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Abstract

SOC (Security Operation Center) analysts historically struggled to keep up with the growing so-

phistication and daily prevalence of cyber attackers. To aid in the detection of cyber threats, many

tools like IDS’s (Intrusion Detection Systems) are utilized to monitor cyber threats on a network.

However, a common problem with these tools is the volume of the logs generated is extreme and

does not stop, further increasing the chance for an adversary to go unnoticed until it’s too late. Typ-

ically, the initial evidence of an attack is not an isolated event but a part of a larger attack campaign

describing prior events that the attacker took to reach their final goal. If an analyst can quickly

identify each step of an attack campaign, a timely response can be made to limit the impact of the

attack or future attacks. In this work, we ask the question “Given IDS alerts, can we extract out the

cyber-attack kill chain for an observed threat that is meaningful to the analyst?”

We present HeAT-PATRL, an IDS attack campaign extractor that leverages multiple deep ma-

chine learning techniques, network-agnostic feature engineering, and the analyst’s knowledge of

potential threats to extract out cyber-attack campaigns from IDS alert logs. HeAT-PATRL is the

culmination of two works. Our first work “PATRL” (Pseudo-Active Transfer Learning), translates

the complex alert signature description to the Action-Intent Framework (AIF), a customized set of

attack stages. PATRL employs a deep language model with cyber security texts (CVE’s, C-Sec

Blogs, etc.) and then uses transfer learning to classify alert descriptions. To further leverage the

cyber-context learned in the language model, we develop Pseudo-Active learning to self-label un-

known unlabeled alerts to use as additional training data. We show PATRL classifying the entire

Suricata database ( 70k signatures) with a top-1 of 87% and top-3 of 99% with less than 1,200

manually labeled signatures.

The final work, HeAT (Heated Alert Triage), captures the analyst’s domain knowledge and

opinion of the contribution of IDS events to an attack campaign given a critical IoC (indicator

of compromise). We developed network-agnostic features to characterize and generalize attack
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campaign contributions so that prior triages can aid in identifying attack campaigns for other attack

types, new attackers, or network infrastructures. With the use of cyber-attack competition data

(CPTC) and data from a real SOC operation, we demonstrate that the HeAT process can identify

campaigns reflective of the analysts thinking while greatly reducing the number of actions to be

assessed by the analyst. HeAT has the unique ability to uncover attack campaigns meaningful to

the analyst across drastically different network structures while maintaining the important attack

campaign relationships defined by the analyst.
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1. HeAT PATRL: Objective Background and

Literature Overview

1.1 Objective Summary and Contributions

Intrusion Detection Systems (IDS) monitor a network’s activity for known adversarial behavior; pro-

ducing logs of “alerts” to notify security practitioners of the suspicious behavior. IDS’s are widely

adopted by Security Operation Centers (SOC) and enable analysts to identify abnormal behavior,

investigate the causes, and close any vulnerabilities to prevent the attack again. Typically a SOC

triage is triggered by an “indicator of compromise” (IoC) and the analyst will refer to prior alerts to

trace each step an adversary takes, as there are typically other prerequisite steps the adversary needs

to accomplish before they can achieve their final objective. These set of steps taken by the adver-

sary is known as the “attack campaign” and the earlier an analyst can identify each step of the attack

campaign results in a quicker response in mitigating the threat. However, the triage process is not

straightforward. Analysts are often overwhelmed with the constant high volume of alerts produced

each day, correlating cryptic alerts to other related alerts, and often have limited time resources. In

this dissertation we investigate how we can leverage machine learning techniques combined with

cyber-specific domain knowledge to aid in the investigation of IDS alerts to reveal meaningful attack

campaigns.

We begin this work by defining how attack campaigns are used currently in practice and we

identify that the definition of the stages within a attack campaign for any given scenario is depen-

dent on the context of not only the behaviors of the adversary but also some network characteristics.

Then we investigate the causes of the overwhelming number of alerts produced by an IDS, cur-

rent methods in reducing the number of alerts, and how current works use IDS alerts to discover

adversarial behavior. This is where we find many technical challenges as data-sets of describing

attack campaigns within IDS alerts is extremely limited or outdated, making it especially challeng-

ing to develop and verify methods to extract attack campaigns. This motivated us to investigate and
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innovate on techniques for identifying attack campaigns with little reliance on large labelled data-

sets and instead leverage the analyst’s own domain knowledge, unsupervised learning techniques,

and clever network-agnostic feature engineering to overcome these data challenges. We present

our work as “HeAT-PATRL” which enables analysts to leverage observations from prior triages to

provide quick and meaningful representation of attack campaigns given an IoC and maintain those

observations across other attack types and network infrastructures.

Our contributions for this dissertation are as follows:

1. We defined the “Action Intent Framework” (AIF) as a set of “Action-Intent Stages” (AIS) to

describe stages of an attack campaign with respect to the intentions of the adversary and the

ability to observe the intent from the perspective of an IDS.

2. Employed a semi-supervised learning technique known as “Pseudo-Active Transfer Learn-

ing” (PATRL) to translate any IDS alert description to the AIF with limited labelled data,

deep-unsupervised language modeling of cyber-specific texts, and transfer learning.

3. Created an attack-stage based alert aggregation method using Gaussian smoothing to aggre-

gate similar sets of alerts into “attack episodes” to substantially reduce the raw volume of

alerts into a more meaningful and interpret-able representation based on cyber-characteristics.

4. We used prior knowledge, the opinions of analysts, and network-agnostic feature engineering

to enable “Heated Alert Triage” (HeAT) to reveal meaningful and noise-free attack campaigns

within a real SOC data-set with campaign-observations from a separate network.

As the basis of an attack campaign revolves around the concept of “attack stages” we now

investigate the current definitions of attack stages, most commonly known as the “Cyber Attack

Kill Chain”, and demonstrate that there is a need for a customized set of stages for IDS alerts.

1.2 The Cyber Attack Kill Chain from the Perspective of an IDS

A necessary component to any cyber attack detection or prediction algorithm is the understanding

the tactics and the techniques that adversaries use to learn about the network, compromise assets,

and eventually achieve their end-objective (stealing information, disrupting services, etc.). The
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techniques and tactics used by cyber adversaries are becoming more sophisticated, ironically, as

defense getting stronger and the cost of a breach continuing to rise. Understanding the thought

processes and behaviors of adversaries is extremely challenging as high profile or even amateur

attacker actions are often complex and difficult for non-security conscious people to understand. As

a result, in 2011 Lockheed Martin introduced the concept of the “Cyber Attack Kill Chain” which

described a finite set of stages to describe the general process and types of actions an adversary

typically takes to achieve some objective [11]. Its high level descriptions of attack stages shown

in Figure 1.1 made it intuitive for anyone to understand that the chain should be “cut” as early as

possible to limit the impact as much as possible. It became immediately apparent that its over-

simplification of the attack process meant that its actual usefulness outside of high-level security

presentations were limited, however the concept behind describing attack campaigns of meaningful

and unique stages has been adopted by the community.

Figure 1.1: Lockheed Martin’s original definition of the Kill Chain in 2011 [11].

Since 2011, the concept of the kill chain has become a interesting phenomenon as many different

companies have developed their own version of the kill chain. Some kill chains have been developed

for specific attack types such as Advanced Persistent Threats (APT) [67], insider threats [68], and

other types [59]. The most notable concept added to the original kill chain was from MITRE Unified

Kill Chain [50] introducing the idea that the kill chain is cyclical and the adversary may have to

repeat the kill chain process multiple times on other victims before they reach their final objective.

Imagine the scenario where objective is to compromise an internal company server that requires

the adversary to compromise other machines to eventually have the opportunity to reach the target.

MITRE’s Unified kill chain is shown in Figure 1.2, where even reconnaissance-type actions may
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also have its own chain of attack types.

Figure 1.2: The adversary may have to repeat some attack stages before they can achieve their final
goal.

While not an exhaustive list, Table 1.1 demonstrates that the number of attack “stages” defined

for each kill chain differs depending on the level of abstraction desired by the author. Typical kill

chains summarize the entire attack campaign typically in less than 10 stages creating a concise and

easy to understand attacker description for both security professionals and the average person. When

it comes to generally classifying attack actions, most kill chain descriptions are not well suited

to differentiate the different tactics and techniques that an adversary may use. They instead are

intended to represent milestones in the attack campaign but not the individual actions. Which leads

to undoubtedly the industry leader of cyber attack descriptions, MITRE’s ATT&CK Framework,

which describes the adversary tactics and techniques based on real-world observations.

Table 1.1: Attack stage classifications by various organizations.

Year Type # of Classes
MTIRE CAPEC [7] 2007 Attack Patterns 517
Lockheed Martin [11] 2011 Kill Chain 7
STIX [63] 2012 Attack Descriptor 9
MITRE Kill Chain 2013 Kill Chain 7
MITRE ATT&CK [39] 2013 Attack Techniques 218
Varonis [23] 2018 Kill Chain 8
MITRE Unified Kill Chain [64] 2018 Kill Chain 20

MITRE ATT&CK [64] uses 14 tactics to classify 218 attack technique classes and is an industry-

leading and comprehensive attack-type description that is constantly growing each year. ATT&CK’s

objective is to be comprehensive and be able to capture nearly any unique attack technique and

describe it as concisely as possible. If we had perfect information about every action the attacker
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attempting, then the ATT&CK framework is by far the best set of attack stages to concisely describe

the attack campaign. If we assume that we can only observe the adversary from the perspective of a

network-based IDS then a majority of the ATT&CK techniques defined become irrelevant as most

do not generate any network traffic for an IDS to observe.

This becomes our first objective in this work as we ask: “What attack stage framework is the

most appropriate to identify the technique performed by the adversary as described by an IDS alert?”

We find the more traditional kill chain descriptions to be too high-level to appropriate distinguish

meaningful behaviors or patterns of behaviors. We instead use concepts such as the tactics and

techniques from MITRE ATT&CK to focus on a set of attack stages that 1) can be observed by an

IDS, and 2) describe the intentions of the adversary so that it is immediately clear of the objective

of each stage in an attack campaign. We introduce the “Action Intent Framework” in Chapter 2 as

our alternative to the ATT&CK framework with a specific focus of attack techniques that can be

resolved through an IDS.

This leads us into our next challenge that we must address of the IDS and the numerous alerts

generated from these IDS systems. IDS’s have no notion of attack stage and is simply reporting

if the incoming network packet matches a previously identified “signature” of an attack. These

signatures are often not unique and it is very common for normal network traffic to falsely trigger

these alerts, contributing to the challenge of assessing IDS alerts. Even if the detection of adversarial

traffic was perfect, current definitions for alert rules and especially older legacy rules do not contain

an attack stage and typically only contain a cryptic and difficult to interpret description. In the next

section, we lay out these IDS challenges in more depth.

1.3 Overwhelmed by IDS Alerts?

In this section we define two core issues with the usage of IDS alerts that make the automatic ex-

traction of attack campaigns especially challenging: 1) the volume of alerts raised per day can be

overwhelming for analysts and may contain many false positives, and 2) IDS alerts do not describe

the stage of the attack, only providing a cryptic description of the alert. This poses a significant

challenge to the analyst as they must use their own knowledge of the network and the alert them-

selves to identify what the attacker is trying to accomplish and if the alert actually contributes to the
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attack campaign that we are investigating. We begin this section with describing the IDS and the

alerts generated by these IDS’s to investigate why these challenges exist and what is currently being

done to address these challenges.

IDS is simply a generic term for an intrusion detection system that monitors the activity of one

or many machines on a network and raises alerts if it detects any suspicious behavior. IDS’s are

not actively attempting to stop or mitigate threats when detected, just report to the user that the

behavior was detected. Systems that do automatically respond to the threats are defined as intrusion

prevention systems (IPS), however in this work we address the challenges with IDS’s as they are

much more widely adopted.

There are a few different types of IDS’s that a SOC may deploy within their network: 1)

network-based, 2) host-based, and 3) anomaly detectors. Network-based IDS’s like Suricata [2]

monitors network traffic typically deployed at the “edge” of the network (before the internal net-

work). They use a set of rules containing signatures of known suspicious behavior and raise alerts

when the incoming traffic matches the signature. Host-based IDS’s like Zeek [51] monitors many at-

tributes of individual machines such as processes running, login/logout actvity, file access, and USB

access to record system-level behaviors of the legitimate and non-legitimate users. Which leads into

the concept of anomaly-based IDS’s where a model is created to represent of the “normal” usage of

either the network traffic or individual assets and the IDS will report when behaviors out side of the

“norm” is seen. Each of these types of IDS’s have their own value deployed on a network and each

of them also have their short comings, mostly the issue of a high volume of alerts. In this work,

we focus on network-based IDS’s and specifically Suricata alerts as these types of IDS’s integral

part of nearly any SOC. Next, we define the contents of a Suricata alert to demonstrate the types of

information presented to users and begin to describe how we use these alert attributes to address our

aforementioned challenges with IDS alerts.

Suricata alerts are triggered when the incoming traffic through the IDS matches the signature of

another known behavior defined in the alert rule. Shown in Figure 1.3 is a generic example of an

alert rule where IP’s, protocols, packet specific contents, etc. can be used to alert administrators of

any behavior, malicious or not. This begins to layout our first challenge of why these IDS’s produce

so many alerts as the rules can be defined to capture a broad set of behaviors to very specific rules

where packet contents must be matched. This is then compounded by the fact these IDS’s require
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significant tuning for each network or it may result into many false positives [60]. This is a process

that many smaller SOC’s may overlook as many analysts may not be an expert at configuring these

complex systems and instead use the default rule set. We develop our process to keep in mind that

analysts may not always be experts in configuring IDS’s and that these false positives should be

handled by our process.

Figure 1.3: Suricata alerts are raised when the incoming traffic matches the parameters defined in
this alert rule [31]

When the criteria of the rule is met, an alert is logged and is typically viewed in a Security In-

formation and Event Management (SIEM) like Splunk or Kibana. These alerts contain specific

information about the network packet such as the source/destination IP address, port numbers,

timestamps, etc. A comprehensive list of all the parameters that can be recorded in an alert can

be seen in [66] and we show a few key alert attributes that we will focus on in the remainder of this

work in Table 1.2.

Table 1.2: A subset of the the possible parameters recorded within Suricata alerts.

Suricata Alert Parameter Description

Alert Category
Type of activity described by the alert
such as “web-application-attack” or “not-suspicious”

Alert Severity
Numeric rank (1-3) of the severity of the alert
(1=highest severity, 3=lowest)

Signature Description (msg) Text description of the behavior captured by the rule
Source & Destination IP IP addresses of the source and destination of the packet
Source & Destination Port Source and Destination ports of the packet
Packet Payload The packet payload of the rule-breaking packet
Timestamp Time at which the alert occurred

Upon initial glance it would seem that the alert category could describe the attack stage of the

alert, however we found in one of our initial works that the alert category contains multiple useless
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categories such as “misc” and “unknown” [44]. This is where we realized that this category was a

poor representation of the attack stage and we had to turn to the signature description to get further

clarification of the behavior the alert was describing. Where once again we were met with another

setback; the documentation of these alert rules are poor and often even with external research it is

extremely difficult to find any information about the meaning of the alert. Not only does an analyst

have to deal with a high volume of alerts, its reasonable to assume that they may not be an expert

using these IDS and obtaining any meaningful knowledge from the alerts may be difficult. So we

ask: what is being done about this in practice?

1.3.1 Never Ending High Volume of Alerts

IDS’s producing a high volume of alerts is a well known characteristic of IDS’s [1] and it is not

surprising for a SOC to record hundreds of thousands to millions of individual alerts per day. This

is often unavoidable as the configuration of these IDS’s is typically a balance between creating a

rule set that minimises the amount of false positives but not so restrictive that some observations

are missed. There are techniques to tune the performance of these sensors such as proper placement

of the sensor in the network, assessment for false positives, and customized rule sets. Even in their

optimal configuration, certain behaviors such as scanning or brute force attempts will cause many

alerts for a single action as Suricata processes network traffic at the individual packet level. This

can be addressed using “alert aggregation” where similar alerts can be combined based on their

similarity in attributes and further with “alert correlation” which finds other correlated alerts from

other sensors to further provide evidence of an attack.

Alert aggregation describes the most basic methods to reduce the number of alerts presented to

the analyst by using statistical methods to group alerts together. Zheng et al. employed clustering

methods on the alert features to create “hyper alerts” [79] and time-series based methods to group

alerts that occur around the same time [72, 38]. More emphasis has been put on alert correlation

as external information, logs, or templates can be used to create more meaningful groupings to

the alerts. Alert correlation where alerts are processed to reduce noise, extract patterns, or evalu-

ated against other observables to help uncover the true action the attacker performed. Due to the

wide adoption of IDS’s, extensive surveys and studies have been performed on the types of alert

correlation types [56, 15, 57], techniques to minimize the amount of false alarms in IDS’s [25],
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intrusion response systems using alert correlations [27], and multistage attack anomaly detection

for advanced persistent threats (APT) [19].

Sadoddin et al. [56] described three categories of alert correlation algorithms: 1) Similarity-

based, 2) Knowledge-based, and 3) Statistical-based. Similiarity-based methods rely on a set of

rules defining the relationships between features where the rules can be simple and explicitly de-

fined [30, 71] to self-defining feature relationships using machine learning [80] and artificial neural

networks [76]. Knowledge-based algorithms uses specific context like an predetermined attack sce-

nario to create attack graphs [55, 17] or uncovering attack scenarios using previous attacks [71,

41]. Lastly, statistically-based models focus on the statistics of each alert and develop behavioral

patterns and associations with no contextual information [65]. Sadoddin et al. [56] admits that this

classification is not encompassing and some methods may be a mixture of these three categories.

Here we find that to extract out attack campaigns using prior knowledge of an analyst we will

first need to aggregate alerts that occur within a similar time frame and attack type to represent the

actions performed by the adversary. Second, create a model that will represent the knowledge base

of the analyst to correlate alerts together that are likely to be apart of the same attack campaign. We

use the concept of statistical-based correlation approaches as our motivation to create engineered

features to describe the aggregated alerts in a way they can be compared with one another. As we

mentioned before, alerts have no meaningful notion of attack stage and we will need to leverage

outside sources and research to obtain the attack stage given an alert.

1.3.2 Researching and Translating Alert Descriptions

Consider a Suricata IDS alert description: ‘ET EXPLOIT Possible CVE-2014-3704 Drupal SQLi

attempt URLENCODE 1.’ Suricata labels this as ‘web-application-attack’ which provides some

context but does not provide sufficient details of the potential attack impact without additional re-

search. Additional research into the specific CVE identifier shows that the attack action involves

‘Arbitrary Code Execution’ that might lead to ‘Privilege Escalation.’ Providing the latter set of

labels allows the analyst to assess and differentiate what the attacker tried to accomplish, using the

intuitive and commonly referred attack campaign descriptions such as the Cyber Attack Kill Chain

[11] and MITRE’s ATT&CK [39] framework. The example above has the luxury of an associated

CVE which is rare in the entire set of Suricata alerts (1664 out of 64k as of late-2020). One often
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needs to resort to security blogs, forum posts, and other related alerts to resolve the attack impact.

Once again taking up valuable analyst time and prolonging the time to respond to the threat.

Ideally the attack stage of each alert can be manually defined within the alert rule however with

no agreement on the attack stage framework and that rules can be defined by anyone, this does not

exist. Rule sets are defined by many entities and constantly updating meaning that we must look

for a method to classify the attack stage of the alert regardless of the set of attack stages or the

sensor used. As descriptions of alerts are nearly universally defined, we wonder if we can “read”

the alert description and interpret it into an attack stage. Since each signature description takes a

significant amount of research to discover the true impact of the alert, we also wonder if it is possible

to reproduce the “research” conducted into vulnerability descriptions, blogs, and forums to classify

the attack stage. This requires the understanding and interpretation of unstructured text which until

the recent advancements to deep learning architectures has been extremely difficult.

To our knowledge, there exists no work that enables learning information from blogs, vul-

nerability descriptions, forums, etc. and apply that knowledge to classify data to a discrete

set of labels without intervention. The closest related work involving attack action classification

is MITRE TRAM [78], which uses a supervised Logistic Regression to label threat reports with

MITRE ATT&CK techniques [39] and provides a user interface for administrators to define and

refine labels. While TRAM does ingest unstructured data, it is only trained from the self-labeled

examples and requires human intervention to correct miss-classified labels. The authors mention

that due to the size of the ATT&CK framework the user may have a bias on ATT&CK techniques

they are most familiar with, an aspect we consider when developing the Action-Intent Framework.

Due to the lack of data customized to their application, the actual performance of TRAM is un-

known and only a proof of concept is given. We see the need for not only a method to aid analysts

in understanding cyber threats but also motivates us to develop a process is not constrained by the

lack of labeled data.

Which leads us to our main objective which assumes we can provide meaningful reduction in

alerts and be able to identify the attack stage of the alerts: “How do we now identify the attack

campaigns from the IDS alerts?”
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1.4 Discovery of the Attack Campaign

Throughout the 2010’s the cyber security market is one of the fastest growing sectors across the

world and has been accelerated into the 2020’s with the reliance of remote services due to the

COVID-19 pandemic [28]. Due to the extreme financial impact a successful cyber attack could

have on a company, most of the contributors in this space have the same objective in mind- stop the

attacker as early as possible to minimize the impact. Recall the concept of the cyber attack kill chain

of “cutting the chain.” The adversary has a clear advantage over the defenders as cyber attacks can

come from anyone, at anytime, from anywhere in the world. The best adversaries will traverse and

attack their victims as quietly as possible to remain undetected. By the time the attack is detected,

typically its too late and the SOC must react quickly to minimize further damage.

In the scenario where an attack is detected (an IoC) and we could identify the complete attack

campaign of the adversary from initial reconnaissance to achieving their final objective, then the

response to mitigating the threat is much quicker. A detrimental challenge to research in this space

however is that data describing cyber-attacks is extremely limited due to privacy reasons, rarely hav-

ing any knowledge about the adversary, outdated/obsolete attack actions, and constantly changing

attacker behaviors. Despite this, many researchers have been trying to identify attack campaigns

within log data since the early 2000’s and have been getting more sophisticated each year.

Extraction and assessments of attack campaigns has been studied in depth in the form of Attack

Graphs (AG) and have the capability to provide detailed insights into how attackers can traverse a

network. AG’s use network topology and vulnerability assessments to define potential paths through

a network an adversary can exploit. AG works employ techniques such as alert correlation [52, 80,

75, 73], process-mining [13, 9], and Markovian-based approaches [17, 20] to map observables to

pre-existing AG’s. These approaches require a significant amount of expert knowledge to configure,

create attacker scenario templates, and assumes that each vulnerability is known [4]. If we constrain

our research to find approaches that give AG-like insight without intimate knowledge of the network

and vulnerabilities, we find significantly less works within academia. Navarro et al. presents HuMa

[46] and OMMA [47] to extract context from logs, vulnerability databases like CVE and CAPEC,

and analyist feedback to find malware behaviors. In 2018, we used a suffix-based Markov chain to

derive sequences of aggregated alerts based on their alert characteristics called attack episodes so

that sequences of episodes could be compared [44]. This process will be explained in detail later
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when we describe our HeAT work. Landauer et al. [32] extracts from cyber threat intelligence

(CTI) reports and applies the knowledge to raw log data to report actionable multi-stage scenarios.

Lastly, Nadeem et al. [45] present SAGE which employs S-PDFA to extract meaningful AG’s from

only intrusion alerts and without prior expert knowledge. An issue that plagues these works is the

lack of high quality labeled attack scenario data to comprehensively assess, compare, and validate

the identified attack strategies.

In the private sector, where data is more abundant, the concept of AI-driven products to assess

and automatically triaging a network is an extremely fast growing sector. As of 2021, the adoption

of AI/ML techniques to solve cyber security problems has exploded. To name a few, companies such

as DarkTrace with their “Cyber AI Analyst” [12], IBM with QRadar Advisor with Watson [26], and

Centripetal with AI-Analyst [48] all advertise their capabilities to leverage AI specifically to aid

analysts in the triaging process. While these products are undoubtedly extremely sophisticated due

to their substantial resources, it is impossible to assess their true capabilities due to the proprietary

nature of the method and data. While we will not position ourselves to compete with these products,

their existence shows that this is a developing and more notably a valuable problem to address and

document.

This leads us finally into our solution to each of these challenges with our process HeAT-PATRL.

We acknowledge that the analyst’s time is extremely limited and that well labeled and relevant IDS

data sets are not available to create sophisticated data-driven models. We propose our methods

to overcome these challenges with limited labelled data, the analyst’s own self-reflection of cyber

attacks, and the infinite knowledge base contained on the internet. Our work “PATRL” (Psuedo-

Active Transfer Learning) translates any alert description to our own custom-defined set of attack

stages known as the Action-Intent Framework (AIF). PATRL uses a language model trained on

various cyber-security related text sources to enhance the classification of a small set alert descrip-

tions, only 1% of the the total Suricata alerts are needed to classify the remaining. Then we further

extract out meaningful knowledge from our language model using the novel self-learning process

of Psuedo-Active Learning, creating a robust and accurate method to translate alerts into an attack

stage. The PATRL process system architecture is shown in Figure 1.4

Then lastly our process for extracting attack campaigns from IDS data, HeATed Alert Triage

(HeAT), focuses on capturing the analyst opinion of critical relationships between alerts within the
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Figure 1.4: System architecture for PATRL: Users input an alert description (as text) and will trans-
late the description to the appropriate attack stage in the AIF
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same attack campaign and using that knowledge to reveal other attack campaigns. This is done

by having the analyst conduct a short triage with an known IoC, label significant attack campaign

contributing events, and use network-agnostic features on aggregated alerts called alert episodes,

so that observations of other attacks can classify others. We demonstrate through the use of our

entropy-based metric called “HeAT Gain” where we find that triages from cyber-competitions (easy

to understand and find) can find meaningful attack campaigns within real-world SOC operations

with minimal additional data. The overall system architecture of HeAT is displayed below in Figure

1.5.

Figure 1.5: System architecture for HeAT: Extracts the Heated Attack Campaign based of the ana-
lyst’s knowledge captured from prior triages.

To build up to extracting attack campaigns using HeAT, we first need to determine the attack

stage of the IDS alerts given the signature description using PATRL. Suricata IDS alerts can only

capture actions that generates network traffic which restricts the number of possible attack types

that we can capture. To address this, we now define the Action-Intent Framework (AIF) to focus on

determining the intentions of the adversary through IDS alerts.

This dissertation is organized as follows: Chapter 2 defines the Action-Intent Framework to

develop a set of IDS-observable attack stages. Then in Chapter 3 we use the AIF in PATRL where

we translate IDS alert descriptions into one of the micro-AIS. In Chapter 4 we describe our process

called HeAT which leverages PATRL and prior campaign triages to extract out “HeATed Attack

Campaigns” within real-world SOC operations. Lastly we conclude this dissertation with final

remarks in Chapter 5.
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2. Action-Intent Framework (AIF): Action-Intent

Stages (AIS) to Describe Attack Campaign Im-

pacts

Cyber-attacks are characteristically secretive, anonymous, and often illegal. Often the result of

cyber-attacks reveals highly sensitive data and other lucrative information and many try to under-

stand how the attack happened and what can be done to stop it. Cyber-attacks can literally come

from anywhere and it is extremely unlikely that you will ever know the person on the other end

or their true intentions. We are able to often detect their presence and some attributes about their

actions through an IDS, which is our best opportunity to observe and then describe the attack cam-

paign. Through classifying the actions performed by an adversary by their intentions, we believe

we can describe and compare attack campaigns as specific behaviors.

We turn to the most common and abundant sources of attacker’s actions, IDS logs, where net-

work traffic passing though a sensor is analyzed against known signatures of specific behaviors

raising alerts to the administrators when suspicious actions are performed on the network. Sophis-

ticated attack action frameworks like MITRE ATT&CK are designed to describe attack campaigns.

We realized that the current evolution of IDS’s are not yet able to resolve to the highly specific

and detailed ATT&CK techniques. We also believe that it is important to understand the specific

type of exploit used in an attack campaign, we also believe we should know why the attacker would

perform an action. This could be considered as describing the “intent” of each action as opposed to

specifically the type of exploit used by the adversary, which could be contained within the IDS alert

description. We propose the Action-Intent Framework (AIF) as set of Action-Intent States (AIS)

that is designed to resolve the intentions of the actions performed by the adversary when observed

within an attack campaign. We define the concept of Macro-AIS as a high level description of the

outcome of the action such as privilege escalation or data destruction. The Macro-AIS is similar
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to the higher-level tactics described of ATT&CK, including reconnaissance stages and zero-day at-

tack stages. For each Macro-AIS, we define a set of Micro-AIS’s that describe ‘how’ the adversary

achieves the Macro-AIS. The Micro-AIS’s are similar to the techniques defined by ATT&CK but

with a focus on action-types that are observable by an IDS and not specific to any service, operating

system, or network configuration.

2.1 Action-Intent State Selection Methodology

Taking inspiration from MITRE ATT&CK where the “techniques” are classified under a high-level

description called a “tactic”, we employ a similar two-tier structure with a more restrictive and

specialized criteria to better capture the intent of the action performed. Our Macro AIS definitions

contains commonalities to the ATT&CK Tactics but the Macro AIS focuses on resolving action-

intents from the defense’s perspective where tactics such as “persistence” or “defense evasion”

describes intentions that may not be possible to definitively determine with just IDS logs. The Micro

AIS definition also has similarities to the ATT&CK Techniques however a key difference is that the

Micro AIS does not include techniques that are specific to any one system such as Kerberoasting or

very specialized techniques such as exfiltration though “Audio Capture”. With these restrictions, we

propose a framework to define a set of AIS so that a sequence of AIS derived from IDS observables

describes the type of actions specific attacker takes that is general to a network configuration. Our

objectives for this section are as follows:

• Define the “guiding principals” for each the macro and micro action-intent stages to define if

a stage/attack-type should be included in the AIF,

• apply the guiding principals given other attack-stage frameworks to define the action-intent

stages applicable to defining attack campaigns from IDS alerts, and

• discuss the different types of micro-AIS defined and how they are used in practice.

2.1.1 Macro Action-Intent States

Table 2.1 contains the currently defined Macro AIS and their descriptions. Each of these macro-

AIS describes a high level description of “what” the attacker has performed but does not describe a
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specific method of to achieve the state. This is an important distinction as many actions performed

by an aversary may have the same impact/objective but the means to achieve a macro-AIS may be

different given an attack campaign. Our guiding principals for defining an Macro AIS is as follows:

1. The stage describes the impact or end goal of the action,

2. the stage does not describe a specific means of achieving a goal, and

• For example, there are multiple methods to achieve “privilege escalation” which has a

specific impact.

3. if an action type has technical or behavioral properties in-which other macro stages do not

accurately describe the action’s outcome due to different means of observability

• “Active reconnaissance” actions (e.g. network scanning) typically can be observed using

an IDS where “passive reconnaissance” like social engineering cannot be observed by

traditional technical methods and are used in different situations.

States such as passive and active reconnaissance describe actions where the primary goal is

to gather information about the target whether its through publically accessible means (passive)

or technical approaches using scanning tools for example (active). Privilege Escalation, Targeted

Exploits, Ensure Access, and Zero-Day describe some sort of exploitation of the target to allow the

attacker to gain access or ensure access to the target. Although Zero-days are by nature difficult

to detect, these types of actions are included as the usage of zero days is a critical differentiator

of attacker behaviors and certain types of sensors like anomaly detectors do have the capability to

observe zero-days. States such as Disrupt, Distort, Destroy, Disclosure, and Delivery describes a

specific end impact that an attacker may perform as either a sub-goal or end-goal of the overall

attack. For example attackers may choose to disrupt specific machines as they are traversing the

network to draw attention away from the action where crucial information such as customer data

is disclosed to the attacker. Under each Macro AIS will be a set of Micro AIS which will describe

“how” the attacker chose to achieve the behavior described in as Micro AIS in the following section.
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Table 2.1: The Macro Action-Intent States currently defined in the framework.

Macro AIS Description

Passive Recon
An attempt to gain information about targeted computers
and networks without actively engaging with the systems

Active Recon
An intruder engages with the targeted system to gather information
about vulnerabilities

Privilege Escalation.
Act of exploiting a bug, design flaw or configuration oversight in an
operating system or software application to gain elevated access

Targeted Exploits
Exploits targeting a specific service, application, organizational entity,
or person

Ensure Access
Actions which expand preexisting access or circumvent active defense
strategies

Zero Day
Actions performed employing undocumented vulnerabilities or strategies
with unknown consequences where no patch exists at the time of the attack

Disrupt Disruption in services, usually from a Denial of Service.

Destroy
Destruction of information, usually when an attack has caused a deletion of
files or removal of access.

Distort Distortion in information, usually when an attack has caused a modification of a file.

Disclosure
Disclosure of information, usually providing an attacker with a view of information
they would normally not have access to

Delivery
Actions where the intent is to place/install/deliver data that could be in the form of
malware, backdoor, application, etc.

2.1.2 Micro Action-Intent States

The Micro AIS is similar to the MITRE Att&ck techniques but with the key difference is that

we do not include techniques that are specific to any one service, operating system, or network.

In the case of privilege escalation, MITRE Att&ck defines techniques like “Sudo” and “Bypass

User Account Control” which are legitimate techniques to gain root access to Linux and Windows

machines respectively however the choice of choosing these one of these techniques is situational

depending on the network. The true intention of these techniques was to gain administrative access

to the machine regardless of the network, thus our methodology is to combine these two techniques

based on the intent creating the Micro Action-Intent state of “Root Privilege Escalation” and also

“User Privilege Escalation”. These are two states with specific impacts to the target, used in different

situations, and describes the intentions of the adversary without requiring information about the

target network. Our defined micro-AIS for reconnaissance, exploitation, and objective-based attack

stages is described in Tables 2.2, 2.3, 2.4 respectively. Our guiding principals for selecting new
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states for the Micro AIS are defined below:

1. The state describes a specific and unique means of achieving an macro AIS,

• Network sniffing credential access and brute force credential access can privileges, how-

ever they are used in different situations and are observed differently

2. the state is service and platform agnostic,

3. the state has a well defined impact on a type of target or yields different response from the

target, and

• For example, “End-point DoS” is used to target individual services and “Network DoS”

targets an entire network, leading to a substantially different impact

• Attackers may use different types of reconnaissance actions to reveal different charac-

teristics of the network, services, or vulnerabilities of a network

4. if the state has observable characteristics that differentiates itself from other stages within the

same macro attack stage.

• The micro states of “End-Point DoS” and “Service Stop” both disrupt the function of

a single machine however end-point DoS implies disruption by exhausting system re-

sources. Service stop involves directly terminating the process.

Given these design principals we now define the micro-AIS so that each stage clearly defines

each sub-objective of an attack campaign. Following the traditional definition of the stages of the

Cyber Attack Kill Chain, we first follow our principals to define the micro-AIS for reconnaissance-

type actions. Our reconnaissance-type micro-AIS is defined in Table 2.2, where we have two

macro-AIS for reconnaissance for passive and active types of reconnaissance. Passive recon can

be extremely challenging to observe from a network perspective as its intent is to appear as normal

as possible, however the impact of these actions can be immense. Where as active recon describes

actions who inherently creates network traffic for the adversary to learn details about the target net-

work infrastructure. Distinguishing the level of active recon from host, to service, to vulnerability

is so that we can track the progress of the adversary as they learn more about the network. It is
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unlikely that a network-based IDS would be able to detect passive recon however it may be possible

for a host-based IDS to detect the network response of passive actions. This makes it worth while to

differentiate these behaviors as a stage in an attack campaign in the event there is evidence to make

that distinction.

Table 2.2: The reconnaissance-based AIS defined describing different methods adversaries may use
to obtain pertinent information about the target.

Macro AIS Micro AIS Description

Passive Recon
Target Identification Determining the organization/network target

Surfing
Using legitimate methods (websites, public documents, etc) to obtain
information about the target

Social Engineering
Non-technical strategy cyber attackers use that relies heavily on human
interaction and often involves tricking people into breaking standard
security practices.

Active Recon
Host Discovery

Use of technical programs to uncover the location/IP of machines in
the target network

Service Discovery
Use of technical programs to uncover the services or applications
deployed on a machine

Vulnerability Discovery
Techniques or programs to uncover vulnerabilities on machine with a specific
application or OS

The usage of exploits, vulnerabilities, password cracking, and etc. is typically what most people

think of when they think of an attack campaign. Given the size and detail of MTIRE ATT&CK,

there are many techniques, tools, methods, and exploits one can use to gain unauthorized access to

a target. The exploitation-type micro-AIS is our largest group of stages as this is our best oppor-

tunity to directly observe the effects (in the form of sensor logs) at a granularity that allows us to

characterize many types of attack campaigns/behaviors. Our exploitation-type micro-AIS is shown

in Table 2.3.

Each of these exploitation-type mirco-AIS have distinct characteristics and impact that an ad-

versary under specific circumstances will choose to conduct that type of action. For example if

we discovered in our attack campaign that an adversary used “Trusted Organization Exploits”, we

would have to conduct mitigation strategies differently as the attack would appear from coming

from a trusted company. Whereas other adversaries may find other opportunities to exploit a net-

work and possibly use new strategies such as our “zero-day” stages. Like the passive recon cases,

zero-days are obviously extremely difficult to observe, however if there is evidence of an zero-day

it is still crucial to be able to distinguish that in our attack campaigns. This level of granularity but
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Table 2.3: The exploitation-based AIS to describe the different methods an adversary may choose
to obtain access to the network or internal machines including zero-day stages if observed.

Macro AIS Micro AIS Description

Privilege Esc.

User Privilege Esc. Action which results in the adversary gaining user privileges
Root Privilege Esc. Action which results in the adversary gaining root/admin privileges
Network-Sniffing
Credential Access

Using the network interface on a system to monitor or capture
information sent over a wired or wireless connection

Brute-Force
Credential Access

Brute force techniques to attempt access to accounts when
passwords are unknown or when password hashes are obtained

Account Manipulation
Modifying permissions, modifying credentials, adding or changing
permission groups, modifying account settings, or modifying how
authentication is performed

Targeted Exploits

Trusted Organization
Exploitation

Access through trusted third party relationship exploits an existing
connection that may not be protected or receives less scrutiny than
standard mechanisms of gaining access to a network

Exploit Public Facing
Application

Use of software, data, or commands to take advantage of a weakness
in an Internet-facing computer system or program in order to cause
unintended or unanticipated behavior

Exploit Remote
Services

Exploitation of remote services such as VPNs, Citrix, and other access
mechanisms allow users to connect to internal enterprise network resources
from external locations

Spearphishing
An email spoofing attack that targets a specific organization or individual,
seeking unauthorized access to sensitive information

Service-Specific
Exploitation

Use of a vulnerability specific to a system OS, application, and version

Ensure Access
Defense Evasion Techniques an adversary may use to evade detection or avoid other defenses
Command & Control
(C2)

Control over an target by establishing a communication channel between
adversary and target

Lateral Movement
Techniques that enable an adversary to access and control remote systems
on a network and could include execution of tools on remote systems

Zero Day
Privilege Esc. Undocumented action that raises the privilege level of the adversary
Targeted Exploit Usage of a unpatched and possibly undocumented targeted exploit
Ensure Access Unknown method to evade detection or controlling method
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straightforward intuitive stages will enable us to define diverse and meaningful attack campaigns for

the types of exploits used by the adversary. These stages are typically used as a means gain access

to victims with the intent to eventually achieve some overall objective. The AIF also defines a set

of objective-based AIS, shown in Table 2.4.

Table 2.4: The goal/objective-based AIS to describe adversarial actions with a specific end objective
and leads significant impact to the victim.

Macro AIS Micro AIS Description

Disrupt

End Point DoS
Exhausting the system resources those services are hosted on or
exploiting the system to cause a persistent crash condition

Network DoS Exhaust the network bandwidth services rely on

Service Stop
Stop or disable services on a system to render those services
unavailable to legitimate users

Resource Hijacking
Leverage the resources of co-opted systems in order to solve
resource intensive problems which may impact system and/or
hosted service availability

Destroy
Data Destruction

Destroy data and files on specific systems or in large numbers
on a network to interrupt availability to systems, services, and
network resources

Content Wipe
Erase the contents of storage devices on specific systems as well
as large numbers of systems in a network to interrupt availability
to system and network resources

Distort
Data Encryption

Encrypt data on target systems or on large numbers of systems in
a network to interrupt availability to system and network resources

Defacement
Modify visual content available internally or externally to an
enterprise network.

Data Manipulation
Insert, delete, or manipulate data at rest in order to manipulate
external outcomes or hide activity.

Disclosure Data Exfiltration
Techniques and attributes that result or aid in the adversary
removing files and information from a target network

These objective-based micro-AIS more describe why the adversary is conducting their attack

and we want to investigate how the attacker got to these stages within their attack campaign. Out

of all the AIS defined, these are most likely to be the most impactful if observed. Once we get to

the point that we can begin defining IoC’s to assess for attack campaigns, we will prioritize these

objective-based AIS alerts as we would expect these to be the end of a complete attack campaign.

Looking back from these type of observations will enable us to describe attack campaigns from

their initial reconnaissance stages, to initial exploitation/access, leading towards the achievement of

impactful objectives.
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2.2 Applications of the AIF

Initially our need to develop the AIF came from our realization in our previous work [44] that the

attack category defined by Suricata is a poor representation of the actual attack stages as described

by the alert description. We intended to use the AIF as the basis behind the definition of our “Attack

Behavior Model” in our cyber attack simulator “CASCADES” [43] to simulate the impact and

progress made given an attack campaign. The definition of the attack campaigns to be simulated

could be either manually defined or, in our case, extracted automatically from attack observations

(IDS alerts for example). Drasar et al. uses the AIF to manually define an attack campaign given

a detailed description of a real-world advanced persistent threat known as “Bronze Butler” and

simulate the potential paths this adversary could take through the network. Drasar et al. mentions

that the AIF was selected as it enabled them to quickly define attack campaigns using either the

macro or micro AIS without the need for detailed exploit definitions or network attributes [14].

Nadeem et al. describes their process, SAGE, to extract AIF-based attack campaigns without the

need for prior knowledge/templates by generating attack graphs using a method called S-PDFA to

bring infrequent severe alerts into the spotlight and summarizes paths leading to them. [45].

For SAGE to use the AIF to extract out attack campaigns, a pre-defined mapping between the

AIF and alert signature descriptions was needed. As the datasets used in previous work only con-

tained a couple hundred unique alert types, manually mapping these alert descriptions to the AIF was

not a huge burden. It was when we wanted to generalize these processes to any network did we en-

counter data with significantly different unique alerts, sometimes from external alert-rule databases,

did we find manually labelling challenging and time-consuming. Documentation of many alerts

is poor and sometimes non-existent. We had to use our best judgement of attack stage given the

alert description and the specific terminology contained to infer on the stage based upon similar and

better documented alert descriptions. Given our objective of extracting attack campaigns from IDS

alerts across any network, we must address that there will be differences between the defined alert-

rules and our methodology relies on the realization of attack stage given a IDS alert. In the next

chapter, we demonstrate our process, PATRL, to translate IDS alert descriptions into a correspond-

ing AIS leveraging unsupervised cyber-text learning, transfer learning, and a novel application of

“Psuedo-Active Learning.” Once we can decipher the attack stage of each alert using PATRL, we

use the attack stages in our final work HeAT as an attribute to aggregate alerts with similar impact
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called “alert episodes”.
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3. PATRL: Interpretation of Alert Signatures

With Pseudo-Active TRansfer Learning

Our first technical contribution in this dissertation, PATRL, uses multiple machine learning tech-

niques to interpret IDS alert signature descriptions into one of the various micro-AIS’s defined in

the previous chapter. Understanding the corresponding attack stage of an alert gives us additional

context into what the attacker could have achieved when an alert is observed and the ability corre-

late attributes between similar alerts from the same action or even alerts related to the overall attack

campaign. Due to the complexity of the alert descriptions, the poor documentation describing the

true meaning of the alert, and the lack of standardization rule definitions (no standard attack stage

framework with specific criteria), we design PATRL to not rely on a high volume of labelled data

but instead we take advantage of unsupervised and semi-supervised ML/AI techniques to address

these challenges. In this chapter, we describe our process of “Pseudo-Active Transfer Learning” for

attack stage interpretation and demonstrate how we can achieve high accuracy of a cyber-focused

natural language processing classification problem with limited labelled data. Our technical abstract

for PATRL is as follows:

Intrusion alerts continue to grow in volume, variety, and complexity. Its cryptic nature re-

quires substantial time and expertise to interpret the intended consequence of observed malicious

actions. To assist security analysts in effectively diagnosing what alerts mean, this work develops a

novel machine learning approach that translates alert descriptions to intuitively interpretable Action-

Intent-Stages (AIS) with only 1% labeled data. We combine transfer learning, active learning, and

pseudo labels and develop the Pseudo-Active Transfer Learning (PATRL) process. The PATRL

process begins with an unsupervised-trained language model using MITRE ATT&CK, CVE, and

IDS alert descriptions. The language model feeds to an LSTM classifier to train with 1% labeled

data and is further enhanced with active learning using pseudo labels predicted by the iteratively

improved models. Our results suggest PATRL can predict correctly for 85% (top-1 label) and 99%

(top-3 labels) of the remaining 99% unknown data. Recognizing the need to build confidence for the
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analysts to use the model, the system provides Monte-Carlo Dropout Uncertainty and Pseudo-Label

Convergence Score for each of the predicted alerts. These metrics give the analyst insights to deter-

mine whether to directly trust the top-1 or top-3 predictions and whether additional pseudo labels

are needed. Our approach overcomes a rarely tackled research problem where minimal amounts

of labeled data do not reflect the truly unlabeled data’s characteristics. Combining the advantages

of transfer learning, active learning, and pseudo labels, the PATRL process translates the complex

intrusion alert description for the analysts with confidence.

3.1 Introduction

Security practitioners use various intrusion detection systems (IDS) to capture suspicious and/or ma-

licious activity on a network to prevent current and future attacks. The sensors’ output, i.e. raised

alerts, are meant to provide contextual information for preventive or remedial actions to alleviate

financial and/or operational damages. In the ever-evolving landscape of hacker sophistication and

networked systems, interpreting these alerts requires substantial expertise and research into vul-

nerability databases and security blogs. This leads to a potentially lengthy process to determine

the meaning of the alerts and the results are often ambiguous due to the lack of documentation

when alert rules are created. Compounded with the endless stream of alerts, this time-consuming

process makes it difficult for security analysts to effectively assess and differentiate the intended

consequences of observed malicious actions.

Recall from earlier the Suricata IDS alert description: ‘ET EXPLOIT Possible CVE-2014-3704

Drupal SQLi attempt URLENCODE 1.’ Additional research into the specific CVE identifier shows

that the attack action corresponds to the attack stage “Arbitrary Code Execution” which may that

lead to “Privilege Escalation.” We came to this conclusion from the description containing an asso-

ciated CVE, this only is present in 1664 out of 64k rules as of late-2020. One often needs to resort

to security blogs, forum posts, and other related alerts to resolve the attack impact. This work aims

to alleviate the time-consuming process for security analysts to manually interpret complex alert

descriptions. This work develops a novel machine learning process that maps the 64K+ Suricata

alerts to a small set of Action-Intent-Stages with only ∼1% of expert labeled alert descriptions.

There is a number of challenges to automatically translate the large number and variety of

26



cryptic alert descriptions to a small number of AIS in a real-world setting. First, one needs to extract

the information contained within CVE descriptions, cybersecurity forums, and other unstructured

texts. Second, we can only assume the analysts are familiar with a small percentage (∼1%) of alert

descriptions and thus have the expertise to label them for machine to learn. Third, the system needs

to provide a means for the analysts to evaluate the uncertainty associated with machine predicted

AISs and thus have the opportunity to correct the prediction if needed.

To combat these challenges, we first leverage advances in LSTM-based Transfer Learning,

specifically ULMFiT [24], to learn the structure and cyber-specific contexts of the unstructured

cyber-security texts. The learned model yields significant interpretation accuracy for the initial

small set of familiar alerts with minimal intervention and makes non-obvious inferences when clas-

sifying unseen alert descriptions. To expand the effectiveness of the machine learned model for

the unlabeled alert descriptions, we build upon the idea of Active Learning. Active Learning is

an iterative process where in each iteration an expert is asked to label one or few low confidence

predictions as suggested by the system to further add to the training of the model for the next itera-

tion. In our setting, we do not assume that the security analysts will have the expertise to continue

label unfamiliar alert descriptions. Therefore, we propose a novel approach called Pseudo Active

Learning, where the machine predicted labels are used in place of the expert labels. This approach

is motivated by the concept of ‘Pseudo-Labeling’ [34], a semi-supervised approach that labels new

data samples as training data to lower the prediction error. We experiment several options on how

to select the machine predicted labels to effective enhance the accuracy for the unlabeled alert de-

scriptions. The combination of Transfer Learning and Pseudo Active Learning gives the proposed

integrated process - Pseudo-Active Transfer Learning (PATRL). PATRL is able to not only predict

AIS for 64K+ alert descriptions with only extremely small percentage of labeled data, but also a

measure of Monte-Carlo Dropout Uncertainty (MCDU) [18] to provide analysts a means to assess

the confidence of the predictions. This allows the analysts to make necessary corrections of the ma-

chine predicted labels when needed, which is an essential function to provide confidence for human

analysts.

The major contributions are summarized as follows:

1. Demonstrate how cyber-relevant unstructured texts can be used to help translate complex IDS

alert descriptions into Action-Intent-Stages (AIS),
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2. propose the concept of ‘Pseudo-Active Learning,’ where new training labels are iteratively

created by predicting previously unknown, unlabeled alert descriptions as Pseudo-labels, and

3. demonstrate how Pseudo-Active Learning corrects for differences in feature and label distri-

butions between known and unknown data.

The remainder of this paper is organized as follows: Sec. 3.2 discusses related works. Sec.

3.3.1 gives the methodology of the transfer learning and language modeling portion of this work.

Sec. 3.3.2 defines the concept of PATRL using MCDU. Sec. 3.4 defines the design of experiments

and data used in this work. Sec. 3.5 contains the results of our experiments. Lastly, we conclude

the paper in Sec. 3.6.

3.2 Related Works Addressing Limited Data

Many research fields have issues with obtaining useful labelled data, however the complexity, ambi-

guity, and sensitivity of cyber-attack data means that obtaining the massive amounts of labelled data

that deep-learning architectures require is unlikely. A simple method to account for the lack of data

is to label more data, but do we select any data to label? Selecting any new data to be labelled may

introduce negatively impact performance as the additional labeled data introduce bias if the new

data favors a particular label [78] while also being extremely time consuming. Active learning is a

method used to overcome these labeling challenges by assessing the model’s confidence in its label

prediction and recommends the user to label the least confident samples. Given that the prediction

confidence is self-reported by the model, the active learning technique has been automated. Many

works follow a similar approach to the original work of Yarowsky et al. [77], where a weak model

is used to classify unseen samples, and the uncertainty of the prediction is used to determine if the

sample should be used to retrain a new model. High confidence predictions are typically added to

the model, and low confidence predictions are given to the domain expert to be labeled as traditional

active learning [70]. Using the uncertainty to select the additional labels is known as uncertainty

sampling [35]; we use the Monte Carlo Dropout Uncertainty (MCDU) to assess uncertainty in deep

learning architectures. Usage of semi-supervised active learning is limited and has been applied

to situations where unlabeled data characteristics are known [22, 8]. Calma et al. mention that

this semi-supervised active learning approach can be used in label imbalance situations between the
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known labeled data and the unlabeled data, a characteristic that challenges this work [8]. There is

a need to address situations where the distribution of unlabeled data is largely unknown and assess

the model’s performance for this unknown, unlabeled data.

An approach to account for the lack of data is to leverage the potentially infinite amount of

knowledge within unstructured texts. Inherently these sources are unlabeled and it is difficult to

consistently extract relevant information out of these sources as they typically involved unsuper-

vised or semi-supervised extraction processes. We find methods using keyword-based approaches

to classify cyber-threats [53, 33] and various rule-based approaches to provide IDS-like alert re-

porting [40, 5]. Before the age of sophisticated deep learning architectures, Joshi et al. [29] used

a conditional random forest (CDF) to link the information contained in CVE to NVD, compil-

ing linked data as Resource Description Framework (RDF) with little human intervention. As of

2020, the significance of deep learning approaches to the cyber-security field is growing fast how-

ever few works focus on extracting information from unstructured sources. Notably, Long et al.

uses a multi-head self-attention model along with contextual features to report potential indicators

of compromise (IOC) [37]. The authors mention that other works require extreme cyber security

knowledge and are difficult to configure/maintain and the contextual features allow of IOC’s to be

defined without a deep cyber security background. PATRL’s learning architecture is selected so that

the contextual features between alert descriptions and attack stages is realized by the model and

Pseudo-Active learning accounts for label imbalance or user inexperience.

3.3 PATRL: Theory and Architecture

The PATRL process comprises two core components: the Cyber-text Interpretation module with

transfer learning of cybersecurity language, and the Pseudo-Active Learning module that self-labels

alert descriptions for model improvement. The two modules feed to the model that translate alert

descriptions to Action-Intent-Stages (AIS), a MITRE ATT&CK derived attack stage framework.

Figure 3.1 shows the overall system architecture. We will discuss the two modules and the overall

system below.
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Figure 3.1: The PATRL system architecture: combining supervised, semi-supervised, and unsuper-
vised learning to translate alert descriptions to Action-Intent Stages (AIS).
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3.3.1 Attack Stage Interpretation Model via Transfer Learning

We define two challenges in developing a classifier that translates IDS alert descriptions to attack

stages: 1) understanding and processing natural language (i.e., a language model), and 2) compre-

hending and classifying texts into an attack stage framework. The first challenge represents our

objective of learning from cyber-security texts. We believe that a language model trained on cyber-

specific texts can learn specific patterns and terminologies which can be related to the attacker’s

attack stages. Advancements in transfer learning have enabled information (i.e., model weights)

from one task to be applied to another task that may or may not be related. We propose that a

language model using cyber-security texts will help resolve some of the cyber-specific nuances by

recognizing (in the form of neuron activation) certain patterns or keywords for specific attack stages.

The formal definition of transfer learning with respect to our objective is as follows.

Pan et al. [49] give the formal definition for transfer learning as: a domain D = {Λ, P (X)} de-

fined as a two-element tuple consisting of the feature space Λ, a sample data pointX = {x1, . . . , xn}, xi ∈

Λ, and the marginal probability P (X) [49]. A task T = {Γ, P (Y |X)} = {Γ, η}where Γ represents

the label space, the labels Y = {y1, . . . , yn}, yi ∈ Γ, η is a predictive function learned through fea-

ture vector/label pairs (xi, yi), xi ∈ χ, yi ∈ Γ and η predicts labels such that η(xi) = yi. Given the

source and target domains Ds and Dt and the source and target tasks Ts and Tt, respectively, the

objective of transfer learning is to optimize the distribution P (Yt|Xt) inDt with domain knowledge

within Ds and Ts where Ds 6= Dt or Ts 6= Tt. The source domain Ds and target domain Dt are

shared and defined as the English language text sources where the source task Ts is to model the

language structure and semantics of the source data that we provide. We use the ULMFiT deep

learning architecture [24] to create a language model of cyber security texts to first learn these rela-

tionships unsupervised as our source task. We propose the semantical relationships between certain

words and combinations of words can be exploited and related to the target task Ts of interpreting

IDS alerts to an attack stage. The selection of the attack stage framework for the target classification

task dictates the overall utility of this work.

We select our attack stage framework based upon our evaluation of the framework’s ability to:

describe distinct actions leading to unique outcomes, represent diverse attack actions, and, most

importantly, describe actions that are observable to our IDS of choice. We consider the use of
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various Cyber Attack Kill Chains [11, 67], MITRE ATT&CK framework [39], and the Action-

Intent Framework [42] to label IDS alerts with. Cyber Attack Kill Chains provide an intuitive and

is easy to interpret of the objective of an attacker, however in general we find kill chains to be

too high level to effectively describe the specific actions contained in IDS alerts. Conversely, the

MITRE ATT&CK framework contains nearly 300 techniques describing general behavior such as

“Active Scanning” to service-specific techniques such as “Forge Kerberos Tickets” A significant

burden would be put on the user to label data with the most appropriate label without bias to a more

well understood technique [78]. This could lead to many techniques being underrepresented in our

dataset, especially with our proposed limited data.

Instead, this work adopts the Action-Intent Framework (AIF) [42] to balance the intuitive nature

of kill chains and the detail of MITRE ATT&CK. The Action-Intent Stages (AIS) within the AIF

are similar to the ATT&CK’s tactics and techniques but focus on defining behaviors to describe the

intended outcomes and consequences of the attack actions observed through IDS. The AIF contains

general descriptions of various types of reconnaissance such as network, service and vulnerability

discovery to aid in distinguishing between key moments when specific information is obtained. The

same methodology is applied to the exploitation and exfiltration phases of the attack where critical

access behaviors such as “arbitrary code execution” is distinguished from “brute force credential

access” since these techniques are typically conducted in different situations. When applied to IDS

alerts, we propose that the AIS provides quick additional context to alerts that is useful to quickly

hunt threats and further assess the progress of the attacker.

Our proposed architectural diagram for the attack stage interpretation model is shown in Figure

3.2. Given an IDS alert description in the form of an sentence, this model predicts the appropriate

AIS given the a labeled alert description set and the transferred information from the language

model. The different types of texts used to train the language model(s), and the AIS labeled data

distributions are located in Section 3.4.

We expect language models trained with little cyber-security relevancy to perform significantly

worse that those trained with rich cyber-security information. We are realistic in our expectations of

the additional performance this language model can provide given that our labeled data is extremely

limited when compared to all of the “unknown” IDS alerts. Consequentially, this model may not be

sufficiently accurate to represent the unknown data (e.g. over-fitting to the labeled data). We next
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Figure 3.2: The use of ULMFiT [24] to create the initial model that translate alert descriptions to
AIS labels.
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define our process for improving this model by applying “Pseudo-Active Learning” to account for

the disparities between the labeled data set and the unknown data.

3.3.2 Pseudo-Active Learning for Unknown Data

Our initial labeled set of alert descriptions only represents those captured on a specific network

configuration and time frame; it is unlikely that this small labeled set accurately represents the char-

acteristics of the remaining set of sophisticated and unknown alert descriptions. To combat this,

the model can be refined by including additional labeled data where the model has reported un-

certainty with its prediction, known as Active Learning[61]. We propose leveraging the concept

of Pseudo-Labeling [34] combined with Monte Carlo Dropout Uncertainty (MCDU) [18] to esti-

mate a traditional active learning process. We begin this process by using the MCDU metric to

assess the prediction confidence of the unlabeled data and choose new pseudo-labels based upon

the uncertainty metric.

Monte Carlo Dropout Uncertainty (MCDU)

The concept of Active Learning relies on the model’s ability to assess the confidence or certainty

of its predictions and recommend the user to apply labels to the data where the model reports low

confidence. Deep learning architectures are challenging to determine its certainty as the model

itself is not easily interpretable [58] and the output class probabilities are not a reliable method for

assessing the uncertainty [6]. Gal et al. propose that the concept of “Dropout” (i.e., eliminating

neurons at training time to improve generalizability) can be used at testing time to approximate

a Bayesian approximation of the model using class probabilities for different “configurations” of

the model [18]. The model is given the input multiple times for a single sample. Each iteration

randomly drops out a percentage of the neurons with the uncertainty given as the standard deviation

of the class with the highest mean probability across the dropout iterations.

The formal definition for determining the MCDU is as follows, and the implementation in Keras

is shown in [62]. Given our transfer learning model as fnn, a data sample as x, and the number of

dropout iterations as T , the model with dropout configuration of di is given as fdinn. The ensemble

of dropout models to assess the uncertainty is given as: fd0nn(x), ..., fdTnn (x). The mean of the prob-

abilities for each class across each of the dropout iterations represents the ensemble’s prediction as

34



opposed to the single prediction if no dropout was applied. The predictive posterior mean for the

ensemble is given as:

p =
1

T

T∑
i=0

fdinn(x) (3.1)

The uncertainty of the model predicting the class of x is defined as the prediction with the high-

est posterior mean (highest overall likelihood for each model). The per-class prediction uncertainty

is given as follows, represented as the standard deviation of the prediction probability across all

models.

c =
1

T

T∑
i=0

[fdinn(x)− p]2 (3.2)

Samples with a low amount of variance in the prediction probability across all iterations and

a high mean probability demonstrate a case with high certainty. An uncertain prediction will have

a higher variance of prediction probabilities, demonstrating that different portions of the neural

network have conflicting activation for a given input. This calculation of the model uncertainty

provides us with the basis to implement Active Learning techniques for deep learning architectures.

We use the MCDU to determine which data samples and their associated pseudo-labels should be

added to the training data.

Semi-Supervised Active Learning

Semi-supervised active learning techniques use semi-supervised learning techniques incrementally

to create stronger predictive models with minimal additional labeling labor costs [22]. We propose

that semi-supervised learning combined with intelligent selection of the additional unlabeled data

using the MCDU will provide significant interpretation improvements with minimal labeling costs.

Traditional active learning typically requires an expert to assess and refine the labels of uncertain

predictions to retrain a enhanced model. We use our transfer learning model and MCDU in con-

junction with the concept of “Pseudo-Labeling” [34] to act as our active learning “domain expert”

to refine our model with the unlabeled data of a different distribution. Pseudo-Labeling is an semi-

supervised approach where unlabeled data is self-labeled and then used as training data as a form of
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domain adaptation [74, 36]. We combine Pseudo-labeling with the MCDU produced by our transfer

learning model to select data and then retraining the model with the self-labeled data, creating the

PATRL process.

We suspect a diminishing return on the number of pseudo-labels that can be introduced into the

model, and we propose the concept of “pseudo-label convergence” as a metric to determine a point

at which additional pseudo-labels no longer provides significant benefit to the model. As pseudo-

labels are iteratively added to the model, we expect the predicted data labels to converge as more

information is received. We design our convergence metric to penalize cases where many different

labels are predicted but not affect cases where uncertainty is between few labels.

The iterative pseudo-label convergence metric for a given data sample x is defined as: C(x) =

[c1(x), ..., cL(x)], where L the total number of active-learning iterations and yl is the predicted

label from the active learned model yl = fl(x). We define the iteration-to-iteration change of the

predicted label yl as ∆Yl. ∆Yl = 1 if and only if yl−1 6= yl and 0 other wise to represent if a label

has changed after a training iteration. Assume the label space of the output labels to be defined as Y

with length |Y | and the set of unique labels from prior iterations as Yl,u and the number of possible

unique labels at iteration l as Yl,p shown in (3.3)

Ylp =

 l + 1 if l < |Y |

|Y | if l ≥ |Y |
(3.3)

We define our pseudo-label convergence metric at iteration l as a product of the count of label

changes and the unique labels predicted across the iterations, shown in (3.4).

cl(x) = (

∑l
i=1 ∆Yi
l

)(
|Yl,u|
Yl,p

) (3.4)

We expect this metric to reveal cases where the pseudo-labels never change, quickly change

after few pseudo-labels, and inconsistent decisions over iterations. This metric helps to establish

when the additional pseudo-labels no longer significantly change the model’s predictions and the

pseudo-active learning process should end.
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Pseudo-Labeling Selection Methods

In this work, we assess applying additional pseudo-labels of the most uncertain predictions (high

MCDU) and the most certain (low MCDU) versus randomly selected pseudo-labels. We hypothe-

size that additional low confidence pseudo labels may negatively impact the model as the given la-

bel is likely to be incorrect. High confidence predictions may emphasize deterministic data samples

whereas random selection may be the best to represent the unknown data distribution. Emulating

the active learning training schedule, we incrementally apply additional pseudo labels, retrain train

the model, and use the pseudo-label convergence to determine the optimal number of additional

samples to apply.

Given our initial classifier trained on limited labeled data, we define the PATRL training process

in Figure 3.3. The MCDU is calculated for all samples in the unknown data set and mL samples are

taken depending on the MCDU selection method. The mL samples and their given pseudo-label are

then used as additional training data to create a new model containing both manually labeled data

and pseudo-labeled data. This process is repeated for mi iterations resulting in a PATRL-trained

model.

Figure 3.3: PATRL’s iterative training process using pseudo-labels based upon MCDU of unknown
alert description.

This process will be the basis of our experiments to measure the effectiveness of PATRL. We

use the over-iteration MCDU’s, the over-iteration predictions, and the label convergence to deter-

mine the PL selection method, mL, and mi configuration that can improve the accuracy of a model

with no additional manually labeled data. In the next section, we define our design of experiments
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where we define data sets used, transfer model training configurations, our Pseudo-Active Learn-

ing training schedules, and our experiments using MCDU and the Pseudo-Labeling Convergence

Metric.

3.4 Design of Experiments

We design the experiments to answer three sets of questions:

1. What unstructured texts can be best transferred to interpret the Suricata alert descriptions?

Is the transferred model trained with small amount (1%) of alert descriptions sufficient to

interpret the remaining ones?

2. Does pseudo active learning help enhance the model’s ability to interpret unseen alert de-

scriptions? How do we select the optimal pseudo-labeled descriptions to achieve good per-

formance for the unseen ones?

3. How do we provide a measure to reflect the confidence of the predicted AIS for a given

alert description? What does the prediction confidence mean for the unseen/unlabeled alert

descriptions?

To begin addressing these questions, we define two manually labeled data-sets of Suricata alert

descriptions to AIS. To assess our baseline performance of our transfer learning model and pro-

vide initial training data for our pseudo-active learning model, we label alert descriptions from the

security competitions CPTC [54] and CCDC [21] to approximate the types of alerts captured in a

realistic network environment. A second labeled data set is created to estimate the performance of

the unknown Suricata alerts. We randomly select a subset of alert descriptions from the remaining

∼64k defined alerts, manually apply labels, and set aside for strictly testing purposes. This data

set approximates the distribution of the entire Suricata unlabeled data set and we relate our perfor-

mance of this “unknown” labeled test set to the pseudo-label convergence metric and establish how

to configure PATRL without this set. These two data sets and their label distribution is shown in

Table 3.1.
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Table 3.1: Action-Intent Stage (AIS) distributions for two labeled sets.

Action-Intent Stage
CPTC/CCDC
Alert Desc.

Unknown-Random
Labeled Set

Network Discovery 69 4
Vuln Discovery 52 3
Information Discovery 113 18
Credential Access 37 0
Command and Control 99 525
Code Execution 122 198
Privilege Escalation 39 1
Denial of Service 86 5
Data Exfiltration 69 15
Data Delivery 70 18
None (Non Malicious) 91 30
Total: 847 922

3.4.1 Transfer Learning with Cyber-Security Language Models

We suspect that cyber-relevancy and the volume of text data play a role in the transferable informa-

tion in the language model. Table 3.2 shows the source and word counts of the data used to train the

language model of the ULMFiT architecture. Leveraging no external sources, we investigate lan-

guage models trained with only Suricata rules, where the language model will be finely-tuned to the

structure of the sort of data being classified. MITRE’s CVE database [10] is much higher in volume

and abundant in information but has a much different language structure than alert signatures. We

expect irrelevant language models like IMDB and Wikipedia to perform poorly, as we believe the

relevancy is more important than volume.
Table 3.2: Unstructured text sources used for language model training.

Source Word Count
Labeled Data Unique Alerts 4,626
MITRE ATT&CK Descriptions 40,808
IMDB 247,797
Entire Suricata Rule Set 482,961
CVE Descriptions 5,433,338
Pre-trained Wikipedia Set 100M+

Our first set of experiments varies the language model and uses the CPTC/CCDC set as the

benchmark for accuracy. The data set is split with a train/test ratio of 80/20 with 5-fold validation

on each classifier model, and we report the average accuracy over the folds. This work uses the
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ULMFiT architecture within the Python Fast-AI library using the AWD-LSTM architecture for the

LSTM stage, following the hyper-parameter tuning as recommended by Howard et al. [24].

3.4.2 Pseudo-Active Learning Experiments

To assess the differences in prediction quality for each PL selection method we follow the PATRL

training process described previously in Figure 3.3, where mL = 250 and mi = 20. We choose 250

PL’s per iteration to give sufficient iterations before and after the size of our known training set and

to balance computational effort. We run this process for 20 iterations for each pseudo label selection

method and use our label convergence metric to determine the optimal number of iterations needed.

At the end of retraining for each iteration, we calculate the MCDU for each sample in both

the CPTC/CCDC data set and the unknown data set and we report the average MCDU on a per

iteration basis. We use the unknown test set as our benchmark, referring to the ground truth to

verify observations only. The accuracy of the unknown test set over iterations is used to show the

Pseudo-Active training process’s effectiveness and estimate accuracy over the entire unknown data

set.

3.5 Experimental Results

Recall the three sets of questions laid out in the beginning of Sec 4. We begin answering these

questions by assessing the contributions of transfer learning to the PATRL process.

3.5.1 Transfer Learning w/ Unstructured Texts

We hypothesize that the cyber-relevancy of unstructured text used for the language model is critical

to translating intrusion alert descriptions to AIS. We consider the small set of labeled alert descrip-

tions collected from CPTC and CCDC to test this hypothesis. Table 3.3 shows the 5-fold cross-

validated accuracy for this labeled set. Ideally, a language model trained with the entire Wikipedia

database would have cyber security information embedded within. As can be seen from Table 3.3,

such model has a 35% Top-1 accuracy, worse than using a Multinomial Naive Bayes model without

transfer learning. Adding irrelevant texts from IMDB to Wiki does not help.

On the contrary, when adding cyber-relevant texts, such as MITRE ATT&CK, CPTC/CCDC
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alert description themselves, all Suricata alert descriptions, or CVE database to train the language

model, we start to see higher performance for both Top-1 and Top-3 accuracy at 60∼70% and

85∼90% ranges, respectively. Note that the amount of unstructured texts from each of the cyber-

relevant sources varies significantly - recall Table 3.2. The computational time needed to train

the language model grows approximately linear with the word counts. Fortunately, the PATRL

framework only requires to train the language model once and is fine to consume a large amount

of unstructured texts to build a high-performing model. Therefore, we experiment the case where

all cyber-relevant texts are used in addition to Wiki. This results in a much higher Top-1 and Top-3

accuracy at 80% and 90%, respectively.
Table 3.3: Cross-validated accuracy for the CPTC/CCDC data using unstructured texts to train the
language model (LM).

Transfer LM w/ Text Source(s)
Top 1
Acc.

Top 3
Acc.

Multinomial Naive Bayes (No LM) .5452 .8025
LM: Wikipedia (Default) .3535 .61
LM: Wiki + IMDB .4357 .75
LM: Wiki + MITRE ATT&CK .5928 .8786
LM: Wiki + CPTC/CCDC Suricata .6462 .9048
LM: Wiki + All Suricata (64k) .6871 .85
LM: Wiki + CVE Database .6975 .8929
LM: Wiki + All Cyber-relevant Texts .8024 .9084
LM: Wiki + All Cyber + 1k Random PL’s .8292 .98

The accuracy results are cross-validated with respect to the small set of Suricata alerts collected

through the CPTC and CCDC events. These alerts represent those an analyst might be familiar

with and able to label to train the alert-to-AIS model. Under the PATRL framework, we may ask:

what if we add some randomly selected pseudo-labeled alert descriptions? The last row in Table

3.3 shows the Top-1 and Top-3 accuracy when we add an additional 1,000 pseudo-labeled alert

descriptions. As can be seen, this attempt further improves and reaches 98% Top-3 accuracy. These

results demonstrate clearly the promise of using transfer learning with unstructured cyber-relevant

texts and pseudo-labeled alerts, at least for the small expert-labeled set of alert descriptions.

We now turn our attention to what this model can do for the unknown alert descriptions. We

labeled a set of randomly selected Suricata alert descriptions as described in Table 3.1. We use the

‘LM: Wiki + All Cyber’ language model with different combinations of training and test sets be-

tween the ‘CPTC/CCDC’ and ‘Unknown Test’ data. Table 3.4 shows the Top-1 and Top-3 accuracy
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results for the various combinations. As can be seen, directly using the ‘LM: Wiki + All Cyber’

model with mismatched training and test sets has its limitations. Comparing to the results shown in

the second to the last row in Table 3.3, we see the Top-1 (Top-3) accuracy dropped from 80% (90%)

to 72% (80%), respectively. This problem is even more obvious when using the ‘Unknown Test’

as the training set and testing on the ‘CPTC/CCDC’ set with 31% (62%) Top-1 (Top-3) accuracy.

This is due to that the small set (∼1%) of Suricata alert descriptions from a couple given networks in

CPTC and CCDC do not reflect the remaining (99%) descriptions that may show up. This brings the

question on how to select the pseudo-labeled data so that the ‘LM: Wiki + All Cyber’ model can be

improved effectively to predict the remaining descriptions. We will experiment a few Pseudo-Active

Learning options next.
Table 3.4: Top-1 (Top-3) accuracy using ‘LM: Wiki + All Cyber’ model with different combinations
of training and test sets between the ‘CPTC/CCDC’ and ‘Unknown Test’ data.

Training — Testing CPTC/CCDC Unknown Test
CPTC/CCDC .9385 (.9742) .7216 (.8001)
Unknown Test .3116 (.62) .9271 (.995)

3.5.2 Enhancement w/ Pseudo-Active Learning

Given the strongest model trained with all the cyber security texts, we apply Pseudo-Active Learning

by iteratively adding PL’s based off of the calculated MCDU of the remaining set of unlabeled data.

Recall that our initial hypothesis mirrored the active learning methodology where the least confident

PL’s (high MCDU) should be added to the model. Figure 3.4 shows the Top-1 accuracy when

PATRL is used to predict AIS for both the CPTC/CCDC labeled set and the small unknown labeled

test set as more pseudo-labels are added. We found that the application of PATRL improves the

unknown data accuracy across all PL selection methods to nearly 85% with a top-3 of 99%. While

our top-1 performance is exceptional given our limited training data, we find the top-3 performance

to be extremely desirable. A single miss-classification in a critical situation could lead to substantial

impact to a network and we believe it would be advantageous to identify when the user should

refer to the top-3. We assess the MCDU values in the next section to gain insight into this. This

is also accompanied with little to no impact to the CPTC/CCDC data accuracy at 94%, further

demonstrating PATRL maintaining accuracy for what we believe are the most relevant alerts for the

user.
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Figure 3.4: Accuracy for each PL selection method for the CPTC/CCDC and Unknown datasets.
Each PL selection method in PATRL increased performance by over 10% on the unknown test set.

Each selection method achieved exceptional accuracy on the unknown test set, we found ran-

domly selecting labels was unique in the sense that there was little variation in the accuracy once a

‘sufficient’ amount of PL’s was added. This result goes against traditional active learning and our

hypothesis using the lowest confidence samples to pseudo labeling. Recall that our test set is a ran-

dom subset of the entire Suricata rule set, whereas our initial training set was extracted from ‘real’

cyberattack exercises. This is an important distinction because as more randomly selected pseudo

labels are used for training, we fine-tune the model toward the actual distribution of the unlabeled

Suricata rule set. Given the randomly selected set that represents the unknown distribution, one

may use the accuracy measure with respect to this set to determine the ‘sufficient’ amount of PL’s

and iterations needed to refine the prediction model. In practice, however, one cannot expect that

this test set exists. We instead use the label convergence metric to estimate the point at which the

predictions do not change significantly throughout the iterations.

The results for the iterative label convergence metric is shown in Figure 3.5; this metric rep-

resents the change in predicted labels throughout the PATRL process. The steep decline in the

convergence metric between 250-1000 pseudo-labels indicates that most of the changes to the pre-

dicted classes occur early on in the Pseudo-Active learning process. Naturally, we expect the labels
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to eventually converge given that PATRL is self-labeled. But when compared to our unknown test

set performance, we look for insights for when we could hit a point of diminishing returns.

Figure 3.5: Pseudo-label convergence metric for each PL selection method. The predicted labels
for the unknown data converge once the amount of pseudo labels exceed the initial training data.

Given our knowledge of the random unknown data performance in Figure 3.4 and the conver-

gence metric in Figure 3.5, we show that there is a limit to the number of PL’s that can be added

to the model. Applying PATRL with randomly selected pseudo labels reaches optimal performance

consistently assuming the number of additional PL’s is greater than or equal to the initial training

set. From a user configuration standpoint this is desirable because our main motivation of this work

is to not further burden security analysts with excessive labeling and configuration. Now that we

have achieved promising accuracy on our unknown test set, we now evaluate if the model can be

trusted in classifying the remaining unlabeled data. We analyze the MCDU’s with respect to the

unknown test set to assess the models confidence when predicting the unknown test set correctly

and incorrectly.

44



3.5.3 PATRL with MCDU Analysis

Given the high top-3 accuracy with PATRL, we believe it would be advantageous if it was possible

to identify when we should consider the top-3 over the top-1. Figure 3.6 demonstrates then when

there are no pseudo labels applied, the MCDU’s for the positive and negatively classified samples

for the unknown test set are nearly identical. As PATRL is applied, the MCDU decreases with

correctly identified samples while the negative samples remain uncertain or, in the case of the ran-

dom selection, maintain a consistent margin. A significant observation of this work: Pseudo-Active

trained models can indicate probable correct and incorrect top-1 predictions through the MCDU.

In practice, it would then possible to define thresholds of when the MCDU of a prediction is suffi-

ciently high, it could recommend the user to the top-3 where the correct classification is likely to be

contained within.

Figure 3.6: Average MCDU values for the positive and negatively classified samples for the un-
known test set, for each PL selection method.

Given this observation, imagine the scenario where a security practitioner receives a new alert

where they are unfamiliar with nor was it included in the initial training set. Inaccurate assessment

of an IDS alert can lead to devastating consequences to a network, and gaining users’ trust in apply-

ing such models is challenging. It would not be feasible to expect users of PATRL to assess every

prediction of new or unknown data. Although, given the observation that the MCDU now reflects

the confidence of a correct top-1, we believe we can significantly reduce the number of times the
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user should intervene with the top-3. Figure 3.7 shows the distribution of the MCDU’s for the re-

maining unknown Suricata alerts with and without PATRL applied. Assuming an MCDU threshold

of .1 from Figure 3.6 (represented by the vertical red line in Figure 3.7), we find that over 75% of the

unknown signatures fall below this threshold using PATRL. For those samples above this threshold,

we recommend users refer to the top-3, whereas without PATRL, users will have little to no confi-

dence their model is producing correct results as only 2% fell under our uncertainty threshold. This

shift in prediction certainty with PATRL allows users to trust confident predictions while narrowing

down the selection process to the top-3 for those uncertain predictions.

Figure 3.7: Histogram of MCDU values of the remaining unlabeled Suricata alert descriptions, with
and without PATRL applied.

To demonstrate the usage of PATRL and the MCDU, Table 3.5 shows the top-3 predictions and

MCDU values for a random selection of ten unlabelled Suricata alert descriptions. Using our prior

observations of the MCDU, we find two of these alert descriptions to have an MCDU value sig-

nificantly higher than the rest. This indicates that for those two descriptions that the top-1 value

is unlikely to be correct and the 2nd or 3rd attack stage prediction should be considered. In this

case, we confirm that “PHP Scan Precursor” should be considered as “Information Discovery” and

the “DataCha0s” alert should be considered as “Data Exfiltration”. The main distinction being that

“DataCha0s” is reported to be used post-exploitation to dump data from a webserver, where a PHP
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scan is clearly for information gathering purposes. For all other low-MCDU/confident predictions,

we agree with the attack stages given and further demonstrates the accuracy of PATRL with signifi-

cantly limited labeled data.

Table 3.5: Top-3 attack stage predictions and corresponding MCDU values for 10 random unlabeled
Suricata sigantures using PATRL. Note: C2 is ”Command and Control”

Signature Description 1st Pred. 2nd Pred 3rd Pred. MCDU Value
ETPRO CURRENT EVENTS Successful Netflix
Phish 2017-12-26

PHISHING
CODE

EXECUTION
CREDENTIAL

ACCESS
0.000465

ET TOR Known Tor Relay/Router (Not Exit)
Node Traffic group 597

NON
MALICIOUS

DoS C2 0.001219

ETPRO TROJAN Trojan-Dropper.Win32.
Dapato.cvia Checkin 2

C2
DATA

DELIVERY
DoS 0.010048

ET WEB SPECIFIC APPS phpx SQL Injection
Attempt – forums.php cat id UNION SELECT

CODE
EXECUTION

INFO
DISC

C2 0.012862

ETPRO TROJAN Worm.Mydoom spreading via
SMTP 30

C2
DATA

EXFILTRATION
DoS 0.015334

ETPRO WEB CLIENT MS15-124 Internet Explorer
Memory Corruption Vulnerability (CVE-2015-6134)

CODE
EXECUTION

NON
MALICIOUS

DoS 0.035844

ETPRO EXPLOIT Tivoli Storage Manager Initial
Sign-on Request Buffer Overflow

CODE
EXECUTION

DoS C2 0.065976

ET MALWARE Realtimegaming.com Online
Casino Spyware Gaming Checkin

C2
NON

MALICIOUS
CODE

EXECUTION
0.082716

ET WEB SERVER PHP Scan Precursor
CODE

EXECUTION
INFO
DISC

DATA
DELIVERY

0.181268

ET WEB SERVER DataCha0s Web
Scanner/Robot

INFO
DISC

DATA
EXFILTRATION

C2 0.192619

3.6 Conclusion

In the evolving landscape of cyber-attacks and defenses, it is becoming increasingly difficult to

keep up with the continuously evolving and complex IDS outputs. In practice, security analysts

may not have sufficient expertise to know every single possible IDS alert or time to research every

new alert as they appear. We demonstrate that Transfer Learning combined with Pseudo-Active

learning, PATRL, is able to produce strong alert interpretation models in situations where familiar

(labeled) alerts are extremely limited and unknown (unlabeled) alerts can exhibit very different

characteristics. The introduction of the cyber-focused language model yielded 25% improvements
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in translating IDS alert descriptions to AIS for the limited labeled data when compared to a baseline

without external data. For new unknown alerts, however, the model requires additional refinement

without labeled descriptions as these alerts may have the most substantial impact if incorrectly

identified or ignored.

Combining the Pseudo Labeling and Active Learning concepts, PATRL refines the model by

adding ‘pseudo-labeled’ alert descriptions to the model trained with known labels. We proposed

various pseudo label selection methods based upon the Monte Carlo Dropout Uncertainty (MCDU),

where we saw 10-15% increases in predicting a randomly selected subset from the entire Suricata

rule set, achieving 83% top-1 and 99% top-3 accuracy. We show that randomly selecting new

pseudo labels in PATRL best represented the unknown distribution of the unlabeled alert descrip-

tions. Metrics such as the change in uncertainty and our Pseudo Label Convergence metric optimize

the configuration of Pseudo-Active Learning for the unknown data without a labeled set. Further-

more, we demonstrate that the MCDU of Pseudo-Actively trained models reflect the correctness of

the prediction. This gives a measure for the analysts to establish trust and understanding of a system

predicting AIS from unknown, unfamiliar alert descriptions. We found our model’s top predictions

can be confidently used for 75% of the entire Suricata rule set, while recommending analysts the

highly accurate top-3 AIS’s for the remaining 25%.

3.6.1 PATRL Limitations

We find PATRL’s attack stage interpretation accuracy to be impressive given the challenging lan-

guage task and the limited labelled data for the data hungry deep learning classifier employed. We

would prefer for our top-1 accuracy to be in the low 90% range as opposed to the low 80% to further

reduce the amount of times an analyst should refer to the top-3 value. This will also increase the

“accuracy” of our eventual extracted attack campaigns in HeAT if the first predicted attack stage

is more likely to be correct. Given our experience with the usage of PATRL, we have identified

some limitations that we believe are worth mentioning for others to address if adopting the PATRL

process.

Deep learning architectures, like our language model, are a black-box and it is extremely dif-

ficult to understand what the model is actually learning and why. This is a very common criticism of

deep learning techniques and within the computer vision research community there are efforts for
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explainable AI [58]. It is evident that our language model transfers and improves our interpretation

accuracy with our cyber-specific texts, however it is unclear what it is actually learning, relating,

and correlating to attack stages. With traditional techniques like random forest, we would be able

to assess the decision trees to understand how each word in the description contributes to the prob-

ability of being a part of each attack stage. Where the meaning of the activation of neurons within a

neural net is abstract due to the non-deterministic stochastic gradient decent training. It is difficult

to determine if we should prioritize improving the language model to improve accuracy of PATRL

or give more high quality labelled data examples. As the language model can only contain a finite

amount of “knowledge”, we wonder if the language model text can be optimized even further to the

cyber-domain. The text used to train the language model has a large word count and its reasonble

to think that not all of the text is actually relevant. If we could interpret what the language model is

actually learning we wonder if we can gain extra performance with optimized cyber-texts.

Multiple attack stages could be valid for a single observed action. Using our signature de-

scription example from the beginning of this work, this described a vulnerability with the identifier

of CVE-2014-3704 which resulted in arbitrary code execution and potentially privilege escalation.

This is an important distinction to make as not all code execution attempts lead to privilege escala-

tion but the user should be aware that this is a possibility. Currently the labelled samples in PATRL

are only mapped to a single attack stage, where in reality we may want to choose a ranking of mul-

tiple potential attack stages if needed. While for the description the top-2 attack stage predicted was

indeed privilege escalation, we would prefer if the result was arbitrary code execution and privilege

escalation as opposed to the implied “or” relationship of the reported top-3. This would lead to even

more meaningful interpretations of the attack stage from the alert description.

Assessing the true accuracy of the PATRL process may be difficult depending on the context

or application. The concepts behind PATRL can be applied to label other types of text data, however

our IDS data has a few specific characteristics that we believe contributes to our accuracy that may

not apply to other domains. First, official Suricata IDS alert descriptions are consistent in their

formatting and often contain keywords such as specific services like “mySQL” that are typically

only vulnerable to a specific subset of the AIF. We believe that this consistency in the format in the

IDS alerts allows the model to quickly identify the important keywords related to the attack stages,

where as less structured inputs may need additional data. The second, the rule set for Suricata is
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relatively finite (although new rules are added daily) and thus set of unlabelled rules are known.

This gives us the opportunity to create the “unknown” test set to estimate our performance on the

remaining unlabelled samples. We foresee the issue of estimating accuracy for domains where the

input space is unknown or even infinite. Our pseudo-label convergence metric and MCDU provides

a look into if the model is performing well, however testing and verifying less structured inputs

would have to be approached differently.

3.6.2 Discussion: Future of PATRL

Before moving onto our usage of PATRL in our final work HeAT, we would like to discuss briefly

how PATRL can be applied in the future. PATRL can enable other researchers who use IDS alert

data to have an extra feature for correlation and prediction. For example the creators of SAGE,

Nadeem et al., now can apply their process to other data sets or other networks without requiring

to label undefined alerts. This could further makeup some of the data-deficiencies that we face

in the cyber-security research field. PATRL also can be adapted to accepting other forms cyber-

security related text to apply attack stages on, similar MITRE TRAM’s objective of identifying the

attack stages given a threat report [78]. We could explore methods to annotate, tag, and summarize

full threat reports with customized cyber-attack information without the need for massive amounts

of labelled training data. We are interested in the flexibility of PATRL, as the general process of

pseudo-active transfer learning could be applied to other scenarios where labelled data is limited

but unstructured/unlabelled data is unlimited. Pseudo-active learning combined with a transferable

deep learning model could enable other domains (i.g. domain adaptation) to leverage unlabelled

data to increase accuracy with little human effort that otherwise would have been left on the table.

PATRL becomes the backbone of our next work HeAT, applying attack stage labels to each

unique alert description to provide additional context for HeAT to extract attack campaigns. HeAT

uses the PATRL-interpreted attack stage labels to aggregate similar alerts into alert episodes, as

a feature for prediction, a metric to measure attack campaign quality, and to clearly visualize the

extracted attack campaign. With out PATRL, the process described by HeAT and the resulting

found attack campaigns would be less meaningful as the individual attack stages are the core of an

attack campaign. In the next chapter, we describe our process “HeATed Alert Triage” to uncover

attack campaigns within IDS alerts by leveraging surveys of an analyst’s opinion of the criticallity
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of actions within attack campaigns prior.
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4. Heated Alert Triage (HeAT): Network-agnostic

Extraction of Cyber Attack Campaigns

Given that we can now describe any IDS alert in terms of the AIF using PATRL, we now can

process and relate alerts based on their attack stage and other alert attributes so that attack campaigns

within can be described. Once again, we are faced with data-limitation challenges as IDS data sets

containing labelled attack campaign ground truth is rare, limited in scope, or outdated. It is common

practice for SOC analysts to triage alerts to manually compile evidences of an attack campaign

where we thought: “Can we tap into the SOC analysis workflow, capture the reasons why the

analyst thinks alerts are a part of an attack campaign, and then use those observations to find other

attack campaigns?” HeAT is based around the concept that analysts may have different opinions

of the alert severity given the attributes within the alert, their own expertise, and knowledge of the

network. We look to use the experience of the analyst to find indicators of an attack campaign given

evidence that an attack may have occurred and use the extracted indicators to find other potential

attack campaigns. Our technical abstract for HeAT is as follows:

With growing sophistication and volume of cyber attacks combined with complex network struc-

tures, it is becoming extremely difficult for security analysts to corroborate evidences to identify

campaigns and threats on their network. So much so that organizations employ teams of security

professionals just to keep up with vast amount of data presented to the analysts each day. This

work develops HeAT (Heated Alert Triage): given a critical indicator of compromise (IoC) such as

a severe IDS alert, HeAT produces a HeATed Attack Campaign depicting the actions that led up

to the critical event including reconnaissance and initial exploitation stages. We define the concept

of “Alert Episode Heat” to represent the analysts opinion of how much an event contributes to the

attack campaign of the critical IoC given their own knowledge of their network context and security

expertise. Leveraging a network-agnostic feature set and a short but targeted training process, HeAT

is able to realize insightful and concise attack campaigns for IoC’s not observed before, compare at-

tack strategies of different attackers with the same IoC, and also be applied across networks with the
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same degree of fidelity. HeAT maintains the analysts original assessment of the specified “HeAT”

regardless of the critical event being assessed or the network topology. We demonstrate the capa-

bilities of HeAT with case studies using cyber-competition datasets to mimic how HeAT would be

deployed in practice and assess the HeATed attack campaign from the analyst’s perspective. With

the goal of aiding the analyst in quickly finding further evidence of an attack, we show that HeAT

immediately reveals each attack stage of an attack campaign embedded deeply within millions of

alerts that may have needed a whole team of analysts to achieve otherwise.

4.1 Introduction

Threats of sophisticated and highly impactful cyber attacks have become so common that many

organizations have implemented “Security Operations Centers” (SOC) to investigate, respond to,

and hunt potential threats within networks. SOC’s typically implement a tiered structure where a

tier 1 analyst triages the network for critical events which may be escalated to a tier 2 analyst who

will respond to the incident. Assume the role of a tier 1 SOC analyst and you observe a critical alert,

“GPL EXPLOIT CodeRed v2 root.exe access”, targeting a customer database. While occurring on a

critical asset, a single alert may not be enough evidence to escalate to the tier 2 analyst and you must

now look for other “Indicators of Compromise” (IoC) to develop more evidence that the alert was

indeed caused by an adversary. This is known as a “triage” and is typically a time consuming and

mostly manual process sometimes involving multiple analysts to comb through lengthy log files to

find other IoC’s related to the initial IoC. With the inflation of network sizes and the general increase

of foreign threats broadly targeting any type of organization, many SOC analysts are overwhelmed

with the amount of log data from Intrusion Detection Systems (IDS) which hampers their ability to

quickly assess their network for threats.

Given a critical alert (an IoC) and IDS alert logs, we ask if we can leverage machine learning

techniques to aid the analyst in the triage process and automatically reveal other steps the adversary

took to “arrive” at their goal. The compilation of the actions detailing each “stage” of the attack

is called an “attack campaign” which would describe how, when, and where the attacker learned

about the network, gained initial access, and then eventually achieving their goal. Developing this

attack campaign from IDS alert logs can be extremely difficult as the analyst must consider for each
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alert: the network context, related attributes between the alerts, and their own expertise to determine

the relationship between the critical alert and prior alerts. These considerations sometimes leads to

subjectivity of the actual contribution of the alert to the attack campaign. We envision an automated

triage system to reflect the analyst’s opinion on the types of events that they believe are a part of an

attack campaign and ability to apply that “thinking” to other triages in the future.

We propose a system, HeATed Alert Triage (HeAT), to perform automated triaging of IDS

alerts. Given a critical IDS alert, HeAT creates a “HeATed Attack Campaign” (HAC) using a set of

network agnostic features and a small set of analyst defined critical alert episode relations. In the

form of aggregated alerts defined as “Alert Episodes,” the HAC’s generated by HeAT tells the story

of the attacker’s progression leading to a critical event. HeAT estimates the ”Alert Episode HeAT”

for each alert episode with respect to the critical alert to describe the episodes contribution to the

attack campaign given how the analyst has interpreted HeAT-value previously. We have developed

HeAT with reusability and transferability in mind; we use network agnostic features so that HeAT

can uncover attack campaigns for other critical alerts, adversaries, or networks. We envision HeAT

to be used by SOC analysts to display the HAC once they observe the first IoC so that they can

quickly determine if further action is needed for not only one attack type but for many. Note that we

demonstrate the methodology and capability of HeAT with one specific IDS, Suricata, in this work,

while the network agnostic features are generalizable to treat heterogeneous alerts and event logs.

Using a set of targeted case studies by processing data collected through cyber-competitions,

we demonstrate, in close to real “deploy-able” scenarios, HeAT’s ability to:

1. Leverage a small amount of analyst-labelled data to discover meaningful insights into attack

campaigns for critical alerts,

2. compare attack strategies for the same critical event and quickly determine key milestones

such as discovery, initial access, and other events leading up to the critical event, and

3. identify attack campaigns under different network settings, and reveals non-coincidental pat-

terns in attack strategies across networks.
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4.2 HeATing Episodes to Extract the HeATed Attack Campaign (HAC)

Given the IDS alert logs from a network and an IoC such as a critical IDS alert, our objective is

to develop of sequence of alerts likely to be related to the IoC, forming the attack campaign of the

adversary. We define an “Attack Campaign” as the collection of actions in time which describe each

stage of an attack conducted by an adversary leading to some objective. As there will be no ground

truth describing the real attack campaign, we rely on an initial triage to establish characteristics of

an actual attack campaign first. Then we address other technical challenges such as high alert vol-

ume, network-specific attack characteristics, and limited analyst data-labeling resources to extract

meaningful and concise attack campaigns quickly. The summary of the methods used in HeAT are

described below and the system overview is shown in Figure 4.1.

• Introduce the labeling approach called “Alert Episode Heat” (HeAT-value) as a numeric rank-

ing system (0-3) representing key milestones of an attack campaign leading towards an IoC,

• propose a short and efficient labeling process to capture the analyst’s reflection of meaningful

relationships between alert episodes contributing to the same attack campaign,

• use an attack stage-based Gaussian smoothing approach to alert aggregation to create alert

episodes indicative of actions performed by adversaries,

• use alert episodes to derive network agnostic features relating characteristics between episodes,

enabling prediction of the HeAT-value regardless of attack type or network configuration,

• use ML/AI to learn and predict HeAT-values for prior episodes to a critical episode,

• construct and visualize HeATed Attack Campaigns (HAC) with “HeATed episodes”, and

• propose the entropy-based HeAT-gain metric to prioritize HAC’s with desirable attack cam-

paign properties.

In the subsequent sections of this chapter we define the concept of how the HeAT-value is used

to represent attack scenarios, describe our process to aggregate alerts as alert episodes, define our

initial triaging process, and then finally describe our application of HeAT to generate the HAC for a

given critical alert.
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Figure 4.1: Process overview of HeAT to generate HAC from a set of IDS alerts and a given critical
alert.

4.2.1 Meaning of HeAT - Progress Towards Attack Objective

The concept of Alert Episode Heat, or the HeAT-value, is a numeric ranking system (0-3) which

given a critical alert episode ec and a prior episode ep, the HeAT-value ranks the contribution of ep

to the attack campaign of ec. We use the concept of “alert episodes” to represent groups of alerts that

are indicative of action(s) with a specific impact. Each alert episode may contain one or many alerts

sharing similar attributes, such as attack impact, which may or may not be related to the campaign

of ec. The HeAT-value is intended to capture the attacker’s progression towards ec given the alerts

of ep.

While many IDS’s already have some notion of severity embedded within the alert (Suricata’s

severity attribute), these are typically static and independent from all other alerts that have occurred.

IDS’s such as Suricata have no notion of correlated alerts but simply report suspicious behavior

based on signature matches of known adversarial actions and additional information is needed to

determine if two events are correlated. Additional factors such as the network topology, the assets

contained on specific machines, and the analyst’s own expertise is considered when correlating the

true severity between security events. The concept of HeAT is to create these correlations between a

critical episode and the episodes prior. Given ec and ep, our objective is to define an Heat Generator

as: h(ep|ec) = f(ep, ec) where {h ∈ R|0 ≤ h ≤ 3}.

We design the HeAT-values as a small set of discrete values that signify key milestones within an

attack campaign. Table 4.1 describes the characteristics of the distinct HeAT-values used to label and
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create the initial triage training set. We use the high-level attack stages such as “reconnaissance”,

“exploitation”, and “actions on objective” [11] to represent heat levels 1, 2 and 3, respectively, to

reflect their progressive impact on a network. We choose a “less-is-more” approach as we embed

specific attack stage information within our labels and human studies show that 3 to 4 options

is optimal reduce error for human surveys [3]. With HeAT level representing a small number of

mutually exclusive attack stages, we believe the analyst can quickly determine an appropriate HeAT

level and we believe there will be less ambiguity between HeAT levels.

Table 4.1: Description of the the HeAT-value levels relating to attack milestones

HeAT-value Description
0 No relation to critical event
1 Recon. actions that may provide info. about ec
2 Exploitation of assets giving access required to achieve ec
3 Exfiltration/DoS/Access to info. directly relevant to ec

Given our focus on episodes we now describe our process for converting individual alert streams

into aggregated alerts to “Alert Episodes” and then features that describe our episodes.

4.2.2 Alert Episodes with the Action-Intent Framework (AIF)

When discussing IDS’s it is common knowledge that they are plagued with generating a high volume

of alerts due to false positives, vague signatures, or actions that cause excessively repeated alerts.

Alert aggregation is used to group alerts of similar attributes such as time proximity or impact to

reduce the number of events presented to the analyst but also could represent an action performed by

the adversary. Our main limitation is that we only have the attributes defined within the Suricata IDS

alerts, which is limited in scope, however we use the alert signature description to deduce the “type”

of action the adversary could be performing. Given the alert attributes, we define an “Alert Episode”

to be the set of aggregated alerts for a single source IP and same attack stage across multiple target

IP’s within a similar time proximity. We accept that source IP is not a totally reliable attribute, we

believe it is the best opportunity to capture alerts caused by one adversary.

We adopt the our own Gaussian Smoothing approach to aggregate alerts based on source IP,

attack stage, and time [44]. We describe a process where alerts are aggregated based on the fluc-

tuations of alert volume within a time window for specific IP addresses and Suricata categories to
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uncover common sub-sequences of attack patterns. We choose this process due to its effective ap-

plication of Gaussian smoothing to represent aggregate alerts whose the alert arrival time may be

inconsistent, sporadic, or periodic. We concluded [44] mentioning that the Suricata alert “category”

is a weak representation attack stages of an well established attack stage framework such as MITRE

ATT&CK. We use PATRL to map all Suricata alert descriptions to the AIF so that alerts can be ag-

gregated based on similar attack stages. Gaussian low-pass filtering is applied to histograms in time

of alert volume for single IP and AIS, where the LPF filter parameter is set based on the expected

duration of the action on a per AIS basis. Certain types of attacks may have longer duration than

others and thus different filter sizes are used.

Our Alert Episodes are derived by evaluating each peak of the AIS-based filtered histograms and

the collection alert(s) contained in-between the two local minima of the corresponding peak make

the episode. An example of this process can be seen in Figure 4.2. Conducting this process over

each attack stage for each source IP, combining the derived episodes, and sorting the by the peak

episode time gives an abbreviated view of the sequence of “actions” performed by that adversary.

Figure 4.2: The Gaussian smoothing approach by Moskal et al. accounts for variations in alert
arrival time to create Alert Episodes and creates sequences of episodes by sorting episodes by peak
smoothed volume times.

This episode representation not only summarizes the alerts but also enables us to define network-

agnostic features to compare episodes. Next, we define our network-agnostic features used to rep-

resent the relationship between two alert episodes and the HeAT-value.

4.2.3 Network Agnostic Features between Alert Episodes

We engineer our features with two elements in mind: 1) the features describe relations between

two episodes so that the HeAT-value can be determined with respect to a critical episode and 2) the
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features are network agnostic so that the model does not learn network specific HeAT relations that

cannot be applied to other attack types or network configurations. As the episodes contain set of

alerts with a wide variety of complex data types such as IP addresses, alert signatures, etc. , we

manually define a set of episode features to represent each of these data types. Each alert episode

contains the attributes shown in Table 4.2 which are derived from the alerts contained within the

episode.

Table 4.2: Definitions of the attributes contained within an alert episode.

Name Symbol Description
Ep. Peak epeak Time of peak alert volume
Ep. Start estart Time of earliest alert
Ep. End eend Time of latest alert
Distinct Source(s) esrc Set of distinct source IP(s)
Distinct Target(s) etgt Set of distinct target IP(s)
Distinct Sig(s) esig Set of distinct signatures
Distinct Dest. Port(s) eport Set of distinct dest. ports
AIS eais AIS of the episode

We define three types of features to capture different aspects of common characteristics between

episodes: 1) Time, 2) IP, and 3) Action based features, shown in Table 4.3. The time-based features

capture the differences between the critical alert episode and the prior episodes. Our IP-based

features compare if there are similarities between IP addresses of the two episodes without defining

any details of the IP addresses themselves. Lastly, our action-based features capture similarities

between attack stages, signatures, and port numbers to determine if the two episodes have a similar

network impact.

Our hypothesis is that these network agnostic features will allow us to uncover a variety of

attack campaigns without detailed network topology or system vulnerabilities. We propose that

these network agnostic features can be used to predict the HeAT-value for other attack types and be

applied to other networks. In the next section we describe our methodology for creating the “Heat

Generator” and how we leverage a small amount of labeled HeAT-values to determine HeATed

Attack Campaigns (HAC).
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Table 4.3: The set of network agnostic features relating the attributes of two alert episodes.

Type Feature Description

Time

Ep. Interval Overlap
Overlap between the start &
end times of ec and ep

Ep. Peak Time Diff. ec,peak − ep,peak
Ep. Start Time Diff. ec,start − ep,start
Ep End Time Diff. ec,end − ep,end

IP

Has Matching Source 1 if ec,src ∩ ep,src else 0
Has Matching Target 1 if ec,tgt ∩ ep,tgt else 0
Matching Source Ratio Ratio of matching source IPs
Matching Target Ratio Ratio of matching target IPs
Crit. Source as Target 1 if ec,src ∩ ep,tgt else 0
Crit. Target as Source 1 if ec,tgt ∩ ep,src else 0

Action

Critical Ep. AIS 1-hot encoded ec,AIS

Prior Ep. AIS 1-hot encoded ep,AIS

Has Matching Sigs. 1 if ec,sig ∩ ep,sig else 0
Matched Sig. Ratio Ratio of matching signatures
Matching Dest. Port 1 if ec,port ∩ ep,port else 0

4.2.4 Heat Generator: Learning the Analyst’s Heat

The “heat generator” is our name for a machine learning model for predicting the HeAT-value

given the aforementioned network agnostic features representing the relationship between two alert

episodes. When defining the concept of the Heat Generator significant challenges arise as labeled

data describing an attack campaign with respect to IDS alerts generated is few and far between.

Data sets that do exist within the research community are typically either outdated (irrelevant attack

types), unlabeled, and/or represented in a different domain (i.e. packet captures) than IDS alerts.

Instead we have the user conduct an initial “triage” of their IDS alerts, label HeAT-values to episodes

related to a known IoC, and then use the network-agnostic features to create a predictive model to

“generate” heat given other IoC’s.

Datasets for the Initial Triage

To demonstrate HeAT’s ability to uncover insightful attack campaigns within IDS alerts, we choose

to use data that is known to have actual examples adversarial behavior. In this work we use publicly

available data from penetration competitions such as CPTC ‘18 [54] and use observations from this

set to find other attack campaigns in a real-world SOC data set. Competition sets like this give us the
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opportunity to use HeAT to discover minute differences between attacker strategies with the same

critical alert. We set-aside the alerts of one of the 10 teams as “team train” to create our initial triage

data and compare the results of HeAT against the remaining teams as ”team test.” The Suricata IDS

alerts from the CPTC ’18 event are publicly accessible from [69] and we use PATRL to provide the

attack stage described by each alert. Table 4.4 summarizes the characteristics of the overall CTPC

data versus the single team used for training.

Table 4.4: Characteristics of the alerts and episodes between all teams in CPTC and the team used
for the initial training triage.

Unique
Sources

Unique
Targets

Unique
Sigs

Total
Alerts

Total
Episodes

CPTC (All Teams) 45 81 265 169,448 3200
CPTC “Team Train” 29 49 171 53,362 529

To create the training data for the heat generator, we ask the user to perform a short initial

triage of the prior episodes with respect to a critical IoC and apply HeAT-values representing their

opinion of the attackers progress contributing towards the IoC. For each prior episode to the IoC,

we compare attributes between the two episodes such as: time difference, IP address similarities

, AIS, and signatures to derive an appropriate HeAT-value given our experience of the network,

data characteristics, and our own security knowledge. In practice we recognize that analysts could

be faced with an excessive amount of data to be labeled. In this case, we assume our network

agnostic feature set can lessen the reliance on massive amounts of labeled data typically needed

for machine learning applications along with our intuitive HeAT-value definition to create a more

efficient labeling process.

To test this assumption, we use the CPTC team set aside, “Team Train”, and use those episodes

to create our initial heat generator training data. We selected three critical IoC’s to initially manu-

ally triage: 1) “ETPRO ATTACK RESPONSE MongoDB Database Enumeration Request”, 2) “ET

EXPLOIT Possible ETERNALBLUE MS17-010 Heap Spray”, and 3) “GPL EXPLOIT CodeRed v2

root.exe access.” These signatures describe data exfiltration, arbitrary code execution, and root priv-

ilege escalation actions respectively and can lead to significant access and impact if successful. We

then manually apply HeAT-value to prior episodes to the critical IoC’s and show the distribution of

HeAT-values given in Table 4.5.
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Table 4.5: Distribution of Team Train’s HeAT-values of prior episodes given the IoC’s

Training HeAT-value HeAT-value Count
0 720
1 202
2 154
3 347

Recall that our network agnostic features describe the relationship between two alert episodes,

where one of the episodes are an episode containing one of the IoC definitions above. As this

competition data set has many objectives we could identify episodes with no relationship to the IoC

being triaged, thus our labelled dataset is skewed towards zero heat-value observations. We are not

concerned about this however as actual attacks in the real-world will be rare when compared to the

number of alerts raised. Given this set of traiged pairs of episodes with analyst-supplied HeAT-

values, we convert the episode pair into our network-agnostic feature space, use that to train the

heat generator, and then use the heat generator to replicate the triage process with HeAT.

HeATing Episodes to Develop HAC

Given an set of traiged episodes with the analyst’s labelled HeAT-value, we define the heat generator

as h(ep|ec) = f(ep, ec) where {h ∈ R|0 ≤ h ≤ 3}. We define a HAC for given a critical episode

ec as the set of all prior episodes ep ∈ E where the heat generator applies a non-zero HeAT-value.

Our requirements for a selecting a machine learning model for this application are bound by our

non-linear features and that the HeAT-value must be a continuous value. HeAT is implemented in

Python and our heat generator leverages Fast.AI’s Tabular learner [16] to predict the HeAT-value.

All features within our data are standardized to have a zero mean and unit variance and we report

our 5-fold cross-validated mean squared error (MSE) for the training data.

The process of extracting the HAC from the our data is similar to our training process where a

critical alert is given by the user, HeAT finds the corresponding episode containing the critical alert,

and then the heat generator is used to “HeAT” all prior episodes with respect to the critical episode.

This process is shown in Figure 4.3. We apply HeAT to all prior episodes to give our model the

opportunity to discover episodes that may have significantly contributed to the attack campaign that

may not immediately obvious. The set of HeATed episodes with a non-zero HeAT-value are then
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considered to be apart of the HeATed attack campaign of the critical alert. As the episodes may con-

tain many alerts, we foresee the generator finding small relations to the critical episode and apply a

small amount of HeAT to episodes that may not contribute much to the overall campaign; a mini-

mum HeAT-value threshold can be applied if the user desires. We expect truly impactful episodes to

have significantly higher HeAT-value levels than those with just a few similarities between features.

Figure 4.3: General process of HeAT to apply HeAT-values using the Heat Generator given an IoC.

4.3 Metrics to Assess HAC: HeAT-Gain

To demonstrate the additional value provided by the HeAT process and demonstrate its ability to

reveal meaningful attack campaigns to the analyst, we develop a quantitative entropy-based metric

called “HeAT Gain”. As HeAT is intended to assess unknown/unlabeled IDS datasets, we assume

that it may be impossible to determine the actual accuracy and quality of the HAC presented to

the user. We propose the assessment of the HAC characteristics to infer on the “quality” of the

HAC without the need for labeled ground truth data. We leverage characteristics from the generated

HAC, the data being tested (history of IDS alerts), and the HeAT model training data to develop a

quantitative metric to evaluate the extra knowledge the HAC provides to the user. HeAT Gain is

envisioned to aid the user to quickly compare and prioritize HAC’s that are most likely caused by

adversarial behavior, especially in production systems with high volumes of daily traffic.
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Given the attack episodes of the data-under-test Ed, the set of heat-labeled training episodes Et,

and an HAC representing a finite set of HeATed attack episodes e ∈ Eh where Eh ⊆ Ed, we define

HeAT Gain, ∆(Eh|Ed, Et) as a combination of three entropy-based metrics with the following

properties:

1. AIS Coverage Gain: Eh should contain a variety of attack stages, for example a broad

coverage of the cyber attack kill chain,

2. Noise Reduction Gain: Eh is a subset of Ed with noisy and/or irrelevant episodes to the IoC

removed, and

3. HeAT Coherence: the HeAT model should apply appropriate HeAT according to the analyst’s

initial observations in the training set Et.

To quantify these properties using the distribution of attack stages and the predicted HeAT val-

ues, we use the standard definitions for Shannon entropy H(X) and conditional entropy H(X|Y )

shown in Eq. (4.1) and (4.2) respectively.

H(X) = −
n∑

i=1

P (xi)logbP (xi) (4.1)

H(X|Y ) = −
∑
i,j

P (xi, yj)logb
p(xi, yj)

p(yj)
(4.2)

Let Ax be the random variable of attack stages given the set of episodes Ex. Likewise let Yx be

the random variable for the predicted HeAT value given Ex where the predicted HeAT for e ∈ Ex

is given the discrete value: {y ∈ Z|0 ≤ y ≤ 3}. For both entropy definitions we calculate entropy

with respect to attack stage and we use the log base b to be the count of attack stages defined in the

AIF. Lastly, the subscript x represents either the HAC, the data-under-test, or training data denoted

as h, d, or t respectively. Referring to the properties above, we now describe our definitions and

methodology for each and then combine each property to create our HeAT Gain metric.

AIS Coverage Gain: δACG = H(Ah). AIS Coverage Gain quantifies the diversity of the

attack stages caputured in our HAC. With our assumption of a “quality” HAC containing a diverse

set of attack stages, HAC’s with high AIS coverage gain signifies that the HAC represents many

types of attack stages and is more likely to capture each step of the cyber attack kill chain, from
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reconnaissance to achieving the final attack objective. Whereas low coverage gain may indicate

limited adversarial behavior, false positive alerts, or otherwise less revealing HAC’s by the model.

This property provides the basis of our HeAT gain metric where high coverage of attack stages is

preferred. This simple metric alone may be misleading where calculated attacks that take few steps

will be unfairly penalized when compared to adversaries that caused many unique alerts. Where it

is completely likely the calculated attack may have a more significant impact and be harder to find.

We instead use our next metric “noise reduction gain” to reward the HAC’s that reduce the most

amount of noise or irrelevant episodes.

Noise Reduction Gain: δNRG = H(Ad) − H(A
′
h). The noise reduction gain measures the

difference between AIS coverage gain between the entire data set Ed and the irrelevant episodes

filtered out by our HeAT process. Recall that Eh is a subset of Ed where the predicted HeAT value

exceeds a minimum threshold defined by the user and it is this reduction of irrelevant episodes that

will provide a concise representation of the attack campaign. We defineA
′
h similarly toAh however

in this case all e ∈ Ed and the episodes that do not meet the minimum heat threshold set are given a

unique attack stage αr, signifying that those episodes were removed from the HAC. We expect A
′
h

to have substantially lower entropy as most of e ∈ Ed will be removed from Eh, skewing the attack

stage distribution towards αr. Ed may represent multiple days worth of episodes and we expect a

vast majority of these episodes to be irrelevant. We believe this will complement the coverage gain

as this rewards HAC’s that only contain relevant episodes and is unique when compared to all data.

Ideally we want H(Ah) to have high entropy (many attack stages represented) and a near-zero A
′
h

(nearly deterministic to αr) for the maximum amount of HeAT Gain. In the case for our calculated

adversary example, H(Ah) will be low as few stages are represented but A
′
h should be very close

to zero meaning the HAC is concise in the stages it is representing.

These two properties rely on a minimum heat threshold to filter out irrelevant alerts which has

a significant effect on the entropy calculation. These properties do not take in account of if the

predicted HeAT value by the model accurately representing the HeAT training values set by the

analyst during the initial training triages. Our last metric “HeAT Coherence” will take in account

the predicted heat values of Eh versus the training data Et.

HeAT Coherence: δCOH = abs(H(Ah|Yh) − H(At|Yt)). HeAT Coherence measures the

coherency of the relationship between the attack stage and the predicted HeAT value given from
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the analyst reflected by the HeAT model. Ideally we would expect our model to apply HeAT to

episodes consistently with the labeled HeAT values within the given training set. This would lead

to H(Ah|Yh) = H(At|Yt)) and we expect the HeAT coherence to be as close to zero as possible.

As our predictive features consider more than just attack stage we may experience the case where

H(Ah|Yh) > H(At|Yt)) which may indicate that the model is applying HeAT based on other factors

than attack stage which is inconsistent with the feature values given in the training set. Whereas

H(Ah|Yh) < H(At|Yt) would instead indicate that is deterministically applying HeAT based on

attack stage, a condition that could be addressed with simple rules. We find either of these cases to

be undesirable and situations where H(Ah|Yh) is constantly divergent from H(At|Yt) may indicate

when the model is insufficient to apply HeAT given the data and additional labeled training data

may be needed. Given these properties, we now define ∆(Eh|Ed, Et) as a combination of each

property to quantify the overall utility of the attack campaigns represented by our HAC’s.

HeAT Gain: ∆(Eh|Ed, Et) = δACG + δNRG − δCOH . The final formalization of the HeAT

Gain metric rewards attack campaigns with a diverse set of attack campaigns that are unique when

compared against all other episodes while penalizing and significant deviation of predicted heat

values given the observations of the training data. Using entropy allows us to quantify specific

properties of desirable attack campaigns and infer on the potential “quality” of the generated attack

campaign without the need of labeled ground truth. Due to the volume of data typical SOC oper-

ations are faced with, HeAT may still present the user a large amount of viable HAC’s to assess

and metrics like this enable the user to prioritize their time on high gain HAC’s. We will also show

that the individual values of each of the components of the metric compared to each other can also

provide interesting details about the HAC that cannot not be realized with only ∆(Eh|Ed, Et).

Our intended usage for HeAT-gain is simple, it is to prioritize the analysis of HAC’s with sig-

nificant AIS coverage, free of irrelevant episodes, and is coherent with the analyst’s throughout

processes. In this work, we will prioritize the assessment of those HAC’s that have the highest over

HeAT-Gain value. There may be multiple valid HAC’s for a given IoC and we will demonstrate

HeAT-gain can be used to quickly focus on attack campaigns that are likely to be complete and sig-

nificant to the analyst. Given our initial assumptions this entropy-based HeAT Gain metric provides

an intuitive method to quantify quality attack campaigns and provide some initial impressions of

the HAC before inspection of the episodes within. In the next section, we apply the HeAT model to
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the other CPTC teams and a real-world SOC data set to discover and prioritize meaningful attack

campaigns using HeAT-gain.

4.4 HeATed Attack Campaign Analysis

Demonstrating the effectiveness of a process like HeAT is extremely challenging due to the lack

of standardized training sets. Instead we take an alternate approach by performing a set of case

studies that mimics the type of analysis we would expect to see if HeAT was deployed in a real

world scenario. In this section, we will be doing case-studies on two sources of IDS data: 1) the

penetration testing competition CPTC, and 2) a real-world example of alerts from a SOC. For each

of these case-studies we will be using HeAT-gain to first identify the most critical HAC’s for the

IoC’s. We begin assessing the CPTC IDS data in which adversarial behavior is abundant and easy to

identify by IP address. Then we move on to our SOC dataset where there is little knowledge about

the network or targets and we use HeAT to assess this network “blind.” With the SOC data, we have

no clear directive and we use HeAT-gain to prioritize the assessment of HAC’s of a variety of IoC’s

to find interesting attack campaigns. We close this section by discussing our ability to capture the

analyst’s attack campaign knowledge using HeAT-gain.

4.4.1 Case Study: Assessment of CPTC

Our CPTC dataset gives us the unique opportunity to investigate differences in attack strategies of

different adversaries given the same objective, or in this case the same critical alert. We propose the

scenario where a user has identified a critical alert in the past, triaged the critical alert with HeAT,

and then re-observes the same critical alert in the future. Although the impact of the vulnerability

is the same, we expect the approach taken could be different and thus a different mitigation strategy

would be required. We apply HeAT to different adversaries to demonstrate how HeAT is used to

gain additional insight into attack strategies through the use of the HeAT gain metric.

For this case study, we used the alert “GPL EXPLOIT CodeRed v2 root.exe access” as it was

prevalent across many adversaries and it leads to a significant amount of access if successful. Even

given the limited scope of CPTC, manual analysis of this signature would still prove to be challeng-

ing and time consuming. Referring to Table 4.6, this CodeRed signature accounted for 38 out of the
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169,448 alerts. Without HeAT, an analyst would have to manually identify which of the remaining

alerts are related to each CodeRed occurrence through numerous SIEM queries. The application

of our alert episode aggregation alone would make this analysis significantly less tedious as the

aggregation process reduces the alert volume in this case by over 98%.

Table 4.6: Summarization of the CPTC data that an analyst would have to assess for each CodeRed
observation

Unique
Sources

Unique
Targets

Unique
Signatures

Total
Alerts

Total
Episodes

CodeRed
Occurrences

45 81 265 169,448 3200 38

This still leaves us with 38 potential attack campaigns that will require the analyst to assess and

even with the episode reduction this task may still be tedious. Due to the competitive nature of this

data set and the variance in skill set, it is reasonable to assume that some of these observations of

CodeRed lead to more severe outcomes than others. We use our HeAT Gain metric t to prioritize the

assessment of attack campaigns and also to compare HeAT against typical methods one would use

if performing a manual assessment. We consider “naive” rule-based methods for generating attack

campaigns for a given IoC by collecting sets of episodes where: 1) the source IP matches with the

IoC, 2) the target IP matches with the IoC, and 3) both source and target IP match the IoC.

Applying HeAT to the CPTC episodes for each observation of CodeRed, we first turn our atten-

tion to the HAC that is reporting the highest HeAT-gain overall. Figure 4.4 compares the CodeRed

attack campaigns generated by HeAT versus our IP address rule-based representations of the attack

campaign. Each circle represents an alert episode for a specific attack stage, the size of the episode

represents the number alerts in the episode, and the color corresponds to the predicted HeAT value

(Grey/Green=low HeAT, Red=High HeAT).

For the HeATed representation we found the highest gain with a minimum heat threshold of

.3, resulting in a concise attack campaign with clear examples of reconnaissance, exploitation, and

other high severity attack stages for this IoC. Simply searching by target IP is insufficient which is

reflected by the comparatively low gain. Assessment of the breakdown of the HeAT gain metric for

each attack campaign in Figure 4.5 verifies

The inclusion of searching by source IP leads to significant improvement in gain but fails to

eliminate episodes in the earlier part of the campaign that we identified as apart of a prior attack

68



Figure 4.4: The HAC appropriately removes irrelevant episodes and enables the prioritization of the
analysis of episodes with the provided HeAT level.
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Figure 4.5: The HeAT Gain for the HAC is contributed to maintaining high AIS coverage with large
amount of noise reduction.

campaign. The penalty in gain for these cases is due to the lesser amount of noise reduction when

compared to the HAC representation. A benefit of HeAT is that we would not be distracted by the

episodes from another campaign; where the first example of “Root Privilege Escalation” was given

a significant amount of HeAT indicating that episode should also be assessed.

In many instances for the CPTC dataset, considering only the source and target IP matched may

be sufficient. Consider the HAC for CodeRed in Figure 4.6 which has a significantly lower gain of

.64 than the previous HAC and also is an example where the source and target matched attack cam-

paign reports a slightly higher gain of .66. Despite the low gain, we found this HAC to be interesting

as it has a low amount of noise reduction compared to other examples. We have identified that this

behavior seen is the result of scripted attacks where we observe a small amount of reconnaissance

at the beginning of the campaign followed numerous attempts of CodeRed on multiple targets. Our

source-based aggregation benefited us greatly here as these actions were single-source, multi-target.

This is evident in the breakdown of the gain of the source IP matching case being identical to the

HeATed case.

Due to the simplicity of the CPTC data and the fact that it is a penetration testing competition,

we find that in general the HeAT model is strongly biased towards episodes with matching source
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Figure 4.6: Certain behaviors such as a“script kiddie” has results in a small amount of noise reduc-
tion due to the high volume of actions from a single source, repeating the same action.

and target IP’s to the IoC. There is very little benign noise within CPTC and it is safe to assume

that most actions captured in this set are deliberate with no intention of going undetected. Herein

lies the issue with using competition data-sets; real-world data-sets are flooded with false-positive

alerts, where actual attacks are rare and there is likely effort to avoid detection. We are confident

in HeAT’s ability to reveal attack campaigns within an environment like CPTC, we now turn to the

assessment to a real-world SOC dataset that is much more difficult to process and interpret.

4.4.2 HeATing a Real-World SOC OP

Our SOC data-set contains 30 days total worth of Suricata alerts from a medium-sized US-based

university; in this work we process one week of this data. Assume the role of the SOC analyst of

this network where there are 1000’s of daily users generating mostly benign traffic. It is your job to

identify first if there are potential threats and then second identify each step the adversary took to

identify the attack campaign. Table 4.7 demonstrates the challenges SOC analysts have with assess-

ing IDS traffic and why so many attacks go unnoticed until it is too late. Ideally SOC operations are

a 24/7 job, however this is not the case in reality and the analyst is constantly attempting to catch

up. If we focus on the signatures that Suricata defines as “high severity” (severity=1) as “critical”,

we find that a significant portion of the unique alerts per day are critical. Not all of these will be

actually severe and lead to an attack campaign; distracting the analyst from discovering the true

critical attack campaign. We demonstrate how HeAT can be used to aid the SOC analyst using the
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observations previously seen in CPTC, a data-set where it was much more obvious to determine

adversarial activity.

Table 4.7: Daily summary of alert traffic for the SOC data-set where alert traffic is at a constantly
high volume. *Weekend Traffic

Day
Total
Alerts

Total
Episodes

Unique
Sources

Unique
Targets

Unique
Signatures

“Critical”
Signatures

1* 894,915 77,202 3,071 195,553 123 32
2* 664,754 74,396 2,946 187,452 104 33
3 620,202 94,408 5,263 171,006 145 48
4 773,622 97,276 5,521 189,877 145 48
5 532,182 89,919 5,357 163,818 149 60
6 549,498 87,929 5,072 165,265 125 37
7 646,699 83,409 4,860 186,681 130 45

Other than obvious difference in scale compared to the CPTC data, we apply some extra pro-

cessing to this data set to improve scalability. First, IDS for this data is placed at the actual “edge”

of the network where the “sources” in this data are from external sources as opposed to CPTC where

the traffic was from all internal competitors. As an externally-facing network is subjected to con-

stant probes from the internet, both benign and malicious, we foresee our source-based aggregation

to struggle to scale to this level. Our IP addresses are also sanitized making it more challenging to

know where/who is the attack is originating from. We instead use the Autonomous System Number

(ASN) of the sources to perform our aggregation on as we are able to distinguish external sources

from internal sources and group sources from roughly the same physical location. Also some types

of malware results in internal IP’s to appear as a source to the IDS to call out to a malware control

server, in these cases we swap the source and target IP’s of these alerts to represent the true adver-

sary and victim IP. Table 4.8 demonstrates that using ASN for our aggregation significantly reduces

the number of episodes the analyst will have to assess.

Table 4.8: Source-ASN based aggregation is recommended for SOC data as it combines the activi-
ties from sources of similar location.

Source IP
Episodes

Source ASN
Episodes

Total
Reduction

604,537 336,822 -44.3%

This only changes how the alerts are aggregated into episodes and the real source and target IP’s
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are maintained in the episode. Given that we use network-agnostic features, our process can assess

the attack campaigns with respect to the analyst’s training triages regardless of how the episodes

are represented. Using a set of critical signatures, we demonstrate how HeAT can use observations

from CPTC (source IP based) to assess this real-world set.

Case Study: HeATing the SOC

Our analysis begins with the selection of our IoC’s and for this experiment we choose examples of

signatures that contain a CVE number as the impact of these actions is much more well documented.

Demonstrated in Table 4.9, once again the scale of this data set poses a challenge for the analyst

as there are 1000’s of occurrences for these signatures each treated as an individual IoC. From the

minimum and maximum HeAT gain for each of these signatures, we find that not all of these lead to

any significant attack campaigns. Looking at the HeAT-Gain of all IoC’s in Figure 4.7, we confirm

that we would prioritize the attack campaigns with the highest gain as these also have a diverse set

of attack stages represented. We find that the AIS coverage term of the gain enables us to further

prioritize the HAC’s with a high amount of attack stage coverage, where we find only a handful of

the hundreds of possible HAC’s have a significant amount of AIS coverage. We found that 20 out

of the top-25 HeAT-gain HAC’s had the highest AIS coverage which we believe is most likely to

contain the most significant attack campaigns. We demonstrate this by assessing the HAC’s with the

highest overall HeAT-gain. Without HeAT and this metric, it would be substantially more difficult

to identify which occurrence of the alert should be assessed. Each of these 1000’s IoC’s may still

be related but the highest HeAT-Gain HAC is most likely to completely describe each stage of a

successful attack scenario.

We first turn to the alert of CVE-2020-5902 which describes a remote code execution (RCE)

vulnerability on F5’s enterprise traffic manager, load balancer, and DNS. This is a particularly crit-

ical signature if successful as the adversary could have nearly full control over the flow of traffic

within the network and could redirect traffic wherever they desire. With our insights AIS cover-

age, Figure 4.8 displays the HAC with the highest AIS coverage and overall gain compared to all

episodes occurring 48-hours prior to the critical event.

Again it is immediately apparent of the importance of automating the triage process as the scale

of the network increases, as few episodes actually contribute to the attack campaign. With HeAT we
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Figure 4.7: High HeAT-Gain attack campaigns also have high AIS coverage making it more likely
to reveal a complete attack campaign

Table 4.9: Out of the hundreds of occurrences of an signature, only few have significant AIS cover-
age leading towards meaningful attack campaigns.

Signature Description Total
Max
∆h

Min.
∆h

Count of HAC with
AIS Coverage

>.2 >.3 >.4
ET WEB SPECIFIC APPS Drupalgeddon2 <8.5.1
RCE Through Registration Form (CVE-2018-7600)

808 .9834 .085 766 349 7

ET EXPLOIT F5 TMUI RCE vulnerability CVE-2020-5902 866 .9834 .076 812 360 7
ET EXPLOIT Possible CVE-2013-0156 Ruby On Rails
XML POST to Disallowed Type YAML

881 .98 .044 810 355 7

ET WEB SERVER Possible CVE-2014-6271 Attempt 379 .98 .316 360 118 5
ET EXPLOIT Cisco ASA/Firepower Unauthenticated
File Read (CVE-2020-3452)

885 .906 .072 830 365 7
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Figure 4.8: HAC with a minimum HeAT of .15 (right) substantially reduces irrelevant alerts and
revealing concerning characteristics about prior episodes.

can immediately turn out focus on the HeATed episode immediately prior to the critical IoC where

we find lateral movement and exploitation on the same port of alleged victim service. Following the

annotations in the figure, we make the following observations immediately given this HAC:

1. The first evidence of root-privilege escalation on the victim

2. Command and control activity on the same source and victim using the same port number as

the IoC. This is the only HAC for this IoC to contain this specific episode.

3. The IoC episode with the same destination port as the C2, this is likely to be compromised.

There is other exfiltration activity targeting the same victim from the same ASN (different

true source IP) at the same time.

This HAC provides an exceptional starting point for investigation as the C2 behavior does in-

dicate some level of compromise and we should investigate the initial privilege escalation further.

Whereas if we look at the same episode without HeAT, we see that there were 3 other episodes con-

taining over 100 alerts occurring nearly at the same time of the C2. This would make alert-based

analysis significantly more difficult. Even at the episode level, individual analysis of each episode

for each IoC would be exhausting for an analyst to perform as there are many irrelevant periodic

episodes. With HeAT and HeAT-gain, we were able to quickly identify suspicious episodes that

would need further investigation.
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We also find other interesting behaviors from the same ASN, but different true source IP, target-

ing our victim at the same time. These episodes were appropriately given a lower HeAT value than

the episodes that did share the same true source and target IP’s and we find it suspicious that the

“data delivery” episode occurs at the same time as our IoC on the victim. These are observations

that may have been missed or obscured if we were using the IP-based “attack campaigns” instead.

Unlike the CPTC data the IP-based attack campaigns are much less useful due to volume of data

and potentially-large IP-space as demonstrated by Figure 4.9.

Figure 4.9: The HeATed representation provides the most amount of AIS coverage, has the most
amount of noise reduction, and has an accurate HeAT coherence.

We found the IP-based attack campaigns to contain many episodes from periodic and irrelevant

alerts that we believe would initially distract the analyst from the true attack campaign. This is

reflected by the lower amount of noise reduction and the AIS coverage entropy being bias towards

the noisy periodic alerts when compared to the HeATed example. Given the sheer number of the

potential attack campaigns, the time taken addressing these distractions will significantly add to the

time needed to respond to the attack.

We also find that for the HeATed representation the HeAT coherency term is near-zero meaning

that the HeAT values displayed are an accurate reflection of the HeAT observed by the analyst in
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prior triages. High AIS coverage and noise reduction combined with near-zero coherency means that

we have a diverse and noise free attack campaign that is tailored to the thinking of the analyst. For

each of the aforementioned signatures we find that as AIS coverage increases, our HeAT coherency

will typically decrease as our HAC’s have more meaningful attack stages. We show this in Table

4.10 where we show the average HeAT coherency for HAC’s of various AIS coverage.

Table 4.10: As the AIS coverage increases for the HAC’s, the HeAT model can more accurately
apply HeAT from prior triages.

Signature Description
Average HeAT Coherency

Given AIS Coverage:
<.2 .2<δACG<=.4 >.4

Drupalgeddon2 <8.5.1 RCE Through
Registration Form (CVE-2018-7600)

.217 .0857 .0745

F5 TMUI RCE vulnerability CVE-2020-5902 .198 .0962 .0756
CVE-2013-0156 Ruby On Rails
XML POST to Disallowed Type YAML

.225 .0861 .0607

Possible CVE-2014-6271 Attempt .181 .0865 .0598
Cisco ASA/Firepower Unauthenticated
File Read (CVE-2020-3452)

.251 .0659 .0754

Our HeAT gain metric is reporting that our most meaningful attack campaigns are also best

representing the analyst’s impressions of important actions to be included in the attack campaign.

Given that we used observations from another network with significant differences in behavior, we

wonder if the observations from CPTC are sufficient to reveal attack campaigns within the SOC

data or if additional test-network specific data is required. The above attack campaigns used CPTC

observations with a small amount of additional observations from the SOC network and we demon-

strate that our network-agnostic features do allow for significant transferability of observations but

even better results can be achieved with additional data.

Transferability of Attack Campaigns

Given that identifying and evaluating attack campaigns on CPTC is relatively straightforward, it

would be advantageous if we can capture the analyst’s HeAT input from CPTC and apply it to

other scenarios. As mentioned before, CPTC may not be the most realistic representation of real-

world attack campaigns however we believe the indications/characteristics of prior attack campaigns

through network-agnostic features can aid in transferring the analyst’s prior observations. Due to
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the vast difference in alert volume, network architecture, and attacker behavior between the CPTC

and the SOC data-set, it is we assume that additional observations from the SOC data-set will

result in identifying more meaningful attack campaigns tailored for the SOC network. Assume the

scenario where the observations from the CPTC set are provided to the user initially and we ask the

analyst to first provide HeAT observations on the new network under test. Using the insights from

the previous experiments and the HeAT Coherency term of HeAT-Gain, we demonstrate how these

new additional observations enable the “fine-tuning” of the CPTC observations to the new network

architecture resulting in the extraction of attack campaigns from SOC data sets.

Given the size of our SOC data, the selection of the IoC that results in the discovery of an ac-

tual attack campaign to be labelled may be unlikely. We believe additional labelled data regardless

if it represents actual adversarial actions allows for the HeAT model to better distinguish between

irrelevant noise and the more critical attack campaign characteristics as observed in the CPTC data.

Given at the time that we also had very little knowledge about potential attacks within the SOC

data, we selected a signature that we felt was important to assess and include as our own critical

SOC observations. The signature “ET EXPLOIT Possible ETERNALBLUE Probe MS17-010” al-

lows for arbitrary code to be executed through a SMB-share typically leading to the installation of

ransomware. We triaged two instances of this signature where we labeled 125 prior episodes with

our reflection of the appropriate HeAT value given the relationship between the prior alert and the

IoC and our own experiences of if the episode is likely to be a part of the same attack campaign.

This is a small fraction of the 1,700+ observations we made for CPTC and we now demonstrate how

the new observations allows the model to more accurately apply HeAT and expose more meaningful

attack campaigns with reduced noise.

Using the high AIS coverage HAC’s discovered previously in Table 4.9, we compare the HeAT-

Gain of each attack campaign before and after the SOC observations were added to the HeAT

model. Recall that when our HeAT coherency term is near zero the heat-value given the attack

stage is reported consistently between our labelled observations and the generated HAC. Figure

4.10 demonstrates for the “Drupalgeddon2” CVE-2018-7600 signature the additional SOC obser-

vations reduces the coherency to near-zero consistently and in most cases reports a higher gain than

using only CPTC observations. We also find that some cases the CPTC-only observations perform

comparatively and there are very few differences between the attack campaigns. So we ask: “what
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attack campaign characteristics are getting transferred over?”

Figure 4.10: HAC’s discovered with additional SOC data consistently reduces the HeAT coherency
to near-zero resulting in a more accurate reflection of the true attack campaign contribution.

Recall that in our CPTC experiments we made the observation that the model was biased to

episodes that had the same source and target IP address of the IoC. In CPTC it was common to

see episodes with only one source and target IP whereas our SOC data it is common to observe a

single episode with multiple sources and many targets. This is a result of us finding that filtering

by source-ASN was much more appropriate to represent and aggregate the vast volume of SOC

alerts. Remember that our network-agnostic features evaluate the ratio of common IP addresses.

We found in cases where there was a large discrepancy between in the HeAT coherency, such as

IoC 0 and 3 in Figure 4.10, the CPTC-only model would apply high heat to episodes where there

was almost an exact match between the source and target IP. Where the additional SOC observations

were able to bring up the HeAT-value for cases where the true victim IP address was one of many

that where targeted within that episode. This would not be unusual as with a network of this scale,

many adversaries may target many victims in the hopes of gaining access to just one. This result
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demonstrates that a small number of additional ASN-based observations enable our IP-based obser-

vations in CPTC to be accurately applied and find attack campaigns within network data multiple

orders of magnitude larger.

IoC’s 1, 4, and 6 demonstrate cases where only the CPTC observations are enough to accurately

capture some attack campaigns, with 4 actually reporting a higher gain than if we supplied additional

data. These campaigns were a small reduction compared to the naive attack campaigns where we

only consider the source-target IP matches of the IoC, meaning that there is not much more for

HeAT to resolve. IoC 4 reports a higher gain using CPTC-only due to applying heat to episodes that

are identified as a false positive attack response that triggers a scanning type alert at the same time

as the IoC. Our additional data has made those types of alerts low heat and thus ignored as reflected

by the lower coverage and slightly higher noise reduction. This led us to finding another bias, the

CPTC data model is biased towards applying HeAT of episodes with close time proximity to the

IoC and applying high HeAT to benign signatures.

We investigated the behavior of HeAT for all unique signatures, including non-malicious signa-

tures, as we expect lesser critical signatures to have little HeAT. The signatures with the top-5 HeAT-

Gains for the CPTC+SOC Observations are the 5 signatures shown in Table 4.9, each of which could

be considered significant given that there is a unique CVE identifier. When we performed the same

process using only the CPTC-observations, we found disproportionately high gain attack campaigns

being identified for seemingly benign signature descriptions. For example the top-3 signatures with

the highest gain given the CPTC-only observations consisted of: 1) ET WEB SERVER Suspicious

Chmod Usage in URI (Inbound) (∆=1.04), 2) ET WEB SERVER 401TRG Generic Webshell Re-

quest - POST with wget in body (∆=1.01), and 3) ET WEB SERVER WebShell Generic - wget http

- POST (∆=.99). Shown in Figure 4.11, we found the episodes contained within HAC’s of these

IoC’s to all occur concurrently for a variety of attack stages indicating that this alert is triggered as

a response to another action and our CPTC data is biased towards these episodes. We find that our

additional SOC observations to eliminate these biases and further provide necessary noise reduction

tailored for this network architecture; each of these IoC’s now have a maximum gain of .6. This is

a symptom of using non-realistic competition data sets as our starting point however this demon-

strates that these observations from CPTC are still meaningful and can be adapted to be even more

useful with a small amount of additional observations.
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Figure 4.11: Additional network-specific observations enables HeAT to account for attack campaign
biases that may be present in competition data sets like CPTC.

We demonstrate that despite the vast differences between these data sets in not only volume

but also the prevalence of adversarial attack campaigns captured, attack campaigns observed in

other networks have meaningful characteristics that can be used to discover other attack campaigns.

It comes no surprise that attack campaigns observed within a highly-controlled competition does

not entirely portray the same type of attack scenarios present within a large-scale SOC. HeAT with

our network-agnostic features enables these observations in controlled environments to be leveraged

and further enhanced using few SOC-specific observations. In a field where labelled data describing

adversarial attack campaigns is scarce, it is extremely beneficial that data where it is significantly

easier to discover attack campaigns can be used to investigate other scenarios where it may be

extremely difficult to find legitimate examples of attacks.

4.4.3 Conclusion and Limitations

HeAT and its ability to capture the analysts opinion of events likely to contribute to an attack cam-

paign and apply that knowledge to discover attack campaigns in other networks is a unique approach

to combat the reliance on large labelled data sets. In a field where there is significant privacy con-

cerns with the simply the access and usage of unlabelled data sets containing adversarial behavior,

we find it advantageous that competition data like CPTC can indeed be used to find other attack

campaigns within the SOC data set with minimal extra effort needed. We envision the scenario
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where HeAT can provide initial professionally labelled data that is dense with actual attack cam-

paign information and ask the end user to provide additional data to fine-tune the model for their

network. This eliminates the privacy concerns when using observations from other networks as our

episode features never contain any specific information either network while maintaining critical

attack campaign indicators. HeAT is unique in the sense that few works demonstrate their ability to

provide meaningful results in both highly controlled scenarios and in a real-world scenario where

little is known. Throughout this work we have identified methodical limitations of HeAT we think

are appropriate to address when developing future methods to extract attack campaigns.

Initial triage quality directly impacts the overall utility of HeAT. To combat the lack of la-

belled data, we chose to have the option where the analyst can self-label data using HeAT and use

that information to find similar observations. This is inherently dangerous as two analysts may have

a different opinion of the critically of an action depending on the experience level of the analyst

or their own instinct. Issues could be compounded in the event the analyst’s opinion is objec-

tively wrong or if the attack type has not been observed previously, leading to HeAT potentially

miss-representing a critical event. Ideally these initial triages would be done by multiple security

professionals of various experience-levels and on many attack campaign types to obtain the best

possible initial observations to train HeAT. This is why we propose the concept of providing a “pre-

trained” CPTC model as a reference to actual attack scenarios and then have the analyst fine-tune to

their specific network. We believe the fine tuning process be taken further and we propose using the

concept of active-learning to use generated HAC’s as additional training data if the analyst deems

them as accurate.

Scaling to SOC has exposed some limitations in some of our aggregation process and assump-

tions about attack campaigns. We found that at the enterprise-level our source IP-based alert ag-

gregation still resulted in an overwhelming number of episodes and we had to turn to ASN-based

filtering to further aggregate alerts to a manageable. Certain attack types such as distributed denial

of service (DDoS) and botnets along with identity obfuscation techniques such as VPN’s/Tor and

IP/Mac spoofing may result in the inaccurate representation of the real attack episode. Assuming

that our aggregation process correctly represents an attack action correctly, our original definition of

an IoC turned out to be oversimplified. In the CPTC, the more “critical” alert signatures would only
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be observed about 10 times per team, which made the assessment of each of these cases individu-

ally not too challenging. As we demonstrated in the SOC set, a critical signature may be observed

1000’s of times per week and the issues with choosing individual examples of signatures as the IoC

became apparent. HeAT-Gain made it significantly easier to distinguish the actually important-to-

assess IoC’s however we think we need to evaluate: “what actually is an IoC?” Typically an IoC

would be a data leak, ransomware, or some denial of service and only then the analyst would look

for evidence with in the IDS. Our current definition does allow us to pre-assess for threats however

for additional flexibility and utility it may be beneficial to have a more robust definition of IoC types.

HeAT-Gain describes desirable properties of attack campaigns but does not infer on the actual

quality of the attack campaign. HeAT-Gain proved itself to be a helpful metric to aid the analyst to

prioritize the assessment of attack campaigns based off the coverage of attack stages, noise reduc-

tion, and accurately applying HeAT to episodes. As we saw with only using CPTC observations on

the SOC, the HeAT-Gain for non-malicious signatures were very high due to high attack stage cover-

age all occurring at the same time. We do not believe that “attack campaigns” that have no variance

in time regardless of the attack stage coverage should be rewarded with high gain. HeAT-gain does

not include any notion of time, which may mislead the analyst into assessing less interesting attack

campaigns. The unusually high gain was due to insufficient data to represent the characteristics of

the SOC set and our attack stage-based metric was negatively impacted. A time-based term could

be added into the metric however aside from the aforementioned situation, time-variance does not

actually play a large role in how interesting an attack campaign is. An advanced persistent threat

(APT) could conduct a similar attack campaign to other attackers with the only difference being

the APT took months. Instead we would build additional network evidence into our metric such as

recognizing access to a machine that can communicate with the victim or identifying if the episode

targets a service that is actually running on the machine. These sorts of network-specific metrics

would be able to clarify if the attack campaign did actually happen and thus recognize if the HeAT

model is correctly identifying real attack campaigns.

For the foreseeable future, triaging networks to assess attack campaigns is only going to get

more difficult and time consuming to the point that manual triaging becomes infeasible. As seen in

the related works within the private sector, we believe that automated triaging with AI/ML will be a

necessary component to all SoC operations. We believe that HeAT is a viable solution that requires
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minimal expertise and analyst’ effort, and can inspire more research into AI-based automated triage.

We are in the process of making HeAT available and open sourced. Aside from the future works

proposed within our case studies, we plan for HeAT to become integrated as a plug-in with Splunk

or other SIEMs. We also plan to extend HeAT to account for a variety of intrusion alerts and event

logs. Particularly, we consider integrating with Zeek logs and phishing email detection with HeAT

to broaden the insights and address more complex attack types.
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5. Conclusion

HeAT-PATRL is one of the few works in the cyber-research community that considers the limited

resources of analysts applying such methods while still recognizing that the individual analyst’s

experience and knowledge is a critical asset for identifying attack campaigns. We accepted the

facts of labelled data sets being limited, IDS alerts contain a limited amount of relevant attack

attributes, IDS’s produce excessive amounts of alerts, and that verifying our processes in real-world

applications may be extremely difficult. We took a novel approach keeping each of these challenges

in mind and addressed them using advanced machine learning architectures and techniques, attack

stage context-based alert aggregation, network-agnostic feature engineering, SOC analyst surveys,

and created metrics to estimate our performance without ground truth. HeAT-PATRL describes an

end-to-end process to take a set of raw IDS alerts, define them in-terms of attack stages, and reveal

attack scenarios on real-world SOC data sets based on the thought process of what the analyst

defines an attack campaign to be.

We demonstrated through our HeAT-Gain metric that HeAT-PATRL is able to leverage cam-

paign triages from cyber-attack competition to reveal significant attack campaigns in a real-world

data set and maintain the analyst’s input throughout. Due to the differences in alert volume be-

tween our competition set and our real-world data set, we found that a small amount of additional

“real-world” attack campaign observations were needed to adapt HeAT to the new network-context.

This enabled HeAT-Gain to better reveal and prioritize attack campaigns that are most severe as the

HeAT-Coherence indicated that HeAT is matching the analyst’s initial input. These campaigns with

also were likely to contain the entire attack scenario from start to finish given the high AIS-Coverage

and noise reduction. The additional data required to transfer analyst campaign observations from

a competition environment to a real-world network was less than 1% of the competition triage.

We find this extremely advantageous as the attack campaigns within the competition data are sig-

nificantly easier to observe and realize than in a real network; indicating that we can provide the

competition-derived campaign observations and have users of HeAT-PATRL to fine-tune the model

with their own network-specific observations.
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Aside from the limitations described in each of the individual works, throughout this dissertation

we have learned some lessons learned that may have changed our approach if realized earlier. These

lessons stem from our approach were we were initially provided the IDS alerts from the competition

and from there we theorized how to find attacks within it, playing the role of the SOC analyst but

we wanted to automate it. Because of this, our lessons are around the limitations data itself and the

finite information it can represent.

Competition data sets may mislead research into findings that may not translate into real-world

applicable applications. Like many others, we found the usage of competition data sets from either

academic sources or security conferences to be appealing because it is safe to assume that most of

the traffic observed is likely to be the result of adversarial behavior. As we showed with simply

filtering by an IoC’s source and target IP, manually discovering attack campaigns within these sets

was mostly straightforward and thus it was not difficult for a machine learning model to do the same.

It was not until we started to assess the SOC data set did we realize significant scalability issues with

our aggregation process, IoC definition, and feature descriptions. Had we started with the intentions

of only using unlabelled SOC data we could have accounted for some of these scalability issues

but would had a difficult initially verifying our findings as we knew little about our data. It should

be recognized that these competition data sets are valuable and can be used to learn about certain

types of attacks, however we advise that they are not relied on if the objective is to be applied to

real-world data.

IDS alerts alone do not provide enough information about the actions of the adversary to defini-

tively prove the attack campaign actually was successful. We started with the objective of extracting

attack campaigns using only network-based IDS alerts as they are commonly deployed and often is

where analysts look first if they suspect that there is an security issue on their network. These IDS’s

are verbose, only considers the information within the incoming packet, and has no knowledge of if

the alert that is describing was actually successful or not. Other host-based IDS’s or sensors along

with techniques described in “alert correlation” can be used to provide additional evidence to deter-

mine if the action was successful, however this adds another layer of complexity that may or may

not be able to be made network-agnostic. We could also infer on the success of the adversary if we

had detailed network knowledge for each network. For example if we had access to the network’s

domain controller, we would be able to know the connectivity of the machines, firewall policies,

86



access control, services running, etc. to determine if the alert(s) being described are even possible

given the configuration. Given the dynamic nature of the machines on a network are, we do not think

it is ever likely that this detailed network description will be available to us or even most network

administrators. Assuming we do have access to this information, we wonder how specific network

information like access policies and user information can be described network-agnostically so that

the information can be leveraged across networks. For the future, we look for methods to confirm

each stage within the attack campaign for their likelihood to be successful given the network.

Despite the limitations in the quality our data, we demonstrate that much can be learned about

the adversarial behaviors and attack campaigns with out knowing much about the adversary them-

selves. Cyber-attacks are not going to stop or even slow down in the foreseeable future; coming

from all over the world, use extremely complex techniques, and while targeting nearly anyone who

is vulnerable. It is unlikely that we will ever be able to interface with these adversaries to learn more

about their methods, workflow, and thought process. We use IDS’s, cloud-based security products,

penetration tests, etc. to discover and mitigate threats as soon as possible, however these are still not

enough. Research into detecting, understanding, and describing attacker behaviors through the lens

of defense, like HeAT-PATRL, is imperative. The reality is that breaches will happen and damage

can be mitigated if we can quickly identify what happened and how it happened as described by

each step of the adversaries attack campaign.

5.1 Source Code

Source code for PATRL and HeAT will be made available for research purposes on: https:

//github.com/smoskal. The current iteration and description of the Action-Intent Frame-

work can be seen in [42]. PATRL and HeAT is built on Python 3.8 and will require a GPU ca-

pable of using Tensorflow r1.15. Additional inquiry on either of these works should be directed

through email (sfm5015@rit.edu) or through LinkedIn: https://www.linkedin.com/in/

stephen-moskal/
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