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Abstract

Suicide is a devastating act in which a person takes their own life. Decades of research

into suicide have identified a myriad of risk factors that have been used to create assess-

ments of suicide risk and suicidality. However, more recent research has suggested that these

identified risk factors may have no better predictive ability than chance, perhaps because

suicide is actually a multi-dimensional, multi-faceted construct that has been viewed too

simplistically for prediction’s sake. To try and better appreciate the complex nature of sui-

cide while also increasing prediction accuracy, researchers have turned to machine learning.

This study sought to meta-analyze the predictive ability of machine learning in predicting

suicide risk. A multi-level, mixed effects meta-analytic model returned a significant model

with an effect size of g = 1.36 (p < 0.0001), but with a significant amount of heterogeneity

(Q(285 df ) = 66361.51, p < 0.0001). A fully augmented model using three moderators (al-

gorithm type, data source type, and suicide definition) accounted for a significant portion

of the variance and also returned a statistically significant model. Meta-regression models

showed that algorithm type had a statistically significant effect on the reported effect sizes

while data source type and suicide definition did not return significant models. The results

of this analysis found not only that machine learning indeed has a significant impact on

the accuracy of predicting suicide, but also that the type of algorithm used has a signifi-

cant impact on the reported accuracies as well. However, high within and between study

hetereogeneity warrants more research into other potential moderating variables.
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MACHINE LEARNING AND SUICIDE RISK: A META-ANALYTIC REVIEW 1

 The Use of Machine Learning in Assessing Suicide Risk: A Meta-analysis

Suicide

  Suicide  is  an  act  in  which  a  person  is  successfully  able  to  take  their  own  life.  The

World  Health  Organization  reported  that  suicide  accounted  for  nearly  1.5%  of  all  deaths

worldwide,  making  it  the  world’s  20th  leading  cause  of  death,  the  second  leading  cause  of

death  in  15  to  29  years  olds,  and  the  number  one  leading  cause  of  death  in  children  under

15  (Kassebaum  et  al.,  2017;  Apter,  Bursztein,  Bertolote,  Fleischmann,  &  Wasserman,  2009;

WHO,  2017).

  In  the  past  two  decades,  cases  of  suicide  have  increased  around  the  world  in  both  adults

and  children.  In  a  longitudinal  meta-analysis  of  suicide  studies  published  between  1984  and

2014,  high-risk  suicide  cases  (i.e.,  cases  in  which  there  is  a  high  probability  that  a  person

will  attempt  suicide)  in  adults  increased  from  2.0%  of  cases  in  1984  to  51.4%  of  cases

in  2014  (J.  D.  Ribeiro,  Huang,  Fox,  &  Franklin,  2018).  Of  these  cases,  47.7%  of  patients

attempted  suicide  and  33.6%  of  patients  died  by  suicide.  Further,  two  studies  reported  that,

in  the  United  States  (US)  alone,  44  states  saw  an  increased  rate  of  suicide  with  25  states

experiencing  an  over  30%  increase  (Rossen,  Hedegaard,  Khan,  &  Warner,  2018;  Stone  et  al.,

2018).  And  with  these  findings  of  increasing  suicide  rates  there  have  been,  unfortunately,

other  studies  that  have  found  that  there  have  been  no  statistically  significant  decreases  in 

suicide  rates  in  youths  around  the  world  aged  10  to  19  years  old  over  the  past  two  decades

(Kassebaum  et  al.,  2017;  Kolves  &  De  Leo,  2014;  Kõlves  &  De  Leo,  2016).

  Certain  demographic  groups  appear  to  be  more  affected  by  suicide  than  other  groups.

Socio-economic  status  (SES)  as  well  as  economic  recessions  and  growths  have  affected  suicide

rates.  In  the  US,  during  periods  of  recession  (e.g.,  Great  Depression,  New  Deal,  Oil  Crisis,

Double  Dip),  there  was  a  sharp  increase  in  the  rates  of  suicide  in  both  men  and  women  across

all  age  groups  as  the  socioeconomic  statuses  of  the  population  decreased  (Luo,  Florence,

Quispe-Agnoli,  Ouyang,  &  Crosby,  2011).  Further,  across  the  world,  those  who  lived  in

rural,  under-developed,  or  economically  depressed  areas  have  had  higher  rates  of  suicide
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than those in areas that were developed and thriving (Cheung, 2014; X. Huang, Ribeiro,

Musacchio, & Franklin, 2017; Kolves & De Leo, 2014; WHO, 2014).

Though suicide affects all sexes and age groups, patterns within sexes and ages have

emerged (X. Huang et al., 2017). Sex was shown to be able to significantly predict suicide

above other demographic variables (X. Huang et al., 2017). Males had higher rates of suicide

than females across all age groups (Kolves & De Leo, 2014; Kõlves & De Leo, 2016; NIMH,

2019; WHO, 2014). Additionally, in places where there was a sudden economic depression,

the rates of suicide in males increased significantly more than the rates of suicide in females

(Kolves & De Leo, 2014; Luo et al., 2011). Furthermore, in different age groups there have

also been varying rates of suicide. Children under 10 years old had the lowest rates of

suicide, young adults between the ages of 15 and 20 had the next highest rates, and the

highest rates of suicide were found in those who were 65 and older (Cheung, 2014; Soole,

Kõlves, & De Leo, 2014; WHO, 2014). However, the highest rates of suicidal thoughts

occurred in those who were 18 to 25 years old, and suicidal thoughts have been identified

as a heightened risk factor for suicide (Millner & Nock, 2020; NIMH, 2019).

Research has also revealed that suicide rates vary between different racial groups (X. Huang

et al., 2017). In the US and Australia, the indigenous populations have had the highest

rates of suicide compared to the non-indigenous population (Cheung, 2014; NIMH, 2019).

Specifically in the US, those who identified as white have had higher rates of suicide than

those of African-American, Asian, and Hispanic descent (Bolton & Robinson, 2010; Che-

ung, 2014; NIMH, 2019).

Research suggests that there are definite patterns of suicide rates found within different

demographic groups. SES and sex seem to be strong indicators of suicide followed by age

and race. Researchers believed that these demographic patterns could be used to assess

suicide risk in an individual or a population of people (X. Huang et al., 2017). Thus, these

findings beget the question as to whether or not demographic information can be considered

a suicide risk factor.
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Suicide Risk Factors

A risk factor is defined as a measurable characteristic in an individual or population

that can be used not only to predict a future outcome, but also to split the population into

two groups such as a low risk group and a high risk group (Kraemer et al., 1997). Though

the conventional belief is that suicide is the result of an underlying mental illness, the

risk factors associated with suicide encompass a myriad of sociocultural and psychological

constructs. As a result, suicide risk factors can be complex and difficult to assess.

Shneidman (1993) suggested that suicide was the result of “psychache” (i.e., psycho-

logical pain). Research supported this sentiment as mental illnesses have been reported

to be a significant risk factor for suicidal behavior and action (CDC, 2019; NIMH, 2019;

J. D. Ribeiro et al., 2018; Stone et al., 2018; WHO, 2014). However, it would be erroneous

to assume all mental illnesses carry an equal risk of suicide. For example, researchers have

reported that nearly 50% of patients with schizophrenia attempted suicide while lifetime

suicide rates for major depressive disorder was about 3.4% (Blair-West, Cantor, Mellsop, &

Eyeson-Annan, 1999; Meltzer, 2002). Additionally, research has also demonstrated a strong,

positive correlation between non-suicidal self-injury (i.e., self-injury with no intent to die),

suicidal self-injury (i.e., self-injury with some intent to die), suicidal ideation, suicide plan,

and a history of suicide attempts to suicide related deaths (Millner & Nock, 2020; CDC,

2019; NIMH, 2019; J. Ribeiro et al., 2016; Scott, Pilkonis, Hipwell, Keenan, & Stepp, 2015;

Soole et al., 2014; Wenzel et al., 2011; WHO, 2014; Wilkinson, Kelvin, Roberts, Dubicka,

& Goodyer, 2011). While research demonstrates that mental illnesses is highly associated

with increased suicide risk, there are other risk factors that contribute to increased risk of

suicide.

Outside of mental illnesses, sociocultural factors can also impact suicide risk. Substance

abuse and alcohol dependence have been shown to be a risk factor for suicide (CDC, 2019;

Stone et al., 2018; NIMH, 2019; WHO, 2014). Additionally, some kind of major, precipitat-

ing life event such as loss, injury, divorce, or economic depression have also been linked to

increased risk of suicide (Bolton & Robinson, 2010; Soole et al., 2014). In the US, the Na-
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tional Institute of Mental Health (NMIH) and the Center for Disease Control (CDC) have

identified several other potential suicide risk factors: impulsive or aggressive tendencies,

cultural/religious beliefs of the nobility of suicide, access to lethal methods of suicide, avail-

ability of mental health resources, history of child maltreatment and abuse, and exposure

to other suicides (NIMH, 2019; CDC, 2019).

Despite extensive research into suicide risk factors, however, recent research has demon-

strated that the predictive ability of the identified risk factors listed above might be no

better than chance (Franklin et al., 2017; Linthicum, Schafer, & Ribeiro, 2019; J. Ribeiro

et al., 2016; J. D. Ribeiro et al., 2018). Linthicum et al. (2019) and Franklin et al. (2017)

suggested that no one risk factor or risk factor category stood out as being substantially

stronger than the other at predicting suicide. Further, there has also been contradicting

evidence on the effectiveness of certain risk factors in predicting suicide. For example, even

though research has purported that mental illness is a significant suicide risk factor, sev-

eral studies have shown that approximately 50% of suicide victims had no known mental

illness diagnoses at the time of death (Bolton & Robinson, 2010; Soole et al., 2014; Stone

et al., 2018). X. Huang et al. (2017) found no relationship among divorce, marriage, or reli-

gion in suicide, and Soole et al. (2014) found that only approximately one-third of children

who committed suicide experienced any type of abuse. These contradictions just begin to

demonstrate the complexity of assessing suicide risk and suicide risk factors.

Current Methods of Suicide Assessment

Because previous research has suggested that suicide rates are higher in populations

with a history of mental illnesses, previous suicide attempts, and other health complications

(e.g., chronic pain or chronic health problems), current methods of suicide assessment give

greater weight to these risk factors (J. D. Ribeiro et al., 2018; Scott et al., 2015; Stone

et al., 2018; Wenzel et al., 2011; WHO, 2014; Wilkinson et al., 2011). Historically, there

have been three generations of suicide assessment: (1) unassisted clinician prediction, (2)

standardized scales, and (3) statistical-modeling-derived scales (Carter et al., 2017).
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Unassisted clinical prediction. Unassisted clinician prediction refers to the gener-

ation of suicide assessment wherein the clinician would conduct interviews with the patient

and ask about symptoms of conditions such as mood disorders, substance use, and trauma

without the assistance of other psychometric measures. Evidence has found that these in-

terviews in and of themselves can have an ameliorating effect in patients who may be at

risk of suicide by simply giving patients the opportunity to talk about what they are ex-

periencing (Dazzi, Gribble, Wessely, & Fear, 2014; Blades, Stritzke, Page, & Brown, 2018).

The clinical interview also acts as means to build rapport between clinician and patient,

strengthening the clinician-patient relationship.

The Structured Clinical Interview for the Diagnostic and Statistical Manual of Mental

Disorders (DSM), often referred by the acronym SCID, is a widely used interviewing method

by clinicians and considered a “gold standard” clinical interview (Drill, Nakash, DeFife, &

Westen, 2015). It is also an example of an unassisted clinician prediction method. The

SCID was developed in 1987 by Dr. Robert Spitzer and colleagues as a response to the lack

of a structured, clinical interview that assessed all mental illnesses described in the DSM-III

(Spitzer, Williams, Gibbon, & First, 1992). The SCID provides standardized procedures to

assess for and diagnose a majority of mental illnesses in accordance with the DSM-III.

The structure of the SCID is based upon diagnostic algorithms such that multiple di-

agnostic hypotheses can be tested in tandem (Spitzer et al., 1992). Questions are grouped

based on diagnoses and symptoms, and if a required symptom is not present, then the inter-

viewer moves onto the next group of questions. For example, if a patient does not present

with manic symptoms (a required criterion for the diagnosis of Bipolar I), then a clinician

would skip over other questions pertaining to a Bipolar I diagnosis and move onto questions

pertaining to a different disorder. Each group of questions begins with a close-ended “yes”

or “no” question, which is followed with an open-ended question such as “what was that

like?”. These open-ended questions allow for more disclosure of symptoms. Often, clinicians

will include their own questions based on their own clinical judgements.

Over the years, the SCID was adapted to include changes made in the newer DSM



MACHINE LEARNING AND SUICIDE RISK: A META-ANALYTIC REVIEW 6

editions (e.g., SCID-IV for the DSM-IV). Additionally, variations on the SCID were devel-

oped such as the SCID-5-AMPD, which assess the DSM-5 alternative model for personality

disorders, and the SCID-5-PD, which evaluates 10 of the personality disorders described in

the DSM-5 (First, Skodol, Bender, & Oldham, 2017; First, Williams, Benjamin, & Spitzer,

2016). The SCID has also been demonstrated to have moderate to high reliability and

validity, including high inter-rater reliability (Shankman et al., 2018; Drill et al., 2015).

Another well-known and widely used semi-structured clinical interview is the Columbia

Suicide Severity Rating Scale (CSSRS) (Posner et al., 2011). The CSSRS specifically asks

questions pertaining to suicidal ideation, intent, and plan. If patients indicate suicidal

ideation or plan, clinicians are prompted to ask followup questions provided by the CSSRS.

Each question asked holds a number weight that is tallied at the end to provide a suicide

risk score. The CSSRS has shown high reliability and validity across a variety of samples

and settings and is considered a gold standard in suicide assessment by the Food and Drug

Administration (FDA) for use in clinical trials (Posner et al., 2011; Food, Administration,

et al., 2012). However, there is evidence to suggestion that the CSSRS should no longer be

considered a gold standard as it may not fully address all suicide risk factors or ideations

(Giddens, Sheehan, & Sheehan, 2014; Meyer et al., 2010).

Unfortunately, the effectiveness and accuracy of interviews rely on the truthfulness of

the patient as well as the actions of the clinician. If patients are not truthful about their

symptoms, then an interview may not produce helpful feedback to the clinician. Further, a

clinician’s interviewing style can vary the responsiveness of the patient and the truthfulness

of the patients’ responses (McCabe, Sterno, Priebe, Barnes, & Byng, 2017). For example,

one clinician may directly ask “are you suicidal?” while another may more indirectly ask

“have you ever had thoughts of ending your life?” While both questions pertain to a patient’s

suicide risk, the differences between how the question has been phrased could elicit different

answers from the same patient. For these reasons, it is common for clinicians to use scales

to help capture any missed or looked over suicide risk factors when conducting a suicide

risk assessment.
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Assessment scales. Psychometric scales are a tool that clinicians utilize to obtain as

objective information as possible about a patient’s disposition. These scales have evolved

over time from being just a standardized set of questions that clinicians use to guide inter-

views to a comprehensive list of questions for a specific condition based on the symptoms for

that condition. Furthermore, these scales undergo rigorous psychometric testing to ensure

validity and reliability. Scales can be a valuable tool for clinicians as they can be tailored

to assess specific conditions such as suicide risk.

Aaron T. Beck developed several scales that assess for different mental illnesses, two of

which that assess for depression and suicidal ideation (Dozois & Covin, 2004; Cochrane-

Brink, Lofchy, & Sakinofsky, 2000). The Beck Depression Inventory-II (BDI-II) is a 21-

item self-report measure that not only assesses symptoms of depression, but also indicates

potential suicidality (Beck, Steer, & Brown, 1996; Wang & Gorenstein, 2013). Within the

BDI-II, there is an item that screens for suicidal behaviors, which clinicians may use to

prompt for further conversation or assessment of suicide risk. The BDI-II has shown high

reliability and validity across an extensive range of samples and settings, meaning that the

items on the BDI-II are able to reliably capture symptoms of depression and accurately

indicate a patient’s current depressive state (Wang & Gorenstein, 2013; Cochrane-Brink et

al., 2000).

In addition to the BDI-II, there also exists the Beck Scale for Suicidal Ideation (BSI or

BSSI) (Cochrane-Brink et al., 2000; Dozois & Covin, 2004). The BSI is a self-report scale

that contains 19-items and 5 screening questions that assess a patient’s suicidal ideation,

plans, and intent (Beck, Kovacs, & Weissman, 1979). Much like its counterpart, the BDI-II,

the BSI displays high reliability and validity (Beck, Steer, & Ranieri, 1988; Cochrane-Brink

et al., 2000). The BSI is a useful tool in screening for suicidal ideations, which has been

linked to higher risk of suicide (Millner & Nock, 2020).

Statistical-modeling-derived scale. A statistical-modeling-derived scale is an as-

sessment scale that has been created based upon a statistical model (Carter et al., 2017).

A statistical model is a set of assumptions derived from sample data (McCullagh, 2002).
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When using statistical models to create scales, researchers take a sample of a population

and find relationships between one or more variables in the sample population to represent

a construct. For instance, if a statistical model is used to create a scale that produces a

depression score, data from a sample population of depressed individuals would be collected,

and the data would be examined to find relationships between selected variables. These re-

lationships would then be used to create the scale. Examples of statistical-modeling-derived

scales include the re-ACT Self-Harm rule as well as the Repeated Episodes of Self Harm

score (Cooper et al., 2006; Spittal, Pirkis, Miller, Carter, & Studdert, 2014).

The re-ACT Self-Harm rule was developed by researchers using data derived from a

cohort sample to screen for self-harm presentations in emergency care patients (Steeg et al.,

2012). Binary recursive partitioning was used to examine the data and to extract pertinent

variable relationships. The rule had high sensitivity and negative predictive value and

identified 83 of the 92 patient suicides.

The Repeated Episodes of Self-Harm score utilized a logistic regression statistical test to

identify predictors of self-harm cycle repetition (Spittal et al., 2014). The regression model

showed high predictive accuracy of over 70%, as well as high sensitivity. The psychometric

properties of the Repeated Episodes of Self-Harm score as well as the re-ACT Self-Harm

rule suggest that these tools may be useful in assessing self-harm.

Early Detection and Intervention

Popenhagen and Qualley (1998) discussed the importance of early detection and inter-

vention to decrease instances of suicide. Early detection can be as simple as identifying

suicide risk factors such as those described above. These risk factors can also be assessed

using clinical interviews or assessment scales. Unfortunately, in a systematic review con-

ducted by Zalsman et al. (2016), there did not seem to exist a perfect suicide prevention

strategy. However, reviews of current strategies show a consensus among most strategies

that education and identification of suicide risk factors are important first-steps in identi-

fying individuals at risk of suicide (Zalsman et al., 2016; Mann et al., 2005; Isacsson, 2000;
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Gould & Kramer, 2001). Once individuals who are at risk of suicide are identified, proper

interventions can be put in place to prevent suicide.

Limitations to Current Methods of Suicide Assessment

While patient-clinician interviews and the use of psychometric scales are two, well-

researched methods of patient assessment, they do have limitations in regards to suicide

risk assessment. Firstly, a meta-analysis published by Carter et al. (2017) suggested that

validation studies for suicide risk psychometric scales may have higher Type I errors due

to high suicide prevalence in study populations. This may indicate that the accuracy of

suicide risk scales may not be as high as originally believed. Secondly, patient interviews

rely heavily on the patient-clinician relationship, which is built upon trust and relies heavily

on patient honesty. Finally, as research into suicide and suicide risk factors continues to

grow, it brings into question whether current suicide risk assessment and prediction efforts

fully appreciate the complex nature of suicide.

It has been suggested by Franklin et al. (2017) as well as Linthicum et al. (2019) that

the use of the traditional research model to predict suicide is a potential reason as to why

the predictive ability of suicide risk factors remains low. Most studies seem to isolate

risk factors and study them individually or within intuitive and rudimentary groupings

(Franklin et al., 2017; J. D. Ribeiro et al., 2018). Essentially, these models oversimplify the

complex nature of suicide, which results in prediction models that oversimplify the nature

of suicide. The resulting model, then, cannot externalize to new data that may deviate

from the overly simplified model (Linthicum et al., 2019). Further, studies also focused

on short-term suicide prediction, ignoring how the influence of change effects risk factors

(J. D. Ribeiro et al., 2018).

Unfortunately, building a predictive model that examines all potential risk factors as

well as accounts for change over time can require the analysis of an incredibly large data

set with many nonspecific, unrelated variables. Therefore, a new analytical system needs

to be utilized to both parse through the extraneous variables as well as build a model that
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not only examines all possible risk factors, but is also able to externalize to new data sets.

The prediction and analytical capabilities of machine learning can support the building of

this kind of model (J. D. Ribeiro et al., 2018). The use of a machine learning model to

aid in suicide risk assessment follows in suit with the current integration of technology in

healthcare through the clinical decision support systems (CDSSs).

Technology in Patient Care

To investigate the potential positive impact of machine learning in the prediction of

suicide, it is important to investigate the current use of technology in patient care and how

it has historically improved patient outcomes. For example, the adoption of the electronic

health record (EHRs) has improved patient outcomes as EHR data can be efficiently pro-

cessed and used to elucidate patterns in the data. These patterns can aid in prediction when

using the right techniques such as machine learning algorithms (Chennamsetty, Chalasani,

& Riley, 2015). The use of EHR data has made great impact in the healthcare industry

through the advent of patient alert systems and computers that assist in diagnosis.

In response to a 1991 report that said 100,000 deaths in the US medical care system

could be attributed to medical errors, a paper was published outlining the positive effect of

information technology in healthcare (Donaldson, Corrigan, Kohn, et al., 2000; Bates et al.,

2001). The authors reported that, since the implementation of information technology in

healthcare, patient outcomes were improved when compared to before these systems were

put into place. One of these information technology systems was the creation of the patient

alert system.

Perhaps one of the most impactful additions to the medical field was the development

of the patient alert system, a system which alerts doctors and nursing staff to the status

of a patient based on data provided by the patient (Tate, Gardner, & Weaver, 1990; Rind

et al., 1994). Tate et al. (1990) observed that the computerized laboratory alerting system

(CLAS) would alert doctors in the anticipation that a patient was in distress based on data

such as low white cell count, elevated white cell count, falling hematocrit, and metabolic
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acidosis. When researchers conducted a pre-CLAS-post-CLAS study to assess the CLAS’s

effects on patient outcomes, they found that there was a 12% increase in the proportion of

patients who received proper treatment with the CLAS system, and the average amount

of time spent in life threatening situations significantly decreased. Additionally, the mean

days spent in the hospital fell from 14.6 days to 8.8 days.

Similar results for the patient alert system were found in 1994 by Rind et al. (1994)

on the effects of computer-based alert systems. In this study, the system alerted doctors,

on average, 21.6 hours earlier to the predicted patient crisis than before the alert system

was put into place. This helped to reduce the numbers of serious impairments in patients.

Additionally, the alert system changed doctors’ behaviors, causing them to be more vigilant

towards their patients. Alert systems have had a significantly positive impact on bettering

patient outcomes. The addition of machine learning algorithms to the patient alert sys-

tem can aid doctors in observing the changes or anticipated changes in a patient’s status.

Further, clinical decision support systems (CDSSs) have also showed promising results in

aiding in the diagnosis of other medical conditions.

An example of an CDSS that has greatly improved disease diagnosis is the electrocardio-

grams (ECG or EKG) (Brailer, Kroch, & Pauly, 1997; Tsai, Fridsma, & Gatti, 2003). The

computer assisted test interpretation system (CATI) was created to assist doctors in the

reading of electrocardiogram (ECG). In a randomized controlled study, the use of the CATI

reduced reading times by 28% (3.8 seconds) and led to significantly lower false positive rates

in the diagnosis of heart disease (Brailer et al., 1997). In a similar study conducted by Tsai

et al. (2003), participants were randomly assigned to groups in which one used a computer

assisted ECG reading software and the other group did not. Similar results were uncovered

as those who used the computer software had more correct diagnoses than the group that

did not use the computer software.

Furthermore, in 100 trials examined from 1973 to 2004, CDSSs bettered patient out-

comes in all trials (Garg et al., 2005). In 10 trials evaluated for their diagnostic system,

coronary ischemia diagnoses were improved, decreasing the rate of unnecessary hospital-
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ization or coronary care by 15%. The CDSS also improved time to diagnose acute bowel

obstructions from 16 hours to 1 hour. In studies involving active health conditions, 5 out

of 7 trials reported improved diabetes care, and 5 out of 13 trials improved cardiovascular

health outcomes. There was a 64% improvement of diagnosis, preventative care, disease

management, drug prescribing and dosing.

In the evolving age of technology in healthcare, machine learning has also been inte-

grated into the prevention, prediction, and diagnosis of diseases. The integration of machine

learning into healthcare would act as another CDSS that doctors can utilize to better patient

outcomes.

A Brief Introduction to Machine Learning

Machine learning is a broad umbrella that encompasses many different types of algo-

rithms used for prediction and classification, each algorithm with their own pros and cons

(Wiens & Shenoy, 2018). When creating a model, it is typical to analyze and assess many

different algorithms to find one with the best classification sensitivity, specificity, and accu-

racy. In the case of diagnosis, classification algorithms such as Naïve Bayes, decision trees,

and random forests are most used because they are able to predict the class, or label, of an

output, such as high suicide risk, medium suicide risk, or low suicide risk. It is also possible

to predict numerical data using methods such as linear regression. Once an algorithm has

been selected and created, the algorithm needs to be trained through testing and validation.

In testing and validating the machine learning model, the most common way is to train

the algorithm on a certain percentage of data, for example, 90%, then test the model on

the remaining 10% of the data. Though this is a simplification of the complex process

of training and testing, the focus of this explanation is to understand what training and

testing are. Training is the process in which the model “learns” how to predict the class

of an object (i.e., instance) through input variables (i.e., attributes) by analyzing the data

and finding patterns among the attributes that correspond to each instance. Testing the

model, also known as validating the model, involves giving the model new data (validation
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data) to see how it performs in classifying the data.

It is important that during the training/testing phase of a model, the model does not

overfit the data. Overfitting refers to when the model is constructed to reach the highest

accuracy on just the training data set, decreasing the model’s ability to generalize to other

data sets. When this occurs, the model is only useful in analyzing the data set in which it

was trained and tested and may not achieve the highest accuracy in analyzing a new data

set. In medical care, due to the large variety in which data is collected and stored, it is

difficult to find a model that generalizes outside of individual institutes. For this reason, a

model’s goal should be to create an algorithm that generalizes to a range of settings as a

whole (Wiens & Shenoy, 2018).

There are, generally speaking, three types of learning: supervised, unsupervised, and

reinforcement learning (Linthicum et al., 2019). Supervised learning takes attributes, uses

the algorithm to find the most close-fitting class, and outputs a class in which the instance

belongs. This type of learning can be used to classify instances or return regressions. For

example, in classification, the algorithm may return a “high suicide risk” or “low suicide

risk” class. But in regression, the algorithm may return how many days are likely to lead

up to suicide.

Unsupervised learning explores the underlying patterns within the data, usually in the

form of scatter plots or clusters (Linthicum et al., 2019). Clusters specifically can be used

to determine what groups of patients are similar to one another based on shared attributes.

This information can be used to form classes. Unsupervised learning can also be used to

compress the data in order to reduce noise and the number of extraneous variables in a

large data set.

Finally, reinforcement learning is when the algorithm’s performance is enhanced based

on the environment (Linthicum et al., 2019). Essentially, the algorithm makes decisions

one at a time based on the feedback from the result of that decision. A classic example of

reinforcement learning is playing chess against an Artificial Intelligence (AI) program. The

algorithm makes decisions for their next moves based on the moves of their opponents.



MACHINE LEARNING AND SUICIDE RISK: A META-ANALYTIC REVIEW 14

When creating and selecting a machine learning algorithm, a key deciding factor is the

data set itself (Kotsiantis, Zaharakis, & Pintelas, 2007). A data set should have informative

attributes to ensure the important attributes can be isolated when making a prediction

(Kotsiantis et al., 2007). Further, algorithm selection is based on the structure of the data

set and the predictions to be made (Kotsiantis et al., 2007). For example, if there are

missing data, a decision tree can be used as they are able to handle missing data well and

have an intuitive decision-making process. Each node in a tree represents a decision based

on one or more attributes, and each leaf is the class for that instance. Decision trees are

very popular algorithms to use, however, they can get unruly with complex data sets, and

any change in the data can completely alter the structure of the tree (Kotsiantis et al.,

2007).

There are many classifier algorithms to choose from when creating a machine learning

system, and it is even possible to use a combination of different algorithms (Kotsiantis et

al., 2007). The main objective of an algorithm is to extract significant information from the

data set with as much classification accuracy as possible (Kononenko, 2001).

Machine Learning in Healthcare

Machine learning has already made significant impacts in the field of medicine. It

can be used as a preventative measure by predicting a patient’s diagnosis and introducing

early treatment to prevent the outcome or lessen the impact of the outcome. Further,

machine learning models can be more powerful over other statistical analyses and patient

alert programs because of its ability to handle missing data and be more sensitive to patterns

within the data (Ghassemi et al., 2020).

For example, researchers conducted a case study in the role of machine learning to

predict pneumonia risk (Caruana et al., 2015). The algorithm had an area under the curve

(AUC), a measure of a system’s sensitivity, of 0.857, which indicates a good classifier.

These results show the ability of machine learning algorithm to predict pneumonia risk in

patients. These positive results show promise for machine learning in aiding in the diagnosis
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and prediction of certain diseases.

In addition, the clustering ability of machine learning can also be applied to finding

patterns within tests and symptoms. For example, neurological differences in those with

bipolar disorder and those without can be analyzed by machine learning techniques to find

any differences between the two groups’ brain scans (Librenza-Garcia et al., 2017). In this

meta-analytic study, researchers found that machine learning techniques were able to find

patterns in the brain imaging of bipolar disorder individuals to aid in the diagnosis of bipolar

disorder and to assess the risk of bipolar disorder.

Further, machine learning can recognize symptomology patterns from traditional psy-

chometric scales that aid in the diagnosis of mental illnesses (Ma et al., 2019). In this study,

a machine learning algorithm was used to shorten the 145-item Affective Disorder Evalua-

tion (ADE) to 17 questions, while still maintaining a high diagnostic accuracy of 97.4%, by

finding patterns within the data that most strongly indicated a positive diagnosis. In two

sister studies, machine learning algorithms were used to cut down the Autism Diagnosed

Observation Scale (ADOS) and the Autism Diagnostic Interview-Revised (ADI-R) (Wall,

Kosmicki, Deluca, Harstad, & Fusaro, 2012; Wall, Dally, Luyster, Jung, & DeLuca, 2012).

The cut down ADOS had an accuracy of 87% for differentiating an autism diagnosis while

for the ADI-R the accuracy was reported at 78% (Bone et al., 2015). These studies fur-

ther show the ability of a machine learning algorithm in finding the most optimal set of

symptoms to warrant a diagnosis.

Finding patterns in data is a hallmark of machine learning capabilities. For suicide,

which is a difficult illness to diagnose due to a vast array of symptoms, machine learn-

ing could be used to identify patterns in patient data that reveal important clustering of

attributes that indicate suicidality.

Machine learning has the potential to become a useful tool in many aspects of healthcare

from aiding and predicting diagnoses and diseases, to reducing the amount of information

needed to be collect for a diagnosis. Machine learning algorithms can do this by finding

subtle patterns in a noisy data set and training itself on those patterns to achieve the highest
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accuracy possible to aid in prediction.

Potential Limitations to Technology in Patient Care

While technology and machine learning have made positive impacts in healthcare, there

exist limitations that prevent these methods from being fully implemented in healthcare.

Firstly, there are concerns in regards to potential biases within a machine learning model as

well as the risks of over reliance of a model. And, secondly, human factors and ergonomics

research expounds upon trust given to a system and the subsequent downfalls should that

trust be ill received by the model.

Biases in machine learning. It may seem that a machine learning model is without

bias because of the perception that a machine cannot have biases. However, there do exist

biases in machine learning. In a survey done by Mehrabi, Morstatter, Saxena, Lerman,

and Galstyan (2019), researchers found that a machine learning algorithm can be biased to

favor one result over another. This can have significant implications when using a machine

learning algorithm to make decisions.

In the review, researchers give the example of the Correctional Offender Management

Profiling for Alternative Sanctions (COMPAS), a machine learning algorithm used by judges

to assess the risk of an offender committing another crime. Investigation into COMPAS

revealed that the system was biased against African-Americans as African-Americans were

more likely to score a higher risk of re-offending than Caucasians. Another example of a

biased machine learning system was an artificial intelligence (AI) program that was used

to judge beauty pageant contestants. Once again, this AI was shown to be biased against

darker-skinned contestants. But where do these biases occur in a system? Researchers

provided two possible explanations.

Firstly, bias could stem from biases within the data that is used to train and validate the

system. Just a few of the many types of biases in data are representation bias, measurements

bias, population bias, and sampling bias (Olteanu, Castillo, Diaz, & Kiciman, 2019; Suresh

& Guttag, 2019; Mehrabi et al., 2019). These biases, in particular, relate to the topic of
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machine learning in predicting suicide risk.

Representation bias results from how one defines and samples a population (Suresh &

Guttag, 2019). For example, in a dataset of patients who have committed suicide versus

those who have not, if there is an overwhelming number of patients who did not commit

suicide, the data are biased against patients who did commit suicide. Thus, the machine

learning algorithm may become biased against patients who are at high risk of committing

suicide. Population bias is a similar bias whereby an algorithm will be biased against

variables that do not appear as frequently as other variables (e.g., if there are more white

patients who commit suicide than black patients, the algorithm may be likely to more

frequently give white patients a higher suicide risk than black patients) (Olteanu et al.,

2019).

Sampling bias occurs when subgroup data are not randomly sampled (Mehrabi et al.,

2019). In a database of patients who have committed suicide versus not, it is impossible

to randomly assign patients to the “suicide” or “non suicide” groups. Therefore, these

machine learning algorithms that are used to predict suicide risk inherently suffer from

sampling biases because of the nature of the data used to test and validate the machine.

Measurement bias occurs based on how the factors inputted into the algorithm is mea-

sured in order to produce a result (Suresh & Guttag, 2019). For example, if the algorithm

were to use scores on the CSSRS as a measure of suicide risk, anyone who scores highly

on the CSSRS will be more likely to receive a “high suicide risk” prediction. Conversely, if

an algorithm were to use race as a measure of suicide risk, the algorithm would be biased

towards patients who belonged to a the race that more frequently had suicides within the

dataset.

The second way bias is introduced into a machine learning algorithm is through the

decision making process of the algorithm. Specifically within the field of machine learning,

“bias” refers to any decision made to choose one generalization (i.e., hypothesis) over another

instead of strictly adhering to the generalizations given within a data set (Dietterich & Kong,

1995). Dietterich and Kong (1995) explains two examples of such biases: absolute bias and



MACHINE LEARNING AND SUICIDE RISK: A META-ANALYTIC REVIEW 18

relative bias.

Absolute bias is an assumption by the algorithm that the resulting output belongs solely

to some “designated set of functions” (Dietterich & Kong, 1995). An example of this would

be the assumption that a machine learning model’s prediction of “high suicide risk” belongs

definitively to a set of Boolean conjunctions. This bias could result in a scenario were “high

suicide risk” can only be achieved if every patient variable satisfies the rules made by the

Boolean conjunctions.

Relative bias, or search bias, is the assumption that the output is best attained by one set

of functions over another (Dietterich & Kong, 1995). The example provided by Dietterich

and Kong (1995) refers to the decision tree algorithm. Decision trees are created using a

bottom up model where the simplest and most basic set of functions are used first then

added upon until the algorithm can correctly classify the training data. Once the algorithm

has found this tree, larger and more complicated trees are not constructed. This bias could

be a potential limitation in using machine learning algorithms to predict suicide risk as it

may fall into the same trap described above where, in an effort to create the simplest model

for classification, the algorithm may oversimplify the complex nature of suicide, resulting

in a model that does not externalize well (Linthicum et al., 2019).

Human factors and ergonomics in relation to the usability and trust of ma-

chine learning. In a study conducted by Tsai et al. (2003), researchers found that medical

professionals may be led to mistakenly alter their diagnoses in order to match the results

given by a CDSS. Additionally, low inter-personnel reliability when interpreting results

from a CDSS, such as the CATI, could result in different diagnoses between healthcare

providers even though they may be using the same systems and being given the same re-

sults (Povyakalo, Alberdi, Strigini, & Ayton, 2013). These systems were designed to reduce

the error made in diagnostics and, overall, they achieved just that. However, the introduc-

tion of these systems gave rise to a new and different kind of error that is linked to trust

in a system. These kinds of errors that result from trust in a system are studied by human

factors and ergonomics.
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Human factors and ergonomics is the field of study whereby researchers strive to un-

derstand the relationship between humans and the elements within a system in order to

optimize human system performance (Karwowski, 2006; Presidential, 1996). Systems are

also referred to as automation (i.e., use of a computer to complete a task) (Parasuraman

& Riley, 1997). From a human factors and ergonomics perspective, poor implementation,

usability, and understanding of automation can make it difficult for doctors to be suffi-

ciently trained to utilize the technology to its fullest, as seen in the CDSS and CATI studies

described above (Bates et al., 2001; Garg et al., 2005). Ultimately, human factors and

ergonomics research describe humans’ ability to work with complex, automated systems

(Parasuraman, Sheridan, & Wickens, 2008).

Three models within human factors and ergonomics research have been of particular

interest in recent years, and all three can contribute to the explanation of reliance and

error in a system. First is the situational awareness model (SA), the second is the mental

workload model, and the third is trust in automation. The understanding of these models

can help to understand human performance in complex systems (Parasuraman et al., 2008).

The SA model refers to the perception of items in the environment, how the items

are comprehended, and what the items’ statuses will be in the near future (Endsley, 2016).

Essentially, SA can be described as how one is aware of their situation and subsequently uses

their understanding of the situation to understand what will happen next. The principles

of the SA model can be applied to machine learning in this way: knowing what variables

are inputted into the algorithm, understanding how those variables and algorithm interact,

and how those variables will lead to the algorithm’s output. However, it is of importance

to note that SA is not a choice or performance of a model, but rather the representation of

a continuous diagnosis of an ever changing world (Parasuraman et al., 2008).

In conjunction with SA is the mental workload model. Mental workload is simply the

mental resource that is demanded by a task in comparison to the mental resources able to be

given by the human worker (Parasuraman et al., 2008). It is hypothesized that workers will

tend to rely on automation when mental workload is great (Parasuraman & Riley, 1997).
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Mental workload is similar to SA as is it also not a choice or performance of a model,

but an assessment of the system’s strain on the worker. By assessing the mental workload

of a system, one could feasibly refine the system such that the mental workload does not

negatively affect the worker. On the topic of machine learning in predicting suicide, the use

of the machine learning algorithm should not contribute so much to the clinician’s mental

workload such that it becomes a hindrance to the clinician.

Trust in automation also contributes greatly to human performance and error in a sys-

tem. While a system may provide good SA and a balanced mental workload, much of human

performance in a system depends on trust. In a study conducted by Lee and Moray (1994),

researchers found that when trust in automation exceeded confidence in the ability to do a

task by hand, humans turned to automation to get the job done. Conversely, if confidence

overtook trust, then humans would take control of the system manually. This phenomenon

can also be seen in the CATI and CDSS above. The medical professionals in those studies

were shown to have changed their accurate diagnoses to match the diagnoses given by the

system, perhaps because their trust in the system exceeded their confidence to reject the

system’s diagnoses. Another possible explanation could be that the medical professionals

had too much trust in the automation, which led to the misuse of the automation as a di-

agnostic answer rather than a diagnostic aid (Parasuraman & Riley, 1997). Unfortunately,

when an error does occur with the use of automation, especially if the error is a costly one,

trust in automation decreases (Parasuraman & Riley, 1997). In such a situation, the im-

plementation of the automation can hinder performance if the worker is constantly second

guessing the ability of the machine. Understanding and allocating the appropriate trust in

automation is crucial for establishing how to best use automation, avoid misuses of automa-

tion, and have proper reliance on automation (Parasuraman & Riley, 1997; Parasuraman

et al., 2008; Lee & See, 2004).

The potential limitations of using machine learning in the prediction of suicide risk are

encapsulated by aspects of human factors and ergonomics as well as potential biases of the

machine. In regards to machine learning biases, concerns arise because of the nature of the
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data on which the machine is tested and validated as well as the machine’s algorithm itself.

Many machine learning studies are performed on retrospective data. These data could

hold many potential biases that could not only negatively impact the external validity of

the machine, but also bias the results given (Nemati et al., 2018; Shimabukuro, Barton,

Feldman, Mataraso, & Das, 2017; Olteanu et al., 2019; Suresh & Guttag, 2019; Mehrabi

et al., 2019). Within the machine learning algorithm, other biases arise in regards how the

machine comes up with its results.

There are also concerns about the effects on SA, mental workload, and trust in the

machine learning algorithms. Should the introduction of the algorithm negatively impact SA

or mental workload, this could potentially result in human error in operating the machine.

Additionally, trust in the machine may be affected by how accurately the machine works and

how much confidence the clinician has in their own diagnostic processes. Others have also

raised the concern of the “black box” nature of these machine learning systems, as some

of systems are not overtly apparent in how they use data from electronic health records

(EHRs) to make decisions and diagnoses, which may cause distrust from physicians (Bates

et al., 2001).

Potential impact of machine learning in suicide prediction

Despite the potential limitations in the use of machine learning, previously published

studies have shown that machine learning algorithms can predict suicide as far out as 365

days from the event, and as close as 30 days to the event with an area under the curve (AUC)

of over .80, compared to traditional methods that have AUCs of .50 (Franklin et al., 2017;

Linthicum et al., 2019; Oh, Yun, Hwang, & Chae, 2017; J. Ribeiro et al., 2016; J. D. Ribeiro

et al., 2018; Walsh, Ribeiro, & Franklin, 2017, 2018). This AUC can be interpreted as a

good level of accuracy for the machine. An overview of multiples studies has also found

that machine learning algorithms make more accurate predictions than traditional methods

(Linthicum et al., 2019).

Bernert et al. (2020) published a review on artificial intelligence and suicide prevention.
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Their findings reported a high accuracy (AUC > .90) on the use of machine learning in

predicting suicide. However, researchers were unable to synthesize the data and therefore

were not able to perform a meta-analytic test. Therefore, to the knowledge of the PI, there

has not been a meta-analysis that has collectively pooled the reported accuracies of suicide

prediction via machine learning in published studies.

Purpose of the Research

This study sought to understand the effects of machine learning models in predicting

suicide within a collection of different research publication through a meta-analytic review

and present the results in a clinically useful manner. Additionally, this study investigated

potential moderators that may have effected the results of the meta-analysis. It was hy-

pothesized that type of machine learning algorithm used, the type of data used, and the

definition of suicide would act as moderating variables. Finally, this research attempted to

elucidate the potential usefulness of machine learning in the prediction of suicide, as well

as uncover future areas of research and current gaps in the literature.

For the purposes of this study, suicide risk was defined as being at risk of attempt-

ing suicide or dying by suicide as distinct from ideation because, though ideation is more

common than attempted suicide or death by suicide, the presence of ideation does not al-

ways progress to suicide. It was by this definition of suicide that articles were screened

based on whether or not they predicted suicide risk. This definition was, in part, based

upon Posner, Oquendo, Gould, Stanley, and Davies (2007) whereby the authors validated

a categorization scheme for suicidal events that is currently utilized by the Federal Drug

Administration (FDA). Based on Posner et al. (2007), suicide death, attempt, and ideation

are considered suicidal events whereas self-injurious behavior is considered “indeterminate”.

As such, events such as self-injurious behavior did not fall under the definition of suicide risk

used by this study. Furthermore, even though suicidal ideation was defined as a “suicidal”

event by Posner et al. (2007), when viewed as a target for a machine learning algorithm, it

did not capture the definition of suicide risk that was intended by the PI, which was risk
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of committing suicide. Prediction of suicide risk as defined by presence of suicidal ideation

was determined to be more akin to predicting risk of suicidality rather than risk of attempt

or death. Therefore, the definition of suicide risk was restricted to risk of death or attempt.

Methods

A meta-analysis is a statistical test that synthesizes data across multiple studies so

that the results from any individual study can be observed in context of all the other

studies (Borenstein, Hedges, Higgins, & Rothstein, 2011). In many ways, a meta-analysis

can be viewed as a more advanced version of the systematic review. First developed by

Gene V. Glass in the 1970s, a meta-analysis pools the standardized mean differences (i.e.,

differences between the means of two groups such as experimental and control groups)

across studies (Glass, 1976). Meta-analytic techniques continued to be refined in order

to be applied to other areas of research, such as measurements and assessments, and in

the 1980s, Drs. DerSimionian and Laird introduced the methodology to calculate random-

effects models, which is part of the model used in the present study (Hasselblad & Hedges,

1995; DerSimonian & Laird, 1986; Schmidt & Hunter, 1977).

This meta-analytic review was conducted following the Preferred Reporting Items for

Systematic Reviews and Meta-analyses (PRISMA) statement (Moher et al., 2009). The

PRISMA method provides a standardized framework that allows for efficient methodology

in a meta-analytic test. The methodology for this research was based upon the 27-item

checklist provided by the PRISMA statement. All articles were housed on EndNote® and

Covidence®, and all screening and data extraction were conducted through Covidence®.

EndNote® is a tool used to aggregate and organize references and Covidence® is an online

tool used to enhance the process of evidence synthesis and data extraction (Babineau, 2014).

Article Collection and Screening

Search Strategy. In accordance with the PRISMA method, a social science refer-

ence librarian and an engineering research librarian were consulted for search terms to be
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used during the database search phase. Search terms as well as databases searched were:

machine learning; machine learning algorithms; prediction; suicid* behavior; suicid* idea*;

suicid* thoughts; suicid* self-injury; self-injur*; suicid*. Both psychology and computer sci-

ence databases were searched: PubMed, PsycINFO, Association for Computing Machinery

digital library (ACM DL), Science Direct, and Web of Science. The date range for articles

collected was 1992 to February of 2021. The cut-off date of articles used was 1992 to ensure

that DSM-IV criteria for any assessment of suicide risk factors were used.

Inclusionary criteria. Articles that were included in this analysis needed to contain

(a) the use of a minimum of one machine learning algorithm to predict suicide in a patient

data set; (b) the name of the algorithm used; (c) the predictors (i.e., attributes) used; (d)

sample size, (e) number of positive cases; (f) the resulting accuracy of the algorithm reported

as an Area Under the Curve (AUC), sensitivity/specificity, or any other information that

could be used to calculate an AUC and, subsequently, a Cohen’s d using the formulae

provided by Hasselblad and Hedges.

There exist several ways to gauge the accuracy of a machine learning algorithm depend-

ing on what feature of the algorithm should be given more weight. For predictive machine

learning models, AUCs are the preferred measure of accuracy as the AUC describes how

well the model is able to distinguish between classes and focuses on the model’s ability to

discriminate between positive and negative cases (Hand & Anagnostopoulos, 2013; Bradley,

1997; J. Huang & Ling, 2005).

Furthermore, the published papers were required to be written in English, though trans-

lations were allowed, and were required to be peer-reviewed publications. There were no

geographic or cultural limitations for the studies included in this meta-analysis.

Exclusionary criteria. Publications were excluded if they (a) failed to meet the

above mentioned inclusionary criteria and (b) did not predict suicide risk as defined by

suicide related death or attempt. Furthermore, studies that only discussed a machine

learning algorithm’s ability to predict suicide, but did not actually test an algorithm, were

excluded.



MACHINE LEARNING AND SUICIDE RISK: A META-ANALYTIC REVIEW 25

Article Screening. Using the search terms above, a total of 1044 articles were col-

lected from the listed databases. Following the collection of articles, articles then underwent

a screening process in Covidence. Firstly, duplicate articles were removed from the database

of articles (n=194). Once the duplicates were removed, articles were screened based on rel-

evance to the subject via the title of the publication and the abstract. Articles that did not

meet relevancy were excluded from the analyses (n=586), but were recorded as identified

articles.

Next, the remaining articles were assessed based on the exclusionary and inclusionary

criteria as listed above. Once again, articles that did not meet these criteria were screened

out of the analyses (n=194), but were recorded as identified articles. Of the articles that

did not meet inclusionary/exclusionary criteria, n=56 articles predicted suicidality (i.e.,

suicidal ideation and self-injury) and n=23 predicted suicidal sentiment in social media

posts (e.g., expressions of wishing to die). Further, n=61 were of the wrong study design

(i.e., did not test a machine learning algorithm), n=45 either did not predict suicide or

did not report one of the accuracy measures as listed above, n=5 were abstracts that had

subsequently become papers, and n=3 were of the wrong “patient” population (e.g., two

studies predicted the suicide of Virginia Woolfe using her writings and one study utilized a

researcher simulated dataset).

At the ending of screening, there were a total of n=70 articles. One (n=1) article

was excluded during the coding phase due to highly improbable effect sizes reported (e.g.,

g=5.57) as determined by the principal investigator (PI) and a key opinion leader in the

field. A final n=69 articles were included in the meta-analysis. Figure 1 shows the Covidence

generated flow diagram of the screening process in Covidence, not accounting for the study

that was excluded post-Covidence screening.

Data extraction. The data were coded by three independent coders to ensure accu-

rate data recording. Coder 1 was the PI who coded all articles included in the meta-analysis.

Coders 2 and 3 were research assistants affiliated with the Helping Give Away Psycholog-

ical Science (HGAPS) organization based at the University of North Carolina at Chapel



MACHINE LEARNING AND SUICIDE RISK: A META-ANALYTIC REVIEW 26

Figure 1. PRISMA flow diagram for article selection exported from Covidence. Note
that one article was excluded post-Covidence screening, bringing total articles included in
analysis to 69.

Hill. Coders 2 and 3 both coded a random selection of 50% of the articles in total. Re-

search assistants were trained on the methodology and theory of meta-analyses by reading

methodology papers on how to conduct meta-analyses based on the PRISMA method as

well as published meta-analytic review papers on similar topics to the current research as

examples. Further, they familiarized themselves with the topics of suicide and machine

learning through instruction from the PI as well as reading suicide and machine learning

lessons found on the Internet.
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Articles for coders 2 and 3 were randomly assigned by giving each article included in

the meta-analysis a number and using a random number generator to assign articles to

each coder. For every article double coded, the PI conducted a weekly focus group where

any queries between the coders’ answers were collectively addressed and resolved through

consensus by all three parties.

The variables coded in the meta-analysis included the title of the journal in which the

article was published, dataset characteristics, accuracy metrics, and the algorithm’s charac-

teristics. See Supplemental Materials for the full list of codes used to extract the data. If a

study reported results from multiple different models (e.g., if they use different algorithms

on the same data set, or they use different predictors in each model), the classification accu-

racy for all models were recorded as separate instances in the final data and the differences

in the algorithms were reported.

In order to streamline the analytic process, type of algorithm used was grouped post-

coding into 1 of 13 groupings based on the family in which the algorithm belonged. Regres-

sion based algorithms fell under the regression family (e.g., logistic, linear). Methods that

used instance-based learning (i.e., learning by comparing new instances to previously en-

countered instances) such as k-nearest neighbor and support vector machines were grouped

under the instance based family. All decision tree type algorithms were grouped under

decision trees, but random forests and other conglomerate algorithms were categorized as

“ensemble". Methods that used Bayesian techniques were grouped under Bayesian, use of

artificial neural networks were grouped under ANN, deep learning algorithms were grouped

under deep learning, and all algorithms used to transform data into a lower dimensional

space such as principal component analyses were grouped under dimensionality reduction.

Papers that used only natural language processors (i.e., the natural language processor was

not used as a method in a core model) were grouped together, and three studies utilized a

unique algorithm the researchers named FALCON. Finally, any paper that utilized a mixed

approach of techniques in model construction were classified as Mixed Approach.
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Statistical Methods

Because meta-analytic techniques are better developed for pooling standardized mean

differences rather than AUCs, all AUC values were converted to Hedge’s g, a standardized

mean difference (Hasselblad & Hedges, 1995). Hedge’s g was chosen over other effect sizes

such as Cohen’s d because Hedge’s g accounts for the small sample bias that plagues Cohen’s

d where pooled estimates have an upward bias if the sample size of a study is low (n<21)

d (Hedges & Olkin, 2014). Standard formulae given by Hasselblad and Hedges (1995) were

used to calculate Hedge’s g from AUCs by converting AUCs to Cohen’s d first then directly

calculating the Cohen’s d values to g. These formulae were also used to calculate AUCs

from sensitivity/specificity values.

A multi-level, mixed-effects model was used in this study. A mixed-effects model ac-

counts for variances that are accounted for by both the fixed effects and random effects

models. A fixed effects model assumes that there is one, universal effect size that all studies

aim to measure, which causes studies with a greater sample size to be given more weight

than smaller studies. In contrast, a random effects model makes no such assumption and

takes into account between study heterogeneity. Therefore, in a mixed-effects model, the

impact of machine learning on suicide prediction can be measured, like in a fixed effects

model, while also accounting for the variance coming from individual differences among the

different studies and models, like in a random effects model.

A multi-level approach was taken to account for the experienced nesting due to papers

reporting multiple machine learning models. This model not only captures the nesting of

effect sizes, but also the within and between study variances while also allowing for a direct

comparison of performance measures, negating the need to run separate models for each

measure (Konstantopoulos, 2011).

I2 for multi-level meta-analyses as well as sigma values and Cochrane’s Q were used

to assess the heterogeneity between and within studies to observe whether heterogeneity

in effect sizes affected by the variability between the studies and not the data extracted

from the studies (Cheung, 2014). Funnel plots and a mixed meta-regression model version
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of  Egger’s  test  with  standardized  residuals  were  used  to  assess  for  publication  bias  and

to  check  for  any  outliers  (Viechtbauer,  2010a).  Finally,  a  meta-regression  assessed  for  the

impact  of  any  potential  moderating  variables.  All  data  analyses  were  conducted  in  R  version

4.1.0  using  the  psych,  meta,  and  metafor  packages  (Viechtbauer,  2010b,  2010a).

Results

  A  total  of  69  studies  published  between  1992  and  February  2021  contributed  286  Hedge’s

g  effect  sizes  for  the  analyses.  Table  1  displays  the  summary  of  the  data  for  each  article

included  in  the  analysis.  In  terms  of  nesting,  one  study  contributed  24  effect  sizes,  one

study  contributed  16,  one  study  contributed  15,  two  studies  contributed  12  each,  and  the

remaining  64  studies  contributed  between  1  to  10  effect  sizes  each.

  For  candidate  moderator  variables,  algorithm  family,  definition  of  suicide  death  and/or

attempt,  and  data  source  were  considered.  Tables  2-4  display  the  summary  of  sample-level

characteristics  of  effect  sizes  for  each  moderator.

  Twenty-six  of  the  69  studies  used  ensemble  machine  learning  methods,  9  studies  used

Mixed  Approach  methods,  6  used  decision  trees,  6  used  regression  methods,  5  used  artificial

neural  networks,  5  used  deep  learning  techniques,  5  used  instance  based  methods,  3  used

FALCON,  2  used  methods  listed  as  other,  1  used  Bayesian,  and  1  used  natural  language

processors.

  25  of  the  69  studies  utilized  the  ICD  definition  of  suicide  attempt  and/or  death  in

their  algorithms,  11  studies  used  a  singular  survey  question  (e.g.,  “have  you  ever  attempted

suicide”),  11  studies  utilized  assessment  scales  such  as  the  CSSRS,  6  studies  used  hospital

records,  5  studies  used  interview  questions,  3  studies  used  the  NIMH  definition,  3  studies

used  clinical  notes,  2  studies  used  the  Study  to  Assess  Risk  and  Resilience  in  Service-

members  (STARRS)  definition,  1  study  used  the  C-CASA,  and  1  study  used  the  ICPC

definition.

  Finally,  for  data  sources,  13  studies  utilized  national  registries,  11  used  data  from  spe-

cialized  hospitals  (e.g.,  psychiatric  inpatient  hospitals),  11  studies  used  data  from  the  army,
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Table 2.
Hedge’s g descriptive statistics for moderator algorithm family

Hedge’s g
Algorithm Family Percent Attribution Minimum Maximum Mean Std. Dev.
ANN 7.69% 0.44 2.69 1.59 0.56
Bayesian 0.70% 0.75 1.88 1.32 0.79
Decision Tree 9.46% 0.32 3.06 1.26 0.6
Deep Learning 5.94% 0.48 3.19 1.94 0.74
Dimensionality Reduction 1.40% 1.22 1.3 1.26 0.04
Ensemble 34.62% 0.5 2.88 1.61 0.52
FALCON 1.40% 0.16 2.35 1.52 1.01
Instance based 8.04% 0.27 2.29 1.13 0.59
NLP 0.35% 1.72 1.72 1.72 -
Other 0.70% 0.72 2.2 1.46 1.05
Regression 9.44% 0.11 2.46 1.31 0.54
Mixed Approach 22.38% -0.14 3.35 1.31 0.68

Table 3.
Hedge’s g descriptive statistics for moderator suicide definition

Hedge’s g
Suicide Definition Percent Attribution Minimum Maximum Mean Std. Dev.
Assessment Scale 17.83% 0.11 2.35 1.13 0.47
C-CASA 0.35% 1.18 1.18 1.18 -
Clinical Notes 1.05% 0.72 1.53 1.17 0.41
Hospital Records 6.64% -0.14 2.69 0.88 0.77
ICD 46.50% 0.11 3.19 1.49 0.56
ICPC 0.35% 1.29 1.29 1.29 -
Interview 7.20% 1.3 2.88 1.77 0.41
NIMH 8.74% 0.39 3.06 1.61 0.49
STARRS 1.75% 0.39 1.73 1 0.58
Survey Question 12.59% 0.65 3.35 1.99 0.61
Unknown 0.70% 0.59 0.76 0.68 0.12
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Table 4.
Hedge’s g descriptive statistics for moderator data source type

Hedge’s g
Data Source Type Percent Attribution Minimum Maximum Mean Std. Dev.
Anonymous Survey or Interview 13.65% 0.11 2.29 1.37 0.43
Army 8.87% -0.14 2.2 0.95 0.56
Combination 5.12% 0.88 1.59 1.2 0.23
Emergency Room 1.37% 1.73 1.91 1.83 0.07
General Hospital 15.36% 0.32 3.35 1.58 0.71
Outpatient Clinics 2.05% 0.54 1.8 1.22 0.5
Registry 14.68% 0.11 2.46 1.33 0.5
SNS 2.39% 1.73 2.2 2 0.15
Specialized Hospital 16.38% 0.16 3.19 1.56 0.83
University Hospital 20.14% 0.31 2.88 1.65 0.53

11 used anonymous survey or interview data, 10 studies used university hospital data, 7

used general hospital data, 3 used outpatient clinic data, 1 used combinations of different

data sources, 1 used emergency room data, and 1 used social media data.

In addition to the distribution of the above moderator variables throughout the 69 stud-

ies, the contribution of effect sizes for each variable also indicated these variables as can-

didate moderators. Algorithms that utilized the ICD definition of suicide attempt and/or

death contributed 45% of all effect sizes (k) while assessment scales contributed 17%. Ap-

proximately 50% of effect sizes were acquired from two families of machine learning methods:

ensemble (k=99) and Mixed Approach (k=64). Finally, of the 10 data source types, hospital

data (general, specialized, university) contributed 50% of the 286 effect sizes, followed by

approximately 15% from registries, 13% from anonymous surveys or interviews, 9% from

the army, and 11% collectively from combination data sources, emergency room data, social

media data, and outpatient clinic data.

Reference standards for the analyses were chosen based on the combination of percent

effect size contribution and percent study use with priority given to percent effect size

contribution. Because ensemble methods were the most commonly used methods and con-
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tributed over 30% of the total effect sizes, it was used as the reference standard in the

analyses. Based on the same criteria, the ICD definition of suicide and university hospital

data were used as the reference standards. Results included 85,126 positive cases of suicide

death or attempt, and a total of 12,752,907 participants.

Overall Summary of Effect Sizes

The multi-level regression (rma.mv function in metafor) was used to model the significant

nesting of effect sizes in this study by treating the between and within study variances as

random effects as described in Konstantopoulos (2011). Cochrane’s Q results demonstrated

significant heterogeneity of effect sizes (Q(285 df ) = 66361.51, p < 0.0001). Further, I2

results and σ 2 values showed substantial variance within studies (σ 2.1 = 0.09; Level-2

I2 = 0.28) and between study (σ 2.2 = 0.28; Level-3 I2 = 0.71), indicating that there are

differences among the studies that cannot be attributed to sampling variation alone (I2 =

0.38, 99.9% ) (Figure 2). The ICC of the true effect size was medium-to-large (ρ = 0.26),

and the average effect size that was pooled across all studies was large (g = 1.36, 95%

CI[1.22, 1.49], p < 0.0001) (Ahn, Myers, & Jin, 2012). While the large effect size indicated

machine learning methods have good discriminative ability in predicting suicide, the large

heterogeneity warranted further testing into moderator variables to try and identify the

source of variance through the potential moderators (Lipsey & Wilson, 2001).

Multilevel Meta-Regression Using All Predictors

A fully augmented model that included the chosen moderators (algorithm type, data

source type, and suicide risk definition) accounted for a statistically significant amount of

variance (Q(df 31) = 50.44, p = 0.02). This augmented model also reduced the random

effects within study variance by 0.01 (σ 2.1 = 0.08; Level-2 I2 = 0.30), and between study

variances by 0.09 (σ 2.2 = 0.19; Level-2 I2 = 0.70) (Figure 3). Still, there was significant

heterogeneity even within the augmented model (Q(df 254) = 29145.06, p < 0.0001).

The omnibus model indicated that there were significant differences among the sub-
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Figure 2. I2 for between and within study heterogeneity values for overall model.

groups (F(31, 254) = 1.63, p = 0.02). The intercept for the fully augmented model was b =

1.56 (95% CI[1.23, 1.90], p < 0.0001), indicating a pooled effect size of about g=1.56 when

including the three moderating variables in the model, and the ICC for the model was large

(ρ = 0.70).

Meta-regression for algorithm type. Analyses were re-run to examine the differ-

ences among effect sizes across the different algorithm types. Ensemble methods were used

as the reference standard for all the algorithm family types. This model accounted for a

statistically significant proportion of the variance (Q(df 11) = 29.68, p = 0.002). The test-

of-moderators demonstrated that there was a statistically significant difference between the

subgroups of different algorithm types in comparison to ensemble methods (F(11, 274) =

2.70, p = 0.003). As seen in Table 5, Bayesian (B = -0.58, p = 0.015) and regression (B

= -0.37, p = 0.002) methods demonstrated statistically significant, lower effect sizes than

ensemble methods. Deep learning (B = 0.33, p = 0.016) reported statistically significant,
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Figure 3. I2 for between and within study heterogeneity values for saturated model.

higher effect sizes than ensemble methods.

Meta-regression for suicide risk definition. When testing for differences among

the different definition of suicide risk, the ICD criteria for suicide death and/or attempt was

used as the reference standard for comparison with all other suicide risk definitions. This

model did not account for a significant proportion of the variance (Q(df 10) = 15.76, p 0.11).

Further, the test-of-moderators analysis did not return a significant model (F(10, 275) =

1.58, p = 0.11). However, individual predictors within the subgroup returned significant

results, as seen in Table 6. Survey questions (B = 0.47, p = 0.02) and interview questions

(B = 0.60, p = 0.03) reported statistically significant, higher effect sizes than ICD.

Meta-regression for data source type. To find differences in effect sizes among

data source types, university hospital data was used as the reference standard for other

data source types. This model did not account for a significant proportion of the variance

(Q(df 10)= 10.83, p = 0.37), and the test-of-moderators did not yield a significant model
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Table 5.
Regression weights and coefficients for algorithm family meta-regression model

β SE t df p CI [lower, upper]
intercept (Ensemble) 1.41 0.08 17.05 274 <.0001*** [1.25, 1.58]
ANN 0.02 0.12 0.16 274 0.87 [-0.23, 0.27]
Bayesian -0.58 0.24 -2.46 274 0.01* [-1.04, -0.12]
Decision Tree -0.16 0.1 -1.53 274 0.13 [-0.37, 0.05]
Deep Learning 0.33 0.14 2.42 274 0.02* [0.06, 0.60]
Dimensionality Reduction -0.16 0.22 -0.74 274 0.46 [-0.58, 0.26]
FALCON -0.19 0.32 -0.6 274 0.55 [-0.81, 0.43]
Instance Based -0.18 0.1 -1.77 274 0.08 [-0.37, 0.20]
NLP 0.31 0.63 0.49 274 0.63 [-0.93, 1.54]
Other 0.02 0.47 0.04 274 0.97 [-0.90, 0.94]
Regression -0.37 0.12 -3.11 274 0.002** [-0.60, -0.14]
Mixed Approach -0.04 0.08 -0.52 274 0.6 [-0.20, 0.12]
*0.05; **0.01; ***0.0001

Table 6.
Regression weights and coefficients for suicide definition meta-regression

β SE t df p CI [lower, upper]
intercept (ICD) 1.29 0.11 12.07 275 <.0001*** [1.08, 1.50]
ICD -0.61 0.56 -1.1 275 0.27 [-1.72, 0.49]
Assessment Scale -0.11 0.19 -0.57 275 0.57 [-0.49, 0.27]
C-CASA -0.11 0.66 -0.17 275 0.86 [-1.41, 1.18]
Clinical Notes -0.11 0.36 -0.3 275 0.77 [-0.82, 0.60]
Hospital Records -0.2 0.25 -0.8 275 0.43 [-0.69, 0.29]
ICPC 0.005 0.6 0.01 275 0.99 [-1.17, 1.18]
Interview 0.6 0.27 2.22 275 0.03* [0.07, 1.12]
NIMH 0.14 0.33 0.41 275 0.68 [-0.51, 0.78]
STARRS -0.2 0.4 -0.51 275 0.61 [-0.99, 0.58]
Survey Question 0.47 0.2 2.36 275 0.02 [0.08, 0.86]
*0.05; **0.01; ***0.0001
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Table 7.
Regression weights and coefficients for data source meta-regression

β SE t df p CI [lower, upper]
intercept (Uni Hosp) 1.59 0.17 9.46 276 <0.0001*** [1.26, 1.92]
Anon Survey or Int -0.1 0.22 -0.43 276 0.66 [-0.54, 0.34]
Army -0.5 0.23 -2.21 276 0.03* [-0.94, -0.06]
Combo -0.39 0.52 -0.75 276 0.46 [-1.41, 0.63]
ER 0.24 0.53 0.45 276 0.66 [-0.81, 1.29]
Gen Hosp -0.3 0.22 -1.32 276 0.19 [-0.74, 0.15]
Outpatient -0.22 0.3 -0.73 276 0.47 [-0.82, 0.38]
Registry -0.39 0.22 -1.77 276 0.08 [-0.83, 0.04]
SNS 0.4 0.52 -1.77 276 0.44 [-0.63, 1.44]
Special Hosp -0.2 0.22 -0.91 276 0.36 [0.62, 0.23]
*0.05; **0.01; ***0.0001

(F(10, 275) = 1.08, p = 0.38) (Table 7). However, data from the army (B = -0.50, p =

0.03) showed significantly lower effect sizes than university hospital effect sizes.

Publication Biases

To analyze potential publication biases, funnel plots and a random-effects, mixed-models

version of Egger’s regression test for publication bias were analyzed (Viechtbauer, 2010a).

Figure 4 shows the funnel plot for the fully augmented model. In this model’s funnel plot,

though effect sizes seem to have considerably variability around the mean, there seems to

be no substantial asymmetry. Egger’s test results support this as results suggested little

evidence of publication bias (B = 1.09, p = 0.33) and therefore little evidence of asymmetry.

Based on this intercept value, it appeared as though larger studies trended towards smaller

effect sizes, but not significantly. Further, adjusting for publication biases increased the

significance of the findings reported above, suggesting that small sample bias most likely

did not contribute to the observed results.
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Figure 4. Funnel plot of fully augmented model.

Discussion

The purpose of this meta-analytic review was to assess the utility of machine learning

in predicting suicide risk. Based on the results of the random effects, multi-level model,

machine learning had a significant effect on the prediction of suicide as defined by suicide

death or attempt. The most prominent factor that seemed to play into the discriminative

validity of the machine was the choice of machine learning model. The algorithm-family-

moderated model returned a statistically significant model whereas the other moderated

models did not, indicating that there were significant differences in effect size estimates

between the different algorithm types. When converting the estimated, pooled effect sizes

for all the models into AUC values, all models showed good to very good discriminative

ability. Further, while the other two moderated models were not significant, there were

still significant variables within the models that suggested some variables resulted in higher

effect sizes than others.
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The most frequently reported machine learning algorithms fell within the ensemble meth-

ods family with an occurrence of 33.8%. These methods include the random forest algo-

rithms, bagging, and boosting and are often used to tackle complex classification problems

such as those dealt with in medicine. Ensemble methods combine several different machine

learning techniques into one algorithm in order to decrease variance and bias and increase

classification abilities. As a result, it is unsurprising that the label “ensemble methods” en-

compasses a broad variety of different algorithms and, therefore, were the most commonly

used techniques among the publications. This could have potentially contributed to the

substantial between-study heterogeneity (σ 2.2 = 0.29) found in the multilevel model that

was moderated by algorithm families with the reference standard as ensemble methods.

While the test for moderators of suicide definition and data source returned non-

significant models, it should be noted that some variables outperformed other variables

within these groups. Having the definition of suicide be dictated by anonymous survey or

interview questions led to statistically significant higher effect sizes as compared to studies

with suicide definitions being decided by the ICD. There exist several possible interpre-

tations of these results. One possible explanation could be that the survey or interview

questions provided a definite yes or no classification to the question of “have you attempted

suicide” whereas trying to meet the criteria of the ICD’s definition of suicide attempt or

death may have led to less definite classifications. Essentially, patients may have provided a

more precise and accurate response to a direct question about suicide versus trying to ascer-

tain suicide attempt or death in a roundabout way such as going through hospital records

postmortem. Another possibility could be that the classifications of suicide attempt or death

based on the ICD were not accurate. This could be due to this information being pulled

from secondary sources such as electronic medical records that are prone to inaccuracies

from factors such as missing information, incorrectly recording patient information, and, in

the case of suicide, ambiguous or even untruthful information from patients (Hong, Kaur,

Farrokhyar, & Thoma, 2015; Weiner, Wang, Kelly, Sharma, & Schwartz, 2020; McCabe et

al., 2017).
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Similarly to the meta-regression for suicide definition, the meta-regression for data

source type returned an insignificant model. However, within the subgroups, army data

source demonstrated significantly lower estimates of effect size when compared to the ref-

erences standard university hospital data sources. This could be due to a variety of factors

such as the lower ratio of positive cases to controls in the army data source studies (1.4% )

in comparison to the studies that used university data (7.1% ). Additionally, it could be the

case that data collected by the army regarding a soldier’s mental health may be inaccurately

or even untruthfully reported due to the stigma and financial and career consequences of

disclosing a mental illness diagnosis among military personnel. However, further research

is necessary to truly understand why these results were obtained.

Clinical Interpretability

To provide more clinically meaningful insight into the results of these meta-analyses, the

predicted values from the algorithm type meta-regression, the only statistically significant

model of all three moderators, were converted into an estimated AUC (Hasselblad & Hedges,

1995). Ensemble methods, the reference standard, have an AUC of approximately 0.84,

suggesting good predictive ability.

The one algorithm method that reported statistically significant higher pooled effect

sizes was deep learning, which had a reported AUC estimate of 0.89. However, because this

AUC approached 0.90, a value that could potentially indicate it is “too good to be true”

according to Youngstrom, Salcedo, Frazier, and Perez Algorta (2019), bias analyses were

conducted using the deep learning models as a subset. Figure 5 displays the funnel plot for

the deep learning algorithms. Based on the plot, it appeared as though there was asymmetry

in the reported effect sizes; most studies published reported effect sizes ranging from 1.5

to 3.5. Egger’s test of publication bias also returned significant results (B = 68.2063, p

< 0.0001), suggesting that there may be publication biases such that there may be small

study effects: smaller studies with large effect sizes may be more frequently published than

smaller studies with lower effect sizes.
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Figure 5. Funnel plot of for subgroup Deep Learning algorithm family.

Despite this, most machine learning models had estimated AUCs between 0.80 and 0.89

with Bayesian methods and Mixed Approach methods being the two with lower that 0.80

estimated AUCs. These results suggest that machine learning methods have good discrim-

inative ability in predicting suicide. However, in order to better ascertain this statement,

further research must be conducted into why there existed so much variances among the

effect sizes within each of the algorithm type groups, especially among studies with low

standard error as it is normally believed that as studies approach a standard error of 0, the

found effect sizes converge around the mean.

Unfortunately, there was sparse information regarding the human-machine interaction

of machine learning and care providers. While no definitive conclusions can be drawn,

based on precedent, the introduction of machine learning into a clinical setting will need
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to be handled carefully as to maximize the impact of machine learning but minimize the

disruptiveness in implementing a new system. Further, as seen in the aforementioned AUC

estimates, though machine learning seems to have good predictive ability in predicting

suicide risk, caution should be taken in too readily believing such numbers as they may be

“too good to be true”.

This human factors research may serve as an important, perhaps even critical, compo-

nent into making a machine learning algorithm a usable clinical tool. As stated previously,

current methods of suicide prediction are limited to the simplistic construct that researchers

have created about suicide and suicide risk factors. Machine learning is a tool that can be

utilized to address this limitation of current methods of suicide assessment. But, in order

for machine learning to be implemented as a tool to bridge this gap between capturing a

complex model and being a usable tool, usability and human factors research needs to be

undertaken. By doing so, not only could suicide prediction become better, but it could also

push the evolution of current suicide prediction assessments to be more appreciative of the

complexity of suicidality. Additionally, if and when machine learning becomes a usable,

clinical tool, it may also help to begin the process of standardizing an assessment plan for

suicidality like there exists for assessing other mental illnesses such as depression or anxiety

by giving clinicians a launching pad that might further inform their clinical assessments.

Limitations

Much like how the quality of a machine learning algorithm is heavily dictated by the

data it is presented, a meta-analysis can only be as strong as the studies included in the

analysis. All studies included were published in academic journals, and the overwhelming

majority were in the fields of psychology and medicine. It is uncertain, then, how results

reported from fields outside of medicine such as engineering or computer science may impact

the results of this analysis. Furthermore, the considerable variances in effect sizes may have

implications regarding differences in what exactly these studies were examining. It could

very well be the case that, while the topics of the studies were about machine learning in
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predicting suicide risk, the studies may not all have been assessing the same target diagnosis

of suicide risk. This could have been due to a myriad of factors ranging from differences in

study design and definition of suicide to an overall, fundamental misunderstanding by the

field of how suicide should be viewed.

There is also potential concern about using AUC as a measure of accuracy for machine

learning algorithms. AUCs may not be the most effective way in measuring a machine’s

accuracy in diagnostic settings because in these settings, the data is usually highly class

imbalanced (i.e., there are usually many more healthy cases compared to target cases) (Guo,

Yin, Dong, Yang, & Zhou, 2008). AUCs account for this imbalance by "glossing over" all

potential "bias" (e.g., cut-off scores), but for a model to be useful there needs to be the right

"bias" score. To address this, F1 or precision/recall scores could be calculated in addition

to the AUC to see how the values compare and to account for any effects due to unbalanced

data (Guo et al., 2008).

Additionally, there was high heterogeneity between and within studies despite the pres-

ence of three moderators, one of which being statistically significant. While only three mod-

erators were tested, such high level of heterogeneity suggests that variables not included in

the analysis contributed to the variance. For example, the calibration of a machine learning

algorithm, while standard in practice, can differ greatly depending on the data set, resources

available, and expertise of the algorithm coder. Further, the types of predictors and number

of predictors as well as the number of training and validation attempts contribute to the

overall complexity of the model, which could ultimately result in different performances

of models even within the same family. Controlling for these variables could lead to more

homogeneous results.

Future Directions

The results of this meta-analysis demonstrate a potential contribution of the use of ma-

chine learning in predicting suicide risk. Future meta-analyses could explore the prediction

of suicidality such as predicting presence of suicidal ideations and/or presence of self-injury,
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suicidal or non-suicidal. Additionally, future meta-analyses could code for those other vari-

ables listed above such as type of predictors, number of predictors, and type of training

and calibration. Specifically, it would be interesting to see if a more detailed grouping of

algorithms (e.g., grouping by k-nearest neighbor models or support vector machine mod-

els) would provide a stronger moderator. Searching for more moderators that could better

explain and account for the variance in the model will help to elucidate even more fields of

research as well as provide better insight into how machine learning is able to achieve high

levels of classification accuracy.

In order to further understand the clinical impact of machine learning in suicide predic-

tion, human factors research should also be conducted. Specifically, it would be important

to observe the trust or lack thereof from care providers towards the machine especially

in reference to the machine’s “black box” nature. This relationship between the machine

and care provider can then guide the development of protocols to implement these ma-

chines as well as how to train providers on the machines. The implications of this human

factors research extends beyond just the gathering of knowledge: it provides useful and

implementable information to advance the field of suicide prediction.

The tremendous variances in effect sizes warrant further research as well. While it is

entirely possible the variances were due to other, unknown factors, one potential source of

variance could be that each study was targeting something very closely related to suicide,

but not closely related enough to other studies of the same topic. This might indicate that

there is more to understand about suicide than is already known that could then produce

better classification accuracies.

Finally, the biases of the machines reported in the studies are unknown. Though it is

difficult to assess the biases of a machine learning algorithm post-publication, factors such

as model complexity and training sequences could provide insight into the likelihood of the

machine’s biases. Assessing such biases and including them as potential moderators could

change the results of the meta-analyses, but in which direction is uncertain.
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Conclusion

Suicide is a devastating act that affects tens of thousands of people yearly. Though

there exist evidence-based assessments and scales that are currently being utilized to screen

for and predict suicidality, there still exists no gold standard method in assessing suicide.

Furthermore, recent research into suicide risk factors have found that the risk factors being

used are no better than chance at predicting suicide, perhaps due to the too simplistic

way in which researchers have been treating the multi-dimensional features of suicidaility.

Though there were limited methods that could fully appreciate such a complex topic, the

advancement of machine learning have begun to aid researchers in better understanding

and, perhaps, more accurately assessing suicide.

The results of this research found that machine learning indeed has a significant, positive

impact on the prediction of suicide and suicide risk as defined by attempted suicide or

death by suicide. Further, when converting the summary effect sizes into an AUC for

clinical interpretability, AUCs of 0.80 and higher are returned indicating good to very good

machine learning discriminative ability. Additionally, although the meta-regressions did

not return significant models for data source type or suicide definition, a significant model

was returned for algorithm family, which suggested that the type of algorithm chosen had

a significant impact on the reported effect sizes. Finally, there was very little evidence

of any human factors or usability research on machine learning in predicting suicide risk,

highlighting an important area of research that is required in order to address the questions

“is machine learning a usable tool in predicting suicide risk".

This review, to the knowledge of the PI, is the first attempt at a meta-analysis on

the topic, and results demonstrated consistent findings with previously published literature

reviews on the topic that machine learning methods have high accuracies in predicting

suicide (Bernert et al., 2020). Further research can be done to expound upon why machine

learning has an effect and to what extent can the boundaries of machine learning be pushed

not only in suicide classification but in other medical classifications as well.
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Study ID Data Srce Algor. Fam. Sui. Def. n(Sui) n(Tot) AUC Cohen’s d Hedge’s g
Adamou 2019 Registry Ensemble 130 828 0.71 0.76 0.76
Adamou 2019 Registry Mixed Approach 130 828 0.66 0.59 0.59
Agne 2020 Spec. Hosp. Mixed Approach Survey Q. 104 959 0.95 2.33 2.32
Ben-Ari 2015 Army Ensemble Clin. Notes 6,510 250,401 0.86 1.53 1.53
Bernecker 2019 Army Ensemble ICD 168 3,528 0.82 1.29 1.29
Bernecker 2019 Army Regression ICD 168 3,528 0.62 0.43 0.43
Bhak 2019 Univ. Hosp. Ensemble Interview 56 182 0.98 2.89 2.88
Bhak 2019 Univ. Hosp. Ensemble Interview 56 182 0.95 2.34 2.33
Burke 2020 Gen. Hosp. Mixed Approach Survey Q. 1,113 13,325 0.99 3.35 3.35
Burke 2020 Gen. Hosp. Mixed Approach Survey Q. 1,113 12,001 0.98 3.03 3.03
Burke 2020 Gen. Hosp. Mixed Approach Survey Q. 1,113 25,326 0.98 2.77 2.77
Burke 2020 Gen. Hosp. Ensemble Survey Q. 1,113 12,001 0.96 2.77 2.77
Burke 2020 Gen. Hosp. Ensemble Survey Q. 608 13,325 0.97 2.72 2.72
Burke 2020 Gen. Hosp. Ensemble Survey Q. 1,113 13,325 0.97 2.64 2.64
Burke 2020 Gen. Hosp. Mixed Approach Survey Q. 608 13,325 0.97 2.62 2.62
Burke 2020 Gen. Hosp. Ensemble Survey Q. 1,113 26,650 0.96 2.4 2.4
Burke 2020 Gen. Hosp. Mixed Approach Survey Q. 1,113 39,975 0.95 2.27 2.27
Burke 2020 Gen. Hosp. Ensemble Survey Q. 1,113 12,001 0.94 2.25 2.25
Burke 2020 Gen. Hosp. Mixed Approach Survey Q. 1,113 12,001 0.94 2.25 2.25
Burke 2020 Gen. Hosp. Ensemble Survey Q. 1,113 24,002 0.94 2.16 2.16
Carson 2019 Gen. Hosp. Ensemble Survey Q. 27 73 0.68 0.66 0.65
Chen 2020 Registry Ensemble ICD 9,099 126,205 0.9 1.8 1.8
Chen 2020 Registry Ensemble ICD 18,682 126,205 0.89 1.77 1.77
Chen 2020 Registry Ensemble ICD 9,099 126,205 0.89 1.76 1.76
Chen 2020 Registry ANN ICD 9,099 126,205 0.89 1.75 1.75
Chen 2020 Registry Mixed Approach ICD 9,099 126,205 0.89 1.75 1.75
Chen 2020 Registry Ensemble ICD 9,099 126,205 0.89 1.73 1.74
Chen 2020 Registry Ensemble ICD 18,682 126,205 0.88 1.66 1.66

Continued on next page

Table  1.  Data  summary  of  articles  including  effect  sizes,  AUC  values,  variance,  and  number  of  participants  within  each  study.
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Study ID Data Srce Algor. Fam. Sui. Def. n(Sui) n(Tot) AUC Cohen’s d Hedge’s g
Chen 2020 Registry Ensemble ICD 18,682 126,205 0.87 1.62 1.62
Chen 2020 Registry ANN ICD 18,682 126,205 0.87 1.62 1.62
Chen 2020 Registry Mixed Approach ICD 18,682 126,205 0.87 1.61 1.61
Cho 2020 Registry Ensemble ICD 749 372,812 0.85 1.5 1.5
Cho 2020 Registry Ensemble ICD 749 372,812 0.82 1.28 1.28
Choi 2018 Registry Deep Learning ICD 2,546 819,951 0.63 0.48 0.48
Choi 2018 Registry Instance based ICD 2,546 819,951 0.58 0.27 0.27
Coppersmith 2018 SNS Deep Learning Survey Q. 418 836 0.94 2.2 2.2
Coppersmith 2018 SNS Deep Learning Survey Q. 418 836 0.93 2.09 2.09
Coppersmith 2018 SNS Deep Learning Survey Q. 418 836 0.93 2.09 2.09
Coppersmith 2018 SNS Deep Learning Survey Q. 418 836 0.92 1.99 1.99
Coppersmith 2018 SNS Deep Learning Survey Q. 418 836 0.92 1.99 1.99
Coppersmith 2018 SNS Deep Learning Survey Q. 418 836 0.91 1.9 1.9
Coppersmith 2018 SNS Deep Learning Survey Q. 418 836 0.89 1.73 1.73
Delgado-Gomez 2011 Gen. Hosp. Instance based NIMH 345 879 0.86 1.5 1.5
Delgado-Gomez 2011 Gen. Hosp. Ensemble NIMH 345 879 0.84 1.41 1.42
Delgado-Gomez 2011 Gen. Hosp. Dim. Reduct NIMH 345 879 0.82 1.3 1.3
Delgado-Gomez 2011 Gen. Hosp. Dim. Reduct. NIMH 345 879 0.82 1.28 1.28
Delgado-Gomez 2011 Gen. Hosp. Instance based NIMH 345 879 0.82 1.27 1.27
Delgado-Gomez 2011 Gen. Hosp. Dim. Reduct. NIMH 345 879 0.81 1.23 1.23
Delgado-Gomez 2011 Gen. Hosp. Dim. Reduct. NIMH 345 879 0.85 1.22 1.22
Delgado-Gomez 2011 Gen. Hosp. Ensemble NIMH 345 879 0.79 1.12 1.12
Delgado-Gomez 2012 Univ. Hosp. Mixed Approach NIMH 347 881 0.92 2 2
Delgado-Gomez 2012 Univ. Hosp. Instance based NIMH 347 881 0.9 1.82 1.82
Delgado-Gomez 2012 Univ. Hosp. Mixed Approach NIMH 347 881 0.89 1.76 1.76
Delgado-Gomez 2012 Univ. Hosp. Instance based NIMH 347 881 0.88 1.65 1.65
Delgado-Gomez 2012 Univ. Hosp. Mixed Approach NIMH 347 881 0.88 1.63 1.63
Delgado-Gomez 2012 Univ. Hosp. Decision Tree NIMH 347 881 0.86 1.56 1.56
Delgado-Gomez 2012 Univ. Hosp. Instance based NIMH 347 881 0.87 1.56 1.56

Continued on next page

Table  1  –  continued  from  previous  page
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Study ID Data Srce Algor. Fam. Sui. Def. n(Sui) n(Tot) AUC Cohen’s d Hedge’s g
Delgado-Gomez 2012 Univ. Hosp. Decision Tree NIMH 347 881 0.86 1.53 1.53
Delgado-Gomez 2012 Univ. Hosp. Decision Tree NIMH 347 881 0.84 1.39 1.39
DelPozo-Banos 2018 Registry ANN NIMH 2,604 52,102 0.82 1.29 1.29
Edgcomb 2020 Univ. Hosp. Decision Tree ICD 218 15,644 0.86 1.53 1.53
Edgcomb 2021 Univ. Hosp. Decision Tree ICD 109 8,408 0.73 0.87 0.87
Edgcomb 2021 Univ. Hosp. Decision Tree ICD 40,408 841,834 0.71 0.78 0.78
Fan 2020 Univ. Hosp. Decision Tree ICD 205 3,168 0.95 2.33 2.32
Fan 2020 Univ. Hosp. Instance based ICD 205 3,168 0.87 1.61 1.61
Fan 2020 Univ. Hosp. Ensemble ICD 205 3,168 0.82 1.29 1.29
Fan 2020 Univ. Hosp. Bayesian ICD 205 3,168 0.73 0.75 0.75
Fan 2020 Univ. Hosp. Regression ICD 205 3,168 0.61 0.41 0.41
Fan 2020 Univ. Hosp. Instance based ICD 205 3,168 0.59 0.31 0.31
Fernandes 2018 Outp. Clin. NLP ICD 388 500 0.89 1.72 1.72
GarciadelaGarza 2021 Anon. Sur./Int. Ensemble Survey Q. 222 34,653 0.86 1.51 1.51
Gradus 2020 Registry Ensemble ICD 3,951 138,543 0.88 1.67 1.67
Gradus 2020 Registry Decision Tree ICD 3,951 138,543 0.87 1.59 1.59
Gradus 2020 Registry Ensemble ICD 10,152 140,743 0.8 1.19 1.19
Gradus 2020 Registry Decision Tree ICD 10,152 140,743 0.77 1.04 1.04
Green 2019 Registry Regression ICD 423 2,077 0.96 2.46 2.46
Green 2019 Registry Regression ICD 423 2,077 0.92 2 2
Green 2019 Registry Regression ICD 423 2,077 0.86 1.7 1.7
Green 2019 Registry Regression ICD 423 2,077 0.87 1.61 1.61
Green 2019 Registry Regression ICD 423 2,077 0.87 1.58 1.57
Green 2019 Registry Regression ICD 423 2,077 0.75 0.94 0.94
Hack 2017 Gen. Hosp. Instance based ICD 163 1,017 0.71 0.78 0.78
Hack 2017 Gen. Hosp. Instance based ICD 163 1,017 0.7 0.74 0.74
Hack 2017 Gen. Hosp. Mixed Approach ICD 163 1,017 0.7 0.74 0.74
Haroz 2020 Combination Mixed Approach Ass. Scales 31 2,390 0.87 1.59 1.59
Haroz 2020 Combination Mixed Approach Ass. Scales 31 2,390 0.86 1.53 1.53

Continued on next page

Table  1  –  continued  from  previous  page
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Study ID Data Srce Algor. Fam. Sui. Def. n(Sui) n(Tot) AUC Cohen’s d Hedge’s g
Haroz 2020 Combination Mixed Approach Ass. Scales 31 2,390 0.85 1.47 1.47
Haroz 2020 Combination Mixed Approach Ass. Scales 47 2,390 0.84 1.44 1.43
Haroz 2020 Combination Mixed Approach Ass. Scales 31 2,390 0.83 1.35 1.35
Haroz 2020 Combination Decision Tree Ass. Scales 31 2,390 0.81 1.24 1.24
Haroz 2020 Combination Mixed Approach Ass. Scales 47 2,390 0.81 1.23 1.22
Haroz 2020 Combination Mixed Approach Ass. Scales 20 2,390 0.79 1.16 1.16
Haroz 2020 Combination Mixed Approach Ass. Scales 20 2,390 0.79 1.15 1.15
Haroz 2020 Combination Mixed Approach Ass. Scales 20 2,390 0.79 1.12 1.12
Haroz 2020 Combination Mixed Approach Ass. Scales 47 2,390 0.76 1.02 1.01
Haroz 2020 Combination Mixed Approach Ass. Scales 47 2,390 0.76 1.03 1.01
Haroz 2020 Combination Mixed Approach Ass. Scales 20 2,390 0.74 0.92 0.92
Haroz 2020 Combination Decision Tree Ass. Scales 20 2,390 0.74 0.91 0.91
Haroz 2020 Combination Decision Tree Ass. Scales 47 2,390 0.73 0.88 0.88
Hettige 2017 Spec. Hosp. Mixed Approach Ass. Scales 131 345 0.71 0.78 0.78
Hettige 2017 Spec. Hosp. Mixed Approach Ass. Scales 131 345 0.71 0.78 0.78
Hettige 2017 Spec. Hosp. Instance based Ass. Scales 131 345 0.7 0.74 0.74
Hettige 2017 Spec. Hosp. Ensemble Ass. Scales 131 345 0.67 0.62 0.62
Hill 2019 Anon. Sur./Int. Decision Tree Survey Q. 192 4,834 0.89 1.74 1.74
Hill 2019 Anon. Sur./Int. Decision Tree Survey Q. 192 4,834 0.85 1.45 1.45
Hong 2021 Spec. Hosp. Instance based C-CASA 42 66 0.8 1.19 1.18
Huang 2020a Anon. Sur./Int. Ensemble Ass. Scales 635 954 0.89 1.74 1.73
Huang 2020a Anon. Sur./Int. Ensemble Ass. Scales 635 954 0.84 1.4 1.4
Huang 2020b Anon. Sur./Int. Ensemble Ass. Scales 633 933 0.89 1.73 1.73
Huang 2020b Anon. Sur./Int. Ensemble Ass. Scales 322 885 0.89 1.73 1.73
Huang 2020b Anon. Sur./Int. Ensemble Ass. Scales 154 285 0.89 1.73 1.73
Huang 2020b Army Ensemble Ass. Scales 755 1,584 0.87 1.59 1.59
Huang 2020b Outp. Clin. Ensemble Ass. Scales 78 182 0.9 1.81 1.8
Jung 2019 Anon. Sur./Int. Ensemble Survey Q. 7,443 59,984 0.86 1.55 1.55
Jung 2019 Anon. Sur./Int. Ensemble Survey Q. 7,443 59,984 0.85 1.51 1.55

Continued on next page

Table  1  –  continued  from  previous  page
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Study ID Data Srce Algor. Fam. Sui. Def. n(Sui) n(Tot) AUC Cohen’s d Hedge’s g
Jung 2019 Anon. Sur./Int. Instance based Survey Q. 7,443 59,984 0.85 1.48 1.48
Jung 2019 Anon. Sur./Int. Regression Survey Q. 7,443 59,984 0.85 1.47 1.47
Jung 2019 Anon. Sur./Int. ANN Survey Q. 7,443 59,984 0.85 1.47 1.47
Kessler 2015 Army Decision Tree STARRS 68 40,820 0.89 1.73 1.71
Kessler 2015 Army Mixed Approach STARRS 68 40,820 0.85 1.47 1.47
Kessler 2017 Army Mixed Approach STARRS 66 234 0.72 0.82 0.82
Kessler 2017 Army Mixed Approach STARRS 66 234 0.66 0.58 0.58
Kessler 2017 Army Mixed Approach STARRS 66 234 0.61 0.4 0.39
Kessler 2020 Army Ensemble ICD 1,195 391,018 0.82 1.29 1.29
Kessler 2020 Army Ensemble ICD 1,195 391,018 0.8 1.19 1.19
Kessler 2020 Army Ensemble ICD 1,195 391,018 0.78 1.09 1.09
Kessler 2020 Army Ensemble ICD 1,195 391,018 0.77 1.04 1.04
Kessler 2020 Army Ensemble ICD 1,195 391,018 0.76 1 1
Levis 2020 Army Mixed Approach Hosp. Rcrds 246 1,232 0.58 0.29 0.29
Levis 2020 Army Mixed Approach Hosp. Rcrds 246 1,232 0.53 0.1 0.1
Levis 2020 Army Mixed Approach Hosp. Rcrds 246 1,232 0.49 -0.05 -0.05
Levis 2020 Army Mixed Approach Hosp. Rcrds 246 1,232 0.46 -0.14 -0.14
Lyu 2019 ER ANN Interview 659 1,318 0.91 1.91 1.91
Lyu 2019 ER ANN Interview 659 1,318 0.9 1.85 1.85
Lyu 2019 ER ANN Interview 659 1,318 0.9 1.82 1.81
Lyu 2019 ER ANN Interview 659 1,318 0.89 1.73 1.73
Machado 2021 Anon. Sur./Int. Mixed Approach Interview 200 32,700 0.89 1.73 1.73
Machado 2021 Anon. Sur./Int. Ensemble Interview 200 32,700 0.89 1.73 1.73
Machado 2021 Anon. Sur./Int. Mixed Approach Interview 200 6,350 0.89 1.73 1.73
Machado 2021 Anon. Sur./Int. Ensemble Interview 200 6,350 0.89 1.74 1.73
Machado 2021 Anon. Sur./Int. ANN Interview 200 6,350 0.88 1.66 1.66
Machado 2021 Anon. Sur./Int. ANN Interview 200 32,700 0.86 1.53 1.53
Mann 2008 Spec. Hosp. Decision Tree Ass. Scales 80 457 0.8 1.19 1.19
Mann 2008 Spec. Hosp. Decision Tree Ass. Scales 118 457 0.65 0.55 0.55

Continued on next page
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McKernan 2019 Univ. Hosp. Ensemble ICD 34 8,879 0.82 1.29 1.29
Miche 2020 Anon. Sur./Int. Mixed Approach Interview 137 2,793 0.83 1.35 1.35
Miche 2020 Anon. Sur./Int. Ensemble Interview 137 2,793 0.83 1.33 1.33
Miche 2020 Anon. Sur./Int. Regression Interview 137 2,793 0.83 1.32 1.32
Miche 2020 Anon. Sur./Int. Mixed Approach Interview 137 2,793 0.82 1.31 1.31
Modai 1999 Spec. Hosp. ANN Hosp. Rcrds 99 198 0.97 2.7 2.7
Modai 1998 Spec. Hosp. ANN Hosp. Rcrds 77 161 0.92 2.01 2
Modai 1998 Spec. Hosp. ANN Hosp. Rcrds 77 161 0.9 1.73 1.73
Modai 1998 Spec. Hosp. ANN Hosp. Rcrds 77 161 0.88 1.58 1.57
Modai 1998 Spec. Hosp. ANN Hosp. Rcrds 77 161 0.7 0.75 0.75
Modai 1998 Spec. Hosp. ANN Hosp. Rcrds 77 161 0.63 0.47 0.47
Modai 1998 Spec. Hosp. ANN Hosp. Rcrds 77 161 0.62 0.44 0.44
Modai 2002 Spec. Hosp. ANN Ass. Scales 50 197 0.73 0.88 0.88
Modai 2002 Spec. Hosp. FALCON Ass. Scales 50 197 0.54 0.16 0.16
Modai 2004a Spec. Hosp. FALCON Ass. Scales 137 987 0.95 2.35 2.35
Modai 2004a Spec. Hosp. FALCON Ass. Scales 137 987 0.95 2.23 2.23
Modai 2004b Outp. Clin. FALCON Ass. Scales 74 612 0.83 1.34 1.34
Morales 2017 Gen. Hosp. Decision Tree Hosp. Rcrds 349 707 0.74 0.89 0.89
Morales 2017 Gen. Hosp. Decision Tree Hosp. Rcrds 349 707 0.69 0.7 0.7
Morales 2017 Gen. Hosp. Decision Tree Hosp. Rcrds 349 707 0.66 0.58 0.58
Morales 2017 Gen. Hosp. Decision Tree Hosp. Rcrds 349 707 0.59 0.32 0.32
Obeid 2020 Spec. Hosp. Deep Learning ICD 835 2,505 0.99 3.19 3.19
Obeid 2020 Spec. Hosp. Deep Learning ICD 835 2,505 0.98 3.03 3.03
Obeid 2020 Spec. Hosp. Deep Learning ICD 835 2,505 0.98 2.97 2.96
Obeid 2020 Spec. Hosp. Deep Learning ICD 835 2,505 0.96 2.77 2.77
Obeid 2020 Spec. Hosp. Ensemble ICD 835 2,505 0.96 2.49 2.49
Obeid 2020 Spec. Hosp. ANN ICD 835 2,505 0.96 2.43 2.43
Obeid 2020 Spec. Hosp. Instance based ICD 835 2,505 0.95 2.29 2.29
Obeid 2020 Spec. Hosp. Bayesian ICD 835 2,505 0.91 1.88 1.88

Continued on next page
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Study ID Data Srce Algor. Fam. Sui. Def. n(Sui) n(Tot) AUC Cohen’s d Hedge’s g
Obeid 2020 Spec. Hosp. Decision Tree ICD 835 2,505 0.87 1.59 1.59
Oh 2017 Univ. Hosp. ANN Survey Q. 39 736 0.93 2.08 2.08
Oh 2017 Univ. Hosp. ANN Survey Q. 163 736 0.89 1.73 1.73
Oh 2017 Univ. Hosp. ANN Survey Q. 68 736 0.87 1.59 1.59
Passos 2016 Outp. Clin. Instance based Hosp. Rcrds 43 144 0.77 1.04 1.04
Passos 2016 Outp. Clin. Mixed Approach Hosp. Rcrds 43 144 0.73 0.87 0.86
Passos 2016 Outp. Clin. Instance based Hosp. Rcrds 43 144 0.65 0.55 0.54
Poulin 2014 Army Other Clin. Notes 70 210 0.7 0.72 0.72
Ribeiro 2019 Anon. Sur./Int. Ensemble Ass. Scales 50 1,021 0.84 1.04 1.4
Ribeiro 2019 Anon. Sur./Int. Ensemble Ass. Scales 76 1,021 0.83 1.35 1.35
Ribeiro 2019 Anon. Sur./Int. Ensemble Ass. Scales 24 1,021 0.82 1.29 1.29
Roglio 2020 Spec. Hosp. Ensemble Survey Q. 211 422 0.73 0.88 0.88
Roglio 2020 Spec. Hosp. Ensemble Survey Q. 87 247 0.68 0.66 0.66
Rosellini 2017 Army Regression ICD 169 21,832 0.74 0.91 0.91
Rozek 2020 Army Other Interview 26 152 0.94 2.21 2.2
Ryu 2019 Anon. Sur./Int. Ensemble Survey Q. 1,324 2,654 0.95 2.89 2.29
Sanderson 2019 Registry Deep Learning ICD 3,548 39,028 0.84 1.38 1.38
Sanderson 2019 Registry Regression ICD 3,548 39,028 0.82 1.28 1.28
Sanderson 2020a Registry Ensemble ICD 3,548 39,028 0.85 1.46 1.46
Sanderson 2020a Registry Deep Learning ICD 3,548 39,028 0.84 1.42 1.42
Sanderson 2020a Registry Deep Learning ICD 3,548 39,028 0.84 1.41 1.41
Sanderson 2020a Registry Deep Learning ICD 3,548 39,028 0.84 1.38 1.38
Sanderson 2020b Registry Ensemble ICD 269 33,694 0.88 1.65 1.65
Sanderson 2020b Registry Regression ICD 269 33,694 0.86 1.55 1.55
Sanderson 2020b Registry Regression ICD 269 33,694 0.08 1.25 1.25
Shen 2020 Anon. Sur./Int. Ensemble Survey Q. 682 4,882 0.93 2.04 2.04
Simon 2019 Gen. Hosp. Mixed Approach ICD 24,993 9,685,203 0.85 1.48 1.48
Simon 2019 Gen. Hosp. Mixed Approach ICD 24,993 9,685,203 0.84 1.39 1.39
Simon 2019 Gen. Hosp. Mixed Approach ICD 24,993 9,685,203 0.84 1.39 1.39
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Study ID Data Srce Algor. Fam. Sui. Def. n(Sui) n(Tot) AUC Cohen’s d Hedge’s g
Simon 2019 Gen. Hosp. Mixed Approach ICD 24,993 9,685,203 0.83 1.38 1.38
Simon 2019 Gen. Hosp. Mixed Approach ICD 1,301 9,685,203 0.83 1.37 1.37
Simon 2019 Gen. Hosp. Mixed Approach ICD 1,301 9,685,203 0.82 1.31 1.31
Simon 2019 Gen. Hosp. Mixed Approach ICD 1,301 9,685,203 0.82 1.3 1.3
Simon 2019 Gen. Hosp. Mixed Approach ICD 1,301 9,685,203 0.82 1.29 1.29
Simon 2019 Spec. Hosp. Mixed Approach ICD 2,383 10,275,853 0.86 1.53 1.53
Simon 2019 Spec. Hosp. Mixed Approach ICD 2,383 10,275,853 0.86 1.53 1.53
Simon 2019 Spec. Hosp. Mixed Approach ICD 2,383 10,275,853 0.86 1.52 1.52
Simon 2019 Spec. Hosp. Mixed Approach ICD 63,805 10,275,853 0.85 1.47 1.47
Simon 2019 Spec. Hosp. Mixed Approach ICD 63,805 10,275,853 0.84 1.43 1.43
Simon 2019 Spec. Hosp. Mixed Approach ICD 63,805 10,275,853 0.84 1.43 1.43
Simon 2019 Spec. Hosp. Mixed Approach ICD 63,805 10,275,853 0.84 1.43 1.43
Simon 2019 Spec. Hosp. Mixed Approach ICD 2,383 10,275,853 0.84 1.38 1.38
Su 2020 Gen. Hosp. Regression ICD 177 19,528 0.86 1.53 1.53
Su 2020 Gen. Hosp. Regression ICD 167 17,787 0.86 1.53 1.53
Su 2020 Gen. Hosp. Regression ICD 114 12,566 0.86 1.53 1.53
Su 2020 Gen. Hosp. Regression ICD 83 10,420 0.86 1.53 1.53
Su 2020 Gen. Hosp. Regression ICD 149 16,151 0.85 1.47 1.47
Su 2020 Gen. Hosp. Regression ICD 139 15,064 0.85 1.47 1.47
Su 2020 Gen. Hosp. Regression ICD 175 15,019 0.85 1.47 1.47
Su 2020 Gen. Hosp. Regression ICD 180 41,721 0.84 1.41 1.41
Su 2020 Gen. Hosp. Regression ICD 60 8,366 0.81 1.24 1.24
Tasmim 2020 Spec. Hosp. Decision Tree Ass. Scales 72 189 0.72 0.84 0.84
Tasmim 2020 Spec. Hosp. Ensemble Ass. Scales 72 189 0.64 0.5 0.5
Tasmim 2020 Spec. Hosp. Regression Ass. Scales 72 189 0.61 0.4 0.39
Tiet 2006 Army Decision Tree Clin. Notes 1,015 5,671 0.81 1.26 1.26
vanMens 2020a Anon. Sur./Int. Ensemble Ass. Scales 50 2,420 0.8 1.19 1.19
vanMens 2020a Anon. Sur./Int. Ensemble Ass. Scales 50 2,420 0.8 1.19 1.19
vanMens 2020a Anon. Sur./Int. Ensemble Ass. Scales 50 2,420 0.8 1.19 1.19
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Study ID Data Srce Algor. Fam. Sui. Def. n(Sui) n(Tot) AUC Cohen’s d Hedge’s g
vanMens 2020a Anon. Sur./Int. Ensemble Ass. Scales 50 2,420 0.8 1.19 1.19
vanMens 2020a Anon. Sur./Int. Instance based Ass. Scales 50 2,420 0.79 1.14 1.14
vanMens 2020a Anon. Sur./Int. Decision Tree Ass. Scales 50 2,420 0.77 1.04 1.04
vanMens 2020a Anon. Sur./Int. Regression Ass. Scales 50 2,420 0.72 0.82 0.82
vanMens 2020a Anon. Sur./Int. Instance based Ass. Scales 50 2,420 0.72 0.82 0.82
vanMens 2020a Anon. Sur./Int. Decision Tree Ass. Scales 50 2,420 0.69 0.7 0.7
vanMens 2020a Anon. Sur./Int. Instance based Ass. Scales 50 2,420 0.66 0.58 0.58
vanMens 2020a Anon. Sur./Int. Instance based Ass. Scales 50 2,420 0.63 0.47 0.47
vanMens 2020a Anon. Sur./Int. Regression Ass. Scales 50 2,420 0.53 0.1 0.1
vanMens 2020b Registry Ensemble ICPC 574 207,882 0.82 1.29 1.29
Walsh 2017 Univ. Hosp. Ensemble ICD 3,250 15,945 0.92 1.98 1.99
Walsh 2017 Univ. Hosp. Ensemble ICD 3,250 15,945 0.86 1.53 1.53
Walsh 2017 Univ. Hosp. Ensemble ICD 3,250 5,167 0.84 1.41 1.41
Walsh 2017 Univ. Hosp. Ensemble ICD 3,250 5,167 0.83 1.4 1.4
Walsh 2017 Univ. Hosp. Ensemble ICD 3,250 5,167 0.83 1.4 1.4
Walsh 2017 Univ. Hosp. Ensemble ICD 3,250 5,167 0.82 1.29 1.29
Walsh 2017 Univ. Hosp. Ensemble ICD 3,250 5,167 0.82 1.29 1.29
Walsh 2017 Univ. Hosp. Ensemble ICD 3,250 5,167 0.82 1.29 1.29
Walsh 2017 Univ. Hosp. Ensemble ICD 3,250 5,167 0.81 1.24 1.24
Walsh 2017 Univ. Hosp. Ensemble ICD 3,250 5,167 0.8 1.19 1.19
Walsh 2018 Univ. Hosp. Ensemble ICD 975 26,056 0.97 2.66 2.66
Walsh 2018 Univ. Hosp. Ensemble ICD 975 26,056 0.97 2.66 2.66
Walsh 2018 Univ. Hosp. Ensemble ICD 975 26,056 0.96 2.48 2.48
Walsh 2018 Univ. Hosp. Ensemble ICD 975 26,056 0.96 2.48 2.48
Walsh 2018 Univ. Hosp. Ensemble ICD 975 26,056 0.96 2.48 2.48
Walsh 2018 Univ. Hosp. Ensemble ICD 975 26,056 0.96 2.48 2.48
Walsh 2018 Univ. Hosp. Ensemble ICD 975 26,056 0.95 2.33 2.33
Walsh 2018 Univ. Hosp. Ensemble ICD 975 26,056 0.94 2.2 2.2
Walsh 2018 Univ. Hosp. Ensemble ICD 975 8,034 0.91 1.9 1.9
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Study ID Data Srce Algor. Fam. Sui. Def. n(Sui) n(Tot) AUC Cohen’s d Hedge’s g
Walsh 2018 Univ. Hosp. Ensemble ICD 975 8,034 0.9 1.81 1.81
Walsh 2018 Univ. Hosp. Ensemble ICD 975 8,034 0.9 1.81 1.81
Walsh 2018 Univ. Hosp. Ensemble ICD 975 8,034 0.9 1.81 1.81
Walsh 2018 Univ. Hosp. Ensemble ICD 975 8,034 0.9 1.81 1.81
Walsh 2018 Univ. Hosp. Ensemble ICD 975 8,034 0.9 1.81 1.81
Walsh 2018 Univ. Hosp. Ensemble ICD 975 8,034 0.89 1.73 1.73
Walsh 2018 Univ. Hosp. Ensemble ICD 975 8,034 0.87 1.59 1.59
Walsh 2018 Univ. Hosp. Ensemble ICD 975 1,471 0.85 1.47 1.47
Walsh 2018 Univ. Hosp. Ensemble ICD 975 1,471 0.85 1.47 1.47
Walsh 2018 Univ. Hosp. Ensemble ICD 975 1,471 0.83 1.35 1.35
Walsh 2018 Univ. Hosp. Ensemble ICD 975 1,471 0.83 1.35 1.35
Walsh 2018 Univ. Hosp. Ensemble ICD 975 1,471 0.83 1.35 1.35
Walsh 2018 Univ. Hosp. Ensemble ICD 975 1,471 0.83 1.35 1.35
Walsh 2018 Univ. Hosp. Ensemble ICD 975 1,471 0.83 1.35 1.35
Walsh 2018 Univ. Hosp. Ensemble ICD 975 1,471 0.82 1.29 1.29
Zheng 2020 Registry Deep Learning ICD 448 236,347 0.77 1.04 1.04
Zheng 2020 Registry Ensemble ICD 448 236,347 0.7 0.75 0.75
Zheng 2020 Registry Mixed Approach ICD 448 236,347 0.06 0.38 0.38
Zhong 2019 Registry Mixed Approach ICD 145 800 0.83 1.35 1.35
Zhong 2019 Registry Mixed Approach ICD 145 800 0.67 0.62 0.61
Zhong 2019 Registry Mixed Approach ICD 145 800 0.53 0.11 0.11
Zhu 2020a Univ. Hosp. Instance based Hosp. Rcrds 37 90 0.92 1.98 1.98
Zuromski 2020 Army Ensemble ICD 103 7,677 0.77 1.04 1.04
Zuromski 2020 Army Mixed Approach ICD 103 7,677 0.76 0.98 0.98
Zuromski 2020 Army Mixed Approach ICD 103 7,677 0.76 0.98 0.98
Zuromski 2020 Army Mixed Approach ICD 103 7,677 0.75 0.94 0.94
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