
Rochester Institute of Technology Rochester Institute of Technology

RIT Digital Institutional Repository RIT Digital Institutional Repository

Theses

6-2021

Understanding and Identifying Vulnerabilities Related to Understanding and Identifying Vulnerabilities Related to

Architectural Security Tactics Architectural Security Tactics

Joanna Cecilia da Silva Santos
jds5109@rit.edu

Follow this and additional works at: https://repository.rit.edu/theses

Recommended Citation Recommended Citation
da Silva Santos, Joanna Cecilia, "Understanding and Identifying Vulnerabilities Related to Architectural
Security Tactics" (2021). Thesis. Rochester Institute of Technology. Accessed from

This Dissertation is brought to you for free and open access by the RIT Libraries. For more information, please
contact repository@rit.edu.

https://repository.rit.edu/
https://repository.rit.edu/theses
https://repository.rit.edu/theses?utm_source=repository.rit.edu%2Ftheses%2F10967&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.rit.edu/theses/10967?utm_source=repository.rit.edu%2Ftheses%2F10967&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository@rit.edu

Understanding and Identifying Vulnerabilities
Related to Architectural Security Tactics

by

Joanna Cecilia da Silva Santos

A dissertation submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

in Computing and Information Sciences

B. Thomas Golisano College of Computing and

Information Sciences

Rochester Institute of Technology

Rochester, New York

June, 2021

Understanding and Identifying Vulnerabilities Related to
Architectural Security Tactics

by

Joanna Cecilia da Silva Santos
Committee Approval:
We, the undersigned committee members, certify that we have advised and/or supervised
the candidate on the work described in this dissertation. We further certify that we have
reviewed the dissertation manuscript and approve it in partial fulfillment of the requirements
of the degree of Doctor of Philosophy in Computing and Information Sciences.

Dr. Mehdi Mirakhorli Date
Dissertation Advisor

Dr. Andrew Meneely Date
Dissertation Committee Member

Dr. Sumita Mishra Date
Dissertation Committee Member

Dr. Hossein Hojjat Date
Dissertation Committee Member

Dr. Dan Phillips Date
Dissertation Defense Chairperson

Certified by:

Dr. Pengcheng Shi Date
Ph.D. Program Director, Computing and Information Sciences

ii

iii

© 2021 Joanna Cecilia da Silva Santos
All rights reserved.

Understanding and Identifying Vulnerabilities Related to
Architectural Security Tactics

by

Joanna Cecilia da Silva Santos

Submitted to the
B. Thomas Golisano College of Computing and Information Sciences

Ph.D. Program in Computing and Information Sciences
in partial fulfillment of the requirements for the

Doctor of Philosophy Degree
at the Rochester Institute of Technology

Abstract

To engineer secure software systems, software architects elicit the system’s se-
curity requirements to adopt suitable architectural solutions. They often make
use of architectural security tactics when designing the system’s security archi-
tecture. Security tactics are reusable solutions to detect, resist, recover from,
and react to attacks. Since security tactics are the building blocks of a security
architecture, flaws in the adoption of these tactics, their incorrect implemen-
tation, or their deterioration during software maintenance activities can lead
to vulnerabilities, which we refer to as “tactical vulnerabilities”. Although se-
curity tactics and their correct adoption/implementation are crucial elements
to achieve security, prior works have not investigated the architectural context
of vulnerabilities. Therefore, this dissertation presents a research work whose
major goals are: (i) to identify common types of tactical vulnerabilities, (ii)
to investigate tactical vulnerabilities through in-depth empirical studies, and
(iii) to develop a technique that detects tactical vulnerabilities caused by ob-
ject deserialization. First, we introduce the Common Architectural Weakness
Enumeration (CAWE), which is a catalog that enumerates 223 tactical vulner-
ability types. Second, we use this catalog to conduct an empirical study using
vulnerability reports from large-scale open-source systems. Among our find-
ings, we observe that “Improper Input Validation” was the most reoccurring
vulnerability type. This tactical vulnerability type is caused by not properly
implementing the “Validate Inputs” tactic. Although prior research focused

iv

v

on devising automated (or semi-automated) techniques for detecting multi-
ple instances of improper input validation (e.g., SQL Injection and Cross-Site
Scripting) one of them got neglected, which is the untrusted deserialization of
objects. Unlike other input validation problems, object deserialization vulner-
abilities exhibit a set of characteristics that are hard to handle for effective
vulnerability detection. We currently lack a robust approach that can detect
untrusted deserialization problems. Hence, this dissertation introduces Dodo
(untrusteD Object Deserialization detectOr), a novel program analysis tech-
nique to detect deserialization vulnerabilities. Dodo encompasses a sound
static analysis of the program to extract potentially vulnerable paths, an ex-
ploit generation engine, and a dynamic analysis engine to verify the existence
of untrusted object deserialization. Our experiments showed that Dodo can
successfully infer possible vulnerabilities that could arise at runtime during
object deserialization.

Acknowledgments

I am thankful to my advisor, Dr. Mehdi Mirakhorli, for the opportunity
in pursuing the Ph.D., for his patience, endless support, and willingness to
teach me crucial skills for my career. Dr. Mirakhorli countless times helped
me to navigate through the rough paths along the way and I could not be more
thankful for his supervision.

I also would like to thank the committee members of this Ph.D. for their
insightful comments and suggestions: Dr. Sumita Mishra, Dr. Hossein Hojjat,
and Dr. Andrew Meneely. Moreover, I am thankful to my collaborators, Dr.
Katy Tarrit, Dr. Matthias Galster, Dr. Meiyappan Nagappan, as well as my
lab mates and colleagues at RIT.

Last but not least, I am thankful for my family, relatives, and friends that
helped me go through this journey (too many to list each of their names). Par-
ticularly, my deepest gratitude to my mother, Maria Clarice (in memoriam),
for nurturing me, encouraging me in continuing my studies, taking care of me,
being an example of a resilient person among many other things (that would
take me pages to describe). She, certainly, played a crucial role for me to
beat the odds and challenges caused by poverty in order to successfully pursue
graduate education. I would have not made this far in life without her. She
laid out the foundations for me to be the human I am today.

I am merely a “da Silva Santos” with modest beginnings. As such, I only
made this far because of the vast support, encouragement, and guidance of
many people in my academic journey. To all of them, including you, the
reader, a heartfelt “Thank You” .

“If I have seen further than others, it is by standing upon the shoulders of
giants.”

Isaac Newton.

vi

To the memory of my mother, Maria Clarice da Silva (1953–2017), who
established a foundation upon which I stand.

To the memory of my aunties, Maria Clara da Silva (1945–2016) and Izabel
Cristina Santos da Silva (1956–2021), whose lives were an example to me.

To the memory of loved ones lost to COVID-19 and its complications.

“What is grief, if not love persevering?”
Quote from Episode 8 of WandaVision TV show.

vii

Contents

1 Introduction 1
1.1 Research Goals . 4
1.2 Thesis Statement . 5
1.3 Contributions . 5
1.4 Publications . 6
1.5 Dissertation Structure . 8

2 Background 9
2.1 Vulnerabilities and Vulnerability Databases 9
2.2 Architectural Security Tactics 11
2.3 Weaknesses and Tactical Vulnerabilities 11
2.4 Object Serialization and Deserialization 13

2.4.1 Java Serialization API 14
2.4.2 Untrusted Deserialization Vulnerabilities 17

2.5 Program Analysis Techniques 19
2.5.1 Taint Analysis . 20

3 Related Work 22
3.1 Software Architecture and Security 22
3.2 Empirical Studies on Software Vulnerabilities 23
3.3 Vulnerability Prediction . 23
3.4 Formal Methods for Security Architecture 24
3.5 Automated Vulnerability Detection 24

3.5.1 Untrusted Object Deserialization Detection 25

4 Identifying Tactical Vulnerability Types 27

viii

CONTENTS ix

4.1 Creating the CAWE Catalog 27
4.2 Overview of the CAWE Catalog 30

5 Understanding Tactical Vulnerabilities 33
5.1 Case Selection . 33
5.2 Data Collection and Analysis 35

5.2.1 Step #1: Identifying Security Tactics in each Project . . 35
5.2.2 Step #2: Extracting Disclosed Vulnerabilities for each

Project . 36
5.2.3 Step #3: Identification of Tactical and Non-Tactical Vul-

nerabilities . 37

6 Detecting Deserialization Vulnerabilities 41
6.1 Challenges on Detecting Untrusted Object Deserialization . . . 42
6.2 Mitigating Untrusted Object Deserialization 44

6.2.1 Group 1: Unreachable sinks 44
6.2.2 Group 2: Enforcing object integrity 45
6.2.3 Group 3: Compartmentalization 46

6.3 Taint Analysis for Detecting Untrusted Object Deserialization . 46
6.4 Phase 1: Call Graph Construction 47

6.4.1 Step 1: Initial Call Graph Construction 49
6.4.2 Step 2: Call Graph Refinement 50

6.5 Phase 2: Exploit Generation . 58
6.5.1 Step 1: Path extraction 58
6.5.2 Step 2: Path Constraint Analysis and Solving 59
6.5.3 Step 3: Malicious Objects Instantiation 61

6.6 Phase 3: Dynamic Analysis . 61
6.7 Demonstrative Example . 62

6.7.1 Phase 1: Call Graph Construction 63
6.7.2 Phase 2: Generating Exploits 66
6.7.3 Phase 3: Instrumentation 69

6.8 Answering the Research Questions 69
6.8.1 RQ6: Does Dodo’s call graph algorithm handle object

deserialization soundly? 70
6.8.2 RQ7: Is Dodo useful for finding object deserialization

vulnerabilities? . 70

CONTENTS x

7 Results 73
7.1 Using the CAWE Catalog to Answer RQ1 and RQ2 73

7.1.1 RQ1: What are the types of tactical vulnerabilities? . . 73
7.1.2 RQ2: Which architectural security tactics are more likely

to have associated vulnerabilities? 74
7.2 Empirical Studies on Tactical Vulnerabilities 75

7.2.1 RQ3: What are the most common types of architectural
vulnerabilities in real software systems? 75

7.2.2 RQ4: What security tactics are most affected by archi-
tectural vulnerabilities in real software systems? 78

7.2.3 RQ5: What are the root causes of the most frequently
occurring types of architectural vulnerabilities? 79

7.3 Untrusted Object Deserialization Detection 81
7.3.1 RQ6: Does Dodo’s call graph construction algorithms

handle object deserialization soundly? 81
7.3.2 RQ7: Is Dodo useful for finding object deserialization

vulnerabilities detection? 84
7.4 Threats to Validity and Limitations 86

7.4.1 Validity Threats to the CAWE Catalog and the Empir-
ical Study . 86

7.4.2 Dodo’s Limitations . 87

8 Conclusions 90
8.1 Future Work . 91

Appendices 111

A Root Cause Analysis (RQ5) 112
A.1 “Identify Actors” Tactic . 112

A.1.1 CWE-346 Origin Validation Errors 112
A.1.2 CWE-295 Improper Certificate Validation 115

A.2 “Authenticate Actors” Tactic 117
A.3 “Limit Access” Tactic . 119
A.4 “Authorize Actors” Tactic . 122
A.5 “Validate Inputs” Tactic . 128

B Extending Dodo to other Languages 133

CONTENTS xi

B.1 Java Bytecode as Input . 134
B.2 Signature-Based Method Dispatch 135
B.3 Language-Specific API Modeling 135
B.4 Object Generation . 136
B.5 Code Instrumentation . 136

List of Figures

2.1 UML sequence diagram for Java’s serialization 15
2.2 UML sequence diagram for Java’s deserialization 16
2.3 Malicious serialized object used to trigger a remote code execution. 18
2.4 Example of a vulnerable program 21

4.1 The CAWE catalog integrated into MITRE’s website as a view 31
4.2 CWE-291 “Reliance on IP Address for Authentication” with the

added metadata from our work (impact type and affected tactic) 32

5.1 Data extraction information model 35

6.1 Trend line of untrusted object deserialization CVEs in the NVD 42
6.2 Dodo Overview . 47
6.3 An example of a path constraint converted into the SMT-Lib

format [24] . 60
6.4 Details of the dynamic analysis performed by Dodo 62
6.5 Initial call graph after parsing the Main.main() method in List-

ing 4 . 64
6.6 Call graph for Listing 4 when using the downcast-based strategy 65
6.7 Call graph for Listing 4 when using the taint-based strategy . . 66
6.8 Vulnerable paths found by Dodo for the program in Listing 4 . 67
6.9 Exploits generated by Dodo for the program in Listing 4 . . . 69

7.1 High-level overview of the CAWE catalog [125] 74
7.2 Total number of vulnerabilities (CVEs) per security tactic for

each system . 78

xii

LIST OF FIGURES xiii

7.3 Root cause analysis of tactical vulnerabilities related to the
“Identify Actors” tactic . 79

7.4 Root cause analysis of tactical vulnerabilities related to the “Au-
thenticate Actors” tactic . 80

7.5 Root cause analysis of tactical vulnerabilities related to the
“Limit Access” tactic . 80

7.6 Root cause analysis of tactical vulnerabilities related to the “Au-
thorize Actors” tactic . 80

7.7 Root cause analysis of tactical vulnerabilities related to the “Val-
idate Input” tactic . 81

7.8 Number of call graph nodes per approach 83
7.9 Number of call graph edges per approach 84
7.10 Dodo’s exploit generation limitation 88
7.11 Future work: dynamic analysis with guided execution 89

B.1 Components in Dodo that needs modifications to be extended
to other programming languages (highlighted in red) 133

B.2 An example of exploit generation for the PHP language 136

List of Tables

2.1 Architectural security tactics and their definitions 12

5.1 Details about the studied projects (statistics collected as of Jan-
uary 2017). 34

5.2 Security tactics in Chromium, PHP, and Thunderbird 36
5.3 Instructions given to the experts to classify CVEs into tactical

and non-tactical . 38
5.4 Cohen’s kappa coefficients and percentage of agreement when

classifying vulnerability reports as tactical and non-tactical CVEs
. 39

5.5 Overview of the vulnerability dataset 40

6.1 Mitigation techniques for untrusted object deserialization . . . 45
6.2 Taint propagation rules . 56
6.3 Constraint generation rules . 60
6.4 Path and type constraints extracted for the program in Listing 4 68
6.5 Test cases from the JCG Test Suite [52] and which soundness

aspect they aim to verify on a call graph 71

7.1 Total number of vulnerabilities per security tactics 75
7.2 Most common tactical vulnerability types in Chromium, PHP,

and Thunderbird . 77
7.3 Results from running the test cases from JCG 82
7.4 Number of classes in each OSS project and their dependencies . 85
7.5 Results when using Dodo for detecting untrusted deserializa-

tion vulnerabilities in two OSS projects 85

xiv

Chapter 1

Introduction

Software vulnerabilities are caused by defects that makes the software system
susceptible to being exploited by intruders [16]. These issues expose the system
to attacks that can result in crashes (denial of service), confidentiality violation,
and integrity compromises. To engineer a secure software, it is important to
follow a proactive approach, in which security concerns are addressed early
in the software development’s lifecycle. The downside of fixing vulnerabilities
after they are discovered during the software’s usage (reactive approach) is that
these breaches can be exploited by attackers, culminating in a compromise of
the system’s security. Hence, there will be potential costs and consequences
associated with this exploitation, such as loss of revenue and brand reputation
damage [144].

To engineer security software systems, software architects elicit the system’s
security requirements for adopting suitable architectural solutions. These ar-
chitectural mechanisms that address security goals form the system’s security
architecture [27, 62, 126]. Software architects often make use of architectural
security tactics when devising the system’s security architecture [27]. Archi-
tectural security tactics (henceforth “security tactics”) are reusable solutions
to detect, resist, react to, and recover from attacks [27].

Since security tactics are the building blocks of a security architecture,
flaws in the adoption of these architectural tactics [16], their incorrect imple-

1

CHAPTER 1. INTRODUCTION 2

mentation [98,123,125,126] or their deterioration during software maintenance
activities [77] can lead to vulnerabilities. We refer to these security issues as
tactical vulnerabilities.

An example of tactical vulnerability is the use of client-side authentication.
In this flaw, the “Authenticate Actors” tactic [27] is adopted at the client-side
code instead of the server-side (i.e., the authenticity check is performed at the
client-side). As a consequence, an attacker could bypass the authentication fea-
ture by reverse engineering the client code and then removing the authenticity
check. While this tactical vulnerability is caused by an improper adoption of
the “Authenticate Actors” tactic, previous research observed that developers
may implement security design decisions incorrectly [99,123].

Although the software architecture is a crucial element onto achieving se-
curity [35], prior vulnerability studies have not investigated the architectural
context of vulnerabilities, including design decisions such as security tactics
and patterns [31, 66, 97]. They typically focus on vulnerabilities related to
the management of data structures and variables (e.g., buffer overflow/over-
read) [66]. Others have developed architecture analysis techniques to correlate
design violations with software vulnerabilities [55]. While such studies have
investigated software vulnerabilities from structural perspectives, we currently
lack an in-depth understanding of the nature and root causes of tactical vulner-
abilities, which would help teach software developers and architects to avoid
and mitigate these problems in their systems.

To fill in this knowledge gap, one of the goals of this PhD research is to
better understand how and why tactical vulnerabilities occur in real software
systems. We accomplished this goal by conducting several empirical stud-
ies [123, 124, 126]. Our studies showed that Improper Input Validation was
the most reoccurring tactical vulnerability type among the different types in-
troduced by flawed security tactics implementations. This class of tactical
vulnerability is caused by not properly implementing the “Validate Inputs”
tactic [16]. As a result, inputs provided into the system interfere with the
control/data flow of a program leading to injection of malicious commands,
denial of service, and data leakage/corruption [32,124].

Given the pervasive nature of input validation problems, several works have
focused on developing automated (or semi-automated) techniques for detecting

CHAPTER 1. INTRODUCTION 3

these types of vulnerabilities [18,21,23,38,48,51,54,57,79,83,147–152,160,166].
These techniques take as input software artifacts (binaries and/or source code)
and outputs a list of security violations (vulnerabilities) and their locations.
These works perform static analysis [160,166], or dynamic analysis [48,83,159],
or a hybrid analysis [23] to find vulnerabilities.

The literature has extensively analyzed specific instances of improper input
validation, such as SQL Injection, XML Injection, Cross-Site Request Forgery
(CSRF), Cross-Site Scripting (XSS), and Server-Side Includes. However, one
of type of tactical vulnerability got neglected, which is the untrusted de-
serialization of objects [108, 128]. Unlike other vulnerability types rooted
at improper input validation, untrusted deserialization vulnerability exhibits a
set of challenges that are hard to handle for effective1 vulnerability detection
(these challenges are described in Section 6.1).

There is been an uptick of severe deserialization vulnerabilities reports
widely discussed by security practitioners since 2015 [59], with the first in-
stances occurring dating back 2006 [127]. Given the pervasive and severity
nature of object deserialization vulnerabilities, this tactical vulnerability type
is listed in rank #13 in the 2021 Common Weakness Enumeration (CWE™)
Top 25 Most Dangerous Software Weaknesses (CWE Top 25) [145]. Although
untrusted object deserialization is increasingly occurring in software systems,
we currently lack a robust approach that can detect untrusted deserialization
problems. Current exploitation tools [15,60] are limited in the sense that they
leverage prior reports to verify whether the system is prone to deserialization
attacks.

Therefore, this dissertation presents a research work that aims to achieve
three major goals: (i) to understand what are the common types of tacti-
cal vulnerabilities; (ii) to investigate key aspects of tactical vulnerabilities
through in-depth empirical studies; and (iii) to develop a technique to detect
tactical vulnerabilities rooted at untrusted deserialization of objects in Java
programs.

1By effective we mean an approach that balances precision, recall, and scalability while
detecting untrusted object deserialization vulnerabilities.

CHAPTER 1. INTRODUCTION 4

1.1 Research Goals

Goal 1 Identify common types of tactical vulnerabilities.

We aim to promote the awareness and of common security architecture
weaknesses. To achieve this goal, we systematically enumerated types of
architectural vulnerabilities known by the software security community.
It ensued in the creation of the Common Architectural Weakness Enu-
meration (the CAWE catalog). Chapter 4 discusses the creation process
for this catalog. The CAWE catalog is important for creating a knowl-
edge base that could later be used for detecting such issues. Using the
CAWE catalog, we answered two research questions.

Research Questions

RQ1 What are the types of tactical vulnerabilities?

RQ2 What architectural security tactics are more likely to have associ-
ated vulnerabilities?

Goal 2 Understand tactical vulnerabilities.

Tactical vulnerabilities have multiple characteristics, such as their conse-
quences, root causes and mitigation techniques. Therefore, a second goal
of this research work is to better understand the previously identified
tactical vulnerability types through empirical studies. We conducted an
empirical investigation of tactical vulnerabilities across multiple open-
source systems to accomplish this goal. This study encompassed the
extraction of vulnerability reports and related artifacts for three large-
scale software systems, namely Chromium, PHP, and Thunderbird. By
using the CAWE catalog and performing a detailed analysis of vulnera-
bility artifacts, we identify the most occurring tactical vulnerability types
on these projects, the security tactics mostly affected by these tactical
vulnerabilities and their root causes and fixes. This empirical study is
then used to answer three research questions.

Research Questions

CHAPTER 1. INTRODUCTION 5

RQ3 What are the most common tactical vulnerabilities in real software
systems?

RQ4 What security tactics are most affected by tactical vulnerabilities?

RQ5 What are the root causes of the most frequently occurring types of
tactical vulnerabilities?

Goal 3 Detect tactical vulnerabilities rooted at untrusted deserializa-
tion

As it will be discussed in Chapters 2 and 3, existing techniques fall short
in uncovering untrusted deserialization vulnerabilities due to unsound-
ness of their analysis with respect to serialization/deserialization fea-
tures. As such, the last goal is to develop Dodo (untrusteD Object
Deserialization detectOr) a hybrid program analysis technique to detect
object deserialization vulnerabilities. It encompasses the development
of novel (i) taint-based and downcast-based call graph construction algo-
rithms for soundly handling object deserialization in a program, an (ii)
exploit generation, and (iii) a dynamic analysis engine. While evaluating
Dodo, we answer two research questions.

Research Questions

RQ6 Does Dodo’s call graph algorithm handle object deserialization
soundly?

RQ7 Is Dodo useful for finding object deserialization vulnerabilities?

1.2 Thesis Statement

Understanding and identifying tactical vulnerabilities can help the upfront
design of a security architecture and aid the correct implementation of design
decisions in code.

1.3 Contributions

The contributions of this Ph.D. work are:

CHAPTER 1. INTRODUCTION 6

• A catalog of common architectural weaknesses (the CAWE catalog) to pro-
mote the awareness of architectural issues that result in vulnerabilities [125].

• A series of empirical studies on tactical vulnerabilities in real software sys-
tems to understand the characteristics and pervasiveness of tactical vulner-
abilities [123,124,126].

• The development of an automated technique for detecting untrusted deseri-
alization vulnerabilities [121,122].

1.4 Publications

This Ph.D. research resulted in the following publications:

SOAP’21 J. C. S. Santos, R. A. Jones, M. Mirakhorli, and C. Ashiogwu.
“Serialization-aware Call Graph Construction”. In: Proceedings of the
10th ACM SIGPLAN International Workshop on the State Of the Art
in Program Analysis (SOAP’21).

ICSA’21 A. Shokri, J. C. S. Santos, and M. Mirakhorli. “ArCode: Facili-
tating the use of application frameworks to implement tactics and
patterns”. In: 2021 IEEE 18th International Conference on Software
Architecture (ICSA’21).

SCAM’20 S. Moshtari, J. C. S. Santos, M. Mirakhorli, and A. Okutan. “Look-
ing for Software Defects? First Find the Nonconformists - An Outlier-
Based Defect Prediction Approach”. In: 2020 IEEE 20th Interna-
tional Working Conference on Source Code Analysis and Manipulation
(SCAM’20).

WoSoCer’20 J. C. S. Santos, A. Shokri, and M. Mirakhorli. “Towards Auto-
mated Evidence Generation for Rapid and Continuous Software Cer-
tification”. In 10th IEEE International Workshop on Software Certi-
fication (WoSoCer’20).

FTfJP’20 J. C. S. Santos, R. A. Jones, and M. Mirakhorli. “Salsa: Static
Analysis of Serialization Features”. In 22nd ACM SIGPLAN Interna-
tional Workshop on Formal Techniques for Java-Like Programs (FT-
fJP’20).

CHAPTER 1. INTRODUCTION 7

ICSEW’20 J. C. S. Santos, S. Suloglu, J. Ye, and M. Mirakhorli. “Towards an
Automated Approach for Detecting Architectural Weaknesses in Crit-
ical Systems”. In Proceedings of the IEEE/ACM 42nd International
Conference on Software Engineering Workshops (ICSEW’20) – 1st
International Workshop on Engineering and Cybersecurity of Critical
Systems (EnCyCriS).

ICSA-C’20 J. C. S. Santos, S. Moshtari, and M. Mirakhorli. “An Automated
Approach to Recover the Use-case View of an Architecture”. In Pro-
ceedings of the 2020 IEEE International Conference on Software Ar-
chitecture Companion (ICSA-C) - New and Emerging Ideas (NEMI)
Track..

ESEC/FSE’19 J. C. S. Santos, A. Sejfia, T. Corrello, S. Gadenkanahalli, and M.
Mirakhorli. “Achilles’ heel of plug-and-Play software architectures: a
grounded theory based approach”. In Proceedings of the 2019 27th
ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering (pp. 671-
682).

JSS’19 J. C. S. Santos, K. Tarrit, A. Sejfia, M. Mirakhorli, and M. Galster.
“An Empirical Study of Tactical Vulnerabilities”. Journal of Systems
and Software. 149, 263-284.

ICSA’17 J. C. S. Santos, A. Peruma, M. Mirakhorli, M. Galster, J. V. Vidal
and A. Sejfia. “Understanding Software Vulnerabilities Related to Ar-
chitectural Security Tactics: An Empirical Investigation of Chromium,
PHP and Thunderbird” In: Proceedings of the 2017 IEEE Inter-
national Conference on Software Architecture (ICSA) (pp. 69-78).
Best Paper Award

ICSAW’17 J. C. S. Santos, K. Tarrit, and M. Mirakhorli. “A Catalog of Secu-
rity Architecture Weaknesses”. In Proceedings of the 2017 IEEE In-
ternational Conference on Software Architecture Workshops (ICSAW)
(pp. 220-223).

CHAPTER 1. INTRODUCTION 8

1.5 Dissertation Structure

The remainder of this dissertation is organized as follows: Chapter 2 intro-
duces terminology relevant to understand this research. Chapter 3 considers
related work in the area of software security, software architecture design, and
program analysis. Chapters 4 to 6 describes the methodology followed to cre-
ate the CAWE catalog, conduct the empirical studies and develop Dodo in
order to answer our research questions. Chapter 7 presents and discusses cur-
rent results. Chapter 8 concludes this dissertation with a summary of current
achievements along with ideas for extending the work.

Chapter 2

Background

This chapter defines the main concepts which are needed to ensure that this
work can be understood by a broader audience.

2.1 Vulnerabilities and Vulnerability Databases

Software vulnerabilities are defects that affect a system’s intended secu-
rity properties. These security problems are typically disclosed and discussed
across online forums, and many other websites, as well as tracked by vul-
nerability databases. A well-known vulnerability database is the National
Vulnerability Database (NVD), which currently tracks over 167,000 vul-
nerabilities that exist in a variety of software products, both open and closed
source. Vulnerabilities disclosed in NVD are assigned a unique identifier known
as “CVE ID” (Common Vulnerabilities and Exposure Identifier). Besides this
identifier, NVD also includes details about the security issue. An instance of
vulnerability recorded in NVD is shown below:

CVE ID: CVE-2020-6988
Overview: A remote, unauthenticated attacker can send a request from the RSLogix
500 software to the victim’s MicroLogix controller. The controller will then respond to
the client with used password values to authenticate the user on the client-side. This
method of authentication may allow an attacker to bypass authentication altogether,

9

CHAPTER 2. BACKGROUND 10

disclose sensitive information, or leak credentials.
References:
• https://www.us-cert.gov/ics/advisories/icsa-20-070-06
Affected Software Configurations:
Rockwell Automation’s:
• MicroLogix 1400 Controllers Series B (v21.001 and prior) and Series A (all versions).
• MicroLogix 1100 Controller (all versions).
• RSLogix 500 Software (v12.001 and prior).
Vulnerability Type (s)
• CWE-603: Use of Client-Side Authentication (source: ICS-CERT)
• CWE-287: Improper Authentication (source: NIST)

As demonstrated in this excerpt, each entry in NVD includes a short de-
scription of the problem as well as a list of references that are links to other
Web sites (such as issue tracking systems) that may contain more details about
the CVE instance. NVD also indicates the software’s releases affected by the
vulnerability. In this example, multiple firmware versions developed by this
vendor were affected.

Some of the CVE instances may also include CWE tags that indicate the
vulnerability type. These tags are assigned by security analysts from the enti-
ties that reviewed the vulnerability report. The CWE tag refers to an entry
from the Common Weakness Enumeration (CWE) dictionary [41], which
enumerates common weaknesses in a software system that may lead to vulner-
abilities. A weakness denotes a family of security defects that share one or
more aspect in common, such as a similar fault (root cause), failure (conse-
quence), or fix (repair) [101]. Thus, the CWE tag is used by the NVD as a
way to classify vulnerabilities.

It is important to highlight the distinction between a weakness and a
vulnerability. A weakness (or vulnerability type) is a security class of
problems in a software system that share common characteristics (root cause,
consequence and mitigations). In contrast, a vulnerability is an instance of
a weakness (an actual occurrence of the weakness).

https://www.us-cert.gov/ics/advisories/icsa-20-070-06

CHAPTER 2. BACKGROUND 11

2.2 Architectural Security Tactics

Architectural Security Tactics are means of achieving security properties
through a series of inter-related design decisions [19]. They are the build-
ing blocks of a security architecture [62] and provide reusable solutions for
satisfying security requirements, even when the system is under attack. A
comprehensive list of security tactics has been provided by Bass et al. [27].
These tactics are classified into four categories, as shown in Table 2.1.

2.3 Weaknesses and Tactical Vulnerabilities

Since security tactics are the building blocks of a security architecture, mistakes
in the adoption or implementation of these tactics can result in weaknesses
in the security architecture [125]. We can classify these “tactical weaknesses”
(i.e., tactical vulnerability types) into three categories [126]:

• Omission weaknesses are caused by not adopting a proper security tactic
to address a security requirement. An example of an omission weakness
is to store credentials without encryption. The lack of the “Encrypt Data”
tactic in this scenario allows attackers to steal sensitive data, which can
compromise the system’s confidentiality.

• Commission weaknesses refer to an incorrect choice of tactics which could
result in undesirable consequences. An example of this weakness is to rely
on IP addresses for authentication, in which there is a list of trusted IP ad-
dresses that are used to verify the authenticity of messages. While architects
have made a design decision to satisfy the requirement of authentication of
entities, the weakness in this design will enable attackers to bypass the au-
thentication by forging a trusted IP address.

• Realization weaknesses occur when appropriate security tactics are adopted
but are incorrectly implemented. For example, a developer does not invali-
date prior existing sessions before creating a new session while implementing
the “Manage User Sessions” tactic, resulting in a session fixation vulnerabil-
ity. This enables an intruder to steal user sessions.

Based on the above classification of weaknesses, we define tactical vulner-
abilities as: software vulnerabilities introduced in a system because of design

CHAPTER 2. BACKGROUND 12

Table 2.1: Architectural security tactics and their definitions

Category Tactic Description
Identify Actors Identifies the external agents that provide inputs into

the systems
Validate Inputs Sanitizes, neutralizes and validates any externally pro-

vided inputs to minimize malformed data from entering
the system and preventing code injection in the input
data

Manage User Sessions Retains the information or status about each user and
his/her access rights for the duration of multiple re-
quests

Authenticate Actors Verifies the authenticity of actors (i.e., to check if the
actor is indeed who it claims to be).

Authorize Actors Enforces that agents have the required permissions be-
fore performing certain operations, such as modifying
data

Limit Access Limits the amount of resources that are accessed by
actors, such as memory, network connections, CPU, etc.

Limit Exposure Minimizes the attack surface through designing the sys-
tem with the least needed amount of entry points

Encrypt Data Maintains data confidentiality through use of encryp-
tion libraries

Separate Entities Places processes, resources or data entities in separate
boundaries to minimize the impacts attacks

Resist
Attacks

Change Default Settings Forces users to configure the system before use by
changing the default (and potentially less secure) con-
figuration.

Revoke Access In case of attacks, the system denies access to resources
to everyone until the malicious behavior ends

Lock Computer Lockout mechanism that takes effect in case of multiple
failed attempts to access a given resourceReact to

Attacks Inform Actors In case of malicious activities, the users/administrators
or other entities that are in charge of the system are
notified.

Detect Intrusion Monitors network traffic for detecting abnormal traffic
patterns caused by intrusion attempts

Detect Service Denial Monitors incoming traffic for detecting Denial Of Ser-
vices (DoS) attacks.

Verify Message Integrity Ensures integrity of data, such as messages, resource
files, deployment files, and configuration files

Detect
Attacks

Detect Message Delay Detects malicious behavior through observing the time
spent on delivering messages. In case messages are tak-
ing unexpected times to be received, the system may
detect a potential data leakage.

Recover
from
Attacks

Audit Logs user activities in order to identify attackers and
modifications to the system

CHAPTER 2. BACKGROUND 13

and implementation issues related to architectural tactics. More specifically,
these vulnerabilities occur due to:

(i) a lack of security tactics (omission weakness) in the application’s archi-
tecture; or

(ii) adoption of less suitable security tactics for a given design problem or con-
text (commission weakness); or

(iii) an incorrect implementation of security tactic principles which results in an
incorrect transition from design to code (realization weakness).

2.4 Object Serialization and Deserialization

Object serialization (also known as “marshaling”) is a mechanism in which
an object is converted to an abstract representation (e.g., bytes, XML,
JSON, etc). Such abstract representations are suitable for network transporta-
tion, storage, and inter-process communication. The receiver of a serialized
object has to parse the abstract representation in order to reconstruct a new
object. This reconstruction process is called object deserialization (or “un-
marshalling”).

Although object serialization and deserialization seems a innocuous mech-
anism, it can introduce serious vulnerabilities [95]. The problem stems from
allowing arbitrary object types to be deserialized and invoking methods from
the objects’ classes during their reconstruction. Deserialization libraries may
invoke default constructors, getter/setter methods, or methods with specific
signatures when reconstructing the object. These are the callback methods
of the deserialization mechanisms. As a result, attackers could leverage these
callback methods invoked during object deserialization to perform a malicious
action, such as resource consumption (denial-of-service attacks), application
crashes and remote code execution [49,108].

Each programming language have their own serialization/deserialization
protocol. The Java’s default serialization and deserialization protocol is thor-
oughly described at their specification page [106]. We briefly present this
mechanism in the next subsection.

CHAPTER 2. BACKGROUND 14

2.4.1 Java Serialization API

The default Java’s Serialization API converts a snapshot of an object graph
into a byte stream. During this process only data is serialized (i.e., the object’s
fields). The code associated with the object’s class (i.e., methods) is within
the classpath of the receiver of this serialized object [128]. For an object to be
serializable, its class has to implement the java.io.Serializable interface.
The specific class fields that should be serialized can be defined in two ways:

• Implicitly: all the non-transient and non-static fields of the class are serial-
izable fields by default.

• Explicitly: all the fields that are listed during the initialization of a special
field (serialPersistentFields) in the class. This particular field (which
has to be declared as a private static final field) is initialized with an array
of ObjectStreamField objects that indicate the names and types of the
attributes that should be serialized.

The example in Listing 1 shows two classes with implicit and explicit dec-
larations. The User class explicitly indicates that only one of its fields (name)
must be serialized. For the Book class, all of its non-static fields (i.e., total-
Pages and title) are serialized.

1 import java.io.ObjectStreamField;
2 import java.io.Serializable;
3
4 public class User implements Serializable {
5 private String name; private int id;
6 private static final ObjectStreamField[] serialPersistentFields = { new ObjectStreamField("name", String.class) };
7 }
8
9 public class Book implements Serializable{

10 private int totalPages; private String title;
11 }

Listing 1: Explicit and implicit declaration of serializable fields

The classes ObjectOutputStream and ObjectInputStream can be used to
serialize and deserialize an object, respectively. They can only serialize/deseri-
alize objects whose class implements the java.io.Serializable interface. If
implemented by Serializable classes, the following methods are invoked by
Java during deserialization (1-4) or serialization (5-6):

(1) void readObject(ObjectInputStream): it customizes the retrieval of
an object’s state from the stream.

CHAPTER 2. BACKGROUND 15

(2) void readObjectNoData(): in the exceptional situation that a receiver
has a subclass in its classpath but not its superclass, this method is
invoked to initialize the object’s state.

(3) Object readResolve(): this is the inverse of writeResolve. It allows
classes to replace a specific instance that is being read from the stream.

(4) void validateObject(): it validates an object after it is deserialized.
For this callback to be invoked, the class has to implement the Object-
InputValidation interface and register the validator by invoking the
method registerValidation from ObjectInputStream class.

(5) void writeObject(ObjectOutputStream): it customizes the serializa-
tion of the object’s state.

(6) Object writeReplace(): this method replaces the actual object that
will be written in the stream.

:ObjectOutputStream:AppClass

writeObject(< object >)

writeObject(...)

2
Write class descriptor

to the stream

4 Restore object's fields

3 Replace written Object
writeReplace(...)

:Serializable

1 Write object to
input stream

writeClassDesc(...)

Figure 2.1: UML sequence diagram for Java’s serialization

Figures 2.1 and 2.2 depicts the sequence of these callback methods invoca-
tions, highlighted in red boxes. Classes with a dark background are part of the
Java’s API, whereas the classes with a light gray background are application
classes.

CHAPTER 2. BACKGROUND 16

:ObjectInputStream

readClassDesc(...)

:Serializable:AppClass

reconstructed
object

readObject()

readObject(...)

1
2

Read class descriptor
from the stream

3 Restore object's fields

4 Initialize object's fields

5 Replace restored object

6 Validate object
7 Cast and
use the object

:ObjectInputValidation

readResolve(...)

readObjectNoData(...)

validateObject()

Read object from
input stream

Figure 2.2: UML sequence diagram for Java’s deserialization

CHAPTER 2. BACKGROUND 17

2.4.2 Untrusted Deserialization Vulnerabilities

Untrusted object deserialization is listed as CWE-502 in our CAWE cata-
log [125]. This tactical vulnerability type is sometime discussed in the litera-
ture as “object injection vulnerabilities” [131,135]. In this section, we describe
how this tactical vulnerability occur by walking through a vulnerable example
program.

As shown in Figure 2.2, the ObjectInputStream class invokes callback
methods from the Serializable classes as the stream is parsed and class de-
scriptors are read. These callback methods are commonly referred as magic
methods [128] and can be used in an exploit (details in Section 2.4.2).

Vulnerabilities can occur during or after deserialization:

• During: dangerous operations are within (or reachable from) magic methods.

• After: the object is later used by the application, which invokes its common
methods (e.g. .toString(), .finalize(), etc) and they contain (or reach
to) dangerous code. In this case, the object shall be of expected type (oth-
erwise, a ClassCastException is thrown, which means the object will not
be used any further).

The deserialization vulnerability is not specific to the java.io.Serializable
interface, but it can also work for java.io.Externalizable’s interface (through
the magic method readExternal()). In this dissertation, we are focusing on
vulnerabilities achieved via the Serializable interface during deserialization.
However, extending it can be viable by adding rules that abstract the inner
workings of the Externalizable interface.

To illustrate how a seemingly harmless mechanism can lead to serious vul-
nerabilities, consider the example illustrated in Listing 2. It showcases a Web
application that reads a User object stored in a cookie named as “user”. On
line 5, the application retrieves the “user” cookie from the HTTP request. This
cookie is expected to contain a serialized User object encoded using Base64.
On line 8, the application reconstructs the received User object from this
base64-encoded stream of bytes stored in the cookie.

An attacker could leverage the deserialization process to remote code exe-
cute as follows. Consider that the application has in its classpath two serializ-

CHAPTER 2. BACKGROUND 18

1 public class IndexServlet extends HttpServlet {
2 protected void doGet(HttpServletRequest req, HttpServletResponse resp) throws ServletException, IOException {
3 Cookie cookie = getCookieByName(req, "user");
4 if (cookie != null) {
5 byte[] bytes = Base64.getDecoder().decode(cookie.getValue());
6 ByteArrayInputStream bis = new ByteArrayInputStream(bytes);
7 ObjectInput in = new ObjectInputStream(bis);
8 User u = (User) in.readObject();
9 /* ... */

10 } else { /* ... */ }
11 } //...
12 }

Listing 2: A servlet that reads a serialized object from a cookie.

able classes: CacheManager and CommandTask (as shown in Listing 3). An at-
tacker would create a CacheManager object (cm) as shown in Figure 2.3. Then,
the attacker serializes and encodes this malicious object (cm) in base64 and
sends it as a cookie to the Web application. When the web application receives
that cookie, it triggers the chain of method calls depicted in Figure 2.3. This se-
quence of method calls ends in an execution sink (Runtime.getRuntime.exec()
on line 8 of the CommandTask class in Listing 3).

1 public class CacheManager implements Serializable {
2 private Runnable initHook;
3 public CacheManager(Runnable initHook) {
4 this.initHook = initHook;
5 }
6 private void readObject(ObjectInputStream ois) {
7 ois.defaultReadObject(); // populate initHook
8 initHook.run();
9 }

10 }

1 public class CommandTask implements Runnable,
2 Serializable {
3 private String command;
4 public CommandTask(String command) {
5 this.command = command;
6 }
7 public void run() {
8 Runtime.getRuntime().exec(command);
9 }

10 }

Listing 3: “Gadget classes” that can be used to trigger a remote code execution.

Although this request with a malicious serialized object results in a Class-
CastException (when the execution returns to line 8 in Listing 2), the ma-
licious command will be executed anyway, because the type cast check occurs
after the deserialization process took place.

Full call stack
org.apache.tomcat.websocket.server.WsFilter.doFilter(WsFilter.java:53)
 javax.servlet.http.HttpServlet.service(HttpServlet.java:741)
 javax.servlet.http.HttpServlet.service(HttpServlet.java:634)
 IndexServlet.doGet(IndexServlet.java:32)
 java.io.ObjectInputStream.readObject(ObjectInputStream.java:428)
 java.io.ObjectInputStream.readObject0(ObjectInputStream.java:1568)
 java.io.ObjectInputStream.readOrdinaryObject(ObjectInputStream.java:2064)
 java.io.ObjectInputStream.readSerialData(ObjectInputStream.java:2173)
 java.io.ObjectStreamClass.invokeReadObject(ObjectStreamClass.java:1158)
 java.lang.reflect.Method.invoke(Method.java:498)
 sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
 sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
 sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
 CacheManager.readObject(CacheManager.java:13)
 CommandTask.run(CommandTask.java:17)
 Runtime.exec(CommandTask.java:16)

Version 2

1 public class LoginServlet extends HttpServlet {
2 protected void doGet(HttpServletRequest req, HttpServletResponse resp)
3 throws ServletException, IOException {
4 String name = req.getParameter("name");
5 if (name != null) {
6 User u = new User(name);
7 ByteArrayOutputStream bos = new ByteArrayOutputStream();
8 ObjectOutput oout = new ObjectOutputStream(bos);
9 oout.writeObject(u);
10 byte[] bytes = bos.toByteArray();
11 String serializedUser = Base64.getEncoder().encodeToString(bytes);
12 resp.addCookie(new Cookie("user", serializedUser));
13 resp.sendRedirect("index");
14 } else {
15 // redirects to login page (...)
16 }
17 }
18 }

1 public class IndexServlet extends HttpServlet {
2 protected void doGet(HttpServletRequest req, HttpServletResponse resp)

CacheManager cmdTask = new CommandTask("calc.exe");
CacheManager cm = new CacheManager(cmdTask);

ò

Serialized Malicious Object (in Base 64):
rO0ABXNyAAxDYWNoZU1hbmFnZXKJEnhhKTAgjQIAAUwACGluaXR
Ib29rdAAUTGphdmEvbGFuZy9SdW5uYWJsZTt4cHNyAAtDb21tYW
5kVGFza+/CvHajIAP1AgABTAAHY29tbWFuZHQAEkxqYXZhL2xhb
mcvU3RyaW5nO3hwdAAIY2FsYy5leGU=

ò
Call Stack:
IndexServlet.doGet(…)
 java.io.ObjectInputStream.readObject()
 CacheManager.readObject()
 CommandTask.run()
 Runtime.exec(…)

Malicious Object:
CommandTask cmdTask =
 new CommandTask("calc.exe");
CacheManager cm =
 new CacheManager(cmdTask);

ð

Serialized Malicious Object (Base 64):
rO0ABXNyAAxDYWNoZU1hbmFnZXKJEnhhKTAgj
QIAAUwACGluaXRIb29rdAAUTGphdmEvbGFuZy
9SdW5uYWJsZTt4cHNyAAtDb21tYW5kVGFza+/
CvHajIAP1AgABTAAHY29tbWFuZHQAEkxqYXZh
L2xhbmcvU3RyaW5nO3hwdAAIY2FsYy5leGU=

ð

Call Stack:
IndexServlet.doGet(…)
 java.io.ObjectInputStream.readObject()
 CacheManager.readObject()
 CommandTask.run()
 Runtime.exec(…)

Figure 2.3: Malicious serialized object used to trigger a remote code execution.

As we can see from this vulnerability example, objects from serializable

CHAPTER 2. BACKGROUND 19

classes can be specially combined to create a chain of method calls. These
classes are called as “gadget” classes. They are used to bootstrap a chain of
method calls that will end in an execution sink.

Thus, to exploit an untrusted deserialization vulnerability the conditions
are: (a) the application performs serialization; (b) there are serializable classes
in the classpath implementing custom deserialization routines (e.g. readOb-
ject()); (c) these magic methods perform dangerous tasks. (d) these gadget
classes are in the scope of the application (available to be invoked). These con-
ditions are necessary, but not sufficient. Uncovering untrusted deserialization,
therefore, involve finding gadget classes in the classpath. These gadget classes
can be from external APIs/libraries, the application itself, or even Java’s stan-
dard classes.

2.5 Program Analysis Techniques

Program analysis techniques reason over multiple program elements (e.g,
code, execution traces, inputs, test cases, architectural descriptions, etc.) to
verify certain properties [104]. Properties are facts about the program that
holds true for one or more executions (or even all of them). An example of a
program property is that all type casts in a program are safe (for all executions).

There are two major techniques for analyzing program properties: dynamic
and static analysis. On one hand, dynamic analysis is the process of rea-
soning over properties as the program is executed [22]. On the other hand,
static analysis performs property verification by solely inspecting the pro-
gram’s source code, without actually executing it [36]. As a consequence,
static analysis can reason about properties over multiple possible execution
paths.

Property verification, however, is an undecidable problem [86], i.e., it
is not guaranteed that the verification algorithm terminates with an answer.
As stated in Rice’s theorem [116], it is unfeasible to create an automated
approach that can verify whether any non-trivial property holds for a pro-
gram1. Despite the undecidability of property verification, static analysis can

1A property φ is non-trivial if there is a version of the program P in which the property
holds, and there is another part of P that φ does not.

CHAPTER 2. BACKGROUND 20

make the problem algorithmically decidable by creating abstractions of the
program’s semantics and then verifying whether the property holds for this
abstraction [42]. The underlying abstraction will, therefore, dictate whether
a static analysis framework is sound or complete, which are defined as fol-
lows [22,104]:

• A sound static analysis creates an over-approximation of the program’s
behavior. Hence, if a sound static analyzer claims that a program is error-
free (i.e., it does not violate a property φ) then this is guaranteed. However,
the existence of a violation to φ is not guaranteed to be true (i.e., false
positives).

• A complete static analyzer yields to an under-approximation of the pro-
gram’s behavior. As a consequence, any detected violation to a property φ
is a true positive. However, this type of analyzer is not guaranteed to find
all violations to φ.

Soundness of a static analysis is a coveted property, but hard to achieve
in practice. As a consequence, certain static analyses favor precision over
soundness. These approaches are referred as “soundy” analyses described
as “[an] analysis [that] aims to be as sound as possible without excessively
compromising precision and/or scalability” [92].

The main advantage of static analysis is that it can provide high coverage.
However, given the challenge of determining the semantics of programs (ab-
straction), this class of analyses yields to spurious results. They are also prone
to miss execution paths that are not handled by the underlying abstraction.
For instance, dynamic programming features (such as reflection) is a wreak
havoc on static program analysis approaches because the actual behavior can
only be determined at runtime [30,87,91,138]. For this reason, some analyses
simply ignore these constructs or create unsound abstractions [92, 140].

2.5.1 Taint Analysis

Taint analysis is a program analysis technique that verifies information flows
from sources to sinks [155]. Since sources provide untrusted data (i.e.,
tainted data) into the program, their data should not flow into sinks, which
expect trusted (untainted) data. Hence, a taint analysis technique tracks

CHAPTER 2. BACKGROUND 21

sources of tainted data, and how they are propagated across the program.

public static void main(String args[]){
 Runtime rt = Runtime.getRuntime();
 String cmd;
 if(args.length == 1){
 cmd = args[0];
 }else{
 cmd = "ls -1";
 }
 rt.exec(cmd);
}

Runtime rt = Runtime.getRuntime();

cmd = args[0]; ⚠ cmd = "ls -1";

rt.exec(cmd);

args.length == 1

Figure 2.4: Example of a vulnerable program

A taint analysis technique relies on a taint policy which specifies how
taint is introduced and propagated throughout operations. The adopted policy
is tailored to the underlying client analysis, such as vulnerability detection, test
case generation, etc. A taint analysis policy can also include sanitizers [149,
151] which are operations that remove taint from a variable. After analyzing
the program, and propagating/removing the taint according to the underlying
policy, a taint analysis technique reports a program as vulnerable if there is
an information flow from a source to a sink [129].

For example, Figure 2.4 shows an a vulnerable Java program in which the
vulnerability could be detected using taint analysis. Since the args is an input
that can be tampered with, the taint policy marks it as tainted. Moreover,
given that rt.exec(...) is a method that executes any given command, it
is a security-sensitive operation marked as a sink. Since there is a flow from
a tainted variable to the sink (highlighted in red), the analysis report the
program as vulnerable.

Chapter 3

Related Work

Existing research have acknowledged the importance of developing secure soft-
ware systems and have proposed many methods and approaches for achieving
security by design. This chapter discusses relevant works in the field.

3.1 Software Architecture and Security

Existing research on software architecture for security has proposed meth-
ods for facilitating the analysis and evaluation of a security architecture [68,
119,143] and techniques for reverse engineering security design decisions from
source code [33]. Although these works can help architects to identify threats
and to appropriately adopt security tactics into a system, such activities may
not be enough to avoid vulnerabilities because the implementation of design
decisions may be incorrect or erode over the time.

Similar to this PhD work, previous research focused on identifying potential
threats and vulnerabilities from the underlying architecture [13, 29, 137, 164].
However, they currently can detect very specific instances of architectural flaws
related to race conditions [13], anomalous component interactions [164] and
multi-tier business applications implemented in Java [29].

22

CHAPTER 3. RELATED WORK 23

3.2 Empirical Studies on Software Vulnerabilities

Current empirical studies analyze vulnerabilities for a diverse set of goals, such
as understanding when vulnerabilities were first introduced in the software
project [97], verifying what are the impacts of a public disclosure of vulnera-
bilities [17,144] as well as investigating how these vulnerabilities are discovered,
reported and the associated delays when fixing them [31,32,66,165].

Regarding the works that empirically investigated the relationship between
vulnerabilities with respect to its architecture, Feng et al. [55] analyzed how
architectural structure violations (e.g. improper inheritance) are related to
vulnerabilities. Their findings suggested that files involved in structural viola-
tions are correlated with occurrences of vulnerabilities and have a higher code
churn and a greater number of changes for fixing their vulnerabilities.

3.3 Vulnerability Prediction

The works in this category are concerned with creating prediction models from
historical vulnerability data to help the identification of the parts of the system
that are more likely to be prone to vulnerabilities. In this context, existing
works have been using a variety of metrics derived from software artifacts (such
as code churn, lines of code and imported libraries) or organizational metrics
(e.g., the number of engineers) to build prediction models [37,103,132,136,167].

Researchers are not only working on developing vulnerability prediction
models, but also in investigating more fundamental questions. For instance,
Hovsepyan et al. [74] verified to which extent prediction models benefit from
using older releases or newer releases for training the prediction algorithm.
Through investigating vulnerabilities from two real systems, they observed
that using older releases to create the prediction models increases the recall of
these predictions, at the cost of high false positive rates. Walden et al. [158]
compared different prediction models created using traditional software metrics
as features against a model that was based on text features (i.e., keywords
extracted from source files). Through a set of cross-validation experiments,
they found that using text features had a higher recall than using software
metrics as features.

CHAPTER 3. RELATED WORK 24

3.4 Formal Methods for Security Architecture

Formal methods are techniques that mathematically models a complex sys-
tem, which allows reasoning over its properties in a more rigorous fashion [78].
Given that formal methods can model systems, regardless of their domain and
technologies, existing works used them for helping the design of secure systems.

In this context, Kang et al. [81] developed an approach for facilitating
security analysis. It allowed software architects to explore and evaluate al-
ternative design solutions and verify potential security implications of each of
these alternative design decisions. Through a study conducted over two ap-
plications [81], they were able to uncover two vulnerabilities in the design in
each of these two systems, which were later confirmed by their software ven-
dors. Similarly, Gacek et al. [61] proposed a framework that automatically
generates assurance cases1 from a system model specified in an Architecture
Analysis and Design Language (AADL) and a set of rules expressed in a do-
main specific language proposed by the authors. Furthermore, Heyman et al.
[71] presented reusable formal models of security patterns2. These proposed
models were devised to be reused by architects to formally describe a security
architecture and uncover potential architectural security flaws.

3.5 Automated Vulnerability Detection

Current state-of-the-art techniques that automatically detects vulnerabilities
leverage on two approaches: static analysis and dynamic analysis. On one
hand, static analysis techniques inspects only the source code against a set of
predefined rules to find vulnerabilities (i.e., it finds security violations with-
out running the code). On the other hand, dynamic analysis approaches finds
vulnerabilities by executing the code and observing/monitoring its behavior.
Currently, there are a variety of open source and commercial tools for per-
forming automated vulnerability detection. Examples of such tools are Flaw
Finder, FindBugs and Splint (open source) as well as Fortify 360, AppScan
and Coverity (commercial) [105].

1Assurance cases are claims and supporting evidence about the security of a given system.
2A Security pattern is a documented solution for a common security problem that happens

in a specific context.

CHAPTER 3. RELATED WORK 25

In this scenario, previous research has focused on developing new tech-
niques that leverage on static [160,166], dynamic analysis [48,83,159], or both
approaches [23] to detect security issues. Since these tools and techniques are
different in terms of the vulnerability types they can detect and the program-
ming language(s) they support, numerous studies have compared different tools
in terms of advantages/disadvantages and the quality of their vulnerability de-
tection [18,45,57,58,85,89,109].

3.5.1 Untrusted Object Deserialization Detection

Many works explored the problem of performing pointer analysis of programs
[28, 56, 70, 72, 82, 88, 117, 139]. These approaches focus on computing over- or
under-approximations in order to improve one or more aspects of the static
analysis, such as its soundness, precision, performance, and scalability. In
this dissertation, however, we focus on aiding points-to analyses to soundly
handle serialization-related features in a program, which are currently not
well-supported because the deserialization API heavily relies on non-trivial
reflection [87,114].

Prior works on static analysis also explored the challenges involving sup-
porting reflection features [30, 90, 91, 138]. These approaches involve making
certain assumptions when performing the analysis, in order to create analyses
that are not overly imprecise. Sharp and Rountev [134] discussed an approach
to statically analyze RMI-based programs, which is a mechanism that also relies
reflection but has a set of unique challenges. Analyzing RMI-based programs
require reasoning over client and server code and their inter-process commu-
nication via objects/messages. Thus, the work presented an abstraction to
soundly infer data flows across processes in RMI-based programs [133].

In the past few years, there was a spike of vulnerabilities associated with
deserialization of objects [39, 73]. Thus, existing works also studied vulnera-
bilities rooted at untrusted deserialization vulnerabilities [49, 108]. Pele et al.
[108] conducted an empirical investigation of deserialization of pointers that
lead to vulnerabilities in Android applications and SDKs. Dietrich et al. [49]
demonstrated how seemingly innocuous objects trigger vulnerabilities when
deserialized, leading to denial of service attacks.

There is a line of research that explored call graph’s soundness of Java

CHAPTER 3. RELATED WORK 26

(or JVM-like) programs [14, 113, 114]. In particular, recent empirical studies
[113,114] show that although serialization-related features are widely used, they
are not well-supported in existing approaches. Currently, to the best of our
knowledge, we could not find an approach that aims to enhance existing points-
to analysis to support serialization-related features to enable the detection of
untrusted object deserialization statically.

More recently there were approaches published that aimed at detecting un-
trusted object deserialization for PHP [84, 131] and .NET [135]. Shcherbakov
and Balliu [135] described an approach to semi-automatically detect and ex-
ploit object injection vulnerabilities .NET applications. It relies on existing
publicly available gadgets to perform the detection and exploitation. Koutroumpou-
chos et al. described ObjectMap [84] which is tool that performs black-box
analysis of Web applications to pinpoint potential insecure deserialization vul-
nerabilities. It works by inserting payloads into the parameters of HTTP
GET/POST requests and then monitoring the target web application for er-
rors to infer whether the application is vulnerable or not.

More similar to our research, we can mention two recent works (that were
published while this work was already being conducted) by Rasheed and Diet-
rich [111] and Haken [67]. Both works focused on deserialization vulnerabilities
in Java programs [67,111].

Rasheed and Dietrich [111] described a hybrid approach that first performs
a static analysis of a Java program to find potential call chains that can lead
to sinks, where reflective method calls are made. It then uses the results of
the static analysis to perform fuzzing in order to generate malicious objects.
Unlike our work (Dodo), their work is inherently unsound [111]. Dodo first
makes the call graph sound with respect to serialization features, then it relies
on symbolic execution and constraint solving to generate exploits.

Gadged Inspector [67] is a tool that analysis the program using CHA-based
call graph construction algorithm. It outputs a list of gadget chains (i.e., a
sequence of method invocations from a deserialization callback method to a
sink). Unlike Dodo, this approach only outputs gadget chains whereas our
work goes further by generating exploits and using these exploits to instrument
the program to verify whether the vulnerability exists or not.

Chapter 4

Identifying Tactical
Vulnerability Types

This chapter discusses the creation of the Common Architectural Weakness
Enumeration (CAWE catalog). This catalog documents and categorize known
weaknesses in design or implementation of security tactics.

4.1 Creating the CAWE Catalog

We follow the following steps to create the CAWE catalog:

1. We compiled an extensive list of architectural security tactics previously
published [27,96]. For each tactic, we collected its description and keywords
that summarize the security tactic. It resulted in a list of 18 security tactics
(see Table 2.1) which helped us to identify the common building blocks of
security architectures.

2. We extracted all entries from the MITRE’s CWE dictionary (version 2.9) [41].
Entries in the CWE dictionary can be of four types:

• View : it groups weaknesses from a given perspective (e.g., types of er-
rors);

• Category : it aggregates entries based on a common attribute. For exam-

27

CHAPTER 4. IDENTIFYING TACTICAL VULNERABILITY TYPES 28

ple, a shared environment (J2EE, .NET), a functional area (authentica-
tion, cryptography), etc.;

• Weakness: it is an actual vulnerability type;

• Compound Element : it defines a sequence of weaknesses that can lead
to security issues (i.e., it is a chain of weaknesses that results in another
weakness).

Based on the descriptions above, we have not included entries that were
a View or a Category because they group other weaknesses rather than
representing one vulnerability type. Thus, we analyzed a total of 727 entries
(Weakness or Compound Elements) out of the 1,004 entries available in the
CWE dictionary version 2.9. A Weakness or Compound Element contains a
variety of information such as a description, mitigation techniques, common
consequences, code examples, etc. 1.

3. We performed a keyword-based search over the 727 entries’ metadata. We
used the tactics’ keywords collected in the first step. The output of this is a
set of tuples; each pair indicates a potential connection between a security
tactic and a CWE entry.

4. The keyword-based search above gives an initial set for us to build upon.
However, this automated process can render to inaccurate mappings. Hence,
we manually analyzed all the 727 CWEs to confirm whether these potential
connections indeed existed. We also checked these 727 CWEs for miss-
ing connections between a tactic and a weakness/compound element. The
systematic process for this manual analysis was as follows:

• we decomposed each CWE into three dimensions: its root cause (identi-
fied based on the entry’s description and time of introduction), its failure
(observed from the entry’s enumerated consequences), its fix (identified
from the described mitigation techniques).

• we applied the criteria defined in Section 2.3 to consider a CWE entry to
be a architectural weakness. If the CWE entry is either caused by (i) a
lack of a design decision (omission); or (ii) an incorrect choice of security

1The complete information provided in the CWE dictionary is documented on MITRE’s
Website: https://cwe.mitre.org/data/xsd/cwe_schema_v5.4.2.xsd

https://cwe.mitre.org/data/xsd/cwe_schema_v5.4.2.xsd

CHAPTER 4. IDENTIFYING TACTICAL VULNERABILITY TYPES 29

tactics which results in “bypasses”, i.e., an attacker being able to bypass
the security mechanism and breach into the system (commission) or (iii)
an incorrect transition from tactic design to implementation in the code
(realization weakness), the entry would be considered as an architectural
weakness.

• If a CWE entry matched any of these conditions, it was considered to be
rooted in the design and/or implementation of a security tactic and clas-
sified as an architectural weakness. We tagged each of these weaknesses
with the security tactic affected by the weakness and the type of impact
(i.e., , commission, omission or realization weakness).

Example: Consider as an example the CWE-354 (“Improper Validation
of Integrity Check Value”). It contains some keywords related to the security
tactic “Verify Message Integrity”. Hence, after performing the keyword-based
search (3rd step), this entry is marked as potentially related to the “Verify
Message Integrity” tactic. When we subsequently manually inspected it, we
observed that this weakness is caused by an incorrect verification of the check-
sums 2 of messages. As a consequence, the software system may accept cor-
rupted or intentionally modified messages. When we inspected the mitigation
section, it implies that the system handles a message protocol that supports
message integrity verification, but the application failed to correctly imple-
ment such mechanism. Therefore, we then considered the CWE-354 to be a
“realization weakness” affecting the “Verify Message Integrity” tactic because
it occurs due to an incorrect implementation of the tactic.

Minimizing Inconsistencies and Biases

Since the keyword-based search may not show all the potential connections
between CWE instances and tactics, it is important to highlight that we also
carefully inspected all entries which were not identified through the keyword-
based search. In particular, if a CWE was tagged with “Architecture and
Design” as the time of when this weakness is introduced in a system, we in-
spected if the CWE discussed that the issue occurred because of a lack of a
security tactic. For instance, the CWE-306 (“Missing Authentication for Crit-

2Checksums are extra data that is attached to messages to detect errors and modifications
in the message.

CHAPTER 4. IDENTIFYING TACTICAL VULNERABILITY TYPES 30

ical Function”) is caused by the absence of adopting the “Authenticate Actors”
tactic (i.e., an “omission weakness”).

To minimize inherent biases in this manual analysis, four individuals worked
independently over all these 727 entries to categorize them. Once they had
completed their analysis, results were double-checked. These four individu-
als agreed on the categorization of 88.4% CWEs. For the entries with dis-
agreements (84 CWEs in total), they discussed their rationale and reached a
consensus of what would be the appropriate classification.

4.2 Overview of the CAWE Catalog

The CAWE catalog is currently integrated intro MITRE’s list of software weak-
nesses as a View (CWE-1008 in Figure 4.1). This view has an ID equals to
1008, and it is named as “Architectural Concepts”. It can be accessed by
following this link: https://cwe.mitre.org/data/definitions/1008.html.
This URL brings to a Web page containing the list of affected security tactics
(collapsed). It then displays the associated architectural weaknesses when each
of these tactics are expanded.

The CAWE catalog currently has 223 architectural weaknesses categorized
based on 11 security tactics. The CAWE catalog also contains a category
called “Cross-Cutting”, which encompasses weaknesses that can impact mul-
tiple security tactics (see category #1012 in Figure 4.1). An example of an
architectural weakness is presented in Figure 4.2. This weakness leads to a
bypass of the “Authenticate Actors” tactic caused by leveraging IP addresses
to verify the authenticity of actors (a commission weakness).

One aspect worth mentioning is that MITRE’s Website had a view that
encompasses “mistakes made during the design and/or architecture phase”3.
Unlike the CWE-701, our definition and purposes for the CAWE view are
slightly broader. Our goal was to promote the awareness of oversights related
to the security architecture itself (as an artifact). Therefore, weaknesses are
then either omission/commission (that occur during the design process) or
realization (that occur during the transition of a correct architecture to code).

3“CWE-701: Weaknesses Introduced During Design”:
http://cwe.mitre.org/data/definitions/701.html

https://cwe.mitre.org/data/definitions/1008.html

CHAPTER 4. IDENTIFYING TACTICAL VULNERABILITY TYPES 31

Figure 4.1: The CAWE catalog integrated into MITRE’s website as a view

CHAPTER 4. IDENTIFYING TACTICAL VULNERABILITY TYPES 32

Figure 4.2: CWE-291 “Reliance on IP Address for Authentication” with the
added metadata from our work (impact type and affected tactic)

Chapter 5

Understanding Tactical
Vulnerabilities

We used the CAWE catalog to study vulnerabilities in three large-scale open-
source projects, namely Chromium, PHP, and Thunderbird. In this empirical
study, we identified the most occurring architectural vulnerability types on
these projects. Moreover, we conducted a qualitative analysis of each archi-
tectural vulnerability and their fixes. Through this qualitative analysis, we
characterized their root causes and investigated the way the original develop-
ers of each system fixed these vulnerabilities.

We conducted an in-depth case study with three cases [118]. We followed
the guidelines for industrially-based multiple-case studies [156]. In our study,
each of the three systems was one case and the analysis unit was a software
project. In each case (Chromium, PHP, and Thunderbird), we investigated
RQ3, and RQ4.

5.1 Case Selection

We used the following criteria while selecting projects for our study: the sys-
tem shall be (i) widely utilized by many users, (ii) among the top 50 software
projects with the highest number of disclosed vulnerabilities [43], (iii) imple-

33

CHAPTER 5. UNDERSTANDING TACTICAL VULNERABILITIES 34

menting a wide range of security tactics, (iv) using a public issue tracking
system for managing and fixing vulnerabilities, and (v) from different software
domains. By applying these criteria, we aimed to ensure that the selected
projects provided a rich set of artifacts regarding the software development
activities conducted (to have access to all necessary data for our study), secu-
rity tactics used, reported vulnerabilities, and fixes to vulnerabilities. Based
on these criteria, we selected Chromium 1 (a Web browser), Mozilla Thun-
derbird 2 (an email and news feed client) and PHP 3 (the interpreter of the
PHP programming language) as case studies. These projects are diverse in
size, age, and domain. However, they are similar with respect to their under-
lying programming language (they were mostly written in C/C++), as shown
in Table 5.1.

Table 5.1: Details about the studied projects (statistics collected as of January
2017).

Chromium PHP Thunderbird
Size (LOC) >14 MLOC >4 MLOC >1 MLOC
Major releases 56 18 22
Total contributors 5,223 423 889
Core contributors 1904 114 83

Age 9 years -
started in 2008

22 years - started
in 1994

18 years - started
in 1998

Release cycle 6 weeks Yearly 6 weeks

Domain Web browser Script language
for web apps

Email, calendar,
chat client

Language(s) Mostly C++ Mostly C Mostly C++
Vulnerabilities 1,380 531 705
Number of users ~1 billion ~244 millions ~9 millions
Rank 4th 23rd 15th

1http://www.chromium.org/
2http://mozilla.org/thunderbird/
3http://php.net/

CHAPTER 5. UNDERSTANDING TACTICAL VULNERABILITIES 35

5.2 Data Collection and Analysis

We performed three steps while conducting this study. First, we identified the
security tactics adopted in each project. Second, we retrieved each project’s
disclosed vulnerabilities in the NVD. Finally, we manually classified vulnerabil-
ities as tactical and non-tactical. The collected artifacts and their relationships
are portrayed in Figure 5.1 to make it easier to follow subsequent explanations.

Figure 5.1: Data extraction information model

5.2.1 Step #1: Identifying Security Tactics in each Project

We identified in this first step the security tactics used in the three projects.
Since this is a manual analysis, we performed the following complementary
activities to ensure accuracy:

• We analyzed existing literature and technical documentation for each project [26]
to see if any specific security tactic was adopted. We then manually checked
if these tactics were implemented in their code.

• We searched tactic-related keywords (e.g. “authenticate”) on the source code
of the projects and browsed their source code to identify tactic-related files.

• We leveraged a prior work that automatically reverse-engineers architectural
tactics from source code [96,100].

CHAPTER 5. UNDERSTANDING TACTICAL VULNERABILITIES 36

The results of these steps were compiled into a single document. This
document indicates the set of tactics adopted in each project and where in
the code they are implemented. We contacted the developers involved in these
projects if they agree with the identified tactics. Table 5.2 lists the security
tactics identified for each project.

Table 5.2: Security tactics in Chromium, PHP, and Thunderbird

Identify
A
ctors

V
alidate

Inputs
M
anage

U
ser

Sessions
A
uthenticate

A
ctors

A
uthorize

A
ctors

Lim
it
A
ccess

Lim
it
E
xposure

E
ncrypt

D
ata

Separate
E
ntities

C
hange

D
efault

Settings
Inform

A
ctors

D
etect

D
enialof

Service
A
ttack

D
etect

Intrusion
V
erify

M
essage

Integrity
A
udit

Chromium 3 3 3 3 3 3 3 3 3 3 3 3 3 3

PHP 3 3 3 3 3 3 3 3

Thunderbird 3 3 3 3 3 3 3 3 3 3

5.2.2 Step #2: Extracting Disclosed Vulnerabilities for each
Project

As shown in Figure 5.1, CVEs are the starting point to collect the required ar-
tifacts. Therefore, we first extracted all these CVEs from NVD. Subsequently,
we performed the following actions to enforce the accuracy and completeness
of our dataset:

• Completeness check: Even though the NVD can provide a variety of
information for each vulnerability, not all CVE instances provide the data
we need to conduct our study (e.g., patches that were released to fix the
vulnerability). Thus, we manually analyzed each collected CVE to verify
whether the corresponding entries in the issue tracking system of the three
studied projects were included in the NVD. If NVD did not provide this
information, we searched the CVE ID in the project’s bug tracking system

CHAPTER 5. UNDERSTANDING TACTICAL VULNERABILITIES 37

to verify that each CVE was indeed acknowledged by the developers, fixed
and that the fix was released. This manual analysis was conducted by three
researchers over a time span of a year. In the end, we obtained a total of 2,386
CVEs spanning across the lifetimes of these projects until January 2016. Our
dataset looked as follows: 1,252 CVEs were related to the Chromium project,
430 CVEs were associated with the PHP project, and 704 CVEs were in the
Thunderbird project.

• Removal of invalid CVEs: We discarded invalid vulnerabilities which
are those that were tagged as deprecated or as a duplicate of another CVE
in the NVD. We also discarded CVEs that were not related to Chromium,
PHP or Thunderbird (including applications written in PHP rather than in
PHP itself). In addition, we excluded CVEs for which we could not identify
a corresponding entry in the issue tracking system or when the issue was
declared private in the issue tracking system.

• Tracing CVEs to patches: We used the corresponding defect entry in
the project’s Issue Tracking System to extract the patch that was released
to fix the vulnerability. From the patch we obtained the source files that
were modified as part of the fix.

5.2.3 Step #3: Identification of Tactical and Non-Tactical Vul-
nerabilities

We used two approaches to classify vulnerabilities: a bottom-up approach and
a top-down approach.

• Bottom-up classification: We read all the included vulnerability reports
(CVEs) to classify them as tactical or non-tactical. To reduce inherent biases
on this classification, we conducted a peer evaluation by two developers (one
with eight years of experience in software architecture and security and the
other one with three years of experience in this field). These subject-matter
experts (SMEs) inspected all the collected CVEs and provided a rationale
for how they classified CVE reports.

We gave to each SME a set of instructions for classifying CVEs, as shown in
Table 5.3. These instructions request these experts to read the CVE reports
and its associated artifacts to identify: (i) where the issue is located, (ii) its

CHAPTER 5. UNDERSTANDING TACTICAL VULNERABILITIES 38

Table 5.3: Instructions given to the experts to classify CVEs into tactical and
non-tactical

Instructions
Steps: (i) Read the CVE description, (ii) Check the modified code: comments,
changed function/method/class, (iii) Read the bug tracking discussion (iv) Read
the commit message.
Examples of low level issues:
- Solely coding mistake
- An integer overflow / underflow
- Use of a pointer after free
- Incorrect calculations of buffer sizes
Examples of tactical issues:
- Missing critical step in authentication tactic
- Improper handling of insufficient privileges in authorization tactic
- Errors in tactical code and principles of the tactic.
- CVE violates a design decision made by the developer.
- Missing the encryption of sensitive data.

Answer Sheet
Is the error very low level? � Yes � No
Is the source code changed implementing any security mechanisms for
Resisting, Detecting, Reacting to or Recovering from a potential attack?

� Yes � No

Is CVE in a tactical file? (Yes: Investigate) � Yes � No
Is CVE impacting the tactic? � Yes � No
What is the name of impacted tactic?
Your decision: Tactical (Yes) / Non-tactical (No) � Yes � No
Describe your rationale and provide evidence:

CHAPTER 5. UNDERSTANDING TACTICAL VULNERABILITIES 39

root causes, and (iii) a rationale and evidence for tactical vulnerabilities.

Both subject-matter experts also conducted detailed code reviews to classify
the CVEs. We provided the source files that implement tactics in these
projects and a matrix indicating the overlap of CVEs and tactical files. As
described in Section 5.2.1, we reverse-engineered security tactics in the source
code.

Once each subject-matter expert had finished their classification, they dis-
cussed their disagreements (based on each person’s rationale) and resolved
them. The percentage of vulnerability reports (CVEs) with disagreements
as well as their Cohen’s Kappa coefficients [40] in each project is shown
in Table 5.4.

Table 5.4: Cohen’s kappa coefficients and percentage of agreement when clas-
sifying vulnerability reports as tactical and non-tactical CVEs

Chromium PHP Thunderbird

Cohen’s Kappa coefficient (κ) 0.75 0.80 0.93

% Agreed 0.88 0.90 0.86

• Top-down classification: We used our CAWE catalog (Chapter 4) as a
guidance to differentiate tactical and non-tactical vulnerabilities across the
three systems. Since each CVE may have a CWE tag (Figure 5.1), we relied
on that to obtain clues whether the problem is related to a security tactic
or not. We used these tags to automatically classify CVEs as tactical or
non-tactical (i.e., if the vulnerability’s CWE tag is in our CAWE catalog,
the vulnerability is considered as tactical). Since a few vulnerabilities did
not have a CWE tag 4, we used the links between Security Tactics, Source
Files and CVEs and reviewed the content of these artifacts to tag the CVE
with the most appropriate entry in our gold standard (see Figure 5.1).

We then consolidated the results of the bottom-up and top-down classifi-
cations and peer-reviewed the cases for which we observed mismatches between
the bottom-up and top-down approach. There was a 93.3% agreement in the

4There were 182 CVEs in Chromium, 160 in PHP and 187 in Thunderbird without CWE
tags, which corresponds to 14.5%, 37.2% and 26.6% of their CVEs, respectively.

CHAPTER 5. UNDERSTANDING TACTICAL VULNERABILITIES 40

classification between bottom-up and top-down for Thunderbird, 90.2% in PHP
and 88.3% in Chromium. These disagreements occurred mainly because the
CWE tag provided to CVEs in the NVD does not have a consistent meaning:
it may indicate the specific root cause of the vulnerability (e.g “CWE-798 Use
of Hard-code Credentials”) or describe the consequence of a vulnerability (e.g,
“CWE-200 Information Leak / Disclosure”), or it is at a higher level of abstrac-
tion (e.g., “CWE-17 Code” which describes vulnerabilities introduced during
coding). Hence, it introduces mistakes in the second step of this top-down ap-
proach. In a group review session, we resolved the disagreements and decided
which CVEs were tactical or non-tactical.

Table 5.5: Overview of the vulnerability dataset

Project #CVEs #Discarded #Analyzed #Tactical #Non-Tactical

Chromium 1252 303 949 403 546

PHP 430 267 163 63 100

Thunderbird 704 36 668 255 413

Overview of the Vulnerability Dataset: Table 5.5 shows an overview of
our vulnerability dataset, indicating the total number of collected vulnerabil-
ities (# CVEs), the number of discarded instances (as explained in Sec-
tion 5.2.3), the remaining CVEs that we analyzed, and how many tactical
and non-tactical CVEs we found in each system. From this table, we observe
that 42.5% (403 out of 949 CVEs), 38.7% (63 out of 163 CVEs) and 38.2%
(255 out of 668 CVEs) were tactical vulnerabilities in Chromium, PHP, and
Thunderbird, respectively.

Chapter 6

Detecting Deserialization
Vulnerabilities

When we conducted the empirical study described in Chapter 5, we found
that improper input validation is the most occurring class of tactical vul-
nerabilities [123, 126]. Although prior research widely explored certain in-
stances of input validation flaws, such as XSS and SQL/XML/LDAP/Path
injection [18, 21, 23, 38, 48, 51, 54, 57, 79, 83, 147–152, 160, 166], untrusted object
deserialization is currently under-explored [113,114].

When we look at CVEs related with serialization1 (Figure 6.1), we can
see a steep increase of deserialization vulnerabilities starting in 2015. In fact,
deserialization vulnerabilities is top #13 in the “CWE Top 25 Most Dangerous
Software Weaknesses” [145]. It went up 8 positions compared to the CWE Top
25 list published last year (2020). This is also consistent with existing analysis
that found deserialization vulnerabilities among the top 10 vulnerability types
across OSS projects, affecting a high number of open-source projects [11].

Given the pervasive and severity nature of deserialization vulnerabilities,
our third goal is to develop Dodo, an approach that detects realization weak-

1This trend line was extracted by searching CVEs with the keyword “serializ” and group-
ing them by their published year.

41

CHAPTER 6. DETECTING DESERIALIZATION VULNERABILITIES 42

0

50

100

150

200

250

300

2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

Untrusted Object Deserialization Vulnerabilities in NVD

Figure 6.1: Trend line of untrusted object deserialization CVEs in the NVD

nesses caused by untrusted object deserialization. Before we introduce Dodo,
we describe next the challenges involved in performing program analysis to
find this type of vulnerability.

6.1 Challenges on Detecting Untrusted Object De-
serialization

As mentioned in Section 2.5, untrusted object deserialization can be detected
via taint analysis. Performing an effective taint analysis requires three key ele-
ments [129]: (i) a taint analysis policy that dictates how taint is introduced,
propagated and removed in the system; (ii) a comprehensive list of sinks; and
(iii) a pointer analysis method that is precise enough to not inadvertently
tags a value as tainted when it is not (over-tainting) and that does not miss
tainted flows (under-tainting).

Devising an effective static taint analysis for detecting untrusted object
deserialization has the following challenges:

• “Dangerous code” can be anywhere in the classpath: An applica-
tion is composed of three main parts: the language’s built-in classes, library
classes, and the application code itself. Any class in the classpath has the
potential to be leveraged in an exploit2. Hence, sinks may not be “dis-
2In Java, the class has to implement the java.io.Serializable interface.

CHAPTER 6. DETECTING DESERIALIZATION VULNERABILITIES 43

coverable” by simply analyzing the application’s source code because the
application typically only calls a subset of classes from Java or external API
classes. Thus, if a class with a dangerous operation is not being used in
the application’s code, the sink is deemed as unreachable by a traditional
static analyzer. Thus, automatically detecting the problem requires a whole-
program analysis of the source code that goes beyond the application’s code
itself (i.e., analyzing classes even if they are not being used in the program).

• Serialization is built on top of reflection: The serialization/deserializa-
tion mechanism is implemented on top of reflection, a dynamic programming
language feature. Reflection introduces method calls, aliases, and object al-
locations that are not directly observable from the source code; instead,
these instructions are only determined at runtime [87]. Therefore, typical
static analyses are not enough to reason over the presence of vulnerabilities
as they often under-approximate the program’s behavior in face of the un-
certainty added by these dynamic features [140]. Consequently, they would
miss vulnerabilities.

• Specially crafted object: Unlike other classes of injection problems in
which the input is a primitive or string, the input provided by the attacker
is an abstract representation of an object. This representation can have
many formats (binary, XML, JSON, etc). This representation itself is not
the problem; but rather the chain of method calls that are called during
the reconstruction of the object described in this representation. Hence, the
static analysis should abstract the object reconstruction which is uncertain;
it does not know in advance the object provided by the attacker. Objects
can have complex recursive structures due to non-primitive fields [49], and
its primitive field’s values are also uncertain. This characteristic makes it
hard to analyze possible reachable code.

• There is no “one-size-fits-all” approach to fix untrusted deserial-
ization: As previously described in the literature, taint sanitization (i.e.,
determining when taint may be removed from a value) is a challenging prob-
lem to solve [129]. Properly identifying the safe removal of taint plays a
crucial role in preventing the taint analysis to over-tainting variables.

As it will be described in Section 6.2, there are multiple different ways de-
velopers can mitigate untrusted object deserialization and these fixes often

CHAPTER 6. DETECTING DESERIALIZATION VULNERABILITIES 44

require more than just invoking a method call to sanitize a primitive data
type [108]. Hence, it is difficult to define suitable taint sanitization rules
that can abstract all possible ways an application can fix this vulnerability
in order to identify when a tainted variable can be marked as safe. There-
fore, a taint analysis approach that assumes that data that flows through
certain methods are validated (e.g., [149–151]) will not suffice for solving
this problem.

These challenges wreak havoc on static analysis techniques for vulnerability
detection, leading to over- or under-tainting of variables (depending on the
underlying abstraction used to perform the static analysis). To overcome the
challenges above, one can perform dynamic taint analysis [129], in which the
taint analysis is performed as the system is executed. However, dynamic taint
analyses require a predefined input and can explore only one execution path
at a time. Since objects can have complex structures (e.g., circular references),
there are many runtime paths that would need to be exercised, which makes
the analysis time-consuming.

6.2 Mitigating Untrusted Object Deserialization

By scrutinizing multiple vulnerability reports [102], white papers [80, 130],
talks [59, 128], books [94], and previous papers [39, 49, 108, 135], we observed
that there are three main ways to fix untrusted deserialization: (i) by prevent-
ing untrusted data to reach a sink (unreachable sinks); (ii) by enforcing the
integrity of serialized and deserialized objects (enforcing integrity); or (iii)
compartmentalization. The mitigation techniques and their corresponding
category is presented in Table 6.1.

6.2.1 Group 1: Unreachable sinks

This category contains mitigation techniques that make the sink unreachable.
These mitigation techniques are:

M1.1 Allowed/Blocked list of classes: It maintains a list of classes that
may or may not be deserialized (allow list and block list, respectively).
This is achieved by overriding the resolveClass(ObjectStreamClass
o) method in ObjectInputStream and throwing an exception when the

CHAPTER 6. DETECTING DESERIALIZATION VULNERABILITIES 45

Table 6.1: Mitigation techniques for untrusted object deserialization

Category Mitigation

Group 1
Unreachable Sinks

M1.1 Allowed/Blocked list of classes
M1.2 Prevent Deserialization of Domain Objects

Group 2
Enforcing Integrity

M2.1 Adding the “transient” to a sensitive field
M2.2 Sign and Seal Serialized Objects

Group 3
Compartmentalization

M3.1 Deserialize within a sandbox
M3.2 Reduce privileges before deserializing from a privileged context

object type is either in the block list or not in the allow list [130].

M1.2 Prevent deserialization of domain objects: This mitigation is
typically used when the application has a class that extends another
serializable class (directly or indirectly) which provides concrete imple-
mentations to callback methods (i.e., “magic methods”). Therefore, to
prevent malicious uses of these subclasses, the application breaks the
chain of method calls by throwing an exception. Hence, the dangerous
sink is unreachable because the chain of calls from readObject() to
the sink method is broken due to a thrown exception.

6.2.2 Group 2: Enforcing object integrity

This category encompasses mitigation approaches that enforce the integrity of
the object:

M2.1 Add transient to a “sensitive” field: To prevent serializing fields
with sensitive information (e.g., passwords), applications enforce that
these fields are not included when the object is serialized. This is
achieved by adding the keyword transient to the field [108].

M2.2 Sign and seal serialized objects: This mitigation is used when: (i)
the application has to transmit sensitive data, (ii) it does not have a
secure transport channel (e.g., SSL), and (iii) sensitive data must persist
over some time (e.g., on a hard drive). In this case, marking fields as
“transient” would not fulfill the application’s needs [94]. This mitigation
is based on the Obfuscated Transfer Object security pattern [142]. It

CHAPTER 6. DETECTING DESERIALIZATION VULNERABILITIES 46

involves two steps: the generation of a signature for the object (signing)
followed by encrypting the object together with its signature (sealing).

6.2.3 Group 3: Compartmentalization

This category includes mitigation approaches in which the system enforces
policies at runtime to prevent object deserialization misuse.

M3.1 Deserialize within a sandbox: The application creates a sandbox
with a set of policies that are enforced at runtime. Thus, if the deseri-
alized object triggers an operation forbidden by the policy, the object
reconstruction is stopped [8, 10].

M2.2 Minimize privileges before deserializing from a privileged con-
text: The program creates a child process with dropped privileges prior
to deserializing an object [94]. The child process contains the minimum
required privileges to reconstruct the object (e.g., the child process may
not have permission to read/write to files).

6.3 Taint Analysis for Detecting Untrusted Object
Deserialization

As previously discussed in Section 6.1, the key challenge when performing static
taint analysis is to create an abstraction that is suitable for the client analysis
(in our work, that is untrusted object deserialization detection). We need to
accurately track intra- and inter-procedural data flows. For inter-procedural
data flows, it is crucial to correctly compute the possible targets for each
method call (i.e., method dispatch). However, some programming features,
such as polymorphism and reflection [87], makes it difficult to determine the
dispatch at a given call site. Consequently, dangerous paths would be missed
as a result of call graphs that unsoundly handle such features.

To overcome these challenges and taking into account the specific char-
acteristics of deserialization vulnerabilities, we developed Dodo (untrusteD
Object Deserialization detectOr), a novel hybrid approach that combines
the strengths of static and dynamic analyses. Dodo encompasses three steps

CHAPTER 6. DETECTING DESERIALIZATION VULNERABILITIES 47

Input

Entrypoints
Extraction

add
entrypoints
to worklist

Work list
of methods

Pointer
Analysis

Method
Dispatchadd more methods

to be explored
context, object, invocation

void main(String[] args)
 throws Exception {
 // ...
}

Serialization points Deserialization points

call graph i
Output Stream

Modeling

Input Stream
Modeling

Call graph

Program

Taint
Analysis

Configuration

Tainted Pointers

Taint-based

Downcast-based

out.writeObject(o) in.readObject()

» Entrypoints
» Sinks
» Dependencies
» Pointer Analysis
» Modeling Strategy

Phase #1: Call graph construction

Phase #3: Dynamic AnalysisPhase #2: Exploit generation

Path
Extraction

SMT Solvers

Object
Creation

Constraint
Extraction

potential
vulnerable

paths
constraints

Behavior
Monitoring

Code
Instrumentation

Exploits - Vulnerable Paths
- Exploits

Output

Figure 6.2: Dodo Overview

which are depicted in Figure 6.2. 1 It performs an imprecise but sound3

static analysis of the system to find potential vulnerable paths. 2 It generates
exploits for each potential vulnerable path by leveraging symbolic analysis and
constraint solving. 3 It executes the system providing the crafted exploit
as input. It then verifies whether the system indeed contain the vulnerability
or it has implemented correct mitigation procedures to counteract it. This is
achieved by instrumenting the program and observing the occurrence of ex-
ceptions, crashes and other vulnerability occurrence indicators.

The key insight for this hybrid approach is that the imprecision introduced
by the static analyzer 1 will be removed on our final stage that involves
dynamic analysis 3 . Thus, if any of the found potential vulnerable paths
turns out to be infeasible paths at runtime, they will be disregarded during
the dynamic analysis. This minimizes the occurrence of false positives. Each
phase shown in Figure 6.2 is detailed in the next sections.

6.4 Phase 1: Call Graph Construction

Dodo takes as input both the system’s binary (Java bytecode) and a config-
uration file that contains:

3“Sound” in this context means it is sound with respect to deserialization features.

CHAPTER 6. DETECTING DESERIALIZATION VULNERABILITIES 48

• Entrypoint methods: a CSV file that contains the signatures for the meth-
ods that start the execution of a program. Traditional Java desktop-based
applications have a single entrypoint method (i.e., the main(String [])
method). However, Android applications and Web applications may have
multiple entrypoints. Thus, this configuration gives a leeway for us to ac-
commodate multiple types of systems written in Java. Moreover, this allows
us to perform partial program analysis if needed (i.e., starting the analysis
from an inner method, other than an actual entrypoint).

• Sinks: a CSV file with signatures for methods that perform security-critical
operations, such as executing a command or sending data over a network.

• Dependencies (optional): list of paths to libraries’ JAR files in which the
program depends upon (and are part of the program’s classpath).

• Pointer Analysis: which pointer analysis algorithm to use to compute the
call graph. Dodo currently supports two kinds of pointer analyses: 0-n-CFA
or n-CFA (where n can be specified).

• Modeling Strategy : as we describe in Section 6.4.2, the Dodo’s call graph
construction employs two modeling to abstract the inner implementation
details of Java’s deserialization API. Thus, a user can specify which modeling
strategy to use (downcast-based or taint-based).

Based on this configuration, Dodo constructs the program’s call graph.
A call graph is a directed graph in which the nodes are methods in the program
and the edges indicates caller-callee relationships [64]. A system’s call graph is
a core data structure for performing many interprocedural analyses, including
taint analysis.

As discussed in Chapter 2, object deserialization relies on reflection to make
invocations to callback methods (i.e., “magic methods”). Hence, call graphs
that are built using existing pointer analysis algorithms (e.g., n-CFA, n-l-
CFA, n-object-sensitive, etc.) do not include these callbacks, resulting in
an unsound call graph with respect to deserialization [113, 114]. Therefore, if
we rely on these call graphs to perform vulnerability detection, then we miss
possible vulnerable paths due to their unsoundness.

To construct sound call graphs one could argue that conservative algo-
rithms, such as Class Hierarchy Analysis (CHA) [47] and Rapid Type Analysis

CHAPTER 6. DETECTING DESERIALIZATION VULNERABILITIES 49

(RTA) [20], would suffice because they compute call graphs based solely on the
class hierarchy and implemented methods. However, performing taint analy-
sis over these call graphs will not scale well because the call graph is much
larger (number of nodes and edges) in order to encompass all the possible
behaviors [122]. Furthermore, since these conservative algorithms are highly
imprecise it results in over-tainting of variables.

Hence, we need an approach that is sound with respect to deserialization,
yet precise enough to counteract performance issues that will be introduced
by attempting to find vulnerable paths within these call graphs. To achieve
this goal, Dodo employs an iterative call graph construction technique [64].
It involves two major steps: (1) a set of iterations over a worklist of methods
to create an initial call graph using an underlying pointer analysis method;
and (2) a refinement of the initial call graph by applying a set of assumptions
performed iteratively until a fixpoint is reached.

6.4.1 Step 1: Initial Call Graph Construction

Dodo first extracts a set of entrypoint methods m ∈ E added to our work-
list W. This worklist tracks the methods m under a context c that have to be
traversed and analyzed, i.e. 〈m, c〉 ∈ W, where a context c is an abstraction
of the program’s state. Since the worklist W tracks methods within a context,
the entrypoints methods added to W are assigned a global context, which we
denote as ∅. As a result of this first step, the worklist is initialized as:

W = {〈m, ∅〉 | ∀m ∈ E}

Starting from the entrypoint methods identified, Dodo constructs an ini-
tial (unsound) call graph (i.e., call graph0) using the underlying pointer
analysis algorithm selected by the client analysis (e.g., n-CFA, etc). Each
method in the worklist 〈m, c〉 ∈ W is converted into an Intermediary Rep-
resentation (IR) in Single Static Assignment form (SSA) [44]. Instructions i
in a method’s IR have a scope. The scope is based on where the method
m is declared. It can either be application, extension (code from imported
libraries/APIs), or primordial (Java’s standard API classes).

Each instruction i in a method’s IR is visited following the rules by the
underlying pointer analysis algorithm. We point the reader to the work by

CHAPTER 6. DETECTING DESERIALIZATION VULNERABILITIES 50

Sridharan et al. [140] which provides a generic formulation for multiple points-
to analysis policies.

When visiting instance invocation instructions i in a method m (i.e., x =
o.g(a1,a2,...,an)), the static analysis computes the possible dispatches (call
targets) for the method g as follows:

targets = dispatch(pt(〈o, c〉), g)

The dispatch mechanism computes the possible method targets by querying
the current points-to set for the object o at the current context c (pt(〈o, c〉))as
well as the declared target g (method signature). If the invocation instruc-
tion occurs at a serialization or deserialization point, then the dispatch
function implemented by our approach creates a synthetic method. A serial-
ization point is the callsite of an invocation instruction i within the application
scope that calls ObjectOutputStream’s writeObject(Object) method. Sim-
ilarly, the callsites of an invocation i within the application scope that calls
ObjectInputStream’s readObject() are deserialization points.

In this scenario, the computed dispatch is a synthetic method ms that
aims to model the runtime behavior for the readObject() and writeObject()
from the classes ObjectInputStream and ObjectOutputStream, respectively.
These synthetic models ms ∈ Ms are initially created without instructions.
Their instructions are computed and added during the call graph refinement
step (Step 2 described in Section 6.4.2).

Calls to synthetic methods (models) are n-callsite-sensitive [140]. We use
this context-sensitiveness policy to account for the fact that one can use the
same Object(In|Out)putStream instance to read/write multiple objects. Thus,
we want to disambiguate these paths in the call graph.

As a result of this first step, we obtain the initial callgraph (gi) and a
list of the call sites at the serialization and deserialization points.

6.4.2 Step 2: Call Graph Refinement

In this second step, Dodo takes as input the current call graph gi resulting
from the iterations in the prior step. The call graph gi contains nodes that are
either actual methods in the application or synthetic methods created in the

CHAPTER 6. DETECTING DESERIALIZATION VULNERABILITIES 51

previous phase.

Since synthetic methods are empty (i.e., without instructions), in this sec-
ond phase, we iteratively refine them by adding instructions to model the se-
mantics of Java’s serialization and deserialization API. In the next subsections
we outline the process of performing code modeling for the ObjectOutput-
Stream and ObjectInputStream classes.

Modeling the ObjectOutputStream Class (Serialization)

The modeling for the ObjectOutputStream class is presented in Algorithm 1.
This algorithm takes as input the set of instructions I at the serialization
points, i.e., invocations to the ObjectOutputStream.writeObject(Object)
method.

For each invocation i ∈ I, it obtains the points-to set pt(〈oi, c〉) for the
object oi passed as the first argument to writeObject(Object) (line 2). These
points-to set contains all the allocated types t for oi under the context c. Since
the writeObject’s argument is of type java.lang.Object, it first adds to ms

a type cast instruction that refines the first parameter to the type t. In case
the class type t implements any callback method invoked during serialization
(see Section 2.4.1 for their signatures), then it adds an invocation instruction
from ms targeting this callback method (line 8).

Subsequently, it iterates over all non-static fields f from the class t and
compute their points-to sets (see the foreach in line 10). If the concrete
types allocated to the field contains callback methods, it adds the following
instructions: (i) an instruction to get the instance field f from the object; (ii)
a downcast to the field’s type; and (iii) invocation(s) to the callback method
from the field’s declaring class. After adding all these instructions to the
synthetic method ms, Dodo re-adds the synthetic method to its worklist (as
depicted in Figure 6.2).

Modeling the ObjectInputStream Class (Deserialization)

Dodo uses two distinct approaches to model the ObjectInputStream class:
(1) a downcast-based approach that relies on type casts in the program to
infer potential objects that can be deserialized and (2) a taint-based approach

CHAPTER 6. DETECTING DESERIALIZATION VULNERABILITIES 52

Algorithm 1: Object serialization modeling
Input: Set of invocation instructions to writeObject: I ; /* (serialization

points) */
Project’s initial call graph: G;

Output: Set of refined synthetic models Ms

1 foreach instruction ∈ I do
2 oi ← argument(1, instruction)
3 c← context(instruction)
4 ms ← target(instruction)
5 foreach t ∈ pt(〈oi, c〉) do
6 addTypeCast(ms,t)
7 foreach callback ∈ callbacks(t) do
8 addInvoke(ms, callback)
9 end

10 foreach f ∈ fields(t) do
11 foreach fieldType ∈ pt(〈oi.f, c〉) do
12 if fieldType has any callback then
13 addGetField(ms, f)
14 addTypeCast(ms, fieldType)
15 foreach callback ∈ callbacks(fieldType) do
16 addInvoke(ms, callback)
17 end
18 end
19 end
20 end
21 end
22 addToWorkList(ms,c)
23 end

CHAPTER 6. DETECTING DESERIALIZATION VULNERABILITIES 53

that performs taint analysis alongside pointer analysis to refine the call graph
based on the variables’ taint states.

— Downcast-Based Deserialization Modeling: Many classes in
a classpath (e.g., Java’s Swing classes) implement the Serializable interface.
Hence, there is a high amount of possible calls that could be included in the
resulting call graph. Thus, this modeling strategy uses these assumptions:

Assumption #1
There is no dynamic loading of remote classes. Only the classes in
the classpath are available to be (de)serialized (closed-world assump-
tion [93]);

Assumption #2
All fields in serializable classes are not null. These fields can be instan-
tiated with any type that is safe. This assumption ensures that we can
soundly infer the possible targets for invocations within callback methods
made via inner fields (e.g., line 8 of the CommandTask class in Listing 3).

Assumption #3
All type refinements (downcasts) are safe. Thus, downcasts can be used
to infer the possible callback methods invoked during the serialization/de-
serialization and points-to sets for fields within serializable classes. This
assumption aims to reduce the points-to sets for these fields since many
classes in the classpath implement the java.io.Serializable interface.

Given these assumptions, Dodo traverses the def-use chains [12] of the
caller’s IR to find any downcasts for the returned deserialized object (line 4 in
Algorithm 2):

oret = in.readObject();

· · ·

x = (t) oret;

For each downcast type t (line 4), Dodo adds an allocation instruction
to ms followed by invocations to callbacks implemented by t (if any exists).
Next, it iterates over all instance fields of the type and compute the possible
serializable classes that are type-safe for the field (lines 9-10). For each possible

CHAPTER 6. DETECTING DESERIALIZATION VULNERABILITIES 54

safe type, it adds a field allocation. Then, if the possible type has a callback
method, it adds to ms: a cast to the possible type (line 15), and an invocation
to the callback (line 16).

The readObject() method from ObjectInputStream that Dodo is mod-
elling, returns an object instance. The returned value can either be the result
from the readObject() or readResolve(). Thus, Dodo adds to ms an in-
structions that returns a value from a φ function (line 20). This φ function
is used to indicate that the return value can either be from readObject() or
readResolve() callbacks. Finally, the synthetic method ms is re-added to the
worklist W (line 21).

Algorithm 2: Downcast-based object deserialization modeling
Input: Set of invocation instructions to ObjectInputStream.readObject: I ;

Project’s initial call graph: G;
Serializable classes in the classpath: S ;

Output: Set of refined synthetic models Ms

1 foreach instruction in I do
2 〈oret, c〉 ← getPointerForReturnValue(instruction)
3 ms ← declaredTarget(instruction)
4 foreach t ∈ downcasts(oret) do
5 oi ← addAllocation(ms, t)
6 foreach callback ∈ callbacks(t) do
7 addInvoke(ms, callback)
8 end
9 foreach f ∈ fields(t) do

10 foreach type ∈ possibleTypes(f) do
11 addAllocation(ms,oi.f , type)
12 foreach callback ∈ callbacks(type) do
13 addGetField(ms, oi.f)
14 addTypeCast(ms, oi.f , type)
15 addInvoke(ms, callback)
16 end
17 end
18 end
19 end
20 addReturnInstruction(ms)
21 addToWorkList(ms, c)
22 end

Handling object array/collection fields: To soundly handle fields that are

CHAPTER 6. DETECTING DESERIALIZATION VULNERABILITIES 55

collections of objects (e.g., arrays, sets, lists, etc), we apply an extra assump-
tion:

Assumption #4
All array/collection fields contains at least one object of each possible
type. This ensures that we soundly infer possible targets for calls whose
receiver object is an element from an array/collection field. To ensure
Dodo keeps its soundness promises, it is not container-sensitive, i.e., it
does not keep different points-to sets for a[i] and a[j] (i 6= j).

— Taint-Based Deserialization Modeling: In this code model-
ing approach, Dodo performs pointer analysis in parallel with taint analysis
to compute the taint state of variables and points-to sets. Each instruction in
the method’s IR is visited following the rules by the underlying pointer analysis
and our taint analysis algorithm [140].

Each pointer x in a program has a taint state τ(x), which can either be
true (tainted) or false (untainted). We provide below the formulation of our
taint analysis policy.

Taint Introduction: As listed below, Dodo marks as tainted all the alloca-
tions to a gadget class Gc (1), all the fields of these instances (2), as well as the
“this” pointer for a call back method invocation, i.e., magic method mc ∈ Mc

(3):

(1) The pointer for x in the instruction x = new Gc()

τ(x) = true

(2) The pointers for all the non-static fields of x

∀fi ∈ fields(x) : τ(x.fi) = true

(3) The this pointer in mc

τ(mc.this) = true

Taint Propagation Rules: As Dodo parses the method’s instructions, it
uses the rules listed in Table 6.2 to compute the taint states of the program’s
variables. Taint is never removed from a variable. Although this will make
the underlying call graph more imprecise, our goal with this approach is to

CHAPTER 6. DETECTING DESERIALIZATION VULNERABILITIES 56

soundly reason over all possible runtime paths, and remove the spurious paths
during the dynamic analysis (Phase #3).

Table 6.2: Taint propagation rules

Instruction at
method m under

a context c

Taint Propagation Rule

x = T.f τ(x) = τ(x) ∨ τ(T.f) [Load-Static]
x = y.f τ(x) = τ(x) ∨ τ(y) ∨ τ(y.f) [Load-Instance]
x.f = y τ(x.f) = τ(x.f) ∨ τ(y) [Store-Instance]
T.f = y τ(T.f) = τ(T.f) ∨ τ(y) [Store-Static]

x = o.g(a1,· · · ,an)

∀ai ∈ Aj , ∀pi ∈ Pg : τ(pi) = τ(pi) ∨ τ(ai) [Instance-Call-Args]
τ(gthis) = τ(gthis) ∨ τ(o)
τ(x) = τ(x) ∨ τ(gret) [Instance-Call-Return]
Side Effect: τ(o) = true→ [Call-Side-Effect]
pt(〈o, c〉) = pt(〈o, c〉) ∪ targetTypes(o, c, g)

x = T.g(a1,· · · ,an)
∀ai ∈ Aj , ∀pi ∈ Pg : τ(pi) = τ(pi) ∨ τ(ai) [Static-Call-Args]
τ(x) = τ(x) ∨ τ(gret) [Static-Call-Return]

return x
τ(mret) = τ(mret) ∨ τ(x) [Return]
Side Effect: [Return-Side-Effect]W = W ∪ Cm

x = y[i] τ(x) = τ(x) ∨ τ(y) [Array-Load]
x[i] = y τ(x) = τ(x) ∨ τ(y) [Array-Store]
φ = v1,v2,...,vn τ(φ) = τ(v1) ∨ τ(v2) ∨ · · · ∨ τ(vn) [Phi]
x = (TypeCast) y τ(x) = τ(x) ∨ τ(y) [Checkcast]

Assignment Instructions
As shown in Table 6.2, the rules for assignment instructions are:

lhs = rhs −→ τ(lhs) = τ(lhs) ∨ τ(rhs)

The pointer for the left-hand side (lhs) is tainted if the pointer for the
right-hand side (rhs) is also tainted (or the left-hand side itself was al-
ready previously tainted). This is the case for the rules Load-Static,
Load-Instance, Store-Instance, Store-Static, Instance-Call-
Return, Static-Call-Return, Return, Array-Load, Checkcast,
and Array-Store.

Phi Functions
Phi functions (φ) are special statements that are inserted into a method’s

CHAPTER 6. DETECTING DESERIALIZATION VULNERABILITIES 57

SSA form to represent possible values for a variable depending on the
control flow path taken. The taint for the pointer of phi τ(φ) will be
tainted if any of the possible variables’ pointers are tainted.

Method Invocations
When there is a method invocation, it can either be a static invocation
or an invocation to an instance method. In both cases, each passed pa-
rameter pi is assigned to the corresponding argument ai from the invoked
method. Consequently, the rules Instance-Call-Args, and Static-
Call-Args are propagated similar to assignment instructions. Notice,
however, that for instance methods there is a special variablemthis denot-
ing the “this” pointer for that method. Hence, the rule Instance-Call-
Args propagates the taint from the caller object to the “this” pointer
τ(gthis).

Side Effects to the Pointer Analysis Engine: Method invocations and re-
turn instructions introduce side-effects to the static analysis engine state,
labelled in Table 6.2 as Call-Side-Effect and Return-Side-Effect, re-
spectively.

Side-effects from Tainted Instance Method Invocations
When there is an instance method invocation o.g(...) and the object o is
tainted, then Dodo computes the possible method targets for the call
o.g(...) soundly. The method dispatch is performed very similar to the
Class Hierarchy Analysis (CHA) [47] with the difference that it considers
only classes that implements the Serializable interface. The dispatch
(i.e., targetTypes(o,g)) is computed as follows:

1. it obtains the static type t for o, i.e. t = type(o);

2. it extracts the set of classes based on the inheritance hierarchy for
T (i.e., T = cone(t), where cone returns the list of all descendants
of t, including t itself [154].

3. it computes the subset C ⊆ T that includes only the types (classes)
which provide a concrete implementation matching the signature of
the invoked method g.

4. the possible target methods are all the methods from the set At in
which their classes are serializable (i.e., implements the serializable

CHAPTER 6. DETECTING DESERIALIZATION VULNERABILITIES 58

interface directly or via inheritance).

Once the dispatch is computed, the points to set for pt(〈o, c〉) adds all
the elements from targetTypes(o,g).

Side-effects from Method Return Values
In a scenario where a method m has a tainted return value τ(mret) =
true, all the callers of m are re-added to the W. Since the return is
tainted, we need to back propagate this information to all the callers of
m to ensure that the rule Instance-Call-Return and Static-Call-
Return would correctly propagate the taint state.

Context-sensitivity for Tainted Method Calls: Our taint-based call graph
construction algorithm is agnostic to the pointer analysis policy (e.g., 0-1-
CFA). This means that a client analysis could choose to use a context insen-
sitive analysis (e.g. 0-CFA). Since tainted pointers are likely to have a large
points-to set and we use a sound analysis to compute all possibilities, we should
avoid merging point-to-sets of these tainted variables. Otherwise, the result-
ing pointer analysis would be too imprecise for us to further generate exploits.
Therefore, we use n-CFA sensitive for tainted method calls (even if we use an
insensitive analysis for all the other pointers).

6.5 Phase 2: Exploit Generation

This second phase takes as input the system’s call graph and the locations of
sinks generate exploits. Exploits are a set of objects that can potentially trigger
a vulnerability at runtime if the system does not implement proper mitigation
procedures. To generate exploits, this second phase leverages symbolic analysis
and off-the-shelf SMT solvers by performing three steps, described in the next
subsections.

6.5.1 Step 1: Path extraction

We compute a backward slice [163] for each sink. These slices contain all the
statements in which the sink is control dependent. For each slice previously
computed, we reconstruct the paths between sources and sinks. The output of
this step is a set of potential vulnerable paths p ∈ P from a magic method to
a sink.

CHAPTER 6. DETECTING DESERIALIZATION VULNERABILITIES 59

6.5.2 Step 2: Path Constraint Analysis and Solving

Each path computed in the previous path may include constraints that arise
due to conditional structures, such as if/else or loops. Moreover, recall that
our taint-based call graph construction algorithm introduces “fake” allocations
to the points-to set of tainted pointers (Call-Side-Effect). These “fake”
allocations interfere with the shape of the call graph (nodes and edges) and,
as such, with the reachability to sinks.

Thus, Dodo extracts two kinds of constraint during this phase:

• Path constraints: they are a result of conditional structures within the
code. They strict the actual values for the primitive fields of the objects
in the exploit. Thus, Dodo collects constraints in a conditional such as a
<operator> b only if the variables a and b are primitives, string objects, or
objects from primitive wrapper classes (e.g., java.lang.Integer).

• Type constraints: these constraints can arise in two scenarios: (i) due
to method invocations within the vulnerable path’s call sites, and (ii) as a
result of object-related conditional structures (e.g., obj1 == obj2). These
constraints strict the runtime types for reference fields (i.e., fields that are
other objects themselves). Table 6.4 enumerates how each instruction gen-
erates a constraint over the runtime type for a pointer p = 〈o, c〉 that points
to an object o under a context c. Noticed that for !obj1.equals(obj2)
and obj1 != obj2 nothing can be concluded about the runtime types for
obj1 or obj2. For example, if we have obj1 = "hello" and obj2 = "world"
they have the same type (String) but fail both conditions. Similarly, if obj1
= "hello" and obj2 = "hello" then they would have the same type and
would make the condition obj1.equals(obj2) equals to true, but obj1
!= obj2 might be equals to false if they are not the same reference (i.e.,
same memory location). Thus, we denote with a * when Dodo does not
infer a type constraint over a given instruction. For invocation instructions
such as obj.g(a1,· · · ,an), Dodo first queries what is the method dispatch
that was computed in the vulnerable path p (callTargetType(g, p)). Then,
Dodo constrains the type for the object’s pointer to be equals to the class
that declares the method in the dispatch.

To solve these constraints, Dodo relies on Z3 [46], a Satisfiability Modulo
Theories (SMT) solver. Notice, however, that code constraints are not directly

CHAPTER 6. DETECTING DESERIALIZATION VULNERABILITIES 60

Table 6.3: Constraint generation rules

Instruction at method m
under a context c within

a vulnerable path p
Type constraint

obj1 == obj2 type(〈obj1, c〉) = type(〈obj2, c〉)
obj1 != obj2 *

obj instanceof T type(〈obj, c〉) ∈ cone(T)
!(obj instanceof T) type(〈obj, c〉) /∈ cone(T)

obj == null type(〈obj, c〉) = ∅
obj != null type(〈obj, c〉) = cone(staticType(〈obj, c〉))

obj1.equals(obj2) type(〈obj1, c〉) = type(〈obj2, c〉)
!(obj1.equals(obj2)) ∗

obj.g(a1,· · · ,an) type(〈obj, c〉) = callTargetType(g, p)

Figure 6.3: An example of a path constraint converted into the SMT-Lib
format [24]

handled by SMT solvers. Thus, we convert these code-level constraints to
first-order predicates that follow the syntax established in the SMT-Lib stan-
dard [24]. Figure 6.3 contains an example on how we encode a path constraint
using the SMT-Lib format [24]. Notice that each variable identifier encom-
passes two parts. The first part is the scope, which is the id for the call graph
node in which the (SSA) variable is used. The second part is the variable iden-
tifier, which is its unique id within the method’s IR (that is in SSA form). For
example, the function identifier v1720_5 indicates a String with an identifier
equals to 5 declared inside the call graph node that has an id equals to 1720.

When Dodo passes these encoded constraints to Z3, it gets back a result
that can either be satisfiable (SAT) or unsatisfiable (UNSAT). If the constraint

CHAPTER 6. DETECTING DESERIALIZATION VULNERABILITIES 61

is satisfiable, Z3 also returns a solution. We trace these values back to their
corresponding primitive fields such that we can instantiate them with proper
values and types.

6.5.3 Step 3: Malicious Objects Instantiation

Dodo takes the constraints and their solutions (if satisfiable) in the previous
step to create malicious objects (i.e., potential exploits). This is a top-down
instantiation process, in which the top-level object is of the type of the class
that contains the magic method (i.e., the top-level “gadget class”).

First, Dodo creates an object for this top-level gadget class and initialize
all its fields to default values: integers are set to 0, booleans are equals to false,
and object fields are null. Subsequently, Dodo instantiates all object fields in
the class according to the type constraints previously solved. Notice that this
process is inherently recursive, since objects can have back references. The
exploit generation engine keeps track of back references to avoid getting stuck.

Each malicious object is serialized and saved into a text file. In the next
step, we feed this exploit to the program to verify whether the vulnerability
exists or not.

6.6 Phase 3: Dynamic Analysis

The exploits generated in the previous phase were based on potential vulnerable
paths computed from a static analysis, but they cannot confirm whether the
vulnerability is a true positive or not. Moreover, unlike our downcast-based
and taint-based call graph algorithm can introduce imprecision for a subset
of pointers to ensure that parts of the program involved in deserialization are
handled soundly. Therefore, the goal of Phase 3 is to verify whether the exploits
previously generated can effectively expose a vulnerability or the system has
proper mitigation procedures that would prevent an exploitation.

To achieve this goal, we generate a JAR file that includes the program
under analysis and a Driver class in the classpath, as shown in Figure 6.4.
This driver class reads a file whose path is provided as a program argument.

Dodo starts the program execution from the Driver’s main method and

CHAPTER 6. DETECTING DESERIALIZATION VULNERABILITIES 62

Java’s
classes

JAR being
analyzed

Driver

JAR file
class Main {
public static void main(String[] a)

throws Exception {
ObjectInputStream in = new ObjectInputStream(

new FileInputStream(a[0])
);
Object exploit = in.readObject();

}
}

Figure 6.4: Details of the dynamic analysis performed by Dodo

passes as program argument the path to where the exploit was saved. Dodo
then monitors the program’s execution. It considers the program to be vul-
nerable if:

1. the sink statement is executed, and

2. the arguments that reach the sink are tainted.

When Dodo detects that the program is vulnerable using the heuristic
above, it notifies the developer. The notification includes the exploit as an
evidence for the vulnerability, which could aid the process of debugging to fix
the errors.

6.7 Demonstrative Example

Consider the code snippet in Listing 4. The class Main has a main method that
reads an object from a file, whose path is provided as a program argument.
This program contains other four classes (CacheManager, TaskExecutor, Com-
mandTask, and Config). The CacheManager class has a magic method (im-
plementation highlighted) whose internal method calls can reach to the sink
located on TaskExecutor class (highlighted). Similarly, the Config class has
a magic method that invokes a sink (implementation highlighted). In the next
subsections, we walk through how Dodo analyzes this program to find vulner-
abilities. We demonstrate Dodo considering that we selected 0-1-CFA [157]
as the main pointer analysis method. As described in Section 6.4.1, calls to
the model methods are n-callsite-sensitive. In this example, we use n=1 (i.e.,
1-callsite-sensitive).

CHAPTER 6. DETECTING DESERIALIZATION VULNERABILITIES 63

1class Main {
2 public static void main(String[] a)
3 throws Exception {
4 FileInputStream f=new FileInputStream(a[0]);
5 ObjectInputStream in=new ObjectInputStream(f);
6 Config obj = (Config) in.readObject();
7 }
8}
9class CommandTask

10 implements Runnable, Serializable {
11 private String cmd;
12 private TaskExecutor taskExecutor;
13 @Override
14 public void run() {
15 if (!cmd.isEmpty() && taskExecutor != null)
16 taskExecutor.executeCmd(cmd); /* site @24 */
17 }
18}
19class TaskExecutor implements Serializable {
20 public void executeCmd(String cmd) {
21 try {
22 Runtime rt = Runtime.getRuntime();
23 rt.exec(cmd);
24 } catch (IOException e) { }
25 }
26}
27class Config implements Serializable {
28 private String page;
29 public void readObject(ObjectInputStream ois)
30 throws IOException, ClassNotFoundException {
31 ois.defaultReadObject();
32 Runtime rt = Runtime.getRuntime();
33 rt.exec("open http://localhost/" + page);
34 }
35}

35class CacheManager implements Serializable {
36
37 private Runnable task;
38 private Runnable[] taskArray;
39 private List<Runnable> taskList;
40 private Set<Runnable> taskSet;
41 private Map<String, Runnable> taskMap;
42 private String os;
43 private long timestamp;
44
45 public void readObject(ObjectInputStream ois)
46 throws IOException, ClassNotFoundException {
47 ois.defaultReadObject();
48 Runnable r;
49 if(os.equals("windows") && task instanceof CommandTask){
50 r = getInitHook(); /* site @32 */
51 r.run();
52 }else {
53 r = getFromArray();
54 r.run(); /* site @46 */
55 r = getFromList();
56 r.run(); /* site @57 */
57 r = getFromSet();
58 r.run(); /* site @68 */
59 r = getFromMap();
60 r.run(); /* site @79 */
61 }
62 }
63
64 Runnable getInitHook(){ return task; }
65 Runnable getFromArray() { return taskArray[0]; }
66 Runnable getFromList() { return taskList.get(0); }
67 Runnable getFromSet() { return taskSet.iterator().next(); }
68 Runnable getFromMap() { return taskMap.get("xyz"); }
69}

Listing 4: Walk-through example to demonstrate Dodo’s approach

6.7.1 Phase 1: Call Graph Construction

Dodo first computes the program’s call graph. Dodo includes two modeling
strategies when constructing call graphs: a downcast-based approach and
taint-based approach. The strategy used is specified via a configuration file.

In both strategies, Dodo first extracts the program’s entrypoints. These
entrypoints are provided as part of the analysis configuration. In this example,
the Main.main(String a[]) is specified as the main method. Therefore, the
Dodo’s worklist is initialized as: W = {〈Main.main(String a[]), ∅〉}. Dodo
then proceeds to iteratively compute the call graph by traversing each instruc-
tion for each method in the worklist.

There are three method invocations on Main.main(): two invocations to the

CHAPTER 6. DETECTING DESERIALIZATION VULNERABILITIES 64

constructors (<init>) of FileInputStream and ObjectInputStream classes
followed by a call to the readObject() method from the ObjectInputStream
class. The invocation to ObjectInputStream.readObject() is replaced by
Dodo, i.e., instead of dispatching to Java’s implementation of ObjectIn-
putStream.readObject(), Dodo creates a model (synthetic) method that
has the same signature but it is initialized without any instructions. At this
stage, the call graph for this program after traversing the main method looks
like as shown in Figure 6.5. All these three call graph nodes discovered af-
ter parsing Main.main() are added to the worklist to be processed (i.e., ,
FileInputStream.<init>(), ObjectInputStream.<init>(), and ObjectIn-
putStream.readObject().

Main.main(String[])
Context: Ø

FileInputStream.<init>(String)
Context: Ø

ObjectInputStream.<init>(InputStream)
Context: Ø

ObjectInputStream.readObject()
Context: Main.main(String[]) @ 21

‹ entrypoint ›

model method
(synthetic method)

Figure 6.5: Initial call graph after parsing the Main.main()method in Listing 4

The instructions that are added to ObjectInputStream.readObject() dur-
ing refinement depend on the modeling strategy used. In the next subsections,
we describe how the refinement is performed when using the downcast-based
approach and the taint-based approach.

Downcast-based Call Graph Construction

This strategy relies on downcast information to infer the possible callback
methods that can be invoked during serializaton/deserialization. The snippet
in Listing 4 has a downcast to Config type on line 6. Consequently, this
modeling strategy infers that only objects from this type will be deserialized.

The resulting call graph is partially4 shown in Figure 6.6. As indicated, the
readObject() model method is added with four instructions: an instantiation
to Config class, an invocation to Config’s default constructor, an invocation
to Config.readObject(), and a return statement to the Config’s object.

4In these call graphs, we hide other nodes that are called by primordial classes, e.g., from
FileInputStream.<init>()

CHAPTER 6. DETECTING DESERIALIZATION VULNERABILITIES 65

Main.main(String[])
Context: Ø

FileInputStream.<init>(String)
Context: Ø

ObjectInputStream.<init>(InputStream)
Context: Ø

ObjectInputStream.readObject()
Context: Main.main(String[]) @ 21

Config.<init>()
Context: [ObjectInputStream.readObject()@1]

Config.readObject(ObjectInputStream)
Context: [ObjectInputStream.readObject()@2]

Object.<init>()
Context: Ø

Object readObject(){
 v4 = new Config; /* site: @0 */
 v4.<init>(); /* site: @1 */
 v4.readObject(v1); /* site: @2 */
 return v4;
}

<synthetic method>
<context>

<application method>
<context>

<primordial method>
<context>

Legend

‹ entrypoint ›

Runtime.getRuntime()
Context: Ø

Runtime.exec(String)
Context: Ø

StringBuilder.<init>()
Context: Ø

StringBuilder.append(String)
Context: Ø

StringBuilder.toString()
Context: Ø‹ sink ›

Figure 6.6: Call graph for Listing 4 when using the downcast-based strategy

Taint-based Call Graph Construction

The taint-based strategy relies on taint states to infer callback methods that
might by invoked during deserialization. Thus, when refining a method model
it considers that all serializable classes in the classpath could have its callbacks
invoked. Since there are multiple Java’s default classes that implement callback
methods, we consider callbacks that are declared either within the application
or extension scope.

By using this strategy, there are two possible callbacks can be invoked:
one from Config and one from CacheManager. As a result, all of its instance
fields are marked as tainted per the taint introduction rule described in Line 22
(these are highlighted in red on Listing 4). Based on the taint progration rules
specified on Table 6.2, variables are then marked as tainted (these variables
that are tainted due to propagation are highlighted in cyan on Listing 4).

Recall that tainted invocations (i.e., an instruction such as obj.aMethod()
in which obj is tainted) are handled differently. Whereas the dispatch of non-
tainted invocation will follow the rules from the underlying pointer analysis
policy, the dispatch for tainted invocations are computed using a modified ver-
sion of the CHA algorithm (described in Line 22). Therefore, the computed call
graph when using the taint-based approach looks like as Figure 6.75. As shown
in this image, the model method includes the following instructions: an object
instantiation for Config as well as CacheManager, their constructors invoca-

5Due to space constraints, we elide the “getter” calls as well as inner calls from primordial
nodes (e.g., String.isEmpty())

CHAPTER 6. DETECTING DESERIALIZATION VULNERABILITIES 66

tion, and invocations to their callback methods. Finally, the model method
returns a value that can either be an instance of Config or CacheManager.
Notice that the phi function (φ) added to indicate this possibility.

It is worth mentioning that the context for tainted invocations can be spec-
ified by the client analysis. In this example, we use 1-CFA for tainted invoca-
tions.

Main.main(String[])
Context: Ø

FileInputStream.<init>(String)
Context: Ø

ObjectInputStream.<init>(InputStream)
Context: Ø

ObjectInputStream.readObject()
Context: Main.main(String[]) @ 21

User.<init>()
Context: [ObjectInputStream.readObject()@4] Object.<init>()

Context: Ø

Object ObjectInputStream.readObject(){
 v4 = new CacheManager; /* site @0 */
 v4.<init>(); /* site @1 */
 v4.readObject(v1); /* site @2 */
 v7 = new Config; /* site @3 */
 v7.<init>(); /* site @4 */
 v7.readObject(v1); /* site @5 */
 v10 = Φ(v4,v7); /* phi function */
 return v10;
}

CacheManager.<init>()
Context: [ObjectInputStream.readObject()@1]

CacheManager.readObject(ObjectInputStream)
Context: [ObjectInputStream.readObject()@2]

CommantTask.run()
Context: [CacheManager.readObject(...) @32]

CommantTask.run()
Context: [CacheManager.readObject(...) @57]

CommantTask.run()
Context: [CacheManager.readObject(...) @46]

CommantTask.run()
Context: [CacheManager.readObject(...) @79]

CommantTask.run()
Context: [CacheManager.readObject(...) @68]

TaskExecutor.executeCmd(String)
Context: [CommandTask.run() @24]

String.equals(Object)
Context: [CacheManager.readObject(...)@10]

String.isEmpty()
Context: [CommandTask.run()@4]

Runtime.getRuntime()
Context: Ø

Runtime.exec(String)
Context: Ø

<synthetic method>
<context>

<application method>
<context>

<primordial method>
<context>

Legend
‹ entrypoint ›

‹ sink ›

StringBuilder.<init>()
Context: Ø

Config.readObject(ObjectInputStream)
Context: [ObjectInputStream.readObject()@2]

StringBuilder.append(String)
Context: Ø

StringBuilder.toString()
Context: Ø

Figure 6.7: Call graph for Listing 4 when using the taint-based strategy

6.7.2 Phase 2: Generating Exploits

First, Dodo computes a backward slice [163] that contains all the statements
in which the sink is control dependent. Subsequently, Dodo extracts the paths
between magic methods and sinks. Dodo finds 1 potential vulnerable path
when using the downcast-based approach and 10 vulnerable paths when using
the taint-based approach. Figure 6.8 enumerates the possible paths. The path
#1 is the only one that could be found by Dodo when using the call graph
computed using the downcast-based strategy. All the paths #1-#10 are found
by Dodo when using the taint-based approach.

After computing these potential vulnerable paths from magic methods to

CHAPTER 6. DETECTING DESERIALIZATION VULNERABILITIES 67

METHOD_ENTRY:
ObjectInputStream.readObject()

INVOCATION
exec("open http://localhost:/" + page)

true
falsefalse

CONDITIONAL
os.equals("windows")

false

falsetrue
false

false
CONDITIONAL

task instanceof CommandTask

INVOCATION
r.run() /* site @57*/

METHOD ENTRY:
CacheManager.readObject(ObjectInputStream)

INVOCATION
r.run() /* site @46*/

INVOCATION
r.run() /* site @32*/

INVOCATION
r.run() /* site @68*/

INVOCATION
r.run() /* site @79*/

true

CONDITIONAL
!command.isEmpty()

true

CONDITIONAL
taskExecutor != null

INVOCATION
taskExecutor.executeCmd(cmd)

METHOD ENTRY:
TaskExecutor.executeCmd(String)@25

INVOCATION
rt.exec(cmd)

false false

A

B

C

D E F

G H

I

J

K

L

M

N

O

ID Path
01 N → O
02 A → B → H → I → J → K → L → M
03 A → B → F → I → J → K → L → M
04 A → B → D → I → J → K → L → M
05 A → B → C → E → I → J → K → L → M
06 A → B → C → H → I → J → K → L → M
07 A → B → C → F → I → J → K → L → M
08 A → B → C → D → I → J → K → L → M
09 A → B → G → I → J → K → L → M
10 A → B → C → G → I → J → K → L → M

Vulnerable Paths

Figure 6.8: Vulnerable paths found by Dodo for the program in Listing 4

sinks, Dodo extracts their constraints (path constraints and type constraints).
Table 6.4 enumerates the path and type constraints extracted for each path.
Path #1 does not have any path constraint because the sink is not preceded
by a conditional structure. The other paths (#2-#9) do have path constraints
that must be true/false for the sink to be executed. As we can observe in
this example, the instructions in the else block on Listing 4 (lines 52-59) can
be executed in two scenarios A = false or both A = false and B = false.
Thus, Dodo treats these as distinct paths (e.g., both paths #5 and #6 flows
through the r.run()@32 but the path #5 considers only A = false whereas
path #5 considers both A and B equals to false.

Finally, Dodo converts these constraints to the SMT-Lib format [24] that
can be handled by Z3 [46]. These constraints are solved by Z3 and deemed as
satisfiable. Using the solved constraints, Dodo then generates the exploits as
shown in Figure 6.9.

CHAPTER 6. DETECTING DESERIALIZATION VULNERABILITIES 68

Table 6.4: Path and type constraints extracted for the program in Listing 4

Path Path Constraint Type Constraint

1 N→O Ø rt = {Runtime}

2 A→B→C→E→I→J→K→L→M os.equals("windows")
!command.isEmpty()

taskExecutor != null
task instanceof CommandTask

r@32 = {CommandTask}
taskExecutor = {TaskExecutor}

rt = {Runtime}

3 A→B→F→I→J→K→L→M !os.equals("windows")
!command.isEmpty()

taskExecutor != null
r@57 = {CommandTask}

taskExecutor = {TaskExecutor}
rt = {Runtime}

4 A→B→D→I→J→K→L→M !os.equals("windows")
!command.isEmpty()

taskExecutor != null
r@79 = {CommandTask}

taskExecutor = {TaskExecutor}
rt = {Runtime}

5 A→B→H→I→J→K→L→M !os.equals("windows")
!command.isEmpty()

taskExecutor != null
r@46 = {CommandTask}

taskExecutor = {TaskExecutor}
rt = {Runtime}

6 A→B→C→H→I→J →K→L→M os.equals("windows")
!command.isEmpty()

!(task instanceof CommandTask)
taskExecutor != null

r@46 = {CommandTask}
taskExecutor = {TaskExecutor}

rt = {Runtime}

7 A→B→C→F→I→J →K→L→M os.equals("windows")
!command.isEmpty()

!(task instanceof CommandTask)
taskExecutor != null

r@57 = {CommandTask}
taskExecutor = {TaskExecutor}

rt = {Runtime}

8 A→B→C→D→I→J →K→L→M os.equals("windows")
!command.isEmpty()

!(task instanceof CommandTask)
taskExecutor != null

r@79 = {CommandTask}
taskExecutor = {TaskExecutor}

rt = {Runtime}

9 A→B→G→I→J→K →L→M !os.equals("windows")
!command.isEmpty()

taskExecutor != null
r@68 = {CommandTask}

taskExecutor = {TaskExecutor}
rt = {Runtime}

10 A→B→C→G→I→J →K→L→M os.equals("windows")
!command.isEmpty()

!(task instanceof CommandTask)
taskExecutor != null

r@68 = {CommandTask}
taskExecutor = {TaskExecutor}

rt = {Runtime}

CHAPTER 6. DETECTING DESERIALIZATION VULNERABILITIES 69

exploit
Config

String page=""

Path #1

exploit
CacheManager

task
CommandTask

command="\x00"

taskExecutor
TaskExecutoros="windows"

Path #2

exploit
CacheManager

taskList
List

command="\x00"

taskExecutor
TaskExecutor

os=""

Path #3 taskList(0)
CommandTask

exploit
CacheManager

taskMap
Map

command="\x00"

taskExecutor
TaskExecutor

os=""

Path #4 taskMap(0)
CommandTask

exploit
CacheManager

taskArray
Runnable[]

command="\x00"

taskExecutor
TaskExecutor

os=""

Path #5 taskArray[0]
CommandTask

exploit
CacheManager

taskArray
Runnable[]

command="\x00"

taskExecutor
TaskExecutor

os="windows"

Path #6 taskArray[0]
CommandTask

exploit
CacheManager

taskList
List

command="\x00"

taskExecutor
TaskExecutor

os="windows"

Path #7 taskList(0)
CommandTask

exploit
CacheManager

taskMap
Map

command="\x00"

taskExecutor
TaskExecutor

os="windows"

Path #8 taskMap(0)
CommandTask

exploit
CacheManager

taskSet
Set

command="\x00"

taskExecutor
TaskExecutor

os=""

Path #9 taskSet(0)
CommandTask

exploit
CacheManager

taskSet
Set

command="\x00"

taskExecutor
TaskExecutor

os="windows"

Path #10 taskSet(0)
CommandTask

Figure 6.9: Exploits generated by Dodo for the program in Listing 4

6.7.3 Phase 3: Instrumentation

In this final phase, Dodo saves all the exploits in Figure 2.3 into a file. Subse-
quently, it executes the program with the paths to these files passed as program
arguments. Dodo instruments each program’s instruction to verify whether
(a) the program’s execution reaches the sink and (b) the sink contains tainted
data (i.e., variables from the exploit).

In this example, all the exploits are able to exercise the vulnerability except
for one. The exploits that use the taskMap field (i.e., paths #4 and #8. This is
due to a limitation on Dodo’s exploit generation algorithm: when instantiating
collections, Dodo place one instance on the collection’s first index (0). For
non-indexed collections, such as maps it adds an instance with a dummy key
equals to “0”.

6.8 Answering the Research Questions

This section explains how we answer each research question related with our
last work’s goal.

CHAPTER 6. DETECTING DESERIALIZATION VULNERABILITIES 70

6.8.1 RQ6: Does Dodo’s call graph algorithm handle object
deserialization soundly?

We first aim to verify whether Dodo improves a call graph’s soundness with
respect to deserialization callbacks and how it compares with existing
approaches. The soundness of a call graph construction algorithm corresponds
to being able to create a call graph that incorporate all possible paths (nodes
and edges) that can arise at runtime during deserialization [14].

We answer this question using the Java Call Graph Test Suite (JCG)
dataset [52]. It was released as part of recent empirical studies [113, 114] to
investigate the soundness of the call graphs computed by existing algorithms
with respect to particular programming language constructs. The JCG test
suite was derived by an extensive analysis of real projects to create test cases
that are representative of common ways that projects use these language con-
structs (e.g., lambdas, reflection, serialization, etc).

In case of serialization-related constructs, the dataset includes 9 test cases
for verifying the soundness of call graphs during serialization and deserializa-
tion of objects. Each test case is a Java program with annotations that indicate
the expected target for a given method call. Table 6.5 provides an overview
of the test cases that are available in the JCG dataset and what aspects they
aim to probe.

To answer this RQ, we run Dodo using two pointer analysis configura-
tions (0-1-CFA, and 1-CFA) for both our downcast-based and taint-based al-
gorithms. Then, we compare against the same algorithms used in a prior
empirical study [113]: Soot (CHA, RTA, VTA, and Spark), Wala (RTA, 0-CFA,
1-CFA, and 0-1-CFA), Doop (context-insensitive), and Opal (RTA).

6.8.2 RQ7: Is Dodo useful for finding object deserialization
vulnerabilities?

We evaluate Dodo using two open-source projects (Commons File Upload and
C3P0) with known disclosed deserialization vulnerabilities. We selected these
two projects because their exploits have been discussed by practitioners and
are available on the YSoSerial repository [60]. This GitHub repository that
contains exploits to trigger well-known “gadget chains” in previously disclosed

CHAPTER 6. DETECTING DESERIALIZATION VULNERABILITIES 71

Table 6.5: Test cases from the JCG Test Suite [52] and which soundness aspect
they aim to verify on a call graph

ID Description

Ser1 The code serializes an object whose class contains a custom writeObject method. It tests
whether the call graph creates a node for the writeObject(...) callback method that can
be invoked by the writeObject(...) method from the ObjectOutputStream class.

Ser2 Tests whether the call graph has nodes and edges for the writeObject callback method under
the scenario that the call may be invoked if a condition is true.

Ser3 Tests whether the call graph construction algorithm considers inter-procedural flow to
soundly infer that the object’s writeObject(...) callback method will be invoked by the
writeObject method from the ObjectOutputStream class.

Ser4 The code deserializes an object (without performing a downcast) whose class contains a
custom readObject method. It tests whether the call graph creates a node for the read-
Object(...) callback method that can be invoked by the readObject() method from the
ObjectInputStream class.

Ser5 The code deserializes an object whose class contains a custom redObject method. It tests
whether the call graph creates a node for the readObject(...) callback method that can
be invoked by the readObject method from the ObjectInputStream class.. Unlike Ser4, this
test case has a downcast to the expected type of the read object.

Ser6 Tests whether the call graph has nodes and edges for the writeReplace callback method that
will be invoked during serialization.

Ser7 Tests whether the call graph has nodes and edges for the readResolve callback method that
will be invoked during deserialization.

Ser8 Tests whether the call graph has nodes and edges for the validateObject callback method
that will be invoked during deserialization.

Ser9 Tests whether constructors of serializable classes are handled soundly. It checks whether the
call graph models the runtime behavior which invokes the first default constructor that is
not from a serializable superclass.

CHAPTER 6. DETECTING DESERIALIZATION VULNERABILITIES 72

vulnerabilities.

We answer this RQ by using Dodo to compute the call graphs of these
two OSS projects, generate the exploit(s), and verify whether the vulnerability
exists.

Chapter 7

Results

This chapter introduces the results obtained throughout the development of
this dissertation. Specifically, RQ1 and RQ2 are answered using the CAWE
catalog, described in Chapter 4. Research questions RQ3 to RQ5 are answered
through the two empirical studies described in Chapter 5. The remaining
research questions (RQ6 and RQ7) are answered using a prototype that im-
plements the technique described in Chapter 6.

7.1 Using the CAWE Catalog to Answer RQ1 and
RQ2

7.1.1 RQ1: What are the types of tactical vulnerabilities?

Out of the 727 software weaknesses we inspected from the CWE list version
2.9, we found a total of 223 are tactic-related weaknesses (i.e., corresponding
to different types of vulnerabilities rooted in the design/implementation of
security tactics). Figure 7.1 presents a high-level hierarchical view of these
types of tactical vulnerabilities from the CAWE catalog per tactic. Due to
space constraints, this figure only shows the higher-level entries (since some
tactic-related weaknesses are children of other weaknesses).

73

CHAPTER 7. RESULTS 74

Improper Output Neutralization for Logs

Logging of Excessive Data
Omission of Security-Relevant Information

Obscured Security-relevant Information by Alternate Name
Information Exposure Through Log Files

Audit

Total = 6

Key Exchange without Entity Authentication
Use of Password Hash With Insufficient Computational Effort

Improper Authentication

Authenticate
Actors

Total = 29

Authorize
Actors

Exposure of Resource to Wrong Sphere
Untrusted Search Path

Exposure of Private Information ('Privacy Violation')
Improper Access Control

Predictable from Observable State

Process Control
Improper Handling of Insufficient Permissions or Privileges
Storage of Sensitive Data in a Mechanism without Access Control

Allocation of Resources Without Limits or Throttling

Exposure of File Descriptor to Unintended Control Sphere
Incorrect Resource Transfer Between Spheres
Lack of Administrator Control over Security
External Influence of Sphere Definition
Reliance on Security Through Obscurity
Insufficient Compartmentalization

Total = 60

Improper Cross-boundary Removal of Sensitive Data
Information Exposure Through an Error Message

Limit
Access Execution with Unnecessary Privileges

Information Exposure Through Sent Data
Externally Controlled Reference to a Resource in Another SphereTotal = 8

Validate
Inputs

Improper Input Validation
Improper Link Resolution Before File Access
External Control of Assumed-Immutable Web Parameter
Acceptance of Extraneous Untrusted Data With Trusted DataTotal = 39

Encrypt
Data

Missing Encryption of Sensitive Data
Use of a Broken or Risky Cryptographic Algorithm

Reusing a Nonce, Key Pair in Encryption
Use of a Key Past its Expiration Date

Missing Required Cryptographic Step
Inadequate Encryption Strength
Use of Hard-coded Cryptographic Key

Use of Insufficiently Random Values

Improper Verification of Cryptographic Signature
Selection of Less-Secure Algorithm During Negotiation

Insufficiently Protected Credentials

Use of a One-Way Hash without a Salt
Use of a One-Way Hash with a Predictable Salt

Insecure Storage of Sensitive Information

Total = 38

Information Exposure Through Self-generated Error Message
Limit

Exposure
Information Exposure Through Externally-generated Error Message
Information Exposure Through Process Environment
Information Exposure Through Server Error Message
Inclusion of Functionality from Untrusted Control SphereTotal = 6

Verify Msg.
Integrity

Missing Support for Integrity Check
Improper Validation of Integrity Check Value
Unchecked Error Condition
Download of Code Without Integrity Check
Reliance on Obfuscation Inputs without Integrity Checking
Improper Enforcement of Message or Data Structure
Improper Handling of Exceptional Conditions
Improper Enforcement of Message Integrity During Transmission

Total = 10

Incorrectly Specified Destination in a Communication Channel

Identify
Actors

Improper Verification of Source of a Communication Channel
Improper Certificate Validation
Insufficient Verification of Data Authenticity
Unintended Proxy or Intermediary ('Confused Deputy')Total = 12

Version 4

Figure 7.1: High-level overview of the CAWE catalog [125]

Key Finding for RQ1

– There are 223 different types of tactical vulnerabilities (i.e., tactical
weaknesses).

7.1.2 RQ2: Which architectural security tactics are more likely
to have associated vulnerabilities?

We answered this question by computing the total number of tactical weak-
nesses associated with each security tactic in the CAWE catalog. This allows us
to understand which security tactics are more likely to be incorrectly adopted
(since it has more ways to be flawed). Table 7.1 shows the number of tactical
vulnerabilities per security tactic along with a breakdown by the impact type
(omission, commission and realization weaknesses).

We noticed that the “Authorize Actors” tactic, which is used to ensure that
only legitimate users can access data and/or resources, is subject to a higher
number of known weaknesses if not implemented correctly (38 realization weak-
nesses). Therefore, it needs to be implemented and tested more carefully. Sim-
ilarly, tactics “Validate Inputs” and “Encrypt Data” need to be implemented
carefully to avoid incorrect assumptions during their design and/or implemen-
tation. We also found 9 tactical weaknesses that may affect multiple security

CHAPTER 7. RESULTS 75

tactics (i.e., cross-cutting).

Table 7.1: Total number of vulnerabilities per security tactics

Security Tactic #CAWEs Realization Omission Commission
Audit 6 3 1 2
Authenticate Actors 29 12 2 15
Authorize Actors 60 38 16 6
Cross Cutting 9 3 3 3
Encrypt Data 38 18 13 7
Identify Actors 12 10 2 0
Limit Access 8 7 0 1
Limit Exposure 6 6 0 0
Lock Computer 1 0 0 1
Manage User Sessions 6 5 0 1
Validate Inputs 39 35 4 0
Verify Message Integrity 10 6 4 0

Key Finding for RQ2

– The security tactics “Authorize Actors”, “Validate Inputs” and “En-
crypt Data” are at a higher risk of being incorrectly adopted in a
software system.

7.2 Empirical Studies on Tactical Vulnerabilities

7.2.1 RQ3: What are the most common types of architectural
vulnerabilities in real software systems?

We answer this question by identifying the most frequently occurring types of
tactical CVEs in each project and their underlying security tactics. Table 7.2
lists the tactical vulnerability types in Chromium, PHP, and Thunderbird,
their related tactics, and the total number of CVEs caused by the given vul-
nerability type.

We found that Improper Input Validation (CWE-20) was the most common

CHAPTER 7. RESULTS 76

vulnerability type in both PHP and Chromium, while Improper Access Control
(CWE-284) was the most reoccurring vulnerability type in Thunderbird. We
also verified that many tactical vulnerabilities in all three projects were related
to the lack of the “Validate Inputs” tactic or its incorrect implementation in
code.

One reason as to why input validation problems are more pervasive than
other types can be explained by the fact they are not specific to a given software
domain. Software will always be provided with inputs, which may be valid or
malformed (intentionally by attackers or due to mistakes made by legitimate
users). Consequently, input validation issues can occur in any software system
leading to injection attacks, data manipulation, Cross-Site Scripting, etc..

Another finding was that Chromium has significantly more vulnerabilities
linked to the “Limit Exposure” tactics compared with the other two projects.
This is partially due to Chromium being a Web Browser. The “Limit Exposure”
tactic aims to minimize the number of entry points through which an attacker
can try to breach into the system. This is particularly relevant for a web
browser that has built-in processes for interacting with multiple client-side
scripts and extensions (add-ons).

In Table 7.2, we observe that PHP’s and Chromium’s second most common
vulnerability type was the Inclusion of Functionality from Untrusted Control
Sphere (CWE-829). These results also highlight the importance of tracking
external components to understand how these components interacting with
the system, if they have any vulnerable code and whether they are used in
security-critical operations.

Key Findings for RQ3

– Improper Input Validation (CWE-20) and Improper Access Control
(CWE-284) are the most occurring tactical vulnerability types in
Chromium, PHP and Thunderbird.

– The security of the studied projects was compromised by reusing or
importing vulnerable versions of third-party libraries. In the case of
Chromium such vulnerabilities occurred 106 times, while in Thun-
derbird and PHP, 7 and 8 times, respectively.

CHAPTER 7. RESULTS 77

Table 7.2: Most common tactical vulnerability types in Chromium, PHP, and
Thunderbird

Tactic Vulnerability Type C P T Total
Validate Inputs CWE-20 Improper Input Validation 131 23 46 200
Limit Exposure CWE-829 Inclusion of Functionality from Un-

trusted Control Sphere
106 8 7 121

Authorize Actors CWE-284 Improper Access Control 35 – 51 86
Validate Inputs CWE-79 Improper Neutralization of Input During

Web Page Generation (’Cross-site Scripting’)
12 1 31 44

Identify Actors CWE-346 Origin Validation Error 21 – 17 38
Validate Inputs CWE-94 Improper Control of Generation of Code

(’Code Injection’)
5 1 30 36

Authorize Actors CWE-274 Improper Handling of Insufficient Priv-
ileges

19 – – 19

Identify Actors CWE-295 Improper Certificate Validation 5 – 11 16
Authorize Actors CWE-269 Improper Privilege Management 3 – 8 11
Authenticate Ac-
tors

CWE-287 Improper Authentication 7 – 3 10

Authorize Actors CWE-426 Untrusted Search Path 2 – 8 10
Authorize Actors CWE-280 Improper Handling of Insufficient Per-

missions or Privileges
2 6 – 8

Authorize Actors CWE-266 Incorrect Privilege Assignment 1 – 7 8
Limit Access CWE-73 External Control of File Name or Path 3 4 – 7
Limit Access CWE-250 Execution with Unnecessary Privileges 4 1 – 5
Authorize Actors CWE-862 Missing Authorization 2 2 1 5
Validate Inputs CWE-59 Improper Link Resolution Before File Ac-

cess (’Link Following’)
– 2 1 3

Validate Inputs CWE-77 Improper Neutralization of Special Ele-
ments used in a Command (’Command Injection’)

– 2 – 2

Validate Inputs CWE-89 Improper Neutralization of Special Ele-
ments used in an SQL Command (’SQL Injection’)

– 2 – 2

Validate Inputs CWE-74 Improp. Neutraliz. of Spec. Elements in
Output Used by a Downstream Component

– 1 – 1

CHAPTER 7. RESULTS 78

7.2.2 RQ4: What security tactics are most affected by archi-
tectural vulnerabilities in real software systems?

We answer this question by identifying the tactics associated with the CWE
tags of the vulnerabilities across the three projects. We then computed how
many times each security tactic was incorrectly adopted in the three systems
(Figure 7.2). The majority of the tactical vulnerabilities were related to a failed
mechanism that validates inputs consistently and correctly, i.e., the “Validate
Inputs” tactic (CWE-20, CWE-59, CWE-74, CWE-77, CWE-79, CWE-89, and
CWE-94 in Table 7.2). Failing to validate user inputs can lead to a variety
of consequences, such as denial of service and leakage of sensitive information.
We also observe that vulnerabilities related to the tactic “Authorize Actors”
(CWE-266, CWE-269, CWE-274, CWE-284, CWE-280, CWE-426, and CWE-
862 in Table 7.2) are common across the three systems.

Figure 7.2: Total number of vulnerabilities (CVEs) per security tactic for each
system

Key Finding for RQ4

– “Validate Inputs” and ”Authorize Actors” are common tactics affected
by tactical vulnerabilities in Chromium, PHP, and Thunderbird.

CHAPTER 7. RESULTS 79

7.2.3 RQ5: What are the root causes of the most frequently
occurring types of architectural vulnerabilities?

To answer RQ5, we used our qualitative analysis results. Specifically, we elab-
orated on the specific root causes that lead to tactical vulnerabilities. For each
root cause, we provide an example, the impact of the associated vulnerabilities
on the system’s security, and a brief explanation of how these vulnerabilities
were mitigated.

For “omission” or “commission” vulnerabilities, our root cause analysis in-
dicates which aspects of the associated security tactics were not chosen (omis-
sion) or incorrectly adopted during the software design process (commission).
It is worth mentioning that the majority of tactical vulnerability types are
cases of “realization” weaknesses (see Table 7.2). As such, most of our root
causes occurred during the implementation/maintenance of these tactics.

A summarized view of the results is presented Figures 7.3 to 7.7. The
detailed description of these root causes, their mitigations, consequences and
examples are provided in Appendix A.

Identify Actors

CWE-346 Origin
Validation Errors

« Realization Weakness »

Rudimentary Verification of the Origin

Not Invoking the Procedures that Performs the Security Check of Origins

Incorrect Transfer of Origin Information

CWE-295 Improper
Certificate Validation
« Realization Weakness »

Incorrect Validation of the Certificate’s Hostname or IP Address

Accepting Certificates Signed with Weak Hash Algorithms

Incorrect Certificate Parsing

Improperly Handling Certificate Encoding

Lack of Mitigation Procedures to Deal with Invalid Certificates

« Security Tactic »

« Vulnerability Types » « Root Causes »

Figure 7.3: Root cause analysis of tactical vulnerabilities related to the “Iden-
tify Actors” tactic

CHAPTER 7. RESULTS 80

Authenticate Actors
CWE-287 Improper

Authentication
« Realization Weakness »

Incorrect Information about Entity Requesting Credentials in HTTP Authentication

Incorrectly Handling Exceptional Scenarios

Incorrectly Performing Authenticity Checks for Multiple Actors

Incorrectly Verifying Identity of The Broker in a Brokered Authentication

Incorrectly Authenticating Certain Actor Types

« Security Tactic »

« Vulnerability Type » « Root Causes »

Figure 7.4: Root cause analysis of tactical vulnerabilities related to the “Au-
thenticate Actors” tactic

Limit Access

CWE-73 External Control
of File or Path

« Realization Weakness »

CWE-250 Execution with
unnecessary privileges
« Realization Weakness »

Incorrect Parsing of the Provided File Path

Incorrect Manipulation of NULL Characters

Misconfiguration of Default Privileges

Not Properly Isolating Processes with Different Privilege Levels

« Security Tactic »

« Vulnerability Types » « Root Causes »

Figure 7.5: Root cause analysis of tactical vulnerabilities related to the “Limit
Access” tactic

Authorize Actors

CWE-862 Missing
Authorization

« Omission Weakness »

Not Explicitly Asking User for Permission to Execute an Action

Elevation of Privileges without Revoke Mechanism

Runtime Configuration Without Authorization Check

CWE-426 Untrusted
Search Path

« Commission Weakness »

Attempting to Load Nonexistent Library

Loading Libraries from World-accessible Directories

Wrong Path to Library

CWE-266, CWE-269,
CWE-274, and CWE-280

Privileges/Permissions
Management Issues

« Realization Weakness »

Incorrect Transfer of Privilege Information

Application-Level Enforcement of OS-Level Permissions

Not Enforcing Resource Limits for a Sandboxed Process

Escaping Authorization Check Through Hardlinks/Symbolic Links/Junctions

Not Locking a Shared Resource

Sandboxed Object Inherits Privileges from Superclass

Sandboxed Component is Assigned Wrong Privilege Level

CWE-284 Improper
Access Control

« Realization Weakness »

Incorrect Authorization of External APIs/Plugins/Extensions

Incorrect Hostname Normalization

No Warnings about Permissions Changes

Not Revoking Access

« Security Tactic »

« Vulnerability Types » « Root Causes »

Figure 7.6: Root cause analysis of tactical vulnerabilities related to the “Au-
thorize Actors” tactic

Key Finding for RQ5

– While the studied projects have implemented many security tactics
to achieve security by design, a considerable number of reported vul-
nerabilities in these systems were due to incorrect implementations of
these tactics (i.e., commission weaknesses).

CHAPTER 7. RESULTS 81

Validate Inputs

CWE-59 Link
Following

« Realization Weakness »

CWE-94 Code
Injection

« Realization Weakness »

CWE-89 SQL
Injection

« Realization Weakness »

CWE-20 Improper
Input Validation

« Realization Weakness »

Not Checking Whether Filepath is Symlink

Broken Decoding of Query String

Incorrect Escaping of Data

Not Neutralizing Code Before Invoking a Dynamic Execution Function

Flawed Neutralization Routine

Performing Reflection Actions from Inputs

Validation Using Block Lists Rather than Allow Lists

Not Handling an Unexpected Data Type

Broken Parser

Incorrect Escaping of Data

« Security Tactic »

« Vulnerability Types » « Root Causes »

Figure 7.7: Root cause analysis of tactical vulnerabilities related to the “Vali-
date Input” tactic

7.3 Untrusted Object Deserialization Detection

We developed a prototype for Dodo in Java using IBM’s T. J. Watson Li-
braries for Analysis (WALA) [76] to answer our research questions. It allows
client analyses to select a pointer analysis method that can either be 0-n-
CFA or n-CFA, where n is provided. In the next subsections, we investigate how
Dodo performs in constructing sound call graphs as well as in detecting object
deserialization vulnerabilities.

7.3.1 RQ6: Does Dodo’s call graph construction algorithms
handle object deserialization soundly?

We examine in this question whether Dodo improves a call graph’s sound-
ness with respect to serialization and deserialization callbacks and how it
compares with existing algorithms. The soundness of a call graph construction
algorithm corresponds to being able to create a call graph that incorporate all
possible paths (nodes and edges) that can arise at runtime during deserial-
ization [14].

Using our developed prototype [121,122], we run Dodo with the Java Call
Graph Test Suite (JCG) [113, 114]. Table 7.3 reports the programs in which

CHAPTER 7. RESULTS 82

each approach soundly inferred the call graph (3) and the ones it failed to
do so (7). As shown in this table, we built call graphs using two different
pointer analysis policies: 0-1-CFA, and 1-CFA. For the sake of comparison, this
table also includes the same algorithms investigated by Reif et al. [113]. The
released artifacts of their study [113] includes adapters for constructing call
graphs using Soot (CHA, RTA, VTA, and Spark), Wala (RTA, 0-CFA, 1-CFA,
and 0-1-CFA), Doop (context-insensitive), and Opal (RTA).

Table 7.3: Results from running the test cases from JCG

Approach Ser1 Ser2 Ser3 Ser4 Ser5 Ser6 Ser7 Ser8 Ser9

Taint-based0-1-CFA 3 3 3 3 3 3 3 3 3

Taint-based1-CFA 3 3 3 3 3 3 3 3 3

Downcast-based0-1-CFA 3 3 3 3 3 3 3 3 3

Downcast-based1-CFA 3 3 3 3 3 3 3 3 3

SootCHA 7 7 7 7 7 7 7 3 3

SootRTA 7 7 7 7 7 7 7 3 3

OpalRTA 3 3 7 7 3 7 3 7 3

SootVTA 7 7 7 7 7 7 7 7 7

SootSpark 7 7 7 7 7 7 7 7 7

WalaRTA 7 7 7 7 7 7 7 7 7

Wala0-CFA 7 7 7 7 7 7 7 7 7

Wala1-CFA 7 7 7 7 7 7 7 7 7

Wala0-1-CFA 7 7 7 7 7 7 7 7 7

DoopContext-Insensitive 7 7 7 7 7 7 7 7 7

As shown in Table 7.3, Dodo passed all of the nine test cases. Only
three other algorithms partially provided support for callback methods, namely
SootRTA and SootCHA (2 out of 9) and OPALRTA (5 out of 9) [113]. The re-
maining algorithms (SootVTA, SootSpark, WalaRTA, Wala0-CFA, Wala1-CFA,
Wala0-1-CFA, and Doopcontext-insensitive) did not provide support at all for call-
back methods.

It is also important to highlight that the frameworks that provided partial
support for serialization-related features (SootRTA, SootCHA, and OpalRTA)
use imprecise call graph construction algorithms (Class Hierarchy Analysis -
CHA [47] or Rapid Type Analysis - RTA). Figures 7.8 and 7.9 shows a chart
comparison of call graphs’ sizes in terms of nodes and edges, respectively. Our
approaches (Downcast-based and Taint-based) constructed call graphs
with a number of nodes ranging from 549 to 3,786 and number of edges ranging
from 944 to 12,199. The other algorithms ranged from 6650 to 7208 (Opal),

CHAPTER 7. RESULTS 83

0

5000

10000

15000

20000

D
ow

nc
as

t (
0-

1-
C

FA
)

D
ow

nc
as

t (
1-

C
FA

)
Ta

in
t(

0-
1-

C
FA

)
Ta

in
t (

1-
C

FA
)

O
PA

L
(R

TA
)

D
ow

nc
as

t (
0-

1-
C

FA
)

D
ow

nc
as

t (
1-

C
FA

)
Ta

in
t(

0-
1-

C
FA

)
Ta

in
t (

1-
C

FA
)

O
PA

L
(R

TA
)

D
ow

nc
as

t (
0-

1-
C

FA
)

D
ow

nc
as

t (
1-

C
FA

)
Ta

in
t(

0-
1-

C
FA

)
Ta

in
t (

1-
C

FA
)

D
ow

nc
as

t (
0-

1-
C

FA
)

D
ow

nc
as

t (
1-

C
FA

)
Ta

in
t(

0-
1-

C
FA

)
Ta

in
t (

1-
C

FA
)

D
ow

nc
as

t (
0-

1-
C

FA
)

D
ow

nc
as

t (
1-

C
FA

)
Ta

in
t(

0-
1-

C
FA

)
Ta

in
t (

1-
C

FA
)

O
PA

L
(R

TA
)

D
ow

nc
as

t (
0-

1-
C

FA
)

D
ow

nc
as

t (
1-

C
FA

)
Ta

in
t(

0-
1-

C
FA

)
Ta

in
t (

1-
C

FA
)

D
ow

nc
as

t (
0-

1-
C

FA
)

D
ow

nc
as

t (
1-

C
FA

)
Ta

in
t(

0-
1-

C
FA

)
Ta

in
t (

1-
C

FA
)

O
PA

L
(R

TA
)

D
ow

nc
as

t (
0-

1-
C

FA
)

D
ow

nc
as

t (
1-

C
FA

)
Ta

in
t(

0-
1-

C
FA

)
Ta

in
t (

1-
C

FA
)

So
ot

 (C
H

A)
So

ot
 (R

TA
)

D
ow

nc
as

t (
0-

1-
C

FA
)

D
ow

nc
as

t (
1-

C
FA

)
Ta

in
t(

0-
1-

C
FA

)
Ta

in
t (

1-
C

FA
)

O
PA

L
(R

TA
)

So
ot

 (C
H

A)
So

ot
 (R

TA
)

Ser1 Ser2 Ser3 Ser4 Ser5 Ser6 Ser7 Ser8 Ser9

Nodes per approach

Figure 7.8: Number of call graph nodes per approach

from 20027 to 20168 (Soot) in terms of nodes and from 59,039 to 66,175 (Opal)
and 327,530 to 329,815 (Soot) in terms of edges.

As we can infer from these charts, the only call graph construction algo-
rithms used by Soot, and Opal that provided partial support for serialization
create much larger call graphs (in terms of the number of nodes and edges).
Since these algorithms only rely on static types when computing the possi-
ble targets of a method invocation, they introduce spurious nodes and edges,
thereby increasing the call graph’s size. Therefore, our approach enhances the
underlying pointer analysis policy in order to strike a balance between improv-
ing soundness while not greatly affecting the call graph’s precision by adding
spurious nodes and edges.

CHAPTER 7. RESULTS 84

0

50000

100000

150000

200000

250000

300000

D
ow

nc
as

t (
0-

1-
C

FA
)

D
ow

nc
as

t (
1-

C
FA

)
Ta

in
t(

0-
1-

C
FA

)
Ta

in
t (

1-
C

FA
)

O
PA

L
(R

TA
)

D
ow

nc
as

t (
0-

1-
C

FA
)

D
ow

nc
as

t (
1-

C
FA

)
Ta

in
t(

0-
1-

C
FA

)
Ta

in
t (

1-
C

FA
)

O
PA

L
(R

TA
)

D
ow

nc
as

t (
0-

1-
C

FA
)

D
ow

nc
as

t (
1-

C
FA

)
Ta

in
t(

0-
1-

C
FA

)
Ta

in
t (

1-
C

FA
)

D
ow

nc
as

t (
0-

1-
C

FA
)

D
ow

nc
as

t (
1-

C
FA

)
Ta

in
t(

0-
1-

C
FA

)
Ta

in
t (

1-
C

FA
)

D
ow

nc
as

t (
0-

1-
C

FA
)

D
ow

nc
as

t (
1-

C
FA

)
Ta

in
t(

0-
1-

C
FA

)
Ta

in
t (

1-
C

FA
)

O
PA

L
(R

TA
)

D
ow

nc
as

t (
0-

1-
C

FA
)

D
ow

nc
as

t (
1-

C
FA

)
Ta

in
t(

0-
1-

C
FA

)
Ta

in
t (

1-
C

FA
)

D
ow

nc
as

t (
0-

1-
C

FA
)

D
ow

nc
as

t (
1-

C
FA

)
Ta

in
t(

0-
1-

C
FA

)
Ta

in
t (

1-
C

FA
)

O
PA

L
(R

TA
)

D
ow

nc
as

t (
0-

1-
C

FA
)

D
ow

nc
as

t (
1-

C
FA

)
Ta

in
t(

0-
1-

C
FA

)
Ta

in
t (

1-
C

FA
)

So
ot

 (C
H

A)
So

ot
 (R

TA
)

D
ow

nc
as

t (
0-

1-
C

FA
)

D
ow

nc
as

t (
1-

C
FA

)
Ta

in
t(

0-
1-

C
FA

)
Ta

in
t (

1-
C

FA
)

O
PA

L
(R

TA
)

So
ot

 (C
H

A)
So

ot
 (R

TA
)

Ser1 Ser2 Ser3 Ser4 Ser5 Ser6 Ser7 Ser8 Ser9

Edges per approach

Figure 7.9: Number of call graph edges per approach

Key Findings for RQ6

– Our experiments showed that approach improved call graphs’ sound-
ness with respect to serialization-related features. It added nodes and
edges in the call graph that could infer possible calls that could arise
at runtime during serialization and deserialization of objects.

– Our approach (both downcast-based and taint-based) passed all test
cases in the CATS dataset. Other approaches, namely SootRTA,
SootRTA passed only 2, and OPALRTA passed 5.

– The only call graph construction algorithms used by Soot, and Opal
that provided partial support for serialization used algorithms that
only rely on the method’s signatures for dispatch. Hence, they created
much larger call graphs because they introduced spurious nodes and
edges.

7.3.2 RQ7: Is Dodo useful for finding object deserialization
vulnerabilities detection?

We run Dodo using two open-source projects: Commons File Upload (version
1.3.2) and C3P0 (version 0.9.2). These projects contain a total of 157 and 842
classes (including those in dependencies), respectively, as shown in Table 7.4.

CHAPTER 7. RESULTS 85

Table 7.4: Number of classes in each OSS project and their dependencies

Classes # Classes in dependencies

Commons File Upload
(version 1.3.2) 49 108

(commons-io-2.2.jar)

C3P0
(version 0.9.2) 240 602

(mchange-commons-java-0.2.11.jar)

Since both of these OSS projects are libraries, we configured as entrypoints
their magic methods. That is, all custom deserialization callback methods were
treated as entrypoints to construct the call graph in Phase#1 (Figure 6.2). We
also included their required dependencies that are listed in Table 7.4. We run
Dodo in a machine with 16Gb of RAM memory and a 2.9 GHz Intel Core i7
processor.

The results for this analysis is shown in Table 7.5. Dodo took 7.32 seconds
to perform the static analysis in order to build the program’s call graph for
the Commons File Upload project. For the C3P0 project, Dodo took 11.49
seconds to compute its call graph. In both cases, Dodo found 2 potentially
vulnerable paths during the Phase 2, in Step 1 (see Section 6.5). After gener-
ating the exploits and instrumenting the program, these two vulnerable paths
are actual vulnerabilities.

Table 7.5: Results when using Dodo for detecting untrusted deserialization
vulnerabilities in two OSS projects

Project
Potentially
Vulnerable

Paths

True
Vulnerabilities

Sink
Methods

Commons File Upload (CVE-2016-1000031) 2 2 2
C3P0 2 2 1

CHAPTER 7. RESULTS 86

Key Finding for RQ7

– By running Dodo using two open-source projects with disclosed vul-
nerabilities, we could found two vulnerable paths in each (true posi-
tives).

7.4 Threats to Validity and Limitations

We discuss in this section potential threats to the validity of this work (i.e.,
construct, internal, and external validity threats to the CAWE catalog and the
empirical study) as well as Dodo’s limitations.

7.4.1 Validity Threats to the CAWE Catalog and the Empir-
ical Study

Threats to the validity can be categorized into construct, internal and external
validity threats [118]. Below, we describe each of these validity threat types
and how we mitigated them.

• Construct validity concerns to what extent the operational measurements
are suitable for the purpose of the research and its claims [118]. In our
context, one threat is the manual inspection of CWE entries and CVE re-
ports to enumerate tactic-related weaknesses to create the CAWE catalog
(Section 4.1) and to identify tactical vulnerabilities in open-source projects
(Section 5.2). To mitigate this threat, first we employed a systematic pro-
cess that employed the collection of an extensive list of security tactics as
well as their keywords and thorough investigation of CWE entries. Second,
we leveraged a variety of software artifacts (e.g., patches, security reports
in issue tracking systems, etc.) besides CVE reports to identify tactical
vulnerabilities in Chromium, PHP, and Thunderbird.

Despite our efforts to minimize construct validity threats, we acknowledge
that our analysis heavily depends on the accuracy of the collected reports
(CVEs as well as associated artifacts, as shown in Figure 5.1). Moreover,
our study might have missed tactical vulnerabilities that were not disclosed
in NVD as well as tactical weaknesses that are not included in the CWE list.
Besides, we disregarded vulnerabilities due to incompleteness (e.g., missing
a patch or the corresponding defect entry in the issue tracking system was
private at the time of the study was conducted).

CHAPTER 7. RESULTS 87

• Internal validity concerns to what extent systematic error or biases were
reduced such that causal relations can be inferred [118]. One threat relates
to the manual creation of the CAWE catalog. We conducted a peer review
to mitigate potential biases and incorrect classification of weaknesses. Sim-
ilarly, another threat is the manual identification of tactical vulnerabilities
in order to observe the nature of tactical vulnerabilities, how they happened
and were fixed. We mitigated this threat by performing both top-down and
bottom-up vulnerability classification (see Section 5.2.3) and conducting a
peer review process.

• External validity related to the generalizability of the findings of the work.
In our context, there are two threats:

– We inspected prior vulnerability reports (CVEs) across three open-source
projects, which are mostly written in C/C++ and are Internet-based ap-
plications. Thus, the results may not generalize to projects with different
characteristics. However, it is important to highlight that this work did
not aim for statistical generalization but rather analytical generalization;
the three projects were carefully chosen from a variety of software domains
and with a high number of known vulnerabilities. Hence, we anticipate
that the systems will reflect a normal large-scale software engineering en-
vironment. Moreover, we indicated which findings are peculiar to a system
and which discoveries apply to all systems while describing our findings.

– We identified the root causes of vulnerabilities based on the CAWE cata-
log. We acknowledge that it may not be complete, i.e., it may not include
all possible ways that developers can adopt/implement tactics incorrectly.
However, it is important to highlight that the CAWE catalog derives from
the CWE list, which is a community-established list of possible types of
security issues that have been observed and documented in the real world
and have been widely used by the security community.

7.4.2 Dodo’s Limitations

Although the results discussed in Section 7.3 demonstrated that Dodo can be
useful in finding deserialization vulnerabilities, Dodo exhibits the following
shortcomings:

CHAPTER 7. RESULTS 88

exploit
CacheManager

task
CommandTask

command="\x00"

taskExecutor
TaskExecutoros="windows"

"rm -rf ."
Valid command

Invalid command

Figure 7.10: Dodo’s exploit generation limitation

• Trivial Primitive Values: Dodo’s exploit generation component relies
on the primitive constraints solved by Z3 (see Section 6.5). These primitive
values may not be meaningful. For instance, Figure 7.10 shows the exploit
generated for the example described in Section 6.7. This generated exploit
has a command attribute which is equals to the string "\x00", which is not
a valid OS command. To overcome this limitation, we can create a catalog
of common attack commands per sink type. For example, creating common
OS commands used in exploits. Prior research [151] had investigated the
creation of attack patterns to help in solving complex constraints to detect
Cross-Site Scripting and SQL/LDAP/XML/XPath injection vulnerabilities.
Therefore, we can expect that following a similar approach would also help
to overcome this limitation.

• Exploits involving array/collection objects: When generating exploits
which involves collection, Dodo’s exploit generation algorithm uses a fixed
index/key equals to “0”. That is, it assumes that the element at the index/key
0 will be the one used in the exploit. This assumption can result in an exploit
that is unable to exercise the sink (as shown in the Demonstrative Example in
Section 6.7). We can overcome this problem by performing array/collection
access analysis [107] in which we track the indexes in arrays/list as well
as keys in maps. This way, Dodo can generate an exploit that adds the
malicious object at the right index/key.

• File-based Dynamic Analysis: As discussed in Section 6.6, Dodo’s em-
ploy a threat model in which it assumes that an attacker has found a deseri-
alization point where an exploit can be injected. Therefore, Dodo performs
instrumentation over a driver class that reads a file that contains the gen-
erated exploit. However, certain mitigation techniques involve creating a
subclass of the ObjectInputStream class to block certain class instances to

CHAPTER 7. RESULTS 89

« application entry point »

statement2 statementj

« sink »
…

statementn

« source »
… …

« deserialization point »

statement1

obj1

field1

field2

fieldn

…

obj2

field1

fieldn

…

objn command

2. Guided
(Symbolic) Search

(from entrypoint to a
deserialization point)

4. Listener
(to observe the reachability and the

taint states of the variables)

1. Generation of
Malicious Object(s)

3. Injection of the
exploit

Figure 7.11: Future work: dynamic analysis with guided execution

be serialized [130]. Therefore, using a driver that uses ObjectInputStream
could report the program as vulnerable when it is not.

This limitation can be solved by implementing a guided program exe-
cution , as shown in Figure 7.11. First, Dodo generates the exploit 1
. Subsequently, it executes the program from its actual entrypoint (e.g.,
main() method) guiding the execution to follow the path that leads to a
deserialization point, where the object is read from an input stream source
2 . At this stage, Dodo injects the previously generated exploit in the
program at runtime 3 . Next, it monitors the program’s behavior to verify
the sink’s reachability and the taint states of the variables that reach the
sink 4 . Based on whether the sink is reached with tainted variables, then
Dodo reports the program as vulnerable.

• Not all constraints are automatically solvable: Dodo leverages Z3 [46]
to solve primitive constraints (see Section 6.5.2). In this context, there are
two limitations. First, our component that converts program instructions to
the SMT-Lib format [24] does not provide full support to all string opera-
tions in the java.lang.String class involving regular expressions. Second,
Z3 [46] may timeout for certain constraints [161] since we imposed a limit
of 10 minutes. When a constraint times out, Dodo generates an incomplete
exploit in which not all values (primitives/references) are initialized.

Chapter 8

Conclusions

This dissertation presented a Ph.D. research work focused on achieving three
goals: (i) to identify common tactical vulnerability types, (ii) to understand
real tactical vulnerabilities, and (ii) to develop an approach to detect one
tactical vulnerability type caused by untrusted object deserialization.

In the first goal, we aimed to promote the awareness to software engineers
and architects of tactic-related weaknesses that can lead to vulnerabilities.
As a result, we created a catalog of 223 tactical weaknesses [125], which is
currently available to the public in CWE’s Website [41]. This catalog could
be used as part of security training materials, as well as a guidance during
architecture risk analysis. While the omission weaknesses can be used as a
checklist to identify missing security tactics, the commission and realization
weaknesses can help pinpoint problems in the current architecture design and
implementation during architecture risk analysis.

In the second goal, we aimed to better understand these weaknesses related
to security tactics, we conducted multiple empirical studies of instances of
tactical weaknesses from large and widely used open-source systems [123,124].
The results are openly available and can be used as starting point for other
empirical analysis. Among our findings, we observed that a sheer amount of
tactical vulnerabilities were related to the “Validate Inputs” tactic. Moreover,
reusing/importing vulnerable libraries can also lead to severe vulnerabilities.

90

CHAPTER 8. CONCLUSIONS 91

Finally, we developed Dodo which encompasses (1) a call graph construc-
tion approach that provides full support of serialization-related callbacks and
can be used for detecting untrusted object deserialization [121, 122], (2) an
exploit generation technique and (3) code instrumentation. Our experiments
showed that Dodo’s computed call graphs are sound with respect to deserial-
ization features. Moreover, using Dodo we could successfully detect previously
vulnerabilities in two OSS projects (Commons File Upload and C3P0).

8.1 Future Work

There are multiple venues for extending this work:

• While our empirical study identified tactical vulnerability types, their root
causes, and mitigations, we need further investigation of their severity and
cost associated to fixing them. In addition, we need to further investigate
how/why these issues are introduced in order to develop techniques/recom-
mendations to detect and/or prevent them from occurring.

• In Section 7.3, we evaluated Dodo’s call graph construction algorithm and
its ability to find known vulnerabilities in two open-source projects. As
future work, we will evaluate Dodo’s precision, recall and scalability using
other open-source projects. Specifically, looking at projects that are not
vulnerable and verify how well Dodo can find unknown vulnerabilities.

• Expand the technique to other programming languages besides Java. We
provide in Appendix B a road map to achieve this goal.

• Dodo relies on symbolic analysis and constraint solving to generate exploits.
Hence, as future work, we aim to compare Dodo against a fuzzing-based
approach [111].

Bibliography

[1] Getting started · wala/WALA wiki · GitHub. https://github.com/
wala/WALA/wiki/Getting-Started. (Accessed on 07/05/2021).

[2] Jython. https://www.jython.org/. (Accessed on 07/03/2021).

[3] Prototyping with python - the fuzzing book. https://www.
fuzzingbook.org/beta/html/PrototypingWithPython.html. (Ac-
cessed on 07/11/2021).

[4] The ruby programming language on the JVM. https://www.jruby.
org/. (Accessed on 07/03/2021).

[5] Which programming language is fastest? the computer language
benchmarks game. https://benchmarksgame-team.pages.debian.
net/benchmarksgame/. (Accessed on 07/03/2021).

[6] CWE-502: Deserialization of untrusted data. https://cwe.mitre.org/
data/definitions/502.html, 2015.

[7] Instrumentation (Java SE 9 & JDK 9). https://docs.oracle.com/
javase/9/docs/api/java/lang/instrument/Instrumentation.html,
2021. (Accessed on 07/11/2021).

[8] jenkinsci/workflow-support-plugin- pipeline: Supporting apis plu-
gin. https://github.com/jenkinsci/workflow-support-plugin/
commit/a9b071025b5eea33176cefddc1928bce9904c0ef, Jul 2021. [Ac-
cessed 07/17/2021].

92

https://github.com/wala/WALA/wiki/Getting-Started
https://github.com/wala/WALA/wiki/Getting-Started
https://www.jython.org/
https://www.fuzzingbook.org/beta/html/PrototypingWithPython.html
https://www.fuzzingbook.org/beta/html/PrototypingWithPython.html
https://www.jruby.org/
https://www.jruby.org/
https://benchmarksgame-team.pages.debian.net/benchmarksgame/
https://benchmarksgame-team.pages.debian.net/benchmarksgame/
https://cwe.mitre.org/data/definitions/502.html
https://cwe.mitre.org/data/definitions/502.html
https://docs.oracle.com/javase/9/docs/api/java/lang/instrument/Instrumentation.html
https://docs.oracle.com/javase/9/docs/api/java/lang/instrument/Instrumentation.html
https://github.com/jenkinsci/workflow-support-plugin/commit/a9b071025b5eea33176cefddc1928bce9904c0ef
https://github.com/jenkinsci/workflow-support-plugin/commit/a9b071025b5eea33176cefddc1928bce9904c0ef

BIBLIOGRAPHY 93

[9] PHP parser. https://github.com/nikic/PHP-Parser, 2021. (Accessed
on 07/11/2021).

[10] Self-Protecting Sandbox using SecurityManager · Terse Systems, Jun
2021. [Online; accessed 17. Jul. 2021].

[11] The State of Open Source Security 2020 | Snyk, Jul 2021. [Online; Ac-
cessed 22. Jul. 2021].

[12] Alfred V Aho, Ravi Sethi, and Jeffrey D Ullman. Compilers, principles,
techniques. Addison wesley, 7(8):9, 1986.

[13] Sarah Al-Azzani and Rami Bahsoon. Secarch: Architecture-level evalu-
ation and testing for security. In 2012 Joint Working IEEE/IFIP Con-
ference on Software Architecture (WICSA) and European Conference on
Software Architecture (ECSA), pages 51–60. IEEE, 2012.

[14] Karim Ali, Xiaoni Lai, Zhaoyi Luo, Ondrej Lhoták, Julian Dolby, and
Frank Tip. A study of call graph construction for JVM-hosted languages.
IEEE Transactions on Software Engineering, 2019.

[15] ambionics. ambionics/phpggc - PHPGGC: PHP Generic Gadget
Chains. https://github.com/ambionics/phpggc, Jul 2021. (Accessed
on 07/01/2021).

[16] Iván Arce, Kathleen Clark-Fisher, Neil Daswani, Jim DelGrosso,
Danny Dhillon, Christoph Kern, Tadayoshi Kohno, Carl Landwehr,
Gary McGraw, Brook Schoenfield, et al. Avoiding the top 10
software security design flaws. http://cybersecurity.ieee.org/
center-for-secure-design/, 2014. (Accessed on 10/06/2016).

[17] Ashish Arora, Ramayya Krishnan, Anand Nandkumar, Rahul Telang,
and Yubao Yang. Impact of vulnerability disclosure and patch
availability-an empirical analysis. In Third Workshop on the Economics
of Information Security, volume 24, pages 1268–1287, 2004.

[18] Andrew Austin and Laurie Williams. One technique is not enough:
A comparison of vulnerability discovery techniques. In 2011 Interna-
tional Symposium on Empirical Software Engineering and Measurement
(ESEM), pages 97–106. IEEE, 2011.

https://github.com/nikic/PHP-Parser
https://github.com/ambionics/phpggc
http://cybersecurity.ieee.org/center-for-secure-design/
http://cybersecurity.ieee.org/center-for-secure-design/

BIBLIOGRAPHY 94

[19] Felix Bachmann, Len Bass, and Mark Klein. Deriving architectural tac-
tics: A step toward methodical architectural design. Technical report,
CARNEGIE-MELLON UNIV PITTSBURGH PA SOFTWARE ENGI-
NEERING INST, 2003.

[20] David F Bacon and Peter F Sweeney. Fast static analysis of c++ virtual
function calls. In Proceedings of the 11th ACM SIGPLAN conference
on Object-oriented programming, systems, languages, and applications,
pages 324–341, 1996.

[21] SungGyeong Bae, Hyunghun Cho, Inho Lim, and Sukyoung Ryu. Safe-
wapi: web api misuse detector for web applications. In Proceedings of
the 22nd ACM SIGSOFT International Symposium on Foundations of
Software Engineering, pages 507–517, 2014.

[22] G. Baldoni, M. Melita, S. Micalizzi, C. Rametta, G. Schembra, and
A. Vassallo. A dynamic, plug-and-play and efficient video surveillance
platform for smart cities. In 2017 14th IEEE Annual Consumer Com-
munications Networking Conference (CCNC), pages 611–612, Jan 2017.

[23] D. Balzarotti, M. Cova, V. Felmetsger, N. Jovanovic, E. Kirda,
C. Kruegel, and G. Vigna. Saner: Composing static and dynamic analy-
sis to validate sanitization in web applications. In 2008 IEEE Symposium
on Security and Privacy (SP 2008), pages 387–401, May 2008.

[24] Clark Barrett, Pascal Fontaine, and Cesare Tinelli. The Satisfiability
Modulo Theories Library (SMT-LIB). www.SMT-LIB.org, 2016.

[25] Adam Barth. RFC 6454 - the web origin concept. 2011.

[26] Adam Barth, Collin Jackson, Charles Reis, TGC Team, et al. The secu-
rity architecture of the chromium browser, 2008.

[27] Len Bass, Paul Clements, and Rick Kazman. Software Architecture in
Practice. Addison-Wesley Professional, 3rd edition, 2012.

[28] Osbert Bastani, Rahul Sharma, Lazaro Clapp, Saswat Anand, and Alex
Aiken. Eventually sound points-to analysis with specifications. In 33rd
European Conference on Object-Oriented Programming (ECOOP 2019).
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2019.

BIBLIOGRAPHY 95

[29] Bernhard J Berger, Karsten Sohr, and Rainer Koschke. Extracting and
analyzing the implemented security architecture of business applications.
In 17th European Conference on Software Maintenance and Reengineer-
ing (CSMR), pages 285–294. IEEE, March 2013.

[30] Eric Bodden, Andreas Sewe, Jan Sinschek, Hela Oueslati, and Mira
Mezini. Taming reflection: Aiding static analysis in the presence of
reflection and custom class loaders. In Proceedings of the 33rd Inter-
national Conference on Software Engineering, ICSE’11, pages 241–250,
New York, NY, USA, 2011. ACM.

[31] Amiangshu Bosu and Jeffrey C Carver. Peer code review to prevent
security vulnerabilities: An empirical evaluation. In 7th International
Conference on Software Security and Reliability Companion, pages 229–
230. IEEE, 2013.

[32] Larissa Braz, Enrico Fregnan, Gül Çalikli, and Alberto Bacchelli. Why
don’t developers detect improper input validation?’; drop table papers;–.
In 2021 IEEE/ACM 43rd International Conference on Software Engi-
neering (ICSE), pages 499–511. IEEE, 2021.

[33] Michaela Bunke and Karsten Sohr. An architecture-centric approach
to detecting security patterns in software. In International Symposium
on Engineering Secure Software and Systems, pages 156–166. Springer,
2011.

[34] Ian Cassar, Adrian Francalanza, Luca Aceto, and Anna Ingólfsdóttir.
A survey of runtime monitoring instrumentation techniques. Electronic
Proceedings in Theoretical Computer Science, 254:15–28, Aug 2017.

[35] Humberto Cervantes, Rick Kazman, Jungwoo Ryoo, Duyoung Choi, and
Duksung Jang. Architectural approaches to security: Four case studies.
IEEE Computer, 49:60–67, 2016.

[36] B. Chess and G. McGraw. Static analysis for security. IEEE Security
Privacy, 2(6):76–79, 2004.

[37] Istehad Chowdhury and Mohammad Zulkernine. Using complexity, cou-
pling, and cohesion metrics as early indicators of vulnerabilities. Journal
of Systems Architecture, 57(3):294–313, 2011.

BIBLIOGRAPHY 96

[38] Angelo Ciampa, Corrado Aaron Visaggio, and Massimiliano Di Penta.
A heuristic-based approach for detecting sql-injection vulnerabilities in
web applications. In Proceedings of the 2010 ICSE Workshop on Software
Engineering for Secure Systems, pages 43–49, 2010.

[39] Cristina Cifuentes, Andrew Gross, and Nathan Keynes. Understanding
caller-sensitive method vulnerabilities: A class of access control vulner-
abilities in the java platform. In Proceedings of the 4th ACM SIGPLAN
International Workshop on State Of the Art in Program Analysis, pages
7–12, 2015.

[40] Jacob Cohen. A coefficient of agreement for nominal scales. Educational
and psychological measurement, 20(1):37–46, 1960.

[41] The MITRE Corporation. Common weakness enumeration, 2014.

[42] Patrick Cousot and Radhia Cousot. Systematic design of program analy-
sis frameworks. In Proceedings of the 6th ACM SIGACT-SIGPLAN Sym-
posium on Principles of programming languages, pages 269–282, 1979.

[43] CVE Details. Top 50 products having highest number of cve security
vulnerabilities. https://www.cvedetails.com/top-50-products.php.

[44] Ron Cytron, Jeanne Ferrante, Barry K Rosen, Mark N Wegman, and
F Kenneth Zadeck. Efficiently computing static single assignment form
and the control dependence graph. ACM Transactions on Programming
Languages and Systems (TOPLAS), 13(4):451–490, 1991.

[45] José Carlos Coelho Martins da Fonseca and Marco Paulo Amorim Vieira.
A practical experience on the impact of plugins in web security. In
2014 IEEE 33rd International Symposium on Reliable Distributed Sys-
tems (SRDS), pages 21–30. IEEE, 2014.

[46] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient smt solver. In
International conference on Tools and Algorithms for the Construction
and Analysis of Systems, pages 337–340. Springer, 2008.

[47] Jeffrey Dean, David Grove, and Craig Chambers. Optimization of object-
oriented programs using static class hierarchy analysis. In European Con-
ference on Object-Oriented Programming, pages 77–101. Springer, 1995.

https://www.cvedetails.com/top-50-products.php

BIBLIOGRAPHY 97

[48] Anthony Dessiatnikoff, Rim Akrout, Eric Alata, Mohamed Kaaniche,
and Vincent Nicomette. A clustering approach for web vulnerabilities
detection. In 2011 IEEE 17th Pacific Rim International Symposium on
Dependable Computing (PRDC), pages 194–203. IEEE, 2011.

[49] Jens Dietrich, Kamil Jezek, Shawn Rasheed, Amjed Tahir, and Alex
Potanin. Evil Pickles: DoS Attacks Based on Object-Graph Engineering.
In Peter Müller, editor, 31st European Conference on Object-Oriented
Programming (ECOOP 2017), volume 74 of Leibniz International Pro-
ceedings in Informatics (LIPIcs), pages 10:1–10:32, Dagstuhl, Germany,
2017. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

[50] Julian Dolby, Avraham Shinnar, Allison Allain, and Jenna Reinen. Ari-
adne: analysis for machine learning programs. In Proceedings of the
2Nd ACM SIGPLAN International Workshop on Machine Learning and
Programming Languages, pages 1–10, 2018.

[51] F. Duchene, R. Groz, S. Rawat, and J. Richier. Xss vulnerability detec-
tion using model inference assisted evolutionary fuzzing. In 2012 IEEE
Fifth International Conference on Software Testing, Verification and Val-
idation, pages 815–817, 2012.

[52] Michael Eichberg. Jcg - serializableclasses. https://bitbucket.
org/delors/cats/src/master/jcg_testcases/src/main/resources/
Serialization.md, March 2020. (Accessed on 06/01/2020).

[53] Stefan Esser. Utilizing code reuse/rop in php application exploits. Black-
Hat USA, 2010.

[54] Viktoria Felmetsger, Ludovico Cavedon, Christopher Kruegel, and Gio-
vanni Vigna. Toward automated detection of logic vulnerabilities in web
applications. In USENIX Security Symposium, volume 58, 2010.

[55] Qiong Feng, Rick Kazman, Yuanfang Cai, Ran Mo, and Lu Xiao. To-
wards an architecture-centric approach to security analysis. In 13th
Working IEEE/IFIP Conference on Software Architecture (WICSA),
pages 221–230, 2016.

https://bitbucket.org/delors/cats/src/master/jcg_testcases/src/main/resources/Serialization.md
https://bitbucket.org/delors/cats/src/master/jcg_testcases/src/main/resources/Serialization.md
https://bitbucket.org/delors/cats/src/master/jcg_testcases/src/main/resources/Serialization.md

BIBLIOGRAPHY 98

[56] Yu Feng, XinyuWang, Isil Dillig, and Thomas Dillig. Bottom-up context-
sensitive pointer analysis for java. In Asian Symposium on Programming
Languages and Systems, pages 465–484. Springer, 2015.

[57] Jose Fonseca, Marco Vieira, and Henrique Madeira. Testing and com-
paring web vulnerability scanning tools for sql injection and xss attacks.
In 13th Pacific Rim International Symposium on Dependable Computing
(PRDC), pages 365–372. IEEE, 2007.

[58] National Security Agency Center for Assured Software. On analyzing
static analysis tools. https://media.blackhat.com/bh-us-11/Willis/
BH_US_11_WillisBritton_Analyzing_Static_Analysis_Tools_WP.
pdf, July 2011. (Accessed on 04/29/2017).

[59] Chris Frohoff. Marshalling pickles: how deserializing ob-
jects will ruin your day. http://frohoff.github.io/
appseccali-marshalling-pickles/, January 2015. (Accessed on
05/26/2018).

[60] Chris Frohoff. frohoff/ysoserial - a proof-of-concept tool for generat-
ing payloads that exploit unsafe java object deserialization. https:
//github.com/frohoff/ysoserial, 2018. (Accessed on 05/26/2018).

[61] Andrew Gacek, John Backes, Darren Cofer, Konrad Slind, and Mike
Whalen. Resolute: An assurance case language for architecture models.
In Proceedings of the 2014 ACM SIGAda Annual Conference on High
Integrity Language Technology, pages 19–28. ACM, 2014.

[62] Matthias Galster, Mehdi Mirakhorli, Jane Cleland-Huang, Janet E.
Burge, Xavier Franch, Roshanak Roshandel, and Paris Avgeriou. Views
on software engineering from the twin peaks of requirements and archi-
tecture. SIGSOFT Softw. Eng. Notes, 38(5):40–42, August 2013.

[63] Tom Gerencer. Extremely useful JVM programming guide for creat-
ing stellar software - digital.com. https://digital.com/web-hosting/
java/jvm-programming/, 2021. (Accessed on 07/10/2021).

[64] David Grove, Greg DeFouw, Jeffrey Dean, and Craig Chambers. Call
graph construction in object-oriented languages. In Proceedings of the
12th ACM SIGPLAN conference on Object-oriented programming, sys-

https://media.blackhat.com/bh-us-11/Willis/BH_US_11_WillisBritton_Analyzing_Static_Analysis_Tools_WP.pdf
https://media.blackhat.com/bh-us-11/Willis/BH_US_11_WillisBritton_Analyzing_Static_Analysis_Tools_WP.pdf
https://media.blackhat.com/bh-us-11/Willis/BH_US_11_WillisBritton_Analyzing_Static_Analysis_Tools_WP.pdf
http://frohoff.github.io/appseccali-marshalling-pickles/
http://frohoff.github.io/appseccali-marshalling-pickles/
https://github.com/frohoff/ysoserial
https://github.com/frohoff/ysoserial
https://digital.com/web-hosting/java/jvm-programming/
https://digital.com/web-hosting/java/jvm-programming/

BIBLIOGRAPHY 99

tems, languages, and applications, OOPSLA’97, pages 108–124, New
York, NY, USA, 1997. ACM.

[65] Salvatore Guarnieri, Marco Pistoia, Omer Tripp, Julian Dolby, Stephen
Teilhet, and Ryan Berg. Saving the world wide web from vulnerable
javascript. In Proceedings of the 2011 International Symposium on Soft-
ware Testing and Analysis, pages 177–187, 2011.

[66] Munawar Hafiz and Ming Fang. Game of detections: how are security
vulnerabilities discovered in the wild? Empirical Software Engineering,
pages 1–40, 2015.

[67] Ian Haken. Automated discovery of deserialization gadget chains, 2018.

[68] Spyros T Halkidis, Nikolaos Tsantalis, Alexander Chatzigeorgiou, and
George Stephanides. Architectural risk analysis of software systems based
on security patterns. IEEE Transactions on Dependable and Secure Com-
puting, 5(3):129–142, 2008.

[69] Klaus Havelund and Thomas Pressburger. Model checking java programs
using java pathfinder. International Journal on Software Tools for Tech-
nology Transfer, 2(4):366–381, 2000.

[70] Nevin Heintze and Olivier Tardieu. Demand-driven pointer analysis.
ACM SIGPLAN Notices, 36(5):24–34, 2001.

[71] Thomas Heyman, Riccardo Scandariato, and Wouter Joosen. Reusable
formal models for secure software architectures. In 2012 Joint Working
IEEE/IFIP Conference on Software Architecture (WICSA) and Euro-
pean Conference on Software Architecture (ECSA), pages 41–50. IEEE,
2012.

[72] Michael Hind. Pointer analysis: Haven’t we solved this problem yet?
In Proceedings of the 2001 ACM SIGPLAN-SIGSOFT workshop on Pro-
gram analysis for software tools and engineering, pages 54–61, 2001.

[73] Philipp Holzinger, Stefan Triller, Alexandre Bartel, and Eric Bodden.
An in-depth study of more than ten years of java exploitation. In Pro-
ceedings of the 2016 ACM SIGSAC Conference on Computer and Com-
munications Security, pages 779–790, 2016.

BIBLIOGRAPHY 100

[74] Aram Hovsepyan, Riccardo Scandariato, and Wouter Joosen. Is newer
always better?: The case of vulnerability prediction models. In Pro-
ceedings of the 10th ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement, pages 26:1–26:6. ACM, 2016.

[75] J.H. Howard, D.S. Schiappa, K.E. Ahmed, and K.S. Young. Authenti-
cation broker service, October 20 2009. US Patent 7,607,008.

[76] IBM. T.j. watson libraries for analysis (wala). http://
wala.sourceforge.net/wiki/index.php/Main_Page. (Accessed on
06/05/2020).

[77] Clemente Izurieta and James M Bieman. How software designs decay:
A pilot study of pattern evolution. In First International Symposium
on Empirical Software Engineering and Measurement (ESEM)., pages
449–451. IEEE, 2007.

[78] Daniel Jackson. Lightweight formal methods. In International Sympo-
sium of Formal Methods Europe, pages 1–1. Springer, 2001.

[79] Nenad Jovanovic, Christopher Kruegel, and Engin Kirda. Pixy: A static
analysis tool for detecting web application vulnerabilities. In 2006 IEEE
Symposium on Security and Privacy (S&P’06), pages 6–pp. IEEE, 2006.

[80] Matthias Kaiser. Pwning your java messaging with deserialization vul-
nerabilities. Black Hat (White paper), 2016.

[81] Eunsuk Kang, Aleksandar Milicevic, and Daniel Jackson. Multi-
representational security analysis. In Proceedings of the 2016 24th ACM
SIGSOFT International Symposium on Foundations of Software Engi-
neering, pages 181–192. ACM, 2016.

[82] George Kastrinis and Yannis Smaragdakis. Hybrid context-sensitivity
for points-to analysis. ACM SIGPLAN Notices, 48(6):423–434, 2013.

[83] A. Kieyzun, P. J. Guo, K. Jayaraman, and M. D. Ernst. Automatic
creation of sql injection and cross-site scripting attacks. In 2009 IEEE
31st International Conference on Software Engineering (ICSE), pages
199–209, May 2009.

http://wala.sourceforge.net/wiki/index.php/Main_Page
http://wala.sourceforge.net/wiki/index.php/Main_Page

BIBLIOGRAPHY 101

[84] Nikolaos Koutroumpouchos, Georgios Lavdanis, Eleni Veroni, Christo-
foros Ntantogian, and Christos Xenakis. Objectmap: detecting insecure
object deserialization. In Proceedings of the 23rd Pan-Hellenic Confer-
ence on Informatics, pages 67–72, 2019.

[85] Benjamin A Kuperman, Carla E Brodley, Hilmi Ozdoganoglu, TN Vi-
jaykumar, and Ankit Jalote. Detection and prevention of stack buffer
overflow attacks. Communications of the ACM, 48(11):50–56, 2005.

[86] William Landi. Undecidability of static analysis. ACM Letters on Pro-
gramming Languages and Systems (LOPLAS), 1(4):323–337, 1992.

[87] Davy Landman, Alexander Serebrenik, and Jurgen J. Vinju. Challenges
for static analysis of java reflection: Literature review and empirical
study. In Proceedings of the 39th International Conference on Software
Engineering, ICSE’17, pages 507–518. IEEE Press, 2017.

[88] Ondřej Lhoták and Laurie Hendren. Context-sensitive points-to analysis:
is it worth it? In International Conference on Compiler Construction,
pages 47–64. Springer, 2006.

[89] Peng Li and Baojiang Cui. A comparative study on software vulnera-
bility static analysis techniques and tools. In 2010 IEEE International
Conference on Information Theory and Information Security (ICITIS),
pages 521–524. IEEE, 2010.

[90] Yue Li, Tian Tan, Yulei Sui, and Jingling Xue. Self-inferencing reflec-
tion resolution for java. In Proceedings of the 28th European Conference
on ECOOP 2014 — Object-Oriented Programming - Volume 8586, page
27–53, Berlin, Heidelberg, 2014. Springer-Verlag.

[91] Yue Li, Tian Tan, and Jingling Xue. Understanding and analyzing java
reflection. ACM Transactions on Software Engineering and Methodology
(TOSEM), 28(2):1–50, 2019.

[92] Benjamin Livshits, Manu Sridharan, Yannis Smaragdakis, Ondřej
Lhoták, J Nelson Amaral, Bor-Yuh Evan Chang, Samuel Z Guyer,
Uday P Khedker, Anders Møller, and Dimitrios Vardoulakis. In defense
of soundiness: A manifesto. Communications of the ACM, 58(2):44–46,
2015.

BIBLIOGRAPHY 102

[93] Benjamin Livshits, John Whaley, and Monica S. Lam. Reflection analysis
for java. In Proceedings of the Third Asian Conference on Programming
Languages and Systems, APLAS’05, page 139–160, Berlin, Heidelberg,
2005. Springer-Verlag.

[94] Fred Long, Dhruv Mohindra, Robert C Seacord, Dean F Sutherland, and
David Svoboda. The CERT Oracle Secure Coding Standard for Java.
Addison-Wesley Professional, 2011.

[95] Dustin Marx. JDK 11: Beginning of the end for
java serialization? https://dzone.com/articles/
jdk-11-beginning-of-the-end-for-java-serialization. (Ac-
cessed on 04/07/2020).

[96] Jane Cleland-Huang Mehdi Mirakhorli. Detecting, tracing, and monitor-
ing architectural tactics in code. IEEE Trans. Software Eng., 2015.

[97] Andrew Meneely, Harshavardhan Srinivasan, Ayemi Musa, Alberto Ro-
dríguez Tejeda, Matthew Mokary, and Brian Spates. When a patch goes
bad: Exploring the properties of vulnerability-contributing commits. In
2013 ACM/IEEE International Symposium on Empirical Software En-
gineering and Measurement, pages 65–74. IEEE, 2013.

[98] M Mirakhorli. Preserving the quality of architectural decisions in source
code. PhD thesis, PhD Dissertation, DePaul University Library, 2014.

[99] Mehdi Mirakhorli and Jane Cleland-Huang. Modifications, tweaks, and
bug fixes in architectural tactics. In Proceedings of the 12th Working
Conference on Mining Software Repositories, pages 377–380. IEEE Press,
2015.

[100] Mehdi Mirakhorli, Ahmed Fakhry, Artem Grechko, Mateusz Wieloch,
and Jane Cleland-Huang. Archie: A tool for detecting, monitoring,
and preserving architecturally significant code. In CM SIGSOFT Inter-
national Symposium on the Foundations of Software Engineering (FSE
2014), 2014.

[101] Martin Monperrus. A critical review of" automatic patch generation
learned from human-written patches": essay on the problem statement
and the evaluation of automatic software repair. In Proceedings of the

https://dzone.com/articles/jdk-11-beginning-of-the-end-for-java-serialization
https://dzone.com/articles/jdk-11-beginning-of-the-end-for-java-serialization

BIBLIOGRAPHY 103

36th International Conference on Software Engineering, pages 234–242,
2014.

[102] National Vulnerability Database. NVD Data feeds. https://nvd.nist.
gov/vuln/data-feeds, 2017. (Accessed on 04/31/2016).

[103] Stephan Neuhaus, Thomas Zimmermann, Christian Holler, and Andreas
Zeller. Predicting vulnerable software components. In Proceedings of the
14th ACM conference on Computer and communications security, pages
529–540. ACM, 2007.

[104] Flemming Nielson, Hanne R Nielson, and Chris Hankin. Principles of
program analysis. Springer, 2015.

[105] NIST - SAMATE. Source code security analyzers. https://samate.
nist.gov/index.php/Source_Code_Security_Analyzers.html. (Ac-
cessed on 04/29/2017).

[106] Oracle. Java object serialization specification - (version 6.0). https:
//docs.oracle.com/javase/8/docs/platform/serialization/spec/
serialTOC.html, 2010. (Accessed on 04/07/2020).

[107] Yunheung Paek, Jay Hoeflinger, and David Padua. Efficient and precise
array access analysis. ACM Transactions on Programming Languages
and Systems (TOPLAS), 24(1):65–109, January 2002.

[108] Or Peles and Roee Hay. One class to rule them all: 0-day deserializa-
tion vulnerabilities in android. In 9th USENIX Workshop on Offensive
Technologies (WOOT 15), Washington, D.C., August 2015. USENIX As-
sociation.

[109] Marco Pistoia, Satish Chandra, Stephen J Fink, and Eran Yahav. A
survey of static analysis methods for identifying security vulnerabilities
in software systems. IBM Systems Journal, 46(2):265–288, 2007.

[110] Corina S Pǎsǎreanu, Peter C Mehlitz, David H Bushnell, Karen Gundy-
Burlet, Michael Lowry, Suzette Person, and Mark Pape. Combining unit-
level symbolic execution and system-level concrete execution for testing
nasa software. In Proceedings of the 2008 international symposium on
Software testing and analysis, pages 15–26, 2008.

https://nvd.nist.gov/vuln/data-feeds
https://nvd.nist.gov/vuln/data-feeds
https://samate.nist.gov/index.php/Source_Code_Security_Analyzers.html
https://samate.nist.gov/index.php/Source_Code_Security_Analyzers.html
https://docs.oracle.com/javase/8/docs/platform/serialization/spec/serialTOC.html
https://docs.oracle.com/javase/8/docs/platform/serialization/spec/serialTOC.html
https://docs.oracle.com/javase/8/docs/platform/serialization/spec/serialTOC.html

BIBLIOGRAPHY 104

[111] Shawn Rasheed and Jens Dietrich. A hybrid analysis to detect java seri-
alisation vulnerabilities. In Proceedings of the 35th IEEE/ACM Interna-
tional Conference on Automated Software Engineering, pages 1209–1213,
2020.

[112] Adam Rehn. AST instrumentation (examples
by language). https://adamrehn.com/articles/
ast-instrumentation-examples-by-language/, January 2015.
(Accessed on 07/11/2021).

[113] Michael Reif, Florian Kübler, Michael Eichberg, Dominik Helm, and
Mira Mezini. Judge: Identifying, understanding, and evaluating sources
of unsoundness in call graphs. In Proceedings of the 28th ACM SIGSOFT
International Symposium on Software Testing and Analysis, ISSTA 2019,
page 251–261, New York, NY, USA, 2019. Association for Computing
Machinery.

[114] Michael Reif, Florian Kübler, Michael Eichberg, and Mira Mezini. Sys-
tematic evaluation of the unsoundness of call graph construction algo-
rithms for java. In Companion Proceedings for the ISSTA/ECOOP 2018
Workshops, ISSTA’18, pages 107–112. ACM, 2018.

[115] Eric Rescorla. HTTP over TLS. https://www.rfc-editor.org/rfc/
rfc2818.txt, 2000. (Accessed on 02/01/2018).

[116] Henry Gordon Rice. Classes of recursively enumerable sets and their
decision problems. Transactions of the American Mathematical Society,
74(2):358–366, 1953.

[117] Atanas Rountev, Ana Milanova, and Barbara G Ryder. Points-to anal-
ysis for java using annotated constraints. ACM SIGPLAN Notices,
36(11):43–55, 2001.

[118] Per Runeson and Martin Hoest. Guidelines for conducting and reporting
case study research in software engineering. Empirical Software Engi-
neering, 14:131–164, 2009.

[119] J. Ryoo, R. Kazman, and P. Anand. Architectural analysis for security.
IEEE Security Privacy, 13(6):52–59, 2015.

https://adamrehn.com/articles/ast-instrumentation-examples-by-language/
https://adamrehn.com/articles/ast-instrumentation-examples-by-language/
https://www.rfc-editor.org/rfc/rfc2818.txt
https://www.rfc-editor.org/rfc/rfc2818.txt

BIBLIOGRAPHY 105

[120] J. H. Saltzer and M. D. Schroeder. The protection of information in
computer systems. Proceedings of the IEEE, 63(9):1278–1308, September
1975.

[121] Joanna C. S. Santos, Reese A. Jones, Chinomso Ashiogwu, and Mehdi
Mirakhorli. Serialization-aware call graph construction. In 10th ACM
SIGPLAN International Workshop on the State of the Art in Program
Analysis, 2021.

[122] Joanna C S Santos, Reese A. Jones, and Mehdi Mirakhorli. Salsa: Static
analysis for serialization features. In Proceedings of the 22nd Workshop
on Formal Techniques for Java-like Programs, FTfJP ’20, 2020.

[123] Joanna C S Santos, Anthony Peruma, Mehdi Mirakhorli, Matthias Gal-
ster, Jairo Veloz Vidal, and Adriana Sejfia. Understanding software vul-
nerabilities related to architectural security tactics: An empirical investi-
gation of chromium, PHP and thunderbird. In 2017 IEEE International
Conference on Software Architecture (ICSA), pages 69–78. IEEE, 2017.

[124] Joanna CS Santos, Adriana Sejfia, Taylor Corrello, Smruthi Gadenkana-
halli, and Mehdi Mirakhorli. Achilles’ heel of plug-and-play software
architectures: a grounded theory based approach. In Proceedings of
the 2019 27th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering,
pages 671–682, 2019.

[125] Joanna CS Santos, Katy Tarrit, and Mehdi Mirakhorli. A catalog of
security architecture weaknesses. In 2017 IEEE International Conference
on Software Architecture Workshops (ICSAW), pages 220–223. IEEE,
2017.

[126] Joanna CS Santos, Katy Tarrit, Adriana Sejfia, Mehdi Mirakhorli, and
Matthias Galster. An empirical study of tactical vulnerabilities. Journal
of Systems and Software, 149:263–284, 2019.

[127] Christian Schneider. Java Deserialization Security FAQ, Apr 2019. [On-
line; Accessed 22. Jul. 2021].

BIBLIOGRAPHY 106

[128] Christian Schneider and Alvaro Muñoz. Java deserialization attacks.
https://owasp.org/www-pdf-archive/GOD16-Deserialization.pdf,
2016. (Accessed on 11/15/2019).

[129] Edward J. Schwartz, Thanassis Avgerinos, and David Brumley. All you
ever wanted to know about dynamic taint analysis and forward symbolic
execution (but might have been afraid to ask). In Proceedings of the
2010 IEEE Symposium on Security and Privacy, SP ’10, pages 317–331,
Washington, DC, USA, 2010. IEEE Computer Society.

[130] Robert Seacord. Combating java deserialization vulnerabilities with look-
ahead object input streams (laois), 2017.

[131] Hossain Shahriar and Hisham Haddad. Object injection vulnerability
discovery based on latent semantic indexing. In Proceedings of the 31st
Annual ACM Symposium on Applied Computing, SAC ’16, page 801–807,
New York, NY, USA, 2016. Association for Computing Machinery.

[132] L. K. Shar and H. B. K. Tan. Mining input sanitization patterns for
predicting sql injection and cross site scripting vulnerabilities. In 2012
34th International Conference on Software Engineering (ICSE), pages
1293–1296, June 2012.

[133] M. Sharp and A. Rountev. Static analysis of object references in rmi-
based java software. In 21st IEEE International Conference on Software
Maintenance (ICSM’05), pages 101–110, 2005.

[134] M. Sharp and A. Rountev. Static analysis of object references in
rmi-based java software. IEEE Transactions on Software Engineering,
32(9):664–681, 2006.

[135] Mikhail Shcherbakov and Musard Balliu. Serialdetector: Principled and
practical exploration of object injection vulnerabilities for the web. In
Network and Distributed Systems Security (NDSS) Symposium 202121-
24 February 2021, 2021.

[136] Yonghee Shin and Laurie Williams. Can traditional fault prediction mod-
els be used for vulnerability prediction? Empirical Software Engineering,
18(1):25–59, 2013.

https://owasp.org/www-pdf-archive/GOD16-Deserialization.pdf

BIBLIOGRAPHY 107

[137] Laurens Sion, Katja Tuma, Riccardo Scandariato, Koen Yskout, and
Wouter Joosen. Towards automated security design flaw detection. In
2019 34th IEEE/ACM International Conference on Automated Software
Engineering Workshop (ASEW), pages 49–56, 2019.

[138] Yannis Smaragdakis, George Balatsouras, George Kastrinis, and Martin
Bravenboer. More sound static handling of java reflection. In Xinyu Feng
and Sungwoo Park, editors, Programming Languages and Systems, pages
485–503, Cham, 2015. Springer International Publishing.

[139] Yannis Smaragdakis and George Kastrinis. Defensive points-to anal-
ysis: Effective soundness via laziness. In 32nd European Conference
on Object-Oriented Programming (ECOOP 2018). Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik, 2018.

[140] Manu Sridharan, Satish Chandra, Julian Dolby, Stephen J Fink, and
Eran Yahav. Alias analysis for object-oriented programs. In Aliasing in
Object-Oriented Programming. Types, Analysis and Verification, pages
196–232. Springer, 2013.

[141] Sid Stamm, Brandon Sterne, and Gervase Markham. Reining in the web
with content security policy. In Proceedings of the 19th International
Conference on World Wide Web, WWW ’10, pages 921–930, New York,
NY, USA, 2010. ACM.

[142] Chritopher Steel and Ramesh Nagappan. Core Security Patterns: Best
Practices and Strategies for J2EE", Web Services, and Identity Manage-
ment. Pearson Education India, 2006.

[143] Emre Taspolatoglu and Robert Heinrich. Context-based architectural
security analysis. In 13th Working IEEE/IFIP Conference on Software
Architecture (WICSA), pages 281–282, 2016.

[144] Rahul Telang and Sunil Wattal. An empirical analysis of the impact of
software vulnerability announcements on firm stock price. IEEE Trans-
actions on Software Engineering, 33(8):544–557, 2007.

[145] The MITRE Corporation. 2021 CWE Top 25 Most Dangerous Software
Weaknesses, Jul 2021. [Online; Accessed 22. Jul. 2021].

BIBLIOGRAPHY 108

[146] The PHP Group. Magic methods. https://www.php.net/manual/en/
language.oop5.magic.php, 2021.

[147] Julian Thomé, Alessandra Gorla, and Andreas Zeller. Search-based se-
curity testing of web applications. In Proceedings of the 7th International
Workshop on Search-Based Software Testing, SBST 2014, page 5–14, New
York, NY, USA, 2014. Association for Computing Machinery.

[148] Julian Thome, Lwin Khin Shar, Domenico Bianculli, and Lionel Briand.
Security slicing for auditing common injection vulnerabilities. Journal of
Systems and Software, 137:766–783, 2018.

[149] Julian Thomé, Lwin Khin Shar, Domenico Bianculli, and Lionel C
Briand. Joanaudit: A tool for auditing common injection vulnerabili-
ties. In Proceedings of the 2017 11th Joint Meeting on Foundations of
Software Engineering, pages 1004–1008, 2017.

[150] J. Thomé, L. K. Shar, D. Bianculli, and L. Briand. Search-driven string
constraint solving for vulnerability detection. In 2017 IEEE/ACM 39th
International Conference on Software Engineering (ICSE), pages 198–
208, 2017.

[151] J. Thomé, L. K. Shar, D. Bianculli, and L. Briand. An integrated ap-
proach for effective injection vulnerability analysis of web applications
through security slicing and hybrid constraint solving. IEEE Transac-
tions on Software Engineering, 46(2):163–195, 2020.

[152] J. Thomé, L. K. Shar, and L. Briand. Security slicing for auditing xml,
xpath, and sql injection vulnerabilities. In 2015 IEEE 26th International
Symposium on Software Reliability Engineering (ISSRE), pages 553–564,
2015.

[153] Daniil Tiganov, Jeff Cho, Karim Ali, and Julian Dolby. Swan: a static
analysis framework for swift. In Proceedings of the 28th ACM Joint
Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, pages 1640–1644, 2020.

[154] Frank Tip and Jens Palsberg. Scalable propagation-based call graph
construction algorithms. In Proceedings of the 15th ACM SIGPLAN

https://www.php.net/manual/en/language.oop5.magic.php
https://www.php.net/manual/en/language.oop5.magic.php

BIBLIOGRAPHY 109

conference on Object-oriented programming, systems, languages, and ap-
plications, pages 281–293, 2000.

[155] Omer Tripp, Marco Pistoia, Stephen J Fink, Manu Sridharan, and Omri
Weisman. TAJ: effective taint analysis of web applications. ACM Sigplan
Notices, 44(6):87–97, 2009.

[156] June Verner, Jennifer Sampson, Vladimir Tosic, Nur Azzah Abu Bakar,
and Barbara Kitchenham. Guidelines for industrially-based multiple case
studies in software engineering. In Third IEEE International Conference
on Research Challenges in Information Science, pages 313–324, 2009.

[157] Jan Vitek, R Nigel Horspool, and James S Uhl. Compile-time analysis
of object-oriented programs. In International Conference on Compiler
Construction, pages 236–250. Springer, 1992.

[158] J. Walden, J. Stuckman, and R. Scandariato. Predicting vulnerable com-
ponents: Software metrics vs text mining. In 2014 IEEE 25th Interna-
tional Symposium on Software Reliability Engineering, pages 23–33, Nov
2014.

[159] T. Wang, T. Wei, G. Gu, and W. Zou. Taintscope: A checksum-aware
directed fuzzing tool for automatic software vulnerability detection. In
2010 IEEE Symposium on Security and Privacy, pages 497–512, May
2010.

[160] Gary Wassermann and Zhendong Su. Static detection of cross-site script-
ing vulnerabilities. In 2008 ACM/IEEE 30th International Conference
on Software Engineering (ICSE), pages 171–180. IEEE, 2008.

[161] Tjark Weber, Sylvain Conchon, David Déharbe, Matthias Heizmann,
Aina Niemetz, and Giles Reger. The SMT competition 2015-2018. J.
Satisf. Boolean Model. Comput., 11(1):221–259, 2019.

[162] Shiyi Wei and Barbara G Ryder. Practical blended taint analysis for
javascript. In Proceedings of the 2013 International Symposium on Soft-
ware Testing and Analysis, pages 336–346, 2013.

[163] Mark Weiser. Program slicing. In Proceedings of the 5th international
conference on Software engineering, pages 439–449. IEEE Press, 1981.

BIBLIOGRAPHY 110

[164] Eric Yuan and Sam Malek. Mining software component interactions
to detect security threats at the architectural level. In 13th Working
IEEE/IFIP Conference on Software Architecture (WICSA), pages 211–
220. IEEE, 2016.

[165] Su Zhang, Doina Caragea, and Xinming Ou. An empirical study on using
the national vulnerability database to predict software vulnerabilities. In
International Conference on Database and Expert Systems Applications,
pages 217–231. Springer, 2011.

[166] Y. Zheng and X. Zhang. Path sensitive static analysis of web applications
for remote code execution vulnerability detection. In 2013 35th Interna-
tional Conference on Software Engineering (ICSE), pages 652–661, May
2013.

[167] T. Zimmermann, N. Nagappan, and L. Williams. Searching for a needle
in a haystack: Predicting security vulnerabilities for windows vista. In
2010 Third International Conference on Software Testing, Verification
and Validation, pages 421–428, April 2010.

Appendices

111

Appendix A

Root Cause Analysis (RQ5)

This appendix section elaborates on the details of each root cause identified
in our qualitative analysis (see Section 7.2.3). These results are thoroughly
explained in a publication derived form this PhD work [126].

A.1 “Identify Actors” Tactic

This tactic was affected by Origin Validation Errors (CWE-346) and Im-
proper Certificate Validation (CWE-295) in Chromium and Thunderbird
(previously shown in Figure 7.3). These tactical vulnerabilities occurred in
these projects as follows:

A.1.1 CWE-346 Origin Validation Errors

This tactical vulnerability concerns issues caused by failing to correctly verify
the validity of the source of data or communication. For two Chromium and
Thunderbird, it was due to problems related with violations of the Same-
Origin Policy (SOP) [25] and the Content Security Policy (CSP) [141], which
are two complementary security policies commonly applied in Web applications
to implement the “Identify Actors” tactic.

In both CSP and SOP, an origin of a Web resource is defined by the scheme,
host and port of its URL [25]. On one hand, the SOP enforces that docu-

112

APPENDIX A. ROOT CAUSE ANALYSIS (RQ5) 113

ments/scripts loaded from different sources (i.e. origins) do not interact with
each other. Under this policy, an application allows scripts/documents to ac-
cess data from another document/script only if they are from the same origin.
On the other hand, the CSP is a complementary security control that allows
Web servers to specify an “allow list” of origins, which indicates the only sources
of resources (e.g. scripts, HTML documents, etc.) that should be trusted. This
way, resources from an origin that does not match the list of trusted origins in
the list are ignored by the application.

Since Chromium is a Web browser, the Same-Origin Policy is needed to
ensure that different tabs in the browser do not access other Web page’s data.
In case of Thunderbird, even though it is a mail client, it uses a Web browser
engine (Gecko) to render HTML content in emails as well as the application’s
user interface itself (by rendering XUL).

Violations to these policies were caused by:

• Rudimentary Verification of the Origin: it is caused by an ad-hoc
implementation of the checking of the origin of a request according to
the software system’s goal. In other words, it occurs when developers did
not strictly follow the SOP/CSP specification when checking the origin
to allow/deny a request.
Example: Per the CSP specification [141], if the policy’s hostname starts
with a wildcard (e.g., “*.example.com”), then the system should only
match subdomains (e.g., “a.example.com” or “b.example.com”) but not
the domain (i.e., “example.com). However, when the host part of a
content security policy started with a wildcard (e.g., “*.domain.com”),
Chromium was mistakenly matching this host to resources originated
from “domain.com” (CVE-2015-6785).
Impact : It leads to a bypass of the tactic’s protection mechanism. This
can be used by intruders to steal data (e.g. authentication tokens) or
inject code.
Recommendations: Software engineers should strictly follow existing spec-
ifications (e.g. [25, 141]) when implementing the CSP/SOP. They also
should careful test their SOP/CSP implementation. Moreover, the risk
of inconsistent policy enforcement is reduced when such enforcement is
performed by a centralized component. In fact, we saw numerous CVEs
where developers performed extensive code refactorings, such as moving

APPENDIX A. ROOT CAUSE ANALYSIS (RQ5) 114

scattered origin checks to a central point to implement these cross-origin
regulations uniformly.

• Not Invoking the Procedures that Perform the Origin Check:
during a cross-origin request to load, execute, or access a resource, the
origin verification functions/methods are not invoked.
Examples: Thunderbird’s SOP implementation (CVE-2012-4192) vio-
lated the SOP policy by not verifying a request’s origin prior to granting
access to the properties of the location object. This vulnerability was
introduced by an incorrect fix to an unrelated defect. Developers re-
moved the invocations to the functions that performs origin check while
they were fixing another bug.
Impact : It leads to a policy-bypass, which results in a compromise of
the application’s confidentiality and integrity. Attackers are able to read
and/or modify data within the software system.
Recommendations: Extensive testing to ensure that the origin check func-
tions are invoked in all the components that handle cross-origin requests.

• Incorrect Transfer of Origin Information: If an application has
multiple components that handle cross-origin requests and only one com-
ponent that performs the origin check, the latter needs to properly re-
ceive the origin information to perform the check. We observed instances
where an application did not transmit origin information from one pro-
cess to the forked process or from one object to another.
Example: Thunderbird’s SOP implementation did not expose the final
URL to the component performing the origin check when handling Web
page redirects (CVE-2008-5507). Thus, attackers could bypass the pol-
icy using a malicious JavaScript code that redirected a user to another
domain.
Impact : When using the SOP and CSP to identify actors, it is neces-
sary to make the assumption that information about the origin is always
available when the check is needed. Otherwise, unauthorized actors will
be able to access the system’s resources due to a policy bypass.
Recommendations: The origin information must be forwarded to child
processes and/or objects. This is especially critical in a chain of URL
redirects, where the origin check should be based on the end URL rather
than the original URL.

APPENDIX A. ROOT CAUSE ANALYSIS (RQ5) 115

A.1.2 CWE-295 Improper Certificate Validation

Digital certificates are commonly used in Web-based software systems to iden-
tity the actors interacting with the system. Each certificate contains multiple
fields, including an expiration date, common name (CN) and the certifica-
tion authority (CA) that issued the certificate. Checking whether a certificate
is valid is crucial in correctly implementing the tactic. Both Chromium and
Thunderbird had realization vulnerabilities in their certificate validation. They
were caused by:

• Incorrect Validation of the Certificate’s Hostname or IP Address:
The implementation only checked a portion of the certificate’s hostname or
IP address when verifying whether the certificate was issued to the actor
making the request.
Example: Thunderbird (CVE-2010-3170) accepted certificates with a CN
attribute equals to “*.168.3.48” but it should have not been accepted be-
cause CN attributes with an IP address should not have wildcards (*).
Impact : The identity of the actor making a request is in the the hostname/IP
address in a certificate. Hence, incorrect hostname/IP address matching al-
lows remote attackers to spoof trusted certificates, bypassing the tactic.
Recommendations: Existing guidelines [115] shall be strictly followed by
certificate validation routines. Specifically, the CN and subjectAltNames
attributes need to be strictly checked before accepting the connection asso-
ciated with the certificate.

• Accepting Certificates Signed with Weak Hash Algorithms: Cer-
tificates are signed with a secure hashing algorithm. We observed instances
where the application accepted certificates that were signed using less secure
hashing algorithms.
Example: Chromium accepted SSL connections to a Web site that provided
an X.509 certificate signed with either the MD2 or MD4 hashing algorithms
(CVE-2009-2973). These hashing algorithms are not strong enough.
Impact : The application is at risk of man-in-the-middle attacks.
Recommendations: Less secure hash algorithms are at a higher risk of col-
lision attacks. Thus, a certification validation routine needs to be tested to
enforce they do not accept certificates signed with such algorithms.

• Incorrect Certificate Parsing: Prior to check the validity of a certificate,

APPENDIX A. ROOT CAUSE ANALYSIS (RQ5) 116

the application needs to parse it. We found instances where the certificate
parsing was incorrect causing certificate validation problems.
Example: Thunderbird incorrectly handled extra data in a signature that
used an RSA key with exponent 3. Remote attackers were able to forge
signatures for SSL/TLS and email certificates (CVE-2006-5462).
Impact : Parsing a certificate incorrectly can result in wrong values in the
certificate’s attributes. This, in turn, negatively affects the certification
validation. It can either lead to crashes or misleading the procedure to
accept malformed certificates.
Recommendations: Certificates can be provided in different file formats.
Therefore, a good strategy to prevent this problem is to have dedicated
parsers for each file format that parses these certificates according to the
format’s specifications.

• Improperly Handling Certificate Encoding: certificates can be pro-
vided using different encoding. Recognizing a certificate’s encoding is cru-
cial to ensure that the information can be properly extracted from the cer-
tificate. We observed cases where a certificate’s encoding was incorrectly
manipulated.
Example: Thunderbird’s implementation incorrectly assumed that any in-
coming X.509 certificate was encoded using UTF-8 if they were not in ASCII
(CVE-2014-1559).
Impact : It leads to an incorrect parsing of the certificate. Attackers can
leverage this mistake to spoof their identity.
Recommendations: The attributes of a certificate may be encoded using dif-
ferent character sets. Hence, certificate validation procedures should never
assume their encoding, but rather infer it from the certificate’s attributes.

• Lack of Mitigating Procedures to Deal with Invalid Certificates:
this occurs when the implementation correctly parses and validates certifi-
cates, but it does not correctly handle invalid certificates.
Example: Chromium’s certificate validation implementation did not cor-
rectly handle the scenario where an actor provides an invalid certificate
(CVE-2014-7948). Consequently, Chromium cached resources from Web-
sites that provided invalid certificates.
Impact : Attackers can be able to conduct successful man-in-the-middle at-
tacks.

APPENDIX A. ROOT CAUSE ANALYSIS (RQ5) 117

Recommendations: Avoiding this problem can be done by throwing an ex-
ception when invalid certificates are received. This exception should be later
caught in the code.

A.2 “Authenticate Actors” Tactic

Chromium and Thunderbird suffered from Improper Authentication (CWE-
287) issues. These problems affected their “Authenticate Actors” tactic.

• CWE-287 Improper Authentication: During their operations, software
systems deal with a variety of actors. A popular approach for ensuring a
software’s security is properly authenticating all actors interacting with the
system. This is used to check whether an actor is who they say they are
(i.e., verify their identity). The following issues contributed to improper
authentication issues:

– Incorrect Information About Entity Requesting Credentials in HTTP
Authentication: During HTTP authentication, the user is prompted to
provide its credentials. Users then verify the entity requesting their cre-
dentials and provide their credentials in case they consider the entity
to be trustworthy. Therefore, the application should correctly disply
the entity requesting the information.
Example: Chromium showed to the user the message provided by the
server in the “WWW-Authenticate” HTTP header. This allowed an
attacker to write a message that may lead the user to believe that the
server is trustworthy (e.g. “The site “www.trusted-website.com” is re-
questing your e-mail password for security purposes”).
Impact : One crucial aspect to correctly adopt Authenticate Actors tac-
tic is to help users in making decisions. Doing otherwise opens the sys-
tem to user-assisted attackers, where users are deceived into trusting a
fake entity with their credentials.
Recommendations: The application needs to show the whole entity’s
identity, including its domain and scheme. Any message provided by
the requesting entity needs to be displayed in an unambiguous fashion
to prevent deception. We observed that developers discussed a fix to
this problem by displaying the server’s origin and provided message
with different labels.

APPENDIX A. ROOT CAUSE ANALYSIS (RQ5) 118

– Incorrectly Handling Exceptional Scenarios: Authentication of
actors typically is implemented in a 3-step fashion. First, the appli-
cation requests the actor’s credentials. Second, the actor provides its
credentials. Finally, the application verifies whether these credentials
are valid. However, the actor may stop the authentication request by
canceling it. We found cases in Thunderbird and Chromium where a
cancel request was not properly processed.
Example: Chromium still synchronized data even after a user canceled
the sign-in request (CVE-2013-6643).
Impact : It can lead to an authentication bypass.
Recommendations: the application should include an error handling
mechanism that catches exceptional scenarios involving failures or can-
cel requests.

– Incorrectly Performing Authenticity Checks for Multiple Ac-
tors: A tactic’s implementation receives multiple authentication re-
quests in parallel, but it only checks the authenticity for one of the
actors in these parallel requests.
Example: Thunderbird allowed an attacker to bypass the authenticity
check through registering multiple listeners to the same event (CVE-
2008-5022).
Impact : Such an incorrect implementation can result in an authentica-
tion bypass.
Recommendations: Each received authentication request needs to be
queued and processed individually.

– Incorrectly Verifying the Identity of the Broker in a Brokered
Authentication: Brokered authentication [75] is a security pattern
where an authentication broker in charge of granting tokens to actors.
We found cases where an implementation to this pattern incorrectly
verified whether the obtained token was issued by a trustworthy bro-
ker.
Example: After a successful authentication, the OAuth protocol allows
URL redirection to a Website. When faced with a chain of redirects,
Chromium used the wrong URL when checking the identity of the bro-
ker that issued the token in the authentication (CVE-2013-6634). At-
tackers could leverage this flaw to hijack user sessions.

APPENDIX A. ROOT CAUSE ANALYSIS (RQ5) 119

Impact : It results in an authentication bypass.
Recommendations: An authentication broker implementation needs to
handle the exceptional situation where there are multiple redirect sce-
narios. The last URL is the correct URL in a chain of redirects.

– Incorrectly Authenticating Certain Actor Types: Multiple ac-
tors (e.g., end users, machines, plug-ins, etc.) may interact with a
software system. In our study, we found realization weaknesses caused
by not authenticating certain actor types.
Example: Chromium permitted plug-ins (an external actor) to be exe-
cuted without checking their identity (CVE-2013-0910).
Impact : It can lead to an authentication bypass, where these actor
types would be able to access the system’s data.
Recommendations: Whereas some actor types are more obvious (e.g.,
users) others might be more subtle and implicit (e.g., plug-ins or ex-
tensions). Hence, to effectively prevent this issue, the software system
should ensure that all actor types have their identity check prior to
being allowed to interact with the software system.

A.3 “Limit Access” Tactic

“Limit Access” tactic concerns with restricting the amount of resources (e.g.,
CPU, memory, etc) being accessed by an actor. Chromium and PHP had weak-
nesses in this tactic related to External control of File or Path (CWE-73)
and Execution with Unnecessary Privileges (CWE-250).

• CWE-73 External Control of File or Path: Chromium and PHP per-
form a file-related operation (e.g., create a compressed archive of a directory)
based on a filepath provided as inputs. These requests are intended to be
processed within a “safe area”, that is, paths outside this logical container
should not be accessed. However, we found tactical vulnerabilities that es-
caped this safe area, which were caused by the following mistakes:

– Incorrect Parsing of the Provided File Path: The application did
not correctly parse file paths that contained “.” or “..” characters in
them or that were symbolic links.
Example: Chromium opened/created databases based on a user-provided

APPENDIX A. ROOT CAUSE ANALYSIS (RQ5) 120

filepath. The intended design was to allow the callee to access any file
inside a dedicated database directory (isolated). However, Chromium’s
implementation of this design decision blindly followed symbolic links
(i.e., it did not check the filepath was a symbolic link to a resource
outside the isolated area), resulting in an attacker accessing files from
the user (CVE-2014-1715).
Impact : File paths can contain “dot-dot” (“.” or “..”) characters or be
symbolic links. These can be leveraged by intruders to escape the safe
area, successfully bypassing the “Limit Access” tactic.
Recommendations: To correctly enforce a safe area while implementing
the “Limit Access” tactic, developers need to ensure that any externally
provided path does not mistakenly escape this safe area. This involves
checking for the presence of “dot-dot” sequences on the filepath as well
as verifying whether the filepath points to an actual file and not a
symbolic link.

– Incorrect Manipulation of NULL Characters: We found scenar-
ios where the system would not gracefully handle a provided path that
contained NULL-related characters (e.g., “\x00” or “%00” or “\0”) while
implementing the “Limit Access” tactic.
Example: File paths that contained a “\0” character were being incor-
rectly truncated by PHP (CVE-2015-4025).
Impact : It allows attackers to bypass the tactic and access restricted
files/directories.
Recommendations: This problem is common in programming languages
with null-terminated strings. This tactical vulnerability type can be
avoided by using frameworks/APIs that can detect invalid characters
in a file path while implementing the tactic.

• CWE-250 Execution with Unnecessary Privileges: Multiple compo-
nents in Chromium run in different processes (i.e., a multi-process architec-
ture). Each of them have a set of specific capabilities which also dictate their
privilege level. Chromium, therefore, has an Inter-Process Communication
layer (IPC) layer to enable the communication among processes based also
on their privileges. Likewise, PHP’s interpreter run scripts with varying
privilege levels. In our study, we observed tactical vulnerabilities where pro-
cesses were executed with more privileges than intended. These were caused

APPENDIX A. ROOT CAUSE ANALYSIS (RQ5) 121

by:

– Misconfiguration of Default Privileges: Occurred when the sys-
tem’s privileges default configuration is too loose, providing unneces-
sary privileges to processes.
Example: In CVE-2014-0185, PHP’s process manager default config-
uration allowed any user to execute arbitrary scripts with the same
permission level of the process manager.
Impact : An attacker can leverage this vulnerability to perform over-
privileged operations.
Recommendations: Remediating this problem involves following the
least privilege secure design principle [120]. Hence, default configura-
tions should only allow the minimum read/write access. For example,
it can allow read/write to the file’s owners and other users in the group
(e.g., 660 permission in Unix-based systems).

– Not Properly Isolating Processes with Different Privilege Lev-
els: A sandboxed environment restricts which resources get accessed
by code running in it. That is, processes in the sandbox only interact
with resources/processes within the sandbox. However, we observed
tactical vulnerabilities where the application allowed the communica-
tion between processes with different privilege levels (i.e., outside the
sandbox).
Example: The ptrace system call allows one process to observe/control
the execution of another process. Chromium used to allow sandboxed
processes to use the ptrace command to manipulate the UI process,
which allowed an attacker to execute arbitrary code (CVE-2012-2846).
Impact : It results in privilege escalation, where a lower privileged pro-
cess relies on a process outside its safe area to perform an operation at
a higher privilege level.
Recommendations: From the patches that fixed the vulnerabilities, we
found that there are two ways to remediate this tactical vulnerabil-
ity type. The first approach is to start the sandboxed process at a
permission level that is required for initialization tasks, and then drop
these privileges to the minimum after the initialization is completed.
A second strategy is to include a sandbox policy in which a sandboxed
process cannot invoke security-critical system calls, that is, commands

APPENDIX A. ROOT CAUSE ANALYSIS (RQ5) 122

that are used to manipulate other processes (e.g., ptrace).

A.4 “Authorize Actors” Tactic

This tactic had the following instances of tactical vulnerability types: Im-
proper Access Control (CWE-284), Privilege/Permission Manage-
ment Issues (CWE-266, CWE-269, CWE-274, and CWE-280), Un-
trusted Search Path (CWE-426) and Missing Authorization (CWE-
862).

• CWE-862 Missing Authorization: This is an unintended conse-
quence of not adopting the “Authorize Actors” tactic, in which the ap-
plication checks an actor’s identity before an operation takes place. This
weakness was caused by the following:

– Not Asking the User for Permission to Execute an Action: It
occurred due to an improper software design, which does not adopt an
authorization mechanism that explicitly asks the user if the system is
allowed to perform a certain task or grant access to a certain resource.
Example: In CVE-2011-3898, JRE applets were executed in Chromium
without user permission.
Impact : Intruders can inject arbitrary code or conduct other malicious
activities without users’ awareness.
Recommendations: Fixing this problem involves requesting user’s con-
sent prior to performing security-critical actions (which require user
mediation).

– Elevation of Privileges Without Revoke Mechanism: In plugin-
based architectures, the system is decomposed into a core component
– also called as “host”- and a set of plug-ins (which communicate with
the core using APIs). We found vulnerabilities caused by the core
component allowing plugins to perform privileged actions without any
configuration that could restrict or drop privileges.
Example: In CVE-2012-0057, PHP allowed the libxslt extension to cre-
ate/write to user files without the option to allow end-users to revoke
this privilege.
Impact : Data tampering and integrity violations.

APPENDIX A. ROOT CAUSE ANALYSIS (RQ5) 123

Recommendations: Mitigating this issue involved creating configura-
tion parameters that enable/disable specific types of operations (e.g.,
reading files, accessing networks, creating directories, etc).

– Runtime Configuration Without Authorization Check: It is
caused by changing security-sensitive settings at runtime without any
authorization check.
Example: PHP allowed attackers to overwrite protected configurations
using the function “ini_set()” from the PHP language (CVE-2007-
5900).
Impact : Security-critical configuration parameters can be overwritten,
leading to privilege escalation.
Recommendations: The fixes involved identifying a subset of security-
relevant configuration parameters that should be read-only at runtime.
Hence, prior to modifying a configuration parameter at runtime, the
application adopts the “Authorize Actors” tactic to check whether the
entry is read-only at runtime.

• CWE-426 Untrusted Search Path: Chromium and Thunderbird are
applications that load system libraries (e.g., .dll on Windows) at run-
time. The key issue we observed is that loaded libraries are outside the
trust boundaries because they are not under the direct control of the
system. Hence, an attacker could replace a genuine library by a mali-
cious one. In fact, we found tactical vulnerabilities where attackers could
execute an arbitrary library. They were caused by:

– Attempt to Load a Nonexistent Library: Depending on the
operating system version, certain libraries may not exist. We found
scenarios where the application’s design disregarded the underlying
OS version when attempting to dynamically load a library. Conse-
quently, it attempted to load a library that did not exist.
Example: The “dwmapi.dll” library is only available on Windows
versions after Windows XP. Thunderbird attempted to load this
library on all Windows versions. Thus, attackers could create a ma-
licious “dwmapi.dll” in the working directory of a machine with an
older Windows version and have their library loaded and executed.
Impact : This allows attackers to create a malicious library placed
in the expected location, resulting in the system executing this fake

APPENDIX A. ROOT CAUSE ANALYSIS (RQ5) 124

library code.
Recommendations: Developers mitigated this problem by creating
a list of libraries per OS version. Then, the tactic’s implementation
verifies whether such library would exist in the underlying OS prior
to load it to the memory.

– Loading Libraries from World-Accessible Directories: We
found cases where applications attempt to find the desired library
to load by searching world-readable directories. These are unsafe
directories because an attacker could manipulate.
Example: the Windows API provides a dynamic library search al-
gorithm that also searches the directory from which the application
was loaded and the working directory of the parent process. These
are potentially unsafe locations because they are not read/write pro-
tected. Thunderbird was once vulnerable because it attempted to
load the “wsock32.dll” using this algorithm provided by the Win-
dows API (CVE-2012-1943).
Impact : Attackers can execute arbitrary code by placing malicious
libraries in unsafe locations.
Recommendations: This problem was fixed using two strategies.
The first one was to implement a library-loading algorithm that
uses absolute file paths to access the desired library. The second
strategy searches only from the system directories (which are read-
/write protected by default).

– Wrong Path to Library: It is caused by when the application
hardcoded the paths to the directories from which libraries/code
are loaded/executed, but the hardcoded path is incorrect.
Example: During its installation on Windows machines, Thunder-
bird executed the “program.exe” located at “C:\” instead of the ex-
ecutable placed in its installation directory.
Impact : Attackers can execute arbitrary code by placing their ma-
licious library/Trojan horse executable file in the hardcoded direc-
tory.
Recommendations: The fix involved hardcoding paths per operating
system and their versions.

• CWE-266, CWE-269, CWE-274, and CWE-280 Privileges/Per-

APPENDIX A. ROOT CAUSE ANALYSIS (RQ5) 125

missions Management Issues:

– Incorrect Transfer of Privilege Information: It occurs when
the permissions and privileges of an actor is unavailable when the
authorization check takes place. We observed cases where per-
missions/privileges information were not propagated to child pro-
cess/objects before the authorization took place.
Example: Chromium lets users specify what Websites can load plug-
ins into the Web browser. However, Chromium did not transmit this
list of authorized website to the component that performs the au-
thorization check. It resulted in untrusted websites loading plug-ins
without user’s consent (CVE-2010-2108).
Impact : authorization bypass.
Recommendations: The fix is to transmit the required information
to the “authorizer” component.

– Application-Level Enforcement of OS-level Permissions: Sys-
tem files usually have a list of permissions that specify what users
can access them. This enforcement is made by the underlying op-
erating system. Doing this enforcement at the application level
is inherently flawed. However, we noticed vulnerabilities in PHP
caused by application-level enforcement of OS-level permission.
Example: The safe_mode configuration parameter used to be avail-
able in PHP (5.4.0) to implement access control to files and direc-
tories on the Web server executing the PHP scripts. The design
decision made at the time was to ensure that scripts running in the
same server would not access files/directories from each other. This
lead to multiple privilege elevation vulnerabilities. In addition, in
multiple cases this application-level enforcement was missing (i.e.,
developers would forget to check whether the safe mode was enabled
and invoke the access control verification function).
Impact : Privilege escalation.
Recommendations: The remediation is to rely on the operating sys-
tem’s access control lists to enforce file/directory access.

– Not Enforcing Resource Limits for a Sandboxed Process:
When running a sandboxing environment, thresholds are created to
specify the maximum of resources a sandboxed process can use. We

APPENDIX A. ROOT CAUSE ANALYSIS (RQ5) 126

found cases where the the threshold was not correctly enforced.
Example: Chrome’s Native Client did not enforce limits for data
usage. It allowed “row-hammer” attacks (CVE-2015-3335).
Impact : An incorrect threshold enforcement can result in resource
exhaustion, where an attacker is able to degrade the system’s per-
formance.
Recommendations: The mitigation includes the enforcement of re-
source usage limits for both logical resources (e.g., user data) to
hardware ones (e.g., CPU).

– Escaping Authorization Check Through Hardlinks, Sym-
bolic Links, or Junctions: This problem occurs when the im-
plemented sandboxing mechanism follows links that go outside the
safe area, bypassing the protection mechanism.
Example: In CVE-2013-1672, Thunderbird’s update service does
not take into account the existence of junctions, which allow a local
attacker to trigger the execution of a malicious executable during
an automatic update.
Impact : Such a mistake in the implementation of the “Authorize
Actors” tactic enables attackers to bypass the sandboxing solution.
Recommendations: The fix involves not following the links provided
inside in a sandbox that are pointing to locations outside the defined
safe area.

– Not Locking a Shared Resource: Developers do not lock read-
/write access to a sensitive file while using it.
Example: Thunderbird did not lock write access to an archive file,
allowing local attackers to perform trojan attacks.
Impact : Attackers could leverage race conditions to modify the file
and get the process to use that corrupted file, rather than the orig-
inal file.
Recommendations: Fixing the problem involves (i) locking the shared
resource; (ii) checking its integrity/trustworthiness (verify whether
it has not been modified) and then using it (releasing the lock after
the task is completed).

– Sandboxed Object Inherits Privileges from Superclass: This
occurs when developers create an object which is meant to run in

APPENDIX A. ROOT CAUSE ANALYSIS (RQ5) 127

a sandboxed area. However, this object’s class inherits methods
from a superclass which is not sandboxed, meaning that there are
some methods that run without privileges (bypassing the sandbox
protection area).
Example: Thunderbird allowed attackers to create objects outside
the sandbox and then leverage calls to the valueOf() method to
escape the sandbox (CVE-2006-2787).
Impact : It leads to privilege escalation and remote code execution.
Recommendations: To prevent this problem, the implementation of
the “Authorize Actors” tactic needs to check that the pointer of the
object being manipulated (“this”) is within the right privilege level.

– Sandboxed Component is Assigned Wrong Privilege Level:
Realization weakness caused by granting to a lower privileged com-
ponent more permissions than intended by the design.
Example: Worker processes were executed outside the sandboxed
environment in Chromium (CVE-2010-4041).
Impact : Privilege escalation and arbitrary code execution.
Recommendations: The tasks performed by a component dictates
the level of privilege they need. Thus, the mitigation involves ex-
ecuting the code in a sandboxed environment set up according to
the component’s privilege level.

• CWE-284 Improper Access Control:

– Incorrect Authorization of External APIs, Plug-ins, Exten-
sions, or Libraries: we observed scenarios where a plug-in based
application did not correctly implement authorization for external
programs (i.e., APIs, plug-ins, extensions, and libraries).
Example: Authorization checks were not performed by Thunderbird
prior to granting access to local files to Java applets – a plug-in
(CVE-2013-1717).
Impact : data integrity compromises and arbitrary code execution.
Recommendations: the remediation includes devising an intermedi-
ary layer between the application’s code and plug-ins, extensions,
or libraries. This layer is responsible for performing authorization
checks.

APPENDIX A. ROOT CAUSE ANALYSIS (RQ5) 128

– NoWarnings About Permissions Changes: Permissions changes
made at runtime requires user-mediation. We found instances where
an application allowed extensions or plug-ins to modify their per-
missions at runtime.
Example: Malicious plug-ins were able to access the user’s camera
and Chromium did not show a warning to the user (CVE-2015-
3334).
Impact : Attackers can collect user’s data without their consent.
Recommendations: The mitigation involves implementing user me-
diation (via confirmation dialogs) whenever a privilege escalation
request is made at runtime.

– Incorrect Hostname Normalization: Hostnames are a crucial
component used to authorize a user. We noticed incorrect hostname
normalization during the authorization check.
Example: A hostname that ended with an extra dot (.) mislead
Chromium’s authorization mechanism, resulting in an authorization
bypass (CVE-2015-1269).
Impact : Attackers can bypass the authorization tactic.
Recommendations: The fix involves not accepting hostnames with
invalid characters, as well as normalization of hostnames prior to
authorization check.

– Not Revoking Access: After a resource was used, the tactic im-
plementation did not revoke access to it.
Example: Attackers could access the user’s camera by relying on an
old session that remained active even after the user had navigated
away from the webpage (Chromium’s CVE-2014-1586).
Impact : data leakage.
Recommendations: The mitigation involves following the least priv-
ilege design principle [120] by dropping privileges when the resource
is no longer being used.

A.5 “Validate Inputs” Tactic

From our empirical study, we found the following root causes:

APPENDIX A. ROOT CAUSE ANALYSIS (RQ5) 129

• CWE-59 Link Following:

– Not Checking Whether Filepath is Symbolic Link: caused
by an implementation that gets a symbolic link as input, but that
does not check whether the symlink leads to an unprotected file.
Example: To store temporary installation files, PHP’s setup script
utilizes a predictable filename in /tmp/. A local attacker may use
a symlink to replace the file and overwrite/delete user files (CVE-
2014-3981).
Impact : tampering with user files (i.e., read/overwrite/delete files).
Recommendations: Before conducting any file-related operation, the
remedy entails checking the file’s type. The implementation then
verifies what file/directory the symlink resolves (if the file is a sym-
link).

• CWE-89 SQL Injection:

– Incorrect Escaping of Data: We observed multiple cases of SQL
injection caused by special characters (e.g., quotes, backslashes,
etc.) in a SQL querey that were not escaped or removed.
Example: PHP did not escape characters from an external SQL
query string before passing it to the mysqli_fetch_assoc function
(CVE-2010-4700).
Impact : integrity compromise of a relational databases’ data.
Recommendations: Fixing entails escaping SQL syntax characters
(e.g., back/forward slashes, double/single quotes, percentages, etc.).

• CWE-94 Code Injection: When harmful code segments are produced
based on external inputs, this can lead to a tactical vulnerability. In
this situation, attackers can provide inputs in the form of code syntax,
infecting the software with harmful behavior. This can be used to collect
data or disrupt the application execution. According to our findings, the
following are the underlying causes of this tactical vulnerability type:

– Not Neutralizing Code Before Invoking a Dynamic Exe-
cution Function: it occurs when the application accepts code
provided as inputs and execute it without any sort of neutraliza-
tion/validity check.
Example: The valueOf.call and valueOf.apply methods in Thun-

APPENDIX A. ROOT CAUSE ANALYSIS (RQ5) 130

derbird’s built-in XML Binding Language (XBL) did not correctly
validate input (CVE-2006-1733). It allowed attackers to execute
arbitrary code.
Impact : Arbitrary code execution.
Recommendations: Interpreted programming languages may load
and execute code from a string(e.g., eval() in JavaScript). To en-
force that only safe commands are executed, the application needs
to parse the string and remove any unsafe commands from it.

– Flawed Neutralization Routine: The neutralization routine
does not cover all the possible types of unsafe commands.
Example: In CVE-2012-3980, Thunderbird accepted JavaScript code
as input and directly invoked the eval function without neutralizing
any unsafe commands provided in the input.
Impact : Memory corruption and arbitrary code execution.
Recommendations: Neutralization of malicious commands and ver-
ification of the call’s context (i.e., from a lower / higher privileged
actor) prior to invoking the code execution function (e.g., eval()).

– Performing Reflection Actions from Inputs: Many program-
ming languages allow reflection, a feature that allows you to load
classes at runtime. Similar to “Not Neutralizing Code Before In-
voking a Dynamic Execution Function”, the application was not
neutralizing the input before performing reflection operations.
Example: Firefox’s JavaScript permitted that attackers could ob-
tain a constructor from XBL compilation scope through leveraging
a reflection call.
Impact : Arbitrary code execution, privilege escalation and denial
of service.
Recommendations: Remediating this problem can be achieved via:
neutralizing unsafe constructs in the input or hiding reflection calls
from outside its trust area.

• CWE-20 Improper Input Validation: Software receives user inputs,
which may have different requirements related to its type, size, boundary
values, etc.. We found several scenarios where the input was not validated
based on its requirements. It was caused by the following problems:

APPENDIX A. ROOT CAUSE ANALYSIS (RQ5) 131

– Validation Using Block Lists Rather than Allow Lists: Block
lists specify inputs that shall not be accepted by the system. They
are inherently flawed, as it is difficult to create a comprehensive list
of all possible malicious inputs. We found cases where the applica-
tion relies on block list instead of an allow list, which dictates how
a trustworthy input looks like.
Example: Chromium (CVE-2009-3931) had a block list of files to
which they would deny their download. This list did not include
potentially dangerous extensions (e.g., .mht, and .mhtml, which
are automatically executed by Internet Explorer 6).
Impact : arbitrary code execution.
Recommendations: It can be remediated by refactoring the input
validation routine to rely on allow lists, which enumerate the ac-
cepted input types in the code. Although the problem can also be
fixed by adding the missing malicious data into the block list, this
approach is not the safest (as it is difficult to think upfront all the
possible ways an attacker may try to tamper with the input).

– Not Handling an Unexpected Data Type: Inputs can have
multiple types. We found cases where an application would not
properly handle the input’s type (i.e., “Type Confusion”).
Example: The input validation procedure in PHP incorrectly as-
sumed that the input was an array (CVE-2015-4148).
Impact : Denial of service and application crashes.
Recommendations: The fix involves checking the actual data type
from the input provided (rather than assuming it).

– Broken Parser: When the application receives complex data
structures, it needs to parse it. We found cases where an incorrect
parser implementation lead to vulnerabilities.
Example: Chromium’s parser did not correctly handle URLs start-
ing with “blob: ” followed by another URL and a long username
(CVE-2014-7899).
Impact : crashes and denial of service.
Recommendations: the remediation involves extensive testing of the
parser to ensure it can correctly parse data structures received as
input against a data schema.

APPENDIX A. ROOT CAUSE ANALYSIS (RQ5) 132

– Incorrect Escaping of Data: We found scenarios where the
application does not correctly neutralize “control” characters in an
input.
Example: Chromium allowed that the value within an href at-
tribute to be rendered as regular HTML entities (CVE-2015-6790).
Attackers could inject malicious code in this attribute in order to
steal data or CSRF tokens.
Impact : it can lead to arbitrary code execution and memory cor-
ruption.
Recommendations: The fix can be made by verifying the context in
which the data will be used and apply escaping routines according
to it. As an example, in an HTML rendering context, we need to
escape HTML entities (e.g., “” is escaped as “”)
prior to rendering it to a Web page.

Appendix B

Extending Dodo to other
Languages

Input

Entrypoints
Extraction

add
entrypoints
to worklist

Work list
of methods

Pointer
Analysis

Method
Dispatchadd more methods

to be explored
context, object, invocation

void main(String[] args)
 throws Exception {
 // ...
}

Serialization points Deserialization points

call graph i
Output Stream

Modeling

Input Stream
Modeling

Call graph

Program

Taint
Analysis

Configuration

Tainted Pointers

Taint-based

Downcast-based

out.writeObject(o) in.readObject()

» Entrypoints
» Sinks
» Dependencies
» Pointer Analysis
» Modeling Strategy

Phase #1: Call graph construction

Phase #3: Dynamic AnalysisPhase #2: Exploit generation

Path
Extraction

SMT Solvers

Object
Creation

Constraint
Extraction

potential
vulnerable

paths
constraints

Behavior
Monitoring

Code
Instrumentation

Exploits - Vulnerable Paths
- Exploits

Output

Figure B.1: Components in Dodo that needs modifications to be extended to
other programming languages (highlighted in red)

Untrusted object deserialization is a vulnerability that can affect multi-
ple programming languages, such as Ruby and PHP [6]. Thus, this appendix
discusses technical aspects for extending Dodo to find untrusted object dese-
rialization vulnerabilities in programming languages other than Java. These
discussions do not intend to be exhaustive but rather exploratory by show-

133

APPENDIX B. EXTENDING DODO TO OTHER LANGUAGES 134

ing the crucial components in our approach that require modifications. These
components are highlighted in red in Figure B.1.

B.1 Java Bytecode as Input

Dodo takes as input a compiled version of the program, i.e., JVM bytecode.
To support other languages, there are two approaches one can follow:

– Alternative #1: Certain programming languages (e.g., Scala), which are
JVM-hosted, can also be compiled to JVM bytecode [63]. Thus, Dodo
would be able to compute its call graph and subsequent analysis (i.e., ex-
ploit generation and instrumentation). Similarly, Python and Ruby can also
be compiled to JVM bytecode using Jython [2] and JRuby [4], respectively,
which are a JVM-based implementation of these languages. However, prior
research has shown that call graphs extracted from these JVM-based imple-
mentations are unsound [14]. The unsoundness is caused by the extensive
use of invokedynamic instruction in the generated bytecode which, in turn,
makes the analysis difficult to be performed statically.

– Alternative #2: Dodo is implemented on top of WALA [76]. Currently,
WALA (or other static analysis tools built on top of it) provides front-ends
for a few programming languages, such as JavaScript [76], Python [50], and
Swift [153]. Hence, a second alternative is to develop a front-end for their
target programming language on top of WALA Common Abstract Syntax
Tree (CAst) System [1]. This way, the front-end parses the source code to
generate a method’s IR that implements WALA’s interfaces.

Although alternative #1 would be the one that would least incur imple-
mentation efforts (i.e., it does not require implementing new front-ends for
WALA), they may render call graphs that are inherently unsound [14]. How-
ever, it is important to highlight that prior study of the soundness of call graphs
for JVM-hosted languages/implementations used 10 programs from the Com-
puter Language Benchmarks Game (CLBG) suite [5]. Hence, the study did
not focus on the typical usages for object deserialization.

Therefore, one has to perform a trade-off analysis to find whether the in-
vokedynamic instructions in the underlying bytecode affects the part of the

APPENDIX B. EXTENDING DODO TO OTHER LANGUAGES 135

program of interest (i.e., paths through callback methods). Then, finally de-
cide whether to develop a WALA front-end.

B.2 Signature-Based Method Dispatch

As described in Line 23, Dodo relies on class hierarchy information when com-
puting the dispatch for tainted invocations. This is possible because Java is
a statically typed language, i.e., it requires that each variable are assigned a
type and the type checking is enforced at compile time. However, dynamically
typed languages, e.g., Python and JavaScript, performs type checking at run-
time (i.e., variables can be declared without a type). Consequently, variables
can be assigned an object of unrelated types [65,162]. For this reason, the dis-
patch for tainted instance invocations such as x = o.g(a1,a2,...,an) needs
to compute the possible dispatches (call targets) based on the declared target
g (i.e., g’s method signature).

B.3 Language-Specific API Modeling

Recall that Dodo employs API modeling to abstract the inner workings of
(de)serialization APIs (see Section 6.4.2). The current approach is tailored
for modeling the classes ObjectInputStream and ObjectOutputStream from
the java.io package according to the callbacks that are invoked (shown in
Figures 2.1 and 2.2). Therefore, when adapting Dodo to a different program-
ming language, one has to change the API modeling component to match the
specification for the target API.

For example, the default functions in PHP for writing/reading objects are
serialize() and unserialize(), respectively [53]. The language has the fol-
lowing magic methods: __sleep(), __wakeup(), __serialize(), and __unse-
rialize() [146]. During object serialization, the mechanism verifies whether
the class has the __sleep() or __serialize() functions, in which case one
of them gets invoked prior to the object serialization. Similarly, when reading
an object, __wakeup() or __unserialize() functions are invoked if they are
present on the object’s class being deserialized. Therefore, our API modeling
component has to abstract the behavior for these magic methods.

APPENDIX B. EXTENDING DODO TO OTHER LANGUAGES 136

Solve constraints

Exploit's object graph
exploit
Config

page="localhost"

<?php
 // Includes for the gadget classes
 include_once('gadgets.php');
 // Malicious object creation & initialization
 $config = new Config;
 $config->page = "localhost";
 // Saves exploit to file
 $fp = fopen("exploit.txt","w+");
 fwrite($fp,serialize($config));
 fclose($fp);
?>

exploit.php

CONSTRAINTS
A ∧ B ∧ C ...

SMT Solver

O:6:"Config":

1:{s:4:"page";s

:9:"localhost";}

exploit.txt

php -f exploit.php1

Create object graph2

Generate
script

3

Run script4

Figure B.2: An example of exploit generation for the PHP language

B.4 Object Generation

The exploit generation component is implemented in Java using reflection. It
does so by first loading the project’s JAR file using a java.net.URLClassLoader
instance. Subsequently, it creates a malicious object whose class is in the newly
loaded class(es) in the JAR file. However, for other programming languages,
this implementation has to be modified to use the target language’s serializa-
tion protocol.

One possible implementation is to modify this component to generate a
script file in the target language that creates the malicious object. Figure B.2
shows an example of how this could be implemented for PHP. First, Dodo
would solve the extracted constraints using a solver (e.g., Z3 [46]) to create
an object graph in the memory. The object graph is simply an abstraction on
how the object should look like in terms of fields and their values. From this
object graph, then Dodo generates a script (exploit.php) which instantiates
the object represented in its graph. Subsequently, it runs this script by issuing
the php -f command. This command executes the script which makes the
exploit to be saved in a text file (exploit.txt).

B.5 Code Instrumentation

The code instrumentation component in Dodo performs online instrumenta-
tion using Java Path Finder (JPF) [69, 110], a model checking tool. Thus,
Dodo implements a listener which directly monitors the instructions and data

APPENDIX B. EXTENDING DODO TO OTHER LANGUAGES 137

being passed across instructions as the program is deserializing the exploit.
Since Java Path Finder can only analyze Java programs, this component has
to be re-implemented to use a different tool/approach for instrumentation.

In this context, one could develop an online or offline instrumentation ap-
proach [34]. For offline instrumentation, execution traces are captured and
stored instead of directly monitoring the executed instructions. This can be
achieved by performing AST-based instrumentation, in which the program’s
AST is transformed to a modified version with “probing instructions” to capture
events of interest (such as methods invoked during execution). Subsequently,
the captured execution trace is analyzed according to the heuristic described
in Section 6.6. As an example, we can use PHP Parser [9] to perform code
transformations to log method calls and then execute this transformed version
of the program [112].

In the case of online instrumentation, the approach monitors the program
as it is being executed and reports whether the system is vulnerable or not
(i.e., the sink is executed with exploit-provided values). While JPF [69] and
Java agent [7] are tools/APIs that can be used for instrumenting Java byte-
code, other languages have different APIs/tools available. For instance, Python
programs can be instrumented at runtime by using the inspect and sys mod-
ules [3].

	Understanding and Identifying Vulnerabilities Related to Architectural Security Tactics
	Recommended Citation

	Introduction
	Research Goals
	Thesis Statement
	Contributions
	Publications
	Dissertation Structure

	Background
	Vulnerabilities and Vulnerability Databases
	Architectural Security Tactics
	Weaknesses and Tactical Vulnerabilities
	Object Serialization and Deserialization
	Java Serialization API
	Untrusted Deserialization Vulnerabilities

	Program Analysis Techniques
	Taint Analysis

	Related Work
	Software Architecture and Security
	Empirical Studies on Software Vulnerabilities
	Vulnerability Prediction
	Formal Methods for Security Architecture
	Automated Vulnerability Detection
	Untrusted Object Deserialization Detection

	Identifying Tactical Vulnerability Types
	Creating the CAWE Catalog
	Overview of the CAWE Catalog

	Understanding Tactical Vulnerabilities
	Case Selection
	Data Collection and Analysis
	Step #1: Identifying Security Tactics in each Project
	Step #2: Extracting Disclosed Vulnerabilities for each Project
	Step #3: Identification of Tactical and Non-Tactical Vulnerabilities

	Detecting Deserialization Vulnerabilities
	Challenges on Detecting Untrusted Object Deserialization
	Mitigating Untrusted Object Deserialization
	Group 1: Unreachable sinks
	Group 2: Enforcing object integrity
	Group 3: Compartmentalization

	Taint Analysis for Detecting Untrusted Object Deserialization
	Phase 1: Call Graph Construction
	Step 1: Initial Call Graph Construction
	Step 2: Call Graph Refinement

	Phase 2: Exploit Generation
	Step 1: Path extraction
	Step 2: Path Constraint Analysis and Solving
	Step 3: Malicious Objects Instantiation

	Phase 3: Dynamic Analysis
	Demonstrative Example
	Phase 1: Call Graph Construction
	Phase 2: Generating Exploits
	Phase 3: Instrumentation

	Answering the Research Questions
	RQ6: Does Dodo's call graph algorithm handle object deserialization soundly?
	RQ7: Is Dodo useful for finding object deserialization vulnerabilities?

	Results
	Using the CAWE Catalog to Answer RQ1 and RQ2
	RQ1: What are the types of tactical vulnerabilities?
	RQ2: Which architectural security tactics are more likely to have associated vulnerabilities?

	Empirical Studies on Tactical Vulnerabilities
	RQ3: What are the most common types of architectural vulnerabilities in real software systems?
	RQ4: What security tactics are most affected by architectural vulnerabilities in real software systems?
	RQ5: What are the root causes of the most frequently occurring types of architectural vulnerabilities?

	Untrusted Object Deserialization Detection
	RQ6: Does Dodo's call graph construction algorithms handle object deserialization soundly?
	RQ7: Is Dodo useful for finding object deserialization vulnerabilities detection?

	Threats to Validity and Limitations
	Validity Threats to the CAWE Catalog and the Empirical Study
	Dodo's Limitations

	Conclusions
	Future Work

	Appendices
	Root Cause Analysis (RQ5)
	``Identify Actors'' Tactic
	CWE-346 Origin Validation Errors
	CWE-295 Improper Certificate Validation

	``Authenticate Actors'' Tactic
	``Limit Access'' Tactic
	``Authorize Actors'' Tactic
	``Validate Inputs'' Tactic

	Extending Dodo to other Languages
	Java Bytecode as Input
	Signature-Based Method Dispatch
	Language-Specific API Modeling
	Object Generation
	Code Instrumentation

