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ABSTRACT
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Thin-film III-V semiconductor-based photovoltaic (PV) devices, whose light conversion

efficiency is primarily limited by the minority carrier lifetimes, are commonly designed

to minimize the formation of crystalline defects (threading dislocations or, in extreme

cases, fractures) that can occur, in particular, due to a mismatch in lattice constants of

the epitaxial substrate and of the active film. At the same time, heteroepitaxy using Si

or metal foils instead of costly III-V substrates is a pathway to enabling low-cost thin-

film III-V-based PV and associated devices, yet it requires to either use metamorphic

buffers or lateral confinement either by substrate patterning or by growing high aspect

ratio structures. Mismatched epitaxy can be used for high-efficiency durable III-V space

PV systems by incorporation of properly engineered strained quantum confined struc-

tures into the solar cells that can enable bandgap engineering and enhanced radiation

tolerance.

One of the major topics covered in this work is optical and optoelectronic modeling

and physics of the triple-junction solar cell featuring planar Si middle sub-cell and

GaAs0.73P0.27 and InAs0.85P0.15 periodic nanowire (NW) top and bottom sub-cells, re-

spectively. In particular, the dimensions of the NW arrays that would enable near-unity

broad-band absorption for maximum generated current were identified. For the top
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cell, the planarized array dimensions corresponding to maximum generated current and

current matching with the underlying Si sub-cell were found to be 350 nm for NW di-

ameter and 450 – 500 nm for NW spacing. For the GaAs0.73P0.27, resonant coupling

was the main factor driving the absorption, yet addressing the coupling of IR light in

the transmission mode in the InAs0.85P0.15 nanoscale arrays was challenging and unique.

Given the nature of the Si and bottom NW interface, the designs of high refractive in-

dex encapsulation materials and conformal reflectors were proposed to enable the use of

thin NWs (300 – 400 nm) for sufficient IR absorption. A novel co-simulation tool com-

bining RSoft DiffractMODTM and Sentaurus DeviceTM was established and utilized to

design the p-i-n 3D junction and thin conformal GaP passivation coating for maximum

GaAs0.73P0.27 NW sub-cell efficiency (16.5%) mainly impacted by the carrier surface

annihilation.

Development of a highly efficient GaAs solar cell enhanced with InxGa1−xAs/GaAsyP1−y

quantum wells (QWs) is also demonstrated as one of the key parts of the dissertation.

The optimizations including design of GaAsP strain balancing that would support ef-

ficient thermal (here, 17 nm-thick GaAs0.90P0.10 for 9.2 nm-thick In0.10Ga0.90As QWs)

and/or tunneling (4.9 nm-thick GaAs0.68P0.32) carrier escape out of the QW while main-

taining a consistent morphology of the QW layers in extended QW superlattices were

performed using the principles of strain energy minimization and by tuning the growth

parameters. The fundamental open-circuit voltage (Voc) restraints in radiative and non-

radiative recombination-limited regimes in the QW solar cells were studied for a variety

of InxGa1−xAs compositions (x=6%, 8%, 10%, and 14%) and number of QWs using

spectroscopic and dark current analysis and modeling. Additionally, the design and use

of distributed Bragg reflectors for targeted up to 90% QW absorption enhancement is

demonstrated resulting in an absolute QW solar cell efficiency increase by 0.4% due to
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nearly doubled current from the QWs and 0.1% enhancement relatively to the optically-

thick baseline device with no QWs.
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Chapter 1

Introduction

Single-junction crystalline silicon (Si) solar cells are approaching their Auger theoretical

efficiency limit of 29% [1] reaching up to 26.3% efficiency under AM1.5 illumination

[2]. On the solar cell level, the further improvements in the area-specific power output

Figure 1.1: Absorption coefficient (α) chart.

1
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Figure 1.2: Bandgap/lattice constant diagram of III-V compounds. Si and Ge are
denoted. Colorful lines guide to the lattice constant values of Si, GaAs, and InP. The

numbers indicate the %-mismatch of GaAs and InP with Si, respectively.

from terrestrial Si modules can be enabled by transitioning to the multijunction Si-

based photovoltaics (PV) as this approach allows to use the incident solar energy more

efficiently by minimizing the main fundamental losses: thermalization and transmission

of the photons. Even though Si bandgap of 1.12 eV is nearly ideal for the single-junction

(1J) solar cells [3], placing additional wide- and narrow-bandgap solar cells on the front

and rear sides of the Si absorber, respectively, can boost the overall efficiency of the

device. In this case, power of the incident short-wavelength photons will be converted

into electrical work in the wide-bandgap subcells(s) instead of being lost as heat in Si.

At the same time, narrow-bandgap subcell placed below Si solar cell will be responsible

for the conversion of the infrared photons, that are otherwise not used. In this regard,

the possibility of enabling Si-based multijunction solar cells has been extensively studied

due to the low cost of electronic grade Si and well-established manufacturing of the Si

PV devices.

The main barrier preventing successful realization of Si-based multijunction systems

is the limited choice of materials that would meet the requirements for environmental
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Figure 1.3: Cost breakdown of the single-junction GaAs solar cell manufacturing
process. [4]

stability and the feasibility of integration with Si. One of the options for integrating Si

into the multijunction architectures is deposition of the perovskite compounds that are

capable of absorbing light in the UV and visible range dependent on their composition [5].

Metal halide perovskites (hybrid organic-inorganic lead or tin-based materials), on the

one hand, offer low cost, wide bandgap tunability, scalable printing-based deposition,

and high absorption coefficient [6, 7, 8]. At the same time, environmental stability

of perovskite films limits their commercialization and hardening of these compounds

against heat and illumination is still a matter of research [9, 10].

The other material group that can serve as a candidate for Si-based multijunction cells

is III-V alloys. The use of III-V alloys for partitioning the solar spectrum leading to

enhanced efficiency of Si-based solar cells has been an alternative to perovskites. As can

be seen on Fig. 1.2, a family of III-V alloys provides broad-range bandgap tunability

(from ∼0.1 eV of antimony-based alloys to 2.48 eV of AlP) and selection of materials

with strong direct-bandgap absorption allowing to use ultra-thin films of III-V materials

as shown on Fig. 1.1 (for example, a simple optically-thick GaAs solar cell is only ∼

3.5 µm [11]). In addition, multijunction III-V solar cells grown by metal organic vapor
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phase epitaxy (MOVPE) on Ge or GaAs substrates hold the record of efficiency and

are leaders in the space PV industry due to their light weight in combination with high

efficiency and radiation hardness [12, 13, 14]. As of 2021, the record efficieny of the

dual junction InGaP/GaAs tandem solar cell is 32.9% measured under ASTM AM1.5 G

terrestrial spectrum [15] and commercially available space solar cells feature beginning-

of-life efficiencies ranging from 30 % to 33% under AM0 illumination with the end-of-life

(after exposure to the 1 MeV electrons with fluence of 5×1015 e/cm2) and post-annealing

remaining efficiency factor up to 78% (https://solaerotech.com/space-solar-cells-cics/).

The main limitation for using such devices terrestrially is their high cost that is mainly

driven by the cost of III-V substrates (Fig. 1.3). While retail price of the 2-inch

Si wafer is less than $ 10, the cost of the 2-inch GaAs substrate is ∼ $100 − 150

(https://order.universitywafer.com/default.aspx?cat=Gallium%20Arsenide). It seems

to be an ideal solution to combine the benefits of III-V PV with low-cost Si for creating

hybrid multijunction devices, however, there is a significant lattice mismatch between

Si and majority of the III-V compounds. Figure 1.2 shows the bandgap/lattice con-

stant diagram denoting binary III-V alloys, Si, and Ge. The lines stretched down to the

lattice constant axis correspond to GaAs and InP (two most used III-V epitaxial sub-

strate materials). It can be seen that percent lattice mismatch of GaAs with Si is 3.9%,

while for InP it reaches 8%. Considering that lattice mismatch >1% results in epitaxial

film relaxation and associated formation of threading dislocations propagating through

the body of the epitaxial film (which is also an active part of the future device), GaAs

films cannot be directly grown on Si without incorporation of the threading dislocations,

which in turn have detrimental impact on the minority carrier lifetimes [16, 17].

For decades, the scientific focus was on pursuing the solutions that could allow to over-

come the severe lattice mismatch between Si and most III-V materials offering use of
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Figure 1.4: (a) EQE spectra and (b) illuminated J-V characteristics of the 1J GaAs
solar cell grown on the GaAs substrate (dark points) and on Si via GaAsxP(1−x) meta-

morphic buffer (open circles) [18].

metamorphic grade buffers for monolithic growth of III-V on Si [18]. This can be achieved

either by growing GaP on Si first and grading the alloy composition from GaP (mis-

match with Si is 0.36%, Fig. 1.2) to the GaAsxP(1−x) with stoichiometry corresponding

to the active device region bandgap value (Fig. 1.5)[19, 20]. Alternatively, since GaAs

can be lattice matched to Ge by adding only 1% In, growth of GaAs on Si can be en-

abled by grading the lattice parameter from Si to Ge via SiGe alloy [21]. In the second

case, however, Si cannot be used as a part of the solar cell, since thick, narrow-bandgap

SiGe buffer is highly absorbing. Figure 1.4 shows external quantum efficiency (EQE)

spectra, that indicate the number of electron-hole pairs per incident photon with given

wavelength, and current-voltage (J-V) characteristics of the GaAs solar cells grown on

GaAs substrate and on Si substrate with graded GaAsxP(1−x) metamorphic buffer. Even

qualitative analysis of the EQE of both types of cells (Fig. 1.4a) indicates that long-

wavelength carrier collection efficiency drops in the solar cell grown metamorphically

corresponding to the degraded diffusion length of minority carriers in the base of the

device compared to the solar cell grown by homoepitaxy (epitaxial GaAs on GaAs sub-

strate). The same trend is observed in the J-V curves (Fig. 1.4b) exhibiting drop in
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both short-circuit current density (Jsc) and open-circuit voltage (Voc). The reason for

the inferior performance of the metamorphic cells is propagating threading dislocations

resulting from lattice mismatch with the substrate. Figure 1.5 shows transmission elec-

tron microscopy of cross-sectional view of the GaAsyP1−y metamorphic buffer grown on

Si via step-grading (lattice constant in the buffer changes in a discrete fashion by the

growth of layers with constant composition). Horizontal lines correspond to the inter-

faces between the 250 nm-thick layers with constant lattice parameter. In this structure,

one can notice the defect lines propagating at an angle to the growth direction (thread-

ing dislocations) that do not contribute to the lattice relaxation (misfit dislocations that

relieve the strain propagate along the film plane). Present in the active part of the de-

vice, threading dislocations reduce the minority carrier diffusion lengths by introducing

trap states and scattering cites. For comparison, GaAs epitaxial substrates’ threading

dislocation density (TDD) is in the order of 103 1/cm2, while in the metamorphic mate-

rial TDD can reach 106− 108 1/cm2. This change results in minority electron lifetimes,

τe, drop up to three orders of magnitude and minority holes lifetimes, τh, drop up to

two orders of magnitude as shown on Fig. 1.6 [16].

An alternative that allows to integrate high crystalline quality III-V films with Si is wafer

bonding [22, 23]. This method is essentially a combination of lattice-matched growth

of III-V device structures on expensive GaAs substrates (in an inverted configuration)

followed by surface-activated wafer bonding to Si and further GaAs substrate removal

by wet chemical etching [24]. Figure 1.7 shows the comparison between the EQE spectra

of the dual-junction (2J) InGaP/GaAs solar cells grown inverted on GaAs substrates

and wafer-bonded to Si and grown on Si via GaAsyP1−y metamorphic grade [25]. While

in terms of device performace, wafer bonding is much more viable than direct growth
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Figure 1.5: Transmission electron microscopy cross sectional image of the GaAsyP1−y

metamorphic buffer on Si. [20]

Figure 1.6: Electron and hole lifetimes in the p- and n-type GaAs, respectively, in
dependency on the TDD. [16]

on Si, as it allows to retain high crystalline quality, it does not fulfill the cost require-

ment because it relies on the GaAs substrate use. Another important limitation of the

wafer bonding method is low manufacturing scalability making it non-viable for bulk

production [23].

As thin-film III-V-on-Si integration in perspective might be disregarded due to either

inevitable loss of the III-V material quality or low cost efficiency of stacked systems,

the parallel approach exploiting direct growth of 3-dimensional III-V structures, such as
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Figure 1.7: EQE spectra of the 2J InGaP/GaAs solar cells grown inverted on GaAs
substrates and wafer-bonded to Si (dark circles) and grown on Si via GaAsyP1−y meta-

morphic grade (open circles) [25].

nanowires (NWs), on Si can be considered. An efficient approach to mitigate the lattice

mismatch-induced threading dislocations formation in the III-V hetero-epitaxial films is

to laterally confine the epitaxial crystal and allow relaxation via its facets [26]. Radial

spatial confinement of nanowires (NWs) allows for efficient strain relaxation that enables

direct epitaxy of a broad range of lattice-mismatched materials on Si, thereby allowing

unprecedented bandgap tunability and heterogeneous integration [27, 28, 29]. Figure 1.8

shows cross-sectional high resolution TEM (HRTEM) image of the GaAs NW grown on

Si. A pristine atomic arrangement with no stacking faults and bulk crystalline defects

in the body of a NW.

To show the potential of heterogeneous integration of III-V NWs on Si, the first chapter of

this work focuses on simulation-based study of the III-V-Nanowire-on-Si triple-junction

solar cells and offers design guidelines for overcoming the effects of high surface-to-

volume ratio in the NW subcells, as well as demonstrates optical enhancement systems

for elevated absorption in NWs.

Associated with the methodology of growing III-V NWs on Si, a selective light sensing



Chapter 1. Introduction 9

Figure 1.8: Cross-sectional HRTEM image of the GaAs NW grown on Si substrate.

system was proposed. Despite the capabilities for spectral tunability of the absorption

in the NW arrays due to their waveguide properties allowing to couple light with specific

wavelengths dependent on the NW width, for the infrared applications implementation

of the NWs with diameters that would be sufficient for long-wavelength light coupling

on heterosubstrates (Si) might be associated with an occurence of crystalline defects.

The mechanism for selective IR sensing by NWs relies on filtering the short-wavelength

light. In the previous works, the NW diameter-dependent spectral responsivity in InP

NWs was demonstrated for the NWs grown on InP substrates for which lattice mismatch

is not a concern, while the cost of such substrates is high. Integrating NW and Si can

be efficient (i.e., provide desired optical and structural properties of the NW material

with minimal bulk defect density in the NWs) if NWs are sufficiently thin, with the NW

diameter not exceeding critical width. In this case, the wavelength selectivity can be in

part achieved by designing Si substrates in a form of one-sided or two-sided diffraction

gratings with anti-reflective coating on the light-incidence side for the following growth

of NWs on the textured rear side. In this case, NW arrays become optically passive as the

light with specific wavelengths is forced into the array. The simplicity of such approach
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is that for IR operation, the feature size of the grating laterally is in the micrometer

range making standard UV lithography applicable for fabricating such devices, while

the depth of the grating can vary by tuning the etching duration. The proposed work

includes modeling part demonstrating the wavelength selectivity in the InAsP NWs on

the rear side of Si diffraction grating with various grating feature sizes. The experimental

implementation of such structure and analysis of the absorption in dependency on the

Si grating properties is in progress.

While the approaches to adapt III-V PV to the terrestrial use still mostly remain in the

research scope (except for the concentration III-V PV that until recently was present in

the market [30]), the full potential of the III-V materials for photovoltaic applications

can be fully realized in the space industry. Not largely restricted by cost-per-watt

requirements, the demand for radiation-tolerance and low specific power determined as

a mass specific power output of solar cells for space applications becomes critical [31].

Multijunction III-V solar cells are leaders on the space PV market due to their high

efficiency [32]. The newest 4-junction III-V solar cell grown on Ge developed by So-

lAero features 30.0% minimum efficiency in the beginning of life and previous 3-junction

model achieves 29.5% minimum efficiency. The challenge is to retain stable performance

of the multijunction cells under electron and proton radiation in space. The end-of-life

(conventionally, end of life corresponds to the exposure to 1 MeV 1×1015 electrons/cm2

radiation) efficiency of the solar cell relies on maintaining current matching between the

subcells that are prone to the influence of non-ionizing radiation. The necessity to main-

tain current matching comes from the subcells being connected in series and dramatic

reduction in current generated by one of the cells overtime can result in premature wear-

off of the space module. In a 3-junction InGaP/GaAs/Ge or InGaP/GaAs/InGaAs solar

cell (Fig. 1.9), GaAs middle cell is the most vulnerable to the radiation [33]. Exposure
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Figure 1.9: Schematics of the 3J solar cell for space applications [34].

of the solar cell to the incident flux of charged particles leads to the formation of lattice

defects affecting the mean-free path of the minority charge carriers and reducing their

diffusion length.

Thinning the subcells can be beneficial for their radiation tolerance as, first, the degree

of damage from particles bombardment gets reduced, and second, the dependency of

the carrier collection efficiency on the large diffusion length becomes smaller with the

junction being closer to the carrier generation region. Engineering of the ultra-thin space

solar cell relies on photon management and epitaxial lift-off or substrate removal and

has been implemented [35, 36, 37, 38].

With short-circuit current density (Jsc) linearly dropping with the diffusion length [3],

the thick sub-cells radiation tolerance in terms of maintaining current matching can be

also achieved by introducing of low-dimension structures, such as quantum dots (QDs)

and quantum wells (QWs) that have shown great potential for bandgap engineering in

solar cells [40, 41, 42, 43, 44]. The main idea of using quantum-confined structures is

to enhance current density of the limiting GaAs subcell by providing extra absorption
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Figure 1.10: Band diagram of the solar cell with the QW superlattice in the intrinsic
region. Dark circles represent electrons and open circles correspond to holes. The
arrows show absorption and radiative recombination events, as well as carrier escape

mechanisms. [39]

below its bandgap to maintain current matching towards the end of life. QDs and

QWs are realized in a form of superlattices of strained quantum-confined structures

and separating barriers to form quantum boxes (Fig. 1.11a) incorporated into the high

electric field region (intrinsic region) of the solar cell that is prone to the radiation

damage (Fig. 1.11b) [45, 46]. The band diagram showing QW superlattice in the i-

region in given on Fig. 1.10. QDs, due to their dimensionality and discrete morphology,

might offer higher radiation resistance due to reduced capture cross-section, however,

QWs inherently have overall higher number of available transition states resulting in

higher sub-bandgap photon absorption in the solar cell and can be preferred over the

QDs for space applications [47, 48, 49].

With the outlook to the future applications for the tandem devices, in this work, im-

plementation of high-efficiency GaAs solar cells with QW superlattices, where strained

In0.08Ga0.92As QWs separated by the GaAs barriers, is considered and preliminary re-

sults proving an increase in the beginning-of-life efficiency of the single-junction (1J)

GaAs QW solar cell compared to the baseline device are shown. The proposed advance-

ments that would further enhance the QW solar cell efficiency will include increased
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Figure 1.11: (a) QD superlattice; (b) Layer structure of the 3J solar cell with QDs
in the middle GaAs junction [45].

number of QWs associated with the necessity of strain balancing development, as well

as adding distributed Bragg reflectors on the rear side of the cell for increased absorption

in the QW region.



Chapter 2

Novel III-V-Nanowire-on-Silicon

Devices: from Physical Modeling

to Prototype

2.1 Summary

Design guidelines for creating triple-junction (3J) bifacial Si-based solar cell with top

GaAs0.73P0.27 NW subcell and bottom InAs0.85P0.15 subcell were established by rigorous

coupled wave analysis (RCWA) simulations in RSoft (Synopsys). The electrical modeling

using the co-simulations in Sentaurus and RSoft were carried out for the top wide-

bandgap cell, however, the development of the complete 3J device model is in progress.

The concept of the narrow-band wavelength-selective NW-based IR light detector was

demonstrated using optical RSoft modeling. The idea of using Si diffraction grating

for wavelength selectivity as a substrate for the growth of absorbing narrow-bandgap

14
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NWs (InAsP or, alternatively, InGaAs) was exploited. The preliminary optical RCWA

simulation results suggesting the viability of the concept are shown as well as possible

device fabrication route.

Proposed novel and viable structures based on the use of III-V NWs grown on Si sub-

strates for solar and sensing applications were proposed. A multidimensional model of

the peel-off NW stackable solar cell system alternative to the NW-on-Substrate device

was performed.

2.2 III-V-Nanowire-on-Silicon Devices

2.2.1 Motivation and Background

The rod-like shape of the NWs alters photonic properties of semiconductor materials

compared to the bulk (planar) counterparts making III-V NWs versatile building blocks

for optoelectronic device applications. The mechanisms determining the interaction

of NWs with different wavelength light are near-field evanescent wave coupling, trans-

verse mode resonances, and Fabry-Perot cavity formation [50, 51]. Varying thicknesses

and spatial distribution of NWs, their optical response can be tuned to provide ei-

ther wavelength-selective sensing or broad-band absorptivity guiding the interaction be-

tween transverse components of the incident electromagnetic waves, NWs, and adjacent

medium[52]. For solar-cell applications, NW geometry-driven broad-band enhancement

in light absorption can promote high short-circuit current density even without an anti-

reflective coating [53, 54]. At the same time, high anisotropy of the NWs increases the

thermodynamic limit of open-circuit voltage due to the enforced directionality in the

light emission from the NWs and reduction in substrate emission losses (the mechanism



Chapter 2. Novel III-V-Nanowire-on-Silicon Devices 16

Figure 2.1: (a) Black body emission from the solar cell loss into the semi-infinite
substrate; (b) restriction of the emission cone in NWs due to the restricted optical
density of states; (c) predicted Voc in the NW solar cells with different NW lengths and

diameters (solid lines) compared to the planar cell (dashed line) [55, 56].

Figure 2.2: Detailed balance efficiency map for the 2J solar cell assuming unity
absorption in the top cell [58].

of radiative loss in the planar cell into the substrate is illustrated on Fig. 2.1a and,

in contrast, Fig. 2.1b is showing the emission restriction in the vertically aligned NWs

which results in increased radiative efficiency limit as shown on Fig. 2.1c) [55, 56].

These factors coupled with the enhanced carrier extraction (the junction can be designed

radially, surrounding the base of the NW solar cell, thus diffusion length of minority

carriers becomes a non-critical parameter) can enable the NW solar cell device with

theoretical efficiency exceeding the efficiency limit of thin-film planar devices. Remov-

ing the substrate and placing encapsulated NWs onto the reflective handle can further

increase the achievable Voc of the NW cells [57].
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The cost efficiency of using the NWs instead of planar film does not only come from

the capability of using the heterogeneous substrates, but also from the MOVPE growth

regime favoring formation of the NWs. The use of NWs not only provides higher photo-

conversion efficiency compared to the planar solar cells with no anti-reflective coating,

but also allows for dramatic reduction in material volume (i.e., compared to lattice-

mismatched thin film GaAsP-on-Si growth which may also include thick metamorphic

buffers).Maximum current from both the top and middle cells can be provided with

only 30 – 40% of the solid material otherwise required for planar devices. Converted

to the mass of metalorganic precursors required for metalorganic vapour phase epitaxy

(MOVPE) of NWs, this corresponds to an overall material savings of 93% (not including

the cost of several micrometres-thick metamorphic buffer in case of thin film).

The possibility of heterogeneous III-V NW integration on Si led to the concept of the

tandem III-V-Nanowire-on-Si solar cells design [58]. The detailed balance efficiency

calculations [3] for such tandem solar cell carried out in the assumptions of unity ab-

sorption in the top cell above the bandgap (Fig. 2.2) show that for the NW on Si

(bandgap, Eg(Si) = 1.12 eV), the optimal top cell bandgap value is ∼ 1.7 eV result-

ing in the limiting efficiency near 40% [58]. This bandgap value can be targeted with

GaAs0.77P0.23 NWs. The experimental implementation of such tandem device (Fig. 2.3

c) was demonstrated in 2017 with tandem GaAsP/Si tandem solar cell efficiency reach-

ing 3.51% (for comparison, efficiency of the 1J Si solar cell depicted on Fig. 2.3a was

9.33% and 1J GaAsP-NW solar cell shown on Fig. 2.3b efficiency was 0.75%) [59]. The

suspected issues leading to the poor performance of the tandem device were indicated

to be low Te doping of the n-type NW shell (emitter) and tunnel junction, as well as

elevated surface recombination velocity and presence of a thick axial emitter region. In

addition to the manufacturing-related complications, fundamental design concerns need
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Figure 2.3: (a) Simple planar Si solar cell; (b) Layer structure of the GaAsP-NW
solar cell diode on the Si handle with ITO deposited as a contact layer; (c) Full GaAsP-

NW-on-Si tandem solar cell[59].

to be addressed. In particular, the previous NW-on-Si tandem and multijunction struc-

ture concepts [60] do not consider the transmission loss occurring below Si band edge.

Thus, triple-junction bifacial design was proposed and is in detail described in the next

section.

Another application of the III-V NWs that can as well be implemented by the low-cost

manufacturing using Si substrates is light sensing. III-V Nanowire-based photodetectors

are an attractive alternative to the existing thin-film devices due to the potential for

increased response speed due to the junction geometry [61]. The photodetectors are

operated under reverse bias to increase the depletion region width that assists in carrier

capture and reduction of the response time. The response time is defined as:

τRC = RC = εAR

tA
, (2.1)

where C is the depletion capacitance expressed through the parallel plate capacitor

formula using tA, thickness of the absorbing material and A, area of the device. R is

the amplifier resistance (Fig. 2.4). On the other hand, carrier collection time, or transit

time, for the carriers moving with the velocity v can be written as:

τtr = tA
v
. (2.2)
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Figure 2.4: Schematics of (a) p-i-n InGaAs/InP photodetector and (b) dual-depletion
region InGaAs/InP high-speed detector [62].

Equations 2.1 and 2.2 [62] suggest that in the planar detector depicted on Fig. 2.4a

for achieving both fast carrier transit and response, on the one hand, the area of the

detector needs to be minimized and, on the other hand, the thickness of the absorbing

layer should be minimal. Alternatively, an additional drift region can be introduced, as

shown on Fig. 2.4b [62]. In a NW detector, these issues can be solved by using core-shell

geometry (i.e. cylindrical capacitor geometry for the depletion capacitance, Eg. 2.3) and

adjusting doping in the components to increase the depletion region width and enable

radial collection of the carriers. In the Eq. 2.3, capacitance per length, C/L, in the

cylindrical capacitor is expressed in terms of the radii of the inner and outer depletion

region borders, Rinner and Router, respectively:

C

L
= 2πε

ln

(
Router
Rinner

) . (2.3)

The waveguide properties of the NWs can be used for narrow-band sensing as was

demonstrated in previous works [63, 64, 65]. However, while in the short-wavelength

range the tunability in the NW absorption can be easily achieved by the variations in
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the NW diameter in the below target wavelength range [66], selectivity in the IR range

is not as trivial. To ensure a near-unity absorption in the IR range, the diameter of

the absorbing NWs must be in the order of micrometers which increases the number of

allowed waveguide modes inside the NW [67]. So for enabling the efficient selectivity,

the IR NW absorbers can be equipped with the wide-bandgap light filter that can be

realized in a form of an epitaxial substrate. Such structure was shown in [68]. Active

InAs0.73Sb0.27 NWs grown on InAs substrates (Fig. 2.5a) and fabricated into the pho-

todiode (Fig. 2.5b) with the NWs being illuminated from the substrate side (Fig. 2.5c).

Lattice mismatch between InAs and InAs0.73Sb0.27 is only ∼2%, however, the substrate

cost remains a concern. At the same time, growth of the thick (beyond critical diameter)

NWs on the lattice-mismatched cheap Si substrates can be associated with incomplete

relaxation of the NW crystal lattice and inclusion of the crystalline defects. Measured

for InAs and InP gold-catalyzed NW growth, the critical diameter changes with misfit

as shown on Fig. 2.6 [69, 70]. Thus, the optimization problem for the IR NW sensors is

to achieve high narrow-band absorption in the IR region while keeping the diameter of

the NW and substrate contact region minimal.

2.2.2 Modeling of the Bifacial III-V-Nanowire-on-Silicon Triple Junc-

tion Solar Cells

III-V-on-Si multijunction solar cells can be made using 1.75 eV GaAs0.73P0.27 NWs on

the front side of a bulk-type, planar Si solar cell and 0.5 eV In0.81Ga0.19As NWs on

the rear side (the ideal bandgaps (Eg) are based on Shockley-Queisser detailed balance

efficiency calculation for a fixed middle cell with Eg = 1.12 eV, Fig. 2.7).
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Figure 2.5: (a) SEM of the InAs/InAsSb NWs grown on InAs substrate; (b) cross-
sectional view SEM of the fabricated device featuring encapsulating photoresist and
metal contact (bright); (c) current-voltage characteristics of the InAs/InAsSb photodi-
ode measured at 5 K, the inset cartoon shows the device schematics with the incident

illumination depicted [68].

Figure 2.6: Critical diameter of the III-V NWs grown on the lattice-mismatched
substrates as a function of lattice mismatch[69].
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Figure 2.7: Detailed balance efficiency map for the triple-junction (3J) solar cell with
the middle Si cell corresponding to the bandgap of 1.12 eV. This calculation was carried

out assuming AM1.5 incident illumination.

Absorption and limiting short-circuit current density (Jsc) in wide-bandgap GaAs0.73P0.27

top-side NW arrays are highly geometry-sensitive. The Jsc in an underlying Si cell also

becomes a function of the diameter and pitch of the top array for a fixed NW length

of 1.5 µm. Thus, an optimization of the dimensions of NWs relatively to their spa-

tial distribution in array configurations is needed to achieving absorption enhancement

promoting current matching between sub-cells. A top-side NW array geometry that

was optimized for maximum efficiency operation of a dual-junction solar cell as a part

of a GaAs0.73P0.27/Si/In0.81Ga0.19As triple-junction NW-based device (Fig. 2.8a) was

performed. Additionally, adjustment of the rear-side 0.5 eV NW sub-cell was neces-

sary, since unlike bulk materials, the diameter of the NWs affects the fundamental light

scattering mechanism. For longer wavelengths, transmission of electromagnetic waves

due to field screening can occur, thereby reducing the absorption in substantially thin

In0.81Ga0.19As NWs compared to the planar films. At the same time, from the growth

perspective, the use of thinner NWs would be preferable. Thus, modelling of the bottom

array configurations focused on finding minimal NW diameters and reasonable pitch

values that enable current matching between all three sub-cells.
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Figure 2.8: (a) Scheme of the bifacial 3J NW-on-Si solar cell (not to scale); Simulation
domain (unit cell) with the reflection (R) and transmission (T) measurement planes for
calculating absorption in (b) top NW array, (c) top array and Si middle cell, and (d)

full 3J device.

2.2.3 RCWA Algorithm for Nanowire Arrays Simulations

RCWA wave analysis algorithm has been widely used for modeling diffraction structures

[71, 72, 73, 74]. The general solution principle can be shown for the structure depicted on

Fig. 2.9. Note that the same approach can be applied to the structure with periodicity

in 2 dimensions within a single layer as well.

The basic principle of the RCWA algorithm relies on finding the semi-analytical so-

lutions of Maxwell’s equation for the electromagnetic waves propagating through the

matter with lateral non-homogeneity of refractive index, for which the analytical solu-

tion is found only in the direction along which the refractive index remains constant (by

convention, Z-axis). The incident, reflected, and transmitted electromagnetic field is

written as a superposition of the coupled waves and Fourier transforms of the refractive

indices along X- and Y-directions is used. In 3D case in real space,

∂Ez
∂y
− ∂Ey

∂z
= iωµrHx, (2.4)
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Figure 2.9: The wave harmonics representation of the physical structure compris-
ing homogeneous along Z-axis layers and periodic inclusions along X and Y axes (the

physical layers and their modal representations are connected with lines).

∂Ex
∂z
− ∂Ez

∂x
= iωµrHy, (2.5)

∂Ey
∂x
− ∂Ex

∂y
= iωµrHz, (2.6)

and

∂Hz

∂y
− ∂Hy

∂z
= −iωε0εr,xEx, (2.7)

∂Hx

∂z
− ∂Hz

∂x
= −iωε0εr,yEy, (2.8)
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∂Hy

∂x
− ∂Hx

∂y
= −iωε0εr,zEz. (2.9)

Within a single homogeneous layer (along Z-axis), the electric (ε
r,
−→
j
) and magnetic (µ

r,
−→
j
)

permittivities can be written in a form of their Fourier expansions along X and Y axes:

εr(x, y) =
∞∑

m=−∞

∞∑
n=−∞

am,ne

i

(
2πmx

Λx
+ 2πny

Λy

)
(2.10)

and

µr(x, y) =
∞∑

m=−∞

∞∑
n=−∞

bm,ne

i

(
2πmx

Λx
+ 2πny

Λy

)
. (2.11)

For calculating the transmission and reflection at the interfaces, solving this system in

the real-space domain will be computationally costly: it involves breaking the structure

down into the fine unit cells with the solutions being found along the grid. On the other

hand, transitioning to the frequency space allows to exploit X- and Y-periodicity of the

diffraction grating minimizing the computation time [75]. Substitution of the Fourier

series of the matter permittivity components forming diagonal tensor to the Maxwell’s

equations results in a system of transverse Maxwell’s equations:

∂

∂z
Ex = −i

ωε0

∂

∂x

1
εr,z

∂

∂y
Hx +

(
i

ωε0

∂

∂x

1
εr,z

∂

∂x
+ iωµ

)
Hy, (2.12)

∂

∂z
Ey = i

ωε0

∂

∂y

1
εr,z

∂

∂x
Hy +

(
−i
ωε0

∂

∂y

1
εr,z

∂

∂y
− iωµ

)
Hx, (2.13)
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∂

∂z
Hx = i

ωµ

∂

∂x

∂

∂y
Ex +

(
−i
ωµ

∂

∂x

∂

∂x
− iωε0εr,y

)
Ey, (2.14)

∂

∂z
Hy = −i

ωµ

∂

∂y

∂

∂x
Ey +

(
i

ωµ

∂

∂y

∂

∂y
+ iωε0εr,x

)
Ex. (2.15)

Applying Bloch’s Theorem, the electromagnetic field components in a periodic structure

replicated along X and Y axes can be expressed as:

Ex = ei(kx,0x+ky,0y)∑
p

∑
q

e
i

(
2π
Λx
px+ 2π

Λy
qy

)∑
m

ax,m,p,q
(
fme

iκmz + gme
−iκmz

)
, (2.16)

Ey = ei(kx,0x+ky,0y)∑
p

∑
q

e
i

(
2π
Λx
px+ 2π

Λy
qy

)∑
m

ay,m,p,q
(
fme

iκmz + gme
−iκmz

)
, (2.17)

Hx = ei(kx,0x+ky,0y)∑
p

∑
q

e
i

(
2π
Λx
px+ 2π

Λy
qy

)∑
m

bx,m,p,q
(
fme

iκmz − gme−iκmz
)
, (2.18)

Hy = ei(kx,0x+ky,0y)∑
p

∑
q

e
i

(
2π
Λx
px+ 2π

Λy
qy

)∑
m

by,m,p,q
(
fme

iκmz − gme−iκmz
)
. (2.19)
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Substituting the expressions for periodic wave components into the system of trans-

verse Maxwell’s equations, taking partial derivatives, and cancelling terms containing

dependency on Z results in an eigenvalue problem for the field amplitudes:

Ax = λx (2.20)

where A is an operator (Eq. 2.12 - 2.15), λ is the eigenvalue (κ2
m). Amplitudes a

and b are found for the corresponding eigenvalues. The operator form of the equation

allows to further carry out the solution in a matrix form for the incident ("+"), reflected

("-"), and transmitted waves [76]. The extension of the RCWA model onto the multi-

layer structures involves the use of scattering matrices [77]. RSoft DiffractMOD exploits

this algorithm for the complex structures using transmission-line treatment of boundary

conditions [78, 79]. For the jth layer within the simulation domain, the modal voltage

and current amplitudes can be written as:

v(j)
m = f (j)

m eiκmz + g(j)
m e−iκmz, (2.21)

i(j)m = f (j)
m eiκmz − g(j)

m e−iκmz. (2.22)

Then, for the (j+1)th layer, using the boundary condition for the wave recurrent relation

can be defined:

∑
m


ax,m,p,q

ay,m,p,q


(j)

v(j)
m (zj+1

j ) =
∑
m


ax,m,p,q

ay,m,p,q


(j+1)

v(j+1)
m (zj+1

j ) (2.23)
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∑
m


bx,m,p,q

by,m,p,q


(j)

i(j)m (zj+1
j ) =

∑
m


bx,m,p,q

by,m,p,q


(j+1)

i(j+1)
m (zj+1

j ). (2.24)

The accuracy of the simulation (solution) is determined by the number of the refractive

index and field upon Fourier series decomposition with the optimal number of modes

corresponding to the complete convergence of the simulations. Full convergence of the

simulation with respect to the Fourier mode number is defined for the number of har-

monics N for which further increase of N results in none-to-negligible deviation of the

diffraction efficiency for each frequency of the incident field.

2.2.3.1 Optical Simulation Details

The DiffractMOD simulation engine of Synopsys TCAD RSoftő software was used em-

ploying the RCWA technique for calculating absorption in GaAs0.73P0.27 NW arrays.

A 3-dimensional unit cell with cubic arrangement of cylindrical NWs was created (Fig.

2.8b-d). A shallow, 2 nm-thick, underlying Si substrate was included in the simulation

of the top NW array to consider the possible impact of the NW/Si interface on the

optical path of photons escaping the NW through transmission. Light absorption by

NWs within the simulation domain was calculated as a difference between normalized

incident, transmitted, and reflected components of linearly polarized normally incident

light, which was enabled by the symmetry of the array making X- and Y-polarized waves

indistinguishable resulting in identical absorption spectra. The accuracy of the simula-

tions was evaluated by increasing the number of the plane wave harmonics from 25 to

196 and examining the convergence of the diffraction efficiency spectra. This analysis



Chapter 2. Novel III-V-Nanowire-on-Silicon Devices 29

Figure 2.10: Absorption spectra of the GaAsP NWs with diameters of 350 nm and 150
nm simulated for various numbers of plane wave harmonics for convergence assessment.

was carried out for the two diameters of the NWs, 150 nm and 350 nm. Using 10 har-

monics per dimension (along X and Y where arrays are periodic), or total of 100, results

in convergence of the total integrated absorption within 0.2% (Fig. 2.10). The error

might be further minimized to 0.006% by transitioning to 13 harmonics per coordinate,

however, in this case the computational speed would increase by a factor of 5 which was

an important consideration for the batch simulations used in this work.

The diameters (D) of the NWs were varied from 100 nm to 550 nm in conjunction with

the pitch (P) from 250 nm to 800 nm, both with a step of 50 nm. The optimal length

of the NWs mostly corresponds to the band edge absorption depth of GaAs0.73P0.27, so

that an ideal length for the NWs alone would be several microns (Fig. 2.11). However,

the maximum efficiency of the multijunction solar cell requires not only maximization

of Jsc, but current matching between the sub-cells. Therefore, from the perspective
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Figure 2.11: Illustration of the NW geometrical parameters: diameter, D, pitch, P,
and length, L.

of both experimental feasibility and current matching, L = 1.5 µm was used. In the

multijunction cell, essentially representing a set of in-series connected diodes, equating

the generation currents (ideally translated onto the short-circuit and maximum power

point currents at the device level) is one of the main engineering problems as the whole

device is limited by the smallest current. Maximization of the open-circuit voltages of

the subcells and equating the output currents are principle for achieving highly efficient

multijunction solar cell.

To simulate the absorption in the middle Si cell with thickness of 200 µm, corresponding

to a typical single-crystalline Si solar cell thickness, in relation to the pitch and diameter

of the top NWs, the simulation unit cell was extended to comprise both the Si and top

NW sub-cells. The total absorption in such stack was modeled for each geometry of

the top array, and then the absorption in the middle cell was found by subtracting the

initial top NWs absorption from the total absorption of the dual junction stack. The

same approach was used to calculate the parameters of the bottom cell, except that

the top array was included in the domain only in selected simulations where the pitches

of the top and bottom NW arrays could be easily adjusted (for example, PTop = 500

nm, PBot = 1000 nm). No anti-reflective coating, embedding polymer (for example
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benzocyclobutene, BCB, with refractive index of ∼1.552), and ITO coatings were added

to the simulated structure for the preliminary geometry optimization study in order to

minimize the number of simulation parameters. For the current study, the thickness of

the Si sub-cell was kept constant. The refractive indices and extinction coefficients of

the ternary compounds used in simulations were calculated using the Kramers-Kronig

model [80].

Limiting short-circuit current density, Jsc,lim, calculations were performed based on the

assumption that each absorbed photon generates an electron-hole pair and that 100%

collection efficiency is realized, which can be described as generation current density,

JGen. Thus, JGen values were calculated for the Air Mass 1.5 global (AM1.5G) incident

spectrum with spectral irradiance IAM1.5G(λ) taken from ASTM G173-03 Tables and

solar cells absorption, A(λ) extracted from simulation as:

Jsc,lim≡JGen =
∫ λ2

λ1

qλ

hc
IAM1.5G(λ)A(λ)dλ. (2.25)

In Eq. 2.25, the values of spectral irradiance of the AM1.5G spectrum were interpolated

to match the wavelengths step of the simulated absorption spectra (5 – 10 nm). This

integral was then solved numerically for individual sub-cells with wavelengths from λ1

to λ2 corresponding to the absorption range of the sub-cell.

While simulations of absorption and calculations of the generation currents in top ar-

ray and middle Si cell were relatively straightforward, direct simulations of an entire

3J device as shown on Fig. 2.8d were associated with the necessity of matching the

periodicities, or pitches, in top and bottom arrays within a single simulation domain

(Fig. 2.12). Thus, in order to map the JGen of the bottom cell over a broad range

of diameters and pitches, significantly more computational resources would be required.
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Figure 2.12: Illustration of the simulation domain matching principle in the cases of
non-equal NW periodicities in top and bottom arrays.

To facilitate the process and get a general guideline for the bottom NWs’ parameters, an

initial adjustment of the bottom In0.81Ga0.19As NW sub-cell’s geometry was performed

without a top-side array added on the Si surface to avoid the mismatch between the

periodicity in top and bottom arrays. Using this approach, the diameters and pitches

of the bottom NWs were swept from 300 nm to 1200 nm and from 350 nm to 1500 nm,

respectively. However, since the front NW array acts as an antireflective coating, its

impact on the absorption in the bottom array was evaluated as well by comparing the

reflectivity spectra of the bare Si, Rbare, and Si with the NW array on top, RARC , in the

absorption range of the bottom array (i.e. from ∼1.2 µm to 2.5 µm). Short-wavelength

absorption in the top array was not included in the analysis, since this portion of light

is readily absorbed in 200 µm-thick Si and does not have any influence on the bottom

NWs. Thus, the maximum generation current that could be gained by the bottom NWs

by including top array was calculated. For some cases where pitches of the top and bot-

tom arrays are PTop = 500 nm and PBot = 1000 nm, the whole structure was directly

modelled by increasing the number of the top NWs inside the domain to form 2 × 2

array. In this work, the effects of a back-surface reflector (BSR) on the long-wavelength
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absorption in the solar cell were also studied. In all cases, the BSR was represented by

a flat Au slab in contact with the rear-side of the InGaAs NWs.

For the next part of the study, optical simulations were performed including the embed-

ding media and ITO coating. As was done previously, for simulating the top NW array

absorption, a 3D cubic unit cell was designed, however, the NWs were encapsulated in

BCB. The thickness of the planar ITO layer value of 300 nm was sourced from literature

[81]. An increased thickness of the ITO contact layer would provide lower series resis-

tance (Rseries) by reducing the lateral conduction path cross-sectional area (for current

traveling between the metal grid fingers), however, ITO has a non-zero absorbance in the

UV region which introduces another optimization parameter which so far has not been

studied. The length of the top NWs was preserved at 1.5 µm and pitch and diameter

were varied. Calculations of the generated current density were performed by subtract-

ing the parasitic absorption in the ITO layer from the total absorption in the domain.

While both refractive index (n) and extinction coefficient (k)of the ITO refractive index

were used explicitly for each incident wavelength, the BCB medium optical constants

were approximated as having n = 1.552 and k = 0.

2.2.3.2 Opto-Electrical Simulation Details

Two-dimensional NW device simulations and multifaceted optimizations of the NW solar

cell parameters (i.e. thicknesses of the base, intrinsic region, and emitter and doping

levels) were carried out using TCAD SentaurusTM . Since coupling interaction between

the NWs alters electromagnetic wave propagation and optical generation profiles in the

NWs compared to the planar device, where absorption follows Beer-Lambert law, the

spatial carrier generation rate profiles computed for the AM1.5G spectrum were sourced

from RCWA RSoft engine integrated in the SentaurusTM work flow. Two-dimensional
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Figure 2.13: Co-simulation flow chart: the CAD model of the NW is created in Sen-
taurus Structure Editor, imported to the RSoft tool which computes spatially resolved
absorption spectra for TE and TM light polarizations modulated by the incident so-
lar spectrum. The average product of thus obtained optical generation is imported to

Sentaurus Device computing current-voltage characteristics.

NW representation was created in TCAD Sentaurus Structure Editor and explicitly

imported to the RSoft tool. Spatially resolved absorption profiles were computed for two

polarizations of the incident plane wave and averaged. Average spatial absorption was

then convolved with the incident AM1.5G spectrum resulting in the optical generation

profile serving as an input for the Optical Solver in Sentaurus Device. The sequence of

the processes is shown on the diagram (Fig. 2.13)

The combination of the core-shell and axial junction geometries, as illustrated by Fig.

2.14a-c, was chosen in a pursuit of possible benefits of the two: while core-shell geometry

alone provides independency of the carrier collection efficiency on the minority carrier

diffusion length, isolation of the depletion region from lossy surface, addition of the axial

component allows an in-situ homogeneous passivation of the NWs with doped wide-

bandgap material (here, GaP) and also facilitates fabrication of the top contact. Such

a combined design was analyzed in terms of the overall performance, potential design

concerns, and elevated surface recombination velocity tolerance and its dependence on

the thicknesses and doping.

As a passivation (window) layer, 10 nm-thick GaP was conformally deposited onto the

NW. Driven by the Si middle cell processing resulting in n-on-p planar Si middle cell,
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Figure 2.14: (a) Core-shell NW junction; (b) Axial NW junction; (c) Combined, core-
shell and axial NW junction. The spacer (light blue) represents an insulator preventing

shortening of the diode formed by the core and the shell (a and c).

the polarity of the top NW cell was n-i-p corresponding to the p-type core (base) and

n-type shell (emitter), so that the passivation was n-doped. The total diameter of the

NW including the passivation on the sides was 370 nm and pitch was 500 nm. The total

length of the NWs was 1.5 µm. Axially, the junction depth was changed by adjusting

by mutually adjusting emitter and base thicknesses with the axial i-region thickness of

50 nm such that the total NW length was preserved (except for the cases specified in

Results and Discussion). At the same time, tuning of the radial junction parameters

was performed. First, the base radial width was fixed at 210 nm and mutual variations

of the core i-region and emitter radially (the sum of radial emitter and radial i-region

thicknesses was fixed at 70 nm) were performed (Fig. 2.15). The insertion of the thin

i-region in the radial direction serves as a diffusion buffer and memory effect reduction

measure for the dopant species (currently, Zn and Si are available for p- and n-type

dopants), rather than for extending the electric field region for enhanced collection. The

carrier mobilities were sourced for the bulk GaAs0.73P0.27 material values [82]. Based

on the literature source, electron mobility, µe, is 9.40 × 103 cm2/V-sec, hole mobility,
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Figure 2.15: Schematics of the axial and radial components of the top GaAs0.73P0.27
NW junction.

µh, is 81 cm2/V-sec. Effective masses of carriers were derived from Vegard’s law: for

electron, me = 0.107m0, and for the heavy and light holes, respectively, mhh = 0.948m0

and mlh = 0.089m0. Radiative recombination coefficient, Crad, is 1.7 × 10−10 cm3/sec.

Auger coefficient is 1.0 × 10−30 cm6/sec.

2.2.3.3 Results and Discussion

Fig. 2.16a shows the maps of limiting Jsc extracted for the top NW array for the

AM1.5G solar spectrum; Fig. 2.16b shows the difference between the Jsc values of

the top GaAsP NW cell without embedding and ITO coating and middle Si cell in

consideration that all absorbed flux is converted into electrical current. Absorption in

the arrays where diameter of the NWs is equal or exceeds pitch was not simulated since

it is not physical. In Fig. 2.16a, two local Jsc maxima at DA = 150 nm, PA = 250 nm

and DB = 300 nm, PB = 500 nm are observed for the AM1.5G spectrum. However,

minimization of the difference between the current output from top and middle cell is

critical for approaching the maximum possible efficiency of the full triple-junction cell,

assuming that the bottom cell with its 0.5 eV bandgap is not current-limiting. Although
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Figure 2.16: (a) Limiting short-circuit current density of the GaAsP NW cell
(Jsc(Top)) mapped as a function of diameter and pitch of the NW array; (b) difference
between Jsc of the top GaAsP NW and middle Si cells (∆Jsc). Arrays A, B, and C
correspond to the dimensions DA = 150 nm and PA = 250 nm, DB = 300 nm and PB

= 500 nm, DC = 350 nm and PC = 500 nm, respectively.

arrangement A (DA = 150 nm and PA = 250 nm) would allow realization of a maximum

Jsc(AM1.5G) = 19.65 mA/cm2, this configuration would not be preferable for a tandem-

junction solar cell design, as it would make the middle cell current-limiting with 3.05

mA/cm2 overproduction from the top cell.

Adding 300 nm-thick ITO on top, however, slightly alters the distribution of the diam-

eters and pitches optimal for current matching. This is due to the non-zero parasitic

absorption in short-wavelength range and thin-film interference. Fig. 2.17 shows the top

NWs generation current and top and middle cells current difference maps modified by

ITO coating and BCB encapsulation surrounding the NWs. The maxima inherent to the

uncoated arrays (Fig. 2.16a) are shifted towards lower pitch values (450 nm) and get less

pronounced. Additionally, the highest Jsc is characteristic to the thicker NWs (Jsc,max

= 17.19 mA/cm2 at the D = 350 nm and P = 450 nm). The close current matching

is satisfied in a broad range of diameter (Fig. 2.17b) and pitch values allowing to use

thicker NWs. Despite thin NWs (D = 200 nm) being optically suitable for achieving

high current densities, the impact of surface recombination velocity (S) on the effective
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Figure 2.17: (a) Limiting short-circuit current density of the embedded and ITO-
coated GaAsP NW cell (Jsc(Top)) mapped as a function of diameter and pitch of the
NW array; (b) difference between Jsc of the top GaAsP NW and middle Si cells (∆Jsc).
The cartoons show the simulation domains comprising the BCB encapsulation and ITO

layer.

minority carrier lifetime (τeff ) and carrier collection becomes more significant 2.26 [83]:

1
τeff

= 1
τBulk

+ 4S
D
, (2.26)

where τBulk is the minority carrier lifetime in bulk material and D is diameter of the

NW. Based on the optical simulations results obtained for the embedded arrays, the

dimensions used for the electrical model were chosen to be 370 nm diameter and 500 nm

pitch (including the passivation).

While the concern arising in the case of purely axial junction NW is the space charge

region being in contact with the surface, having core-shell junction imposes requirements

on the doping of NW core and shell to avoid fully depleting the base and/or emitter.

First, doping study was performed. For this, base (core) diameter was fixed at 210 nm,

axial thickness of the i-region was 50 nm, the sum of radial thicknesses of the i-region

and emitter was bound to 70 nm, and depth of the axial junction was varied. Surface
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Figure 2.18: Short-circuit current density of the top NW cell mapped for different
axial junction depths and radial emitter/i-region thicknesses at standard doping (a)

and elevated core (base) doping (b); corresponding open-circuit maps (c, d).

recombination velocity was neglected assuming perfect passivation. The Jsc and Voc of

the top NW solar cell were mapped in dependency on the axial emitter/base height

and radial i-region/emitter thicknesses for various doping levels. Fig. 2.18 shows the

extracted parameters for the typical planar solar cell base and emitter doping values

used for the optically GaAs solar cells [84] and for an elevated base doping.

The observed trends in the Jsc and Voc suggest that an increase in the p-doped base is

necessary to minimize the depletion region width which, given the optimized geometry,

allow to gain up to 1 mA/cm2 of Jsc and 60 mV of Voc. At the same time, it can be

evident that deep axial junction does not favor high Jsc due to the reduced collection
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probability in the high optical generation region at the tip of the NW and while with

zero surface recombination velocity (SRV) this effect is less pronounced, considering

that Voc remains relatively constant with variations in the axial junction depth, as SRV

increases the impact of the axial emitter thickness becomes more dramatic. Note, that

the minimal axial emitter thickness on the maps is 5 nm with the axial i-region reduced

to 5 nm as well. In other cases, the reduction in the axial i-region did not have significant

impact on the top NW cell efficiency.

Elevated SRV on the surface of the GaP passivation layer showed negligible effect on the

simulated electrical parameters of the top NW solar cell, however, the recombination

at the interface between the emitter and passivation layer is a critical parameter. The

increased recombination at the emitter-window can occur due to the 1.89% lattice misfit

between GaAs0.73P0.27 and GaP that can be partially mitigated via the NW facets

edges. The changes in Jsc and Voc induced by increased interface recombination velocity

(labeled as SRV) were investigated for the range of SRV from 0 to 2 × 105 cm/sec (Fig.

2.19a,b). These data was generated with base width of 210 nm and radial emitter and

i-region thicknesses of 50 nm and 20 nm, respectively, corresponding to the region where

Voc reaches its maximum values (Fig. 2.18d).

The critical SRV value for both designs at which Voc starts rapidly dropping is 102

cm/sec, so for the given NW diameters performance of the solar cell is heavily dominated

by the surface losses implying the necessity of nearly perfect passivation. At the same,

minimization of the axial depth can help in recovery of Jsc up to 37% (at SRV = 105

cm/sec) by increasing the carrier collection probability to ensure relative reliability of

the top NW cell performance if surface is not perfectly passivated. Considering that

for well-passivated GaAs NWs the SRV is 1300 cm/sec [85], similar range of values can

be expected for the GaAs0.73P0.27. As Fig. 2.19c, d illustrate, higher carrier collection
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Figure 2.19: (a) Open-circuit voltage and (b) short-circuit current density of the top
NW cell in dependency on the surface recombination velocity for deep axial junction
(black line) and no axial emitter (red line); the cartoon (c) depict the carrier loss
mechanism in the deep-junction cell where generation and diffusion can result in surface
annihilation, while in the case of radial junction (d) the collection of the minority

carriers is more efficient.

is expected with the junction parallel to the NW sides. Despite the enhanced Jsc in

the radial junction configuration, the degradation in Voc is more less dependent on the

geometry. The breakdown of the contributions of dark current components to the Voc

can explain the observed trends. From the ideal diode law, it follows

Voc = nkT

q
ln
(Jsc
J0

)
, (2.27)

where n is an ideality factor and reverse saturation dark current J0 is expressed as

J0 =
qn2

i

√
Dp/τp

ND
+ qn2

i

√
Dn/τn
NA

(2.28)
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with Dn and Dp being diffusion coefficients of the electrons in the p-type base and holes

in the n-type emitter, respectively, τn and τp their lifetimes, intrinsic carrier concen-

tration ni , donor and acceptor concentrations ND and NA, and elementary charge q.

Considering very narrow depletion region in the base due to the enhanced core doping,

there are several scenarios where recombination in the core emitter can dominate. From

the Eq. 2.26,

1
τeff

= 1
τSRH

+ 1
τRad

+ 4S
D
. (2.29)

For the NW diameter of 350 nm and SRV of 1300 cm/sec, the surface recombination

lifetime is 6.7 ns, so SRV becomes dominant, especially if the volumetric fraction of

the space-charge region is comparable to the surface depletion width. This observation

indicates that it is important to push dopant concentration in the passivation layer as

high as possible to reduce the near-surface band bending while keeping the axial emitter

minimal.

The sweep of the radial base, i-region, and emitter thicknesses within cumulative 370

nm including 10 nm-thick GaP layer was performed to find the conditions promoting

the maximum efficiency considering increased SRV. Figure 2.20 shows efficiency of the

top cell mapped for various combinations of radial base width (220 nm – 300 nm) and

radial intrinsic (or diffusion stop) layer (10 nm – 30 nm) bound to the radial emitter

thickness. No emitter region corresponds to the set of dimensions resulting in degeneracy

of the junction such that the sum of the base, i-region, and passivation widths is equal

or exceeds the total diameter of the NW. The highest efficiency region of ∼ 16.5%

corresponds to the emitter thickness of 15 nm reaching maximum of 16.53% as the

diameter of the base increases along with narrowing of the intrinsic region. In terms
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of the preferred wider core (base), the associated increase in efficiency occurs from

the volumetric increase in base collection. At the same time, there is a noticeable

maximization of the efficiency along the isoline corresponding to the emitter width of

15 nm. An increase in the emitter width (towards the left side of the map) leads to the

relative reduction in the efficient core carrier collection that ideally should prevail, since

the space-charge region on the base side is isolated from the high-loss interface.

Considering this, the alternative structure for the top NW cell can be a heterojunction

with i-region and GaAsP emitter being completely removed to utilize the full advantage

of the base collection. To demonstrate that, the base doping was preserved and its

width was increased to 350 nm. The simulated heterojunction solar cell consisted of the

GaAsP base and 10 nm-thick GaP emitter. Its electrical parameters were compared to

those of the cell with base width of 300 nm, i-region of 10 nm, and emitter width of 15

nm. By switching to the heterodesign, the Jsc reduced by 0.1 mA/cm2, while Voc got

increased from 1.301 V to 1.318 V by eliminating the additional carrier losses within the

native depletion region and at the interface. The total efficiency was preserved within

0.01%. This shows that simplified design can be also adopted for manufacturing the top

cell with high resistance to surface recombination.

The heterojunction structure can be further improved by optimizing the doping and

geometry of the emitter and base. Figure 2.21a shows the map of efficiency of the

heterojunction solar cell for varied doping and thickness of the GaP n-type layer. For the

later, base width changes correspondingly within the 370 nm limit. The SRV is preserved

at 1300 cm/sec for demonstrating the trends in efficiency. Figure 2.21a shows efficiency

of the GaP/GaAsP solar cell as a function of the GaP layer thickness and doping with

fixed dopant concentration in the GaAsP base (5×1018 cm−3). The maximum efficiency

of 16.90% is reached with a thicker GaP shell ranging from 25 nm to 31 nm. At the same
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Figure 2.20: AM1.5G 1 sun efficiency of the top NW solar cell mapped for varied
base width and radial i-region/emitter thicknesses. Grey area corresponds to the not
allowed range of dimensions where emitter thickness is zero. Cartoon shows mutually

changed components in yellow.

time, doping of the emitter below 6×1018 cm−3 is preferred. Doping of the base was

also increased to 6×1018 cm−3 to investigate the change in the efficiency as a function

of the GaP layer doping. Both results are presented in Figure 2.21b. It can be seen that

an increase in the base doping might be beneficial in the range of the GaP shell doping

between 2×1018 cm−3 to 1×1019 cm−3 indicating that the ratio between the core and

shell dopant concentrations defines the efficiency. At the same time, from the growth

perspective the interest is in lowest possible doping for both core and shell. For a fixed

GaP doping of 1×1018 cm−3, base doping was swept from 1×1018 to 6×1018 cm−3. These

data points are outlined on Figure 2.21b. It can be seen that the maximum deviation

in efficiency within this range of base dopant concentrations is 0.12% suggesting that

lowered doping of the core can be targeted as well in a heterojunction configuration.

Optical simulations of the bottom 0.5 eV NW subcell absorption were done to find

the tools enabling the use of thin and sparse NW arrays capable of providing suffi-

cient generation current densities for current matching. Two ternary materials that can

be successfully grown via self-assembly on Si could be used for targeting this bandgap
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Figure 2.21: (a) Efficiency of the GaP/GaAsP NW solar cell dependent on the GaP
thickness and doping. GaAsP base doping is fixed at 5×1018 cm−3. (b) Efficiency of
the GaP/GaAsP NW solar cell as a function of 30 nm-thick GaP layer doping. Plots
in black and red symbols correspond to the base doping of 5×1018 cm−3 and 6×1018

cm−3, respectively. An ellipse outlines the data points generated for various base dopant
concentrations and GaP doping fixed at 1018 cm−3.

(InGaAs and InAsP), however, since InAsP has lower achievable surface recombina-

tion velocity it was used for modeling and further experimental implementation [86].

The self-assembly epitaxy mechanism is specifically attractive as it allows to bypass the

pre-growth lithography steps for manufacturing the bottom NW cell. The possible fab-

rication flow following the top cell growth includes protection of the front-side NWs by

encapsulating them in the SiOx to provide necessary rigidity of the front array for the

rear-side growth. Any excessive handling and advanced surface preparation including ad-

ditional exposure to chemicals and requiring lithography preceding the narrow-bandgap

NW growth are undesirable. The nuances that need to be taken into account while

optimizing the geometry of the bottom NWs are that self-assembly results in the arrays

without long-range ordering, such that center-to-center distance becomes a statistical

parameter for a given NW, and that this mechanism favors formation of either high-

density arrays of thin NWs (50 - 100 nm) or in more sparse arrays of thicker NWs which

can be interchangeably tuned by adjusting the growth parameters [87].

To evaluate the optimal diameter and spacing of the InAsP NWs, the simulation-based
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study of the generation current density was performed. Since there are top and bottom

NW arrays with mismatched periodicity, the simulation domain size would need to be

adjusted to comprise multiple NWs for performing explicit modeling. While top NWs

exhibit noticeable anti-reflective properties in the IR range compared to the bare Si

surface, planarized array IR reflectivity is mostly dominated by the ITO film (Fig.

2.22). Computation time can be reduced by approximating the ARC properties of

the top NW arrays with those of planar encapsulation and ITO laterally continuous

films and significantly reduce the computational time. Alternatively, for calculating

generated current densities solar spectrum data can be modified to account for the ARC

effects, however, the thin-film approximation allows to simulated the full structure with

all interfacial phenomena included. Approximating the top array with only its planar

encapsulation, the bottom cell generation current map was created in the range of NW

diameters from 300 nm to 700 nm and spacing from 450 nm to 1400 nm (Fig. 2.23). The

yellow rectangle frames the approximate range of the dimensions of the NWs achievable

via self-assembly suggesting that such arrays would not be applicable for the current-

matched 3J cell applications.

Despite the volumetric density of the InAsP NWs being the same, the use of thinner

NWs was found to be associated with dramatic reduction in the IR absorption being

illuminated through the 200 µm-thick Si slab showing the inapplicability of the effective

medium approximation [88]. The reasons for such low generation current densities are

poor IR absorption past 1500 nm in thinner NWs that was found to be due to reflection

at the interface between Si substrate and the bottom of the NWs as well as transverse

electric field screening caused by the refractive index contrast between the NWs and

surrounding dielectric (vacuum was used in a preliminary study). Based on this, the light

management strategies that would enable use of sparsely distributed several-hundred
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Figure 2.22: Reflectivity spectra of the bare Si (black line) and Si with non-embedded
GaAsP NWs in the arrangements A and C as indicated in Fig. 2.16. Thick purple line
shows the reflection from the Si slab with planar 1.5 µm-thick BCB and 300 nm ITO

layers on top.

nanometers-thick NWs were proposed. The range of diameters of the bottom NWs that

would allow efficient long-wavelength light coupling into the NWs resulting in the near-

unity IR absorption starts at ∼ 600 nm, where a NW properties become comparable

to those of a bulk material and spacing of the NWs starts having direct impact on the

absorption [89]. Considering that a more realistic diameter goal would be 300 - 400 nm

with a spacing above 1 micron, two phenomena need to be realized: first, light needs

to be forced through the arrays, and second, transmitted light can be deflected to pass

though the sides of the NWs.

Thus, two main modifications to the rear-side arrays of thin and sparse NWs need to

be implemented. To reduce the electric field screening, the NWs can be embedded in

the dielectric with high refractive index. There are two readily available candidates,

HfO2 and Si3N4, with refractive index of ∼2 in the wavelength range of the bottom cell

absorption (1.2 - 2.5 µm). The deflection of the light passing through the inter-nanowire

regions can be implemented by equipping the rear side of the NWs with shallow dish-

like metal mirror (Fig. 2.24). The fabrication process of such structure is demonstrated
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Figure 2.23: Generated current density in the bottom InAs0.85P0.15 NW array under
AM1.5G illumination filtered through the top array encapsulation, 300 nm-thick planar
ITO, and middle Si cell plotted in dependency on the diameter and pitch of the NWs.
The outlined region corresponds to the range of dimensions achievable with the NW

self-assembly on Si.

on Fig. 2.25 and includes deposition of encapsulation material (BCB or high-refractive

index dielectrics) and back etching to expose tips of the NWs (back-etching depth here

will determine the mirror curvature) followed by conformal deposition of ITO and metal

(Au). Besides having a benefit of using the light that otherwise would be normally

back-reflected at the rear metal surface and escape from the front side of the solar

cell, the long-wavelength light incident onto the side of the NWs will face larger cross-

sectional area which will also increase the probability of it being absorbed. The mold

used to form and model the curved Au reflector is a thin non-absorbing ITO layer.

The curvature radius of the mirror used to demonstrate the principle was 0.75 µm. To

increase the simulation efficiency and take advantage of the RCWA algorithm implying

continuity within the structures along Z axis, for IR simulations the dish mirror was

approximated with the Fresnel lens-like structure (Fig. 2.24b) sufficient for the simulated

diffraction efficiency convergence. To simulate the absorption in the arrays enhanced

with the curved reflectors the refractive index of the embedding medium was set to 1

(vacuum) and 2 for comparison. The curved mirror NW absorption data was overlayed

with the baseline (no rear-side reflector, no embedding) and planar reflector data. The

generation current density calculations in the embedded rear NW arrays with reflectors
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Figure 2.24: (a) Schematics of the light deflection system with the NW cross-sectional
area depicted for the primary incident light and for the second-pass deflected waves; (b)
discretized representation of the continuous smooth curved mirror with Fresnel-lens-like

structure.

were performed the same way as in the vacuum-suspended (extinction coefficients of the

embedding media were set to 0).

Fig. 2.27 shows the generation current densities extracted from the rear NWs with 300

nm and 400 nm diameters for the spacing swept from 400 nm to 1500 nm and from 500

nm to 1700 nm, respectively. The baseline data (no embedding, no reflector) is shown

with blue line, the data corresponding to the NW suspended in the low-refractive index

media and n = 2 material with planar BSR are shown in yellow and red, respectively.

The black lines correspond to the combination of the n = 2 embedding and concave

BSR. The specifics of the simulation domain setting that regulates both the pitch and

geometry of the BSR with preserved curvature radius explains that at low pitch values

the discrepancy between the absorption in the arrays with planar BSR and curved BSR

is very small and noticeable changes can be visible when the arrays become more sparse.

For both diameters, rapid drop of the current is observed as spacing between non-

embedded NWs increases. An increase in the generated current is clear when refractive
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Figure 2.25: Concave mirror fabrication flow. Encapsulation, back-etching to expose
NW tips with desired depth, conformal ITO deposition, and conformal metal deposition.

index of the surrounding medium becomes 2 and while in the case of 400 nm-thick NWs

the change arising only due to the embedding medium modification is ∼1.2 mA/cm2

in dense arrays, in thinner NW arrays the increase in absorption and consequently

the current is up to 2.5 mA/cm2. The most benefit, however, can be achieved from

combination of the high-refractive-index encapsulation and deflecting concave mirror,

allowing to recover 4 mA/cm2 of generated current density and maintain the current

almost independent on the pitch of the arrays making it possible to utilize relatively

thin NWs for the rear-side subcell in the 3J device. These results are generated for a

single configuration of the rear mirror to prove the conceptual validity of such design

for enhancing the absorption in the sparse NW arrays, however, there is a room for

more optimizations of the mirror parameters. The experimental feasibility of similar

structure was shown for the front-side ITO coatings conformally following the shape of

the embedded NW arrays [90] SEM image and diagram illustrating the conformal ITO

coatings deposited onto the encapsulated NW arrays are shown on Fig. 2.26a and b,

respectively.

The desired geometry can be achieved by back etching the embedding medium to expose

the tips of the NWs and deposition of ITO to create curved mold for the following Au

coating as shown on Fig. 2.25. Considering the disordered nature of the self-assembled
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Figure 2.26: (a) SEM image of the encapsulated NWs with scattering ITO structures
with the shape defined by the depth of encapsulation back etching which is schematically

shown on (b). [90]

Figure 2.27: Generation current densities plotted for varied pitch of the NW arrays,
non-embedded without and with planar BSR, embedded in the medium with refractive
index of 2 with planar and concave BSR; diameters of the simulated NWs are (a) 300

nm and (b) 400 nm.

arrays, the wide range of the rear reflector geometries can be obtained by employing

this method so one of the further steps can be a study of the disordered arrays behavior

by creating a simulation unit cell consisting of several NWs with chaotic placement

to compare the absorption and performance of the curved mirrors with the perfectly

periodic system.
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2.2.3.4 Some Notes on the Middle Silicon Sub-Cell Design

The middle Si cell design proposed for this 3J device is inherited from the standard com-

mercial c-Si single-junction bulk solar cell. The n-on-p Si cell with 180 nm-deep arsenic-

implanted and annealed junction, however, will be subjected to the high-temperature

growth of the top cell NWs (900◦C for 45 - 60 min), while rear-side NWs are grown

at ∼550 ◦ and have negligible impact on the As redistribution. The diffusion of the

As species under the top-cell growth conditions and evolution of the junction depth

was simulated using AthenaTM (Silvaco) to ensure the predictability of the middle cell

junction parameters after the NW cells manufacturing. Figure 2.28 shows the changes

in the doping profile in the Si middle cell exposed to the NW growth conditions. Fig.

2.28a and b illustrate the initial as-implanted and annealed junction respectively and

Fig. 2.28c corresponds to the post-NW growth state of the middle cell n-p junction. The

difference between the junction depths shown on Fig. 2.28c and b is only 20 nm result-

ing in the final emitter thickness of 200 nm with doping level of which suggests that no

special preliminary dose and annealing modifications would be required for the middle

cell prior to the NW growths. The resulting average emitter doping of 1.5×10201/cm3

is reduced to 1.3 ×10201/cm3. Thus, the final parameters of the middle cell used as an

epitaxial substrate for the NW growth are not notably changed.

2.2.4 Wavelength-Selective Infrared Nanowire-Based Detectors on Si

Diffraction Gratings

The complications associated with achieving broad-band absorption in the rear-side thin

InAsP NWs inspired an idea of the wavelength-selective NW absorbers with selectivity

in the sensing wavelength achieved by growing the NWs on Si diffraction grating filters.
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Figure 2.28: (a) As-implanted arsenic doping profile in the boron-doped p-type Si;
(b) the junction profile after the junction annealing in nitrogen atmosphere at 1000◦C
for 10 min; (c) the middle cell junction profile after exposure to the conditions of the

top NWs growth (900◦C for 1 hour).

While selectivity can be achieved by tuning the geometries of the NWs themselves, for

IR operation, as was shown before, the diameters of the NWs should be sufficiently large,

comparable to the target wavelengths [63, 67, 61]. One of the issues arising with thin-

NW IR absorption is the reflection at the interface between the rear-side of the planar

Si filter and the NW array base[89]. Since fabrication of the thin-film antireflection

coatings at such interfaces is not feasible, the problem can be solved by implementing

diffraction gratings on the front and back faces of the Si wafer that in turn will serve as a

growth substrate for the absorbing NWs. However, for simplicity, the spectral selectivity

in the NW absorption was demonstrated for the Si filters with the rear-side gratings only

(Fig. 2.29a). Formation of the gratings with varied lateral and axial dimensions can

be implemented by combining photolithography technique and dry etch of the voids as

shown on Fig. 2.29b. It was shown before that texturing Si solar cell surfaces can assist

in increasing the light trapping [91] implying that the reduction in rear-side reflection

by cancelling the phase-shifted waves can allow to force the light out of the Si slab that

can be tuned by the depth and width of the gratings. In turn, equipping the structure

with the front-side grating can further refine the passing spectrum. In addition, the top
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Figure 2.29: (a) Simulated structure schematics: planar Si substrate with diffraction
grating on the rear side with the InAsP NWs grown directly on the pads of the grating;
(b) parameters of the grating varied in the model to achieve the desired wavelength

bandwidths.

surface of the substrate can be enhanced with an anti-reflective coating designed for IR

transmission.

The first step of the proposed study was to model the structure and demonstrate the

selectivity in the NW absorption wavelength in dependency on the gratings geometry.

Two-dimensional RCWA simulations were performed in DiffractMOD RSoft. InAsP

NWs with the bandgap of 0.5 eV and diameters of 400 nm and length of 2.5 µm were

placed onto the exposed Si facets (diffraction grating pads) such that a single NW was

on each pad while the voids between the pads were filled with SiO2 which in the actual

structure will serve as a protection from the parasitic growth of the III-V material on

the scalloped sidewalls of the grating pads. The front side of Si wafer is coated with 300

nm of ITO for reduced reflectivity. The thickness of the grating (tetch on Fig. 2.29b) was

varied from 0 nm (representing flat Si back surface without texturing) to 1500 nm. At

the same time, the lateral widths of the diffraction grating pads and spacing between the

neighboring pads were set to 1000 nm, 1500 nm, and 2000 nm. The results of these three

modeling experiments are shown on Fig. 2.30. Absorption in the NWs was calculated by
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Figure 2.30: (a) Scheme of the grating width variations with the NWs; (b-d) absorp-
tion in the NWs mapped for each wavelength and varied thicknesses of the gratings

with grating pad widths and spacing of 1000 nm (b), 1500 nm (c), 2000 nm (d).

subtracting the absorption in the ITO and Si from the total absorption in the simulation

domain comprising all components of the structure as described in the previous section.

The absolute values of absorption (unitless, absorption here represents a fraction of

absorbed power ranging from 0 to 1) get reduced as period of the diffraction grating

increases, since the density of the absorbing medium reduces. This, however, can be

addressed by increasing the number of the NWs per pad. At the same time, for each

configuration there are modes of higher absorption around 2.4 µm that are achieved by

varying the thickness of the diffraction gratings along with the width. The wavelengths

at which absorption is maximized lay near the NW band edge. An increase in the

lateral period of the gratings implies an increase in the grating depth. However, for the

largest period of the grating (2 µm), the emergence of two modes of high absorption
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can be seen corresponding to the grating thicknesses of 500 nm and beyond 1500 nm.

It can be seen that the primary strong absorption mode experiences red shift with

increase in the grating lateral period. Refining the step size and moving to the grating

feature widths, modifying the grating pad width relatively to the spacing can result in

an assortment of the available wavelengths. To enhance the absorption that does not

exceed 0.57 achievable at the maximum density of the NWs in case of the 1000 nm

× 1000 nm grating, the transmission can be mitigated by adding the reflective metal

on the rear side of the NWs which in turn can lead to new optical phenomena in this

structure. At the same time, the number of the NWs per pad can be increased as well

to maintain consistent material density. Enhancing the filter with the front-side grating

can also assist in increasing the response. The further optimization can be done by

using embedding media. In addition, the NW material can be changed to the antimony-

containing alloys for broadening the sensing region.

2.2.5 Design of Future Work and Ideas

The objectives of the proposed work are to provide the guidelines for the 3J NW-on-Si

two-terminal monolithic solar cell parameters via optical and electrical modeling using

RSoft and Sentaurus software from Synopsys. Using these modeling tools, design of the

wavelength-selective NW-based IR detector is to be developed, followed by the device

fabrication and testing.

The default proposed design of the middle Si cell is a standard crystalline Si cell with

n-on-p polarity, total thickness of 200 µm and implanted emitter with ∼180 nm [92].

Reference base doping is 7×1015 cm−3, while emitter doping is 1.5×1020 cm−3. These

parameters, however, can vary if Si cell is a part of the 3J device. To find proper doping

and thicknesses, the additional device modeling will be performed.
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While compete opto-electronic modeling study of the top NW array has been accom-

plished, the similar study of the rear-side narrow-bandgap NW subcell has not been

done yet and using modified approach to the co-simulations can be further done. Im-

portant parameter to take into account, considering tremendous impact of the surface

recombination velocity and diode polarity of the bottom subcell, are the junction design

that needs to include the effective passivation. In addition, the use of heterojunction

as was demonstrated to be beneficial for the top cell operation can be applied to the

bottom cell. The following steps will include an investigation of the available material

systems that would allow to alleviate the dramatic impact of surface recombination.

III-V-Nanowire-on-Si is an attractive system due to the use of Si as both substrate and

operational subcell of the multijunction device. At the same time, there are apparent

complications with monolithic integration of the NWs and Si with the main problem

being design and growth of tunnel diode that would result in minimal resistive losses

at the subcells’ electrical connections [59]. Degenerate doping of the tunnel diode com-

ponents required for reliable operation is challenging given relatively high NW growth

temperatures due to the diffusion of the dopant species [93]. One of the solutions that

can not only eliminate the necessity of epitaxial tunnel junctions, but also broaden the

scope of the tunable parameters is to use stackable NW arrays grown on Si substrates,

but fabricated by peel-off and metallized separately. A peel-off technique steps are illus-

trated on Fig. 2.31 [94]. The as-grown NW arrays on substrate are shown on Fig. 2.31a.

The substrate with NWs is then covered with polydimethylsiloxane (PDMS) dispersion

which is then cured in vacuum to remove the solvent. Alternatively, the polymer can

be spin-coated and thermally cured. Cured PDMS film with encapsulated NW is then

mechanically stripped off of the substrate breaking the bases of the NW (Fig. 2.31b).

Figures 2.31c - e illustrate the final product, i. e. NWs encapsulated in the polymer



Chapter 2. Novel III-V-Nanowire-on-Silicon Devices 58

Figure 2.31: Scanning electron micrographs of (a) GaP NW arrays on the substrate;
(b) Remaining NW nucleation sites on the substrate after the NW transfer into PDMS.
(c, d) Optical microscopy images after transfer of the NW embedded in PDMS, and (e)

photograph of the PDMS film with the NWs [94].

membrane. Such approach can be quite beneficial for the device manufacturing allowing

free-standing flexible NW arrays.

The sensitivity bandwidths of such arrays can be tuned not only by choosing the alloys

band gaps, but also by varying the geometrical parameters. The example of such struc-

ture is shown on Fig. 2.32. The fabrication of the stacked multiterminal multijunction

cell would include deposition of transparent conductive oxides on the front and rear sides

to enable transmission of light through the top arrays to let the light in the underlying

subcells [95, 96, 97]. Not only independent geometrical parameters (diameter, length of

the NWs and spacing between them) can be tuned, but also the relative placement of

the NW stacks as underlying NWs can be located either underneath the top NWs or in

the voids between them. It can lead to the multijunction device that achieves current

matching at the higher values than planar tandem cells. Optical modeling establishing

the multidimensional set of the arrays forming the subcells of this stacked multijunction

cells will be performed. Additionally, this study can be expanded to cover electrical
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Figure 2.32: Concept of the multijunction stacked peel-off NW solar cell with the
corresponding solar spectrum regions available for each subcell color-coded.

simulations for junctions optimizations.

An experimental implementation of the wavelength-selective photosensor design based

on the InAsxP(1−x) NWs grown on Si diffraction gratings is proposed as well allowing

new dimension in the IR photoresponse tuning in NW absorbers by combining them

with Si diffraction filter. The viability of such concept was verified with preliminary

modeling, however, the number of parameters that can be modified for achieving the

desired bandwidth is high which implies the expansion of the study if simulated results

are supported by experimental observation. The subsequent step is realization of the

photodetector device requiring a non-trivial metallization process. The complication

comes in isolating optical Si filter from the active NW part of the structure. One of the

routes enabling the independent metallization of the NW arrays can be a combination of
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direct growth, embedding in PDMS, peel-off [98, 99], deposition of contacts, and bonding

to the rear side of the Si filter. Alternatively, such photodetector can be fabricated in

the bottom-bottom configuration featuring cathode and anode on the back of the arrays.

An experimental implementation of this work would initially include a proof of concept

by demonstrating the differences in absorption spectra of Si with the InAsP NWs on the

rear side directly grown the plain surface and on the variety of the gratings fabricated in

one lithography step and crystallographic etch to form the grating features. In addition

to the 2D gratings, the lithography mask should comprise patterns for symmetrical

3D gratings insensitive to the light polarization or anisotropic patterns. As optical

properties of the NW-on-grating are confirmed and absorption selectivity is established

for each subset of gratings, fabrication of the device (adding a junction and metallization)

can be performed.



Chapter 3

High-Efficiency Quantum Well

Solar Cells

3.1 Summary

An extensive amount of work was performed to, first, develop extended high-quality

QW superlattices with two types of strain balancing. The observations and analysis of

the QW structure and morphology influence on the solar cells dark current and open-

circuit voltage was documented and used, in combination with spectroscopy analysis

and reciprocity, to derive the fundamental limitations imposed on the QW solar cells’

performance and empirically-supported design guidelines were established. QW solar

cells with distributed Bragg reflectors were fabricated and tested as well showing over

95% rear side reflectivity and nearly doubled light conversion efficiency in the QW region.

61
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Figure 3.1: EQE spectra of the GaAs solar cell with no QWs (dashed line) and of the
GaAs solar cell with 20 periods of InGaAs QWs with GaAsP strain balancing [101].

3.2 Motivation and Background

An incorporation of the narrow-bandgap quantum structures is a way to extend the

absorption range in the solar cells below the band edge [41, 100, 45, 46]. Adding QWs in

the intrinsic region, on the one hand, enables absorption of the sub-band edge photons

and at the same time allows for efficient carrier extraction [101, 102]. Figure 3.1 shows

EQE spectra of the GaAs solar cell with InGaAs/GaAsP QWs (solid line) in comparison

with the baseline device (no QWs) where noticeable extension of the carrier collection

wavelength range was achieved by adding the QWs [101]. The main challenges arising

from incorporating the QW structures into the solar cells, however, are associated with

the potential increase in, primarily, non-radiative and radiative recombination which can

lead to reduced overall device efficiency despite the boost in Jsc due to lowered carrier

lifetimes and/or impeded carrier transport causing the Voc and fill factor of the cell to

get reduced.

There are several major parameters that can be tuned to enable efficient InGaAs QW

light conversion with minimal losses in Voc (limited to possible fundamental restraints
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that will be discussed in the subsequent section):

• Depth of QW by varying In content allowing to red-shift the QW absorption edge

[103]

• QW region volume that can be extended to reduce long-wavelength photons trans-

mission loss [104, 105]

• Depletion region and strain balancing design boosting escape and collection of

carriers optically generated in the QWs [106, 107, 108]

• Accurate strain balancing for preventing local and extended strain-related defects

formation [109]

At the same time, deepening the QWs is associated with higher lattice mismatch be-

tween the QW and the host material which requires strain balancing to be designed to

account for the extra strain energy. For the InxGa(1−x)As QW system incorporated into

the GaAs device, compressive strain in the QWs resulting from the mismatch can cause

relaxation with formation of misfit dislocations in the subsequent layers. To offset the

compressive strain energy building up in the InxGa(1−x)As QWs, thin interlayers with

the opposite type of strain can be grown between the wells. Figure 3.2 shows the se-

quence of the tensile-strained GaAsP and compressively strained InxGa(1−x)As on GaAs

resulting (ideally) in a net zero strain [102]. The strain-balancing layer thickness (tb) for

the specific lattice constant of the InxGa(1−x)As QW material, aQW , and QW thickness,

tQW can be calculated for various compositions of strain balancing GaAsyP(1−y) using

Eq. 3.1, where ab is a lattice parameter of the strain balancing layer [101]. The strain bal-

ancing approach has been previously successfully implemented in high-efficiency single-

and multijunction solar cells allowing to increase the number of QW superlattice periods

up to 80 [110, 111, 112, 15].
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Figure 3.2: Strain balancing in the InGaAs/GaAsP QW superlattice [102].

ab = tbab + tQWaQW
tb + tQW

(3.1)

Equation 3.1 is derived from the energy (tension and compression) balance equation.

For grown on GaAs, compressively strained InxGa(1−x)As QW with fixed thickness,

tensile GaAsyP(1−y) strain balancing layer can be designed as thin, tunneling barriers

with high lattice mismatch of ab relatively to the host GaAs material or, alternatively,

thicker strain balancing can be employed using GaAsyP(1−y) with low lattice constant

offset corresponding to phosphorous-poor material as shown on Fig. 3.3 [113]. In an

ideal material system not affected by spontaneous local relaxation or thickness modu-

lations due to the substrate offcut and growth conditions [114, 115, 116, 117], for each

InxGa(1−x)As composition the choice of strain balancing type enabling efficient carrier

escape via predominantly tunneling or thermal escape is an optimization problem that

can be solved specifically for every x and electric field that can be established across the

depletion region containing N periods of QWs. The later depends not only on the emit-

ter doping, width of the intrinsic region, mainly determined by the QW region width,

but also on the background doping and is a function of the growth temperature and can

be modified by compensation doping, especially when low-temperature QW growth is
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Figure 3.3: (a) QW superlattice with high-phosphorous thin strain balancing tunnel-
ing barriers and (b) with low-phosphorous strain balancing promoting carrier escape

via thermalization [113].

implemented [112, 118].

Thermal escape rate, Rth, or in terms of lifetime 1/τth is calculated as:

Rth = 1
τth

= 1
LQW

√
kT

2mQWπ
exp

(
− Eb
kT

)
, (3.2)

where electron or hole barrier height is Eb, QW width is LQW , mQW is effective mass of

electrons or holes in the QW, and T is temperature [119]. The cumulative escape rate

can be calculated for each type of carriers and energy state resolved in the QWs (Eb1,

Eb2, Eb3, etc.) determined by the QW confinement, depth, width, and coupling.

Tunneling escape rate, Rtun, or 1/τtun can be expressed as:
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Rtun = 1
τtun

= 1
L2
QW

nπ~
2mQW

exp

(
−2
~

∫ b

0

√
−2mb(Eb − qFz)dz

)
, (3.3)

dependent on the electric field strength, F , barrier height, Eb, and barrier width, b,

carrier effective masses in the strain balancing material, mb [120]. It is noteworthy to

mention that carrier escape from the QWs can and in most cases is via both thermal

and tunneling mechanisms at room temperature (Fig. 3.4). Quantum structures’ energy

states, in particular, can be designed to support resonant tunneling under specific electric

field (or bias) applied [121, 122]. Even though this mechanism does not necessarily apply

to the shallow QW systems (convention for defining shallow InGaAs QWs as QWs with

< 12%In [123]) reported in this work, resonant tunneling principle is a nice illustration of

the hybrid controllable carrier transport across the QW region before collection. Under

established non-zero electric field, carriers can tunnel between the individual QWs from

deeper energy levels to available shallow states in the adjacent QW where they will

have sufficient thermal energy to thermalize out and get collected. The choice of the

barrier type is in a sense a self-optimized problem, since thin, tunneling barriers allow

to embed extended superlattices while maintaining an electric field enabling tunneling

carrier escape, and thick thermalization barriers increasing the superlattice period and

causing the potential across the QW region to drop allow carriers to thermalize regardless

of the field magnitude (it is essential that F is non-zero though).

Internal quantum efficiency and consequently extra current provided by the QW super-

lattice of N QWs incorporated in the solar cell can be assessed in terms of cumulative

escape (Rescape) and recombination (Rrecomb) rates signifying the probability of the gen-

erated carrier collection before it recombines, either radiatively or non-radiatively [113]:
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Figure 3.4: Carrier generation, recombination, and escape in the InGaAs/GaAsP
QWs in the intrinsic region of a GaAs solar cell.

IQEQWSL =
(

Rescape
Rescape +Rrecomb

)N
. (3.4)

From Eq. 3.4, quantum efficiency in the QW region can be limited by the recombination

rate, since Rrecomb = Rrad +Rnon−rad and deterioration of the crystalline quality in the

QW region either through introduction of parasitic interfacial layers between the QW

and strain balancing layers or because of formation of stacking fault defects caused by

aggravation of localized strain in the QWs grown on offcut substrates, carrier loss via

non-radiative recombination in the superlattice can occur. However, since under short-

circuit conditions electric field F across the depletion region is the strongest, efficient

carrier collection (Eq. 3.3,3.2), especially in shallow QWs, is highly likely compared to

the recombination events, so Jsc of the solar cell could be less impacted by the quality and

morphological properties of the QWs and relies mainly on the position of the confined

energy states relatively to the barrier height. It can be concluded that QW solar cell’s

Jsc is mostly determined by carrier generation and escape.
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Figure 3.5: (a) Equilibrium p-n junction band diagram; (b) p-n junction under applied
forward bias causing the electron and hole Fermi levels to split.

To truly gain from the current enhancement Voc and fill factor have to be minimally

affected by the incorporation of the QWs and must be comparable to the bulk values

(Eff = JscVocFF
Pinc

). Quantum wells are placed in the depletion region and can sig-

nificantly contribute to the non-radiative dark current J2 if they become a source of

high-density defects and trap centers. Even on a fundamental, idealistic level, inserting

a narrow-bandgap Eg,QW material instead of the same volume of intrinsic GaAs already

should reduce the magnitude of the quasi-Fermi level splitting VF (Eq. 3.5) under non-

equilibrium conditions dependent on the intrinsic and non-equilibrium carrier densities

(Fig. 3.5a, b). Without considering any quantum effects, the intrinsic concentration ex-

ponentially dependent on the bandgap (in a bulk material, ni =
√
NcNvexp (−Eg/2kT )),

increasing, will lower the VF and maximum achievable Voc (radiative limit of open-circuit

voltage).

VF = kT

q
ln

(
np

n2
i

)
. (3.5)

An expression for the non-radiative saturation dark current in a solar cell with QWs
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with the effective offset of the bandgap relatively to the host material ∆Eg occupying

fraction fQW of the intrinsic region of a solar cell can be written as [124]:

J02,QW = qWRNR,Bni,B

(
1 + fQW

[
γNRexp

(∆Eg
2kT − 1

)])
, (3.6)

where γNR = τB
τQW

is a non-radiative lifetime ratio in host and QW materials, RNR,B is

an average recombination rate in the host material, ni,B is host material intrinsic carrier

density, q is elementary charge, and density of states across the space charge region is

assumed to be preserved [124, 125]. Thus, non-radiative saturation current density in

the solar cell with QWs can be compared to a baseline device, i.e. device with no QWs

and equivalent volume of intrinsic host material sandwiched between base and emitter

and their ratio can be expressed as:

J02,QW
J02,B

= 1 + fQW

[
τB
τQW

exp

(∆Eg
2kT − 1

)]
. (3.7)

Using this metrics, careful dark current analysis can allow to extract the carrier non-

radiative lifetime reduction in the QW compared to the bulk and correlate the measured

Voc with not only effective bandgap reduction, but with the material quality in the QW

region. The supplementary measurement and analysis that allows to extract the con-

centrations and activation energies of the traps is temperature-dependent photolumines-

cence which will be described in detail in the subsequent chapters.

From the theoretical basis outlined above, the concept behind the voltage suppression

in the QW solar cells even if QW structures are pristine and do not contribute to the

concentration of non-radiative centers lays in the effective bandgap reduction inside

the i-region where quantum structures are placed. On the one hand, the dark current
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model given by Eq. 3.7 operates with the bandgap offset as it is defined in a bulk

material convention, however, if we consider a system of strain-balanced QWs where

low-bandgap material alternates with the high-bandgap materials what will represent

∆Eg? In particular, what energy state in a QW with multiple discretized levels is

responsible for the quasi-Fermi level splitting (QFLS)?

To investigate the inherent QFLS offset in the QW region, an electroluminescence (EL)

and EQE reciprocity relation formulated by U. Rau [126] can be used. Conceptually, the

reciprocity theorem is a representation of the detailed balance model [127] correlating

the energy absorbed and emitted by the solar cell with electric work that the system

can perform through the energy conservation principle and can be written as:

φEL(λξ, Jinj) = EQE(λξ)φBB(λξ)
[
exp

(
qV0F (Jinj)

kT

)
− 1

]
, (3.8)

where φEL(λξ, Jinj) and φBB(λξ) are EL and black body radiation fluxes (at solar cell

operational temperature T ), EQE(λξ) is external quantum efficiency at each λ, and

qV0F is a quasi-Fermi potential corresponding to the injected current density Jinj at

which EL spectrum was collected. In a solar cell with quantum-confined structures the

reciprocity relation might not hold in the quantum region indicating the suppression

of the emission resulting from the radiative recombination in the QW region under

applied forward bias which can be explained, dependent on the properties of specific

QW system, by carrier thermalization, non-isotropic emission from the QWs, or by

strain-induced emission polarization selection rules [128, 129, 123, 130]. Thus, to match

reciprocated and measured EL spectra in the QWs, a correction factor of ∆VF indicating

the reduction in QFLS (in radiative limit) in the QW region needs to be introduced to

Eq. 3.8. The corrected reciprocity relation in QW region can be written as:
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Figure 3.6: Measured EL spectrum (red, shaded) of a QW solar cell with suppressed
QW radiative recombination and EL calculated from reciprocity relation (black line).

φmeasuredEL,QW = EQEφBB

[
exp

(
q(V0F −∆VF )

kT

)
− 1

]
. (3.9)

Then, radiative efficiency factor (REF) in the QW region can be expressed as was

demonstrated in [131]:

REFQW =
ImeasuredEL,QW

IreciprocityEL,QW

, (3.10)

where IreciprocityEL,QW is the intensity of QW EL peak derived from continuous reciprocity

relation assuming steady QFLS qV0F across the space charge region (SCR) (Eq. 3.8)

and ImeasuredEL,QW is measured EL peak intensity as shown on Fig. 3.6.

For example, in [131], the REF analysis was performed to analyze the influence of

the In0.08Ga0.92As/GaAs QW GaAs barrier width (determining the degree of coupling

between the QWs) on the radiative emission from the QWs under applied forward bias.

It was shown that increased coupling between the QWs results in a suppressed radiative

recombination and lower REF (Fig. 3.7). The initial hypotheses for the REF reduction in
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Figure 3.7: REF of the InGaAs QWs dependent on the GaAs barrier width. [131]

strongly coupled QWs were enhanced thermal carrier escape and possible contribution of

quantum-confined Stark effect, however, in more detail this behavior is further discussed

and analyzed in Results and Discussion section below establishing the limiting factors

determining the QFLS in the QWs.

Radiative recombination suppression can be diagnosed using EL, PL, and EQE spec-

troscopy techniques, however, on a device performance level, solar cells are likely to be

primarily limited by non-radiative recombination (n2, J02):

J = JL − J01exp

(
qV

n1kT
− 1

)
− J02exp

(
qV

n2kT
− 1

)
, (3.11)

or

Jsc = J01exp

(
qVoc
n1kT

− 1
)

+ J02exp

(
qVoc
n2kT

− 1
)
. (3.12)
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Ideality factors n1 and n2 are 1 and 2, respectively. In a device where maximum power

point is in the n2 or mixed regime, slight variations in J01 due to the radiative re-

combination suppression in the QW region will not affect the overall device’s Voc and

efficiency. To observe the measurable changes due to the modulated radiative recombi-

nation in the QWs, the superlattices and bulk regions must be engineered to minimize

the concentration of non-radiative recombination centers, so a special focus has to be

placed on material development. Analyzing the existing advancements in QW solar cell

technologies, the parametric space for design of experiment was selected to be studied

in this work.

To date, one of the most significant advancement in incorporating an extended (60 and

80 periods) QW superlattices (In0.10Ga0.90As/GaAs0.90P0.10) into the inverted GaAs

solar cell with rear reflector with 60 mV Voc loss and reduction of fill factor from 86% to

83% due to adding 60 QWs compared to the device with no QWs was demonstrated by

M. A. Steiner et al., National Renewable Energy Laboratory (NREL) [15]. The current

pay-off due to the added QW absorption was 2 mA/cm2 resulting in total efficiency

reduction from 27.81% to 27.18% coming from the baseline to QW device (given that

efficiency of the single-junction GaAs QW solar cell is not the most representative figure

and the primary goal is to provide extra current in the GaAs sub-cell as a part of a multi-

junction solar cell). The result demonstrated in this work by NREL is notable and the

details of the device structure deserve closer investigation. In particular, the choice of

17 nm-thick GaAs0.90P0.10 strain balancing which was likely enabling for preserving the

superlattice quality throughout the QW stack. Previously reported studies performed by

the groups from Imperial College London and The University of Tokyo reported on using

both, ultra-low phosphorous content strain balancing, as well as over 30%P GaAsyP(1−y)

barriers for the solar cells with InGaAs QWs. For example, in a study by Imperial College
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London analyzing radiative properties of In0.15Ga0.85As/GaAs0.91P0.09 QW GaAs solar

cells with only up to 10 QW periods the Voc is on the order of 0.9 V [132]. In a 2011 study

by J. Adams et al. 50 strain-balanced In0.10Ga0.90As/GaAs0.93P0.07 were added to the

p-i-n tandem InGaP/GaAs solar cell’s GaAs sub-cell resulting in 30-fold increase in J02

in the GaAs sub-cell [123]. In a strain-balancing study carried by K. Watanabe et al. in

2014, the 60 × In0.11Ga0.89As/GaAs0.76P0.24 QWGaAs solar cell with AM1.5G efficiency

of 24.35% and drop in Voc of only 43 mV compared to the reference device with no QWs

was demonstrated and this result was attributed to minimization of strain by properly

adjusting the strain balancing composition and good quality of the superlattice interfaces

as indicated by X-ray diffraction (XRD) [133]. Another impressive result was achieved

by M. Sugiyama et al. where incorporation of 112 × In0.14Ga0.86As/GaAs0.57P0.43 QW

superlattice (only 3.1 nm-thick strain balancing barriers) in GaAs cell with excellent

crystalline and interface quality demonstrated by high-resolution transmission electron

microscopy (HRTEM) led to Voc retention at 0.94 V (only 30 mV drop compared to

the baseline) under 1 sun AM1.5G illumination, while Jsc enhancement due to the

added QW photo-conversion was 3 mA/cm2 [104]. The important nuance associated

with the works where high phosphorous content strain balancing was used is that the

samples were grown at 610◦C and 600◦ as compared to 650◦C growth temperatures

used in other works. This deserves special attention, since it was shown that increase

in QW growth temperature can lead to either a significant disruption of 2-dimensional

growth and cause local material aggregation at the growth steps resulting in wavy, 3-

dimensional quantum dot-like growth [117] and rapid accumulation of strain along the

growth direction or, otherwise, to the reduction in interface roughness dependent on the

epitaxial substrate offcut [114, 115]. The higher order issues that can lead to increased

non-radiaitive carrier losses throughout the QW-strain-balancing sequences are primarily
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Figure 3.8: Cross-sectional TEM images of the InGaAs/GaAsP QW superlattices
grown on (a) on-axis and on (b) 2◦ →[110] offcut (100)GaAs substrates [138].

at the interfaces between InGaAs and GaAsP where parasitic diffusion of species can

lead to smearing of the abrupt QW/barrier transition by forming graded quaternary

InxGa1−xAsyP1−y mixed compounds [134]. Minimization of interface smearing can be

achieved by employing proper switching sequence and by adding thin interfacial GaAs

layers [135, 136, 137].

In summary, morphology of the QW superlattices may depend on the interplay of the

following parameters:

• Substrate offcut angle and direction [114, 117]

• Growth temperature [115, 116, 117]

• Composition (and associated thickness) of strain balancing layers

• Number of QW periods [116]

• Switching sequence on transition from TMIn to PH3 and other interface manage-

ment techniques [134, 136, 135, 137]
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Figure 3.9: (a) Surface morphology profile evolution with time (5 steps coalescing
into 1 bunch); (b) characteristic bunch size 〈n〉 change over time [140].

All of the above determine a probability and severity of step bunching [139, 140, 141].

One of the earliest observations of thickness modulation in strained films (InGaAs/-

GaAsP QW on GaAs) grown on offcut (100)GaAs substrates was reported by T. Marschner

et al. [138]. While growth on on-axis substrate results in planar QW layers (Fig. 3.8a),

the authors claim that compressively strained layers grown on offcut vicinal substrates

are responsible for initiating the processes leading to surface roughening, while strain

balancing layers are preferentially deposited in the areas where the QW layers are the

thinnest stabilizing the lateral growth and allowing some elastic strain relaxation and

eventually resulting in large-order steps (Fig. 3.8b). A theoretical model for this be-

havior in strained films was developed by J. Tersoff et al. appealing to the periodic

spontaneous perturbations in the step growth [140]. Thinking of a strained film growth

macroscopically the lateral atomic uniformity of the epitaxial surface is assumed follow-

ing the 2 × 4 or 4 × 2 (001) GaAs surface reconstruction pattern, however, surface of

the offcut substrates acquires periodic discontinuities, terraces with width determined by

the offcut angle. The variations in height along the growth plane in a presence of strain

in the epitaxial film (InxGa1−xAs or GaAsyP1−y on GaAs) cause the uncompensated

lateral force equal to the magnitude of stress multiplied by the step height resulting in

the instability of the step bunching (Fig. 3.9a, b) [140].
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Laterally periodic local relaxation and thickness modulation in the QW layers propagate

at ∼30◦ - ∼45◦ to the surface and dependent on the offcut, QW and strain balancing

layer thicknesses and degree of relaxation can cause morphological changes to the su-

perlattice ranging from the onset of wavy structures to a complete disruption of the

superlattice. In the work by M. Steiner et al. (NREL), the cross-sectional TEM images

of the In0.10Ga0.90As/GaAs0.90P0.10 superlattice clearly show ripple-like features propa-

gating at an angle starting from ∼20th period along with a variation in QW thickness by

at least a factor of 2 (Fig. 3.10). This observation can be correlated to the fundamental

cause of excessive step bunching and wavy growth of strained materials - accumulation

of strain, such that at some critical value σ the QW layers start relaxing at the growth

steps. The period of the ripples is ∼200 nm whereas the terrace width of the bulk GaAs

grown on 2◦ off substrate at the same 650◦C temperature is ∼40 nm (Fig. 3.11a) [142].

Terrace widening occurs at elevated temperatures due to the increased adatom diffusion.

Figure 3.11b shows relation between the Ga adatom concentration, nstep, and substrate

offcut. When nstep < ne, where ne is equilibrium adatom concentration at the step, steps

are bunched and nstep increases from curve (a) to curve (b) until nstep = ne . Then, the

terrace width retains a constant value Wb [142].

QW superlattices grown on on-axis substrates do not exhibit such behavior and the

steady step-flow growth mode is maintained, however, it is not an option to use small-

offcut substrates for growing multijunction devices (either growth of GaAs on Ge sub-

strates, ordering of the InGaP and InAlP, or even growth of metamorphic InGaAs sub-

cell all show improved material quality grown on the offcut substrates). Thus, deter-

mining what growth conditions will allow to minimize the formation of excessive step

bunching in strained QW layers is one of the goals of this study. From the diagram

(Fig. 3.11b), it is evident that maintaining a step-flow growth is nearly impossible in
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Figure 3.10: Cross-sectional TEM of the 80 × In0.10Ga0.90As/GaAs0.90P0.10 super-
lattice; thickness of the QW and strain balancing layers becomes non-uniform and

formation of ripples proceeds starting from ∼20th period [15].

the offcut systems, and growing the films at low T is a way to prevent an excessive step

bunching resulting in a non-uniform QW growth and formation of strain relaxation sites

leading to the propagation of uncompensated strain due to non-uniform growth of the

strain-balancing layers. A critical number of QW layers corresponding to the maximum

number of wells that can be grown before the wavy growth initiates was shown to be

in exponential relation with growth temperature (Fig. 3.12) which further supports the

case [116].

From a device operations perspective, it is difficult to separate the contributions into

the dark current, typically increasing in its non-radiative J02 component when the QWs

are introduced. Would resolving the thickness modulation issue observed in the NREL

study from 2021 [94] recover some of the Voc by growing the superlattices at lower

T (University of Tokyo group demonstrated only 30 mV Voc drop in solar cells with

thinner strain balancing layers and 112 QWs grown at low T [104])? In other words,

what do these propagating ripples (the contrast occurring in the electron microscopy
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Figure 3.11: a). Epitaxial 300 nm-thick GaAs terrace width dependent on the sub-
strate offcut grown at different temperatures and calculated from the monolayer thick-
ness and angle (solid line); b). a diagram representing the relations between Ga adatom
concentration at the steps (nstep) and step density related to the substrate misorienta-

tion angle. [142].

Figure 3.12: Experimental values of Nmax as a function of the growth temperature
Tg, at constant strain energy per period. The dashed line represents the exponential

decay fit. [116].
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images which makes these defects visible is associated with local strain) and irregular-

ities throughout the QW sequences represent electronically? Is the period of thickness

modulation modes directly related to the reduction of the carrier lifetimes introducing

parasitic electronically active capture sites? How do strain balancing layer properties

influence the severity of the SL disruption? How many periods of QW SL can be grown

uniformly at each set of growth conditions before the rippling initiates and how is this

metrics related to the strain type and magnitude? These and other experimentally

relevant questions can and are answered fully or in part using a combination of spectro-

scopic analysis and dark current analysis and modeling in the Results and Discussion

section applied to the devices designed and manufactured at RIT. It is suspected that

degradation of superlattices might be responsible for the drop of Voc and fill factor, thus

addressing this issue by selecting proper substrate offcut, growth temperature, maximum

number of QW periods for each set of growth parameters and strain balancing, and in-

terface management strategies is the key for offsetting the limiting recombination type

towards radiative, where quantum well radiative properties can be utilized for further

enhancement of solar cell efficiency.

An increase in the number of QWs essential for approaching a near unity internal quan-

tum efficiency and effective bandgap offset in the GaAs cell (optimal bandgap for a

middle sub-cell is 1.35 eV) can be associated not only with the increase in non-radiative

current, but also can lead to an impeded carrier transport and poorer carrier extraction

from the QWs resulting in progressively smaller gain in Jsc per QW, since IQE is a

strong function of Rescape (Eq. 3.4) [112]. Expanding the QW region will lead to the

reduction in F , thus lowering the probability of tunneling escape (this would increase

the residence time of the carriers promoting higher chance of their recombination) and,

in an extreme case can lead to the dampened carrier separation inside of the depletion



Chapter 3. High-Efficiency Quantum Well Solar Cells 81

region. One of the alternative ways to boost absorption in the QW region is optical

enhanced by adding rear-side mirrors [38, 143]. This can be enabled by growing so-

lar cells in an inverted configuration and by etching away the epitaxial substrate or by

performing epitaxial lift-off (ELO) for future substrate reuse. The inverted design was

actually implemented in the NREL’s study as well demonstrating the dual junction 0.25

cm2 devices [15]. The alternative approach is to use distributed Bragg reflectors (DBR)

[144]. In this case, an upright solar cell structure is grown on top of the DBR mirror

consisting of AlzGa1−zAs layers. DBR structures composed of the alternating thin films

with various refractive indices designed to reflect light with a desired wavelength and

bandwidth [144]. Reflectivity in the bi-layer DBR stack can be expressed as [145, 146]:

R(λ) =
(
n0(λ)(n2(λ))2N − ns(λ)(n1(λ))2N

n0(λ)(n2(λ))2N + ns(λ)(n1(λ))2N

)2

, (3.13)

where refractive index of the light incidence material is n0, substrate, ns, and layers,

n1 and n2. N is the number of the repeated DBR periods. Figure 3.13a shows the

schematic representation of the solar cells with multiple QWs (MQW) and with combi-

nation of the MQW and DBR structures. The comparative analysis of the optoelectrical

characteristics of these two devices clearly shows an enhanced Jsc (Fig. 3.13b) due to

increased IR absorption as indicated by EQE spectra (Fig. 3.13b) and reflectivity and

electroluminescence spectroscopy (Fig. 3.13c, d) [144]. The bandwidth ∆f0 of the DBR

reflectivity centered around the frequency f0 is also expressed in terms of refractive

indices of the adjacent layers:

∆f0
f0

= 4
π
arcsin

(
n2 − n1
n2 + n1

)
. (3.14)
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Figure 3.13: (a) Schematics of the MWQ solar cell and solar cell with combined
MQW and DBR structures; (b) Illuminated J-V characteristics; (c) EQE spectra; (d)

Reflectivity spectra; (e) Electroluminescence spectra [144].

Transfer matrix modeling can be used to obtain the thicknesses of each DBR layer for

tuning it to the f0 frequency of interest. For QW solar cell applications, the peak

reflectivity wavelength should be centered close to the QW absorption peak, and can be

further adjusted if bulk photon recycling phenomenon is targeted [147].

3.3 Methods

3.3.1 Experimental Techniques

Growth of the QW test structures and solar cell devices is done by metal organic vapor

phase epitaxy (MOVPE) using 3×2" Aixtron close-coupled showerhead reactor on (100)

GaAs substrates with 2◦ towards 〈110〉 offcut. Additionally, on-axis and other substrate

offcuts and offcut directions were employed for growth of SL test structures and some

devices: 2◦ → 〈111〉A, 2◦ → 〈111〉B, and 6◦ → 〈111〉A.

Trimethylindium (TMIn), trimethylgallium (TMGa), and trimethylaluminum (TMAl)

were used as group III precursors and arsine (AsH3) and phosphine (PH3) as group
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V sources. Diethylzinc (DEZn) and carbon tetrachloride (CCl4) were used as p-type

dopant precursors and n-type layers were doped using diethyltellurium (DETe) or dis-

ilane (Si2H6). The monitored (using an in situ Laytec pyrometer system) substrate

growth temperature was 650◦ for base, emitter, and front and rear surface field layers,

and temperature was adjusted as indicated further in the text for growing some QW

superlattices. Fabrication of the 1 × 1 cm2 solar cells is performed via standard III-V

processing with electroplated metal contacts (Zn and Au for p-type annealed contacts

and non-annealed Au for n-type contacts).

The nextnano software is used to model the QW superlattices for composition and

thickness calibration including simulations under applied electric field for carrier and

recombination escape rates calculations. The verification of the modeled QW proper-

ties, composition calibrations of epitaxial layers, as well as comparative studies are done

or assisted by photoluminescence (PL) spectroscopy and voltage-biased PL for which

256 W/cm2 532 nm laser source with Princeton Instruments Acton SpectraPro SP-2300

spectrometer are used. To investigate carrier collection efficiency from both base and

QW region of the solar cells at Jsc and near the maximum power point, voltage-biased ex-

ternal quantum efficiency (EQE) measurements are performed using Newport IQE 200

quantum efficiency measurement system calibrated against silicon (Newport 818-UV-

L) and germanium (Newport 818-IR-L) detectors. Carrier collection efficiency (CCE)

methodology and validity are described in [148]. Radiative recombination suppression

and quasi-Fermi level splitting offset in QWs are analyzed by electroluminescence (EL)

and EQE reciprocity relation [126]. For EL measurements, an ASD FieldSpec 3 spectro-

radiometer and OceanOptics HR2000 (high-resolution spectral sensitivity range is 250 -

1050 nm) are used.
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Figure 3.14: The key components of the design of experiment for achieving high effi-
ciency QW solar cell device structure including bulk and strained material development,
electric field adjustments, and implementing optical enhancement DBR structures. The
projected IV curve is interpolated from [104] based on the best baseline result achieved

at RIT to date.

3.3.2 Design of the Study

Figure 3.14 shows the main routes identified to enhance the QW device performance and

the projected IV curve (dashed line) is created based on the current and voltage offsets

from [104] and on the limitations of the record efficiency bulk baseline device fabricated

at RIT. Minimization of non-radiative dark current increasing due to adding the QWs

and adjusting the doping in bulk base and emitter, as well as the thickness of absorbing

GaAs, modulating the quantum properties of the QWs and electric field across the QW

region, and increasing light absorption in the QWs are the priorities. The secondary

mechanisms including minimization of radiative recombination in the QWs and photon

recycling in the GaAs base are contingent upon recovery of non-radiative current.

Ultimately, the goal of this study is to further exploit the capabilities of QWs for achiev-

ing higher efficiency of the GaAs solar cell. The study needs to be followed with growth

of the devices with extended QW region to further push the sub-bandgap photons utiliza-

tion which will require the analytic approaches successfully applied to the demonstration
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set of devices.

Considering the key requirement for achieving high efficiency of the QW solar cell to

be an increase in sub-bandgap absorption, minimization of the radiative recombination

probability, i.e. low residence time in the QW region, while preserving non-radiative

recombination rate comparable to the baseline (with no QWs) device’s values, the de-

sign of the QW superlattices need to be optimized. In particular, finding the maximum

number of strain balanced In0.08Ga0.92As QW superlattice periods that do not block

carrier transport through the depletion region is a subject of the study. It will be ac-

companied with the GaAsxP(1−x) strain balancing design [149] and growth optimization.

Inclusion of the strain-balancing, however, will introduce the energy barriers between

the QWs, so refining of the model with careful electric field adjustment and tunneling

effects that can become critical with strain balancing will be performed to find proper

QW placement and balance between strain compensation layers bandgap and lattice

constant. This can also be assisted with additional QW barrier engineering to ensure

efficient carrier thermalization. MQW solar cells with DBR structures will further be

designed and fabricated as well to demonstrate increased absorption in the QW region.

The DBR will consist of the epitaxially grown Al0.10Ga0.90As/Al0.90Ga0.10As pairs.

Fabrication of the devices will be refined. In particular, studying the dependency of the

Voc on the device area is relevant for assessing the sidewall recombination rate influence

(the depletion region being in contact with the sidewalls). If it is found to be substantial,

the sidewall passivation strategies can be implemented [150]. These findings in future

can be applied to the dual-junction structure with InGaP top cell (development of 2J

devices is in detail described in Chapter 4).

At the same time, temperature-dependent spectral characteristics of the solar cells will
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be investigated as well to derive the minority carrier lifetimes attributed to the recombi-

nation in the space charge region and quasi-neutral region. Electron microscopy studies

will be used for determining the morphological properties of the QWs.

3.4 Results and Discussion

3.4.1 Device Fabrication Study

The initial study intended to rule out the suppression of non-radiative lifetime by sidewall

recombination and to determine the minimal device area-to-perimeter ratio at which

sidewall recombination impact is negligible. This study also includes an investigation of

various etchants for III-V materials and mesa etch depth.

The fabrication process is schematically shown on Fig. 3.15 - 3.18. Consistency of

metallization process and contact resistivity on the order of 10−5 Ω − cm ensures that

fill factor is not reduced due to the series resistance, and adding Zn dopant and annealing

of the rear contact allows to create a low-resistance rear contact (Fig. 3.15-2, 3). Front

Au contacts are directly electroplated onto the tellurium-doped GaAs contact layer (Fig.

3.16-6).

To maximize the yield and quality of the devices, the proper manufacturing approaches

need to be established. In particular, from the solar cell fabrication standpoint, there

are the following parameters to be tested:

• Mesa etch chemistry (impact on the yield and sidewall roughness, lateral etch rate,

etc.)

• Mesa etch depth (back surface field or substrate).
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Figure 3.15: REAR SIDE METALLIZATION. 1. The front side is protected with
photoresist that is spin-coated and soft-baked. Prior to metal electroplating, the rear
surface is cleaned using chemical wet etch (H3PO4:H2O2:H2O and HCl). 2. To form a
low-resistance contact, the rear surface (p-type) of the wafer is additionally doped with
Zn via electroless deposition. Then, ∼300 nm-thick gold is plated using sulphite gold
plating solution and platinum-coated titanium mesh as a counterelectrode. Electro-
plating is performed at 50 – 55◦C and at current density of 0.31 mA/cm2. 3. After the
deposition of metal, the protective photoresist is removed with acetone and the residue
is washed away with isopropanol. The annealing in nitrogen atmosphere is performed

to diffuse Zn. Annealing temperature is 407◦C for 6 minutes.

Figure 3.16: FRONT METAL CONTACTS DEPOSITION. 4. The positive pho-
toresist is again spin-coated on the front side of the wafer for a lithography step. 5.
Exposure of photoresist is performed using a mercury light source calibrated with 2 ra-
diometers (365 nm and 436 nm) and a hard mask (chromium on glass) with the metal
grids defined as openings. The picture below step 5 is showing a single solar cell grid
design (total 12 devices per wafer). Each cell features 8 micron-wide grids 400 micron
apart. Cell area is 1 cm2. The photoresist is then developed using CD-26 developer
to open up the contact layer of the solar cell for the following metal deposition. 6.
Nickel adhesion layer is electroplated (using a piece of nickel foil as a counter electrode)
preceding the gold layer yielding up to 4 micron thick features. The microscopy image

below step 6 shows Au grids after the photoresist is removed.
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Figure 3.17: DEFINING THE CELLS AREA (MESA LITHOGRAPHY). 7. Solvent
cleaning (acetone and isopropanol) to remove the photoresist before the next lithogra-
phy step. 8. The new layer of photoresist is spin-coated onto the wafer’s front surface.
9. A mask with defined cell areas is used to expose and remove the resist between the
cells for the following semiconductor etching. The resist is hard-baked after develop-
ment (removal of exposed resist with CD-26) to further solidify it prior to the mesa

etching.

Figure 3.18: MESA ETCHING, CONTACT ETCHING, ANTI-REFLECTIVE
COATING. 10. Removal of the epitaxial layers between the mesa-defined solar
cells by wet chemical etching (HCl for InGaP, InAlP and H3PO4:H2O2:H2O or
NH4OH:H2O2:H2O for GaAs, InGaAs, AlGaAs (where applies)). The scanning mi-
croscopy image below step 10 is showing the cross-sectional view of the solar cell after
mesa etching with the respective layers denoted. After the mesa etching, the photoresist
is removed with acetone and isopropanol. 11. Highly doped epitaxially grown GaAs
contact topmost layer serves to make an ohmic contact and it is highly absorbing. It is
removed everywhere, but under the metal (as shown on the diagram). Contact etch is
self-aligned (metal grids serve as an etching mask). NH4OH:H2O2:H2O mixture is used.
12. Antireflective coating is deposited to dramatically reduce front-surface reflectivity.
Bi-layered, consisting of ZnS and MgF2, antireflective coating is deposited by thermal

evaporation. The final product is shown on the photo under step 12 description.
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Figure 3.19: 1. Mesa etch depth test and 2. GaAs etching chemistry test.

The mesa etch used to isolate the individual solar cells on a substrate is inevitably

associated with a crystallographic lateral etch of the sidewall besides the desired vertical

etch. This, depending on the choice of chemicals, their concentrations, and time of

etching, can result in excessive roughness of the sidewall and/or significant undercut

(refer to the SEM image shown in Fig. 3.18, item 10). The set of fabrication test

structures was labelled as R0 and consisted of 2 wafers with identical epitaxial baseline

structures (no quantum wells, QWs) grown, that are exact replicas of the structures

that are in detail described here (InGaP/GaAs heterojunction single junction solar cell).

Figure 3.19 summarizes the tests that were performed on these samples. To test the

impact of the mesa etch depth, one of the wafers was split in 2 halves (GaAs contact

and base layers were etched with H3PO4:H2O2:H2O = 3:4:1) and an alternative GaAs

etch chemistry (NH4OH:H2O2:H2O = 1:1:8) was tested on a full sample set of the other

wafer. The roughness of the sidewall, on the device level, would manifest itself primarily

in the increase in dark current and consequently in the open-circuit voltage (Voc).

To investigate the impact of the sidewall properties on the Voc of the cells, multiple solar
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cells with varied perimeter-to-area ratio were added to the layout resulting in total 18

solar cells per wafer and including 9 1 cm × 1 cm standard solar cells (Fig. 3.20a) and

2 solar cells designed for concentrated light operation (more closely spaced grid fingers).

However, performance of the 1 cm × 1 cm devices was in focus of this study. The solar

cells were measured under 1 sun AM0 illumination and their open-circuit voltages are

summarized on Fig. 3.20b. Given that for the mesa etch depth study the wafer was

split into halves, the number of large cells per test was small, so the statistical data

shown on Fig. 3.20b is taken across only a couple of devices considering the outliers

that were removed from each sample set. This plot shows the highest Voc’s. A brief

comparison indicates that using the ammonia-based GaAs etch solution resulted in a

relatively poor yield of the cells compared to the standard phosphoric acid-based mixture

(broad data distribution even in a small sample set) as well as a reduction in Voc by

up to 10 mV, so for the next rounds, H3PO4:H2O2:H2O was used for the mesa etch.

At the same time, the mesa depth study showed that etching down to the substrate

supports higher Voc and would be a preferential procedure for manufacturing the high-

efficiency solar cells. However, retaining the back surface field layer has an important

application for the solar cells with distributed Bragg reflectors (DBR) for enhanced

QW absorption. In particular, since DBR consists of the pairs of alternating layers of

AlxGa1−xAs with X = 10% and X = 90%, exposing the AlGaAs with high Al content

to air causes rapid oxidation that can proceed both vertically and laterally degrading

the optical and electrical properties of DBR. This means that InGaP back surface field

in this case would serve as a passivation layer preventing the exposure of the DBR to

the ambient environment. Additionally, InGaP facilitates the fabrication serving as an

etch stop that prevents accidental etch through the DBR stack during base mesa etch.

In this context, the Voc data can be viewed as having the back surface field (BSF) does
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Figure 3.20: (a) Mask layout featuring multiple solar cells with varied perimeter-to-
area ratio. The solar cells parameters are summarized in the table. (b) Open-circuit
voltage distributions for every set of sample dependent on the etch scheme/chemistry.

not cause much reduction in Voc compared to that of solar cells mesa-isolated down to

the substrate and such procedure can still be used when it is necessary to provide a

passivation for the optical structures under the solar cell potentially reducing the Voc

only by 2 mV.

The sample etched with ammonia-based solution was excluded from the further analyses.

An investigation of the dark current in dependency on the perimeter-to-area ratio (the

higher perimeter-to-area ratio, P/A, gets, the more is the sidewall contribution, so for the

inferior quality sidewall non-radiative dark current increase is expected) was performed.

Figure 3.21b is showing the dark current curves obtained from the cells etched down to

the substrate with P/A of 4 and 13.33 are compared to the dark current of the cells

etched down to the BSF with P/A of 4 and 8. Analysis of these curves did not indicate

a consistent change in non-radiative dark current with reduction in device size and as

well can be related to the naturally occurring growth or fabrication non-uniformities.

Considering the findings obtained in R0, fabrication of the subsequent rounds including

the cells with quantum wells was performed with the mesa etch down to the BSF and
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Figure 3.21: (a) Mask layout featuring multiple solar cells with varied perimeter-to-
area ratio. The solar cells parameters are summarized in the table. (b) Dark current-
voltage curves of the cells etched down to the substrate and down to the back surface

field with various perimeter-to-area ratios.

phosphoric acid-based GaAs etchant. Some other modifications are denoted where apply

(switching GaAs base dopant from Zn to C, changing the base dopant concentration,

using higher offcut substrates, etc.).

3.4.2 Modeling of the Baseline Solar Cell (Carrier Lifetime Assess-

ment)

Modeling of the solar cells was performed using Synopsys Sentaurus TCAD software

using optical constants of the corresponding films grown at RIT. Input doping and

thicknesses were set to accurately represent the experimental values derived from the

Hall measurements of calibration samples and selected to maintain a sufficient electric

field across the depletion region and to have sufficient electron mobility in the base (the

values are specified later in the chapter) and in-situ reflectivity measurements during

growth. The goal of the modeling was to establish the diffusion lengths of the minority

carriers in the base and emitter of the baseline device. However, an important note

is that for a good material (with diffusion length of carriers exceeding the thickness of
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the layer) the variations in the diffusion length will not be noticeable in the EQE/IQE

(for diffusion lengths greater than 3 times the layer thicknesses). The fit shown on Fig.

3.22a is achieved in an assumption of dominant recombination mechanism to be radiative

recombination, such that the non-radiative carrier loss is negligible. Radiative lifetime,

τRad, can be calculated as:

τRad = 1
BRadNLayer

, (3.15)

where BRad is radiative recombination coefficient and NLayer is either donor or acceptor

concentration, Nd or Na, respectively, in the emitter and the base. Substituting the

BRad(InGaP) = 1.0 × 10−10 cm3/s and BRad(GaAs) = 1.7 × 10−10 cm3/s, doping

Na = 3 × 1017 1/cm3 and Nd = 2 × 1018 1/cm3, results in τe,Rad(base) = 3 ns and

τh,Rad(emitter) = 33 ns which represents a higher estimate of the effective lifetime,

since zero trap density is assumed. For the minority electrons in the GaAs base, the

diffusion length was 37.8 µm, while diffusion length of the minority holes in the InGaP

emitter was 1.5 µm. Both values provided a very closely matched fit indicating that the

diffusion length of the minority carriers in the solar cell greatly exceeds the thicknesses

of the base (2.7 µm) and emitter (50 nm) and the density of traps with high capture

cross section determining the non-radiative recombination rate is insufficient to impact

the lifetimes and cause the carrier collection to drop. The light I-V modeling (shown

on Fig. 3.22b) shows an excellent match using the radiative limit assumption as well.

The simulation is performed in 1D, so to account for lateral resistance losses a lump

resistance was added at the metal-semiconductor interface.

To determine the limiting thickness of the QW region, simulations of the QW solar cells

with different values of the intrinsic region, which is effectively an unintentionally doped
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Figure 3.22: Simulated (solid lines) and experimental (dashed lines) (pre-ARC) (a)
internal and external quantum efficiency data and (b) AM0 light I-V curves.

(UID) region, since incorporation of parasitic dopant species occurs in a real system,

background doping (Nbg) were performed. Figure 3.23(a) shows band diagram of the

intrinsic region of the QW solar cell with 19 nm-thick barriers between the QWs (here,

no strain balancing is assumed and thickness of the GaAs interlayers is brought to the

expected 17 nm-thick GaAs0.90P0.10 SB values added to 1 nm-thick GaAs interlayers)

for 5×1014, 2×1015, and 2×1016 1/cm3 background doping at maximum power point.

Background doping can vary dependent on the growth temperature and is driven by the

memory effect or presence of impurities inside the reactor and it can significantly impact

carrier transport across the QW region due to dampened electric field, which changes

the number of QWs that can be added to the i-region. Typical unintentional doping for

RIT growths is ∼5×1014 cm−3, so maximum number of QWs with 17 nm-thick strain

balancing and 1 nm-thick interface GaAs layers to target can approach 60 which is

what was reported by NREL [15]. The alternative QW structure is simulated for the

background doping of 2×1015 as well, and Fig. 3.23b shows a comparison of two strain

balancing types: 10%P (19 nm total) and 32%P (5 nm total). A rapid cut-off of the E-

field limiting the maximum number of QWs that would support efficient carrier transport
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Figure 3.23: (a) Simulated band structure of the strain balanced QWs (100 periods are
simulated) for 5×1014, 2×1015, and 2×1016 1/cm3 background doping. (b) Comparison
between the band diagrams of the QW regions with 5 nm and 19 nm-thick SB barriers

and background doping of 2×1015.

by drift is observed as background doping increases resulting in 54, 30, and 8 QWs as

Nbg increases from 5×1014 to 2×1016 (Fig. 3.23a). For the structures with thinner

GaAs0.68P0.32 tunneling barriers, as shown on Fig. 3.23b, definitely can support over

100 QWs even with slightly elevated unintentional doping, but more careful investigation

of the tunneling rate might be necessary to determine whether carrier escape could suffer

from adding extended QW superlattices.

3.4.3 Solar Cell Structures, Baseline vs. QW Solar Cells

For the second round labelled as R1, the main focus was on comparing the performance

of the baseline devices with the devices in which the QW superlattices were added in

the intrinsic region. Figure 3.24 shows the layer structures of the baseline (a) and of

the solar cell with triple quantum wells (3 × QW) (b). The 9.2 nm-thick nominally

In0.08Ga0.92As QWs (and actually In0.06Ga0.94As QWs) are separated with 4 nm-thick

GaAs barriers with no strain balancing applied (Fig. 3.24c), since the target thickness of

the triple-well stack is under the critical thickness of In0.08Ga0.92As grown on GaAs. For
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Figure 3.24: (a) Baseline cell layer structure. (b) QW solar cell layer structure. (c)
QW region detailed view (9.2 nm-thick In0.06Ga0.94As QWs separated with 4 nm-thick

GaAs barriers).

the QW device, the base dopant was changed from zinc to carbon that has lower rate

of thermal out-diffusion compared to Zn allowing to create more abrupt junction. The

nominal QW composition, i.e. 8%In, was actually 6% due to lowered pick-up efficiency

of TMIn species from the bubbler which is not instrumentally controlled, and in the

further studies.

Figure 3.25 shows the representative metrics of the baseline and 3 × QW solar cells.

Comparison of the quantum efficiency spectra (Fig. 3.25a) demonstrates that changing

the dopant type from Zn to C increases the mid-wavelength region EQE. An inset is

showing the sub-bandgap EQE with the QW quantum efficiency up to 2.1% resulting

in extra up to 0.05 mA/cm2 of current. In combination with the enhanced bulk carrier

collection, the resulting total increase in short-circuit current density, Jsc, in the QW

cells (Fig. 3.25b) is 0.5 mA/cm2. It is seen from the light current-voltage characteristics

shown on Fig. 3.25b that the Voc increased by ∼20 mV due to replacing Zn with C.

Hence, for the advanced devices (with increased number of QWs, strain balancing, DBR)

this type of dopant is preferred to ensure the maximum achievable efficiency.
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Figure 3.25: (a) External quantum efficiency (EQE) of the baseline and QW solar
cells. The sub-bandgap region is shown on the inset. (b) One sun AM0 current-voltage

characteristics of the cells.

Figure 3.26: (a) New baseline device structure featuring triple strained QW superlat-
tice. (b) Solar cell structure with DBR. (c) Triple QW cell with GaAs0.68P0.32 strain

balancing. (d) Solar cell with 6 strain balanced QWs.

3.4.4 Advanced Solar Cells (Strain Balancing, DBR, Increased Num-

ber of QWs - Design Evaluation)

In Round 2, some advancements were implemented pursuing an increase in the current

available from the QWs. To increase the number of QWs pushing the width of the

QW region beyond critical thickness is inevitably associated with implementation of
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strain balancing to prevent the propagation of the strain-induced effects through the

upper layers of the solar cell. Additionally, an effective increase in absorption in the

QW region was achieved by adding the DBR tuned to selectively reflect light in the

QW absorption range allowing to nearly double the number of light passes through

the QWs. This optical enhancement is equivalent to almost doubling the number of

QWs. DBR design (AlxGa1−xAs layers compositions were fixed at %Al of 10 and 90

and thicknesses were tuned to target peak reflectivity at ∼915 nm to not only provide

extra absorption in the QWs, but near the band edge of GaAs) was developed using

TFCalc. The resulting structure consisted of 12 65 nm-thick Al0.10Ga0.90As and 75

nm-thick Al0.90Ga0.10As pairs. The chosen number of DBR pairs was determined by

modeling the Jsc in the solar cell and the minimum number of DBR pairs at which Jsc

starts to saturate was chosen (Fig. 3.27). As simulated results suggest, the total increase

in Jsc due to adding DBR is 0.4 mA/cm2 which is partially driven by the enhanced bulk

near-band edge absorption. Minimization of the DBR thickness is desired for reducing

the growth time and minimization of the precursors used for making an efficient back

mirror. Figure 3.28a shows measured reflectivity of the DBR test structure (14 pairs of

65 nm-thick Al0.10Ga0.90As and 75 nm-thick Al0.90Ga0.10As capped with 10 nm GaAs to

prevent oxidation of the Al rich layer) and reflectivity spectra of the identical solar cell

structures with QWs and 12 pair-DBR grown on GaAs substrates with 2◦→ 〈110〉 and 6◦

→ 〈110〉 offcuts are plotted on Fig. 3.28b. The 14-pair test structure reaches 96% peak

reflection and in the solar cell DBR reflection is ∼90%. The 21 nm shift is observed with

changing substrate offcut and it is related to the variations in the AlxGa1−xAs growth

rate. Figure 3.29a shows simulated (TFCalc) reflection of the 12-pair DBR composed

of target, 65 nm and 75 nm-thick, layers and layers with thicknesses varied by 3%.

The corresponding spectra of the DBR-enhanced solar cell structures are shown on Fig.
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Figure 3.27: Simulated Jsc as a function of number of DBR pairs with the total DBR
stack thickness corresponding to each number of pairs shown on top.

Figure 3.28: (a) Measured DBR reflection spectrum of the test structure; (b) mea-
sured reflectivity of the solar cell structures with 12-pair DBR grown on 2◦ → 〈110〉

and 6◦ → 〈110〉 offcuts.

3.29b.

Figure 3.26 summarizes the Round 2 structures including the previously optimized triple-

quantum well solar cell (Fig. 3.26a), solar cell with triple wells and 14 pairs of DBR
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Figure 3.29: (a) Simulated reflection of the 12-pair DBR composed of target, 65 nm
and 75 nm-thick, layers and layers with thicknesses varied by 3% and (b) simulated
reflection spectra of the solar cell structures with the corresponding DBR structures.

Figure 3.30: Schematics of the QW region with GaAs0.68P0.32 strain balancing and
1 nm-thick GaAs interlayers.

consisting of alternating layers of Al0.10Ga0.90As and Al0.90Ga0.10As tuned to have max-

imum reflection at 915 nm (Fig. 3.26b), solar cell with triple strain balanced QWs is

shown in Fig. 3.26c and with 6 QWs in Fig. 3.26d. The detailed view of the strain

balanced QWs is shown in Fig. 3.30. The 9.2 nm-thick In0.06Ga0.94As QWs are sepa-

rated with the 3.2 nm-thick GaAs0.68P0.32 layers with the 1 nm-thick GaAs interlayers

which serve to potentially preserve abrupt interfaces. Both strain balanced QW solar

cells were grown on 2◦ → 〈110〉 offcut substrates and where applies, 6◦ → 〈110〉 offcut

is specified as 6 deg., since offcut direction was unchanged in this experiment.
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All supplementary sample-to-sample data breakdown from the Round 2 presented below

is without anti-reflective coating (ARC) (Fig. 3.31). In Figure 3.31, the dopant types

are denoted on the left side and all supplementary labelling is given on the right. The

record (pre-ARC) efficiency achieved in the sample with DBR and is greatly attributed

to the current and fill-factor enhancement and is 17.2% (AM0). It is also clearly seen

that carbon doping used for the GaAs base promoted an enhancement in the Voc by up

to 20 mV compared to the Zn-doped base devices. The Fig. 3.31 presents the values

gathered from the best performing cells in each device batch. The statistical efficiency

data of the Round 2 cells is given in Fig. 3.32. The statistics is gathered from 12 1 cm ×

1 cm cells per wafer. The maximum average efficiency is measured in the DBR-enhanced

cells. Another observation is that the distribution of efficiencies is narrower in strain-

balanced QW cells (SB 3 × QW and SB 6 × QW). Adding strain balancing makes the

devices less sensitive to the possibly occurring variation in the QW thickness across the

wafer that nominally is at the critical thickness, so an accidental increase in the QW

thickness can cause a buildup of the strain energy. Adding strain balancing alleviates

this effect and spatial voltage and current uniformity improves. Doubling the number

of QWs was performed with minimal losses in efficiency opening up a route for further

investigation of the limiting number of QWs for extended and efficient light absorption

beyond the bandgap of GaAs.

The observations made in Round 2 clearly indicate the path to take for the next rounds

in pursuit of the highest efficiency of the single-junction solar cell. The benefits of strain

balancing that will allow to further increase the number of QWs and potentially vary

the content of In to deepen the wells combined with the DBR structures are the avenue

to boosting the short-circuit current density with preserved open-circuit voltage and fill

factor.
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Figure 3.31: Round 0, 1, and 2 data summary. All metrics are collected BEFORE
anti-reflective coating (ARC) deposition to enable direct comparison of the impact of

changing device parameters.

Figure 3.32: Statistical summary of AM0 efficiency of the solar cells from Round 2.
All data is collected before the ARC. The offcut of the substrates (2 deg. or 6 deg.) is

specified.
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Taking a closer look at the data (Fig. 3.31), an increase in number of 6%In SB QWs

from 3 to 6 led to an average reduction in Voc by 6 mV and fill factor reduction by 1%

absolute was observed as well which are relatively insufficient changes, but some con-

cerning aspects associated with strain-balanced QWs are revealed in quantum efficiency

spectra. Figure 3.33 shows IQE curves corresponding to the QW conversion region for

the samples with strained 3 × In0.06Ga0.94As QW separated with 4 nm-thick GaAs bar-

riers (Previous Champion), the same QW structure, but with thinned intrinsic region

framing the QW region and 3 times increased base doping (BL - 2 deg.), and strain

balanced QW structures, 3 × SBQW and 6 × SBQW (same tripled doping and i-region

layer thicknesses as in the BL sample). Comparing the spectra of the Previous Cham-

pion cell and BL, the apparent QE drop of the curve can be observed. On a fundamental

level, this can be caused by alterations in the quantum confinement and density of states

in the QWs (i.e., absorption spectrum) or by carrier extraction efficiency (i.e., electric

field). For these samples without strain balancing specifically, the IQE reduction can be

caused by the changes in E-field, since narrowing the base-shifted intrinsic region from

62 nm down to 31 nm could have resulted in a placement of the QWs where E-field is

not steady.

A more dramatic change in IQE is observed in the strain-balanced QWs where blue

shifting of the spectral curves by up to 15 nm was observed. On a manufacturing level,

uncontrollable reduction in In incorporation efficiency could cause the actual QW com-

position to get In-depleted (the suspected reason is gradually reducing TMIn pick-up

efficiency as the precursor bubbler is approaching its end of life), so the subsequent

InGaAs growths performed with a sufficient time difference are likely to need a compo-

sition adjustment by calibration, however, it is highly unlikely for these samples, since

they were grown back to back. To investigate and demonstrate the spectral absorption
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Figure 3.33: QW IQE of the samples with strained 3 × In0.06Ga0.94As QW separated
with 4 nm-thick GaAs barriers (Previous Champion), the same QW structure, but with
thinned intrinsic region framing the QW region and 3 times increased base doping (BL
- 2 deg.), and strain balanced QW structures, 3 × SBQW and 6 × SBQW (same tripled

doping and i-region layer thicknesses as in the BL sample).

range dependency on the QW parameters (QW thickness, QW composition, and barrier

thickness), parametric modeling of the QW structures was performed using nextnano.

Figure 3.34 shows dependency of the simulated transition spectra on QW composition,

thickness, and barrier thickness. The cumulative transition intensity spectra are a su-

perposition of all allowed transitions determined by non-zero electron and hole wave

function overlap |〈φe|φh〉|2. Equation 3.16 shows band-to band recombination rate:

RRad = q2Epωn

2m0ε0hc3
0
|〈φe|φh〉|2, (3.16)

where q is electron charge, Ep is Kane energy, m0 is electron mass, n is refractive index,

c0 is the speed of light, and ω is a frequency corresponding to the transition energy

[151]. As Figure 3.34a shows, InxGa1−xAs QW composition with increasing In content

leads to the red shift of the main excitonic transition, whereas QW thickness varied

within a possible growth error (± 1 nm from target 9.2 nm) has minimal effect (Fig.

3.34b). The dependence of the main transition peak wavelength plotted for varied In
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content in comparison to the QW and barrier thicknesses are shown on Fig. 3.34c

and d, respectively. Assuming the possibility of the %In variations from growth to

growth resulting in the absorption edge change rate of ∼10 nm per each %In change and

relatively slow dependency of the transition peak position with varied QW and barrier

thickness, it is a fair assumption that fluctuating In content is the factor driving the QW

band edge shift. Figure 3.35 showing measured PL spectrum of the In0.09Ga0.91As QW

structure and simulated spectrum validates the accuracy of this model and assumptions

made given that the offset between the modeled and experimental data is only 2 nm

which can be attributed to the composition fluctuation within tens of a percent absolute.

Returning to the strain-balanced In0.06Ga0.92As/GaAs0.68P0.32 QW structures exhibiting

a blue shift compared to the QWs separated by GaAs barriers, the reduction in In

incorporation efficiency does not seem to be a satisfactory explanation. At the same

time, changing the barrier height by replacing GaAs with 3.2 nm-thick GaAsP layers

also result in minimal deviation in the peak position. The answer might be inspired by

the XRD spectroscopy.

Figure 3.36 shows a multitude of the (004) reflection XRD spectra of the solar cell

structures without QWs (control samples), with strained triple QWs separated by 4 nm-

thick GaAs layers, and with QWs strain balanced with GaAs0.68P0.32 layers. The InGaAs

composition is varied in some samples (6%, 10%, and 14%In are shown and indicated for

each spectrum on the right; all samples are grown on the offcut (100)GaAs substrates

and the magnitude of the offcut angle, 2◦ or 6◦, is specified in the legend as well). If

QW superlattice is formed, in addition to the interference of the waves scattered by

the atomic planes, a higher order diffraction from the repeated nanolayers results in the

occurrence of the Pendellosung fringes as shown on Fig. 3.37a [152] and a high-quality

InGaAs/GaAsP QW superlattice structure’s XRD spectrum is shown on Fig. 3.37b
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Figure 3.34: Transition intensity spectra in the 3 × QW superlattices for InxGa1−xAs
with (a) varied In content (QW thickness 9.2 nm and fixed) and (b) varied QW thickness
(composition is fixed at 8%). (c) Dependence of the main peak transition wavelength
on the fixed width QW composition (black points) and on the fixed composition QW
width (purple points); the lines are added as guides; and (d) peak position vs. QW
separating barrier thicknesses (blue line) for fixed QW thickness and composition.

with superlattice peak orders denoted (the sample is from one of the later calibration

sample series and is shown here as an example). On Fig. 3.36, the superlattice peaks

are present only in the spectra produced by the structures with strained 3 × QW (i.e.,

separated by the GaAs layers). In contrary, adding strain balancing with 32%P (curves

labeled as SBQW) content results in smearing of the superlattice fringes irrespective of

the number of QWs.
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Figure 3.35: Photoluminescence of the In0.09Ga0.91As QW structure (composition
was additionally confirmed with XRD) shown in red in comparison with the predicted

transition intensity spectrum for In0.09Ga0.91As QW structure shown in black.

Figure 3.36: XRD spectra of the QW solar cells including the baseline devices with
no QWs, devices with strained QWs separated by 4 nm-thick GaAs barriers and with
GaAs0.68P0.32 strain balancing layers. The outline shows the region where the occur-

rence of the Pendellosung fringes is expected if QW superlattice is formed.
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A known reason for increased full-width half-maximum (FWHM) of the SL fringes, and

essentially, the broad features that are seen at the angles below the Bragg peak can

be interpreted as widened, is interface smearing which can be caused by diffusion of

In from the QWs into the barriers and P from the barriers into the QWs. The high

angle annular dark field (HAADF) scanning transmission electron microscopy (STEM)

and energy dispersive spectroscopic (EDS) study performed by J. Samberg et al. [134]

shows the cross-sectional profile of the In0.23Ga0.77As/GaAs0.2P0.8 superlattices with

7 nm-thick GaAs interlayers coming from GaAsP to InGaAs and 0.7 nm-thick GaAs

coming from InGaAs to GaAsP clearly demonstrating the interdiffusion of the In and

P species across the QW/SB interfaces (Fig. 3.38). From the crystallographic analysis

perspective, this can be interpreted either as alternating graded layers. In addition, it

can be associated with elevated interface roughness. In particular, the FWHM of the

superlattice fringes is determined by the relative interface roughness σ
Λ0

as:

Wn = W0 + (ln2)1/2n∆θM
σ

Λ0
, (3.17)

whereWn andW0 are the FWHM of the nth order satellite peaks and ∆θM is the angular

distance between the adjacent satellite peaks [114]. In the extreme case, degeneracy of

the peaks can progressively occur when interface roughness increases. While photolumi-

nescent properties of the QW structures with roughened interfaces cannot be efficiently

simulated requiring atomic resolution and 3D workflow, the transitions in the QWs with

non-abrupt transitions from QW to strain balancing and vice versa, as shown with the

material profile and band structure on Fig. 3.39a can be evaluated. Comparing the

simulated transition spectrum of such diffuse superlattice to the spectrum of the ideal
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Figure 3.37: (a) A diagram showing X-ray scattering and interference on an AlGaAs/-
GaAs heterointerface [152]. (b) XRD spectrum of an InGaAs/GaAsP superlattice.

SBQW superlattice’s shown on Fig. 3.39b, there is a clear 15 nm blue shift originat-

ing from the graded material profiles. It is important to understand that the structure

modeled in this simulation study is not immediately representative of the actual struc-

ture, but assessing the impact of the QW/SB imperfections on the quantum structure

specifically is useful to not rule out the influence of the structural non-uniformity on

the spectral properties of the quantum wells manifesting in quantum efficiency and PL

spectra.

Correlating the XRD, QE, and modeling observations, it becomes clear that transi-

tioning to strain balanced In0.06Ga0.94As/GaAs0.68P0.32 QW superlattices causes mor-

phological disruption of the superlattice and interface degradation compared to the

In0.06Ga0.94As/GaAs QWs. Disappearing superlattice fringes in the SB QW XRD do

not even allow to determine the impact of the offcut on FWHM, however, since 6 ×

SBQW devices exhibit minimal losses in Voc (only up to 6 mV), so the next attempt

to integrate the SB QWs was done. In the next set of experiments, solar cells with

12 periods of In0.10Ga0.90As/GaAs0.68P0.32 and In0.14Ga0.86As/GaAs0.68P0.32 grown on

6◦ → 〈110〉 offcut substrate with and with no 12-pair Al0.1Ga0.9As/Al0.9Ga0.1As DBR

were manufactured to study how In content and number of QWs affects dark current
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Figure 3.38: HAADF STEM images and EDS plots for two
In0.23Ga0.77As/GaAs0.2P0.8, 20 period MQW structures with GaAs transitions
of 7 nm at the Ga(As,P) to (In,Ga)As transition and 0.7nm at the (In,Ga)As to

Ga(As,P) transition [134].

and Voc. The DBR structure and properties remained the same as in the preceding

round of devices (Fig. 3.28).

3.4.5 Impact of the QW Depth and Number on Solar Cell Dark Cur-

rent and Voc

Summary of the device structures is shown on Figure 3.40. The study consisted of 4

types of solar cells with 12 periods of QW superlattices (In0.10Ga0.90As/GaAs0.68P0.32

and In0.14Ga0.86As/GaAs0.68P0.32) and DBR structures and concluded the series of QW

solar cells with phosphorous-rich strain balancing.

It is expected (Eq. 3.6) that increasing QW depth can lead to the increase in non-

radiative dark current, and it can lead to the reduced fill factor and Voc. Table 3.1

summarizes the AM0 parameters of the solar cells. Efficiencies of all devices with ex-

tended QW superlattices do not exceed 15% (the maximum baseline cell efficiency was

17.1%) and go below 12% in devices with 14%In QWs which are affected by both voltage

and fill factor reduction.
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Figure 3.39: (a) Band structure and energy states of the graded 3 - 8%In QWs
separated by the 0 - 32%P strain balancing and (b) corresponding transition intensity
spectrum of the structure with graded material profile (red line) in comparison with

the ideal abrupt-interface structure’s spectrum (black line).

Figure 3.40: Deep QW solar cell study structures including devices with
In0.10Ga0.90As/GaAs0.68P0.32 and In0.14Ga0.86As/GaAs0.68P0.32 QWs with or without
the DBR consisting of 12 Al0.1Ga0.9As pairs. All structures were grown on 6◦ → 〈110〉

offcut (100)GaAs substrates.
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Parameter: 10%In 10%In, DBR 14%In, DBR 14%In

Jsc, mA/cm2 26.28 ± 0.17 26.44 ± 0.17 26.58 ± 0.18 26.10 ± 0.18

Voc, V 0.719 ± 0.190 0.982 ± 0.025 0.824 ± 0.008 0.831 ± 0.009

FF, % 58.7 ± 14.4 74.3 ± 1.2 72.0 ± 2.9 74.9 ± 1.25

Efficiency, % 8.52 ± 3.94 14.13 ± 0.48 11.55 ± 0.55 11.90 ± 0.36

Table 3.1: 12 × QW solar cell parameters under 1 sun AM0 illumination.

The IV characteristics of the cells with the highest efficiency out of each type of the

device are shown on Figure 3.41a. A notable drop in Voc is observed upon increasing

the In content in the QWs. Surprisingly, the lowest Jsc is observed in the 14%In device,

and resonant DBR absorption enhancement in the near-band edge bulk and QW regions

resulted in an increase of ∼0.2 mA/cm2. Fill factors of the cells with tunneling strain

balancing barriers and deeper 12 × QWs reduced by over 6% absolute compared to the

cells with 6%In QWs where only 3 or 6 QWs are present, which may be a consequence

of either the transport problems or of the excessive non-radiative recombination rate

inside the QW region. Quantum efficiency spectra shown on Fig. 3.41b feature minimal

bulk response alterations below 650 nm indicating no residual strain from the QWs,

however, the 10%In sample with no DBR surprisingly has lower GaAs base response,

which can be specific to the cell measured. DBR reflectivity spectrum (Fig. 3.28)

FWHM is ∼100 nm, so oscillations near the band edge in the bulk region are also

observed, however, the base thickness in these devices was increased from 2.9 µm to

3.5 µm, so optical bulk EQE enhancement is not as pronounced as in the thin-base

devices. In the In0.14Ga0.86As/GaAs0.68P0.32 QW cells, a 25 nm red shift of the EQE is

observed closely matching the simulated results (Fig. 3.34c). After the ARC deposition,

the strong cavity resonance peaks from 880 nm to 950 nm coming from the DBR will

be gone.

Figure 3.42a shows a comparison of the QW region EQE spectra of the cells with no
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Figure 3.41: (a) AM0 light IVs and (b) EQE spectra of the 12 × QWs:
In0.10Ga0.90As/GaAs0.68P0.32 and In0.14Ga0.86As/GaAs0.68P0.32 (strain balancing layer
thicknesses were adjusted to meet nominally net zero strain in a superlatiice as shown

in Eq. 3.1) with and without the DBR.

DBR to the baseline (no QWs) and with different %In and Fig. 3.42b illustrates the

change in QW EQE for varied number of QW periods. Broader absorption range in the

14%In compared to the 10%In converted to the extra current results in 0.08 mA/cm2

Jsc enhancement. At the same time, an increase in the number of QW periods does not

necessarily follow an expected linear change. First, one can observe ∼7 nm of the QW

absorption edge red shift moving from 3 to 12 periods (Fig. 3.42b) indicating possible

composition fluctuations which are a result of the growth control limitations discussed in

the previous chapters. An increase in the EQE peak intensity is spectrally non-uniform,

so for each QW structure extracted total Jsc(QW ) and associated ∆Jsc per single QW

period was extracted and summarized in Table 3.2. While current per QW increases in

strain-balanced structures with deepening the QWs from 10% to 14%, it is clear that

adding strain balancing reduces the current gain per QW as can be seen from the data

acquired for the 3 × QW 8%In sample with no SB and for the same number of QWs with

10%In with GaAs0.68P0.32 strain balancing added, so the current enhancement due to
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Figure 3.42: QW region of the EQE spectra of the cells with (a) 12 ×
In0.10Ga0.90As/GaAs0.68P0.32 and In0.14Ga0.86As/GaAs0.68P0.32 QWs and (b) 3 vs. 12

periods of In0.10Ga0.90As/GaAs0.68P0.32 QWs compared to the baseline device.

increasing the QW depth is overtaken by the reduction due to the GaAs0.68P0.32 barriers.

An assumption that can be drawn from solely EQE spectroscopy and modeling can be

that the interface between the QW and SB causes a blue shift and that carrier escape

might be impeded, however, combining the spectroscopic results with the Voc and J02

analysis can lead the reader to a fuller picture before the explicit explanation for the

deterioration of the QW solar cells performance as strain balancing is added.

Dependency of the Voc on the number of QWs for GaAs0.68P0.32-strain-balanced In0.06Ga0.94As,

In0.10Ga0.90As, and In0.14Ga0.86As QW solar cells is shown on Figure 3.43. A direct cor-

relation between the Voc and the QW depth is seen resulting in up to 150 mV loss coming

from 10%In to 14%In QW composition. At the same time, the rate of the Voc reduction

following the increase in the QW number changes with the QW depth. For 10%In QWs,

12-period superlattice device shows Voc reduction by 40 mV compared to the 3-period

structure. Unfortunately, at the moment of writing this work the intermediate data for

a full spectrum of QW numbers was unavailable, so completion of this work to separate
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Jsc, mA/cm2: 12× 10%In, SB 12× 14%In, SB 3× 8%In, no SB 3× 10%In, SB

QW total 0.16 0.24 0.09 0.03
Per period 0.013 0.020 0.030 0.010

Table 3.2: Extra Jsc originating from the QW region in total and ∆Jsc per QW for
various QW superlattice structures.

Figure 3.43: Voc of the solar cells with GaAs0.68P0.32-strain-balanced In0.06Ga0.94As,
In0.10Ga0.90As, and In0.14Ga0.86As QWs dependent on the number of QWs.

and correlate the influences of the QW depth and number can be addressed in the future.

However, if the QW bandgap reduction was directly responsible for the Voc offset, such a

dramatic Voc reduction would not be observed (the main transition energy lowers by 52

mV coming from 10% to 14%), so excessive non-radiative recombination is responsible

for the voltage loss.

Figure 3.44 shows Voc’s of the various solar cells vs. their Jsc (the sample attributes for

each data point are shown on the sides). The equation representing the Voc shown in the

inset is derived from the two-diode equation for a device in a non-radiative limit (ideality

factor n = 2), and blue line represents calculated Voc values by substituting the measured

Jsc and J02 extrapolated from the dark current measurements. Measured Voc values of

the solar cells with extended superlattices of 10%In and 14%In QWs accurately fall on

the calculated non-radiative Voc line, while the group of QW samples and baseline solar
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Figure 3.44: Dependency of the measured Voc on measured J02. The dashed line
shows the Voc calculated using the equation in the inset using the Jsc and J02 measured
for the corresponding cells. The sample attributes are denoted for each data point.

cell exhibit a mixed behavior with the ideality factor 1 < n < 2. The critical J02 value

is 1.1 × 10−10 A/cm2 at which Voc becomes dominated by non-radiative recombination.

Using Eq. 3.7 by substituting the effective bandgap offset and measured J02,QW and

J02,Bulk an increase in non-radiative lifetime can be extracted as shown on Fig. 3.45.

Fig. 3.45 shows an increase in the J02 due to the added QWs into the intrinsic region

and occupying a fraction fQW of the i-region volume plotted for various bandgap energy

offsets between the QW and host material, ∆E/kT , and lifetime reduction inside the

QW region. This extrinsic added loss is a quantitative measure allowing to compare the

density of traps and trap capture rates coming from the interface defects. In accordance
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Figure 3.45: Non-radiative lifetime modulation factor due to added QWs compared
to the bulk non-radiative lifetime calculated from Eq. 3.7 for the QW region volume

fraction in the i-region of (a) 0.35 and (b) 0.70.

to the model, 12 × SBQW 10%In structure has 40 times higher non-radiative recombina-

tion rate than an intrinsic GaAs (Fig. 3.45b) and in shallower QWs, the recombination

rate increases by a factor of 1.5 and 2 times in 6%In and 8%In structures with no strain

balancing (Fig. 3.45a).

3.4.6 Structural Analysis and Optimizations of the QW Superlattices

To investigate the origin of the deteriorated QW morphology leading to the dramatic

non-radiative recombination increase, which becomes progressively influential in ex-

tended superlattices, XRD study confirming poor interfacial quality (Fig. 3.36) was

accompanied by microscopic studies including atomic force microscopy (AFM) for step

bunching analysis and cross-sectional TEM. The solar cell structures discussed in the

previous chapters showing abnormal superlattice XRD were grown on the offcut sub-

strates and the choice of the offcut for growing the devices is mainly determined by the

desired growth modes and for managing ordering in ternary and quaternary materials

(InGaP, InAlP, InAlGaP, etc.), so investigating the offcut influence on the growth of

strained materials sequences specifically is an important step, since it can clearly affect
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step bunching rate leading to the disruption of the 1D growth of the QWs and resulting

in uncompensated opposite polarity strain zones propagating through the superlattice

at an angle to the growth direction. Highly diffusion-driven, the step bunching process

can also be controlled by a growth temperature, so QW growth temperature study was

also conducted. The interface optimization study was also conducted by adjusting a

switching sequence between the epitaxial precursors and/or adding interlayers to better

manage cross-diffusion between the QW and SB layer species. In addition, a comparison

between different types of GaAsP strain balancing (GaAs0.68P0.32 or GaAs0.90P0.10) was

performed as well.

3.4.6.1 Switching Sequence and Interface Management Study

The first study within the optimization series comprised a set of 5 groups of samples

that had different switching sequences as shown on Fig. 3.46a-e grown on on-axis (0◦)

and on 2◦ → 〈110〉 and 6◦ → 〈110〉 offcut (100)GaAs substrates resulting in total of 15

test structures. Each test structure intended for PL and XRD analysis had 10 periods

of In0.10Ga0.90As/GaAs0.68P0.32 SBQWs and a 100 nm-thick GaAs capping layer, the

offcuts correspond to the sample number indices, and GaAs interlayers are present only

in selected switching sequence schemes (Fig. 3.46f). The labeled switching sequences

replicate the reported processes as: "Nakano Optimized" [153] (Fig. 3.46b), "Samberg"

[134], and "Nakano/Sugiyama" [154] (Fig. 3.46c) and their variants (Fig. 3.46d, e). All

structures were grown at 650◦.

In Fig. 3.46, Interlayer corresponds to the GaAs inserts between the QW and strain

balancing layers (here, Barriers), preparation for the barrier growth is Pre-flow of phos-

phine, and post-QW layer arsine is Post-flow, and hydrogen purge to desorb the trace

species and prevent memory effect. "Nakano optimized" (Fig. 3.46b) features In purge
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Figure 3.46: Flow switching sequences (a) RIT default, (b) "Nakano Optimized"
[153], (c) "Nakano/Sugiyama" [154], (d) "Nakano with Samberg variant" [153, 134],
(e) "Nakano/Sugiyama with Samberg variant" [154, 134] and (f) schematics of the test
structure epitaxial layers. Sample numbers and indices after the dash correspond to

the types of the switching sequences and offcut angles, respectively.
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Figure 3.47: 2Theta/ω XRD spectra of the 10 × In0.10Ga0.90As/GaAs0.68P0.32
SBQWs grown using various switching sequences and substrate offcuts as indicated

in Fig. 3.46.

before GaAs barrier, H2 purge between all, AsP before/after GaAsP, and GaAs barri-

ers on both sides of strain-balancing layers. "Nakano/Sugiyama" design includes an In

purge with AsH3 before GaAsP and H2 purge after GaAsP and no GaAs barriers alto-

gether (Fig. 3.46c). "Nakano with Samberg variant" features In purge before the GaAs

barrier, H2 purge between all AsP before/after GaAsP, and GaAs barrier only after

GaAsP strain balancing (Fig. 3.46d). The specifics for "Nakano/Sugiyama" sequence

shown on Fig. 3.46e are In purge with AsH3 before GaAsP, H2 purge after GaAsP, and

GaAs barrier after GaAsP. All of the approaches target manufacturing of the abrupt

interfaces.

XRD spectra of the samples from the switching sequence series is shown on Figure 3.47.

While superlattices grown on on-axis substrates clearly exhibit Pendellosung fringes (on-

axis samples are labeled with the index - 4) and quantitative analysis can be performed
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to compare relative interface roughness using Eq. 3.17, all offcut samples (indices - 3 and

- 2), irrespective of the switching sequence, show absent or nearly absent superlattice

signal. Based on the FWHM analysis of the SL peaks (only the first order peaks were

considered) shown on the Figure 3.48a, "Nakano Optimized" switching sequence with

GaAs interlayers on both sides of a QW and hydrogen purge was selected for all future

optimization studies including growth temperature, SB composition, and offcut direction

studies, as sample 21R016-4 showed the lowest FWHM of a SL peak (263 arcsec) closely

comparing with the sample 21R019-4 ("Nakano/Sugiyama with Samberg variant", i.e.,

GaAs interlayer only after GaAsP) with SL peak FWHM of 265 arcsec. The optimized

switching sequence allowed to reduce the SL peaks FWHM by 22% compared to the

previously used RIT approach (21R015-4). Additionally, the oscillations resulting from

higher order interference occurring in between the denoted (SL0, SL-1, etc.) fringes are

most pronounced in the samples 21R016-4 and 21R019-4, while are almost vanished in

the sample 21R015-4. By allocating the offset of the zero-order SL peak (∆θSL0) from

the Bragg peak (θBragg) the ex-situ room-temperature strain in the QW structure ∆a/a

can be calculated using differential Bragg’s law as:

∆a
a

= ∆θSL0cot(θBragg). (3.18)

The SL period (thickness of a single QW plus SB unit) can be calculated as:

µ = λCu,Kα
∆θSL0

(cos(θBragg)−1. (3.19)

Figure 3.48b shows statistical data of XRD-extracted strain and period. Period fluctu-

ations are natural due to the structural variations (one, two, or no 1 nm-thick GaAs
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Figure 3.48: (a) FWHM of the first-order SL XRD peaks of the on-axis samples and
(b) SL period and strain.

interlayers) and the values are close to the target: 9.2 nm InGaAs QW and 4.9 nm

GaAsP SB resulting in 14.1 nm, plus GaAs interlayers where applies. Calibrations of

the InGaAs and GaAsP composition and growth rate were initially performed on the

2◦ offcut substrates, so some thickness and stoichiometry deviations are possible during

the growth on on-axis substrates, since step-flow growth was established. Those were

thoroughly calibrated for the next sample sets. Relatively high compressive strain is

likely a result of the layer thickness modulations suggesting that GaAs0.68P0.32 growth

rate was lower on the exact substrate.

The expected interface refinement and recovery of the Pendellosung fringes in the of-

fcut samples, however, did not follow, so the next approach involving excessive step

bunching management was to investigate the impact of temperature. Another growth

parameter, pressure, was included as well, as some authors report atmospheric pres-

sure growth of high-quality InGaP/GaAsP superlattices [15], so increasing the reactor

pressure from 100 mbar to 600 mbar was attempted. The 2Theta/Omega XRD spectra

of the control samples, 21R016-3 and -4, grown at 650◦C and 100 mbar pressure, of

the low-temperature samples, 21R025-3 and -4, grown at 620◦C and 100 mbar, and,
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finally, the samples grown at elevated 600 mbar pressure and at ∼670◦C which exceeded

the target 650◦C possibly due to the altered reactor pressure, 21R026-3 and -4. From

comparison of the spectra of the on-axis samples (...-4), growth at elevated pressure

and temperature resulted in lower compressive strain of 888 ppm compared to the other

samples for which the extracted strain was 3867 ppm and 4694 ppm in 21R016-4 and

21R025-4, respectively. This can be a result of higher cracking efficiency of PH3 and

elevated phosphorous incorporation, since SL period remained nearly the same as in the

low-temperature and low-pressure samples (13.62 nm vs. 13.82 nm and 13.86 nm, re-

spectively). The inverse process can be leading to depleting strain balancing layer from

P in the 620◦C sample 21R025-4 which appears to be more compressive than 21R016-

4. Additionally, from previous comparisons of the SL properties of InxGa1−xAs/GaAs

strained QW superlattices and InxGa1−xAs/GaAs0.68P0.32 strain-balanced QW struc-

tures (Fig. 3.36), incorporation of phosphorous-rich strain balancing layers results in

removal of well-defined superlattices, so it is possible that phosphorous-poor strain bal-

ancing promoted some recovery of the Pendellosung fringes in sample 21R025-3, as can

be seen in Fig. 3.49.

TEM imaging of the QW superlattice cross-section and AFM surface analysis along with

the XRD spectra of the "Nakano Optimized" 10 × In0.10Ga0.90As/GaAs0.68P0.32 SBQWs

are shown on Figure 3.50. Disruption of the superlattice growth with periodic thickness

modulations featuring alternating regions with propagating opposite strain (strain causes

film deformation resulting in the contrast) is seen in both offcut samples (Fig. 3.50b,

c) compared to the on-axis structure (Fig. 3.50a). The AFM surface analysis of the 2◦

→ 〈110〉 sample (Fig. 3.50d) (the scan dimensions are 5 µm × 5 µm) shows atypical

for thin film growth periodic bunching aligned along the growth terraces. To evaluate

the height and calculate the number of monolayers (ML) the height profile was analyzed
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Figure 3.49: 2Theta/ω XRD spectra of the 10 × In0.10Ga0.90As/GaAs0.68P0.32
QWSLs grown on on-axis (...-4) and 2◦ → 〈110〉 (...-3) at 650◦C and 100 mbar (21R016-
3,4), at 620◦C and 100 mbar (21R025-3,4), and at ∼670◦C and 600 mbar (21R026-3,4;
a simultaneous temperature increase likely occurred due to the pressure increase).

(Fig. 3.50e). The feature height measurement resulting in 5 - 10 nm height difference

amplitude suggests that on average 4 ML per growth step in each QW and SB couple

are aggregated. Lateral distortion of the superlattices on the offcut substrates result in

broadened XRD SL features as Fig. 3.50f, since the signal is coming from the regions

with varied thicknesses and angular orientation relatively to the substrate. A wavy

growth commences in the first InGaAs layer and lateral thickness modulations are seen

in TEM. Local compressive strain accumulation near the step edges and facet relaxation

and preferential growth of strain balancing layers in the thin InGaAs regions cause

formation of the regions with locally uncompensated opposite strain and aggravating

thickness variations between the compressively strained bunched InGaAs and tensile

GaAsP accumulation regions. This translates to the surface morphology observed in



Chapter 3. High-Efficiency Quantum Well Solar Cells 125

AFM, and for the 2◦ → 〈110〉 sample the period of these features is up to 500 nm not

necessarily following the individual terraces.

Correlating the structural properties and elevated non-radiative dark current, it becomes

apparent that inclusion of propagating planes of superlattice stacking fault defects is re-

sponsible for lowering the carrier lifetimes and likely for the altered spectral properties

of the nominally 9.2 nm In0.10Ga0.90As/GaAs0.68P0.32 QWs with strain balancing of 4.9

nm, given that the devices with comparable QW structures featuring 12-period super-

lattices reported in the previous section were grown on the 6◦ → 〈110〉 offcut (100)GaAs

substrates with the immediate onset of the wavy growth which results in degeneration of

strain balancing starting from the 5th period. It is expected, however, that using thicker

(thermalization) strain balancing barriers would be beneficial for alleviating the strain

balancing degeneration process due to non-uniform preferential growth leading to the

formation of the alternating strain polarity growth regions, so in the next section this

approach will be presented.

3.4.6.2 Strain Balancing Design for Lowered Non-Radiative Recombination

in the QWs

As a first step, a test structure with 10 periods of In0.10Ga0.90As/GaAs0.90P0.10 capped

with 10 nm GaAs was grown on 2◦ → 〈110〉 offcut substrate (Fig. 3.51a) for which strain

balancing thickness of 17 nm was calculated using Eq. 3.1 and [149] (Fig. 3.51b). Carrier

thermalization rates for both types of carriers shown on the Fig. 3.51b are calculated

using the equation on the inset are given for the 32%P (red line) and 10%P (black line)

SB barriers. This type of strain balancing structure is similar to the one reported by

[15], yet featuring the GaAs interlayers and following the "Nakano Optimized" switching

sequence. This test structure’s spectral and morphological properties were compared



Chapter 3. High-Efficiency Quantum Well Solar Cells 126

Figure 3.50: Cross-sectional TEM images of the "Nakano Optimized" 10 ×
In0.10Ga0.90As/GaAs0.68P0.32 SBQWs grown at 650◦ on (a) on-axis, (b) 2◦ → 〈110〉,
and (c) 6◦ → 〈110〉 offcut substrates. (d) AFM image of the 2◦ → 〈110〉 sample surface
and (e) profile height analysis. (f) XRD spectra of the "Nakano Optimized" samples.

with the offcut samples from the previous series (21R016-3 and pressure and temperature

studies, 21R026-3 and 21R025-3, respectively).

Figure 3.52a showing the 2Theta/Ω XRD spectra of the samples with thin, 32%P strain

balancing grown under various conditions, i.e. changing pressure and temperature, and

of the new In0.10Ga0.90As/GaAs0.90P0.10 10 × QW structure featuring the same switch-

ing sequence and grown at 650◦C and 100 mbar. Qualitatively, presence of the SL fringes

indicating the recovery of the planar QW growth can be observed in the low-phosphorous

SB sample with the QW structure grown on the offcut substrate also enabling the SL
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Figure 3.51: (a) QW test structure with 10%P 17 nm-thick GaAsP barriers and (b)
calculated GaAsyP1−y barrier thicknesses for each y%P satisfying the strain balancing

condition for 9.2 nm-thick In0.10Ga0.90As QWs.

XRD characterization for extracting the SL period and ex-situ strain (Fig. 3.52b, c).

Fig. 3.52b shows calculated statistical distribution of SL period of 28.8 ± 0.6 nm, while

the nominal thickness of the QW and SB stack is 28.2 nm considering that the GaAs in-

terlayers present on both sides of strain balancing are 1 nm each. Average strain shown

on Fig. 3.52c is 423 ppm which is nearly 10 times lower compared to the switching

sequence samples grown on on-axis substrates. This significant strain variation is likely

a result of the growth rate inconsistencies due to the offcut. While FWHM of the SL

fringes of 260 arcsec is comparable to that of the sample 21R016-4 grown on the on-axis

substrate (263 arcsec), the Pendellosung fringes appear to have an onset of a subset

superlattice in the sample 21R032-4 grown on 2◦ → 〈110〉 offcut substrate which is more

prominently seen in the splitting of the SL+1 peak on Fig. 3.52 (blue line). This likely

can be attributed to the periodic lateral non-uniformity.

The apparent recovery of the planar SL growth achieved by using 17 nm-thick phosphorous-

poor strain balancing is accompanied with the changes in QW luminescent properties.

PL spectra of the offcut samples with 32%P and 10%P strain balancing are shown on Fig.

3.53a. The notable increase in PL intensity is observed in the In0.10Ga0.90As/GaAs0.90P0.10
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Figure 3.52: (a) 2Theta/ω XRD spectra of the "Nakano Optimized" switching se-
quence 10 × QW samples with GaAs0.68P0.32 strain balancing grown at 650◦C and
100 mbar, reduced T, increased T and pressure and of the sample with GaAs0.90P0.10
17 nm-thick strain balancing grown at 650◦C and 100 mbar. (b) Superlattice period
statistical distribution calculated from the SL fringes analysis and (c) average strain.

structure indicating lowered non-radiative carrier loss. The QW PL peak position was

extracted and plotted on Fig. 3.53b showing 10 nm PL peak red shift in the 10%P

sample compared to the sample grown under the same conditions, but with 32%P strain

balancing. The simulated QW emission wavelength for the ideal In0.10Ga0.90As QW

system was 948 nm not matching the measured value of 927 nm which based on the

nextnano corresponds rather to the predicted In0.08Ga0.92As or to the QW structure

with graded barriers. A blue shift of the PL peak of the QW structure grown at elevated

pressure and unexpectedly increased growth temperature is observed as well, however,

to establish the reason for this phenomenon, as well as to identify the reason for the

QW peak intensity suppression additional calibrations of the individual films need to
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Figure 3.53: (a) PL spectra of the "Nakano Optimized" switching sequence 10 × QW
samples with GaAs0.68P0.32 strain balancing grown at 650◦C and 100 mbar, reduced
T, increased T and pressure and of the sample with GaAs0.90P0.10 17 nm-thick strain
balancing grown at 650◦C and 100 mbar. (b) QW peak wavelength and (c) relative PL
intensity of the QW peak normalized to the bulk GaAs PL intensity for each sample.

be performed (growth rate and composition), yet, since there was no observed benefit

to using these growth conditions (in contrary, from a theoretical standpoint growth of

the SLs at lowered temperatures is preferred), this work was not continued. Figure

3.53c shows the calculated ratios between the QW and bulk GaAs PL peak intensities.

Both QW structures grown at 620◦C and at 650◦, but with GaAs0.90P0.10 SB resulted

in higher QW-to-bulk PL intensity ratio compared to the nominal "Nakano Optimized"

structure with 32%P strain balancing, however, while lowering the Tgrowth increased the

PL by 1.7, the difference observed in the low-phosphorous strain balancing sample is

more dramatic showing a PL enhancement by 2.6 compared to the 21R016-3 sample.

Consequently, it would be quite interesting to investigate how this structure can be fur-

ther improved if a combination of temperature and phosphorous-poor strain balancing

is employed.

To assess the influence of the structural improvement on the electronic properties of the
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QW regions with 32%P and with 10%P strain balancing layers, temperature-dependent

PL spectroscopy analysis was carried out. PL spectra acquisition was performed at

temperatures from 50 K to 300 K using He cryostat under 532 nm laser excitation.

Using temperature-dependent PL peak intensity, I(T ), analysis expressed by Arrhenius

behavior shown on Eq. 3.20 relative rate of non-radiative carrier (Ci(32%P )/Ci(10%P ))

loss in the QW structures can be assessed [114]. The QW PL peak intensities dependent

on temperature are plotted on Fig. 3.54. The calculated fit parameters, trap activation

energy Ea1 and relative non-radiative lifetime C1 are 28 meV for each QW structure and

66 and 8 for the 32%P and 10%P QW structures, respectively, indicating 8.3 reduction

in the non-radiative recombination rate in the QW structure with phosphorous-poor

strain balancing.

I(T ) ∼ I(T0)
1 + ΣCiexp〈(− Eai

kBT
〉)

(3.20)

To rule out the InGaAs composition fluctuation concerns arising from the luminescent

properties of the QW structures as one of the possible reasons for blue shifting of the QW

PL peak, a plain 30 nm-thick InGaAs films were grown on 2◦ → 〈110〉 and 6◦ → 〈110〉

offcut substrates and properties of these samples were compared against the previously

grown sample ( 6◦ → 〈110〉 offcut) to identify any transient dependency of the TMIn

pick-up efficiency. The InGaAs composition was studied by XRD spectra fitting and PL

analysis. Figure 3.55a - c shows 2Theta/Ω XRD spectra of the nominally 30 nm-thick

In0.10Ga0.90As films and simulated spectra (Leptos) shown in grey with the appropriate

simulation parameters (film composition and thickness) listed. Position of the XRD

peaks resulting from compressively strained InGaAs films and period and position of

the secondary interference fringes are used to extract the film parameters. Grown in
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Figure 3.54: QW PL peak intensities dependent on the sample temperature. PL
data of the 10 × In0.10Ga0.90As/GaAs0.90P0.10 SBQW is shown in black and 10 ×
In0.10Ga0.90As/GaAs0.68P0.32 SBQW in red. The lines are trend lines generated using

fit parameters determined by Eq. 3.20.

2021, InGaAs films on both 2◦ → 〈110〉 and 6◦ → 〈110〉 offcuts are nearly identical

with thicknesses of 29.4 nm and In content of 10.1% (Fig. 3.55a and b, respectively).

Compared to the previous calibration sample with 31.5 nm-thick In0.106Ga0.894As (Fig.

3.55c), reduction in both growth rate and In incorporation are observed that indeed can

point to the lowered TMIn pick-up efficiency, however, the absolute 0.5%In reduction

is insufficient to cause the blue shifting of the QW PL observed in SL structures, so

it is likely that spectral properties of the QWs are mainly affected by the changes in

quantum confinement due to the diffusion as was shown by nextnano (Fig. 3.39). PL

analysis of the uncapped InGaAs is not quite feasible due to the prevalence of the

surface recombination (Fig. 3.55d), however, 2◦ → 〈110〉 sample exhibits a weak peak

at 948 nm likely coming from In0.10Ga0.90As film. The 2020 sample was grown on a

p-type highly Zn-doped substrate that typically produces broadening towards IR due to

parasitic recombination via impurity states, so analysis of the luminescence if peaks are
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Figure 3.55: 2Theta/ω XRD spectra of the nominally 30 nm-thick In0.10Ga0.90As
films (exactly repeated growth recipes only adjusted to the relevant reactor tempera-
ture) grown on (a) 2◦ → 〈110〉 and (b) 6◦ → 〈110〉 offcut (100)GaAs substrates in 2021
and (c) 6◦ → 〈110〉 offcut substrate in 2020 (reference sample). Experimental curves are
shown in color and simulated (Leptos) are shown in grey. Simulation parameters are
listed in the insets. (d) PL spectra of the 2020 and 2021 InGaAs calibrations samples.

closely spaced is nearly impossible.

To address the drastic strain differences observed in the superlattices grown on on-

axis substrates compared to the structures grown on 2◦ → 〈110〉 offcut a GaAs0.10P0.90

growth rate and composition calibration study was performed as well. XRD spectra of

the nominally 50 nm-thick GaAs0.90P0.10 films grown on 2◦ → 〈110〉 offcut and on on-

axis substrates are shown on Figure 3.56a and b, respectively. Fitting results (simulated

curves are shown in grey) suggest that growth rate and phosphorous incorporation in-

crease in on-axis-grown films compared to the GaAsP grown on offcut substrate (11.9%P

vs. 10.7%P and 54 nm vs. 52 nm, respectively).
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Figure 3.56: 2Theta/ω XRD spectra of the nominally 50 nm-thick GaAs0.90P0.10
films grown on (a) 2◦ → 〈110〉 offcut and (b) on-axis (100)GaAs substrates. Experi-
mental curves are shown in color and simulated (Leptos) are shown in grey. Simulation

parameters are listed in the insets.

The extended 25 × In0.10Ga0.90As/GaAs0.90P0.10 superlattices were grown on 2◦→ 〈110〉

offcut and on on-axis (100)GaAs substrates (the schematics is shown on Fig. 3.57). The

same switching sequence with GaAs interlayers (color-coded pink) were used. The XRD

spectra of these structures are shown on Fig. 3.58. Sharp, high-intensity SL peaks are

observed in on-axis sample (black line), while a more prominent double-peak feature is

developed in the offcut sample (red line) with extended QW region compared to the

21R032-4 sample with only 10 periods of QWs. Using the Eq. 3.19 and 3.18, for each

subset of SL peaks the corresponding period and strain can be extracted and are 28.4 nm

and 1698 ppm and 27.8 nm and 169 ppm, respectively. On-axis SL sample’s period and

strain are 29.5 nm and 340 ppm. While FWHM of a double peak is not a representative

measure (resulting in 411 arcsec), the FWHM of the SL peaks of on-axis sample is

notably reduced compared to that of the samples with 10× In0.10Ga0.90As/GaAs0.68P0.32

SBQWs and is 69 arcsec.

Comparison between the 10× In0.1Ga0.9As/GaAs0.9P0.1 and 25× In0.1Ga0.9As/GaAs0.9P0.1

SL XRD spectra is shown on Fig. 3.59a and corresponding in-situ EpiTT curvature

(green line with red lines shown as guides due to the noise in the original curve resulting
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Figure 3.57: 25 × In0.10Ga0.90As/GaAs0.90P0.10 superlattice test structure with 1
nm-thick GaAs interlayers.

from instrumental issue) and reflectivity spectra (blue lines) are given on Fig. 3.59b and

c for the 10 and 25 periods of QWs, respectively. In Fig. 3.59a, the grid lines are placed

to allocate the coinciding peaks in each sample. EpiTT reflectivity curve in the 25 ×

SBQW starts descending more rapidly at 9th SL period and, more interestingly, this is

the point where the type of strain suddenly switches from tensile to compressive (Fig.

3.59b). The curvature slope in the 21R032-4 sample with only 10 × SBQW periods is

also lower (Fig. 3.59c), 0.0059 km−1/s compared to ∼0.012 km−1/s in the first 10 peri-

ods of 25 × SBQW structure (the approximation sign is used due to noise). This change

might be a consequence of some growth adjustments (new temperature calibration, etc.).

Flipping the type of strain in the extended SL can be well correlated with the observed

bimodality in the XRD spectrum suggesting that some relaxation mechanism, also likely

responsible for the wavy growth onset, is taking place, yet at the same time, a similar

curvature change can be seen in the on-axis sample as well (Fig. 3.60). To claim that

the partial relaxation and formation of a sub-superlattice due to offcut a TEM study is

required.
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Figure 3.58: 2Theta/ω XRD spectra of 25 × In0.10Ga0.90As/GaAs0.90P0.10 superlat-
tice test structure with 1 nm-thick GaAs interlayers grown on on-axis substrate (black

line) and on 2◦ → 〈110〉 offcut (red line).

Using low-phosphorous strain balancing barriers apparently led to the interface recovery

and prevention of the formation of the periodic domains of opposite strain propagating

through the superlattice, however, the origin of the superlattice subset with a differ-

ent strain and period is to be investigated. Cross-sectional TEM images of the 25 ×

In0.10Ga0.90As/GaAs0.90P0.10 grown on on-axis and on 2◦ → 〈110〉 offcut substrate are

shown on Fig. 3.61a, b and c, d, respectively. Shown on Fig. 3.61a, morphology of

the SL grown on on-axis substrate is pristine, similar to the structure with 32%P strain

balancing (Fig. 3.50a), and from a closer analysis (Fig. 3.61b) thicknesses of QW and

SB are 8.1 ± 0.7 nm and 14 ± 0.6 nm, respectively, with the distribution being a result

of uniform interface roughness. The target values of the layers were 9.2 nm for the

In0.10Ga0.90As QW and 17 nm for the GaAs0.90P0.10 SB, so elevated strain identified

by XRD analysis in the on-axis samples can be attributed to the substantially reduced
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Figure 3.59: (a) 2Theta/ω XRD spectra of 10× and 25×
In0.10Ga0.90As/GaAs0.90P0.10 superlattice test structures. EpiTT in-situ reflec-
tivity and curvature of the (b) 25 × SBQW and (c) 10 × SBQW. Both are grown on

2◦ → 〈110〉 offcut substrates.

GaAsP growth rate. Analyzing the TEM images of the SL grown on the offcut substrate

(Fig. 3.61c), multiplication of the ripples propagating at ∼30◦ to the growth plane is

observed starting from 8th SL period which in turn must be associated with the change

in EpiTT strain. Thickness modulations can be clearly seen in Fig. 3.61d. The QW

layer thickness ranges from 8.8 nm to 14.6 nm (up to 5.8 nm difference within a period

of 180 nm) and SB layer thickness changes from 14.0 nm to 21.3 nm (∆tSB = 7.3 nm)

reaching its minima and maxima where underlying QW thickness is at its maximum

and minimum values. Another important observation is that while the interface coming

from thin region of InGaAs to thickened GaAsP appears sharp, switching from bunched

InGaAs to strain balancing is more diffuse. Presence of laterally spaced regions with

periods of 30.1 nm (along the growth terraces) and 28.6 nm (at the steps) can explain

the bi-modal XRD SL features.



Chapter 3. High-Efficiency Quantum Well Solar Cells 137

Figure 3.60: EpiTT in-situ reflectivity and curvature of the 25 × SBQW grown on
on-axis substrate.

The possible solutions, such as changing substrate offcut direction (for instance, the

QW structures and QW solar cells shown in [15] are grown on 2◦ → 〈111〉B (100)GaAs

substrates) and QW growth temperature, are investigated in the following section.

3.4.6.3 Influence of the Offcut and Growth Temperature on SL Morphology

First, the 25× and 25× In0.10Ga0.90As/GaAs0.90P0.10 superlattice test structures were

repeated on alternative offcut substrates. It is notable that the bimodal behavior in XRD

SL peaks appears to be suppressed in the 6◦ → 〈111〉A sample (Fig. 3.62a), while the

XRD and EpiTT strain in this sample are the highest (Table 3.3). Compared to the QW

structure grown on 2◦ → 〈110〉, 2◦ → 〈111〉B sample exhibits different SL period which

is identified by the Pendellosung peaks offset in Fig. 3.62b, while degradation of the

secondary SL peaks likely corresponding to the suppressed step bunching and thickness

modulation is observed in 2◦ → 〈111〉A sample (Fig. 3.62c). An apparent structural

improvement is well correlated with the luminescent properties with the highest relative

intensity of the QW peak in the 2◦ → 〈111〉A sample (Fig. 3.63). Thus, offcut direction
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Figure 3.61: Cross-sectional TEM images of the 25× In0.10Ga0.90As/GaAs0.90P0.10
superlattices grow on (a) on-axis substrate and on (c) 2◦ → 〈110〉 offcut substrate.
Zoom-in images of the respective outlined regions are shown in (b) and (d), corre-

spondingly. The average and local thicknesses are denoted where applies.
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Figure 3.62: (a) 2Theta/ω XRD spectra of the 25× and 25×
In0.10Ga0.90As/GaAs0.90P0.10 superlattice test structures grown on 2◦ → 〈111〉A
(red), 2◦ → 〈111〉B (blue), and 6◦ → 〈111〉A (black) offcut substrates. Comparison
between the 2◦ → 〈110〉 (orange shaded) and (b)2◦ → 〈111〉A and (c) 2◦ → 〈111〉B.

From XRD: 2◦ → 〈111〉B 2◦ → 〈111〉A 6◦ → 〈111〉A

Period, nm 28.7 29.1 29.7
Strain, ppm 667±391 902±42 1645±322

FWHM, arcsec 403 296 352

From EpiTT: 2◦ → 〈111〉B 2◦ → 〈111〉A 6◦ → 〈111〉A

∆R 0.003 0.002 0.010
Strain, ppm 335 -579 827

Table 3.3: QW SL period, strain and peak FWHM extracted from XRD and reduction
in reflectivity (∆R) and strain extracted from curvature monitored with in-situ EpiTT.

was demonstrated to affect the step bunching rate and it was shown that using 2◦ →

〈111〉A (100)GaAs substrates is preferred for more uniform QW growth. Reduction

in step bunching rate that is responsible for the development of the wavy growth and

increased roughness is dependent on the incident flux of adatoms and also on the type

and number of the available bonds that at the growth step, and the lateral growth rate

exponentially depends on the activation energy of the adatom cite that scales with the

number of As bonds [114].
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Figure 3.63: Normalized (to GaAs peak) PL spectra of the 25× and 25×
In0.10Ga0.90As/GaAs0.90P0.10 superlattices grown on 2◦ → 〈110〉 (red), 2◦ → 〈111〉A

(yellow), and 2◦ → 〈111〉B (blue).

Next, an impact of the growth temperature, Tgrowth was studied. Figure 3.64a shows

a comparison between the XRD spectra of the 2◦ → 〈110〉 samples grown at 650◦C

and 600◦C with a significant narrowing of the SL peaks in the low-temperature sample.

Reduction of the SL peaks FWHM is observed as well as no sublattice is identified in the

600◦C sample. XRD spectra of the QW structures grown at low Tgrowth on on-axis and

on offcut substrates are shown on Fig. 3.64b with the corresponding FWHM of the first-

order SL peaks denoted to the right. While no sublattice features are identified in neither

sample, there is a clear variation in FWHM which is a metric of interface roughness.

Normalized PL spectra are shown on Fig. 3.64c and clearly demonstrate ∼1.8 times

relative intensity improvement in 2◦ → 〈110〉 and 2◦ → 〈111〉B samples compared to the

PL of the QW structures grown at 650◦C, yet PL signal appears to be suppressed in the

2◦ → 〈111〉A 600◦C compared to its high-temperature counterpart making luminescent

properties of the samples grown on 2◦ offcut substrates nearly identical.

A detailed analysis of the XRD parameters of the temperature study samples is shown

on Fig. 3.65. It was expected that the interface roughness would increase in the 0◦
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Figure 3.64: (a) 2Theta/ω XRD spectra of the 25× and 25×
In0.10Ga0.90As/GaAs0.90P0.10 superlattice test structures grown on 2◦ → 〈110〉
at Tgrowth=650◦C (red) and Tgrowth=600◦C (black). (b) XRD spectra of the
Tgrowth=600◦C samples grown on on-axis (0◦) and offcut substrates with FWHM
of the first-order SL peaks denoted. (c) PL spectra of the corresponding structures

normalized to the GaAs peak intensity.

sample due to reduced adatom diffusion suppressed by lowering the Tgrowth, yet in all

other samples a dramatic reduction in FWHM is observed (Fig. 3.65a). The average

XRD strain values dynamics shown on Fig. 3.65b is inconsistent between the samples.

First, type of strain is changed from compressive at 650◦C to lightly tensile at 600◦C

in the 2◦ samples irrespective of the offcut direction, while on-axis sample only shows

strain reduction by 100 ppm. The magnitude of the strain change in the offcut samples

is the lowest in the 2◦ → 〈110〉 sample and coincidentally, the SL period in this sample

is minimally affected as well compared to other samples (Fig. 3.65c). At the same time,

Fig. 3.65c demonstrates that better QW SL period control is achieved by switching to

600◦C (the target period is 28.2 nm resulting from 9.2 nm-thick QW, double 1 nm-thick
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Figure 3.65: Breakdown of the XRD SL peak analysis: (a) first-order SL peak
FWHM, (b) average strain, and (c) SL period (target is 28.2 nm) for the samples

grown at 600◦C (black) and 650◦C (red) on various offcut substrates.

GaAs interlayers, and 17 nm strain balancing).

Reducing the Tgrowth was found to make a profound impact on the SL uniformity and

in the next section properties of the devices with 12 × In0.10Ga0.90As/GaAs0.90P0.10

grown at 650◦C, providing a direct comparison with the In0.10Ga0.90As/GaAs0.68P0.32

QW devices, and 600◦C to investigate the influence of further SL refinement.

3.4.6.4 Influence of the QW Morphological Properties on Device Perfor-

mance

Figure 3.66 shows a solar cell design featuring 6× and 12× In0.10Ga0.90As/GaAs0.90P0.10

QWs. These device structures were grown on the on-axis and on 2◦ → 〈110〉 sub-

strates. The growth temperature was maintained at 650◦C in the bulk of all devices,
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Figure 3.66: Design of the 6 × or 12 × In0.10Ga0.90As/GaAs0.90P0.10 QW solar cells
and QW structure with the nomenclature of the samples dependent on the QW growth

temperature and substrate offcut.

and QW layers were grown at either 600◦C or 650◦C. Compared to the previous solar

cells with 4.9 nm-thick GaAs0.68P0.32 strain balancing, this set of devices had 17 nm-

thick GaAs0.90P0.10 and "Nakano Optimized" precursor switching sequence throughout

the QW layers.

In general, since this study is a preliminary work on developing a GaAs solar cell design

that could be used as a part of dual- or triple-junction device, the optimization efforts

should be placed on the samples grown on offcut substrates, however, 0◦ sample was

included as well to establish a correlation between the spectral properties of solar cells

and QW structure. EQE spectra of the 6 × and 12 × In0.10Ga0.90As/GaAs0.90P0.10 QW

solar cells compared to the baseline device (no QWs) are shown on Fig. 3.67a. The drop

in the window/emitter collection efficiency was attributed to the unintentional reduction

in doping in these layers compared to the baseline that weakened the screening E-field

at the front interface. As well, employed "Nakano Optimized" switching sequence for

possible interface improvement in the emitter appeared to worsen the collection in the

emitter. In the on-axis samples specifically, the further EQE reduction is likely due

to the ordering effects in InGaP and InAlP that are highly sensitive to the offcut. In
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Figure 3.67: (a) EQE spectra of the baseline (no QW) and 6× and 12×
In0.10Ga0.90As/GaAs0.90P0.10 QW solar cells grown on on-axis and on 2◦ → 〈110〉

substrates at 600◦C or 650◦C and (b) EQE of the QW region and QW Jsc.

more detail ordering in InGaP and InAlP is discussed in the subsequent chapter. By

subtracting the baseline Urbach tail EQE and integrating spectral response modulated

by the AM0 spectral irradiance over the QW absorption wavelength range (Fig. 3.67b),

the current per QW was calculated. For the offcut samples, the current production in

the QW region linearly scales with the number of QW periods.

Comparing the current per well results, the samples with phosphorous-poor strain bal-

ancing have up to 5 times higher Jsc/QW than the cells with 32%P strain balancing.

AM0 IV characteristics of the In0.10Ga0.90As/GaAs0.90P0.10 QW solar cells in comparison

with the strained QW cell and In0.10Ga0.90As/GaAs0.68P0.32 QW solar cells are shown

on Fig. 3.68. One major observation is the drop in Jsc, despite the superior spectral

properties of In0.10Ga0.90As/GaAs0.90P0.10 QWs, primarily associated with the emitter

and window layers deterioration in the 10%P QW cells (more pronounced in the on-axis

samples), while in strained QW cell it is a result of nearly 1 µm thinner GaAs base. The

145 mV Voc reduction in the In0.10Ga0.90As/GaAs0.68P0.32 QW solar cells observed with
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Figure 3.68: AM0 light IV curves of strained 3×In0.06Ga0.94As/GaAs,
strain-balanced 3× and 12×InxGa1−xAs/GaAs0.68P0.32 and 6× and 12×
In0.10Ga0.90As/GaAs0.90P0.10 QW solar cells grown on the offcut and on-axis

substrates.

increase in the QW number from 3 to 12 is not shown in the In0.10Ga0.90As/GaAs0.90P0.10

QW cells with 6 or 12 QWs which retain above 1.0 V Voc.

3.4.7 Spectroscopic Analysis of the Strained QW Structures and Solar

Cells

Considering the radiative recombination suppression in the QW solar cells and following

the derivation of the QFLS in the QWs, the offset from the host material will increase

due to the formation of low-energy states in the QWs, leading to enhanced absorption,

and rapid (compared to the recombination rate) carrier escape from the QWs, which can

be engineered by lowering the energy barriers for carrier thermalization or by thinning

the strain balancing layers. From the EL-EQE reciprocity theorem expressed by Eq.

3.9, the relation between the measured and reciprocity-derived EL can be expressed in
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terms of the front-surface radiative recombination probability in the QWs (important

correction due to the anisotropic QW emission compared to the bulk material) weighted

by the sum of the events that generated carriers can experience inside the QW region

written in terms of carrier escape, REscape, and radiative, RRad, rates in a QW region:

φMeasured
EL,QW = RRad,norm

REscape +RRad,total
φEQEReciprocityEL,QW (3.21)

Measured EL flux is coming from the front surface radiative recombination events that

can be dominated by the carrier losses that are not taken into account in the reciprocity

theorem and that cause the QFLS offset. Hence, we can relate the QFLS offset in the

QW region with the carrier recombination or escape rates:

RRad,norm
REscape +RRad,total

= exp

(
q∆VF
kBT

)
(3.22)

This equation can be rewritten to express the QFLS offset in a QW:

∆VF = kBT

q
ln

(
RRad,norm

REscape +RRad,total

)
= −kBT

q
ln

(
REscape +RRad,total

RRad,norm

)
, (3.23)

dependent on the radiative recombination rate (RRad) and total carrier escape. First, if

radiative recombination rate is much greater than escape and anisotropy is not present,

the QFLS offset becomes 0, since the fraction in brackets become 1 (this scenario is likely

in the deep QWs such that thermal escape is suppressed, with a strong overlap between

the electron and hole wave functions due to the electric field across the QW region being

small and quantum confined Stark effect not observed, QWs are weakly strained), and,



Chapter 3. High-Efficiency Quantum Well Solar Cells 147

due to the near-zero electric field, the tunneling escape rate is suppressed, in a pristine

quality material, the QFLS offset will deepen in the sample dominated by the carrier

escape:

REscape = RTh +RTun = τ−1
Th + τ−1

Tun, (3.24)

where τTh is thermal escape and τTun is tunneling escape lifetimes that are defined by

Eq. 3.2 and 3.3.

Now, moving on with the analysis, the assumption that the Rrad of the quantum wells

that can be measured via EL is equivalent to the isotropic emission that can be collected

from the bulk material is often not correct, since in strongly confined QWs or due to

a high refractive index difference between the QW and the barriers, the QW emission

can preferentially propagate in-plane and emit off of the solar cell edges. So in the QW

systems where preferential emission direction can be a factor optically suppressing the

front-surface emission (characterized by RRad,norm), the equation will take the following

form:

∆VF = kBT

q
ln

(
RRad,norm

REscape +RRad

)
= −kBT

q
ln

(
RRad

RRad,norm
+ REscape
RRad,norm

)
. (3.25)

Here we can see that in highly strained QWs, even if we ignore the escape and non-

radiative recombination components, the QFLS will be less than in the host material.

Somewhat added complexity comes if we take into account the connectedness of the QWs

and bulk material. Under light excitation, sub-bandgap generation is specific to the QWs
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and optically excited carriers in the QWs, should they get successfully collected before

they recombine, contribute to the Jsc of the solar cell, which is anticipated from a good

QW-enhanced device. However, by injecting the carriers under applied forward bias and

collecting the EL emission, we are observing the radiative recombination coming from

the carriers that transit across the QW region , get captured, and recombine or escape

out of the QW, which essentially requires the equation to be modified accordingly. In

a QW solar cell system under dark operation, QWs serve as recombination centers for

the carriers lowering the bulk QFLS by providing an additional recombination path for

the carriers. This leads to the necessity of introducing the capture probability factor,

σCapture, into the QFLS equation to account for the different origin of the carriers that

contribute to the measured EL emission:

∆VF = −kBT
q

ln

(
σCapture

[
RRad

RRad,front
+ REscape
RRad,front

])
(3.26)

The reciprocity will hold if σCapture
[

RRad
RRad,front

+ REscape
RRad,front

]
= 1, so ignoring the anisotropy,

this will mean that σCaptureREscape/RRad = 1, i.e. assuming unity capture rate, the

probability of carrier escape from the QWs should be in an equilibrium with the front-

surface radiative recombination.

To determine how carrier escape relate to the QFLS offset the following study was

performed. To understand the impact carrier escape can make on the QFLS offset

in the QWs, recall the physical significance of the QFLS which indicates the quasi-

stationary population of the energy states under non-equilibrium conditions, which in

a bulk semiconductor is defined as VF = kT/qln(np/(n2
i )), emptying the QW states by

carrier escape is more likely for the states that provide the smallest energy barrier for

the carriers, thus, deeper states are more likely to be QFLS-limiting inside the QWs. In
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Figure 3.69: (a) Simulated (nextnano) electron energy levels in the
In0.08Ga0.92As/GaAs strained QWs dependent on the GaAs barrier width; (b)
measured QFLS offset extracted from the reciprocity relation dependent on the GaAs

barrier width [131]

such system, carrier escape from the shallow states will result in an increase of the QFLS

offset. This might explain the previously observed suppression of radiative efficiency of

the QWs associated with stronger QFLS offset in the strongly coupled QWs, in which

perturbed QW energy states split causing enhanced thermal escape rate [131].

Figure 3.69a shows a schematics of the electron energy states in the In0.08Ga0.92As/GaAs

triple strained QWs. The energy offsets on the Y axis indicate energy barrier heights for

the carriers excited to each state, and X axis indicates GaAs barrier thicknesses. It can

be observed that stronger QW coupling (thinner GaAs barriers) is related to a higher

splitting between the energy states and leads to formation of shallow (15 meV) and deep

(50 meV) energy states compared to the isolated QW case resulting in a degenerate

energy state ∼40 meV below the conduction band (at barrier thicknesses over 15 nm).

At barrier thickness of 4 nm, the electron barrier heights are 28 meV, 37 meV, and 42

meV, and as shown on Fig. 3.69b QFLS offset is 14 meV. With thinner, 2 nm-thick

barriers, the electron energy states are splitting further apart, 20 meV, 38 meV, and 50

meV, corresponding to 22 meV QFLS offset.
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Figure 3.70: (a) Electron and (b) hole energy states in the QWs corresponding to
the reciprocity-derived QFLS offset in the QW region. The associated GaAs barriers

widths are annotated.

The thermal escape energy barrier height for hole and electron states in the In0.08Ga0.92As

QWs separated with varied thickness GaAs barriers (simulated in nextnano) and associ-

ated QFLS offset calculated from the EL-EQE reciprocity are plotted on Fig. 3.70a and

b, respectively. Quantum well coupling, as the barrier gets thinner, causes the degener-

ate energy states to split producing shallow and deep states. The hole band structure

modulation is less dramatic than in electron states with the maximum splitting reaching

10 meV for the shallow energy state in the strongly coupled QWs (1 nm barrier) and

only -5 meV for the deeper state. At the same time, the electron barrier lowering reaches

17 meV and deeper state is shifted down by 13 meV in the strongly coupled QWs. At

the same time, QFLS offset increases by 25 meV. The analysis of how state splitting

affects carrier escape rate is needed for both types of carriers.

Figure 83.71 shows carrier thermalization rate normalized to the rates corresponding

to the highest QFLS offset (in strongly coupled QWs). The rates are calculated for

each band structure using Eq. 7. Interestingly, linear relation between the QFLS offset

and electron thermalization rate is established, corresponding to the observed electronic
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Figure 3.71: Normalized hole (black) and electron (light blue) thermalization rate for
QFLS offset.

state splitting (Fig. 3.70a). For holes, the state splitting is smaller and hole effective

masses are ∼8 times higher (for heavy holes), so their thermalization rate does not

change much with QW coupling, hence, contribution of hole escape into QFLS offset

is relatively insignificant compared to the electrons. Thus, it can be concluded that

electron thermalization from the topmost energy state makes the lowest energy state

dominating the radiative QFLS limit, since it is more likely to be populated and retain

long-lived carriers. This might suggest that enhanced carrier escape rate in strongly

coupled QWs is beneficial for efficient carrier collection and higher obtainable Jsc, yet

will lower the Voc by lowering the QFLS in the QW region due to the QFLS being largely

determined by the lowest energy states. Coupling of QWs, on the one hand, provides

a more efficient carrier escape due to the formation of low-barrier state, and on the

other hand, formation of the deep state associated with the coupling lowers the QFLS

relatively to the uncoupled QW with the same %In.
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3.4.8 Parametric Predictions, Projections, and Suggestions for Dual

Junction Solar Cell

Developing QW GaAs solar cells with retained Voc and maximized current collection

from the QW region is important for integration into multijunction device. While such

device had not been implemented explicitly within the framework of the present report,

collecting the existing parameters and trends and summarizing them to predict the

properties of the dual-junction device is possible. In particular, empirical parameters

of the top InGaP solar cell are available as indicated in the following chapter and,

optimistic projections can be built using state-of-the-art reports demonstrating superior

and, in principle, achievable performance of the InGaP solar cell. For the following

illustrations, extrapolation of current was based on measured gain of Jsc per QW of

30 µA/cm2 and progressive reduction of Voc and fill factor corresponding to the QW

structures with optimized interfaces and reduced impact of step bunching were assumed.

In principle, top InGaP sub-cell can be designed to produce ∼19 mA/cm2 [15], so for

100 QWs with steady ∆Jsc per QW, the current gain of up to 3 mA/cm2. Figure 3.72

shows predicted efficiency of the 2J cell with increase in the bottom GaAs cell Jsc for

different scenarios of fill factor including steady 89% (as was achieved in a 2J device with

no QWs in GaAs subcell), 86% assuming the reduction due to inclusion of the QWs, and

progressively changing fill factor. The maximum projected efficiency was 29.3% which

can be further increased if bottom cell’s voltage retention is achieved. Thus, it is crucial

to improve both bulk GaAs and QW structural and electronic properties to achieve Voc

approaching 1 V, which can be possible if GaAs solar cell is operated in radiative limit

with no QWs and only fundamental dark current increase is observed due to the QWs

(due to the bandgap offset).
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Figure 3.72: InGaP/GaAs dual junction solar cell efficiency projections with fixed fill
factor values limited by the series resistance (89%) and retained at 86%, limited by the
GaAs solar cell and not dependent on the number of QWs, as well as with progressively
reducing fill factor as the QW number increases. Voc of the InGaP sub-cell was fixed
at 1.38 V and Voc reduction in the GaAs sub-cell is shown on the top axis. The current

gain per QW is 30 µA/cm2.

With use of antimony as a surfactant for managing ordering in the top InGaP sub-

cell and, possibly, alleviating step bunching in the QWs, this efficiency target can be

achieved, however, junction design of the InGaP sub-cell can be adjusted (possibly

also consider AlGaInP/InGaP heterojunction design). Reduction of the QW growth

temperature from 650oC to 600oC was also found promising for managing step bunching.

Adding DBR enabling up to 96% increase in the QW absorption and will allow to achieve

the same current gain from 50 QWs as would be produced by 100 QWs with no DBR.



Chapter 4

Advances in Development of

Quantum-Dot Enhanced Dual

Junction InGaP/GaAs Solar Cells

for CubeSat

4.1 Summary

Dual-junction In0.49Ga0.51P/GaAs (further, InGaP/GaAs, unless specified otherwise)

solar cells were fully grown and fabricated on two types of offcut GaAs substrates (offcuts

of 2◦ towards 〈110〉 and 6◦ towards 〈111〉A). For the purpose of accurate predictions of the

2J cell performance under changing parameters, the well-matched Sentaurus model was

built. Incorporation of QDs into the bottom cell intrinsic region and layer optimizations

for scaled-up devices (26.5 cm2) are in progress, however, this report further shows the

154
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accomplishments in these fields. The progress in development of the large-area 2J QD

solar cells was reported [155, 156].

4.2 Motivation and Background

The goal of the CubeSat systems is to accelerate the introduction of the innovative space

technology components. A CubeSat represents a small spacecraft (nanosatellite) that

can accomodate a variety of functional units and enables a low-cost launch compared to

the conventional satellite missions (https://www.cubesat.org). The work on developing

quantum-dot-enhanced solar cells was a part of a CubeSat launch that was intended to

demonstrate the capabilities of the nano-enhanced power components produced at RIT

and compare them with commercially available power units in the space conditions. QD-

enhanced solar cells for power harvesting, metal-free carbon-nanotube (CNT) conductors

for power transmission, and CNT-enhanced lithium ion batteries for storage are the test

components on the CubeSat. Development of the QD-enhanced 2J InGaP/GaAs solar

cell was the objective of the current work (CNT wiring and batteries were developed

by the collaborators) [156]. One of the requirements for the CubeSat solar cells was

to target commercial cells parameters, hence, large-area solar cells development was

important. For this work, ∼ 27 cm2 devices were fabricated as the end product.

For the space PV, radiation tolerance of the solar cells is important as the main en-

vironmental factor in space is presence of high-energy charged particles (electrons and

protons) [157, 158]. The degradation of the solar cells under the incident flux of particles

can be mathematically described in terms of the diffusion length:
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Figure 4.1: (a) Baseline solar cell (no QDs); (b) QD solar cell; (c) a single period of
a QD superlattice including InAs QDs, GaAs barriers, and GaP strain compensation.

1
L2
φ

= 1
L2

0
+KLφ, (4.1)

where L0 is a minority carrier diffusion length in the material before exposure to the

radiation, Lφ is a minority carrier diffusion length after exposure of the cell to the

particle beam with fluence φ measured in number of 1MeV electrons with given energy

per unit area, and KL is a damage coefficient of the material [159]. In multijunction

cells, Jsc reduction in the current-limiting subcell due to the radiation damage is an

important issue to address. It is a GaAs subcell that gets most affected by the radiation

and incorporation of the quantum structures. QDs or QWs can assist in offsetting

the radiation-induced bulk carrier collection efficiency reduction as additional current

generated in the quantum structures region does not experience radiation damage [160].

Adding InAs QW/QD system to the intrinsic region of the GaAs subcell was widely

studied in terms of QD growth optimization, strain compensation, device layer design,

and radiation tolerance [161, 32, 162]. The 3J InGaP/GaAs/Ge baseline and QD solar

cell structures are shown on Fig. 4.1a and b, respectively. The QD structures incorpo-

rated in the intrinsic region of the middle cell represent InAs QDs, GaAs barriers, and

GaP strain compensation (Fig. 4.1). The mechanism of InAs QDs formation on GaAs
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Figure 4.2: Stranski-Krastanov QD growth mechanism [171].

relies on the strong compressive strain accumulated in InAs material due to the lattice

mismatch of 7.2% [163, 164]. Figure 4.2 shows the mechanism of a QD formation on

the strongly-mismatched substrate via formation of a strained, monolayer-thick wetting

layer and QD resulting from the further strain relaxation. Such growth mode requires

relatively low growth temperatures (∼ 450 - 490◦C) to increase the number of QD nu-

cleation centers and prevent an excessive migration of the adatoms along the growth

plane contributing in QD coalescence via Ostwald ripening mechanism [165]. Due to

the high vapor pressure of As, growth of the further high-temperature layers on top of

the QDs can cause QD desorption, that is why overpressure of AsH3 is necessary along

with capping of the QDs with low-temperature GaAs as shown on Fig. 4.1c [166, 167].

Growth of InAs QDs on GaAs was previously optimized at RIT allowing to achieve

uniform QD coverage with low degree of QD coalescence [168, 169, 170].

Radiation tolerance of the QD-enhanced solar cells was also investigated in comparison

to the baseline devices and for different numbers of QD layers. The radiation hardness

is typically characterized by the remaining factors of Jsc, Voc, fill factor, and efficiency

or power. Those are defined as a ratio between the parameter value after exposure

to the radiation with certain fluence to the initial parameter value. Figure 4.3 shows
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Figure 4.3: Radiation-induced decay of the 1 sun AM0 solar cell parameters: Jsc,
Voc, and power (remaining factors are shown in the left column and absolute values
are given on the right). Color-coded are numbers of the QD superlattices, where 0

corresponds to the baseline[159].

the remaining Jsc, Voc, and power as well as the absolute values of these parameters

for various numbers of the QD superlattices (no QDs, 5×QDs, 10×QDs, 15×QDs, and

20×QDs). This family of plots illustrates that both relative and absolute end-of-life

(i.e. after exposure to the 1 MeV 1E15 e-/cm2 radiation) Jsc of the QD solar cells is

higher than that of the baseline due to the extended absorption in the QDs and carrier

collection in the QD region unaffected by the radiation. This reflects on the remaining

power of the solar cells, Pmp,φ/Pmp,0. Maximum achieved recovery of the end-of-life

remaining power is 5% corresponding to the 20×QD solar cell compared to the baseline

device. These observations are supported by other studies as well [172, 158, 45, 173].
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4.3 Methods

Growth precursors and conditions and characterization tools described in Chapter 3,

Methods section, apply for this section as well. EQE spectroscopy of the tandem cells

requires light biasing of the subcells that are not being measured, such that DC current

exceeds the AC signal produced by the excitation of the measured cell. For ensuring

bottom GaAs cell is current limiting in the measurement, the InGaP subcell was illu-

minated with 470 nm LED, and for the InGaP EQE measurement, the GaAs cell was

illuminated with a 750 nm LED light source.

InGaP with target In content of ∼49% was grown at 650◦C, dopant precursors, DEZn

and Si2H6 were used for p-type top cell base and n-type emitter, respectively. Wide-

bandgap rear window layer in the top cell was realized with quaternary Al0.27In0.48Ga0.25P

alloy followed by the highly Zn-doped (2.1×1018 1/cm3) 30 nm-thick GaAs-lattice-

matched InGaP. The choice of the wide-bandgap (2.19 eV) quaternary window layer

composition was driven by a couple of factors. Having higher minority electron barrier

at the rear interface of the top solar cell is beneficial for preventing interface recombi-

nation. At the same time, further increase in the bandgap achievable by increasing an

Al fraction in the alloy, could lead to poorer incorporation of p-type Zn dopant. Sec-

ond, some wide-bandgap AlInGaP compositions have indirect bandgap which makes it

more challenging to establish the bandgap value by standard PL measurement. Thus,

the Al0.27In0.48Ga0.25P composition was targeted and successfully implemented. Other

layer characteristics including thicknesses and doping are shown on the device scheme

(Fig. 4.4). Modeling of the solar cells was performed using Sentaurus Device using

optical constants of the active materials measured by ellipsometry on RIT-produced

epitaxial films.
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Figure 4.4: Dual-junction InGaP/GaAs (a) baseline and (b) QD solar cell structures.

For the QD device, InAs quantum dots were grown in the intrinsic region of the bottom

GaAs subcell via the Stranski-Krastanov growth mode [164]. AsH3 and tertiarybuty-

larsine, TBAs, were tested as precursors for low-temperature QDs growth (∼450◦)[159].

The use of TBAs was considered due to the lower cracking temperature allowing better

control over the QD thickness and coalescence, however, the final set of the QD solar

cells was grown using AsH3. Since Stranski-Krastanov QD growth mechanism relies on

the build up of compressive strain allowing formation of the discrete QD islands on the

substrate surface when critical thickness corresponding to the mismatch between InAs

and GaAs is exceeded, to mitigate the overall residual strain, GaP strain compensation

layers were placed between the layers of QDs capped with GaAs [166, 174, 175].

Tunnel junction [3, 93] test structures were separately grown and fabricated first to eval-

uate their applicability for 1 sun operation (peak current density of the tunnel junction
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Figure 4.5: (a) Tunnel diode layer structure and (b) optical microscopy top view
image of the fabricated structures.

must exceed the limiting Jsc of the 2J cell). The tunnel diode structures were grown on

GaAs substrates along with the bottom and top cell window and back-surface field layers,

respectively. The devices were mesa-isolated on the substrate by self-aligned etch against

Au contacts to define the diode active areas (the largest devices were 0.0019 cm2). The

full structure and optical microscopy image of the transparent thinned hetero-tunnel

diodes fabricated in circular diodes are shown on Fig. 4.5.

Both baseline and QD cells were fabricated using standard III-V processing techniques

(manual processing including UV lithography patterning for defining the metal grids and

active areas combined with wet etch for mesa-isolating devices using selective III-V com-

pound etchants) in 1 cm2 devices (test structures) and in 26.5 cm2 solar cells grown on

4-inch substrates with 2◦ towards 〈110〉 offcut intended to be integrated onto the Cube-

Sat as a power supply unit. Metallization of the solar cells contacts was performed via

electroplating using Zn and Au combination for the rear-side annealed p-type contacts

and Ni and Au for the n-type front contacts, where Ni seed layer serves as an adhesion

for Au. Characterization of two-terminal monolithic 2J devices is more complicated than

that of the 1J solar cells due to the unaccessibility of the individual cells for measuring
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their electrical parameters directly. However, spectroscopy techniques (EQE and EL)

coupled with the electrical testing can be used for extracting the individual sub-cells

Voc’s using the reciprocity relation and for finding the approximate individual Jsc’s of

the subcells for their quality evaluation. Similarly to that described in Chapter 5, the

reciprocity relation was written for the diodes (top and bottom cells) connected in series

as a system of equations, such that Vtopoc and Vbotoc can be calculated from the relative

spectral irradiance of the biased cells under the injection current corresponding to the

1 sun integrated Jsc’s of the subcells and near-bandedge EQE:

ELtop = BB × EQEtop × exp
(qVtop
kBT

)
(4.2)

and

ELbot = BB × EQEbot × exp
(qVbot
kBT

)
(4.3)

while considering that thus extracted voltages normalized by the setup calibration con-

stant are related as:

Vtop + Vbot = Voc. (4.4)

Relative EL was used for this calculation, such that the ELtop and ELbot were related

as the ratio between the EL peak intensities that are representative of the absolute

irradiance corrected by a coefficient.
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4.4 Results and Discussion

The final 2J solar cells, both without and with QDs, feature a transparent tunnel diode

structure with p++ Al0.30Ga0.70As:C "emitter" and n++ GaAs:Te "base", both with

thicknesses of 10 nm and intrinsic, 2 nm-thick GaAs layer serving for mitigation of Te

memory effect [176, 177]. In addition, the final set of the 2J cells comprises hetero-

junction bottom GaAs cell with InGaP emitter and InAlP window layers for reduced

non-radiative dark current [131]. The n+ AlGaAs diffusion barrier is placed underneath

the tunnel diode to prevent the out-migration of dopant species from highly doped tun-

nel diode layer. Ordering effects in low-doped InGaP material causing the bandgap shift

were taken into account as well [178, 179, 180]. While elevated doping of InGaP with Zn

can partially address the ordering effects, as well as adjustments of other growth parame-

ters (III/V ratio and growth temperature), using larger offcut substrates for the tandem

growth [181] was found to resolve the issue without requiring any further calibration of

the growth regime.

The transparent tunnel diode design was partially inherited from the previously per-

formed studies [182]. Figure 4.6 shows the current-voltage characteristic of the tunnel

diodes collected from 19 devices yielding the average peak current density of 14 A/cm2.

The voltage drop across the tunnel diodes was not exceeding 50 µV in the current range

corresponding to the expected 1 sun Jsc of the tandem cell reaching up to 16.5 mA/cm2

under AM0 illumination with anti-reflective coating. These specifications allowed this

tunnel diode structure to be adapted for the RIT 2J solar cell without any further

adjustments as it is expected to provide reliable operation under 1 sun use.

The first optimization step that led to the increased the rear-side collection in the top

InGaP cell was development of a 2.19 eV In0.48Al0.27Ga0.25P (henceforth to be referred
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Figure 4.6: Family of the J-V characteristics of the AlGaAs/GaAs tunnel diodes.

as InAlGaP) back-surface field (BSF) in addition to the previously used highly-doped

InGaP:C. Figure 4.7 shows the overlayed EQE spectra of 1J test InGaP solar cells

with 600 nm-thick base with InGaP and bi-layer InAlGaP and InGaP BSF (the bi-

layer BSF is shown on Fig. 4.4). The purpose of using dual BSF was to initially

establish an electric field at the homointerface between InGaP base and highly-doped

InGaP BSF and further enhance minority carrier repulsion by introducing an energy

barrier. An integration of the spectral response of these solar cells modulated with the

AM0 spectrum irradiance (Eq. 4.5 analogous to the Eq. 2.25) yields total gain of ∼ 1

mA/cm2 by switching to the distributed BSF including creation of the minority-carrier

barrier by adding heterojunction and additional electric field established at the p-type

InGaP base and p+ InGaP BSF layer (base doping is 5×1016 1/cm3) allowing to repel

electrons from the rear interface of the solar cell increasing collection probability that

directly reflects on the spectral response and Jsc.

Jsc,EQE =
∫ λ2

λ1

qλ

hc
IAM0(λ)EQE(λ)dλ. (4.5)
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Figure 4.7: EQE spectra of the 1J InGaP solar cells with single-layer InGaP BSF
(orange shadowing) and combination of InAlGaP and InGaP BSF (black line) with

integrated 1 sun AM0 Jsc.

Significant overproduction of current in the top cell compared to the bottom cell is not

favorable for the optimal efficiency of the tandem cell as bottom cell becomes strongly

current-limiting reducing the resulting current output. The initial design of the top cell

with 600 nm-thick absorbing top cell base was developed first in 2018 and was found

to be not optimal requiring a reduction in the base thickness due to the overproduction

of current by the top cell by 3.3 mA/cm2 comparatively to the bottom GaAs cell.

Figure 4.8 shows the EQE spectra of the top and bottom cells with the integrated Jsc’s

corresponding to the 600 nm-thick top base. While current mismatch of ∼ 0.5 mA/cm2

would be preferred for the baseline device allowing to identify the current density gain

achieved with addition of QDs, the discrepancy between the currents of 3.3 mA/cm2,

as indicated by the integrated Jsc values, is unacceptable, so further adjustments in the

top cell were required. Making the bottom cell current-limiting is important for the test

purposes to be able to directly measure the current gain achievable with adding quantum

structures. The difference between the 2018 and new 2019 devices is in transitioning to

the heterojunction bottom cell that immediately reflected in higher EQE in the bottom

GaAs cell (the heterojunction bottom cell design is the same as in [131]). Another
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Figure 4.8: EQE spectra of the top cells with 600 nm-thick base and bottom cells
with the integrated Jsc’s denoted for the 2019 devices (solid lines).

nuance that is notable in the spectra on Fig. 4.8 is the band edge offset in the top cell.

This is attributed to the changing the substrate offcut from 6◦ in 2018 to 2◦ in 2019.

The magnitude of the band edge red shift is 50 meV corresponding to so-called 50 meV

anomaly [178] caused by the ordering in InGaP. This also promotes an increase in the

Jsc, along with the reduction in Voc, and needs to be taken into account.

Top cell base thickness was optimized for the InGaP material grown 2◦ offcut substrate.

Experimental results were used to predict the current and base thickness relation (Fig.

4.9). The experimentally obtained optical constants were used. With minority elec-

trons in the base, the change in their lifetime in the nanoseconds range did not have

a significant impact on the EQE shape due to high mobility in low-doped base (µe =

2722 cm2/V-s). Based on the simulation study, for the next set of samples, InGaP base

thickness was reduced to 400 nm. Figure 4.10 shows EQE spectra of the baseline 2J
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Figure 4.9: (a) Modeled and experimental EQE spectra of the InGaP cell with 600
nm-thick base; (b) dependency of the 1 sun Jsc on the base thickness. Green star

denotes the experimental value and the line is added as an eye guide.

subcells and 2J with QDs in the bottom cell. One can notice that close-to-target cur-

rent mismatch between the baseline top (12.44 mA/cm2) and bottom (11.85 mA/cm2) is

achieved. With the QD device, however, short-circuit response in the top cell is degraded

reducing the integrated Jsc down to 11.76 mA/cm2. At the same time, the current den-

sity gain from adding QDs to the bottom cell achieved 0.11 mA/cm2. The possible

reason for the degradation of the top cell can be elevated front surface recombination

velocity, since long-wavelength EQE corresponding to the base response is preserved as

high as in the baseline device. Thus, problems with either InAlP window or InGaP

emitter can be suspected. This has not been investigated yet, since more global issue

with incorporating QDs in the bottom cell was observed.

One-sun illumination J-V measurements of the baseline and QD devices were performed

and representative J-V characteristics are shown on Figure 4.12 with extracted parame-

ters listed on the graph inset. On average, the drop of Voc in the QD cells is ∼200 mV.

In addition, there is a visible knee occurring near maximum power point influencing the

fill factor (drops by 8%), since neither series resistance component, nor shunt are visibly
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Figure 4.10: EQE spectra of the 2J top and bottom subcells (baseline and with
QD) of the devices grown on 2◦ offcut substrates with thinned top cell base. Numbers

correspond to the extracted integrated 1 sun Jsc’s and color-coded for each cell.

Figure 4.11: EL spectra of the baseline (black) and QD (red) solar cells measured at
100 mA/cm2 injection current density.

changed. To identify whether the top or the bottom cell are responsible for the voltage

reduction, an EL study was performed. Despite the degradation in the top cell EQE,

the EL spectroscopy revealed severe reduction in radiative emission intensity specifically

from the bottom GaAs cell. Figure 4.11 shows EL spectra of the tandem baseline and

QD cells with the bulk InGaP and GaAs peaks denoted.

While for the baseline, Vtopoc extracted from reciprocity was 1.366 V and Vbotoc was 1.014 V,

under near-one-sun injection, only the signal from the InGaP cell could be resolved and to
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Figure 4.12: 1 sun AM0 illuminated J-V characteristics of the baseline (black) and
QD (red) 2J cells. Electrical parameters measured for the assortment of 12 devices per

wafer are listed as an inset.

obtain reliable signal from the bottom cell and QDs, the injection current density had to

be increased. Upon this, however, the magnitude of the top cell signal saturates the CCD

detector, thus any comparative quantitative analysis becomes impossible. Qualitatively,

this shows that some inferior process in the bottom cell space-charge region causes an

increase in non-radiative recombination under applied forward bias. The possible reason

for it can be a distortion in the crystalline structure in the QD superlattice layers leading

to the non-radiative loss of carriers. In addition to the EL analysis, EQE spectroscopy

can be performed under bias to assess the wavelength-resolved carrier collection efficiency

under different band alignment regimes the same way as described in Chapter 3. The

only modification that needs to be made for measuring tandem devices is a simultaneous

use of light bias.

Voltage-biased EQE measurements were performed on the QD solar cell in the range

of applied voltages from -1.8 V to 1.8 V (maximum power point voltage of the tandem

is 1.85 V). Measurements under forward bias are limited by the diode switch-on point.

Figure 4.13a shows EQE spectra collected from the GaAs bottom cell of the tandem with

QDs. While the signal from the QDs remains stable under applied bias,an apparent
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drop in the base region occurs. For comparison, the EQE values measured from the

baseline and QD device at the wavelength of 860 nm is plotted in dependency on the

applied voltage and are shown on Figure 4.13b. The rapid decline in the bulk collection

efficiency in the QD cell is observed even under small forward bias dropping by 15%

near maximum power point, while baseline cell retains stable GaAs base collection up

to 2 V. To possibly establish the reason causing the decline in the EQE in the QD

cell and reduction in the Voc, the offset in the EQE under forward bias and under

short-circuit condition was investigated as a function of wavelength (Fig. 4.13c, d). It

can be noticed that the reduction in spectral response under positive bias increases at

longer wavelengths corresponding to the higher absorption depth. This behavior can be

explained by shrinking of the space-charge region making dependency on the diffusion

length of electrons generated at the rear side of the base stronger.

This observation, however, does not provide an insight for the dramatic reduction in EL

and Voc and flattening of the J-V curve near maximum power point in the QD device.

Both of the phenomena indicate that some source of enhanced non-radiative recombi-

nation might be present in the depletion region where QDs are located. Similar effects

were previously observed in the QW cells [148] and were attributed to the unintentional

i-region doping causing electric field reduction impacting the carrier transport across the

QWs. On the other hand, dark current measurement of the tandem baseline and QD

devices (Fig. 4.14) might reveal that voltage-dependent recombination in the QDs can

play the role in degrading the QD cells performance. Alignment of the QD minibands

can induce tunneling of charge carriers resulting in resonant tunneling favoring thermal

carrier escape as they tunnel from deeper to shallow levels [183]. The local peaks occur-

ring in the QD cell’s dark current at 0.35 V, 1.22 V, and 1.79 V might be the evidence of

the carrier tunneling transitions. Another possible cause for the voltage reduction in the
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Figure 4.13: (a) EQE spectra of the bottom GaAs subcell with QDs under applied
bias ranging from -1.8 V to +1.8 V; (b) comparison between EQE of the baseline cell
(black) and QD cell collected at 860 nm under varied applied voltages; (c) full EQE
spectra of the bottom subcell with QDs under short-circuit condition and under applied
+1.4 V; (d) extracted from (c), wavelength-specific difference in EQE of unbiased QD

cell and QD cell under 1.4 V bias.

bottom cell can be the heterojunction. However, further investigations or solid simula-

tions of the devices are required to make a solid conclusion on the definitive mechanism

of QD cell performance degradation.

Fabricated on 2-inch substrates, the record AM0 efficiency of the 2J solar cell was

achieved from the baseline device grown on 6◦ offcut substrate and was 25.0% after

depositing a bi-layer ARC (ZnS and MgF2) which is 0.65% higher than the identical
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Figure 4.14: Dark current measurements of the baseline 2J cell (black) and QD
tandem (red). The numbers represent the voltages corresponding to the local peaks.

Figure 4.15: AM0 (solid points) and AM1.5G (open points) illumination J-V curves
of the tandem baseline solar cells grown on 2◦ (black) and 6◦ (red) offcut substrates.

device grown on the 2◦ offcut substrate due to the InGaP subcell voltage reduction by

50 mV (Fig. 4.15).

The scaled-up 26.7 cm2 cells were grown on 4-inch substrates (2◦). Figure 4.16 shows

the mask layout used for fabricating these cells (2 large cells per wafer and smaller test

structures). For the large cells, grid spacing is 673 µm, grid finger width is 8 µm, while

height of the electroplated grid fingers can vary between 2µm to 4 µm. In addition to the
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Figure 4.16: The lithography mask layout for 26.7 cm2 cells.

metal contacts, top conductive epitaxial layers can contribute into the series resistance,

however, their parameters remained unchanged in the large-area device. Measurements

of the large cells under illumination yielded unexpected results. Figure 4.17a shows 1

sun AM0 J-V curves of the large-area baseline (black)and QD (red) cells. In the baseline

device, an increased series resistance is present which could indicate that the height of

the grid fingers is smaller than implied by the lateral design and can be a result of

irregularity in electroplating process. QD cells do not exhibit this problem, although

both types of devices suffer from leakage as seen in the low-bias range (the light J-V

curve is not flat near Jsc). EL emission from the top InGaP subcell (luminesces at 675

nm) is shown on Fig. 4.17b illustrating the uniformity in the emission across the solar

cell area and suggesting areal manufacturing consistency and low lateral series resistance.

Comparison of the electrical parameters of large and small (0.25 cm2) area baseline and

QD solar cells was performed. The maximum power output was from the QD cell and

was 650 mW corresponding to the Jsc of 16.44 mA/cm2, Voc of 2.146 V, and fill factor

of 69%. While baseline device had 200 mV higher Voc, as well as previously made 1
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Figure 4.17: (a) 1-sun AM0 illumination J-V curves of the baseline (black) and QD
(red) large-area cells; (b) visible electroluminescence from the top InGaP subcell (two

injection points).

cm2 test cells, the gain in fill factor and Jsc (measured under illumination, ∆Jsc = 0.29

mA/cm2) allowed QD cell to show better overall performance. For both devices, small

cells had fill factors of 80% (baseline) and 76% (QD). This discrepancy can indicate

the lateral conduction or probing to be a problem for the larger devices, while overall

record fill factor of reduced-area devices being 10% smaller than that of standard cells

(typically, 89%) can indicate a presence of a rear contact issue.

EQE spectroscopy also was performed on this set of devices and is shown on Fig. 4.18.

QD device shows broadband reduction in the top InGaP cell EQE, while bulk GaAs

subcell EQE remains almost unchanged. Degradation of the top cell can be caused by

residual strain induced by the QD superlattice. A closer look at the QD region (Fig.

4.18b) gives an estimate of the integrated Jsc gain of 0.25 mA/cm2 due to QDs that

matches well with the measured currents.

While scale-up of the 2J cells still requires some considerations (possibly checking the
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Figure 4.18: (a) EQE spectra of the InGaP and GaAs subcells of the baseline (dotted
line) and QD (solid line) solar cells grown on 4-inch substrates; (b) QD EQE region
(black) over the baseline (red) EQE tail and integrated spectral response Jsc gained

from adding the QDs.

uniformity of epitaxy and calibration of the heating elements, improving the electro-

plating uniformity and enabling rear alloyed contact for realizing acceptable series resis-

tance), there was a significant progress made on developing the dual junction solar cells.

Some refinements that are currently in work include achieving closer lattice matching of

InGaP for top cell voltage enhancement and solving ordering problem either by moving

to larger-offcut substrates or carrying out temperature and precursor flow calibrations

to achieve disordered 1.89 eV InGaP on 2◦ GaAs. Additional design modifications can

include switching to the rear-side emitter configuration and targeting higher front win-

dow doping for minimization of surface impact. However, the successful implementation

of the tunnel diode and established growth and characterization techniques open up

possibilities for producing high-efficiency multijunction devices at RIT.



Chapter 5

Single-Junction In0.18Ga0.82As

Metamorphic Solar Cells for

Low-Cost Photovoltaics

5.1 Motivation and Background

Metamorphic epitaxial growth is the growth of fully relaxed material on a substrate

with considerable structural difference, typically a large lattice mismatch. Misfit strain

is deliberately relieved by the formation of dislocations at the interface or at multiple

interfaces in a graded structure, away from the active areas of the device. Since any gen-

erated threading segment contributes only marginally to strain relaxation but detrimen-

tally acts as a non-radiative recombination center, the density of threading dislocations

is to be minimized by eliminating kinetic barriers to dislocation glide, e.g., composi-

tional inhomogeneity and high surface roughness. In photovoltaics (PV), metamorphic

epitaxy enables the integration of absorbing materials with a wider energy bandgap

176
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range than lattice-matched systems offer, allowing for a more optimized partitioning

of the solar spectrum [18], [184]. Inverted metamorphic multijunction solar cells hold

efficiency record under concentrated light [185], [186]. On the other hand, overcoming

the limitations imposed by lattice mismatch can contribute to the III-V photovoltaics

cost reduction by allowing for the low-cost alternative epitaxial substrates. For example,

integration of III-V-based device systems onto silicon has been developing for decades

yielding new technological possibilities in photonics [187],[188], and photovoltaics [23].

While development of the metamorphic buffers or metamorphic grading (MMG) is de-

scribed in detail in [189] the part of the study dedicated to the design and characteri-

zation of the single-junction metamorphic 1.16 eV In0.18Ga0.82As solar cells is presented

in this work. A comprehensive study of the device performance in dependence on the

GaAs(001) substrate offcut and grading scheme is carried out using electroluminescence

analysis for establishing relation between the threading dislocations density in the meta-

morphic material and electrical parameters of the devices.

5.2 Methods

1.1 eV In0.18Ga0.82As solar cell structures lattice-matched to metamorphic In0.18Ga0.82As

on GaAs(001) were fabricated by MOCVD using an Aixtron Closed Coupled Showerheadő

3x2” reactor. III-V layers were grown using trimethylgallium (TMGa) and trimethylindium

(TMIn) as group III precursors, and either arsine (AsH3) or phosphine (PH3) as group V

precursors. Initially, five types of GaAs(001) substrates were explored aiming at achiev-

ing the highest quality In0.18Ga0.82As template for the subsequent integration of Al:

on-axis, 2◦ to [110], 2◦ to 〈111〉 A, 2◦ to 〈111〉 B, and 6◦ to 〈111〉 A. Prior to growth

the substrates were annealed for 5 min under AsH3 at 700◦C to desorb the native oxide.
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For each substrate type, 5× 300 nm, 10× 300 nm and 5× 600 nm InxGa1−xAs MMGs

with x increasing in identical steps up to 22 at% were grown. The grading rate was

1.05% misfit/µm for the first structure and 0.53% misfit/µm for the other two. The top

In0.22Ga0.78As film, which is +1.58% lattice-mismatched to GaAs, overshoots the tar-

get In0.18Ga0.82As composition to compensate for residual coherency strain [190]. The

growth temperature was 600◦C for the 5 × 300 nm and 10 × 300 nm series, and 600

and 650◦C for the 5× 600 nm specimens. MMG heterostructures were overgrown with

an unstrained In0.18Ga0.82As Fall Back Layer (FBL) in the 1-3 µm range at 650◦C to

isolate active regions of the device from defects. Real temperature, as well as reflectivity

at 405, 633 and 950 nm, and curvature were monitored in situ with a LayTec EpiCurveő

TT sensor. The reactor pressure was 100 mbar throughout the growth process.

One cm2 In0.18Ga0.82As solar cells were manufactured by standard III-V fabrication

technology and the devices were mesa-isolated with the mesa etch terminated at the

metamorphic buffer fallback layer. No antireflective coating was deposited to enable an

investigation of the structural and design effects on the devices operation specifically.

1-sun AM1.5 Global illumination J-Vs were measured by a two-zone TS Space Systems

solar simulator (RIT NanoPower Research Laboratories) calibrated using InGaP and

GaAs reference solar cells. External quantum efficiency measurements were performed

using Newport IQE-200 Quantum Efficiency Measurement System. Electroluminescence

analysis was done with OceanOpticsTM spectrometers calibrated for the absolute irra-

diance measurements using broad-range light source.
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5.3 Results and Discussion

Two p-i-n solar cell designs differing in the emitter thicknesses proposed for this work

are depicted on Fig. 5.1(a). Increasing thickness of the p-type emitter, t, was intended

to enhance carrier generation rate and collection. Provided that electrons are the mi-

nority carriers in the emitter, an increase in thickness allows to take advantage of their

significantly higher mobility and diffusion length as compared to holes. Selected emitter

dimensions resulted from a series of simulations performed in TCAD Sentaurus Device,

SynopsysTM software. To ensure validity of the modelling, the minority carrier life-

times were reduced relatively to the lattice matched In0.18Ga0.82As to take degradation

of the metamorphic material into account. The optimal value of the emitter thickness

extracted from the simulation in terms of short-circuit current density (Jsc) and conver-

sion efficiency was around 500 nm which determined the additional design of the solar

cells. However, this leads to the reduction in open-circuit voltage (Voc) as the depth of

junction increases making diffusivity of the charge carriers critical, specifically in highly

defective samples. The gain in fill factor is expected from the cells with thicker emitter

as the cross-section area of the lateral path for charge carriers in the emitter increasing

proportionally to t2 leads to the reduction of series resistance which is influential at

small thicknesses.

Based on the preceding optimization of the metamorphic buffers for In0.18Ga0.82As on

GaAs substrates two grading schemes, 5 × 600 nm and 10 × 300 nm, were preferred

for the following growth of the solar cell structures to supposedly provide reduced non-

radiative losses and thus promote higher open-circuit voltage. As also deduced from the

structural analysis, the use of offcut substrates is favored for high-quality In0.18Ga0.82As

growth, so 2◦ towards 〈110〉, 6◦ towards 〈111〉A, and 6◦ towards 〈110〉 offcut substrates
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.
Figure 5.1: (a) Scheme of the solar cell structure designs: with 5 × 600 nm and 10 ×
300 nm MMG buffers and with emitter thicknesses of 200 nm and 500 nm. (b) 1 sun
AM1.5G illuminated J-V curves of the solar cells grown on the (100) GaAs substrates

with 2◦ → 〈110〉 (solid lines) and 6◦ → 〈110〉 (dashed lines) offcuts.

were selected. The one-sun J − V measurements were performed under AM1.5G illu-

mination. The illuminated J − V characteristics are shown on Fig. 5.1(b). Obtained

electrical parameters are summarized in Table 5.5. Ranging from 9.10% to 13.53%, the

maximum achieved average efficiency is attributed to the 10 × 300 nm MMG buffer

sample with 500 nm-thick emitter; the averaging was performed for for 12 1 cm2 × 1

cm2 solar cells fabricated on the single 2-inch wafer. The best device also features the

highest Voc of 0.748±0.010 V. The fill factors of the solar cells in all groups are below

70% due to the series resistance (Rseries) which is caused by thin Au contacts (500 nm),

however, the best device’s fill factor is the highest - 69 ± 2%. Deposition of thicker

contacts would allow to push the efficiency up to ∼ 17%. From comparison of the sam-

ples with finely graded buffers and two different emitter thicknesses, Jsc did not show

an increase expected for the sample with the thicker absorber. This could indicate that

it might be minority-carrier-diffusion-length-limited and an enhancement in generation

is inhibited by the presence of the defects. However, the expected trend holds for the

samples grown on the 5 × 600 nm buffers with an increase in average Jsc by 0.4 mA/cm2

and 1.3 mA/cm2 for the solar cells grown on the substrates with 2◦ to 〈110〉 and 6◦ to
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Figure 5.2: External quantum efficiency (EQE) spectra of the solar cells grown on
the 2◦ → 〈110〉 substrate offcut; the spectra shown for the cells with 200 nm and 500
nm-thick emitters and grown on the metamorphic buffers with coarse and fine grading.

〈110〉 offcuts respectively.

External quantum efficiency (EQE) spectra of the samples with 200 nm and 500 nm

emitter layer and grown on the buffers with coarse and fine grading, while the substrate

offcuts are the same, 2◦ to 〈110〉, are given of Fig. 5.2. The gain in carrier collection in

the long-wavelength range due to the increased emitter thickness was calculated from

spectral response and was 0.25 mA/cm2 for the devices grown on the 10×300 nm MMG.

At the same time, the difference between measured Jsc’s was only 0.02 mA/cm2.

Using quantum efficiency and electroluminescence reciprocity Rau theorem[126], exter-

nal radiative efficiency (ERE) of the solar cells was also investigated. ERE is determined

as the ratio between radiatively emitted and injected currents when solar cell is forward

biased operating as an LED and thus radiative and non-radiative current densities, non-

radiative offset of the Voc can be derived. The limiting efficiency of the solar cell, as shown

by Shockley-Queisser model, is achieved when the device is radiative-recombination lim-

ited making ERE a unified method for evaluating the ideality of the single junction solar
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cells [191]. Another reason for using ERE as an additional characterization tool was to

possibly avoid the impact of sidewall chemical exposure upon mesa and contact etching

while evaluating the performance of the solar cells in order to obtain the parameters

dependent only on the bulk and surface properties of the material. This can be enabled

considering that the electrolminescence spectra were collected from the near-bus-bar re-

gion located closely to the current injection point. Figure 5.3 shows the distribution of

the Voc’s averaged for the individual 1 cm × 1 cm solar cells across the wafers with the

ERE of the solar cells. ERE was calculated for the solar cells having the highest Voc

among each group of samples featuring the same substrate offcut, grading, and emitter

thickness. The ERE data for the 5 × 600 nm MMG and 200 nm emitter sample is esti-

mated based on the extrapolation of the emitted current in dependency on the injection

current towards low injection currents, thus it is not shown as a real value. Both Voc

and ERE are exhibiting the same trends with varying solar cell structural and design

properties which can be evidence that the conversion efficiencies of the solar cells are

inhibited by the non-radiative lifetime suppression due to the crystalline defects. How-

ever, the highest achieved ERE for this series of MMG In0.18Ga0.82As solar cells is only

0.013%. For comparison, ERE calculated for lattice-matched GaAs single-junction solar

cells with 27.6% (Alta, Alta Devices) and 26.4% (ISE, Fraunhofer Institute for Solar

Energy Systems) efficiencies is 22.5% and 1.26% respectively [192].

φEL(E) = φBB(E)EQE(E)exp
(
qV

kT

)
(5.1)

Acquiring the radiative and non-radiative dark current components by fitting of the dark

J-V curves was challenging as the diode equation ideality factor parameters n1 = 1 and

n2 = 2 corresponding to the recombination in quasi-neutral and space-charge regions
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Figure 5.3: Measured Voc of the solar cells (solid bars) and ERE calculated for the
solar cells with the highest Voc (patterned bars). An estimated ERE value for the 5 ×

600 nm MMG and 200 nm emitter sample is depicted with the dashed line.

were not clearly resolved - the logarithmic J-V curves exhibit non-linear behavior in

the low-level injection forward-bias regime and high leakage current, as indicated by

the measurements in reverse-bias regime (Fig. 5.4(a)). In addition, it can be seen from

comparison of Jsc − Voc and dark J − V behavior that series resistance Rseries becomes

impactful even at low voltages, below 0.6 V (Fig. 5.4(b)). Thus, in order to establish

J01 and J02 saturation current components the Rau’s reciprocity relation (Equation 5.1)

was used, specifically since 1 sun solar cells operation is dominated by the non-radiative

component.

The sample with the lowest Voc = 0.576 V did not show pronounced EL signal at the

injection current densities below 200 mA/cm2, so the extrapolation of the data towards

low injection currents yielded inaccurate values for the radiative current component

attributed to n = 1, so this sample’s results were excluded from the dataset. The

radiative J01 component for the rest of the solar cells was found to be in the order of

10−18−10−19 A/cm2 and the results including n1 ideality factors, and J02 for each sample

are summarized in Table 5.5. Saturation currents J02 were calculated using Equation 5.2
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Figure 5.4: Dark current measurements of the solar cells grown on 2◦ to 〈110〉 offcut
substrates (solid lines) and Jsc − Voc curves (dashed lines)(a). Forward bias Jsc − Voc

and dark J − V measurements results (b).

where Rseries correction (JinjRseries)is not included, since EL data was collected near

the injection point, which reduces the impact of Rseries caused by the metal contacts

and lateral resistance. Along with the non-radiative Voc offset, these values are shown

on the diagram (Fig. 5.6).
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Figure 5.5: Table 1: n1 ideality factors and J01, J02 saturation current densities

extracted from EL-EQE reciprocity relation.

.
Figure 5.6: J02 saturation current densities (patterned bars) and Voc non-radiative

offset (solid bars) calculated from the EL-EQE reciprocity.

J02 =
[
Jinj(Voc)− J01exp

(
qVoc
n1kT

)]
exp

(
− qVoc
n2kT

)
(5.2)

TRPL spectroscopy of the double heterostructure (DH) of In0.66Ga0.34P/In0.18Ga0.82As/In0.66Ga0.34P

used for structural analysis allowed to evaluate photoluminescence decay times to be

ranging from 18 ns to 34.5 ns corresponding to the radiative recombination on the shal-

low Si impurities. These values were used as reference parameters for the lifetimes

and TDD evaluation. Considering Auger recombination rate negligible in low injection
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regime with the Auger coefficient being in the order of 10−30cm6s−1 [193], the effective

recombination rate can be approximated as:

1
τEff

= 1
τRad

+ 1
τSRH

(5.3)

where τSRH can be written as a sum of lattice-matched and lattice-mismatched compo-

nents:

1
τSRH

= 1
τSRH0

+ 1
τTD

(5.4)

In metamorphic materials, effective minority carrier lifetime is dominated by non-radiative

lifetime component corresponding to the recombination on the threading dislocations as

their density exceeds critical value of ∼ 105 − 106 cm−2 [16], thus based on the extracted

lifetimes the threading dislocation density was found [194]:

TDD = 4
π3(MCLD)2 (5.5)

At the same time, for such materials minority carrier lifetimes, effectively τTD, are

proportionally related to the ERE η, non-radiative current density, and TDD[16, 191]:

η1
η2

= τ1
τ2

= J022

J021
= TDD2
TDD1

(5.6)

Considering that the lifetime of minority holes in the n-type base is imiting, since their

mobility is an order of magnitude smaller than that of electrons in the emitter [193], their
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diffusion length is critical for calculating the TDD, as TDD determines the efficiency of

collection of holes from the 1.8 µ-thick base.

5.4 Conclusion

Fully relaxed In0.18Ga0.82As templates, theoretically lattice-matched to Al via coinci-

dence lattice epitaxy, were fabricated by MOCVD on GaAs(001) using InxGa1−xAs

metamorphic buffers featuring an overshoot layer to x = 21 at%. Different grade de-

signs, different substrate offcut angles / directions, and two growth temperatures, 600◦C

and 650◦C, were studied. By combining HRXRD, AFM and PL, it was inferred that,

within the space of parameters explored, accommodating the 1.3% misfit to GaAs in

either 10 layers of 300 nm or 5 layers of 600 nm and employing either 2◦ to 〈111〉B or 6◦

to 〈111〉A substrates yield MMGs of the highest quality. The 3 µm unstrained fall back

layer exhibits RMS roughness of a few nm over (40 × 40) µm2. The integration of Al on

such a template via MOCVD was not successful. Nor TMAl nor TTBAl produced crys-

talline Al films in the temperature range (600-650)◦C, owing to undesired incorporation

of carbon from the metal-organic precursor, which does not fully dissociate in absence

of AsH3. To overcome this issue, thermal evaporation of Al was attempted at the cost

of exposing to air first the In0.18Ga0.82As fall back layer and then the metal film. No

epitaxial registry of the evaporated Al to the template was observed. The metal grows

polycrystalline with (111)- and (001)-oriented domains. Upon re-introduction into the

MOCVD reactor for the growth of In0.66Ga0.34P / In0.18Ga0.82As / In0.66Ga0.34P DH,

the Al film converts to AlAs during the ramp up and bake in AsH3. Compared to

the control DH without Al interlayer, the DH on Al is ∼ 10 times rougher and emits

red-shifted PL with ∼ 103 times lower intensity.
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In0.18Ga0.82As solar cell devices with p-on-n polarity were MOVPE grown on the tem-

plates with two grading schemes, 5 × 600 nm and 10 × 300 nm prepared on the (100)

GaAs offcut substrates and their electrical performance was assessed in dependency on

the grading slope, substrate offcut, and thickness of the p-type emitter. The highest pho-

toconversion efficiency solar cell was achieved using 2◦ to 〈110〉 offcut substrate reaching

maximum efficiency of 14.16% under 1 sun AM1.5G enabled by both high fill factor

and Voc indicating low impact of the defects. The evaluation of the minority charge

carriers lifetimes and TDD was performed for the whole set of samples based on the

TRPL carried out on the test DH, EL, and EQE spectroscopy. Using these techniques,

the minimal threading dislocation density in the In0.18Ga0.82As grown metamorphically

on GaAs was calculated to be ∼ 8.1×105 cm−2, whereas calculated for the devices with

the low ERE and efficiency, the TDD was much higher, up to ∼ 3 × 107 cm−2. Com-

bined, structural and device characterization show that 1.12 eV InGaAs can be grown

metamorphically on (100) GaAs substrates using 2◦ offcut towards 〈110〉 and 1.8% per

step grading scheme.
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