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Abstract 

 The field of systems biology has facilitated the modelling of large and complex 

biological networks. These networks, generated from prior knowledge contained in the corpus of 

medical and scientific literature, or from experimental data are being used to model differing 

macromolecule networks associated with distinct disease states. While these networks are vital in 

understanding disease pathology and possible treatment options, they are rife with spurious 

interactions. These interactions arise from the methods used to create such networks, where the 

ability to discriminate between direct and indirect relationships is a challenge. To combat these 

spurious interactions an algorithm that leverages functional enrichment in biological networks 

was developed. Here, functional enrichment refers to two or three node functional motifs that are 

ubiquitous in biological networks. The algorithm developed removes edges from an existing 

network based on that edge’s involvement in functional motifs relative to every other edge’s 

involvement. In this work, the application of this algorithm was explored using real-world 

clinical disease networks. Furthermore, a software package was developed to identify an edge’s 

membership in functional motifs with respect to the network being explored. The tools 

developed in this work are the first to critically analyze an edge’s relationship to functional 

motifs in terms of network inclusion. Therefore, the principles outlined in this work can be 

employed in future works aimed at removing spurious edges. These principles will also produce 

higher quality biological networks for the understanding of disease pathology and the 

development of more effective treatment options. 
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Introduction 

Graphs are the fabric of complex systems such as social networks, metabolic networks, or 

even gene regulatory networks1. Mathematical models of networks, or graphs, are composed of 

edges and nodes, where each node is a discrete object, and each edge is a connection between 

said nodes. The use of networks in studying proteins within the human body has been vital in 

predicting and characterizing interactions between proteins to further understand our own 

biology. The two basic types of networks used to model biological systems are undirected graphs 

and directed graphs. Direction here refers to a distinction in edge characteristics; in a directed 

graph an edge is unidirectional, in an undirected graph every edge is bidirectional2. This 

distinction allows for robust edge classification where nodes can have cause and effect on each 

other; for example, one node may promote the activity of another node in a directed network or 

inhibit the activity of another node. Directed graphs are generally more useful when modeling 

biological systems as they allow for an edge to have a mode of action. For example, in a PPI 

(protein-protein interaction) network, directed edges can be classified as being activating or 

inhibiting3. 

Directed networks have been leveraged in the discovery of new drug targets in networks 

associated with differing disease states4. The creation of these biological networks has been 

accelerated through the usage of text-mining software. A researcher can create a network by 

mining the pairwise interactions of the molecules of interest(protein, metabolite, mRNA) from 

large bodies of research along with each edge’s mode of action (activation or inhibition). 

Biological networks can also be constructed though the usage of wet lab data. Scientists can use 

data from HPLC, GC-MS, LC-MS, RNA-seq, among a plethora of other types of data, to reverse 
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engineer networks5,6. However, creation of these networks necessitates validation and/or 

modification of the inferred edges. 

Approaches to creating plausible directed networks 

The process of reverse engineering biological networks from prior knowledge(text-

mining), or from wet lab data is currently plagued by the specter of inaccuracy. Inaccuracy here 

refers to the inclusion of edges that do not belong, or the exclusion of edges that do belong. Each 

method to reverse engineer networks comes with its own unique challenges. Methods to recover 

networks from wet lab data results in the occurrence of spurious edges as the methods that 

process this data cannot discriminate between direct and indirect relationships7. The construction 

of networks from text-mining scientific literature results in the inclusion of edges that once again 

arise from indirect relationships. Generally, text-mining algorithms to reverse engineer biological 

networks are lacking in precision. Since most methods to reverse engineer biological networks 

from data cannot seem to distinguish true interactions from spurious interactions, there is a 

tremendous need for an algorithm to prune false interactions. 

There are various methods to identify and remove spurious edges from biologically informed 

networks. Most of these methods invoke different structural principles common across 

previously established biological networks, such as modularity, connection density etc. For 

example, work done by Liming Pan and colleagues removes edges based on the principle that 

two nodes will have a high probability of making a link between them if they share some 

common neighbors or are connected by short paths8. Other researchers such as Guimerà and 

others, remove spurious edges using properties of stochastic block modelling9. These properties 

are that nodes in a real network are organized into modules, and that each network contains 

nodes that have certain roles and connect to other nodes in distinct ways according to their role.  
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Novel approach to spurious edge removal  

There are very few methods that trim spurious edges from biological networks on a 

purely functionally informed basis. Functionality here refers to the way a network dynamically 

processes the flow of information. It can be inferred by how it incorporates functional subgraphs, 

or network motifs into its structure. The work done by Uri Alon highlights the ubiquitous nature 

of two and three node motifs in biological networks10. These motifs work to form regulatory 

circuits within a network that can regulate and temper a response to a given stimuli presented to 

them. There are eight differing types of 3 node motifs (figure 1); each of which can change when 

a given signal presented to them to produce the desired biological  

effect. 

Each motif works in a distinct way, allowing an intricate interplay of proteins that result 

in cellular processes such as the upregulation or downregulation of the expression of a particular 

gene. They do so by serving as filters, pulse generators and response accelerators among various 

other functions. The three node motifs presented in figure 1 are present in many differing 

biological networks across many differing organisms, suggesting selective pressure specifically 

for these functional units.8 It follows that biological networks enriched in these motifs have 

strong support in the way of both functional and evolutionary feasibility. Identifying the number 

and types of network motifs within a given biological network is therefore a useful metric in 

characterizing the network as being biologically sound. 
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Functional motif enrichment in biological networks can be exploited to develop a method 

for spurious edge removal. A process that removes edges from a biological network to 

maximally enrich the number of functional motifs in that network works to remove edges that 

may not contribute to any real process. This theory will be tested in the current work using 

software developed to both identify all functional motifs in a network and remove edges from 

said network; calculating several different metrics along the way to ensure proper edge removal 

and a functionally enriched biological network. 

 

 

 

 

 

 

 

 

 

Figure 1: Types of feedforward network motifs, arrow represents activation whereas flat bar 

represents inhibition 
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Materials and Methods 

Motif Identification 

For the purposes of this project several differing kinds of network motifs will be 

identified. They include three node feedforward motifs, three node feedback motifs, and two 

node feedback motifs. Each edge in the network belonging to a motif will be recorded. An 

individual edge is eligible to belong to multiple differing motifs, shown in figure 3. Finally, there 

must be an output of each edge in the network with each type and number of motifs it belongs to. 

There are numerous differing software packages that have been developed to identify motifs in 

directed network11,12,13. However, no single package meets the outlined criteria listed previously. 

As such, a software package was developed for usage in this project.  

This package, provided an edge list, scans the entire network and outputs a comma 

separated file containing an edge list depicted in table 1.  

  

Source Target C_1 C_2 C_3 C_4 I_1 I_2 I_3 I_4 3_FB 2_NFB 2_PFB 

A B 3 1 0 0 0 1 0 0 1 1 0 

Q R 1 0 0 0 0 0 0 0 0 0 0 

T A 5 1 0 0 2 0 0 1 0 0 1 

Table 1: Example motif identification output. C1-C4 are represent coherent feedforward motifs 

1-4, I1-I4 represent incoherent feedforward motifs 1-4, 3_FB represents three node feedback 

motifs, 2_NFB represents two node negative feedback motifs and finally 2_PFB represents two 

node positive feedback motifs 
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Identification Algorithms 

The motif identification package utilizes several different algorithms to locate and map 

every motif to the involved edge(s). Each algorithm was implemented in python 3.6.3 leveraging 

the Networkx package14. Below, each algorithm will be outlined in pseudocode. 

 

Three node feed forward motifs: 

For every node (a) in the network: 

If the node has two or more outgoing edges: 

Create a set of all nodes connected to these edges: (alpha) 

For every node (b) in (alpha): 

Create a set of all nodes that are connected to the current node in 

(alpha), named (beta) 

If one member (c) of (beta) is included in (alpha), then (a), (b) and (c) are 

all classified as belonging to a 3 node feedforward motif 
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Three node feedback:  

For every node (a) in the network: 

 For all outgoing edges of (a), add target nodes to list (alpha): 

  For all nodes (b) in alpha: 

   For all outgoing edges of (b), add target nodes to list (beta): 

    For all nodes (c) in beta: 

If node (c) is the same as node (a): 

     nodes (a),(b) and (c) are a part of a three node feedback  

motif 

 

Two Node Feedback: 

For every node (a) in the network: 

 For every outgoing edge of (a) if edge is bidirectional: 

(a) and target node are a part of a two-node motif 

 

 

Network Motif Enrichment 

Overall functional motif enrichment will be leveraged to remove spurious edges from an 

input network. In order to enrich a network, first all motifs will be identified and all edges will be 

ranked according to the number of motifs they belong to. From this ranking, edges will be 

removed in an iterative fashion with a rescan of the network and a reranking of edges after every 

removal to identify functional motifs.  
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Sources, Sinks and Disjoints 

Before the removal of an edge from the input network, it must be decided whether this 

removal will create a source node, a sink node, or a disconnected graph. A source node is defined 

as a node with an indegree of 0, whereas a sink node has an outdegree of 0. Finally, a 

disconnected graph is a graph in which at least two nodes do not have a connecting path to each 

other. Sources, sinks, and disconnects are modelled in figure 2. If removal of an edge does result 

in the creation of a source, sink, or disconnect it is simply skipped and not removed. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Examples of Edges that cannot be removed. In A, removal of edge (C,B) would result 

in node B becoming a source. In B, removal of edge (F,D) would result in node F becoming a 

sink. In C, removal of edge (C,D) would create a disconnected graph. 

 

 

A 

C 

B 
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Enrichment Score 

After each removal, the mean number of motifs that each edge in the network is a part of 

will be calculated; this value will be referred to as the network’s enrichment score. After each of 

these iterations, the network’s enrichment score is saved and compared to the previous scores. 

Once the enrichment score reaches a maximum, the pruning process is complete, and the input 

network is considered completely functional enriched. This process is described in Figure 4. 

 

 

 

 

Figure 3: Identification of edges involved in functional motifs. Edges involved are depicted in 

blue, here edges can belong to multiple motifs as seen in edge (A,C) 
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Figure 4: Flow chart depicting network motif enrichment. Enrichment score refers to the mean 

of the number of functional motifs each edge in the network is a part of. Sinks, sources and 

disconnects are completely avoided. 

 

 

 

 

 

 

 



11 
 

Test Network Selection 

To test the aforementioned network motif enrichment algorithm, real world biological 

networks were required. As such this project will focus on the analysis of two real world clinical 

protein-protein networks. These networks all model chronic degenerative diseases in humans, 

and were created through the usage of text-mining software. Since each network contains 

proprietary information, all node names will be anonymized. They will be referred to as 

networks A and B. 

 

Network Metrics 

Networks A is much smaller in size in comparison to network B in terms of both edge 

and node count. The relative size difference between networks A and B will be useful when 

estimating the efficacy of the proposed edge pruning algorithm. A depiction of these networks is 

shown in figure 5, which highlights the extreme size difference between the starting networks. 

The motif composition of each network will also be analyzed through the usage of the motif 

identification software described previously. 

 

 

 

 

Table 2: Network metrics for networks A and B. Network B has roughly twice as many nodes as 

A, and roughly ten times as many edges. 

 

 

Network Nodes Edges Connection Density 

A 53 243 .088 

B 107 1656 .146 
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Figure 5: Visual Representations of networks A and B. Network B has many more nodes and 

edges when compared to network A. 

 

Algorithmic Comparison 

 The sample networks, a and b, have been additionally edited using a method centered 

around the concept of constraint satisfaction15. This method results in many differing model 

solutions to approximate the “true” or most valid network. The output network of the previously 

mentioned functional enrichment algorithm will be compared to these models using the metric of 

graph edit distance. This comparison is useful in that the method using constraint satisfaction 

takes a considerable amount of time compared to the described method. 

 

 

 

  

 

 

A B 
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Results 

 In terms of motif composition, Networks A and B are drastically different. As shown in 

figures 6 and 7, Network B is dominated by Coherent Type 1 functional motifs. These motifs 

only have positive polarities associated with their edges, shown in Figure 1. Network B’s edges 

are primarily positive, so the over-representation of Coherent Type 1 motifs is expected. In both 

networks, three node feedback motifs represent a large amount of the total motifs present. This 

can be attributed to the fact that three node feedforward motifs are broken down into eight 

differing types of motifs, whereas three node feedback motifs are counted as one entire category. 

Other than coherent type 1 motifs and three node feedback motifs, the remaining functional 

motifs are represented relative equal amounts. 

 Functional enrichment altered both networks A and B in differing ways. Network A had a 

larger change in both edges number and connection density, with a 24% loss in edge number and 

an 23.4% loss in connection density. Network B was altered less in comparison with a 10.6% 

loss in edge number and an 11% loss in connection density. In both Networks the percentage 

decrease in edges number and connection density seemed to be correlated. Visually, networks A 

and B generally look like their pre-functionally enriched states, as shown in figures 5 and 8. 

However, network A post-enrichment has noticeably less connections; this change in connection 

density is apparent in Figure 8. 
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Figure 6: Network A Motif Composition previous to enrichment algorithm. Three node 

feedback motifs represent the greatest ratio of motifs. 
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Figure 7: Network B motif composition previous to enrichment algorithm. Coherent Type 1 

motifs are the majority 
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Network  Nodes Edges + (Δ)% Connection Density+ (Δ)% 

A (functionally enriched) 53 185 (-23.4%) .067 (-24%) 

B (functionally enriched) 107 1480 (-10.6%) .13 (-11%) 

 

Table 3: Network change after functional enrichment. Network B was altered much less in 

comparison to network A, with a larger change in both connection density and edge number 

 

 

 

 

 

 

 

Table 4: Summarization of within group variation of graph edit distance in models created by 

constraint satisfaction compared to the graph edit distance of functionally enriched networks to 

each of the models 

 

 

 

Network  Nodes + (Δ)% Edges + (Δ)% Connection Density+ (Δ)% 

A (constraint satisfaction) 50.25 (-5.7%) 142.01 (-41.5%) .055-(37.5%) 

B (constraint satisfaction) 33.6 (-69%) 127.4 (-92.3%) .113(-11%) 

 

Table 5: Network change after constraint satisfaction. Here, nodes can be removed from the 

original network as shown by the Nodes + (Δ)% column 

 

 

  

Network Mean GED 

between 

Models 

GED std. 

between 

Models 

Mean GED 

from Pruned 

Network to 

Models 

GED std. 

from Pruned 

Network to 

Models 

GED from original 

network to 

functionally enriched 

network 

Mean GED 

from 

original 

network to 

Models 

B 30.78 8.06 1501 3.81 138 1602 

A 0.236 0.42 100.20 0.34 55 100.8 
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Figure 8: Graph visualization of networks A and B after functional enrichment algorithm. 
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Figure 9: Enrichment score change (mean number of functional motifs per edge) per iteration of 

enrichment algorithm. The dotted green line identifies the maximum enrichment score, where the 

algorithm stops removing edges from the input network. 
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The process of functional enrichment is modelled in Figure 9. Here, after each removal of 

the lowest ranking edge, in terms of enrichment score, the enrichment score is recalculated and 

graphed. Each network is slowly enriched in functional motifs after each iteration, until a 

maximum is reached. After this, there is a plateau in enrichment score, then a steep drop, shown 

in Figure 9. Network A seems to reach maximum enrichment score before network B with 

respect to iteration number.  

 When comparing the method of spurious edge removal presented in this paper to the 

previously mentioned constraint satisfaction method15 there are very different results in the final 

network produced by each method. The functional enrichment algorithm presented in this work 

does not remove any nodes in the original network, whereas the method of constraint satisfaction 

removed 5.7% and 69% of nodes from networks A and B respectively. As far as the other 

network metrics are concerned, both algorithms had similar connection densities and edge 

number in network A, shown in table 3 and 5. However, the metrics in network B were 

completely differing with the constraint satisfaction algorithm removing 92% of edges from the 

original network.  
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Discussion 

 A novel method of spurious edge removal through the process of functional enrichment 

was shown in this work. The innovation in this project was the consideration of an edge’s 

involvement in functional motifs, where each edge could be involved in multiple functional 

motifs. Wang and coworkers have utilized node membership in motifs to calculate what they 

deemed “node importance” but did not use this measurement to remove or change the network 

analyzed.16 Other works have used the total number of functional motifs in a network as a metric 

to calculate a sort of “motif centrality” measure to discover the “backbone” of a network.17 

However, no current method utilizes the motif membership of each edge as an indicator of 

spurious edge removal. 

 As a method of spurious edge removal the algorithm outlined in this work had differing 

results when applied to larger networks, such as network B, than when performed on smaller 

networks such as network A. The algorithm reached a maximum enrichment score and stopped 

removing edges much sooner when applied to the larger network than when applied to the 

smaller network. This effect could be attributed to the underlying difference in connection 

density from the starting networks, the sheer difference in network size, or simply the presence 

of more functionally involved edges in the larger network. In terms of the comparison of 

spurious edge removal through functional enrichment and the method of constraint satisfaction 

mentioned previously, both methods removed a similar number of edges and reduced connection 

density in a similar fashion in network A. 

 The larger difference between methods occurs in the analysis of network B. The method 

utilizing constraint satisfaction removed a considerable number of edges (92%), whereas the  
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method presented in this project only removed around 10% of edges. Even the pruned networks, 

A and B, produced by the two differing methods have vast graph edit distances from each other. 

The method using constraint satisfaction produced 30 model solutions for Network B, which had 

a graph edit distance standard deviation of ~8, and a mean graph edit distance of 30.78. The 

model solutions had therefore small variance between themselves but were very different from 

the network created from functional enrichment, with a mean graph edit distance of 1501 to each 

of the model solutions.  

 One of the main limitations of this study was the lack of testing the proposed algorithm 

on gold standard networks, or even a larger pool of experimental networks. To prove the efficacy 

of spurious edge removal using the outlined method of spurious edge removal through functional 

enrichment, testing needs to be done in trying to recover networks that have been altered through 

the addition of spurious edges. In order to do so the usage of previously established gold 

standard biological networks should be used18. Furthermore, the outlined algorithm could be 

tested using software packages that create synthetic biological networks based on common 

biological network properties19,20 . In this way, several hundred experiments could be performed 

as testing will not be bounded by sample size. 

 There are many other questions to explore relating to this work. There seems to be a 

relationship between motif membership per edge and network size; a study using synthetic 

biological networks, or gold standard biological networks could be conducted using the software 

package written for this project. Furthermore, this algorithm could be combined with other 

algorithms that consider structural features of a network when removing spurious edges.9,8 The 

stopping rule implemented in the third step of the pruning algorithm could also be altered. 

Instead of stopping the algorithm upon the incidence of a maximum value, the algorithm could 
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continue until a significantly different value from the maximum is reached. In other words, the 

maximum value would still be recorded and averaged with every other enrichment score 

calculated, when the next enrichment value is significantly different compared to this mean, then 

the algorithm will stop. 

 The algorithm outlined and implemented in this project could not remove nodes from an 

existing network. One possible change in the algorithm could be in the removal of nodes. This 

would allow greater edits to be done to the pre-existing network and could result in an even 

greater enrichment of functional motifs in each biological network. 

 

Conclusion 

 In this work a software package was developed to identify all three and two node 

functional motifs in an input network. This package also outputs a csv containing information for 

each edge and which motifs they participate in. Currently this is the only motif identification 

software that identifies the extent to which each edge participates in network motifs. Therefore, 

this package can be used in future projects concerning the membership of edges in functional 

motifs. 

 The algorithm to remove spurious edges from biological network developed in this work 

has been shown enrich the number of functional motifs in a given network. This process removes 

edges which are non-important in terms of functional involvement and can therefore be used to 

remove spurious edges from experimental or prior knowledge biological networks. This 

algorithm needs further testing using gold standard biological networks in order to further prove 

its validity.    
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Code Availability 

 Implementation of the two and three node motif finder, and the functional enrichment 

algorithm are both available via github in the JMI package: 

https://github.com/petrepage/JMI 
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