
Rochester Institute of Technology Rochester Institute of Technology

RIT Digital Institutional Repository RIT Digital Institutional Repository

Theses

10-2021

Data augmentation for automatic speech recognition for low Data augmentation for automatic speech recognition for low

resource languages resource languages

Ronit Damania
rjd2551@rit.edu

Follow this and additional works at: https://repository.rit.edu/theses

Recommended Citation Recommended Citation
Damania, Ronit, "Data augmentation for automatic speech recognition for low resource languages"
(2021). Thesis. Rochester Institute of Technology. Accessed from

This Thesis is brought to you for free and open access by the RIT Libraries. For more information, please contact
repository@rit.edu.

https://repository.rit.edu/
https://repository.rit.edu/theses
https://repository.rit.edu/theses?utm_source=repository.rit.edu%2Ftheses%2F10968&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.rit.edu/theses/10968?utm_source=repository.rit.edu%2Ftheses%2F10968&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository@rit.edu

Data augmentation for automatic speech
recognition for low resource languages

by

Ronit Damania

A Thesis Submitted
in

Partial Fulfillment of the
Requirements for the Degree of

Master of Science
in

Computer Science

Supervised by

Dr. Christopher Homan

Department of Computer Science

B. Thomas Golisano College of Computing and Information Sciences
Rochester Institute of Technology

Rochester, New York

October 2021

ii

The thesis “Data augmentation for automatic speech recognition for low resource lan-

guages” by Ronit Damania has been examined and approved by the following Examination

Committee:

Dr. Christopher Homan
Associate Professor
Thesis Committee Chair

Dr. Raymond Ptucha
Associate Professor

Dr. Emily Prud’hommeaux
Assistant Professor

iii

Dedication

This thesis is dedicated to my parents.

iv

Acknowledgments

I would like to thank Dr. Christopher Homan for his continued support and guidance, with

invaluable suggestions. I am thankful to Dr. Emily Prud’hommeaux for her advice and

general expertise. I want to thank Dr. Raymond Ptucha for being part of my thesis

committee and getting me interested in deep learning. Thank Dr. Cory E. Merkel, Mr.

Spencer Montan, Mr. Byron D. Behm, and Mr. Daniel W. Adams from NTID’s Center on

Access Technology (CAT) team for their support.

v

Abstract

Data augmentation for automatic speech recognition for low resource
languages

Ronit Damania

Supervising Professor: Dr. Christopher Homan

In this thesis, we explore several novel data augmentation methods for improving the

performance of automatic speech recognition (ASR) on low-resource languages. Using

a 100-hour subset of English LibriSpeech to simulate a low-resource setting, we com-

pare the well-known SpecAugment augmentation approach to these new methods, along

with several other competitive baselines. We then apply the most promising combinations

of models and augmentation methods to three genuinely under-resourced languages us-

ing the 40-hour Gujarati, Tamil, Telugu datasets from the 2021 Interspeech Low Resource

Automatic Speech Recognition Challenge for Indian Languages. Our data augmentation

approaches, coupled with state-of-the-art acoustic model architectures and language mod-

els, yield reductions in word error rate over SpecAugment and other competitive baselines

for the LibriSpeech-100 dataset, showing a particular advantage over prior models for the

“other”, more challenging, dev and test sets. Extending this work to the low-resource Indian

languages, we see large improvements over the baseline models and results comparable to

large multilingual models.

vi

Contents

Dedication . iii

Acknowledgments . iv

Abstract . v

1 Introduction . 1
1.1 Contributions . 2

2 Related Work . 3
2.1 ASR pipeline . 3
2.2 Mel Spectrogram . 4
2.3 Connectionist Temporal Classification (CTC) 6
2.4 Decoding . 8
2.5 SpecAugment . 10
2.6 Transformer . 12
2.7 Conformer . 14
2.8 Joint CTC-Attention based end-to-end speech recognition using multi-task

learning . 16

3 Data . 18
3.1 LibriSpeech . 18
3.2 Low resource Indian languages . 19

4 Methodology . 21
4.1 Model . 21
4.2 Augmentation . 22

4.2.1 Multiplying the region to augment with a random value 22
4.2.2 Replacing the region to augment with a random value 22
4.2.3 Input concatenation . 23

vii

5 Results and Discussion . 25
5.1 LibriSpeech . 25

5.1.1 Multiplying the region to augment with a random value 25
5.1.2 SpecAugment and replace with random 26
5.1.3 Input concatenation . 26
5.1.4 RWRU with input concatenation 27
5.1.5 Replace with random per batch . 28
5.1.6 Comparison with other methods 28

5.2 Low resource Indian languages . 29

6 Conclusions . 31
6.1 Future Work . 31

Bibliography . 33

viii

List of Tables

2.1 Consider six timestamps and each of them is making a prediction of unit
and in the end removing the adjacent repeating unit to predict the output
‘cat’ [16]. 6

2.2 Augmentation parameters for policies. mF and mT represents number of
frequency and time masks applied [32]. 10

3.1 Data subsets in LibriSpeech [31]. 18
3.2 Description of data provided (number of unique sentences (Uniq sent) and

number of speakers(Spkrs)). The audio files in all the languages consist of
single-channel and are encoded in 16-bit [11]. 19

3.3 Baseline WER(%) [11]. 20

5.1 Baseline results WER(%). 25
5.2 Results of MWR: WER(%) with the BEST model, the first column repre-

sents the range (a, b) from which we chose the random value m to multiply
the RTA. 25

5.3 Results of MWR: WER(%) with the AVG10 model, the first column repre-
sents the range (a, b) from which we chose the random value m to multiply
the RTA. 26

5.4 Results: WER(%) of different augmentation methods with the BEST model. 26
5.5 Results: WER(%) of different augmentation methods with the AVG10 model. 26
5.6 Results of ICPs: WER(%) with the BEST model, the value in the first

column is the percentage of input concatenation in a batch. 27
5.7 Results of ICPs: WER(%) with the AVG10 model, the value in the first

column represent the percentage of input concatenation in a batch. 27
5.8 Results of RWRU + ICPs: WER(%) on the BEST model, the value in the

first column represents the percentage of input concatenation in a batch. . . 27
5.9 Results of RWRU + ICPs: WER(%) on the AVG10 model, the value in

the first column represents the percentage of input concatenation in a batch. 28
5.10 Results: WER(%) of RWRB method on the AVGn model. 28

ix

5.11 Results: WER(%) of different methods where training data used for acous-
tic model is train-clean-100. 29

5.12 Results: WER(%) of Gujarati, Tamil and Telugu languages with different
methods, inference model and LM. Baseline result in first row from [11]. . . 30

x

List of Figures

2.1 ASR Pipeline. 4
2.2 Taking a small window of, for example, 20ms and computing the magni-

tude of the FFT (for mel spectrogram converting into mel scale) to get the
frequency information of the local window [7]. 5

2.3 Concatenation of adjacent windows to form spectrogram [7]. 5
2.4 If the output has repeated units then it must have an ε between them. This

allows CTC to predict ‘hello’ instead of ‘helo’ [16]. 6
2.5 For a given output ‘cat’, examples of valid and invalid alignment [16]. . . . 7
2.6 CTC Pipeline: More grey represents more probability [16]. 7
2.7 The CTC beam search algorithm with an output alphabet {ε, a, b} and a

beam size of three. Figure from [16]. 9
2.8 The images above show a base input, which is a log mel spectrogram with

various types of augmentation. From top to bottom, no augmentation, time
warp, frequency masking, and time masking were applied to base input,
respectively [32]. 11

2.9 The images above show a base input, which is a log mel spectrogram with
a couple of augmentation policies applied to it. From top to bottom, no
augmentation, LB, and LD as described in Table 2.2 [32]. 11

2.10 The Transformer - model architecture [40]. 12
2.11 (left) Scaled Dot-Product Attention, (Right) Multi-Head Attention [40]. . . 13
2.12 Conformer encoder model architecture. Conformer comprises of two

macaron-like feed-forward layers with half-step residual connections sand-
wiching the multi-headed self-attention and convolution modules. This is
followed by a post layernorm [15]. 15

2.13 Feed forward module. It starts with layernorm, the first linear layer uses
an expansion factor of 4, second linear layer projects it back to the original
dimensions [15]. 16

2.14 Multi-Headed self-attention module. It uses multi-headed self-attention
with relative positional embedding in a pre-norm residual unit [15]. 16

xi

2.15 Convolution module. The convolution module contains a pointwise con-
volution with an expansion factor of 2 projecting the number of channels
with a GLU activation layer, followed by a 1-D depthwise convolution. The
1-D depthwise conv is followed by batchnorm and then a swish activation
layer [15]. 16

2.16 The joint CTC-attention have a shared encoder which transforms input x
to higher dimension representation h which is pass to CTC and attention
decoder to predict the output labels y [23]. 17

4.1 The images above show a base input, a log mel spectrogram with differ-
ent augmentation applied to it. From top to bottom, no augmentation,
MWR where the value to multiply was selected uniformly randomly from
(−0.5, 0.5) and came −0.2048 for frequency axis and −0.3085 for time
axis, specAugment [32] where masked regions value is 0, RWRU/RWRB,
where the value to replace is selected uniformly randomly from (-4.886,
6.209) which is the minimum and maximum value of the audio, for fre-
quency axis the value is 5.2457. For the time axis, it is 1.6975. 23

1

Chapter 1

Introduction

Automatic speech recognition (ASR) has been a fundamental problem in artificial intel-

ligence for decades. Recently, the performance of ASR on high-resource languages has

benefited enormously from neural models [17, 2, 6, 15], enabling the integration of ASR

for into software and devices used every day by the people who speak these languages.

However, the vast majority of the world’s languages, even those spoken by tens of millions

of people, do not have the quantity of transcribed speech necessary to build ASR models

of this caliber, making speech-based applications out of reach for billions of people.

A common approach for learning in under-resourced settings is data augmentation.

Data augmentation of the acoustic training data via distortion of the speech signal has been

found to be particularly useful for ASR. Early work often focused on changes in speak-

ing rate or pitch in order to accommodate variations in speaking style and voice quality

and features [24, 12, 42]. More recently, SpecAugment [32] has been shown to be effec-

tive at augmenting acoustic training data by warping and zeroing out random regions of

the speech spectrum, making models more robust to spectral variation and variability in

recording quality. In this paper we explore variants to SpecAugment that alter, rather than

eliminate, random regions in the spectrum. We also explore a form of augmentation via

concatenation. We demonstrate the utility of these methods in a simulated low-resource

setting using a 100-hour subset of English LibriSpeech [31]. We find that some of our aug-

mentation methods outperform SpecAugment, particularly on the more challenging dev

and test sets (i.e., those labeled “other” as opposed to “clean”). Combined with a language

2

model, this approach yields WER on both dev and test sets lower than several state-of-

the-art architectures for this dataset. We then test the most promising of these methods on

three genuinely low-resource datasets – 40 hours each of Gujarati, Tamil, Telugu – using

a conformer acoustic model, yielding reductions in WER for all three languages over the

Interspeech challenge baselines by 5 to 12 percentage points (a reduction of 17-33%).

1.1 Contributions

The contributions of this thesis are

• Multiplying the region to augment with a random value (MWR).

• Replacing the region to augment with a random value (RWR).

• Input concatenation (IC).

• In addition to conceiving new augmentation methods, we test them on four datasets,

three of which are under resourced.

3

Chapter 2

Related Work

The acoustic model (AM) represents the relation between audio or feature extracted audio

with the lexical unit. For large vocabulary continuous speech recognition (LVCSR), the first

AMs were statistical in nature, e.g., hidden Markov models with Gaussian mixture models

(HMM-GMMs). GMMs were later replaced by deep neural networks (DNNs), which were

first used in deep belief networks (DBNs) [19]. Sequence modeling is one of the most

popular techniques in ASR, with models like Listen, Attend and Spell (LAS) [6] and Deep

Speech [17, 2]. Convolution techniques, like time delay neural networks (TDNNs) [33], are

also used. Language model (LM) are trained on text data. It predicts the next unit given the

previous unit(s). LM follows a similar trend, starting with statistical models like n-grams

[9] and moving to sequence modeling where recurrent neural network (RNNs) [30, 29, 39]

are used. And convolution-based methods like gated convolutional networks [10] have also

shown promising results.

2.1 ASR pipeline

The speech signal is a 1D vector that is sampled typically at 16kHz for ASR. Each ob-

servation is typically 16-bit for ASR and represents the amplitude of the signal. The most

commonly used features, such as MFCCs, fbanks, or spectrograms, are typically extracted

with a 25ms window, and a stride of 10ms. Let O be a sequence of acoustic features, O

= O1, O2,, OT , where Oi ∈ Rd, where d is the dimension of the features and T is the

4

length of the sequence. Let W be a word sequence. ASR solves the following problem.

W∗ = arg max
W

P(W|O)

where P(W|O) is obtained from the AM and P(W) is obtained from the LM.

Speech Signal	 Feature Extraction Acoustic Model Decoding Text

Language Model

X O P(W|O)

P(W)

Figure 2.1: ASR Pipeline.

2.2 Mel Spectrogram

A spectrogram is a visual way of representing the signal strength, of a speech signal over

time at various frequencies present in a particular waveform1. To get the spectrogram of

the audio signal, it needs to be converted from the time domain to the frequency domain.

Windowing functions like Hamming and Hanning [5] are popular techniques for smoothing

values. For our experiments, we used frames of size 25ms with a stride of 10ms and a

Hanning window. Let w[n] be the window function, M be the window width, α = 0.46164

for Hamming, and α = 0.5 for Hanning. Then

w[n] = (1− α)− α cos

(
2πn

M − 1

)
0 ≤M ≤ 1.

The fast Fourier transform (FFT) method does the Fourier transform of the signal. The log

of the magnitude of the frequency is taken to get the spectrogram. It has been reported

[38, 37] that humans do not perceive sound in a linear way. For instance, it is easier to

1https://pnsn.org/spectrograms/what-is-a-spectrogram

5

differentiate between 700Hz and 1200Hz than between 10000Hz and 10500Hz even though

the difference between the frequencies in each pair is the same (500Hz). For this, a new

scale is created called the mel scale, and the spectrogram is converted to mel scale.

Figure 2.2: Taking a small window of, for example, 20ms and computing the magnitude of
the FFT (for mel spectrogram converting into mel scale) to get the frequency information
of the local window [7].

Figure 2.3: Concatenation of adjacent windows to form spectrogram [7].

6

2.3 Connectionist Temporal Classification (CTC)

Most AM models will provide the likelihood of units for each Oi. However, the length of

O does not always equal the length of W (usually length of O is greater than length of W).

Methods such as using a sequence to sequence model [4], a sequence to sequence model

with attention [6], or a transformer model [40] have all been used to map multiple frames to

multiple units. For the models that predict one unit per frame the most common approach

has been to use Connectionist Temporal Classification (CTC) [13]. The CTC algorithm

is alignment free. It considers all the possible alignments for the given O. Let’s consider

a naive approach of predicting a unit at each timestamp and remove the repeated unit as

shown in the figure below.

O1 O2 O3 O4 O5 O6 feature observation
c c a a a t alignment

c a t output

Table 2.1: Consider six timestamps and each of them is making a prediction of unit and in
the end removing the adjacent repeating unit to predict the output ‘cat’ [16].

First, merge repeat
characters.

Then, remove any ϵ
tokens.

The remaining characters
are the output.

h e l l o

h e l l o

h e ϵ l ϵ l o

h h e ϵ ϵ l l l ϵ l l o

Figure 2.4: If the output has repeated units then it must have an ε between them. This
allows CTC to predict ‘hello’ instead of ‘helo’ [16].

7

c a ϵ ϵ tϵ

c c a tta

c c ϵ tϵ a

c tϵϵ tϵ

c c a a t

c c ϵ taϵ

Valid Alignments Invalid Alignments
corresponds to
Y = [c, c, a, t]

has length 5

missing the 'a'

Figure 2.5: For a given output ‘cat’, examples of valid and invalid alignment [16].

We start with an input sequence,

like a spectrogram of audio.

The input is fed into an RNN,

for example.

The network gives pt(a | X),

a distribution over the outputs

{h, e, l, o, ϵ
} for each input step.

With the per time-step output

distribution, we compute the

probability of different sequences

By marginalizing over alignments,

we get a distribution over outputs.

llle o

olllehh

lleh o

o

ll oϵ

ϵϵ

ϵ

ϵ ϵ

ϵ ϵ

ϵ

e

l

l

le

o

o

o

lleh

h

h

e

ϵ

l

o

h

e

ϵ

l

o

h

e

ϵ

l

o

h

e

ϵ

l

o

h

e

ϵ

l

o

h

e

ϵ

l

o

h

e

ϵ

l

o

h

e

ϵ

l

o

h

e

ϵ

l

o

h

e

ϵ

l

o

Figure 2.6: CTC Pipeline: More grey represents more probability [16].

8

There are essentially two problems with this approach. The first is that the speech signal

can have timestamps where nothing is spoken. Second, it is impossible to identify the word

with the repeated adjacent unit since repeated units are getting merged. For example, the

alignment [b, b, a, a, t, t, t, l, e] will collapse to ‘batle’ instead of ‘battle.’ To fix this,

CTC introduces a new unit to the set of allowed outputs. And is referred to as ε. The ε unit

doesn’t correspond to anything and is simply removed from the output [16].

CTC(O,W) = P(W|O) = ΣA∈AO,W

T∏
t=1

Pt(at|O)

Where ΣA∈AO,W
marginalizes over the set of valid alignments and

∏T
t=1 Pt(at|O) com-

putes the probability for a single alignment. CTC assumes conditional independence of at

with the output at other timestamps given the input x.

2.4 Decoding

The AM will produce a T × C matrix with the probabilities of units, i.e., C at each frame

Ti.

W∗ = arg max
W

P(W|O)

The straightforward approach is to use a greedy search algorithm and pick the unit which

has the maximum probability for each frame and remove the repeated units and ε unit to

get the transcript.

A∗ = arg max
A

T∏
t=1

Pt(At|O)

This method is not optimal for ASR since it doesn’t consider those multiple alignments that

can lead to the same output.

Consider the alignment [b, b], which has a higher probability than [a, a], [ε, a], or [a, ε]

has individually. But the sum of their probabilities is greater than that of [b, b]. In this case,

the greedy approach will produce the output ‘b’ while the actual output should have been

’a.’ To fix this the algorithm needs to take into account that [a, a], [ε, a], [a, ε] correspond to

9

the same output. For this, a modified version of beam search is used. Beam search creates

a new set of hypotheses by considering all combinations of units from the previous set of

saved hypotheses, and then saves the k most likely outputs. Here, ‘k’ is the beamwidth

hyperparameter.

a

a a

b a

a

a b

b a

ϵ

a

b

ϵ

a

b

ϵ

a

b

λ

a

b

ϵ

a

b

ϵ

a

b

ϵ

a

b

λ

ϵ

a

b

T = 4T = 3T = 2T = 1
current

hypotheses

proposed

extensions

current

hypotheses

proposed

extensions

current

hypotheses

proposed

extensions

current

hypotheses

Multiple extensions merge

to the same prefix

empty

string

Figure 2.7: The CTC beam search algorithm with an output alphabet {ε, a, b} and a beam
size of three. Figure from [16].

In modified beam search, instead of storing the alignments, the output prefix is stored

after removing the repeated units and ε. At each step of the search, it accumulates scores

for a given prefix based on all the alignments which map to it. For example, in the figure

above at T = 3, all the alignments of ‘a’ , i.e., [a, a], [a, ε] and [ε, a], are taken. Now the LM

has been known to improve the accuracy of the prediction to include it following equation

is used. This decoding method was used in this paper [28].

W∗ = arg max
W

P(W|O) ∗ P(W)α ∗ L(W)β

Where P(W) is the LM probability and L(W) is the word insertion bonus. It is the length

of W in the language model. It could be the number of characters or words in W based on

what kind of the LM is used. The LM use only when a new character or word is added to the

10

prefix. This favors the shorter prefixes, since there are fewer updates from LM, to counter

this L(W) is used, The α and β are hyperparameters that can be set by cross-validation.

2.5 SpecAugment

SpecAugment [32] is an augmentation technique that is applied directly to input features

of the neural network. It uses time warping and time and frequency masking. Given a

log mel spectrogram with τ time steps, it views it as an image where the frequency axis

is vertical and the time axis is horizontal. In time warping, a random point along the

horizontal line passing from the center of the image from the time steps (W, τ - W) is to be

warped either left or right by a distance w chosen uniform distribution from 0 to the time

warping parameter W along that line. In frequency masking, f consecutive mel frequency

channels [f0, f0 + f) are masked, where first f is selected uniformly randomly from 0 to

frequency masking parameter F , and f0 is chosen from [0, v - f), where v is the number of

mel frequency channels. In time masking, t consecutive time steps [t0, t0 + t) are masked,

where first t is selected uniformly randomly from 0 to time masking parameter T , and t0 is

selected from [0, τ - t) [32]. The log mel spectrograms are normalized to have zero mean

value, and thus setting the mask value as zero is equivalent to setting it as mean value.

Table 2.2: Augmentation parameters for policies. mF and mT represents number of fre-
quency and time masks applied [32].

Policy W F mF T mT

None 0 0 - 0 -
LB 80 27 1 100 1
LD 80 27 2 100 2

11

Figure 2.8: The images above show a base input, which is a log mel spectrogram with
various types of augmentation. From top to bottom, no augmentation, time warp, frequency
masking, and time masking were applied to base input, respectively [32].

Figure 2.9: The images above show a base input, which is a log mel spectrogram with a
couple of augmentation policies applied to it. From top to bottom, no augmentation, LB,
and LD as described in Table 2.2 [32].

12

2.6 Transformer

The transformer [40] model follows an encoder-decoder structure. The encoder maps an

input sequence (x1, x2, ..., xn) to a representation z=(z1, z2, ..., zn) and the decoder gener-

ates sequence of symbols (y1, y2, ..., ym) one at a time given the z from the encoder and the

previous generated symbols as an input to the decoder to generate next.

Figure 2.10: The Transformer - model architecture [40].

The encoder consists of a stack of layers. In each layer, there are two sub-layers. The

first is a multi-head attention and the second is a feed forward layer. Between sub-layers

13

there is a residual connection [18] followed by layer normalization [3]. All of the sub-

layers and embedding layers produces an output of dimension dmodel to facilitate residual

connections. The decoder layer, in addition to the sub-layers in encoder stack contains an

additional sub-layer to perform multi-head attention over the output of encoder stack.

Figure 2.11: (left) Scaled Dot-Product Attention, (Right) Multi-Head Attention [40].

Attention function is described as a mapping query and a set of key-value pairs to an

output, where query, keys, values, and output are all vectors. For “Scaled Dot-Product,”

the input consists of queries and keys of dimension dk and values of dimension dv. The

computation is done by taking the dot product of the query with all the keys, dividing it by
√
dk, taking softmax of it, and finally taking the dot product with the values. The attention

is calculated on a set of queries simultaneously, mapped in the matrix Q; similarly, keys

and values are mapped to matrix K and V respectively.

Attention(Q,K,V) = softmax(
QKT

√
dk

)V

The queries, keys, and values are of dmodel dimensional in a single attention mechanism.

In multi-head attention, queries, keys and values are linearly projected h times in the di-

mensional dk, dk, dv respectively. Apply attention function to each of the linear projections

14

of the queries, keys, and values in parallel to get dv dimensional output. As shown in the

figure above, apply linear projection to concatenated output.

MutiHead(Q,K,V) = Concat(head1, ..., headh)WO

where

headi = Attention(QWQ
i , KW

K
i , V W

V
i)

Where WQ
i ∈ Rdmodel×dk , WK

i ∈ Rdmodel×dk , W V
i ∈ Rdmodel×dv and WO ∈ Rhdv×dmodel

[40].

2.7 Conformer

CNNs are good at capturing local features, and transformers are good at capturing global

interaction. The convolution-augmented transformer, i.e., conformer, combines both CNNs

and transformers to model both global and local dependencies of the audio data for speech

recognition [15].

15

Figure 2.12: Conformer encoder model architecture. Conformer comprises of two
macaron-like feed-forward layers with half-step residual connections sandwiching the
multi-headed self-attention and convolution modules. This is followed by a post layernorm
[15].

The conformer encoder does convolution subsampling followed by a number of con-

former blocks. A conformer block consists of four modules that are stack together. It starts

with feed-forward layer followed by multi-head self attention, a convolution module and a

second feed forward network.

16

Figure 2.13: Feed forward module. It starts with layernorm, the first linear layer uses an
expansion factor of 4, second linear layer projects it back to the original dimensions [15].

Figure 2.14: Multi-Headed self-attention module. It uses multi-headed self-attention
with relative positional embedding in a pre-norm residual unit [15].

Figure 2.15: Convolution module. The convolution module contains a pointwise convolu-
tion with an expansion factor of 2 projecting the number of channels with a GLU activation
layer, followed by a 1-D depthwise convolution. The 1-D depthwise conv is followed by
batchnorm and then a swish activation layer [15].

For decoder it uses single-LSTM-layer.

2.8 Joint CTC-Attention based end-to-end speech recog-
nition using multi-task learning

For end-to-end speech recognition, primarily two approaches are popularly used. One is

CTC, and the other is the attention-based approach. CTC predicts output units for each

audio frame assuming conditional independence. The attention-based model directly learns

the unit sequence from the input. At each output time step, the model predicts the unit based

17

on the input and the history of the target character. This method does not do well for noisy

input since alignment is difficult. Also, the model is hard to learn from scratch because of

the the potential for misalignment for long input sequences.

This method uses both CTC as well attention mechanism which improves the alignment

and the performance along with speeding up the learning because of fast convergence.

Figure 2.16: The joint CTC-attention have a shared encoder which transforms input x to
higher dimension representation h which is pass to CTC and attention decoder to predict
the output labels y [23].

The model uses multitask learning (MTL) with a CTC objective as the auxiliary task to

train the attention based encoder-decoder model.The objective is represented as follows by

using both CTC and attention objective.

LMTL = λLCTC + (1− λ)LAttention

Where L is loss and λ is a tunable parameter λ : 0 ≤ λ ≤ 1.

18

Chapter 3

Data

3.1 LibriSpeech

In order to simulate a low-resource setting while still having a significant body of prior

work from which to gather competitive baselines, we used a 100-hour subset of the English

LibriSpeech corpus [31]. LibriSpeech was collected from a corpus of audiobooks that are

part of the libriVox project1. The creators of LibriSpeech separated the dev and test data

into two categories, clean and other, where the audio in the latter category is drawn from

speakers whose recordings yielded higher WER in the original baseline system, suggesting

that these recordings are more challenging. The 100-hour subset of LibriSpeech provides

a reasonable surrogate for truly under-resources languages.

Table 3.1: Data subsets in LibriSpeech [31].
subset hours per-spk minutes female spkrs male spkrs total spkrs
dev-clean 5.4 8 20 20 40
test-clean 5.4 8 20 20 40
dev-other 5.3 10 16 17 33
test-other 5.1 10 17 16 33
train-clean-100 100.6 25 125 126 251
train-clean-360 363.6 25 439 482 921
train-other-500 496.7 30 564 602 1166

The LibriSpeech train-clean-100 corpus is widely used in the research community, en-

abling us to compare our system to four competitive baselines reported in prior work. These

1https://librivox.org/

19

include: (1) Kaldi’s [34] best-performing hybrid DNN/HMM model [41] with a 4-gram

language model (LM); (2) RWTH Aachen’s [27] DNN/HMM hybrid model that uses a

bi-directional LSTM [20, 14] of 6 layers with 1000 units for backward and forward direc-

tions each; (3) a direct-to-word CTC sequence model [8], which uses a transformer-based

acoustic model (AM) with a CTC objective and 4-gram LM; additionally for augmenta-

tion, it uses SpecAugment [32]; (4) an end-to-end model [26] that uses a transformer-based

acoustic model and a recurrent neural network with four LSTM layers with 2048 units each

as a LM; the augmentation used in this particular model involves speed perturbation with

perturbation factors of 0.9 and 1.1, along with SpecAugment [32].

3.2 Low resource Indian languages

We consider three small, monolingual datasets for Gujarati, Tamil, Telugu from the Multi-

lingual and Code-Switching (MUCS) ASR Challenges at Interspeech 2021 [11]. The audio

is a combination of conversational speech and read speech. There are three subsets in the

data splits for each language: train, test, and blind, which we use for training, validation,

and testing, respectively. Each training set contains 40 hours of training data. The train and

test sets are sampled at 16kHz, while the blind set is sampled at 8kHz. In addition, 34.1%,

23.8% and 29.0% of the blind data chosen at random from Gujarati, Tamil and Telugu,

respectively, is modified with speed perturbation and/or noise. Table 3.2 provides more

information about the data sets for these three languages.

Table 3.2: Description of data provided (number of unique sentences (Uniq sent) and num-
ber of speakers(Spkrs)). The audio files in all the languages consist of single-channel and
are encoded in 16-bit [11].

Gujarati Tamil Telugu
Train Test Blind Train Test Blind Train Test Blind

Size(hrs) 40 5 5.26 40 5 4.41 40 5 4.39
Uniq sent 20257 3069 3419 30329 3060 2584 34176 2997 2506
Spkrs 94 15 18 448 118 118 464 129 129

20

The baseline results appears in Table 3.2 [11]. The ASR model uses a sequence-trained

time-delay neural network (TDNN) architecture optimized using the lattice-free MMI ob-

jective function [35]. The architecture consists of an AM with 6 TDNN blocks, each of

dimension 512 and a 3-gram LM.

Table 3.3: Baseline WER(%) [11].
Gujarati Tamil Telugu
25.98 35.82 29.35

21

Chapter 4

Methodology

4.1 Model

In the experiments a sequence to sequence AM [21] is used. In the encoder, there are 12

conformer blocks with 8 attention heads and 512 encoder dimensions. The decoder consists

of 6 transformer blocks with 2048 linear units, 8 attention head, and a dropout of 0.1. The

model does multitask learning [23] with the CTC weight of 0.3 and attention weight of 0.7.

An Adam optimizer [36] is used with initial learning rate 0.0025, β1 as 0.9, β2 as 0.99 and

warmup steps of 40000. Each model is trained for 150 epochs. The text data is tokenized by

SentencePiece byte-pair-encoding [25] with 5000 vocabulary size for librispeech data and

200 for Gujarati, Tamil, and Telugu each. Pre-trained transformer LM [21] which is trained

on text data from entire librispeech train data and external data1 is used for librispeech.

For the language model of Indian languages, we use RNNLM with 4 LSTM layers and

2048 nodes on each layer for each language. All the experiments are conducted on the

Rochester Institute of Technology Research Computing cluster [1]. The inference is done

in two ways: one is with the best performing model (BEST) on the validation set, the other

is with an AVGn [40, 22] model, whose parameters are formed by taking the average of the

parameter of top-n performing models on the validation set, where n is the hyperparameter.

For example, we train a model with n as 3 for ten epochs, and during the training, top 3

performance on the validation set are at epoch 3, 7, and 8. At the end of the training AVG3

model is formed by taking the parameter average of the model at epoch 3, 7, and 8. In the

1http://www.openslr.org/resources/11/librispeech-lm-norm.txt.gz

22

experiments in which we use speed perturbation (SP) [24], the perturbation factors are 0.9

and 1.1 to increase the training data threefold.

4.2 Augmentation

We introduce three novel data augmentation methods:

• Multiplying the region to augment with a random value (MWR).

• Replacing the region to augment with a random value (RWR).

• Input concatenation

Section 4.2.1, 4.2.2, and 4.2.3 explore those in more detail. We select the region to aug-

ment (RTA) for both time and frequency axis of the log mel spectrogram (input) for MWR

and RWR in the same way as SpecAugment [32] does for time and frequency masking.

SpecAugment mask the region to augment with zero, we explore different options with

MWR and RWR. In our experiments, we use the parameters F as 30, T as 40, mT and mF

as 2 each, for the region to augment. We do not use time warping since it will be difficult

to compare the results because of its non-deterministic nature.

4.2.1 Multiplying the region to augment with a random value

After masking, RTA doesn’t correlate to the RTA before masking. In MWR, we multiply

the RTA of the input with a value m, which is picked uniformly randomly from the range

(a, b) for each utterances, where a and b are MWR parameters. So RTA after MWR is a

factor of RTA before it as shown in the Figure 4.1.

4.2.2 Replacing the region to augment with a random value

SpecAugment [32] uses a constant masking value zero for the RTA of the input. To help

the model regularize better, for masking, we chose a masking value r uniformly randomly

from the range (min(input features of the batch), max(input features of the batch)) for

23

each axis as shown in Figure 4.1. There are two ways in which we can do this. The first

is to have the same r for all the utterances in the batch, which is RWR per batch (RWRB),

and the second way is to select r for each utterance, which is RWR per utterance (RWRU).

Figure 4.1: The images above show a base input, a log mel spectrogram with different
augmentation applied to it. From top to bottom, no augmentation, MWR where the value
to multiply was selected uniformly randomly from (−0.5, 0.5) and came −0.2048 for fre-
quency axis and −0.3085 for time axis, specAugment [32] where masked regions value is
0, RWRU/RWRB, where the value to replace is selected uniformly randomly from (-4.886,
6.209) which is the minimum and maximum value of the audio, for frequency axis the
value is 5.2457. For the time axis, it is 1.6975.

4.2.3 Input concatenation

In input concatenation, we concatenate two inputs and their corresponding transcripts. For

a given batch, we create an array of random integers (randomInt) whose length equals

the length(batch), and we pick elements of the array from the range [0, length(batch) -1]

24

with replacement. Given a batch array (batch), for index i, we concatenate batch[i] with

batch[randomInt[i]]. Input concatenation can help the AM generalize because AM has to

possibly adapt to a couple of speakers in the input, who could have variability in accent,

age, gender, etc. We experiment with applying input concatenation to a certain percentage

of the element in the batch. We call it input concatenation percentage (ICP). We explore

ICP with percentage 0.25, 0.5, 0.75, and 1. The results are in Section 5.1.3.

25

Chapter 5

Results and Discussion

5.1 LibriSpeech

All the experiments in this section uses train-clean-100, which is a 100 hours subset of

the librispeech dataset described in section 3.1. Inference is done with beam size 60, CTC

weight 0.4, and in the experiments with LM, the LM weight is 0.6. Table 5.1 shows that

Table 5.1: Baseline results WER(%).
Model dev-clean dev-other test-clean test-other
BEST 13.4 34.9 13.8 35.9
AVG10 9.5 28.7 10.0 29.4

the AVG10 model is performs significantly better than the BEST model.

5.1.1 Multiplying the region to augment with a random value

MWR is performing than baseline. The general trend is, as the range increases, the perfor-

mance decreases.

Table 5.2: Results of MWR: WER(%) with the BEST model, the first column represents
the range (a, b) from which we chose the random value m to multiply the RTA.

Range dev-clean dev-other test-clean test-other
(-0.1, 0.1) 11.7 29.5 12.0 30.3
(-0.25, 0.25) 12.1 30.6 12.3 31.2
(-0.5, 0.5) 12.3 31.0 12.6 32.5
(-1, 1) 12.4 31.6 12.5 32.8

26

Table 5.3: Results of MWR: WER(%) with the AVG10 model, the first column represents
the range (a, b) from which we chose the random value m to multiply the RTA.

Range dev-clean dev-other test-clean test-other
(-0.1, 0.1) 8.6 23.5 8.8 24.2
(-0.25, 0.25) 8.8 23.9 9.1 24.8
(-0.5, 0.5) 8.5 24.6 9.1 25.2
(-1, 1) 8.7 25.2 9.2 26.1

5.1.2 SpecAugment and replace with random

Comparing the SpecAugment method with RWRB and RWRU. Tables 5.4 and 5.5 show

both RWRB and RWRU perform better than SpecAugment. For the AVG10 model, the

performance of all of the methods is close, with RWRB performing the best.

Table 5.4: Results: WER(%) of different augmentation methods with the BEST model.
Methods dev-clean dev-other test-clean test-other
SpecAugment 10.2 25.1 10.7 25.3
RWRB 10.5 24.5 10.6 25.1
RWRU 10.0 24.1 10.2 25.0

Table 5.5: Results: WER(%) of different augmentation methods with the AVG10 model.
Methods dev-clean dev-other test-clean test-other
SpecAugment 7.4 20.0 7.9 20.5
RWRB 7.5 19.7 7.8 20.1
RWRU 7.5 20.0 7.8 20.3

Since the RWRB method gives the best results, we perform further experiments with

different n in AVGn. AVG1 means taking the average of the top 1 model, i.e., AVG1 is the

same as the BEST model. Table 5.10 shows that increasing n improves the performance.

5.1.3 Input concatenation

Among the ICPs explored, an ICP of 0.50 gives the best result.

27

Table 5.6: Results of ICPs: WER(%) with the BEST model, the value in the first column
is the percentage of input concatenation in a batch.

dev-clean dev-other test-clean test-other
ICP 0.25 13.3 35.4 13.6 37.1
ICP 0.50 13.1 34.9 13.6 36.0
ICP 0.75 13.4 35.2 13.8 36.0
ICP 1 13.7 34.8 14.0 35.4

Table 5.7: Results of ICPs: WER(%) with the AVG10 model, the value in the first column
represent the percentage of input concatenation in a batch.

dev-clean dev-other test-clean test-other
ICP 0.25 9.5 28.8 10.0 29.7
ICP 0.50 9.6 28.7 10.1 29.0
ICP 0.75 9.3 28.7 10.1 29.6
ICP 1 9.7 28.7 10.0 29.3

5.1.4 RWRU with input concatenation

We conducted the experiments of RWRU with ICPs. It follows a similar trend as observed

in Tables 5.6 and 5.7; RWRU with ICP 0.50 performs the best for the BEST model and the

same as RWRU for the AVG10 model as shown in Table 5.8 and 5.9. No input concatena-

tion means ICP 0.

Table 5.8: Results of RWRU + ICPs: WER(%) on the BEST model, the value in the first
column represents the percentage of input concatenation in a batch.

Method dev-clean dev-other test-clean test-other
RWRU + ICP 0 10.0 24.1 10.2 25.0
RWRU + ICP 0.25 9.9 24.6 10.1 25.4
RWRU + ICP 0.50 9.8 24.6 9.8 25.1
RWRU + ICP 0.75 10.1 24.6 10.2 25.8
RWRU + ICP 1 11.2 25.3 11.4 26.0

28

Table 5.9: Results of RWRU + ICPs: WER(%) on the AVG10 model, the value in the first
column represents the percentage of input concatenation in a batch.

Method dev-clean dev-other test-clean test-other
RWRU + ICP 0 7.5 20.0 7.8 20.3
RWRU + ICP 0.25 7.4 19.9 7.8 20.7
RWRU + ICP 0.50 7.6 20.0 7.8 20.3
RWRU + ICP 0.75 7.5 19.7 7.8 20.4
RWRU + ICP 1 7.6 19.9 7.9 20.4

5.1.5 Replace with random per batch

Since RWRB gives the best result on the AVG10 model, we conduct more experiments,

including the different n for AVGn, using LM and speed perturbations.

Table 5.10: Results: WER(%) of RWRB method on the AVGn model.
Model dev-clean dev-other test-clean test-other
BEST/AVG1 10.5 24.5 10.6 25.1
AVG5 7.7 20.0 8.1 20.6
AVG10 7.5 19.7 7.8 20.1
AVG20 7.3 19.5 7.5 20.0
AVG20 + LM 5.1 14.0 5.2 14.4
AVG20 + LM +SP 4.6 13.2 5.1 13.1

5.1.6 Comparison with other methods

We compare our results with four competitive baselines reported in prior work. These

include: (1) Kaldi’s [34] best-performing hybrid DNN/HMM model [41] with a 4-gram

language model (LM); (2) RWTH Aachen’s [27] DNN/HMM hybrid model that uses a

bi-directional LSTM [20, 14] of 6 layers with 1000 units for backward and forward direc-

tions each; (3) a direct-to-word CTC sequence model [8], which uses a transformer-based

acoustic model (AM) with a CTC objective and 4-gram LM; additionally for augmenta-

tion, it uses SpecAugment [32]; (4) an end-to-end model [26] that uses a transformer-based

acoustic model and a recurrent neural network with four LSTM layers with 2048 units each

as a LM; the augmentation used in this particular model involves speed perturbation with

29

perturbation factors of 0.9 and 1.1, along with SpecAugment [32].

Table 5.11: Results: WER(%) of different methods where training data used for acoustic
model is train-clean-100.

Model dev-clean dev-other test-clean test-other
Kaldia 5.9 20.4 6.6 22.5
word-level CTC [8] 6.3 19.1 6.8 19.4
RWTH [27] 5.0 19.5 5.8 18.6
End to End [26] 5.8 16.6 7.0 17.0
AVG20 +RWRB + LM +SP 4.6 13.2 5.1 13.1

ahttps://github.com/kaldi-asr/kaldi/blob/master/egs/librispeech/s5/

RESULTS

5.2 Low resource Indian languages

The table 5.12 shows the performance of Indian languages Gujarati, Tamil, and Telugu with

different augmentation methods and models. We use SP for all of our experiments in this

section. While using BEST and AVG10 models, RWRB gives better performance. While

using AVG10 with LM, RWRU + ICP 0.5 provides a better result, which is the best result

overall.

30

Table 5.12: Results: WER(%) of Gujarati, Tamil and Telugu languages with different meth-
ods, inference model and LM. Baseline result in first row from [11].

Model Method Gujarati Tamil Telugu Average
Baseline[11] 25.98 35.82 29.35 30.38

BEST

SpecAugment 30.3 29.0 32.0 30.4
RWRB 29.1 29.0 31.6 29.9
RWRU 29.9 28.9 32.4 30.4
RWRU + ICP 0.5 30.7 28.9 31.2 30.3

AVG10

SpecAugment 25.3 24.9 26.5 25.6
RWRB 25.0 24.7 26.9 25.5
RWRU 25.1 24.9 26.7 25.6
RWRU+ICP 0.5 26.3 25.9 27.7 26.6

AVG10 + LM

SpecAugment 21.9 23.9 24.3 23.4
RWRB 22.3 23.9 24.2 23.5
RWRU 22.0 24.2 24.2 23.5
RWRU+ICP 0.5 20.9 23.7 24.3 23.0

31

Chapter 6

Conclusions

This thesis aimed to study the impact of data augmentation techniques in ASR, specifically

for low resource datasets. We explored the performance of start of the art AM which con-

tains conformer and transformer blocks, LMs like transformer LM and RNNLM, and data

augmentation like specAugment and speed perturbation. We studied the new data augmen-

tation techniques like MWR, RWRB, RWRU, and ICP and it’s performance on datasets.

We looked into different ranges for MWR. We explored RWRB and RWRU methods and

studied the performance in comparison to SpecAugment. We looked into different percent-

age values for input concatenation. We also explored RWRU in conjunction with best per-

forming ICP, i.e., 0.5. Additionally, we looked into different inference models like BEST

and AVGn and the impact of increasing the value of n. On the libriSpeech train-clean-100

subset, we observe that both RWRB and RWRU perform better than SpecAugment on the

more difficult test-other subset. On low resource Indian languages, SpecAugment, RWRB,

and RWRU are close to each other for the AVG10 model. The inclusion of ICP 0.5 along

with LM on RWRU gives us the best results.

6.1 Future Work

• We experimented with applying masking techniques (SpecAugment, RWRB, and

RWRU) and MWR on RTA. Additionally, we can replace each value in RTA with a

uniformly random value selected from the range [min(input features of the batch),

max(input features of the batch)], which can act as random noise in the input.

32

• Since the AVGn model has given us promising results, we can do additional analysis

using weighted average or applying softmax, where weights are the model’s accuracy

on the validation set.

• One can explore the impact of these augmentation techniques on more datasets, on

mono and multi-lingual models.

• Further investigation into different shapes of masking like the circle, triangle, and

rectangle (current) along with MTL of shape prediction, given that it uses only one

shape per utterance.

33

Bibliography

[1] Rochester institute of technology. https://doi.org/10.34788/

0S3G-QD15. 2021.

[2] Dario Amodei, Rishita Anubhai, Eric Battenberg, Carl Case, Jared Casper, Bryan
Catanzaro, Jingdong Chen, Mike Chrzanowski, Adam Coates, Greg Diamos, Erich
Elsen, Jesse H. Engel, Linxi Fan, Christopher Fougner, Tony Han, Awni Y. Hannun,
Billy Jun, Patrick LeGresley, Libby Lin, Sharan Narang, Andrew Y. Ng, Sherjil Ozair,
Ryan Prenger, Jonathan Raiman, Sanjeev Satheesh, David Seetapun, Shubho Sen-
gupta, Yi Wang, Zhiqian Wang, Chong Wang, Bo Xiao, Dani Yogatama, Jun Zhan,
and Zhenyao Zhu. Deep speech 2: End-to-end speech recognition in english and
mandarin. CoRR, abs/1512.02595, 2015.

[3] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer normalization,
2016.

[4] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation
by jointly learning to align and translate, 2016.

[5] R. B. Blackman and J. W. Tukey. The measurement of power spectra from the point
of view of communications engineering — part i. The Bell System Technical Journal,
37(1):185–282, 1958.

[6] William Chan, Navdeep Jaitly, Quoc V. Le, and Oriol Vinyals. Listen, attend and
spell, 2015.

[7] Adam Coates and Vinay Rao. Speech recognition and deep learning. https://

cs.stanford.edu/˜acoates/ba_dls_speech2016.pdf.

[8] Ronan Collobert, Awni Hannun, and Gabriel Synnaeve. Word-level speech recogni-
tion with a letter to word encoder, 2020.

[9] James H. Martin Dan Jurafsky. Speech and language processing.

34

[10] Yann N. Dauphin, Angela Fan, Michael Auli, and David Grangier. Language model-
ing with gated convolutional networks. CoRR, abs/1612.08083, 2016.

[11] Anuj Diwan, Rakesh Vaideeswaran, Sanket Shah, Ankita Singh, Srinivasa Ragha-
van K. M., Shreya Khare, Vinit Unni, Saurabh Vyas, Akash Rajpuria, Chiranjeevi
Yarra, Ashish R. Mittal, Prasanta Kumar Ghosh, Preethi Jyothi, Kalika Bali, Vivek Se-
shadri, Sunayana Sitaram, Samarth Bharadwaj, Jai Nanavati, Raoul Nanavati, Karthik
Sankaranarayanan, Tejaswi Seeram, and Basil Abraham. Multilingual and code-
switching ASR challenges for low resource indian languages. CoRR, abs/2104.00235,
2021.

[12] Mengzhe Geng, Xurong Xie, Shansong Liu, Jianwei Yu, Shoukang Hu, Xunying Liu,
and Helen Meng. Investigation of data augmentation techniques for disordered speech
recognition. 10 2020.

[13] Alex Graves, Santiago Fernández, Faustino Gomez, and Jürgen Schmidhuber. Con-
nectionist temporal classification: Labelling unsegmented sequence data with recur-
rent neural networks. In Proceedings of the 23rd International Conference on Ma-
chine Learning, ICML ’06, page 369–376, New York, NY, USA, 2006. Association
for Computing Machinery.

[14] Alex Graves, Navdeep Jaitly, and Abdel rahman Mohamed. Hybrid speech recogni-
tion with deep bidirectional lstm. 2013 IEEE Workshop on Automatic Speech Recog-
nition and Understanding, pages 273–278, 2013.

[15] Anmol Gulati, James Qin, Chung-Cheng Chiu, Niki Parmar, Yu Zhang, Jiahui Yu,
Wei Han, Shibo Wang, Zhengdong Zhang, Yonghui Wu, and Ruoming Pang. Con-
former: Convolution-augmented transformer for speech recognition, 2020.

[16] Awni Hannun. Sequence modeling with ctc. Distill, 2017. https://distill.pub/2017/ctc.

[17] Awni Y. Hannun, Carl Case, Jared Casper, Bryan Catanzaro, Greg Diamos, Erich
Elsen, Ryan Prenger, Sanjeev Satheesh, Shubho Sengupta, Adam Coates, and An-
drew Y. Ng. Deep speech: Scaling up end-to-end speech recognition. CoRR,
abs/1412.5567, 2014.

[18] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. CoRR, abs/1512.03385, 2015.

35

[19] G. Hinton, L. Deng, D. Yu, G. E. Dahl, A. Mohamed, N. Jaitly, A. Senior, V. Van-
houcke, P. Nguyen, T. N. Sainath, and B. Kingsbury. Deep neural networks for acous-
tic modeling in speech recognition: The shared views of four research groups. IEEE
Signal Processing Magazine, 29(6):82–97, 2012.

[20] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Comput.,
9(8):1735–1780, November 1997.

[21] kamo naoyuki. ESPnet2 pretrained model, kamo-
naoyuki/librispeech asr train asr conformer6 n fft512 hop length256 r
aw en bpe5000 scheduler confwarmup steps40000 opti
m conflr0.0025 sp valid.acc.ave, fs=16k, lang=en, March 2021.

[22] Shigeki Karita, Nanxin Chen, Tomoki Hayashi, Takaaki Hori, Hirofumi Inaguma,
Ziyan Jiang, Masao Someki, Nelson Enrique Yalta Soplin, Ryuichi Yamamoto, Xi-
aofei Wang, Shinji Watanabe, Takenori Yoshimura, and Wangyou Zhang. A compar-
ative study on transformer vs RNN in speech applications. CoRR, abs/1909.06317,
2019.

[23] Suyoun Kim, Takaaki Hori, and Shinji Watanabe. Joint ctc-attention based end-to-end
speech recognition using multi-task learning. CoRR, abs/1609.06773, 2016.

[24] Tom Ko, Vijayaditya Peddinti, Daniel Povey, and Sanjeev Khudanpur. Audio aug-
mentation for speech recognition. In INTERSPEECH, 2015.

[25] Taku Kudo and John Richardson. Sentencepiece: A simple and language independent
subword tokenizer and detokenizer for neural text processing. CoRR, abs/1808.06226,
2018.

[26] Aleksandr Laptev, Roman Korostik, Aleksey Svischev, Andrei Andrusenko, Ivan
Medennikov, and Sergey Rybin. You do not need more data: Improving end-to-
end speech recognition by text-to-speech data augmentation. 2020 13th International
Congress on Image and Signal Processing, BioMedical Engineering and Informatics
(CISP-BMEI), Oct 2020.

[27] Christoph Lüscher, Eugen Beck, Kazuki Irie, Markus Kitza, Wilfried Michel, Albert
Zeyer, Ralf Schlüter, and Hermann Ney. Rwth asr systems for librispeech: Hybrid vs
attention. Interspeech 2019, Sep 2019.

36

[28] Andrew L. Maas, Awni Y. Hannun, Daniel Jurafsky, and Andrew Y. Ng. First-pass
large vocabulary continuous speech recognition using bi-directional recurrent dnns.
CoRR, abs/1408.2873, 2014.

[29] T. Mikolov, S. Kombrink, L. Burget, J. Černocký, and S. Khudanpur. Extensions of
recurrent neural network language model. In 2011 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pages 5528–5531, 2011.

[30] Tomas Mikolov, Martin Karafiát, Lukás Burget, Jan Cernocký, and Sanjeev Khudan-
pur. Recurrent neural network based language model. In Takao Kobayashi, Keikichi
Hirose, and Satoshi Nakamura, editors, INTERSPEECH, pages 1045–1048. ISCA,
2010.

[31] V. Panayotov, G. Chen, D. Povey, and S. Khudanpur. Librispeech: An ASR corpus
based on public domain audio books. In 2015 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pages 5206–5210, 2015.

[32] Daniel S. Park, William Chan, Yu Zhang, Chung-Cheng Chiu, Barret Zoph, Ekin D.
Cubuk, and Quoc V. Le. Specaugment: A simple data augmentation method for
automatic speech recognition. Interspeech 2019, Sep 2019.

[33] Vijayaditya Peddinti, D. Povey, and S. Khudanpur. A time delay neural network
architecture for efficient modeling of long temporal contexts. In INTERSPEECH,
2015.

[34] Daniel Povey, Arnab Ghoshal, Gilles Boulianne, Lukas Burget, Ondrej Glembek,
Nagendra Goel, Mirko Hannemann, Petr Motlicek, Yanmin Qian, Petr Schwarz, Jan
Silovsky, Georg Stemmer, and Karel Vesely. The kaldi speech recognition toolkit.
In IEEE 2011 Workshop on Automatic Speech Recognition and Understanding. IEEE
Signal Processing Society, December 2011. IEEE Catalog No.: CFP11SRW-USB.

[35] Daniel Povey, Vijayaditya Peddinti, Daniel Galvez, Pegah Ghahremani, Vimal
Manohar, X. Na, Yiming Wang, and S. Khudanpur. Purely sequence-trained neural
networks for asr based on lattice-free mmi. In INTERSPEECH, 2016.

[36] Sashank J. Reddi, Satyen Kale, and Sanjiv Kumar. On the convergence of adam and
beyond. In International Conference on Learning Representations, 2018.

[37] S. S. Stevens and J. Volkmann. The relation of pitch to frequency: A revised scale.
The American Journal of Psychology, 53(3):329–353, 1940.

37

[38] S. S. Stevens, J. Volkmann, and E. B. Newman. A scale for the measurement of the
psychological magnitude pitch. The Journal of the Acoustical Society of America,
8(3):185–190, 1937.

[39] Ilya Sutskever, James Martens, and Geoffrey Hinton. Generating text with recurrent
neural networks. In Proceedings of the 28th International Conference on Interna-
tional Conference on Machine Learning, ICML’11, page 1017–1024, Madison, WI,
USA, 2011. Omnipress.

[40] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N.
Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need, 2017.

[41] Xiaohui Zhang, Jan Trmal, Daniel Povey, and Sanjeev Khudanpur. Improving deep
neural network acoustic models using generalized maxout networks. In 2014 IEEE In-
ternational Conference on Acoustics, Speech and Signal Processing (ICASSP), pages
215–219, 2014.

[42] Yingbo Zhou, Caiming Xiong, and Richard Socher. Improved regularization tech-
niques for end-to-end speech recognition. CoRR, abs/1712.07108, 2017.

	Data augmentation for automatic speech recognition for low resource languages
	Recommended Citation

	tmp.1635874352.pdf.ZZWVP

