using this compiler

as the SF simulators do not support Gaussian Transform (GT) operations as prim-

itives, instead they get decomposed back into supported operations. The benefit of

this compiler is simplifying large hybrid circuits that allow for performance speedups

once GT operations are supported. Once supported, a focus on optimizing GT in
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simulators can introduce a overall speedup for any Gaussian circuit.

The program flow of the compiler can be seen in Figure 4.14. Each iteration of the

compiler starts by picking a Gaussian operation. The compiler will then obtain all the

Gaussian operations that preceded it, succeed it and happen in the same time frame,

these are called valid Gaussian merge operations. The addition of non-Gaussian

operations complicates the Gaussian operations that can be merged. A non-Gaussian

operation being “sandwiched” between two Gaussian operations, prohibits the merge

of those two Gaussian operations so the equality of the original and merged circuit is

retained. This complicates the requirements of determining valid merge operations.

Valid merged Gaussian operations are determined, in relation to the main Gaussian

operation, by:

• Gaussian operations that succeed the main Gaussian operation, if they don’t

have non-Gaussian dependencies that operate on the same qumodes as the main

Gaussian operation.

• Gaussian operations that are executed in the same time frame as the main

Gaussian operation. i.e. operations that precede the successor operations of

the main Gaussian operation.

• All Displacement gates that succeed the main Gaussian operation, and any

other Displacement gates that follow them, recursion is used to achieve this.

The code for determining valid merged operations can be seen in Listing 4.6.

Furthermore, the logic to determine where to place edges between merged Gaussian

Transform operations, successor and predecessor operations is shown in Listing 4.7.

Non-Gaussian gates that succeed the original operation are merged with the logic

shown in Listing 4.8. All the source code is open source and can be viewed in the

strawberry fields github [23].
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(a) The compiler first chooses a starting node, in this case the Sgate acting on qumodes
0 and 1. It then looks at the succeeding operations of the starting node – BSgate – and
determines whether they are Gaussian or not. If they are Gaussian operations, they are
merged in with the starting node. To maximize the amount of operations that are merged
in one iteration, the compiler will take into account the predecessors of the succeeding
operations, i.e. the Rgate. These operations, if Gaussian, can be merged with the starting
node. In this example the starting node, S2gate, is merged with the Bsgate and Rgate
into a Gaussian Transform (GT) operation. Once the operations are merged, the edges
of the merged operations are passed over to the new GT operation, to ensure the correct
order of the operations.

(b) The compiler arbitrarily chooses the next operation to merge, in
this case the Rgate is chosen. While it does not have any Gaussian
successor or predecessor operations, the compiler has the ability to
merge Gaussian operations on the same graph level, i.e. the other
predecessors of the successor of the Rgate in this case the Sgate was
added by being predecessor to the BSgate. Same thing happens in the
first step with the Rgate on qumode 2.

(c) Resulting DAG once the Gaussian merge compiler merges all
Gaussian operations. The program in this DAG is mathematically
identical to the initial program, but with a reduced amount of opera-
tions.

Figure 4.11: The steps a DAG, of a simple SF program, takes when being compiled using
the Gaussian Merge compiler. The red nodes depict non-Gaussian operations. In each step,
the green node outlines the Gaussian operation that the compiler uses to start its merge,
while the blue nodes note the operations that will be merged with the green node. Lastly,
the white nodes are operations that are untouched in that step of the compiler.
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Figure 4.12: The Gaussian Unitary compiler merges multiple Gaussian operations into a
single symplectic matrix. This is achieved by sequentially applying the symplectic matrix
of a single gate operation (i.e Rgate) to the symplectic matrix of the overall system. The
matrices on the right show the transformations the symplectic matrix takes when applying
single or two-mode gates on a three qumode system. The resulting matrix corresponds to
a unitary transformation identical to that of the three gates applied sequentially in a SF
program.
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Figure 4.13: Program flow for merging a single Gaussian operation (op) with its Gaussian
neighbors. This method returns True if Gaussian operations were merged and False if no
Gaussian operations can be merged. The current sequence (curr seq) variable holds the
SF sequence of gates that is updated in each iteration of the merge a Gaussian operation
function. Once no other Gaussian operations can be merged, this variable holds the result-
ing program of the compiler. The sequence of gates can be easily converted to its DAG
representation using methods implemented in SF.

Figure 4.14: Program flow of compilation using Gaussian Merge compiler. The flow here
outlines that the compilation is iterative. A group of Gaussian operations are merged in
each iteration. The compilation is done when there are no more Gaussian operations to
merge.
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1 def get_valid_gaussian_merge_ops(self , op):

2 """

3 Obtains the valid gaussian operations that can be merged with op

at the current DAG configuration.

4 """

5 merged_gaussian_ops = []

6 for successor_op in self.DAG.successors(op):

7 # If successor operation is a Gaussian operation append to

list for merging

8 if get_op_name(successor_op) in self.gaussian_ops:

9 merged_gaussian_ops.append(successor_op)

10 # Get displacement operations (recursively) that follow

after successor operation

11 d_gate_successors = self.recursive_d_gate_successors(

successor_op)

12 if d_gate_successors:

13 merged_gaussian_ops += d_gate_successors

14

15 # Add gaussian operations that should be executed at the same

time (same time frame) as op

16 # E.X Rgate|q[0] Rgate|q[1] -> BS|q[0]q[1]. Adds Rgate|q[1] if

Rgate|q[0] is the op.

17 for gaussian_op in merged_gaussian_ops:

18 for predecessor in self.DAG.predecessors(gaussian_op):

19 if predecessor is op:

20 continue

21 if (

22 predecessor not in merged_gaussian_ops

23 and get_op_name(predecessor) in self.gaussian_ops

24 ):

25 if self.valid_prepend_op_addition(op , predecessor ,

merged_gaussian_ops):

26 merged_gaussian_ops.append(predecessor)
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27

28 merged_gaussian_ops = self.remove_invalid_operations(op ,

merged_gaussian_ops)

29 return merged_gaussian_ops

Listing 4.6: Function that returns a list of valid Gaussian operations that can be merged

with op

30 def add_gaussian_pre_and_succ_gates(

31 self , gaussian_transform , merged_gaussian_ops ,

displacement_mapping

32 ):

33 """

34 Updated DAG by adding edges between gaussian transform/

displacement operations to unmerged gaussian operations.

35

36 Displacement mapping is a dictionary whose key is the qumode

being operated by the displacement gate , which is its value. i.e.

{0: Dgate (1.5) | q[0]}

37 """

38 successor_operations_added = []

39 for gaussian_op in merged_gaussian_ops:

40 # Need special logic if there are displacement gates

41 if displacement_mapping:

42 for successor_op in self.DAG.successors(gaussian_op):

43 placed_edge = False

44 successor_op_qumodes = get_qumodes_operated_upon(

successor_op)

45 for qumode in successor_op_qumodes:

46 # If displacement gate operates on the same qumodes as the non -

gaussian operation then don’t add an edge. If register operated

upon by successor operation has a displacement gate , add edge.

47 if (qumode in displacement_mapping

48 and qumode not in self.
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non_gaussian_qumodes_dependecy(successor_op)):

49 # add edge between displacement gate and

successor operation

50 self.new_DAG.add_edge(displacement_mapping[

qumode], successor_op)

51 placed_edge = True

52 # If there is no displacement gate on qumode , add edge between GT

operation and successor op

53 if not placed_edge:

54 self.new_DAG.add_edge(gaussian_transform [0],

successor_op)

55 successor_operations_added.append(successor_op)

56 else:

57 # If no displacement gates , just add edge between GT operation and

successor operations

58 self.new_DAG.add_edges_from ([( gaussian_transform [-1],

post) for post in self.DAG.successors(gaussian_op)])

59

60 successor_operations_added += self.DAG.successors(

gaussian_op)

61

62 for gaussian_op in merged_gaussian_ops:

63 # Append Predecessors to Gaussian Transform

64 for predecessor in self.DAG.predecessors(gaussian_op):

65 # Make sure adding the edge wont make a cycle

66 if predecessor not in successor_operations_added:

67 self.new_DAG.add_edge(predecessor ,

gaussian_transform [0])

Listing 4.7: Function that determines where to add edges between new Gaussian

Transform operation successor and predecessor operations while retaining program

functionality
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68 def add_non_gaussian_successor_gates(

69 self , gaussian_transform , successors , displacement_mapping

70 ):

71 """

72 Updates the DAG by adding edges between new gaussian transform and

non -gaussian operations

73 from original operations.

74 """

75 for successor_op in successors:

76 if get_op_name(successor_op) not in self.gaussian_ops:

77 # If there are no displacement gates.

78 # Add edges from it to successor gates if they act upon

the same qumodes

79 if not displacement_mapping:

80 # Add edge from gaussian transform to successor

operation

81 self.new_DAG.add_edge(gaussian_transform [0],

successor_op)

Listing 4.8: Function that adds gates between merged gaussian transform operation and

successor non-Gaussian gates
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Figure 4.15: Gaussian Merge compilation step example of a four qumode SF program.
The green and red operations represent Gaussian and non-Gaussian operations, respectively.
Meanwhile, the blue dotted boxes depict the Gaussian operations that can and will be
merged into a single Symplectic matrix operation.
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4.2.0.1 Validation

Validation of the compiler involved creating random four qumode ket states that were

operated upon by layers of Gaussian and non-Gaussian gates. Ket states can only be

simulated in a fock backend, it means the simulation result is analogous to a ’count’

based measurement. The resulting ket state can be easily compared with others to

ensure equality of the Gaussian merge compiler.

82 # Test is parameterized depending on how many ’photons ’ are in each

qumode in the initial ket state

83 pytest.mark.parametrize(

84 "init", [(1, 1, 1, 1), (0, 2, 1, 0), (0, 1, 1, 1), (0, 1, 0, 3),

(0, 0, 0, 0)]

85 )

86 def test_complex(init):

87 qumodes = 4

88 cutoff_dim = 6

89 initial_state = np.zeros ([ cutoff_dim] * modes , dtype=complex)

90 # The ket below corresponds to a single photon going into each

of the qumodes

91 initial_state[init] = 1

92

93 prog = sf.Program(qumodes)

94 # squeezing and displacement must be low enough that it doesn ’t

distort the results

95 s_d_params = 0.01

96 with prog.context as q:

97 ops.Ket(initial_state) | q # Initial state preparation

98 # Gaussian Layer

99 ops.S2gate(s_d_params , s_d_params) | (q[0], q[1])

100 ops.BSgate (1.9, 1.7) | (q[1], q[2])

101 ops.BSgate (0.9, 0.2) | (q[0], q[1])

102 # Non -Gaussian Layer
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103 ops.Kgate (0.5) | q[3]

104 ops.CKgate (0.7) | (q[2], q[3])

105 # Gaussian Layer

106 ops.BSgate (1.0, 0.4) | (q[0], q[1])

107 ops.BSgate (2.0, 1.5) | (q[1], q[2])

108 ops.Dgate(s_d_params) | q[0]

109 ops.Dgate(s_d_params) | q[0]

110 ops.Sgate(s_d_params , s_d_params) | q[1]

111 # Non -Gaussian Layer

112 ops.Vgate (0.5) | q[2]

113

114 eng = sf.Engine("fock", backend_options ={"cutoff_dim":

cutoff_dim })

115 # Run simulation using normal compilation process

116 results_norm = eng.run(prog)

117 # Run simulation using gaussian merge compiler

118 prog_merged = prog.compile(compiler="gaussian_merge")

119 results_merged = eng.run(prog_merged)

120 ket = results_norm.state.ket()

121 ket_merged = results_merged.state.ket()

122 # Ensure resulting ket states are identical using conjugate of

resulting state

123 assert np.allclose(np.abs(np.sum(np.conj(ket) * ket_merged)), 1)

Listing 4.9: Unit test that ensures SF programs compiled with Gaussian merge retains

their functionality. Involves the creation of a random ket states simulated in a fock backend.

4.2.0.2 Simulated Results

To test the impact of the Gaussian Merge compiler in circuits which have Gaussian

and non-Gaussian gates are combined, we performed the numerical simulation of

several circuits at random, with the goal of comparing the final number of gates

after merging the Gaussian layers. The total percentage of Gaussian gates was varied
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from 0% (100% non-Gaussian gates) to 95% (5% non-Gaussian gates). We define a

layer as a group of Gaussian gates that can be merged together. Our experiments

generated, 20 possible test cases with a combination random numbers of Gaussian

layers interleaved with non-Gaussian operators. The maximum number of layer was

set to be at most 20% of the number of gates, under the assumption that a large

number of gates will be acting on a large number of qumodes. This implies that the

circuit is expected to hold high levels of parallelism, where gates can be scheduled

to act simultaneously on different sets of qumodes. The average final count of gates

after the merge is depicted in Figure 4.16. For example, for a 40% Gaussian gate

count, the number of gates drops from 100 to 66.1 on average across the different

layer configuration.

As it can be seen, the final average number of gates varies almost linearly with the

number of Gaussian gates in the circuit. The degree of simplification varies greatly

depending on the number layer in the design. A design with a single Gaussian layer

where all the Gaussian gates are placed, will be able to reduce all of them to one

operator, while a design where the Gaussian gates are scattered across multiple layers

will only see local reductions within each layer. In the best case scenario, with 95%

Gaussian gates, the number of final gates gets reduced to 13% of the original count on

average. In general, we can expect a reduction of the total number of gates slightly

below the total percentage number of Gaussian gates on average.
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Figure 4.16: Final merged gate percentage out of an initial count of 100 gates
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Conclusion

Photon-based quantum computers are an emerging quantum technology whose aim is

to create accessible universal quantum computers. As a stepping stone for this goal,

Xanadu, has developed photonic devices that can be easily accessed through the

cloud. These devices utilize Gaussian Boson Sampling (GBS) technology to perform

calculations. Recent experiments show that they are likely candidates to prove quan-

tum supremacy. It is important to analyze the software stack – specifically compilers

– for these devices as they grow in size and complexity. For this reason we analyzed

the steps of the Strawberry Fields compilers – the only full-stack library targeting

photonic computers – and performed software profiling on them. It was found that

these compilers were designed in a hierarchical structure. Specialized compilers in-

herit from basic compilers and implement more complex logic depending on the use of

the compiler. For example, X8 photonic hardware is based on GBS photonic circuits

so the SF programs targeting the hardware must match a certain structure that is en-

forced by GBS SF compiler. Thus, the X8 compilers inherit from the GBS compiler –

creating the hierarchy – and add logic on top of it that is specific to the requirements

of X8 hardware. Furthermore, the compilers targeting the X8 hardware were profiled

with scalability in mind. The results showed that SF programs with 1̃000 qumodes

would theoretically take 15 minutes to compile when targeting photonic hardware.

In addition, the compilation time difference between the two compilers profiled, Xu-
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nitary and Xcov, which was found to be negligible. Most of the compilation time for

both compilers was spent on decomposition of the interferometer operations into the

primitive operations of X8 hardware. We can conclude that optimization of decompo-

sition operations should be a priority if there’s a need to speedup compilation times

of X8 compilers. In addition, a new compilation step was proposed to aid with the

processing of mixed Gaussian-non-Gaussian circuit designs, demonstrating a signifi-

cant improvement on the complexity of these circuits, measured in number of gates.

The gate reduction varied between 2% and 87%, depending on the original Gaussian

gate percentage in the circuit, the layer distribution of these. The compiler will be

specifically useful at reducing program overhead as the SF environment matures and

the use of large hybrid programs become commonplace. Continuation of this work

– specifically for Gaussian Merge compiler – would include optimization of Gaussian

Transform operations in simulator backends, and research into practical uses for large

hybrid SF programs where the Gaussian Merge compiler can play a role in reducing

gate counts.
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