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Abstract

One of the few ways to reach distant stars is by radiation pressure, in which photon mo-

mentum is harnessed from free sunlight or extraordinarily powerful laser systems. Large

but low mass light-driven sails reflect photons and transfer momentum to the sailcraft,

providing large velocity from continuous acceleration. Over the past decade, demonstra-

tive reflective light sail missions were enabled by cost-efficient small satellites and the

emerging private space economy. The maneuver of these metal-coated polyimide films is

mechanically cumbersome because the sail must be rapidly tilted towards and away from

the sun line during navigation. Modern diffractive films such as high-efficiency single-order

gratings, liquid crystal cycloidal diffractive wave-plates, and meta-material gratings may

provide enhanced control schemes with radiation pressure tangential to the sail surface.

The potential to replace motorized control components with all-optical components also

offers a reduction in mass and the risk of mission failure.

Before spending considerable resources sending a rocket to deploy a solar sail, it must

be verified that the sail will behave as expected in a lab on Earth. This is challenging

since Earths gravity, electro-static forces, thermal effects, and environment vibrations
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exceed the relatively weak effects of radiation pressure. In this dissertation, we designed

and constructed an opto-mechanical torsional pendulum in a vacuum environment that

measures radiation pressure on diffraction films with sub-nano-Newton precision. With

the system, we observed a large component of force parallel to the surface of a diffraction

grating owing to grating momentum. Furthermore, we proposed, designed, and validated

Diffractive Beam-Rider structures that enable spatially varying forces to pull and align the

sailcraft to the beam. We parametrically cooled the turbulence on the Beam-Rider, which

demonstrates its potential for implementation on a laser sail. This experimental stability

verification was performed on a centimeter-sized bi-grating and a diffractive axicon with

one and two-dimensional restoring force, respectively.
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Chapter 1

Introduction

1.1 Motivation

One of the few ways to reach distant stars is by using radiation pressure as light sails, in

which photon momentum is harnessed from free sunlight [51,56] or extraordinarily powerful

laser systems [47, 95]. Although the magnitude of radiation pressure may seem relatively

weak owing to its inverse relation to the speed of light, the force may be comparable

to the gravitational force in outer space. Compared to chemical rockets that require a

burn for each acceleration “push” for orbit transferring, light sails experience continuous

acceleration as long as there is light on the sail. Yakov Perelman first proposed the

concept of utilizing radiation pressure as a means of propulsion in space in 1915 in the

book Interplanetary Journeys. The first detailed solar sail design was developed in the

early 1980s by Jet Propulsion Laboratory for a rendezvous mission with Halleys Comet [71,

99,168]. The idea is to use large but lightweight sails to reflect solar photons, transferring

their momentum to an attached spacecraft. Solar sails was only successfully deployed in
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CHAPTER 1. INTRODUCTION 2

the past decade. In May 2010, the first-ever solar sailcraft, IKAROS (Interplanetary Kite-

craft Accelerated by Radiation of the Sun), was deployed by the JAXA (Japan Aerospace

Exploration Agency). The 196 m2 sail achieved attitude control by using reflective control

devices (RCD) and completed a Venus flyby mission. A few months later, NASA deployed

a solar sail demonstration mission NanoSail-D2 from a Cubesat to low Earth orbit. The

sail was made of CP-1, a thin aluminum coated polymer, with a thickness of 7.5 µm, and a

surface area of about 10 m2 [67]. The sail was wound tightly around a central hub. When

the sail deployed, four booms sprang out to unfurl the sail and support its structure. In

May 2015, the Planetary Society deployed the LightSail-1, made of mylar reflective sheet

with a thickness of 4.5 µm, area of 32 m2 stowed in a 3-Unit Cubesat [4]. Following,

LightSail-2 withe the same size dimensions was deployed in 2019 [124]. The LightSail-1

mission demonstrated that the Society’s lightsail could be successfully unfurled in space,

whereas the LightSail-2 sail demonstrated the use of torque rods for attitude control as

the sail orbited in low-Earth orbit (LEO).

Numerous solar sailing project was proposed. NASA partnered with L’Garde to launch

the Sunjammer project, demonstrating the ability to make a 38 m × 38 m solar sail, a

surface area of 1444 m2. It would be used to provide early detection and warning of

the geomagnetic storms on the Sun that can damage power and communication systems

on earth and orbiting spacecrafts. Although the mission was unfortunately canceled in

October 2014, it was the largest solar sail made and tested in a vacuum chamber on

ground [118]. England’s Surrey Space Centre (SSC) has partnered with University of

Surrey to develop CubeSail, DeorbitSail, and InflateSail projects that will be launched in

the near future [115].

NASA’s next step is the Near-Earth Asteroid scout program, to launch a controllable
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sailcraft that is capable of encountering near-Earth asteroids and collect data [101]. This

86 m2 CP-1 solar sail, which is 2.5 µm thick, will be stowed in a 6U Cubesat, and is

planned to launch in 2021. To demonstrate small satellite technologies to improve science

observations in deep space, solar sail is also proposed to for sun observation as the Solar

Cruiser. This large 1200 m2, 90 kg solar sail is proposed to be launched in 2024 to

cruise along vantage points off the Sun-Earth Line and provide views of the Sun not

easily accessible with current technology such as coronographs. In early 2020, NASA also

completed a study for a Solar Polar Imager (SPI) mission, where its science goal is to better

understand the Sun and the heliosphere by observing the Sun from a high heliographic

latitude. A highly inclined orbit (of 75) allows helioseismology observations from a high

latitude, providing measurements in the high latitude regions for the first time.

At this early stage of solar sailing development, light sails are making rapid advance-

ment in design and concepts from the lessons learned from demonstrative missions. There

are important yet challenging missions identified to become practical with solar sailing,

such as asteroid station keeping [58], near Earth asteroid rendezvous [122], terrestrial

planet sample return missions [61], and planetary pole sitters [161]. With the potential to

reach relativistic speeds and the maturity of directed energy [88], the idea of light-driven

sails using phased-locked laser arrays opened up the possibility for interstellar travel. There

is potential to implement lasers that provide irradiance that exceed 100 [MW/m2] to a

solar sail, whereas the sun provides 1361 [W/m2] at 1 [AU]. The Breakthrough Starshot

and NASA laser-sail projects [39, 66, 67] are generating excitement and broad interest as

interstellar solar-sailing probes. The proposed probes could provide the means to over-

come the limits of chemical rockets and nuclear rockets, and the anticipated sail sizes will

increase from the tens of meters in diameter, to kilometers in diameter [66].
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At this early stage of solar sailing development, light sails are making rapid advance-

ment in design and concepts from the lessons learned from demonstrative missions. There

are important yet challenging missions identified to become practical with solar sailing,

such as asteroid station keeping [58], near Earth asteroid rendezvous [122], terrestrial

planet sample return missions [61], and planetary pole sitters [161].

It is convenient here to introduce an expression of radiation pressure to illustrate the

needs in a reflective solar sail (the detailed derivation from the photon momentum point of

view will be provided later in the background section). A beam reflecting from a solar sail

imparts a radiation force F due to the change in photon momentum, which is proportional

to the optical power

FR = 2(IA/c)r cos θi , (1.1)

where r = R + (1R)α/2 accounts for the fact that an absorbed photon imparts all its

momentum, and a reflected photon imparts twice its momentum. R is the mirror reflec-

tivity, α indicates the fraction of non-reflected light absorbed by the sail, θi is the angle

of incidence, and c is the speed of light.The reflective sail is maneuvered by controlling

the tilt of the sail (the cosine term), as depicted in Fig. 1.1, thus turning the solar thrust

on while moving along the orbit direction and off while opposing the orbit direction. For

example, on IKAROS, a liquid crystal reflectivity control device was placed on four edges

and could be switched between diffuse/specular reflective states to tune r asymmetrically.

Diffraction gratings [146, 148] as a light sail material provide new opportunities, as

optical radiation pressure provides both tangential and normal force to the sail surface,

unlike the purely normal force exerted on a reflective sailing surface [33]. The tangential

force component is parallel to the direction of the orbit (show in Fig. 1.2), so a diffractive
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Figure 1.1: The maneuver of a reflective sail. The reflective sail faces the sun to receive
thrust, and tilts to achieve an expanding or shrinking orbit [1], the sun incident angle is
typically θi = 35◦.

solar sail can accelerate or decelerate by having the radiation pressure force acting along

or opposite to the orbiting velocity, which can be flexibly controlled electro-optically.

This avoids mechanical maneuvering (i.e., to tilt the entire sail), which could become an

excessive burden as the sail size increases, and further provide higher efficiency on the use

of photon momentum from sunlight. In the case where the sunlight is always normally

incident to a diffraction sail maximum force is achieved (θi = 0◦). Comparing between

Fig. 1.1 and 1.2, a reflective sail is unable to navigate in a sun-facing configuration, where

as a diffractive sail can efficiently change orbital speed while in a sun-facing configuration.

At the time I joined this thesis project in 2016, not much research was conducted on

exploring solar sailing apart from purely reflective materials, besides the stable optical

lift [149] on dielectric semi-cylindrical arrays. After proposing the idea of diffractive sails

[146], emerging designs applying refractive micro-prism arrays [46] and meta-material [7]

to solar sails were proposed. Nevertheless, none of afore-mentioned radiation pressure
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Figure 1.2: The maneuver of a sun-facing diffractive sail. The diffractive sail always faces
the sun in orbit, receiving light with its full surface area. The sail expands or shrinks orbit
by increasing or reducing the transverse radiation pressure force component on the sail.

forces have not been experimentally verified and demonstrated in the laboratory. This has

become the main objective of my Ph.D. thesis research, which serves as a fundamental

step to gain experimental understanding of these radiation pressure forces.

Furthermore, a diffractive sail may also be beneficial to a laser light sail in terms of

stability. An important problem for laser light sails is ensuring that the sail remains

centered on the laser beam despite disturbances and misalignment [62, 92]. It is ideal to

have a passive, restoring force on the sail when a deviation from the beam occurs. It is

possible to structurally design a refraction, diffraction, or meta-material sail that reacts

to beam misalignment by providing an opposite force component to re-align the beam and

the sail. We have come up with a “diffractive beam-rider” structure design that possesses

this quality, and experimentally verified it with a time modulation of the laser.

These diffractive sail studies, accompanied with the roadmap of NASA [66], interna-

tional space-agencies and private entities, utilize the low-cost Cubesats as opportunities to

setup test flights and further testing space-qualified material and mission-oriented optimal
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designs will be grand goals in the future for realizing solar sails into space.

1.2 Overview

In the following chapters of the thesis, Chapter 2 provides the literature background for

optical radiation pressure and its measurements to support the motivation of measure-

ments of radiation pressure on a diffractive solar sail. Furthermore, the chapter details

the theories and methods of quantifying momentum transfer on a diffraction grating. A

single order diffraction grating, instead of multiple order diffraction, concentrates the pho-

ton momentum transfer instead of spreading the power out, so we then discuss candidates

for single order diffraction gratings.

Chapter 3 describes a model of how a single-order diffraction grating may be beneficial

in a space mission of orbit lowering and inclination raising. Further more, we discuss how

the diffraction and birefringent properties of liquid crystal cycloidal diffraction gratings

(CDWs) may be utilized, and how its limits may be overcome for the application of a

diffractive solar sail.

Chapter 4 describes the experiment setup that I built for force measurements on proto-

type diffractive light-sail samples. Since all force measurements were performed on small

prototype sails with the forcing laser power under 5 Watts, the setup was designed to be

sensitive enough to measure a corresponding force magnitude of sub-nanoNewtons, while

also allowing the sail samples to exhibit motion. The system behaviour can be mathe-

matically described as an harmonic oscillator driven by optical radiation pressure. After

an unforced system was characterized, I describe the experiment that verifies the “grating

momentum” quantitatively.
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Chapter 5 describes experimental verification of diffractive lightsail applications as

a diffractive ”beam-rider”. This is a key demonstration for both solar sailing and laser

sailing. We discuss the demonstration the “cooling” effects on a “Diffractive Beam-Rider” ,

on a ”bi-grating” prototype and an ”axicon” proptotype, proving one-dimensional and two-

dimensional restoring force that pulls the sail towards the beam path when displacement

occurs, respectively.

Chapter 6 provides my thoughts and recommendations on further improvements of the

experimental setup.



Chapter 2

Background

With the application of diffractive sails laid out, great importance directs to studying the

radiation pressure property and limits on diffractive sails. We aim to set this foundation

on understanding and measuring radiation pressure of a diffractive material in a labora-

tory setup. This chapter gives the background knowledge on the basic radiation pressure

properties and its measurements (Section 2.1), then explores how the radiation pressure

interacts on a diffraction grating (Section 2.2). High efficiency single order diffraction

gratings are then discussed (Section 2.3).

2.1 Radiation Pressure

The optical radiation pressure is rather weak and was not trivial to observe. In this

section, we lay out the theoretical expression as well as the experimental methods that

scientists developed over the years to understand and measure this small force that is easily

9
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overwhelmed by other forces on Earth. Furthermore, by controlling different modulations

of a laser beam, it is made possible using optical radiation pressure to trap, manipulate,

propel, or modify objects. Since a homogeneous light source (i.e., sunlight) is a prerequisite

for solar sailing, it is of interest to modulate the object receiving the radiation pressure.

2.1.1 Theory

It has been observed that light exerts pressure since 1619, when Kepler used it to explain

why the comet’s tail is pointed away from the sun [80]. Not until 1873, Maxwell [97] in his

Treatise on electricity and magnetism, expressed the mechanical pressure of a transverse

electromagnetic wave in its direction of propagation in free space with a complete theory.

The pressure is determined by the energy density U(energy per unit volume)

U =
1

2
(ε0E

2 + ν0H
2) = ε0E

2 = µ0H
2, as H =

√
ε0
µ0
E. (2.1)

where ε0 and µ0 are the permittivity and permeability of free space, respectively.

The existence of radiation pressure shows that electromagnetic waves also carry mo-

mentum. In the beginning of 1900’s, Poynting [87, 126] considered light as a ’stream of

momentum’; Minkowksi [104] and Abraham [5] each followed up with expressions based

upon the classic electromagnetic theory of that linear momentum in a dielectric medium.

Both theories reduce to the expression for light momentum of p = hν/c for a single photon

in free space, where h is the Planck’s constant, ν is the frequency of light, and c = 2πν/k.

A useful expression is to rewrite with wave vectors as

p = ~k (2.2)
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where ~ = h/2π , is the speed of light and k = 2π/λ is the wave number. A packet of

N such photons passing through a plane over a time t carries a net momentum N~k. If

the packet is elastically deflected by a material in another direction characterized by the

wave vector ~k′, the net momentum changes to N~~k′ . From Newtons third law, the force

on the material is

~F = N(~k − ~k′)/t = (P/ck)(~k − ~k′) , (2.3)

where P = Nhω/c∆t = N~k/∆t is the power of the beam of photons, ~k is the incident

wave vector of light and ~k′ is the final wave vector of light. The momentum transferred

to the object is small and derived in Appendix B.

The simplest example of this force would be the radiation pressure force exerted on a

perfect reflector, when the beam comes in normal to the surface. In this case,

~F = N(~k − ~k′)/t = (2P/c)k̂ . (2.4)

From these expressions we learn that the radiation pressure of light is extremely small

compared to those we exert on daily known objects. For a typical laser pointer power of

0.5 mW, the radiation pressure force exerted on a perfect mirror will be on the order of

pN. The gravitational force on a small spherical water droplet of 2 mm diameter is 107

times more than the radiation pressure force we just calculated from the laser pointer.

2.1.2 Measurements

To measure the weak optical radiation pressure, a torsion pendulum was used, where a

thin bar is hung at the center from a torsion filament in an evacuated chamber, and the

asymmetry of torque created by sun or a bright light source would cause the filament and
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bar to rotate. This design helped to eliminate the effect of gravity, which is perpendicular

to the direction of torque on the pendulum.

However, the convection forces from residual gas in the chamber dominates the cause of

the torque in this type of experiments [38,41,48,170]. Improvement in vacuum technology

and careful calculations to rule out the heat effects, enabled the efforts of Russian physicist

Pyotr Lebedev in 1900 [96] and by Ernest Fox Nichols and Gordon Ferrie Hull in 1901

[112, 113], to measure the radiation pressure of light quantitatively and closely agreed to

Maxwell’s expressions.

Lasers allowed the radiation pressure experiments to shrink in size, and with better

concentrated power. Micromechanical systems, such as microcantilevers and atomic force

microscope (AFM) detection, can perform force measurements in ambient conditions and

are high in sensitivity and commercial availability [29]. In Atomic force microscopes, a

sample is scanned by a tip mounted on a cantilever spring. While scanning, the force

between the tip and the sample is measured by monitoring the deflection of the cantilever.

The cantilever can also be dynamically excited. Either the shift in resonance frequency is

detected using a feedback system [9,160] or the change in amplitude at constant excitation

frequency and excitation amplitude is measured [49, 79]. The resonant signal provides

benefits for force measurements under ambient conditions, water, and different gases. For

an optical radiation pressure measurement, although heat induced thermal-elastic strains

and surface charge density induced electronic deformation exists [156], scientists are able

to differentiate between the radiation pressure excitation and excitation driven by other

sources by analyzing the oscillating spectrum [90].

Thanks to the advancement of micro-electronic-mechanical-systems (MEMS) fabrica-

tion technology, micro/nano-mechanical transducers have become sensitive enough that
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radiation pressure can influence them greatly. Dynamic resonance driving techniques can

be applied in various forms of micro-resonators and micro-oscillators [30, 63, 85, 106].The

availability of these MEMs devices capable of probing tiny forces with atomic spatial res-

olution benefited research fields of interest include active cooling of mechanical resonators

in cavity optomechanics, cantilever spring constant calibration, enhanced radiation force

in a microwave resonant unit, etc. From these research areas, we gained a more detailed

understanding of the mechanical effects of light that were exploited in laser trapping and

cooling [103].

High laser powers over 1000W have become commercially available for industrial laser

processing applications and brought radiation pressure measurements to a macroscopic

level. Scientists have developed a relatively portable radiation pressure power meter:

using a vertically mounted scale and mirror to measure micro-Newton forces for 100 to

100kW lasers [133, 166, 167]. These radiation-pressure power meters enable accurate and

traceable power measurements without the error from beam splitting, or having mutually

exclusive beam power measurements and the use of the laser beam.

Torsion pendula are most classically known for Cavendish experiments of measuring the

Newtonian gravitation constant G [55]. They are applied to a rich spectrum of weak force

measurements because of its ability to place the Earth’s gravitational force orthogonal to

the force of interest, eliminating the competition between the weak force and the Earth’s.

The pendulum motion, including the static component–change of equilibrium position;

and the dynamic component–oscillation of the pendulum over time, are both used for the

determination of force. Fundamental optical forces have been measured using a torsion

pendulum, such as using a fiber-suspended quarter-wave plate for the determination of

the angular momentum of light [20], and also constructing a dual rotational axis to be an
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absolute laser power meter using radiation pressure force [131].

2.1.3 Applications

There are two components in a light-matter interaction like optical radiation pressure

exerting force on objects. As lasers come into play with the collimated and coherent

properties of light , Arthur Ashkin was able to identify that there are two basic forces in a

focused laser beam: 1. a scattering force in the direction of incidence of the light beam 2. a

gradient force along the direction of the intensity gradient of a Gaussian beam profile [14].

In 1986 a new field opened up when Ashkin trapped dielectric particles of various sizes

in a single-beam gradient force trap known as optical tweezers, in the medium of water,

air, and vacuum [15]. The pico-Newton force is specifically applicable for manipulating

small-neutral particle, atoms, and molecules.

Optical tweezers and optical traps have allowed researchers have investigated a wide

range of important biological interactions [19, 26, 45, 57] as well as classical statistical

mechanics [105,136] in a way that was not previously possible.

The optical tweezer also enabled measurements of other small forces. For example, an

optically trapped particle displacement was monitored by deflection, reflection, or inter-

ferometry [44, 53, 70, 140]. Combined with total internal reflection microscopy (TIRM),

the scattered intensity distribution can be used for measuring the Casimir force on parti-

cles [60].

Following the focused Gaussian optical trap, the modulation and control of the beam

with diffractive optics is one of the most powerful enhancements of the single trap The

research and engineering of these synthesized beam shapes bloomed for its versatility. Since

a highly focused optical tweezer can be destructive to absorptive particles, solutions such as
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optical vortex beams, i.e., a donut-shaped beam with a null at the center, form traps where

a low refractive index particle can be trapped on the optical axis a short distance above the

focal plane [52]. Certain propagation-invariant beams help to increase the depth of focus

along with their special properties, e.g., Airy beam that enhances transverse acceleration

and Bessel beams that has a self-healing central lobe as it propagates [127].

Complex modulation is achieved by holographic optical tweezers (HOTs) and space

light modulators (SLMs) that forms arbitrary traps. The advantages include: complex

traps can be two or three dimensional; larger traps can have multiple independent trap

points, and traps can be updated in real-time by controlling the electro-optic pixels in an

SLM. The traps can be virtually anything – the only limits are the spatial resolution of

the SLM and the range of spatial frequencies that are passed by the microscope objective.

Few examples are line traps that confine the tweezer manipulation in a single direction;

dynamic and real-time control of cell growth [42].

In addition to the extensive focus on controlling the light, attention was drawn to the

matter in the recent decade. Asymmetry in the shapes or guided light deflections [119] of

an object can affect the direction of force, e.g., a stable light lift [149]. Furthermore, when

the object is more complex and carefully designed [13, 94, 169], it may act as an optical

motor when illuminated by a light beam.

Modern materials such as electro-optic materials [158, 159] provide tunable control of

reflectivity, which also tunes the linear momentum changing rate, i.e., force. Channeled

waveguides [69] and micro-ring resonators [84] can be designed for controlling particles.

Meta-materials, materials with size structures smaller than the wavelengths of the incident

wave, can be designed to have a surface with phase-gradient and generate surface waves

to manipulate nanoparticles. Anisotropic phase gradient structures may also be used to
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control the direction of motion by tuning the polarization of the illumination [6].

2.2 Diffraction from a Grating

Figure 2.1: A white light source normally incident to a diffraction grating.

A diffraction grating is a periodic optical element that splits light, based on its wave-

length composite and incident angle to the grating, into several different beams directions.

Diffraction gratings can be made transmissive or reflective, and the periodic structure can

be embedded in amplitude or phase, while all following the same diffractive rules. We may

start from a transmissive diffraction grating with a consider a single transverse dimension,

x, as an example (Fig. 2.1): when incident light is normal to the grating surface, the

diffracted angle θm can be described by sin θm = mλ/Λ, where m is the diffractive order

of the light, λ is the wavelength, and Λ is the grating period.
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The angular spectrum of light may be illustrated by examining monochromatic light

transmitted through such diffraction grating as well. The incident electric field may be

expressed E(x, z < 0) = A exp(i2πz/λ), whereas the transmitted field at the exit face of

the grating may be expressed as a Fourier series because the grating is infinitely periodic:

E(x, z = 0) =

∞∑
m=−∞

am exp(imKx) (2.5a)

where am = (1/Λ)

∫ Λ/2

−Λ/2
E(x, z = 0) exp(imKx)dx (2.5b)

where K = 2π/Λ is the fundamental harmonic and mK are higher harmonics. Note that

this initial field is independent of the wavelength of light. We must consider wavelength,

however, if we want to describe the propagation of light. Let us assume that we know the

exit field distribution immediately after the thin period grating E(x, z = 0) so that we

can calculate the Fourier coefficients am. The angular spectrum may then be computed

for each harmonic component, Em = am exp(imKx).

Physical arguments suggest that |θm| can not exceed 90◦, which occurs when the

denominator equals zero: mλ/Λ = ±1. Therefore the maximum allowed diffractive order

|m| is mmax = int(Λ/λ) (where int is the integer function). If |m| < mmax then Em(x, z)

propagates forward. If |m| > mmax then Em(x, z) is an evanescent wave that does not

propagate forward.

For a diffraction grating with fixed period Λ, the same physical argument poses limits

on the allowed propagation if the incident angle θi or wavelength varies. The incidence

angle falls in the range of sin−1(1 − mλ/Λ) ≤ θi ≤ 90◦, and the maximum diffracted

wavelength is λmax = (Λ/m)(1 + sin θi).
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The relative intensity or efficiency of the mth diffracted order of the grating is

ηm = |a2
m|/|A2|. (2.6)

2.2.1 Momentum Transfer on a diffraction grating

Figure 2.2: Momentum transfer and k-vector relations on a single-order diffraction grating.
On the unit circle with magnitude k0 = 2π/λ, the tangential component of incident and
diffracted wave vectors ~ki · p̂ and ~km · p̂ differs by m~K for any incident angle other than
cut-off angles.

A beam of light with wavelength λ is diffracted from a grating having a period Λ

according to a phase matching condition along the the grating boundary, as dictated by

Maxwells equations. Assume a grating momentum vector K̂ = 2π/Λ p̂ that is tangential

to the grating surface, where and p̂(n̂) is the unit vector parallel(normal) to the grating

surface. The boundary condition at the surface maybe expressed

(~ki +m~K) · p̂ = ~km · p̂, (2.7)
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where ~ki/k0 = − sin θi p̂+cos θi n̂ is the incident wave vector, ~km/k0 = sin θm p̂−cos θm n̂

is the diffracted wave vector, and k0 = 2π/λ is the wave number. The phase-matching

condition is in agreement to the conservation of momentum (Fig. 2.2), and also leads to

the well-known grating equation:

sin θm = − sin θi +mλ/λ. (2.8)

The diffraction angle θm may be expressed in terms of sine and cosine functions:

sin θm = mλ/Λ− sin θi; cos θm = ±(1− sin2 θm)
1/2

(2.9)

where the plus (minus) sign corresponds to a reflected (transmitted) order.

The conservation of momentum may be rewritten based on vector properties

km,p = k (mλ/Λ− sin θi) (2.10a)

km,n = ±k (1− (mλ/Λ− sin θi)
2)1/2 (2.10b)

The vector relationships can be visualized in Fig. 2.2, depicting the common case

where incident angle exceeds the cut-off angle (|θi| > θi,c|), the incident and diffracted

wave vector has equal length |~ki| = | ~km| = k = 2π/λ, Eq. 2.10 reduces to km,p = k sin θm,

km,n = k cos θm. When |θi| ≤ θi,c|, |km,p| has a value larger than |k|, and km,n becomes an

imaginary number falling outside the |~k| circle.

The general expression for radiation pressure force on a non-absorbing grating may be
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expressed as the mechanical reaction to optical diffraction (see Appendix A):

~F = (Pi/ck)(~ki −
∑
m

ηm~km), (2.11)

where ηm = Pm/Pi is the efficiency of the mth diffracted beam, Pi (Pm) is the incident

(diffracted) beam power; energy conservation requires
∑

m ηm = 1.

From Eq. 2.11 and the given expressions for ~ki, ~km, for a given wavelength the radiation

pressure force on a grating may be expressed

~Fλ =
IA cos θi

c

∑
m

ηm(Ci,mn̂− Si,mp̂) (2.12)

when the beam over-fills the grating (Pi = IA cos θi/c), where Ci,m = cos θi + cos θm,

Si,m = sin θi+sin θm = mλ/Λ, ηm is the fraction of incident beam power that is diffracted

to the m-th order, I is the irradiance, A is the area of the grating, and c is the speed of

light.

2.2.2 Maxwell’s Stress Tensor

The forces from a plane wave on a flat optical element can be found by using the Maxwell’s

Stress Tensor. This method is useful when we know the electromagnetic wave expressions

in and out of the element. The momentum between the incident wave, reflected wave, and

transmitted wave would be conserved, described by

f + εµ∂S/∂t = ∇ · ~T , (2.13)
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Figure 2.3: Sunlight as an example of broadband light incident upon a diffraction grating
of period Λ, with a fixed beam in direction r̂ and surface normal n̂ subtending the angle
θi. Incident, diffracted, grating wave vectors: ~ki, ~km, ~K. Surface unit vector p̂ . Diffraction
angle, θm . Radiation pressure force imparted to the grating, F̂ . Adapted from [148]

where f is the force density, ε is the electric permittivity, µ the magnetic Permeability, S is

the Poynting vector (energy flow) and ~T is the Maxwell’s stress tensor. Since we are only

observing the forces at a specific instant in time, ∂S/∂t will be zero. The Maxwell’s stress

tensor represent the interaction between electromagnetic forces and mechanical momentum

as

~T = ε0εEE− µ0µHH− 1

2
(ε0εE

2 + µ0µH
2)~I (2.14)

where E is the electric field strength, H is the magnetic field strength, and ~I denotes the

unit tensor.

We may consider a transverse electric (electric field polarization perpendicular to)

incident wave plane wave incident to the normal of the diffraction grating with an incident
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Figure 2.4: Configuration used to derive radiation pressure on a reflective diffraction
grating by Maxwell’s Stress Tensor.

angle θi:

Ei = E0e
−ik0(x sin θi+z cos θi)ŷ (2.15a)

Hi =
E0

η0
cos θe−ik0(z cos θi−x sin θi)x̂ +

E0

η0
sin θie

−ik0(z cos θi−x sin θi)ẑ . (2.15b)

Using the divergence theorem, the volume integral of the Maxwell stress tensor gradient

can be set equal to the closed surface integral of the Maxwell stress tensor through the

solar sail. The time averaged mechanical force is then

〈F 〉 =

∫
V
∇ · 〈~T 〉 dV =

∮
∂V
〈~T 〉 · n̂ da (2.16)

where ∂V denotes the surface of V , n̂ is the unit vector perpendicular to the surface, and

da is an infinitesimal surface element. We may now find the Maxwell stress tensor for the
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incident field

~Ti =
E2

0ε

2η2
0


cos(2θi)− εη2

0 0 −µ0 sin(2θi)

0 ε0η
2
0 − µ0 0

−µ0 sin(2θi) 0 cos(2θi)µ0 − ε0η2
0

 , (2.17)

where ε = exp−2ik0(sin θix+cos θiz), and the integration on the planar surface with area A

normal (n) and parallel (p) to the element surface is

〈Fi,z〉 =
1

2
ε0AE

2
0 cos2(2θi) ẑ (2.18a)

〈Fi,x〉 =
1

4
ε0AE

2
0 sin(2θi) x̂ (2.18b)

where A is the surface area of the grating.

In the Fourier series expression of diffracted waves in Eq. 2.5, we know that a diffraction

grating introduces a linear phase of Φ = mKx parallel to the grating, and if m = 1,

ψx = Kx. In this case we look for a reflective, first order diffraction. The Maxwell’s Stress

Tensor for the diffracted field then may be expressed

~Td =
E2

0α

2k2
0η

2
0


−(k2

0ε0η
2
0 + βµ0) 0 δ

0 k2
0(ε0η

2
0 − µ0) 0

δ 0 −(k2
0ε0η

2
0 − βµ0)

 (2.19)
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where,

α = e−2ik0[−(K/k0−sin θi)x+
√

(1−(K/k0−sin θi)2z)

β = 2K2 + 4 sin θik0K − cos(2θi)k
2
0

δ = 2k2
0µ0(K/k0 − sin θi)

√
(1− (K/k0 − sin θi)2

The plane forces are found to be

〈Fr,z〉 =
E2

0A

4η2
0k

2
0

[
µ0(−2K2 − 4Kk0 sin θi + k2

0 cos(2θi) + η2k2
0ε0)

]
ẑ (2.20a)

〈Fr,x〉 = −µ0
E2

0A

2η2
0

[
(K/k0 + sin θi)

√
(1− (K/k0 − sin θi)2

]
x̂ (2.20b)

Combining the forces influenced by both the incident and reflected fields, the force parallel

to the reflective diffraction grating may be expressed

〈Fz〉 = 〈F 〉i,z + 〈F 〉r,z =
µ0AE

2
0

2η2
0

(
sin θi cos θi − (K/k0 + sin θi)

√
(1− (K/k0 − sin θi)2

)
(2.21a)

〈Fx〉 = 〈F 〉i,x + 〈F 〉r,x =
E2

0A

4η2
0k

2
0

(
µ0(−2K2 − 4Kk0 sin θi + k2

0 cos(2θi)) + 2η2
0k

2
0ε0(cos2 θi + 1/2)

)
(2.21b)

2.3 High efficiency single-order diffraction gratings

The linear momentum carried by incident photons transfers to an object and imparts linear

radiation pressure. A single order diffraction grating concentrates this momentum change

as the majority of incident photon direction goes towards a single direction. The resulting
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radiation force can be designed towards arbitrary directions, as the grating period can be

flexibly made. However, according to Fourier theories, a general periodic surface without

special engineering would always have multiple diffractive orders in the far field, which

spreads out the incoming photons and reduces the force.

Special designs such as meta-materials with structures smaller than the light wave-

length can be designed to bend light in unconventional ways. Liquid crystal thin film

gratings with its thickness on the order of the wavelengths has properties to provide only

single order diffraction. In my thesis work, I have the chance to access the types of gratings

below: 1. A commercially available sub-wavelength grating designed for Littrow trans-

mission order; 2. Polarization-sensitive liquid crystal cycloidal diffractive waveplates; 3.

Flat multi-level diffractive surfaces; 4. Metasurface designed for perfect refraction, i.e.,

bending light as in ideal single order diffraction.

Diffraction Efficiency can be divided into two types: ”relative diffraction efficiency”

and ”absolute diffraction efficiency.” The absolute diffraction efficiency is the ratio of the

diffracted light intensity, of a given order, to the incident light intensity. The relative

diffraction efficiency is obtained by dividing the absolute diffraction efficiency by the re-

flectance of the coating material for a reflective grating, or transmittance of the grating

for a transmissive grating. In most literature and diffraction grating manufacturers, the

term of relative diffractive efficiency is adopted.

The diffraction efficiency of a grating can vary significantly with the polarization of

incident light, because the grooves in a grating are all etched in one direction. With S-

polarization (TM waves), where the direction of the grating grooves and the oscillation

direction of an electric field is perpendicular, anomalies exist in the efficiency curve (effi-

ciency vs. wavelength curve, as shown in Fig. 2.5). Anomalies are locations that the curve



CHAPTER 2. BACKGROUND 26

(a) P-polarization has the electric oscil-
lation direction parallel to the grating
grooves; S-polarization has the electric
oscillation direction perpendicular to the
grating grooves.

(b) A typical efficiency curve that peaks
at the blazed wavelength λ. The effi-
ciency curve for S-polarization has more
anomalies, but the efficiency is higher for
loner wavelengths. Adapted from [86]

Figure 2.5: Polarized light and blazed grating efficiency

changes abruptly. In a typical efficiency curve, within the long-wavelength regions, higher

diffraction efficiency is exhibited. With P-polarization (TE waves), where the direction of

the grating grooves and the oscillation direction of electric field vectors is parallel, there

is not as much fluctuation as with S-polarization. In general, for unpolarized light, the

efficiency curve would fall between the curves of TE and TM polarizations.

2.3.1 Blazed Grating

A blazed grating consists of micro-prisms made of glass that refracts light into a certain

angle based on its geometry, to achieve maximum efficiency at a single diffraction order.

The surface geometry forms a sawtooth profile described in Fig. 2.6a, where the slanted

normal with angle γ provides a match for both the Snell’s law and the grating equation.

The geometry design enables most of the diffracted light to go to one designated order,
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(a) The blazed grating has a
saw-tooth profile.

(b) Blazed grating

(c) Blazed grating under nor-
mal incidence light.

(d) Blazed grating under Lit-
trow configuration.

Figure 2.6: Blazed grating properties. Image adapted from [153].

and the zero order is minimized at the blaze wavelength. A blazed grating can be reflective

or transmissive, and here we look at a reflective example in Fig. 2.6b where the incident

angle θi forms a relation between the reflected(diffracted) θr angle by

θi − θr = 2γ (2.22)
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Figure 2.7: The shadowing effect on a saw-tooth profile. In the shadowing zone, incident
rays are not diffracted into the desired order. Adapted from [86].

. At normal incidence to the grating θi = 0◦ as in Fig. 2.23, we can combine the above

Eq. 2.22 and the grating equation Eq. 2.8, which results in

sin(−2γ) = mλ/Λ. (2.23)

The Littrow configuration is another interesting case where the diffracted beam lies directly

on top of the incident beam, i.e., the incident and diffracted angle is the same (Fig. 2.6d).

The grating equation can now be re-written as

2 sin(θL) = mλ/Λ,where θL = γ. (2.24)

The efficiency behavior of a blazed grating depends on the grating period λ/Λ, peaking

at the blazed wavelength. In general, the efficiency curve can be derived from the scalar

diffraction theory. For larger blaze angles (grooves depth for sinusoidal gratings), scalar

theory becomes less applicable, and the diffraction efficiency varies significantly with the

polarization. Manufactured from mechanical ruling or ion etching, the idea of a blazed

grating is straightforward, yet due to geometrical ”shadowing” effects, absolute diffraction

efficiency is limited to limited to 50% at the blazed order [86].
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(a) N-level binary phase grating structure can
achieve a high efficiency blazed grating effect.
The diffractive efficiency can be described in Eq.
2.26. Adapted from [43].

(b) A realized N-level binary phase
grating structure that can achieve a
high efficiency blazed grating effect.
Adapted from [76].

2.3.2 Binary Phase Grating

The binary phase grating has been described as a crude approximation of a blaze grat-

ing. and the transmission function, take binary phase grating as an example, has the

modulation purely in phase

g0(x) =


1, 0 ≤ |x| ≤ Λ/4

−1,Λ/4 < |x| ≤ Λ/2

(2.25)

The periodic transparencys complex amplitude transmission may be expressed as a Fourier

series expansion, where the amplitude of an order is cm = 1
Λ

∫ Λ/2
−Λ/2 g0(x) exp(i2πmx/Λ)dx =

sinc(m/2), and sinc(ξ) = sin(πξ)/(πξ). The efficiency for odd orders is the absolute

squared of the Fourier series amplitude, so η±m = ( 2
πm)2, and the first order efficiency

will be η±1 = 40.53% based on symmetry. By increasing the numbers of etched steps

into a N-level binary grating structure, as depicted in Fig. 2.8a, the diffractive efficiency
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expression can be rewritten as

η = |sin(π/N)

π/N
|2 , (2.26)

where the number of levels N may be limited by the binary etching process, and the

theoretical diffraction efficiency goes up to around 80 − 90% [43], derived by the scalar

diffraction theory.

Furthermore, a sub-wavelength structure can achieve single order diffraction by limiting

the propagated diffraction orders. The incident light wavelength is smaller so that only

one order is allowed, and other orders are evanescent. We consider the grating equation

with the grating refractive index ng. Since the incidence is in air, we can rewrite Eq. 2.8

as

− sin θi +mλ/Λ = ng sin θm . (2.27)

For a single order diffraction grating, for the first order m = 1 to propagate, | sin θ1| ≤ 1

λ/Λ ≤ sin θi + ng (2.28)

For a the m = 2 to not propagate, | sin θ2| ≥ 1

λ/Λ ≥ 1

2
(sin θi + ng) (2.29)

The collocation of a sub-wavelength structure and N-level pillar grating forms a blazed

binary grating. This is realized with the design of appropriate constant thickness h and

variable pillar width, as shown in Fig. 2.8b. With a blazed refractive index profile, it is

successful to achieve efficiency higher than a ruled blazed grating up to 87% [75,76]. The
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optimal thickness of blazed binary gratings is given by

h =
N − 1

N

λ

nmax − 1
, (2.30)

where nmax is the largest refractive index in the modulation profile.

2.3.3 Liquid Crystal Cycloidal Diffractive Waveplates (CDWs)

(a)
(b) (c)

Figure 2.9: The polarization properties of a cycloidal diffractive waveplate with a grating
momentum vector K = 2π/Λ x̂. (a) Unpolarized incident beam. Purely (b)right-circular
(c) left-circular polarized incident beam

For liquid crystals, refractive indexes are dynamically adjustable, which enable the

design of very high efficiency phase gratings. Furthermore, instead of tuning the refractive

index, liquid crystals are also able to form another type of gratings that tunes the fast/slow

anisotropy axis. The birefringence of the material could be constant, while the direction

of fast/slow anisotropy axis is periodically modulated along the transverse plane of the

waveplate, resulting in polarization gratings that selectively diffract light based on its

polarization state, as shown in Fig. 2.9. This group of liquid crystal gratings are sometimes
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also called optical axis gratings (OAG), liquid crystal polarization gratings(LCPG), or

cycloidal diffractive waveplates (CDW).

Liquid crystal polarization gratings are thin and and has high efficiency diffraction

single orders, used as beam-splitters [116], polarimeters [74], imaging display [108], and

VR/AR systems to split images between eyes [31,82]. Its functionally expands further with

electro-optically switching between diffraction orders for non-mechanical beam steering

and control [32,72,111], or switch grating period [37].

Nematic liquid crystals (NLC) are used to realize these single-order polarization grat-

ings, with circularly polarized incident light, and liquid crystal rotating in a transverse

direction in the grating plane at a full rotation period Λ. The thickness of the grating ∆z

satisfies a half wave-plate (i.e. k ·∆z = π/2, where k = 2π/λ), where the diffracted beam

switches to its opposite handedness [108,135]. Since the thickness of these waveplates are

on the order of the optical wavelength, the effects of multiple reflection is reduced and the

absolute diffraction efficiency was reported to reach 95%.

These waveplates are holographically made by exposing photo-aligning nematic liquid

crystals to two interfering orthogonal circularly polarized beams. The birefringence is in-

duced as a product of photochemical reaction, and may be interpreted by the superposition
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(a) (b)
(c)

Cycloidal Diffractive waveplates that are cycloidal along (a) x-direction (b) Axial (vector
vortex plate, q-plate) (c) 2-D Cycloidal, along any axis in the xy plane. Adapted

from [111]

Figure 2.10: Cycloidal Diffractive Waveplates

of a left and right circularly polarized beams:

EL = (E0/2)

1

i

 exp(iπx/Λ) (2.31a)

ER = (E0/2)

 1

−i

 exp(−iπx/Λ) (2.31b)

EL + ER = E0 (cosπx/Λ, sinπx/Λ)T , (2.31c)

where Λ = λR/(2 sin θC) is the modulation period, λR is the wavelength of the recording

beams, and θC is the incident angle of the recording beams [116].

The director in neumatic liquid crystal polarization gratings has the azimuth of the
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director n rotating along the x-direction:

n(x) = (cos(θC(x)), sin(θC(x)), 0) (2.32)

where θC(x) = Kx/2 , K = ±2π/Λx̂ is the grating momentum, and Λ is the optical

grating period.

The Jones Transfer Matrix expresses the polarization transfer on every x-point of the

waveplate

M(θC(x),Γ) = R(−θC(x)) G(Γ) R(θC(x)) (2.33a)

= e−i
π
2 ·

cos(Kx) sin(Kx)

sin(Kx) − cos(Kx)

 , (2.33b)

where in this expression, the first and third are rotational matrices

R(θC(x)) =

 cos(θC(x)) sin(θC(x))

− sin(θC(x)) cos(θC(x))

 (2.34)

and

G(Γ) =

exp(+iΓ/2) 0

0 exp(−iΓ/2)

 . (2.35)

The wave-plate retardation Γ(λ0) = k0(ne(λ0) − no(λ0))d = π meets the half wave con-

dition at λ0 (a full wave is 2π), where k0 = 2π/λ0, and d is the wave-plate thickness,

d = π/k0(ne(λ0)− no(λ0)).
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Now we may prepare an incident electric field entering the wave-plate, starting from

the definition of a Jones vector expression from an electric field

~E = [E0xe
iφx x̂+ E0ye

iφy ŷ] ei(kz−ωt) (2.36a)

= Ẽ0 e
i(kz−ωt) (2.36b)

where k = 2π/λ, speed of light c = ω/k. The Jones vector expresses the polarization in

x̂, ŷ

Ẽ0 =

Ẽ0x

Ẽ0y

 =

E0xe
iφx

E0ye
iφy

 = E0e
iφx

 cosχ

eiφ sinχ

 (2.37)

, where χ = tan−1(E0y/E0x)and φ = φy − φx.

With an incident to a polarization element with transfer matrix M(θC(c),Γ), the

output electric field will have the relation Ẽout = M(θC(x),Γ)Ẽin. We may then express

a circularly polarized incident beam and its output through a single CDW by

Ẽin =
1√
2
E0

 1

±i

 (2.38a)

Ẽout =
1√
2
E0e

−iπ/2e±iKx

 1

∓i

 (2.38b)

Since we assume the incident is perfectly circularly polarized light, cosχ = sinχ = 1/
√

2

is applied.

The emerging polarization from the wave-plate thus changes into the opposite polar-

ization handedness, carrying a linear phase of ψx = ±Kx and a constant phase π/2 due
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Figure 2.11: The x and y components of the output electric field phase of a Λ = 5µm CDW
with a positive K vector, when the incident fields are (a) non-polarized (b) right-circularly
polarized and (c) left circularly polarized. The circularly polarized inputs (b-c) results in
output linear phase of ψx = ±Kx, wrapped from −π to π.

to the half-wave plate condition. A simple example visualization for the output linear

phase along x for a CDW with K = 2π/Λ where Λ = 5µm is provided in Fig. 2.11

to show cases when the incident electric fields are either handed circular polarization,

ER = 1/
√

2E0(1;−i) , EL = 1/
√

2E0(1; i), and a uniform combination of both, which is

unpolarized. It may be observed that the output linear phase changes sign when switched

between two circular polarization inputs. The output linear phase cancels out and behaves

like a regular ruled grating when the incident light is unpolarized.

By using the Fourier series expansion on the emerging electric field,

Ẽout =
m=∞∑
m=−∞

am exp (imKx), where (2.39a)

am = Λ−1

∫ Λ/2

−Λ/2
|Ẽout| exp(imKx)dx, (2.39b)

we may define the diffraction efficiency of the m-th order is defined as ηm = |am|2/|Ẽ0|2.



CHAPTER 2. BACKGROUND 37

By calculation, the diffraction efficiency ηm = 1 into a single diffractive order, while

the diffraction efficiencies into other orders are zero. For example in Fig. 2.11 where

K = 2π/Λx̂, a right-hand circularly polarized incidence beam diffracts into m = +1 and

a left-hand circularly polarized incidence beam diffracts the m = −1 , both with 100%

efficiency.

Cycloidal diffractive wave-plates directors can also be aligned under different symme-

tries. Besides rotating along linear x-axis as a linear diffraction grating, it can also rotate

with respect to the azimuth angle as n(θC) (see Fig. 2.10(b)) under polar coordinates,

or along a tilted axis in the xy-plane as n(x,y) to be an 2-D cycloidal grating. The axial

director alignment forms a radial diffraction grating, where the diffraction forms a conical

shape, diffracting either inwards (-r direction) or outwards (+r direction) as an positive

or negative axicon. Under the context of a diffractive sail, photon momentum transfer

along the radial direction may be useful for sail stability purposes.

2.3.4 Bianisotropic Metamaterial Grating

Metamaterials composites of sub-wavelength units, which manipulates electromagnetic

wave propagation with its geometry and arrangement, and forms captivating devices with

optical properties that are not present in materials available in nature. The unique prop-

erties of these metamaterials can be attributed to their effective electrical permittivity

and their magnetic permeability, which can be tuned, allowing for a variety of interest-

ing effects. One interesting phenomena is that metamaterial gratings have the ability to

support multiple resonances, and shown to be crucial for asymmetric light scattering.

Owing to the small structure of the units, the polarization in a specific location inside

material depends not only on the local electric field at that location, but also on the field at
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other neighboring locations. This enables controllable strong spatial dispersion, i.e. non-

local polarization response, which achieves two important phenomena: artificial magnetism

and bianisotropy [12] Artificial magnetism provides the possibility of creating materials

with strong magnetic properties in an arbitrary frequency range, enabling negative-index

materials, subwavelength focusing and other. Metasurfaces which exhibit a magnetic

(electric) polarization current when excited by an electric (magnetic) field are named

bianisotropic, which enables perfect refraction and reflection of incident plane wave [11,

123].

The bianisotropic behavior is modeled by cross-coupling magnetoelectric and elec-

tromagnetic parameters such as effective susceptibilities, polarizabilities, etc. The full

synthesis and analysis is out of the scope of this thesis, but below we provide an illustra-

tive example of the susceptibility tensor analysis on a bianisotropic metasurface with an

incident p-polarized light, which can be tailored to three different sets of incident angles [8].

P = χee ·Eav + χem ·Hav/c0, (2.40a)

M = χmm ·Hav + χme ·Eav/η0, (2.40b)

where P and M are the polarization density and the magnetization density; Eav and

Hav are the average (local) electric and magnetic fields on both sides of the metasurface;

χee, χmm , χem and χme are the electric, magnetic, electromagnetic, and magneto-electric

polarizability tensors of the metamaterial unit. The boundary conditions for a bian-

isotropic metasurface may be described by zero-thickness continuity conditions. For a
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metasurface lying on the xy-plane (z=0), the conditions are

ẑ ×4H = jωP‖ − ẑ ×5‖Mz, (2.41a)

4E × ẑ = jωµ0M‖ −5‖(Pz/ε0)× ẑ (2.41b)

where 4E and 4H are the differences of the electric and magnetic fields on the both

sides of the metasurface.

As an example we can consider a p-polarized incident plane wave to the surface, where

non-zero electromagnetic field components are Ex, Ez, and Hy. The relevant susceptibili-

ties (consider Eq.2.40b) are

χee =


χxxee 0 χxzee

0 0 0

χzxee 0 χzzee

 , χem =


0 χxyem 0

0 0 0

0 χzyee 0

 , χme =


0 0 0

χyxme 0 χyzme

0 0 0

 , χmm =


0 0 0

0 χyymm 0

0 0 0

 ,
(2.42a)

If we substitute the above susceptibilities into Eq. 2.40b with the conditions Eq. 2.41b,

the original equation can be reduced to two equations of

4Hy = −jωε0(χxxeeEx,av + χxzeeEz,av)− jk0χ
xy
emHy,av (2.43a)

4 Ex = −jωµ0χ
yy
mmHy,av + jk0(χxyemEx,av + χzyemEz,av)− χxzee∂xEz,av − η0χ

zy
em∂xHy,av ,

(2.43b)

These two equations can be solved for 6 unkown susceptibilities for three independent

sets of incident, reflected and transmitted waves, and the transmission and reflection
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Figure 2.12: Schematic of a conventional refractive axicon, characterized by the apex angle
θ. Image adapted from [10].

coefficients can be specified.

2.3.5 Axicon Radial Grating

First proposed in 1954 by John McLeod [100], axicons are conventionally achieved by a

cone glass with an apex angle, which like a rotationally symmetric prism it refracts light

inwards. Unlike lens that creates a focal point, an axicon creates a focal line extended along

the optical axis for a certain range. The far-field diffraction of the refracted light becomes

a ring-shaped beam, which is of interest in applications including laser manipulation of

microscopic objects [93,138], laser corneal surgery [128], laser machining [129], etc.

The extended focal depth of the beams are sometimes referred to as ”diffraction-free”

Bessel beams, for that the transverse beam intensity profile doesn’t change with elongated
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propagation. Bessel beam imaging is distinguished from Gaussian beam imaging in that

it enables extension of the focusing range without loss of resolution [81]. A conventional

refractive axicon is shown in Fig. 2.12, where θ is the apex angle, β is the cone angle.

With a incident beam of diameter db, depth of focus f2 (the elongated focal length) may

be determined, and R0 is the outer radius of the ring that the beam forms.

Unlike a refractive axicon, which is defined with an apex angle or a cone angle, a

diffractive axicon can be viewed as essentially a radial grating is defined by its diffractive

angle, which can be calculated from the diffraction grating equation:

θd = sin−1(mλ/Λ) (2.44)

The first diffractive order of an axicon may be defined as m = |m|r̂ = +1 where light is

diffracted radially outwards or m = −|m|r̂ = −1 where light is diffracted radially inwards.

While a cone glass axicon refracts light towards the optical axis(Fig.2.13), a blazed

axicon grating could have m = −1 or m = +1 as a positive or negative axicon (Fig. 2.13(b-

c)), and diffractive orders m = ±1 both exists for a regular axicon grating with pillared

phase profile (Fig. 2.13(d)). Although all (a-d) cases form a ring diffraction pattern, if we

point a beam at the same coordinate on respective diffractive axicon gratings, they would

experience different radiation pressure force determined by Eq. 4.2. For example, the

top-half an positive axicon experiences an upward tangential force, while the top-half of a

negative axicon experiences a downward tangential force; for a radial grating with pillared

phase profile equally diffracting into m = ±1 orders, zero tangential force is experienced,

as force towards opposite tangential directions cancel another.
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Figure 2.13: The phase profile and diffraction patterns from (a) Conventional axicon.
(b) Positive diffractive axicon, diffracts inwards. (c) Negative diffractive axicon, diffracts
outward. (d) Radial grating. adapted from [59]



Chapter 3

Radiation Pressure on Diffractive

Solar Sails

3.1 Momentum Transfer on a Sun-facing diffractive sail

Having explored the governing radiation pressure force on a diffraction grating, we further

explore the performance of an ideal sail on orbital trajectories. The goal is to explore

space missionary cases where a diffractive sail may be beneficial over a reflective sail

through modelling the orbital trajectories. Decadal survey of NASA for Solar and Space

Physics advocated for the importance of advanced solar sails for solar polar imaging to

enable heliophysics studies [22]. To date, the Ulysses spacecraft is the only mission to

have focused on the solar poles, ending in 2009 at 1.3AU [73]. While Ulysses did not hold

any imagers, the European Space Agency (ESA) has stitched together the only image of

solar north pole using data from Proba-2 satellite observatory. This will change in the

near future, as the joint NASA-ESA Solar Orbiter lauched in Feburary 2020 will reach a

43
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Figure 3.1: A solar sail in a heliocentric spherical coordinate. The solar sail surface normal
n̂makes an angle γ to the radial vector r̂ of the spherical coordinate. The tangential surface
of the solar sail lies in the plane formed by θ̂ and φ̂, where the p̂ vector (not shown) forms
a control angle β to θ̂.

24 degree inclination in 7 years [3, 107].

Motivated by a sun-facing diffractive sail (as depicted in Fig. 1.2), we consider a simple

system of the sun and a light sail placed in heliocentric spherical coordinates, as depicted

in Fig. 3.1. The r, θ, and φ respectively represent the radial distance from the sun,

longitude, and latitude of the sailcraft. Recall in the last chapter, Fig.2.2, we defined the

unit vectors parallel and normal to the diffraction grating as p̂ and n̂ respectively. Now

they can be re-expressed as p̂ = cosβθ̂+ sinβφ̂and n̂ = cos γr̂+ sin γ cosβθ̂+ sin γ sinβφ̂,

considering p̂ lies parallel to the surface formed by θ̂ and φ̂, and n̂ makes an angle γ to

the radial vector r̂.

In general the solar radiation pressure force ~Frp on the light sail is directly proportional

to the solar irradiance I(r), sail area As, and the momentum transfer efficiency vector
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η = ηrr̂ + ηθθ̂ + ηφφ̂. For a reflective sail,

~ηR = 2 cos2 γn̂ = 2 cos2 γ(cos γr̂ + sin γ(cosβRθ̂ + sinβRφ̂) (3.1)

The maximum transverse component of force (perpendicular to r̂) occurs when γ = 35.25◦,

providing a transverse (radial) efficiency value of ηR,⊥ = 2 cos2 γ sin γ = ±0.77 (ηR,r =

2 cos3 γ = 1.09) [99].

For a diffractive sail given by Chap 1,

~ηD = (1± (1− (mλ/Λ)2)1/2)r̂ − (mλ/Λ)(cosβDθ̂ + sinβDφ̂) (3.2)

A diffractive sail, assumed to have 100% incident power diffracted to a single order, has

maximum tangential efficiency when mλ/Λ=1, and η⊥ = 1.00, the corresponding radial

efficiency is ηr=1.00.

We may now combine the two forces that affects the light sail, the radiation pressure

and the gravitational force between the sun and light sail, and express them as

Fr = −GMms/r
2 + (IER

2
EAs/cr

2)ηr = −(GMms/r
2)(1− αr) (3.3a)

Fθ = (IER
2
EAs/cr

2)ηθ = (GMms/r
2)αθ (3.3b)

Fφ = (IER
2
EAs/cr

2)ηφ = (GMms/r
2)αφ, (3.3c)

where we expressed I(r) = IER
2
E/r

2, IE = 1.37kW/m2 is the so-called solar constant.

Here we may incorporate the definition of a lightness number σ∗, where σ∗ = σcr/σ,

σcr = 2IER
2
E/GMc = 1.54g/cm2 and σ = ms/As. The equal signs in the equations give

αr = σ∗ηr/2, αθ = σ∗ηθ/2, and αφ = σ∗ηφ/2.
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The equation of motion incorporating the combined forces can then be written:

r̈ = rθ̇2 cos2 φ+ rφ̇2 − (1− αr)µ/r2 (3.4a)

θ̈ = 2ṙθ̇/r − 2φ̇θ̇ tanφ− | sin θ|αθµ/(r3 cosφ) (3.4b)

φ̈ = (2ṙφ̇+ rθ̇2 sinφ cosφ− αφµ cos θ/r2)/r (3.4c)

The equations are solved with the MATLAB ode23t Runge-Kutta solver under initial

conditions of position and velocity components: [r,θ,φ,ṙ,θ̇,φ̇]=[0,0,RE ,0,vE ,0], where vE =

(G/R3
E)1/2 is the Earth velocity and G is the gravitational constant. We consider a 6U

CubeSat sailcraft, similar to the NASA NEA-Scout design, where sail mass ms=14 kg

but with a larger sail area (400 m2 instead of 86 m2), and so the lightness number σ? =

0.044. Using the maximum transfer efficiencies for a reflective sail, we have (αr, αθ, αφ) =

(0.022,−0.0169, 0.0169); for a maximum transfer efficiency diffractive sail (αr, αθ, αφ) =

(0.022,−0.022, 0.022).

Simulation results are shown in Fig.3.2. A diffractive sail reaches 60◦ inclination and

lowers to 0.32 AU in 5 years, where as the reflective sail reaches 33◦ and lowers to 0.42 AU

in the same time. The results show that a diffractive sail are more efficient on a inclination

inclination cranking and orbit lowering mission, which makes it a strong candidate for a

solar polar imaging mission, working its way towards the poles of the sun and getting near

to it faster than a reflective sail.
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Figure 3.2: Inclination cranking and orbit lowering simulation results for maximum trans-
fer efficiencies. Diffractive sail reaches 60◦ inclination and lowers to 0.32 AU in 4 years,
where as the reflective sail reaches 33◦ and lowers to 0.42 AU in the same time.

3.2 Liquid Crystal CDW Solar Sails

Liquid crystal cycloidal diffractive waveplates (CDW) are relatively mature candidate to

realize a light sail due to its ability to be made in large areas upon exposure, and that

liquid crystal are able to hold on flexible substrates [151]. In Section 2.3.3, we also de-

scribed how CDWs meet the half-wave condition at the designed wavelength, making its

ultrathin and lightweight as the thickness is the order of wavelength. Theoretical diffrac-

tion efficiency is unity into a single diffractive order, which is ideal for momentum transfer

efficiency. The constraints of CDWs are diffraction efficiencies wavelength-dependent, and

that the diffraction requires the incident beam being only left (or right) circularly po-

larized. We discuss the polarization dependent momentum transfer and the possibility

to achieve polarization independent momentum transfer. Furthermore, assuming single

polarization incidence, we discuss the achromatic properties of an beam.
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Figure 3.3: For a CDW with K = 2π/Λ x̂, where (a) incident right-hand circularly
polarized beam experiences a raise in diffractive mode order, while (b) left- hand polarized
beam experiences a drop in diffractive mode order. Blue arrows stand for ER beams and
orange arrows stand for EL beams.

3.2.1 Polarization Independent CDW Sails

Since CDWs are polarization sensitive, the perfect diffraction efficiency could only be

applied to half of the flux from an unpolarized incident light, e.g., under the case of solar

sailing with sunlight as the light source. We propose a method to achieve polarization

independent diffraction, i.e., utilizing both the left and right circularly polarized portion

of the incident light for momentum transfer. This method contains three layers – two

identical CDW grating layers, sandwiching a birefringent phase retarder that is incident-

angle selective. We will first discuss the sandwiched retardation layer from the definition

of its birefringent properties, and then describe the three layered system.

Polarization Dependent Momentum Transfer

We’ve discussed in Section 2.3.3 that for CDWs are polarization selective as well as that

only m=+1,0,=1 diffractive modes exist. By far, the discussion surrounds normal incident
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beams (middle rays in Fig. 3.3). It could be pointed out that even with beams of different

incident angles, if we assume a fixed circular incident polarization, the momentum transfer

equation (~ki + m~K) · p̂ = ~km · p̂ indicates a constant momentum change when diffracted

into the same order. Diffractive angles such as second mode diffraction may exist, for

example, when normal incidence θi = 0◦, we have sin θ1 = λ/Λ diffracted into m=1. If we

further take θi = θ1, the diffracted angle to first order sin θ′1 = sin θ1 + λ/Λ = 2λ/Λ, is

equal to a second order diffraction under normal incidence sin θ2 = 2λ/Λ. For the purpose

of convenience in deriving a polarization independent sail, we label the incident ray with

θi = θ1 as m=1 , and the diffracted ray as m=2 (top ray, Fig. 3.3(a)). Similarly, an

incident ray of θi = −θ1 is labelled as m=-1, its diffracted ray is normal to the sail surface

and labelled as m=0 (bottom ray, Fig. 3.3(a)). The summary of labels are provided in Fig.

3.3 , but note that all momentum changes with right circular polarized incident remains

~K, and left circular polarized incident remains −~K.

Below we derive and discuss in terms of electric fields with Jone’s Matrix analysis.

Since CDWs are polarization sensitive to left and right circularly polarized light, it is

convenient to express the electric fields on to the Left-circular and Right-circular basis,

R̂ =
1√
2

 1

−i


x̂
ŷ

 , L̂ =
1√
2

 1

+i


x̂
ŷ

 (3.5)

As an example, a purely right-circular polarized input electric field and its output field
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from a single cycloidal diffractive waveplate may be rewritten from Eq. 2.38b:

Ẽin =
1√
2
E0

 1

−i

 = E0R̂ (3.6a)

Ẽout =
1√
2
E0e

−iπ/2e−iKx

 1

+i

 = E0e
−iπ/2e−iKxL̂ , (3.6b)

where the linear phase e−iKx indicates a m = 1 order diffraction. If the same calcula-

tion is performed on an incident right-circular polarized electric field carrying e(−iKx)as if

already diffracted to the m = 1 mode,

Ẽin = E0e
−iπ/2e−iKxR̂ (3.7a)

Ẽout = E0e
−iπe−i2KxL̂ , (3.7b)

the linear phase e−i2Kx indicates a diffraction towards the m = 2 angle when normal

incidence. Similarly, an incident field carrying e(iKx) travelling towards −x̂ as if already

diffracted to m = −1 mode, would have linear x phase cancelled and we have the diffracted

output normal to the surface (m = 0).

It is tempting to increase the momentum transfer efficiency by stacking layers alternat-

ing between ± ~K to add up the effects of ~K and achieve the momentum transfer of higher

orders. However, for an unpolarized incident light, momentum transfer would always be

cancelled for CDW’s beam-splitting behavior. The required single circular polarization

incidence for single-order diffraction indicates that in practice, two pre-layers, linear po-

larizer and quarter waveplate layer, would be required before the CDW. Since only 50%
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of unpolarized irradiance is being used for redirection of beam power, potential problems

may regard absorption of half of the solar irradiance. Polarization independent diffraction

that utilizes both orthogonal polarization components is far more practical and desirable

for solar sailing purposes.

Three-Layer Polarization Independent Diffraction Layout

Optically anisotropic material has optical properties that are not the same in all directions.

If a light beam enters into anisotropic crystal, the electric displacement vector ~D = [εij ] ~E,

where εij is a tensor. By rotating the coordinate system, the tensor may be simplified

to have only diagonal elements εii, where the rotated coordinate system now defines the

principal axes of the crystal. The principal dielectric constants εii corresponds to principal

indices of refraction ni =
√
εii. If n1 = n2 6= n3, the crystal is called uniaxial. Usually

indices n1 = n2 = no and n3 = ne are called the ordinary and extraordinary indices. If

ne < no the crystal is negative uniaxial, if ne > no it is positive uniaxial crystal.

If unpolarized light beam enters into uniaxial crystal, the beam will be split into two

parts (ordinary and extraordinary), polarized at orthogonal to each other. In an ordinary

beam the electric field will be polarized perpendicular to the optic axis and will have a

phase velocity independent of the direction. In an extraordinary beam the electric field will

be polarized in the same plane as the optic axis and will have a phase velocity depending

on the direction of propagation.

Let us consider a positive uniaxial crystal on the axes x′, y′, z′ shown in Fig. 3.4 (a)

with its index ellipsoid given by

x′2 + y′2

n2
o

+
z′2

n2
e

= 1 (3.8)
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Figure 3.4: (a) Index ellipsoid of an uniaxial crystal shown on the x′− z′ perspective. (b)
The ordinary and extraordinary indices defined on the index ellipse, where k shows a ray
propagating at an angle Ω from x′ axis.

Since we are discussing light diffracted in the x′ − z′ plane, the . Solving for the index

of refraction as a function of angle Ω between optical axis and direction of propagation k̂

leads to

1

ne(Ω)2
=

cos2 Ω

n2
o

+
sin2 Ω

n2
o

(3.9)

For the purpose of creating a phase retardation difference between two beams with

different incident angles, we tilt the index ellipsoid x′, y′, z′coordinates by the angle Ω

with respect to the x axis of the CDW placement. As shown in Fig. 3.4 (b), the tilted

x′allows the incident EL and ER beams, splitted from the first CDW into angles θd above

and below the z axis, to experience π and 2π phase retardation respectively. The π

retardation switches the incident EL beam to the orthogonal ER polarization, and the 2π

retardation allows the incident ER beam to remain its polarization. The polarization of

both beams are turned into ER and the propagation angle remains the same.

In this three-layered composition, the unpolarized light is split into two diffracted
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Figure 3.5: Ray propagating in a 3 layer anisotropic configuration for a polarization inde-
pendent CDW diffractive sail.

beams with orthogonal polarizations (element 1, Fig. 3.5(a)) of m = ±1 orders, then both

beams are turned into the same polarization (element 2, Fig. 3.5 (b)). Once the rays are

both the same polarization, the tangential momentum transfer of a single CDW (element

3, Fig. 3.5 (c)) is equal on both rays. Thus the m = ±1 orders both raises up an order

and becomes m = 2 and m = 0.

We may finally compare the momentum transfer between two three-layered systems.

The polarization dependent case of a single CDW preceded with a linear polarizer and

quarter wave plate; and the polarization independent case of two CDWs sandwiching an

incident-angle selective birefringent retarder. Consider 0.5 of incident power goes to the

two beams in the beam-splitting process, and unity efficiency for all other transfers. In

the former case, half of the incident beams experiences momentum change K so the total

momentum change is 0.5 K; in the latter case, individual halves of the beam experience
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2K and no change respectively, so the net momentum change is 1 K. We show that under

this three-layered composition, the momentum transfer efficiency has doubled, compared

to using polarizer, quarter wave plate and CDW only to achieve 0.5 K momentum change.

3.2.2 Achromatic diffraction and force efficiency under the solar spec-

trum

In solar sailing, a broadened efficiency curve is desirable to better utilize the solar photons

across the spectrum. We provide a how a single CDW spectral efficiency is, and then

discuss the conditions where the diffractive efficiency curve may be broadened as achro-

matic diffraction, and how the solar force efficiency may be affected. For simplification

purposes in the analysis below, we only focus the chromatic effects, and ignore the effects

of polarization by assuming a single circularly-polarized input.

Let us consider a general Jones transfer matrix of a single CDW with a wave number

dependent expression, using Eq. 2.33

M(θC(K, x),Γ(k)) =

cos(γ) 0

0 cos(γ)

− i sin(γ)

cos(2θC) sin(2θC)

sin(2θC) − cos(2θC)


x̂
ŷ

 (3.10)

where γ = πk/2k0 and θC = Kx/2 + ∆θC , k0 = 2π/λ0 stands for the wave-number

that matches the half-wave condition. As the thickness d remain fixed, a broad-band

light source diffracting though this wave-plate would not meet the half-wave retardation

condition at all wave numbers besides k0. To characterize the retardation as a function of

wavelength, we write

Γ(k) = k(ne(k)− no(k))d (3.11)
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, where k = 2π/λ and d = π/k0(ne(k0)− no(k0)).

For the entire section of chromatic diffraction discussion, we assume purely right-

circular polarized incident light. The expression of a purely right-circular polarized input

electric field at the designated wave number k0, and its emerging field from a single cy-

cloidal diffractive waveplate may be rewritten from Eq. 3.6b.

The emerging electric field may be generalized into Ẽout(λ, x) = M(θx(K, x),Γ(λ))Ẽin

for a broad-band input and a broad band output :

Ẽout(k, x) = |EL(k)|eiφL(k,x)L̂+ |ER(k)|eiφR(k,x) R̂ (3.12)

By Eq. 2.39, the diffraction amplitude of the m-th order

am,L(k) = Λ−1

∫ Λ/2

−Λ/2
|EL(k)| exp(iφL(k, x)) exp(imKx)dx (3.13a)

am,R(k) = Λ−1

∫ Λ/2

−Λ/2
|ER(k)| exp(iφR(k, x)) exp(imKx)dx , (3.13b)

thus the diffraction efficiency of m-th diffractive order may be expressed as

ηm,L(k) = |am,L(k|2/|E0|2 (3.14a)

ηm,R(k) = |am,R(k)|2/|E0|2 (3.14b)

ηm(k) = (|am,L(k)|2 + |am,R(k)|2)/|E0|2 , (3.14c)

which will be used in calculating force efficiencies.

With the diffraction efficiencies on cycloidal diffractive waveplate defined, we move on

to consider the solar radiation pressure force on such diffractive devices. Consider black-
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body spectral exitance from the sun in terms of frequency, M(ν) = (2πhν3/c2)/(exp(hν/kBT )−

1), where h and kB are the Planck and Boltzmann constants respectively, and k = 2πν/c,

ν = ck/2π. We can write M(k) = (hck3/(2π)2)/(exp(hck/2πkBT ) − 1) and B(k) =

(Rsun/r)
2M(k) where Rsun = 6.957 × 108[m] is the solar radius and r it the distance

between the sail and the sun. The total spectral exitance from the sun may be de-

termined by Msun = σT 4 where σ is the Stefan-Boltzman constant, and T = 5778[K]

is the temperature of the sun. The spectral range of k = 1.1 × 106 − 6.3 × 107µm−1

, corresponding to λ = 0.1µm − 6µm allows us to take 99.9 % of the solar spectral

exitance into consideration (i.e.,
∑
M(k)/Msun = 99.9%). Within this spectral range,

we choose a characteristic wave number of the solar spectrum by the weighted average

k̄ =
∑

(k · M(k))/
∑
M(k) = 9.7µm−1, corresponding to a characteristic wavelength

λ̄ = 2π/k̄ = 0.65µm to design our diffractive waveplate.

The radiation pressure force tangential and normal to a cycloidal diffractive waveplate

can then be expressed respectively by

Fφ = −A cos θi
c

∑
m

∫
B(k) ηm(k) (mK/k) dk (3.15a)

Fr =
A cos θi

c

∑
m

∫
B(k) ηm(k)

(
cos θi − (1− (mK/k − sin θi)

2)1/2
)
dk (3.15b)

where kmin = 2πm/Λ(1 + sin θi) is the cut-off wave number where a smaller wave-number

will not be diffracted by the cycloidal diffractive waveplate. The solar momentum transfer

efficiency on a diffraction grating can then be defined as radiation pressure force over the
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total flux in the spectrum

ηΦ = Fφ/

∫
B(k)dk (A/c) (3.16a)

ηr = Fr/

∫
B(k)dk (A/c) (3.16b)

Next, we are able to perform a comparison of momentum transfer efficiencies between

an ideal single-order diffraction grating, a single chromatic cycloidal diffractive waveplate,

and a layered achromatic diffractive waveplate. The former two are designed to the charac-

teristic wavenumber of k̄ = 9.7µm−1 (corresponding wavelength λ̄ = 0.65µm). In all cases

we assume a grating period of Λ = 1µm [147] where solar momentum is most efficiently

used, and for the waveplates birefrigence is assumed as ∆n = ne − no = 0.15. We also

assume a sun-facing diffractive sail of normal incidence θi = 0 and r = 1 A.U. as the sail

is launching from Earth.

An ideal single-order diffraction grating where the diffraction efficiency of a single

m=+1 order is 100% across the spectral range, will be the perfect ”gold standard” case.

We may express η1(k) = 1, η0(k) = 0, η−1(k) = 0, and the calculated force transfer

efficiency ηφ = −0.22, ηr = 0.09 would be the maximum transfer efficiency possible to

achieve. We are particularly interested in the tangential component ηφ for this component

is absence in a purely reflective sail.

A single chromatic cycloidal waveplate, with spectral efficiency curves η+1, η0, η−1 plot-

ted in Fig. 3.6(left) has momentum transfer efficiency. ηφ = −0.17, ηr = 0.07 , where the

tangential component reaches 77% of the maximum transfer efficiency. The thickness of

this single waveplate is d = 2.2µm.

Based on Pancharatnum’s work in 1955, an achromatic waveplate is obtained by su-
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Figure 3.6: Spectral diffractive efficiency curves for chromatic (left) and achromatic CDWs
(right) along with the solar spectral exitance. The diffraction cuts off at kmin.

perposing three birefringent plates of the same material; the first and last should have

the same retardation, and their fast vibration directions begin parallel to one another but

inclined at a specific angle ∆θ of the central plate. The desired range of achromatism

determines the optimum values of retardation and ∆θ [116,117,120]. The same principal

may be applied onto cycloidal diffractive waveplates.

Since cycloidal diffractive waveplates need to meet the half-wave condition, the first

and third waveplates are assumed to be half waveplates with a designed wave number k01,

k03 different from the central waveplate k03. The outer waveplates having parallel fast

axis while fast axes are rotating periodically, is realized by an added shift in the periodic

liquid crystal cycloidal function, so that at every point along x there is a constant fast

axis direction shift between the outer plates and the central plate, as depicted in Fig. 3.7.

The white space in the central waveplate will still be filled with cycloidal liquid crystals,

but left blank to show the shift in the cycloidal function. If the central plate has a liquid

crystal cycloidal function of θ2 = Kx/2, then the first and third plates have a function of
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Figure 3.7: Achromatic Cycloidal diffractive waveplate with a three layered structure.
The first and third wave plate has identical phase retardation and identical liquid crystal
cycloidal functions in contrast to the center half waveplate.

θ1 = θ3 = K/2 + ∆θ.

To achieve the maximum possible solar momentum transfer efficiency for grating period

Λ = 1µm, we optimize over parameters and found that under the conditions of ∆θ = π/4,

k01 = k03 = 28µm−1(λ01 = λ02 = 0.22µm), k02 = 7.8µm−1( λ02 = 0.81µm), the first-

order diffraction efficiency η+1(k) could be raised much closer 1 across the high exitence

regions of the solar spectrum, as the right side of Fig. 3.6 compares to the left. The

momentum transfer efficiencies are ηφ = −0.218 and ηr = 0.094, where the tangential

transfer efficiency reaches 96% of the ideal situation. The thickness of first and third layer

is d01 = d03 = 0.75µm, while the center layer d02 = 2.68µm, resulting in a total thickness

of 4.2µm for the achromatic structure.

We show that an achromatic cycloidal diffractive waveplate structure is able to raise
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the tangential momentum transfer efficiency from 77% to 96% by adding front and back

layers to a single waveplate. However, there is a trade-off of almost doubling the thickness

from 2.2µm to 4.2 µm.



Chapter 4

Experimental Setup and

Measurements

The force measurements on a diffraction grating were conducted in a vacuum bell-jar, with

a sensitive torsion pendulum to eliminate the effect of gravity which is perpendicular to the

direction of torque on the pendulum. Under the effect of radiation pressure, the pendulum

shifts in its equilibrium position and oscillation amplitude, which could be analyzed as

a simple mechanical harmonic oscillator. A sensitive free-oscillating force measurement

may be subject to convection force and photophoretic forces; possible thermal effects

including absorption force and bolometric forces; and environment vibration noises. The

system is carefully constructed to maintain sensitivity and avoid noise. In this chapter,

the construction of this torsion pendulum and the configurations for force measurements is

described. Besides using the pendulum to measure force magnitude, a large oscillation of

the pendulum may be “cooled” by using the restoring force provided by optical radiation

pressure on a diffractive beam-rider.

61
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4.1 Torsion Oscillator for Radiation Pressure Measurements

4.1.1 Setup Construction and Experimental Process

The torsion oscillator shown in Fig. 4.5 was constructed of a D = 25 [µm] diameter,

Lf = 240 [mm] long tungsten filament (Alfa Aesar 10405-H4), and a 2R = 220 [mm],

D′ = 1 [mm] diameter twist-hardened copper torsion arm. This system was attached to a

grounded aluminum support frame.

The diffraction grating and a balancing mass were attached to the two ends of the

torsion arm. A small lightweight mirror was attached at the vertex of the torsion arm and

filament to allow measurements of the angular displacement, 2δ ≈ S/L, of a low power

(less than 5 [mW]) HeNe tracking laser, where S is the linear displacement of the laser

beam from its equilibrium position on a screen placed a distance L = 1.92 [m] from the

pivot.

Time-lapse photographs (Canon 5D-III and Canon TC-80N3) of the screen were recorded

at ∆t = 4 [s] intervals. The position of the tracking beam was obtained by determining

its centroid in each image.

The apparatus was placed on stand supported by a concrete-on-grade suburban base-

ment floor that was remarkably free of vibrations and loading sag.

A grounded aluminum wire mesh was shaped into a 300 [mm] high cylinder to serve

as a Faraday cage, shielding the oscillator from inadvertent electrostatic torques. The

system was centered within a customized borosilicate bell jar of good optical quality.

After evacuating air from within the bell jar to a pressure of 10−5 [hPa] (7.5 × 10−6

[Torr]), the disturbed oscillator was brought to near rest by means of radiation pressure

from the forcing laser. At this pressure the mean free path of the remaining air molecules
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Figure 4.1: Schematic (top) and photo (bottom) of the torsion pendulum in a vacuum
bell-jar, and the Faraday Cage covering the torsion pendulum.
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exceeded the diameter of the bell jar. The system remained at rest for many hours – even

while the vacuum system labored and people walked nearby.

4.1.2 Step Response

Based on the calculated moment of inertia, I = 1.0 × 10−5 [kg·m2], and the measured

period, the torsional spring constant of the filament was determined to be κ = (2π/T0)2I =

3.9 × 10−8 [N·m/rad]. This value agreed well with the theoretical value obtained from a

tabulated value of the Young’s modulus Y = 410 [kN·mm−2] [157]: κ′ = πY D4/32Lf =

6.6× 10−8 [N·m/rad]. The discrepancy between the two values is attributed to the actual

value of Y which depends on the working history of the filament, and to the unknown

variability of D along the length of the filament. We note that the radiation pressure force

was not expected to induce significant linear pendular displacements of the total suspended

mass M = 2.4 [g]. (In the worst case scenario with 5 [nN] applied to the deflection mirror

rather than the grating, a linear pendulum would swing by only FLf/Mg ∼ 50 [nm].)

The equation of motion for angular displacement is

Id2δ/dt2 + γdδ/dt+ κδ(t) = FRu(t− t0) (4.1)

where γ = 2Iα is a damping constant, u(t − t0) is a step function, and t0 is the shutter

release time. For small angular displacements, we assume the driving force, F is a constant.

The solution of Eq. 4.1 is found via Laplace transform techniques: δ(t) = δ1(t)+δ2(t) u(t−
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t0) where

δ1(t) = e−α t δ0 cos(ω1t+ φ0) +
e−αt

ω1

(α
2
δ0 + δ′0

)
(4.2a)

δ2(t) =
FR

κ

(
1− e−α (t−t0) cos(ω1(t− t0) + φ0)

)
(4.2b)

and where δ1(t) is the unforced solution of Eq. 4.1 for t < t0, δ0 = δ(t = 0), δ′0 = dδ/dt |t=0,

ω0 =
√
κ/I is the natural oscillation frequency, ω1 =

√
ω2

0 − α2 = 2π/T0 ≈ ω0 is the

oscillation frequency, T0 = 100.6 [s] is the measured oscillation period, α = 1/(80 T0) is

the measured decay constant, and φ0 is the initial phase at t = 0. Values of the unknown

parameters are found by fitting δ1 and δ2 to the measured angular displacement data.

Figure 4.2: Example of measured and modeled pendulum angular displacement, as a step
response to t: λ=808 nm, Λ = 540nm, P0 = 345 mW, θi = 40◦. Fitted parameters:
shutter release time t0 = 420 s, parallel force component magnitude |Fp| = 1.14 nN.

4.1.3 Uncertainty

A torsion pendulum is used in the fields of electrical science, biophysics, and gravita-

tional science for precision measurement [55]. From the broad variations of measure-

ments, the closest comparable and well-documented case will be torsion pendulum used
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for the gravitational constant G constant measurement, as the reported uncertainty is

down to the scale of 1 × 10−15 m3kg−1s−2. In the step response measurements, the

angular displacement amplitude introduced by the laser radiation force is derived as

δ2(t0) = FR/κ, which helps us translate the pendulum angular displacement uncertainty

and the torsion spring constant uncertainty into the uncertainty of the measured force

∆F/F =
√

(∆δ/δ)2 + (∆κ/κ)2 + (∆R/R)2.

Noise Spectrum of the Pendulum

Figure 4.3: Left: Pendulum oscillation noise. Right: Noise spectrum indicates a white
noise, containing the natural frequency and another environmental low-frequency noise.

The pendulum oscillation noise measurement is taken after letting the pendulum sit

quietly under vacuum, untouched for 7 days (Fig. 4.3). The noise spectrum indicates a

white noise distribution of the setup, containing both the natural frequency (f0=0.006589

[Hz], T0= 151.8 [s]) and another environmental low-frequency component (f ′=0.000244

[Hz], T ′=4098 [s]) , possibly caused by the compressed air circulation system that is

running in the background introducing subtle and low-frequency vibration. The power

spectral density of the noise will be an estimation of the average noise level, which is

evaluated to be 0.016 [mrad]. [154].
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Pendulum Torsion Constant The torsion tungsten filament used in our experiment

(GoodFellow P/N W 005130) is D = 25 [µm] in diameter and Lf = 240 [mm] long. Unlike

most filament that are either annealed or hard drawn, it is a stress relieved filament, where

the stress relief temperature is below the annealing temperature.

The anelastcity of a tungsten fiber may cause the torsion constant to be frequency

dependent, and attribute to a source of error. The error propagation from the frequency

to torsion constant using can be ∆κ/κ =
√

2(∆ω/ω)2) , based on the relation: κ = Iω2.

Other error sources for the torsion constant includes thermoelasticity and nonlinearity of

the filament, but are analyzed to be less dominant [89].

Laser Heating and Reradiated Power Assuming tabulated values for fused silica,

e.g., Cp = 750 [J/kg-m] (specific heat) and ρ = 2 × 103 [kg/m3] (density), a beam of

power P = 1 [W] and waist w0 = 5 [mm], and a worst case value of the absorption

coefficient in the near ultraviolet range,α0 = 10−2 [m−1] [150], the rate of heating is given

by dT̃ /dt = Iα0/ρCp, where I = 2P/πw2
0 for a Gaussian beam. We therefore calculate

a worse case temperature rise of less than ∆T̃ = 0.02 [K] over a single oscillation period

of 100.6 [s]. The re-radiated power owing to this temperature excess is found from the

Stefan-Boltzmann law: ∆P = σ((T̃ + ∆T̃ )4− T̃ 4)πw2
0, where σ = 5.67× 10−8 [J·s·K4/m2]

and T̃ = 300 [K]. The re-radiated power, ∆P = 4.8 × 10−4 [W] is significantly less that

the incident power of 1 [W]. Laser heating may therefore be ignored in our experiment.
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Uncertainty component Uncertainty

Background Vibration ∆δ = 0.016 [mrad]

Torsion arm length ∆R/R = 4.5× 10−3

Pendulum Spring constant ∆κ/κ = 1.2× 10−4

Laser heating and re-radiated power (fused silica) ∆Fh/F = 4.8× 10−4

Table 4.1: Major components for uncertainty for the torsion pendulum measurement are
listed, assuming the incidence laser power is 1[W]. The uncertainties are listed as 1σ
uncertainties.

4.2 Measurement Results

Let us first consider our interest in an ideal single-order diffraction grating—-having unity

transfer efficiency into a single diffraction order, allowing only an incident wave and either

a transmitted or reflected wave. The parallel and normal force components of radiation

pressure force may be expressed by the use of Eq.s 2.10 and , respectively:

Fp = −(Pi/c)(mλ/Λ) (4.3a)

Fn = (Pi/c)(cos θi ± (1− (mλ/Λ− sin θi)
2)1/2) (4.3b)

where the minus (plus) sign is for a transmissive (reflective) diffraction order, and λ/Λ =

K/ki is the ratio of the grating momentum and photon momentum.

The parallel force ~Fp and m~K are antiparallel as expected from conservation of momen-

tum (e.g., see Fig. 1) That is, the value of ~Fp is directly related to the grating momentum

~K. What is more, Fp is independent of the incident angle θi (assuming of course that

the diffraction condition |θi| > |θi,c| is satisfied). The normal component of force is pos-

itive below the Littrow diffraction angle, defined by the relation 2 sin θi,L = mλ/Λ. For

|θi| > |θi,L| the normal component of force is negative and the light source acts as a par-
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Figure 4.4: Force efficiency curve, described in Eq. 4.3b (Pi/c=1), for an example grating
where λ = 808m, Λ=540nm, θi,c= 30◦ and θL=54◦

tial “tractor beam” [114, 119, 143, 144]. The force efficiency curve, defined by assuming

Pi/c = 1 in Eq. 4.3b, for an example grating where λ = 808m, Λ=540nm, is plotted in

4.4, where θi,c= 30◦ and θL=54◦.

In practice, a grating may diffract multiple orders and also the diffraction efficiency

of each may vary with the incident angle and wavelength. In such cases, the expression

of force must account for the momentum imparted by each grating order, which may be

reflective or transmissive in nature (as indicated by r and t subscripts below). If there is

a dominant diffracted order, one may expect the force on the grating to be similar to the

predictions described above. In general the force components for a non-absorbing grating

may be expressed
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Fp = −Pi
c

∑
m

[(ηm,r + ηm,t) (mλ/Λ)] (4.4a)

Fn =
Pi
c

∑
m

[
ηm,r(cos θi + (1− (mλ/Λ− sin θi)

2)1/2)

+ηm,t(cos θi − (1− (mλ/Λ− sin θi)
2)1/2)

]
(4.4b)

where ηm,r = Pm,r/Pi and ηm,t = Pm,t/Pi are the efficiencies of the mth order diffracted

beams at the wavelength λ, and
∑

m(ηm,r +ηm,t) = 1 owing to the conservation of energy.

Figure 4.5: Top view schematic of torsion oscillator with moment arm of length R, angular
displacement δ, forcing laser, tracking laser, camera, screen, and diffraction grating in
Configuration A or B.

We selected a commercially available single order fused silica transmission grating

(LightSmyth T-1850-800s-3210-93) having a period Λ = 540 nm. The diffraction grating
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Figure 4.6: Left: Photo taken without the bell jar for Configuration A; Right: Configura-
tion B, both corresponding to the schematic.

was ground to a thickness of 190 µm to minimize the moment of inertia (i.e., achieve

larger angular displacements). The grating was attached to the torsion arm in one of two

configurations: (A) with its surface normal parallel to the copper wire; (B) with its surface

normal perpendicular to the copper wire (see insets of Fig. 4.5, and photos of setup in

Fig. 4.4). A metallic balancing mass was placed on the other end of the copper torsion

arm. For comparison and greater validation, we made use of two forcing lasers. The

first laser (λ = 808 nm, P0 = 345 mW) provided an efficient first order diffraction at the

Littrow angle. The second laser (λ = 447 nm, P0 = 1.5 W) allowed both a first order and

second order Littrow angle. Weaker diffraction orders were also detected in both cases.

The measured period of free oscillation of the torsion oscillator was T0 = 100.6 s, and

the characteristic decay time (1/α) was roughly 80 T0. Although the output power of the

laser was constant, the power on the grating varied with incident angle owing to varied

Fresnel transmission at the borosilicate bell jar surfaces. To account for this variability we

calculated the transmission through the bell jar, TA(θi) and TB(θi), for both configurations

(see Table 4.2) and determined the expected power at the grating, e.g., Pi(θi) = T (θi)P0.

The diffraction grating was first mounted with its surface normal oriented parallel to
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λ=808nm, n=1.51 θi 30◦ 40◦ 50◦ 60◦

Config. A TA 0.89 0.87 0.83 0.78

Config. B TB 0.78 0.83 0.87 0.89

Scatter ηs 0.17 0.19 0.13 0.23

λ=447nm, n=1.53 θi 15◦ 25◦ 35◦ 45◦ 55◦ 65◦

Config. A TA 0.9 0.9 0.88 0.85 0.8 0.74

Scatter ηs 0.21 0.33 0.36 0.23 0.29 0.27

Table 4.2: Calculated Fresnel transmission coefficients T (θi) for borosilicate bell jar, and
deduced grating scattering fraction ηs=Ps/P0.

the torsion arm, as depicted in Fig. 4.5, Config. A. The grating lines were transverse to

the plane of incidence. With the bell jar removed, the oscillator was immobilized to allow

measurements of the transmitted, diffracted, and reflected beams with the forcing laser

(λ = 808 nm, and linear polarization transverse to the plane of incidence). The measured

diffraction efficiencies and angles are depicted in Fig. 4.7(a) for four different angles of

incidence between 30◦ and 60◦ (the incident wave vectors are shown without arrows).

For this range, θi > θi,c and the incident beam under-filled the grating surface. The

corresponding force components (described below) are shown in Fig. 4.7(b) as round black

data points. The transmitted first order diffraction efficiency was expected to be optimal

near the Littrow angle θi = 48◦. In fact both the 40◦ and 50◦ incident angles provided

measured peak diffraction efficiencies of roughly 60%. The total measured diffracted power

amounted to ∼ 82% of the input beam power, suggesting that ∼ 18% of the beam power

was diffusely scattered (listed as ηs = Ps/P0 in Table 4.2). The scattering is attributed

to power that does not diffract into allowed orders, but rather directly scatters or couples

into guided waves and subsequently scatters [24,25,35,77,155].

Next we enclosed the oscillator within the bell jar, evacuated the chamber, and brought
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the free oscillator to a near standstill. The forcing laser power was set to P0 = 345 mW

and a mechanical shutter was opened at time t0 to provide a step function force on the

grating, resulting in an angular displacement such as that depicted in Fig. 4.2.

This procedure was repeated three times for each of the four incidence angles described

above. The time-varying angular displacement of the tracking laser upon the screen was

extracted and fitted to the solution (Eq. 4.2) of well-known equation for a weakly damped

harmonic oscillator (Eq. 4.1) from which we derived force values for Fp. The excellent

agreement between the experimental data and the oscillator model in Fig. 4.2 (typical

RMS angular displacement error ∼ 0.08%) confirms both the veracity of the harmonic

oscillator model and the high degree of mechanical stability and repeatability of our ap-

paratus.

The determined values of the tangential force Fp are plotted in Fig. 4.7(b), showing

good agreement between the values of force that were measured with the torsion oscillator

(dark circles with error bars) and the values predicted from the measured diffraction

efficiencies using Eq. 4.4(a) (white circles).

To obtain values of the normal component of force we changed the orientation of

the diffraction grating to Config. B (see Fig. 4.5) and recorded the laser-driven angular

displacement of the torsion pendulum. The procedure described above was used to extract

values of Fn, shown in Fig. 4.7 as dark squares with error bars. Again we find relatively

good agreement with the values predicted from Eq.4.4 , shown as white squares in Fig.

4.7(b). As suggested above, the normal component of force is found to vanish; but unlike

the case of a single order grating where it vanishes at the Littrow angle, here we find

Fn = 0 at θi ∼ 60◦. Discrepancies between the measured values of force and the values

predicted from efficiency measurements may be attributed to non-uniform scattering of
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Figure 4.7: Measured (a) diffraction efficiencies and angles, and (b) force components,
Fp and Fn, for λ = 808 nm, P0 = 345 mW, and four angles of incidence. (a) The
grating surface (not shown) is aligned along the 90◦ - 270◦ line. (b) Torsion oscillator
measurements (dark). Predicted values based on efficiency measurements (white).

the guided waves, which also assert radiation pressure.

To assess the radiation pressure at a wavelength that supports two Littrow angles,

one at θi = 24◦ for m = 1and another at 56◦ for m = 2, we substituted a laser having

a wavelength λ = 447 nm and power P0 = 1.5 W. If a single dominant diffraction order

is produced at a given angle of incidence, we expect the value of Fp to scale with the

value of m according to Eq. 4.3b(a). To verify this prediction, we mounted the grating

in Config. A (see Fig. 4.5). The measured diffraction efficiencies of the transmitted and

reflected beams are depicted in Fig. 4.8(a) for angles where there is a dominant first order

beam, and in Fig. 4.8(b) for angles where there is a dominant second order beam (the

incident wave vectors are shown without arrows). Values of force based on these efficiency

values and Eq. 4.4(a) are depicted as white circles in Fig. 4.8(c), whereas those obtained

from the torsion oscillator are shown as black circles. Accounting for the angle-dependent
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Figure 4.8: Diffraction efficiencies and angles, and radiation pressure at λ = 447 nm,
P0 = 1.5 W. (a) m = 1 set: Measured efficiencies at incident angles θi near the first order
Littrow angle 24◦. (b) m = 2 set: Same as (a) but near the second order Littrow angle
56◦. (c) Measured (black circles) and predicted (white circles) values of Fp.
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Figure 4.9: The calculated force efficiency of an ideal single order diffraction grating, com-
pared to the measured force efficiency on a single-order dominnat mult-order diffraction
grating.

transmission through the bell jar for the torsion oscillator experiments (see Table 4.2),

the average force efficiency, Fpc/TP0, was 0.99 for the m = 2 set, and 0.46 for the m = 1

set, providing a ratio (2.15) that was 8% higher than the value (2.00) that would have

been expected for grating producing a single diffraction order (one near θi = 24◦ and the

other near 56◦). This agreement with the single order approximation is remarkably good,

supporting the direct relationship between the grating order m and Fp. Discrepancies were

found between the measured forces and those predicted from the multi-order model (black

and white circles in Fig. 4.8(c), respectively). The differences, which are more pronounced

than the 808 nm data, may be attributed to the wavelength dependent scattering and wave

guiding. Scattering generally increases as the wavelength decreases. In fact the scattered

powers listed in Table 4.2 are greater at λ = 447 nm than it is at 808 nm.
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In summary we have used a vacuum torsion oscillator in two configurations at λ = 808

nm to measure the radiation pressure force both normal and parallel to a diffraction grating

of period Λ = 540 nm. The grating produced a dominant transmitted diffraction order and

a weaker transmitted and reflected order. The measured forces were qualitatively similar

to those predicted for a grating producing a single diffractive order, and quantitatively

in agreement with a multi-order model. The parallel component of force was relatively

constant as the angle of incidence varied, whereas the normal component varied with angle,

vanishing near the Littrow angle. An additional experiment at a shorter wavelength (λ =

447 nm) verified that the parallel component of radiation pressure force scales with the

diffraction order, as expected when a single dominate order is diffracted. Experiments at

both wavelengths confirmed that when there is a dominant diffraction order, the parallel

component of force scales as the ratio of the optical wavelength and the grating period,

λ/Λ – or equivalently, with the ratio of the grating momentum and wave momentum, K/ki.

That is, the so-called grating momentum, which is a construct from Fourier optics, has

been verified to impart an equal and opposite mechanical momentum. Unlike a reflective

surface that has only a normal component of radiation pressure force, a grating has been

experimentally demonstrated to provide both normal and tangential components, thereby

affording new optomechanical applications of diffractive materials.



Chapter 5

Radiation pressure on Diffractive

Beam-Riders

5.1 Diffractive Beam-Riders

An optical beam rider making use of a light sail comprised of two opposing diffraction

gratings is experimentally demonstrated for the first time. We verify that the illumi-

nated space-variant grating structure provides an optical restoring force, exhibiting stable

oscillations when the bi-grating is displaced from equilibrium. We further demonstrate

parametric cooling by illuminating the sail with synchronized light pulses. This exper-

iment enhances the technical feasibility of a laser-driven light sail based on diffractive

radiation pressure.

78
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5.2 A bi-grating beam-rider

A space variant grating such as a “bi-grating” [141], and variants thereof [62] may provide

a position-dependent force. Thus a space variant grating may be designed to function as

a “beam-rider”. A laser-driven beam rider must produce self-action to both pull the sail

into the beam path when disturbed and to inhibit tumbling [68,92,125,159,165].

Here we report a fundamental experiment that verifies the predicted opto-mechanical

stability provided by a diffractive light sail. We demonstrate that a bi-grating comprised of

two adjacent grating panels having equal and opposite grating vectors provides a position-

dependent restoring force. Furthermore we prove that the system may be used as a

parametric oscillator, allowing forced damping [21,36,54,163], excitation [23,28] or control

[27, 162] by use of a time-varying laser beam. The latter opens new opportunities for

both space and terrestrial applications such as energy harvesting, opto-mechanical cooling

(described below), and photonic sensing [130, 132]. The bi-grating model in this report,

which is constrained to one degree of freedom, may be generalized to a fully space-variant

structure having three degrees of freedom, which is beyond the scope of this section for a

bi-grating beam-rider.

5.2.1 Structure

The opto-mechanics of a bi-grating diffractive beam rider may be understood by examining

Fig. 5.1(a,b) which depicts two diffractive panels (A and B), each of width L. Ideally

each panel diffracts the incident beam of half-width w0 into a single diffraction order, as

depicted, resulting in positive (negative) components of radiation pressure force, Fx on

Panel A (B). A stable equilibrium point is expected at x = 0, i.e., when the beam equally
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illuminates both panels. Both panels experience the same longitudinal component of force

Fz (not shown), which does not affect our experiment and is therefore ignored below [33].

Figure 5.1: Transverse restoring force vs. displacement of the bigrating. Laser of radial
size w0 illuminating (a) Panel A (x < 0) and (b) Panel B (x > 0). (c) Position-dependent
force profile calculated from Eq. 1 (solid) and “tanh” model (dashed). Potential energy
landscape (dotted). Inset: Integrated beam profile of measured beam

∫
g(x, y)dy.

The position-dependent force profile on a given panel is related to the overlap in-

tegral of the measured beam intensity profile I(x, y) = Pig(x, y) across the respective

panel, where Pi is the incident beam power and g(x, y) is the normalized profile function:∫
g(x, y)dxdy = 1. Assuming the beam-width is smaller than the panel size, w0 < L, and
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the beam is centered on the panels in the y-direction, the net force may be expressed:

Fx(x) = Fx,A + Fx,B (5.1a)

Fx,A = F0

∫ L

−L

∫ 0

−L
g(x− x′; y)dx′dy (5.1b)

Fx,B = −F0

∫ L

−L

∫ L

0
g(x− x′; y)dx′dy (5.1c)

F0 = ηλPi/Λc (5.1d)

where F0 is a scaling force [146], c is the speed of light, and η =
∑

m ηmm is the diffractive

force efficiency, where ηm = Pm/Pi and Pm is the power diffracted into the mth order (see

Table 5.1). The force near the equilibrium point at x = 0 may be approximated

F̃x(x) ≈ −F0 tanh(x/w0) (5.2)

as illustrated by the dashed line in Fig. 5.1(c). For the measurements described below,

η=0.73, λ= 808 [nm] is the forcing laser wavelength, and Λ=6 [µm] is the grating period.

For example, the position-dependent force depicted in Fig. 5.1(c) (solid) was determined

for a beam of width w0=2.1 [mm] and panels of widths L=12.7 [mm]. The potential energy

associated with this force, plotted in Fig. 5.1(c) (dotted), indicates an equilibrium point

at x = 0, as expected.

η−2 η−1 η0 η1 η2 ηr,0 ηs
panel A 0.006 0.773 0.015 0.051 0 0.107 0.048
panel B 0 0.051 0.015 0.773 0.006 0.107 0.048

Table 5.1: Experimentally determined fractional power for mth order diffraction ηm, spec-
ular reflection ηr,0, and diffuse scattering ηs.
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Figure 5.2: (a) Diffractive beam-rider mounted on the pendulum, under unpolarized white
light. (b) A panel of the diffractive beam-rider under polarization microscope. (c) Director
orientation in the cycloidal diffractive waveplates.

Near equilibrium the bi-grating experiences a restoring force with an approximate

radiation pressure stiffness

KRP = −dFx/dx|x=0 ≈ −dF̃x/dx|x=0 = F0/w0. (5.3)

We find that the approximate stiffness value agrees with the experimentally determined

value (described below) to within 4%: KRP = (1.9 ± 0.2) × 10−7 [N/m] for a beam of

width w0 = 2.1± 0.05 [mm].

We designed a micrometer thin space variant bi-grating comprised of nematic liquid

crystals having its anisotropy axis -the director - rotated in the grating plane over a spatial

period Λ (Fig. 5.2(a-b)). The cycloidal rotation directions are opposite in Panels A and
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B (Fig. 5.2(c)), resulting in equal and opposite grating vectors [109] for a circularly polar-

ized beam of light. The diffraction efficiency of such gratings theoretically reaches 100%

for radiation wavelength meeting half-wave retardation condition. To provide structural

support the layer was adhered to a 100µm thick polymer film. The net mass of the square

25.4× 25.4 [mm2] bi-grating was Mg = 0.12 [g]. Owing to the opposite handedness of the

director rotation, a circularly polarized incident beam diffracts in opposite directions as

depicted in Fig. 5.1(a,b). For a beam at normal incidence the dominant first order diffrac-

tion angles are given by θ±1 = ±sin−1(λ/Λ) = ±7.74◦. We get 91.5% of the unscattered,

transmitted light into the ∓1 order for panels A and B.

To observe the reaction of the bi-grating to either a constant or a time-varying beam

of light we attached it to one arm of a torsion oscillator at a vacuum pressure of 1.4×10−6

[Torr] = 1.8× 10−4 [Pa], as depicted in Fig. 5.3 (the other half of the torsion arm which

includes a balancing mass is not shown). The torsion arm of length R = 0.11 [m] was

suspended by a 25 [µm] diameter tungsten filament of length 0.24 [m]. A small mirror was

attached to the torsion arm at the pivot to provide a means of measuring the deflection

angle 2φ of a low power tracking laser beam. Time lapsed photographs of the tracking

beam were recorded on a screen at a distance D =1.75 [m]. A small angular displacement

of the bi-grating, φ, produces a lateral displacement of the tracking beam S, which is also

related to the linear displacement of the bi-grating, x: φ ≈ S/2D ≈ x/R.

The torsional equation of motion of the mounted bi-grating subjected to a time-

dependent force Fx(t) may for convenience be expressed as a function of the displacement

x rather than angle:

Jd2x/dt2 + 2(J/τ)dx/dt+ kfx(t) = Fx(t)R2 (5.4)
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Figure 5.3: Partial top view of torsional pendulum with arm of length R that pivots from
equilibrium owing to radiation pressure on a bi-grating from a forcing laser. Angular
displacement φ is obtained from the recorded position on a screen of a tracking laser
reflected from a mirror at the pivot.

Figure 5.4: A 3-dimensional version of the experimental setup. The top half of this figure
corresponds to Fig. 5.3, having the laser off-centered onto the right panel, and the beam-
rider experiences a force pulling to the right, and vice versa.
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where J = (1.16 ± 0.01) × 10−5 [kg·m2] is the calculated moment of inertia, kf =

(2π/T0)2J = (1.99 ± 0.04) × 10−8 [N·m/rad] is the torsional stiffness of the tungsten

filament, T0 = 151.8± 0.8 [s] is the measured natural oscillation period when Fx(t) = 0,

and τ = (568± 5.5) T0 is the measured natural decay time.

The moment of inertia of the pendulum is determined by J = Mb(2R)2/12 +Mc(w
2 +

d2)/12+MrR
2+M1R

2
1+M2R

2
2 = (1.16±0.01)×10−5 [kg·m2], where the torsion bar of mass

Mb = 0.38 [g]; center pivot of mass Mc = 1.05 [g], width wc = 5 [mm] and thickness dc=1

[mm]; beam-rider with mounting tabs of mass Mr= 0.45 [g]; and two balancing masses

on the balancing torsion arm (not shown in Fig. 3) of mass M1 = 0.37 [g] at distance

R2 = 0.01 [m] away from the pivot and mass M2 = 0.48 [g] at distance R2 = 0.098 [m]

away from the pivot, respectively. The total mass of the hanging components on the

pendulum is 2.73 [g].

5.2.2 Step Response

To verify the existence of a light-induced restoring force we measured the step function

response of the torsion oscillator, bringing the beam power from zero at t < 0 to a value of

Pi = 1.2 [W] (F0 = 0.39±0.03 [nN]) at t > 0, so that Fx(t) = ˜Fx(x) u(t) where ˜Fx(x) may

be approximated by Eq. 5.2 and u(t) is a step function. The instant t = 0 corresponds

to the state where the excited oscillator passes through equilibrium, x(t = 0) = 0. In the

linear regime where |x/w0| << 1, radiation pressure may be understood as an additional

source of torsional stiffness: kRP = KRPR
2 = (2.3 ± 0.2) × 10−9 [N·m/rad]. Thus we

expect a corresponding frequency shift, ∆ω = ω′ − ω0, where ω0 =
√
kf/J = 2π/T0 =

(4.14± 0.02)× 10−2 was determined from a measurement of the free oscillation period T0,

and ω′ =
√
k′/J = 2π/T ′, where k′ = kf + kRP . We measured the period T ′ = 141.8 ±
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Figure 5.5: Pendulum step response to the light-induced restoring force, showing only the
(x > 0) parts the response. At t = 0, the oscillation x = 0, and the forcing laser turns on.
As expected, the pendulum oscillated faster with a period T ′, with a smaller oscillating
amplitude.

0.6 [s]. A comparison of these stiffness-based (ω′|k′) = (4.37 ± 0.34) × 10−2[rad/sec] and

period-based (ω′|T ′) = (4.43± 0.02)× 10−2[rad/sec] expressions of frequency are in good

agreement.

As further evidence of a light-induced restoring force we compare the amplitude of

oscillation before and after the optical step function described above. Instantaneous stiff-

ening may be described as an energy conserving process [27]: E0 = (1/2)kfφ
2
0,max =

E′ = (1/2)k′φ′2max, where φ0,max and φ′max = φ0,max − ∆φ are the respective oscillation

amplitudes for t < 0 and t > 0. Assuming ∆φ = ∆x/R << 1 we predict a decrease of the

oscillation amplitudes:

∆φ = φ0,maxkRP /2(kf + kRP ) (5.5a)

∆x = x0KRP /2(Kf +KRP ) (5.5b)
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Figure 5.6: Radiation pressure force modulation F̃x(t) (blue, square) synchronized to the
angular oscillation φ(t) (black, sinulsoidal) in a an oscillation cycle for parametric cooling.
The oscillation is divided into 4 intervals by the points a,b,c,d,e, and the sinusoidal period
alternates between T0 and T ′ as it experiences zero and non-zero restoring force from the
radiation pressure.

where x0 = Rφ0,max is the oscillation amplitude for t < 0. Inserting foregoing stiffness

values and the measured value x0 = 1.35 [mm], we predict a value ∆x = 0.070 ± 0.001

[mm] (or 5.2% of x0), which agrees with the measured value of ∆xmeas = 0.070 ± 0.005

[mm].

5.2.3 Parametric Cooling

As a final demonstration of the restoring force model of the bi-grating, we experimentally

measured parametrically driven damping (or “cooling”) by synchronizing laser illumina-

tion with the phase of the torsion oscillator. A square wave modulation of the laser power

at twice the oscillator frequency was applied (see Fig. 5.6) at a beam power Pi = 1.5

[W] and beam size w0 = 3.1 ± 0.05 [mm] (i.e., F0 = 0.49 ± 0.04 [nN]). The light-induced

torsional stiffness corresponds to kRP = (1.9 ± 0.2) × 10−9 [N·m/rad]. The forcing laser
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was controlled to illuminate the beam-rider when the condition x(t) ·v(t) > 0 was satisfied:

F̃x(t) =


F̃x if x(t) · v(t) > 0

0 if x(t) · v(t) ≤ 0.

(5.6)

where v = ∂x/∂t. The modeled response (dotted line in Fig. 5.7) making use of Eq. 5.2

and the 4th order Runge-Kutta numerical technique agrees with the measured displacement

(solid line in Fig. 5.7), further validating our understanding of the system.

Figure 5.7: Parametric cooling of a bi-grating using square wave laser modulation at twice
the oscillation frequency. Measured (solid line) and numerically modeled (dotted line)
oscillations agree. The oscillation envelope (dashed line) shows exponential decay, with
decay time τ”. The average oscillation period T” agrees with the average of the unforced
and forced period T0 and T ′.

The oscillation envelope of the parametrically driven bi-grating was found to exhibit
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exponential decay (dashed line in Fig. 5.7):

xenv(t) = x0 exp(−t/τ”) (5.7)

with a measured decay time τ” = 1791± 24 [s].

Again using energy arguments and a Hooke’s law approximation, we predict the decay

time for an arbitrary value of the scaling force, F0 (or kRP ). Using the phased forcing

protocol described by Eq. 5.7 and depicted in Fig. 5.6, we note the following sequence for

one complete cycle, starting from an oscillation maximum, φa: (a-b) free oscillation for an

interval T0/4 with energy Ea,b = (1/2)kfφ
2
a; (b-c) stiffened oscillation for an interval T ′/4,

reaching an amplitude φc at point (c) and an energy Eb,c = (1/2)(kf + kRP )φ2
c = Ea,b;

(c-d) free oscillation for an interval T0/4 with energy Ec,d = (1/2)kfφ
2
c ; (d-e) stiffened

oscillation for an interval T ′/4, reaching an amplitude φe at point (e) with energy Ed,e =

(1/2)(kf +kRP )φ2
e = Ec,d. The period of the full cycle is given by T” = (T0 +T ′)/2=148.4

[s]. The algebraic relation between φa and φe is readily found: φe = kfφa/(kf + kRP ).

Setting φe = φa exp(−T”/τ”), we obtain the decay time

τ” = T”/ ln(kf/(kf + kRP )) (5.8)

which agrees well with our numerical model and experimental datum as shown in Fig. 5.8.

In summary we report experimental demonstrations of self-stabilizing attributes of a

diffractive bi-grating beam rider. A radiation-pressure induced restoring force was pre-

dicted and experimentally observed by use of a vacuum torsion oscillator. Radiation pres-

sure in effect stiffened the oscillator, resulting in a higher frequency and smaller amplitude

of oscillation. What is more, we demonstrated parametric cooling by synchronizing the ra-
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Figure 5.8: Parametric cooling decay time τ” as a function of the transverse radiation
pressure force F0.

diation pressure with the oscillator state. These results suggest an important technological

step forward for the development of laser-driven sailcraft for in-space propulsion.

Our one-dimensional bi-grating may be generalized in future work to a radial grating

or other space-variant designs to achieve three-dimensional opto-mechananical stability.

In general, self-stability may be achieved with either a reflective or transmissive grating

structure, provided it diffracts light toward the center axis. Greater stability occurs for

large diffraction angles, but at the expense of less longitudinal force along the axis of the

incident beam. Owing to difficulties imposed by the small value of radiation pressure com-

pared to the gravitational acceleration of the Earth, we propose demonstration missions

either aboard the International Space Station or using CubeSat technology.
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5.3 Axicon Beam-Rider

A light sail is a large optical film having a low mass-to-area ratio that harnesses photon

momentum from a source such as the sun or a laser to provide in-space propulsion [40,50,

65, 98, 145, 164]. The radiation pressure affords opportunities to achieve greater velocity

changes compared to chemical rockets which are constrained by both the exhaust velocity

and the relative mass of the rocket with and without propellant. In particular laser-

driven sails may one day reach relativistic speeds, thereby enabling interstellar space travel

[47, 51, 56, 78, 83, 95], allowing an opportunity for closeup views of our closest exoplanets

around the host star Proxima Centauri [2,16,88,121]. Mechanically stable propulsion free

of tumbling and beam walk-off may be achieved by use of optical engineering whereby the

sail is designed to have a net restoring force and torque. Such bodies include diffraction

gratings and dielectric metasurfaces [34, 62, 64, 134, 139, 141, 142], and non-planar sails

having spherical or conical shapes [18,92,125].

Experimental measurements of restoring force and dynamical motion of a laser-driven

axicon diffraction grating are reported in this Letter, including demonstrations of both

parametric amplification and parametric damping. A vacuum torsion oscillator with sub-

nano-Newton sensitivity and a 1.5 [W] laser was used. The experimental results verify the

principle that a diffractive sail such as an axicon can provide a transverse restoring force

for beam-riding in space, as well as terrestrial applications such as solar energy harvesting,

photonic sensing [17], and opto-mechanical damping, excitation, and control [91,152].

We designed a diffractive axicon with radial period Λ = 12.7 [µm] and fabricated

it using grayscale optical lithography in S1813 photopolymer [102]. A minimum feature

width of 3 [µm], maximum feature height of 1.3 [µm] and 100 height-level discretization
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Figure 5.9: (a) Design profile of axicon grating (zoomed view of 18 [mm]×18[mm] sample).
(b) Optical micrograph of the fabricated axicon.

were used. The photopolymer was spun on a 100 [µm] thick sapphire support substrate

at 1000 rpm for 60 [s], then baked in a convection oven at 110◦C for 30 minutes. After

exposure, it was developed in AZ developer 1:1 for 40 [s], rinsed with DI water and dried

with N2. An optically thin layer of Au-Pd was sputter-coated on the sample to provide

a conductive ground, thereby mitigating spurious electro-static forces. For an incident

beam with wavelength λ = 808 [nm], the diffraction cone angle is θd = − sin−1 λ/Λ =

−3.65◦, where the negative sign indicates diffraction toward the axicon axis. The grating

momentum vector of the axicon having surface coordinates (xs, ys) may be expressed

~Ks(xs, ys) = −(2π/Λ)(cosψs x̂s + sinψs ŷs) (5.9)

where ψs is the azimuth angle measured counter-clockwise from x̂s: cosψs = xs/rs,

sinψs = ys/rs, and rs = (x2
s + y2

s)
1/2 as illustrated in Fig. 5.9.

A diode laser having a nearly uniform square irradiance profile of side 2w = 5.2 [mm]

under-fills the square axicon grating of side 2L = 18 [mm], producing arc or ring diffraction
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Figure 5.10: Top: Diffracted beam from axicon and transverse reaction force Fx for relative
sail displacement with respect to a stationary beam: (a) x < 0, (b) x = 0, (c) x > 0, with
corresponding black arrows (bottom). Bottom: Axicon of dimension L = 9[mm] and
coordinates (xs, ys) with grating momentum vectors (blue arrows). Square laser beam
(red) of dimension w = 2.6 [mm].
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Figure 5.11: Force vs displacement of an axicon illuminated by a square beam with different
beam half-widths w. Reported experiment: w = 2.6 [mm] and maximum displacement
xmax = 4.5 [mm]. Near equilibrium Fx ≈ −F0 tanh(x/w2).

patterns as depicted in Fig. 5.10. For example a C-shaped arc is formed when the axicon

is displaced a distance x < 0 from the optical axis of the laser beam, as shown in Fig.

5.10(a), in which case the transverse reaction force on the axicon, Fx, points in the positive

x̂ direction, resulting in a restoring force that draws the axicon back toward the beam axis.

If the entire incident beam is transmitted into the first order diffraction mode the

radiation pressure force exerted by the square beam having its centroid displaced (x, y)

relative to the axicon axis may be expressed as the overlap integral

~F (x, y) =
λPi
2πc

∫∫ L

−L
~K(xs − x, ys − y)g(xs, ys)dxs dys (5.10)

where Pi = 1.5 [W] is the incident beam power, c is the speed of light, and g(x, y) is the

normalized beam profile function with
∫∫

g(x, y)dxdy = 1. As illustrated in Fig. 5.11 a

uniform square beam of size w = 2.6 [mm] that under-fills an axicon constrained at y = 0
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has a restoring force that may be approximated by

Fx(x, 0) ≈ −F0 tanh(x/w) (5.11)

where F0 = ηλPi/Λc = 1.8 × 10−10 [N] is the theoretically expected magnitude of the

radiation pressure force transverse to the grating surface normal, and where η = (ηt−ηr)ηd

is a net efficiency factor with ηt = Pt/Pi = 0.65, ηr = Pr/Pi = 0.04 and ηd = 0.91 the

respective measured transmittance, reflectance and first order diffraction efficiencies, and

Pt, Pr and Pi = 1.5 [W] are the respective transmitted, reflected, and incident beam

powers. We observed that the transmitted and reflected beams respectively diffracted

toward and away from the optical axis, and thus these two components produced opposing

forces in our experiment, as represented by the factor ηt − ηr.

From Eq. 5.10, 5.11 and Fig. 5.11 we obtain a desired restoring force. Setting

Fx = −k̃rp x near equilibrium, we obtain an expression for the radiation pressure in-

duced stiffness k̃rp ≈ F0/w, assuming the beam under-fills the sail (w < L). As illustrated

in Fig. 5.11 the force vanishes near equilibrium when w > 2L. We note that the beam on

a laser-propelled sail will vary in both size and shape owing to diffraction, and the gen-

eral expression in Eq. 5.10 may be applied for an arbitrary space-variant grating vector

distribution ~K(xs, ys), thereby providing opportunities to optimize the restoring force on

the sail during the period when the beam under-fills the sail.

To measure sub-nano-Newton forces we constructed a torsion pendulum comprised of a

Lf = 0.24 [m] tungsten filament of diameter 25 [µm] and placed it in a glass bell jar under

a vacuum of 3× 10−5 [Pa]. The perimeter of the axicon was surrounded with conducting

foil that was electrically grounded via a twist-hardened 1 [mm] diameter copper torsion
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Figure 5.12: (a) Front view of the laser beam on the square axicon mounted on the torsion
pendulum in a vacuum bell jar. The circular diffraction is reflected from the far side of
the vacuum bell jar. (b) Torsion pendulum top view schematic.

arm of length 2R = 0.22 [m], the tungsten filament, and conducting support structures.

The axicon and a counterweight were mounted at the two ends of the torsion arm, with

the suspension filament (pivot) at the mid-point (see Fig. 5.12). Motion was effectively

constrained to one horizontal degree of freedom, with vertical see-saw motion stiff and

readily damped, and motion along the beam axis unperturbed by radiation pressure owing

to the comparatively large gravitational force on the system. Angular deviations φ(t) of

a low power tracking laser reflected from a small low mass mirror at the pivot point were

recorded to obtain the transverse displacement, x, of the axicon relative to the stationary

forcing laser via the small angle relations φ ≈ x/R ≈ S/2D, where D = 1.75 [m] is the

distance from the mirror to the recording screen and S is the linear beam displacement

from equilibrium on the screen. For adequate sampling, roughly 19 measurements of x

were recorded per oscillation period.

The horizontal displacement of the axicon may be represented by a forced damped
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Figure 5.13: The parametric damping(dashed) and gain (dotted) force with respect to the
phases of the axicon beam-rider oscillationx.

harmonic oscillator:

Jd2x/dt2 + 2(J/τ0)dx/dt+ kx(t) = R2 Fx(t), (5.12)

where J = 1.3 × 10−5 [kg · m2] is the calculated moment of inertia, k = (2π/T0)2J =

2.2×10−8[N·m/rad] is the torsional stiffness of the tungsten filament, T0 = (152.0±0.1) [s]

is the measured natural oscillation period when Fx(t) = 0, and τ0 = (657.8±65.8)T0 is the

measured natural decay time. For small displacements |x| << w we expect the radiation

pressure force to increase the torsional stiffness value from k to k + k̃rpR
2, resulting in a

1.9% smaller oscillation period [34]. The moment of inertia of the pendulum is determined

from J = MbR
2/3 + Mc(w

2
c +d2

c)/12 + MaR
2 +McbR

2
cb, with torsion bar mass Mb = 0.38

[g]; pivot mass, width and thickness Mc = 1.05 [g], wc = 5 [mm] and dc = 1 [mm]; axicon

assembly mass Ma = 0.50 [g] at distance R = 110 [mm]; counter balance mass Mcb = 0.52

[g] at distance Rcb = 106 [mm]. The total mass suspended from the tungsten filament
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is Mtot = 2.45 [g]. As stated above, the component of radiation pressure force along

the beam path is negligible, displacing the hanging mass by less than ∆z ≈ 2PiLf/cmg

= 0.1 [µm].

To enhance the effects of radiation pressure and provide a larger signal than that ob-

tained by a small frequency shift, we made use of a parametric oscillator model whereby the

forcing laser power was abruptly changed four times per oscillator period, allowing the am-

plitude of oscillation to increase or decrease over time. Parametric damping was recently

reported in Ref. [34] for a linear bi-grating. An axicon grating provides the advantage

of parametric control in two transverse directions. The large vertical stiffness of our ap-

paratus prohibited us from demonstrating simultaneous two-dimensional control; instead

we made separate measurements with the axicon mounted at two different orientations.

Owing to the symmetry of the axicon the measurements were nearly indistinguishable.

Parametric damping (gain) of the axicon was experimentally verified by shuttering the

forcing laser on and off, depending on the value of the product x(t) · v(t) where v = ∂x/∂t

is the velocity of the axicon. Accordingly the radiation pressure force was modulated, as

graphically illustrated in Fig. 5.13:

Fx(t) =


−F0 tanh(x/w) if σx(t) · v(t) > 0

0 if σx(t) · v(t) ≤ 0

(5.13)

where σ = 1 (σ = −1)for parametric damping (gain). To our knowledge a closed form

solution of x(t) for Eq.s 5.12, 5.13 does not exist. However, for weak parametric loss or

gain, we found the measured displacement could be characterized by the function x(t) ≈

x0 exp(−t/τd,meas) cos(2πt/T ), where τd,meas is the experimentally observed decay time
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and x0 is the oscillation amplitude at time t = 0.

For the case of parametric damping the decay time decreased from the free oscillation

value of τ0 = 105 [s] to τd,meas = (8.2 ± 0.4) × 103[s] for motion parallel to the xs axis,

and (9.2± 0.5)× 103[s]) for motion parallel to the ys direction. The ys measurement was

made by rotating the axicon by 90◦ so that the ys sample axes was parallel x axis of

the laboratory. We therefore achieved a damping rate roughly 11.5 times faster than the

natural decay rate.

Combining Eq.s 5.12, 5.13 and making use of numerical integration, we predicted a

shorter theoretical parametric decay rate of τd,para ≈ 4.4 × 103 [s]. We attribute the

difference in measured and theoretical values to the errors in the on/off switching times

which introduces an effective dephasing effect. We therefore set

1/τd,meas = 1/τd,para − 1/τd,deph + 1/τ0 (5.14)

where τd,para is the decay time owing to the precise time-varying force defined by Eq. 5.13

and τd,deph ≈ 8.0 × 103 [s] is the characteristic time attributed to the confounding effect

of dephasing.

Parametric damping followed by parametric gain via modulated radiation pressure

according to the scheme described in Eq. 5.13 (see also Fig. 5.13) is illustrated in Fig.

5.14. Here we instituted a systematic change from parametric damping (t < 6000 [s]) to

free oscillation, and then to parametric gain (t > 8000 [s]), demonstrating the ease at

which gain and decay may be activated. The magnitude of the experimentally measure

gain rate was small than the numerical model predicted. As above the measured gain may

be expressed by Eq. 5.14 after replacing the decay subscript (d) with a gain subscript
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Figure 5.14: Radiation pressure induced parametric damping, followed by a pause, and
then parametric amplification on the experimental torsion-oscillator-mounted axicon.

(g). The measured gain time was τg,meas = (−13.9± 0.1)× 103 [s], and the corresponding

dephasing and parametric gain times were τg,para ≈ −4.0×103 [s] and τg,deph ≈ −6×103 [s].

In general we expect the dynamical motion to depend on both the ratio w/L as well

as the amplitude of displacement, as suggested by Fig. 5.11. The measured displacements

for the case w/L = 0.29 reported above did not exceed xmax = 4.5 [mm], resulting in

quasi-linear results. A complete analysis of the dynamical motion for other parameter

values is beyond the scope of this Letter. Future work, however, should explore the

displacement x(t) as the beam size w(t) increases with time, as would occur if the sail

were accelerated in space along the axis of an expanding diffracted beam. An examination

of Fig. 5.11 suggests that a significantly diminished restoring force is expected when the
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beam overfills the sail. Methods to implement strong parametric damping during the stage

when w/L < 1 (before the beam overfill the sail) should be explored to ensure that the

sail does not wander from its desired trajectory.

In summary a miniature version of a laser-driven light sail comprised of an axicon

grating has been shown to exhibit the transverse restoring force required of a full scale

beam-riding light sail. A small magnitude of the transverse component of force, (∼ 0.2

nano-Newtons) was found to be sufficient to excite parametric gain and damping. In

principle parametric force modulation may also be achieved by use of an active electro-

optically controlled grating, e.g., by use of a space-variant liquid crystal film [110,137,151],

in which case on-board accelerometers could provide the required control signals. By

describing the convolutional relationship between radiation pressure force and relative

displacement of the beam and sail, we conclude that a laser-driven light sail may be readily

controlled when the beam underfills the sail, i.e., where there is a significant restoring force.

5.3.1 Estimating the power of parametric damping

The measured decay(gain) time τmeas does not equate to the damping(amplification) effects

from time-modulated optical radiation pressure. We may use the damping(gain) time τRP

to describe the damping effects solely by parametric damping from radiation pressure.

In a real experiment, the de-phasing of the time modulation switching points may add a

counter effect on the damping(gain) time. We consider the de-phasing of time modulation

as a damping term described by τdephase, which may be incorporated into the equation of

motion and considered as an effective damping term, τ eff
0 , instead of the vacuum damping.

1

τmeas
=

1

τ eff
0

+
1

τRP
,where

1

τ eff
0

=
1

τ0
− 1

τdephase
(5.15)
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The effective equation of motion may be written:

Jd2x(t)/dt2 + 2(J/τ eff
0 )dx/dt+ kx = FxR

2 (5.16)

We estimate the value for τ eff
0 by matching the numerical solution to the experimentally

measured oscillation data. With the value for τ eff
0 estimated, calculated value for τRP

and τdephase using Eq. 5.15 is recorded in Table 5.2. Four total measurements are made,

including three parametric damping and one parametric gain.

decay time [s] τmeas τdephase τRP

Parametric
Damping

8.2E3 -8E3 4.2E3
9.2E3 -7.5E3 4.3E3
9.6E3 -8.5E3 4.7E3

Parametric Gain -13.9E3 6E3 -4.0E3

Table 5.2: Calculated with J=1.3E-5
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Conclusion

Here we offer a final discussion summarizing the contribution of the dissertation’s work

on the research and science advancements of measuring radiation pressure on diffractive

films, as well as the idea of using modern diffractive optical materials for light sail space

propulsion. We follow with some recommendations from the author regarding experi-

mental development and future experiments, such as a potential to demonstrate “pulling

force”.

6.1 Contribution Summary

The experimental measurement of radiation pressure on a grating served as an unprece-

dented verification for the idea of “grating momentum”, which was viewed only sym-

bolically in literature for Fourier Diffractive Theorems. Radiation pressure component

tangential to the surface of a grating was verified to be independent of the incident angle

and dominated by the constant grating momentum (K = 2π/Λ). Near-zero force normal

103
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to the grating was also demonstrated around Littrow-configuration (θ1 = π− θin), in con-

trast to the zero tangential force on a purely reflective mirror surface where force was most

widely studied. We also verified that momentum transfer on a grating is proportional to

the grating diffractive order m.

The verification of radiation pressure force on diffractive films set foundation for diffrac-

tive light sails, and also stimulated ideas in emerging fields of study for refractive sails,

meta-material sails, photonic crystal sails, all sharing a similar goal to bend light in dif-

ferent ways to produce both tangential and normal component of force to the sail surface.

Our experiments show that to observe a large tangential force component, it is impor-

tant to have a large diffractive angle, and to suppress higher diffractive orders as well as

any other optical losses so that incident beam power diffracts into a single order. There-

fore, high efficiency single-order diffraction gratings are sought after, which is achieved in

modern advanced diffractive structures. Eyeing also the future needs of electo-optically

switchable sails, liquid crystal Cycloidal Diffractive Waveplates (CDWs) in the form of

light-weight diffractive films, with theoretically 100% diffractive efficiency in a single or-

der serves as a strong candidate for diffractive sails. We developed a bi-grating sturcture

with side-by-side grating panels of opposite diffractive orders with CDWs, and used it to

experimentally verify the idea of a “diffractive beam-rider”, which added to the feasibil-

ity of an diffractive light sail. Another strong candidate, mutli-level flat grating which

could be made by single grayscale lithography exposure, is used to design and fabricate

an axicon radial grating and experimentally demonstrated to provide restoring force along

the two-dimensional plane. The demonstration of bi-grating and axicon beam riders both

offered a strong solution to dampen the drifting of a light sail and from a propulsion beam

path.
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The torsional pendulum system, grounded with a long rod and soft torsion stiffness con-

structed in vacuum for this dissertation is successful in providing displacement observation

in light-sail prototypes. It provided meso-scopic measurements of tangential displacements

in a laboratory setting with sub nano-Newton sensitivity, compared to MEMS devices and

AFMs that measure forces in pico-Newtons. The system enabled the demonstration of

parametric cooling on one and two-dimensional diffractive beam-rider.

6.2 Experimental Recommendations

Two-Mode Pendulum for Horizontal and Vertical Motion

Figure 6.1: (a) A photo of a two-mode pendulum setup. (b) The recorded motion of a
two-mode pendulum.

Here I provide a documentation of an attempt to develop an oscillator with the capa-

bility to exhibit motions along two degrees of freedom. The two-mode pendulum wasn’t
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implemented due to its unequal sensitivity across the two axes. I call mode 1 as “tor-

sion mode” and mode 2 as “see-saw mode”, which corresponds to the horizontal mo-

tion of the sample respectively. The measured period T1=10.4[s] and T2=2.7[s] indicates

k1 = 6.8 × 10−7 [Nm/rad] and k2 = 1.7 × 10−4 [Nm/rad] for their respective moment of

inertia J1 = 1.9 × 10−6 [kg-m2] and J2 = 3.13 × 10−5 [kg-m2]. The stiffness of k1and

k2 are three orders of magnitude different, despite different central hanging mechanisms,

including the bi-filar configuration that is shown in 6.1.

This configuration was developed to verify the restoring force on an axicon, or possibly

any tangential force to the surface that does not limit to one degree of freedom. For an

axicon beam-rider structure, it may be possible under this configuration, to still take a way

energy via parametric damping, by shuttering the laser beam in when radial displacement

and radial velocity r · r′ > 0, and shuttering the laser beam off when r · r′ ≤ 0. However,

it is not practical to demonstrate torsion pendulum stiffening, since the three orders of

magnitude difference in k1 and k2 would cause the radiation pressure induced stiffness to

be negligible in the vertical direction (k2).

Demonstrating Pulling Force on a Diffractive Film

Future perspectives of this work involves demonstrating radiation pressure on modern

”gratings” such as meta-materials as well as CDWs and grayscale flat diffractive optics.

Different forms of radiation pressure, not only the tangential forces are of interest. For

example, a beam-combining configuration may provide a ”pulling” force as a tractor beam.

Figure 6.2 shows a reverse setup of a flat beam-splitter surface, where instead of having

an incident beam splitting into two directions, two beams come in at opposite angles

and combine to one. Two incident beams under-fill the surface, with incident k-vectors
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Figure 6.2: Incident and output k-vectors into a reverse beam-splitter resulting in an
attractive force.

described as

~kin1 = 0.5Pi/c (− sin θix̂+ cos θiẑ) (6.1a)

~kin2 = 0.5Pi/c (sin θix̂+ cos θiẑ), (6.1b)

where Pi is the beam power of the laser, c is the speed of light, θi is the incident angle.

The out-coming beam vector is then

~kout = ηPi/c ẑ (6.2)

where η = Pout/Pi is the beam-combining efficiency, Pout is the power of the combined

beam. The resulting radiation pressure force “attracts” the beam along the combined

beam axis ẑ

~F = Pi/c(cos θi − η)ẑ, (6.3)

for example if θi = 50◦, cos θi = 0.64 and η = 0.9, ~F = −0.26(Pi/c) ẑ. An example

experimental setup to measure this pulling force is shown in Fig. 6.3. This setup is
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Figure 6.3: Top view cartoon example experiment design to demonstrate pulling force on
a torsion pendulum in a vacuum belljar.
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designed to have both incident beam polarization parallel to the plane of incidence (TM

polarization), and normally incident to the vacuum bell-jar. To achieve this, the single

forcing laser (808nm, 10W) is first split into two beams of even power with TM and TE

polarizations respectively (shown as orange and blue rays) with a polarizing beam cube.

Since the reflected beam out of the beam cube becomes TE polarized, a half wave-plate is

placed on the beam path to ensure a TM polarization. A red, He-Ne laser is used both to

track the oscillation motion, and also as an alignment laser which combines to the forcing

laser beam path with a dichroic mirror.
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à des distances sensible. In Annales de Chimie et de Physique, volume 29, pages

57–62, 1825.



BIBLIOGRAPHY 116

[49] Matthew C Friedenberg and C Mathew Mate. Dynamic viscoelastic properties of

liquid polymer films studied by atomic force microscopy. Langmuir, 12(25):6138–

6142, 1996.

[50] Louis Friedman and Mitch Gould. Starsailing: Solar sails and interstellar space

travel. Phys. Today, 41:99, 1988.

[51] Robert H Frisbee. Limits of interstellar flight technology. Frontiers of Propulsion

Science, 227:31–126, 2009.

[52] K. T. Gahagan and G. A. Swartzlander. Optical vortex trapping of particles. Opt.

Lett., 21(11):827–829, Jun 1996.

[53] Lucien P Ghislain, Neil A Switz, and Watt W Webb. Measurement of small forces

using an optical trap. Review of Scientific Instruments, 65(9):2762–2768, 1994.

[54] Jan Gieseler, Bradley Deutsch, Romain Quidant, and Lukas Novotny. Subkelvin

parametric feedback cooling of a laser-trapped nanoparticle. Phys. Rev. Lett.,

109(10):103603, 2012.

[55] GT Gillies and RC Ritter. Torsion balances, torsion pendulums, and related devices.

Review of scientific instruments, 64(2):283–309, 1993.

[56] Paul Gilster. Centauri dreams: imagining and planning interstellar exploration.

Springer Science & Business Media, 2004.

[57] David G Grier. A revolution in optical manipulation. Nature, 424(6950):810–816,

2003.



BIBLIOGRAPHY 117

[58] Davide Guzzetti, Rohan Sood, Loic Chappaz, and Hexi Baoyin. Stationkeeping anal-

ysis for solar sailing the l 4 region of binary asteroid systems. Journal of Guidance,

Control, and Dynamics, 42(6):1306–1318, 2019.

[59] Satoshi Hasegawa, Haruyasu Ito, Haruyoshi Toyoda, and Yoshio Hayasaki.

Diffraction-limited ring beam generated by radial grating. OSA Continuum,

1(2):283–294, 2018.

[60] Christopher Hertlein, Laurent Helden, Andrea Gambassi, Siegfried Dietrich, and

Clemens Bechinger. Direct measurement of critical casimir forces. Nature,

451(7175):172, 2008.

[61] Gareth W Hughes, Malcolm Macdonald, Colin R McInnes, Alessandro Atzei, and

Peter Falkner. Sample return from mercury and other terrestrial planets using solar

sail propulsion. Journal of spacecraft and rockets, 43(4):828–835, 2006.

[62] Ognjen Ilic and Harry A Atwater. Self-stabilizing photonic levitation and propulsion

of nanostructured macroscopic objects. Nature Photonics, 13(4):289–295, 2019.

[63] Grace Jesensky, Dominic Dams, Oleksiy Khomenko, and Woo-Joong Kim. A simple

table-top experiment demonstrating mechanical oscillation of a macroscopic object

driven by radiation pressure. In APS March Meeting Abstracts, 2016.

[64] Weiliang Jin, Wei Li, Meir Orenstein, and Shanhui Fan. Inverse design of lightweight

broadband reflector for relativistic lightsail propulsion. ACS Photonics, 7(9):2350–

2355, 2020.

[65] L Johnson. Solar sails: Sneaking up on interstellar travel. Journal of the British

Interplanetary Society, 68:44–47, 2015.



BIBLIOGRAPHY 118

[66] Les Johnson. Solar sails for spacecraft propulsion. https://ntrs.

nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20160005683.pdf. (Accessed on

04/13/2019).

[67] Les Johnson, Mark Whorton, Andy Heaton, Robin Pinson, Greg Laue, and Charles

Adams. Nanosail-d: A solar sail demonstration mission. Acta Astronautica,

68(5):571–575, 2011.

[68] Alex A Karwas. An Unconditionally Stable Method for Numerically Solving Solar

Sail Spacecraft Equations of Motion. PhD thesis, University of Kansas, 2015.

[69] Satoshi Kawata and T Tani. Optically driven mie particles in an evanescent field

along a channeled waveguide. Optics letters, 21(21):1768–1770, 1996.

[70] UF Keyser, J Van der Does, C Dekker, and NH Dekker. Optical tweezers for force

measurements on dna in nanopores. Review of Scientific Instruments, 77(10):105105,

2006.

[71] Roman Ya Kezerashvili. Preface. solar sailing: Concepts, technology, and missions.

Advances in Space Research, 48:1683–1686, 2011.

[72] Jihwan Kim, Matthew N Miskiewicz, Steve Serati, and Michael J Escuti. Nonme-

chanical laser beam steering based on polymer polarization gratings: design opti-

mization and demonstration. Journal of Lightwave Technology, 33(10):2068–2077,

2015.

[73] Herbert J Kramer. Observation of the Earth and its Environment: Survey of Mis-

sions and Sensors. Springer Science & Business Media, 2002.



BIBLIOGRAPHY 119

[74] Michael W. Kudenov, Michael J. Escuti, Eustace L. Dereniak, and Kazuhiko Oka.

White-light channeled imaging polarimeter using broadband polarization gratings.

Appl. Opt., 50(15):2283–2293, May 2011.

[75] Philippe Lalanne, Simion Astilean, Pierre Chavel, Edmond Cambril, and Huguette

Launois. Blazed binary subwavelength gratings with efficiencies larger than those of
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Appendix A

Radiation Pressure Force on

Diffracted Photon

The momentum of a single photon of wavelength λ is given by the vector ~~k where k =

2π/λ is the magnitude of the wave vector, c = ω/k is the speed of light, and ω is the

angular frequency. The energy of the photon is given by E = ~ω = ~ck. A packet of N

such photons passing through a plane over a time ∆t carries a net momentum N~~k. If

the packet is elastically deflected by a material in another direction characterized by the

wave vector ~k′, the net momentum changes to N~~k′. From Newton’s third law, the force

on the material is therefore

~F = ~N(~k − ~k′)/∆t = (P/ck)(~k − ~k′) (A.1)

where P = EN/∆t is the power of the beam of photons.

If instead the packet is elastically deflected in multiple directions, each characterized by
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a wave vector ~km and energy Nm~ω, where conservation of energy provides
∑

mNm = N ,

then the above argument may be generalized:

~F = ~(N~k −
∑
m

Nm
~km)/∆t (A.2a)

= (EN/ck)(~k −
∑
m

(Nm/N)~km)/∆t (A.2b)

= (P/ck)(~k −
∑
m

ηm~km) (A.2c)

where ηm = Nm/N is the efficiency of scattering into the ~km direction. Conservation

of energy and elastic scattering requires
∑

m ηm = 1 and the power of the mth beam is

Pm = NmE/∆t = ηmP .



Appendix B

Momentum and Energy Transfer

from Photon to Object

In Appendix A we consider the radiation pressure force on a material solely by the net

photon momentum change. The definitions of photon momentum and energy are also

provided in Appendix A. Here we consider the momentum transfer from an incident photon

with momentum ~~k on to an object with mass m and initially moving with velocity of

~v along ẑ- direction in Fig. B.1 (a). After the light hits the object, photon get reflects

Figure B.1: Initial and final photon momentum of ~~k and ~~k′for a momentum transfer to
an object with mass m with initial and final velocity of ~v and ~v′.
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towards −ẑ direction with the momentum ~~k′, and the object velocity becomes ~v′, as in

Fig.B.2. (b). The motion of this momentum transfer is all along the single dimension of

ẑ.

If the object was still ~v=0 before the momentum transfer, from the conservation of

momentum mv + ~k = mv′ − ~k′, we obtain

~(k + k′) = mv′. (B.1)

From the conservation of energy (1/2)mv2 + ~ck = (1/2)mv′2 + ~ck′2, we obtain

~c(k − k′) = (1/2)mv′2. (B.2)

Combining both Equations B.1 and B.2, we may express the velocity that the object picked

up from the photon

v′ = −c± c (1 + 4~ck/mc2), (B.3)

where for a photon with wavelength λ = 1× 10−6[m], ~c = 3× 10−26[J-m], k = 2π/λ, and

an object of 1 gram m = 10−3[kg], we take the positive velocity v′ ≈ 2.4× 10−24[m/s].

The energy transfer from the incident photon to the kinetic energy of the object may

be defined as an energy transfer ratio of ζ = (1/2)mv′2/~ck = 1.5 × 10−32, which is

so small it could be ignored. We could consider N = 1032 incident photons, where one

would need to shine a 100 GW laser for 200 seconds such that the total incident energy

E = N~ck = 2× 1013[J] , and the kinetic energy transferred to an 1 gram object is only a

minor portion E′obj = Eζ = 3×10−19[J], resulting v′ = 2.5×10−8[m/s]. Plugging the value

of ζ back into Eq. (B.2), we may also deduct k ≈ k′that the wave number (wavelength)
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change could be ignored in this process.

Therefore, it is safe to use the expressions provided in Appendix A, where radiation

pressure can be determined solely by the incident and final photon momentum vectors, k =

k′ was assumed, and the effect on the object was ignored. Using Eq. (A.1) with the values

above (P=100 [GW] for the duration of 200 seconds, λ = 1× 10−6[m], m = 10−3[kg]), we

can determine radiation pressure force F = 0.1N, acceleration a = F/m = 100 m/s2 , and

the still object undergoing this acceleration will reach v′ = 1/2at2 = 2 × 106[m/s] in 200

seconds. This calculation provide proof and validation for the scale of the laser power,

duration, and speed that are considered in laser sail projects.
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