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Abstract

The pressing need to “shift security left” in the software development lifecycle has motivated efforts

to adapt the iterative and continuous process models used in practice today. Security unit testing is

praised by practitioners and recommended by expert groups, usually in the context of DevSecOps

and achieving “continuous security”. In addition to vulnerability testing and standards adherence,

this technique can help developers verify that security controls are implemented correctly, i.e.

functional security testing. Further, the means by which security unit testing can be integrated

into developer workflows is unique from other standalone tools as it is an adaptation of practices

and infrastructure developers are already familiar with. Yet, software engineering researchers have

so far failed to include this technique in their empirical studies on secure development and little is

known about the state of practice for security unit testing. This dissertation is motivated by the

disconnect between promotion of security unit testing and the lack of empirical evidence on how

it is and can be applied. The goal of this work was to address the disconnect towards identifying

actionable strategies to promote wider adoption and mitigate observed challenges. Three mixed-

method empirical studies were conducted wherein practitioner-authored unit test code, Q&A posts,

and grey literature were analyzed through three lenses: Practices (what they do), Perspectives and

Guidelines (what and how they think it should be done), and Pain Points (what challenges they

face) to incorporate both technical and human factors of this phenomena. Accordingly, this work

contributes novel and important insights into how developers write functional unit tests for at least

nine security controls, including a taxonomy of 53 authentication unit test cases derived from real

code and a detailed analysis of seven unique pain points that developers seek help with from peers

on Q&A sites. Recommendations given herein for conducting and adopting security unit testing,

including mitigating challenges and addressing gaps between available and needed support, are

grounded in the guidelines and perspectives on the benefits, limitations, use cases, and integration

strategies shared in grey literature authored by practitioners.
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Chapter 1

Introduction

Security testing is a class of techniques for verifying and validating software security, and is a crucial

component of a secure software development effort. Without such testing, there is no guarantee

that the software is safe from attack, or that security strategies from the system’s design have been

correctly realized. In practice the most commonly (often only) used technique is penetration testing,

which requires a fully operational instance of a system [13,99,169]. The objective is to simulate a real

attack; an authorized external entity, without knowledge of the system’s design or implementation,

attempts various attacks and try to gain as much access as possible [62]. Techniques like model-

based testing can be conducted pre-construction to verify requirements, specifications, and designs.

For security testing during construction (implementation), the most-recommended techniques are

manual secure code reviews and automated static analysis. These are effective techniques for

identifying violations of secure coding best practice e.g. buffer overflows and the detection and

prevention of known vulnerabilities.

The industry’s acceptance of and reactions to omnipresent security threats continually evolves

alongside the landscape of software development itself. As a ‘nonfunctional’ quality attribute [24,

148], security has traditionally been tested late in the development lifecycle. In many cases, tests

are executed manually on fully-functional system instances by security experts with no involvement

in their design or construction [62]. The application landscape is also highly competitive, especially

in web and mobile.

Over time development processes have evolved to keep up with technological innovations and emerg-

ing security threats by shifting from linear Waterfall [167] models to iterative and continuous de-

livery models, i.e. Agile [67] and DevOps [120]. These models help organization stay competitive

with rapid release schedules and increased automation. For example, the DevOps model unites

1



CHAPTER 1. INTRODUCTION 2

development and operations with continuous integration (CI), continuous delivery (CD) & infras-

tructure as a service (IaaS). For example, the DevOps model unites development and operations

with continuous integration (CI), continuous delivery (CD) & infrastructure as a service (IaaS).

Projects following these model leverage automation to balance speed with quality. For example,

they use automated unit and integration tests to continuously evaluate low-level system function-

ality during implementation. This type of developer-driven testing is now a standard (or at least

familiar) practice in most development workflows.

1.1 Motivation and Research Goal

Now more than ever projects must incorporate security into every stage of the development lifecycle,

an admittedly non-trivial undertaking. The need to ‘shift security left’ has motivated efforts to

adapt these process models by integrating automated security testing into developer workflows,

including at the unit and integration levels [203]. However, the current state of practice, and any

existing strategies for integrating this technique into developer workflows is unknown. Further,

for developers this is a non-traditional application of infrastructure and practices they are already

familiar with, and there is little insight into any potential barriers that would impede explicitly

security-focused testing at this level.

Research Goal

The goal of this work was to understand the state of practice for security unit testing and

identify data-driven, actionable strategies to mitigate observed challenges faced by developers.

1.2 Research Questions

The insights needed to achieve this goal were formalized into the following research questions:

RQ 1. How is security unit testing conducted in practice?

Unit testing is primarily performed by developers; typically QA/testers use black box techniques.

Hence, much of this work will focus on the perceptions and behaviors of software developers who

use unit testing in their regular workflows. Related studies indicate security is important to de-

velopers [14, 98], and they use a specific set of security-focused tools and techniques (e.g. threat

modeling, secure coding) to build security into their software [131]. However, little is known about

how developers utilize unit testing, a common technique for evaluating fine-grain system behaviors,
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to verify behaviors of security control specifically. To answer this question (Chapter 4), I designed

studies to analyze topics discussed in Q&A posts related to security unit testing and create a

taxonomy of unit test cases written for token authentication from open source.

RQ 2. What pain points do developers experience when unit testing security controls?

The study I designed based on analysis of Q&A posts (mentioned above) also included a qualitative

analysis to curate an ontology of pain points unique to security unit testing (Chapter 5). In this

way, the understanding of developers practices can be supplemented with associated pain points

when testing security controls can be more appropriately generalized. Further, this knowledge can

be applied to influence and motivate the creation of tools and resources to support developers as

they integrate this practice into their workflows.

RQ 3. What are practitioner’s perspectives on security unit testing, and to what extent

are actionable guidelines available for using this technique?

Recommendations for integrating security unit testing into developer workflows must be influenced

by both technical and socio-technical factors. In this regard, I designed an extensive qualitative re-

view of practitioner-authored grey literature to investigate, in their own words, what they perceive

as the motivations, limitations, and use cases of security unit testing as well as their recommended

strategies for workflow integration. As part of this review, I also sought to identify gaps in instruc-

tional resources, i.e. recommended use cases and strategies for which existing guidelines provide no

concrete, actionable support for applying them.

1.3 Contributions

I devised the research design for this work under supervision of my advisor, Dr. Mehdi Mirakhorli.

These studies were conducted with support from two other graduate students, Paola Peralta Perez

and Michael Rath. From these efforts we contribute to the body of knowledge for development phase

security testing, filling and/or identifying gaps related to unit-level test practices. Such empirical

data is a critical precondition to devising guidelines and strategies for adopting security unit testing,

and further for Action research towards interventions to address identified barriers [180].

Publication Record

The following is a list of the 11 publications I have led or contributed to over the course of my

studies. Publications 1 (under review) and 5 [82] are of direct relevance to the work herein, and

publications 3 [166], 8 [81], 9 [83], and 10 [80] also make contributions towards understanding and
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supporting unit testing in practice outside (but including) a security context. Publications 2 [84] and

4 [85] were collaborations with industry researchers at Microsoft Research in which I used similar

data-driven empirical approaches to extract technical and sociotechnical insights from repository

artifacts. Publication 6 [79] contributes an automated classification technique for vulnerability

reporting, again based on learning from existing artifacts and in publication 7 [78] this data is used

to understand domain-specific architectural security weaknesses. Finally, I contributed to the work

described in publication 10 [220] towards automated training set creation for traceability research.

1. Danielle Gonzalez, Paola Peralta Perez, and Mehdi Mirakhorli. Barriers to Shift-Left Secu-

rity: The Unique Pain Points of Writing Automated Tests Involving Security Controls, [Under

Review ] 15th ACM/IEEE International Symposium on Empirical Software Engineering and

Measurement (ESEM 2021), Bari, Italy, 2021.

2. Danielle Gonzalez, Thomas Zimmermann, Patrice Godefroid, and Matt Schaefer. ”Anomali-

cious: Automated Detection of Anomalous and Potentially Malicious Commits on GitHub”,

In Proceedings of the 2021 IEEE/ACM 43rd International Conference on Software Engineering:

Software Engineering in Practice (ICSE-SEIP), Madrid, ES, 2021 pp. 258-267.

3. Devjeet Roy, Ziyi Zhang, Maggie Ma, Venera Arnaoudova, Annibale Panichella, Sebastiano

Panichella, Danielle Gonzalez, and Mehdi Mirakhorli. ”DeepTC-Enhancer: Improving the

Readability of Automatically Generated Tests”, In 35th IEEE/ACM International Conference

on Automated Software Engineering, September 21–25, 2020, Virtual Event. ACM, New York,

NY, USA, 12 pages. 2020.

4. Danielle Gonzalez, Thomas Zimmermann, and Nachiappan Nagappan. ”The State of the

ML-universe: 10 Years of Artificial Intelligence & Machine Learning Software Development on

GitHub”, In Proceedings of the 17th International Conference on Mining Software Repositories,

pp. 431-442. 2020.

5. Danielle Gonzalez, Michael Rath, and Mehdi Mirakhorli. ”Did You Remember To Test Your

Tokens?”, In Proceedings of the 17th International Conference on Mining Software Repositories,

pp. 232-242. 2020.

6. Danielle Gonzalez, Fawaz Alhenaki, and Mehdi Mirakhorli. ”Architectural security weaknesses

in industrial control systems (ICS) an empirical study based on disclosed software vulnerabili-

ties”, In 2019 IEEE International Conference on Software Architecture (ICSA), pp. 31-40.

IEEE, 2019.
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7. Danielle Gonzalez, Holly Hastings, and Mehdi Mirakhorli. ”Automated Characterization of

Software Vulnerabilities”, In 2019 IEEE International Conference on Software Maintenance and

Evolution (ICSME), pp. 135-139. IEEE, 2019.

8. Danielle Gonzalez, Suzanne Prentice, and Mehdi Mirakhorli. ”A fine-grained approach for

automated conversion of JUnit assertions to English”, In Proceedings of the 4th ACM SIGSOFT

International Workshop on NLP for Software Engineering, pp. 14-17. 2018.

9. Danielle Gonzalez, Joanna CS Santos, Andrew Popovich, Mehdi Mirakhorli, and Mei Nagap-

pan. ”A large-scale study on the usage of testing patterns that address maintainability attributes:

patterns for ease of modification, diagnoses, and comprehension”, In 2017 IEEE/ACM 14th In-

ternational Conference on Mining Software Repositories (MSR), pp. 391-401. IEEE, 2017.

10. Danielle Gonzalez, Andrew Popovich, and Mehdi Mirakhorli. ”TestEX: A Search Tool for

Finding and Retrieving Example Unit Tests from Open Source Projects”, In 2016 IEEE Inter-

national Symposium on Software Reliability Engineering Workshops (ISSREW), pp. 153-159.

IEEE, 2016.

11. Zogaan, Waleed, Ibrahim Mujhid, Joanna CS Santos, Danielle Gonzalez, and Mehdi Mi-

rakhorli. ”Automated training-set creation for software architecture traceability problem”, Em-

pirical Software Engineering 22, no. 3 (2017): 1028-1062.

1.4 Outline

The remainder of this dissertation is organized as follows. An extensive overview of the back-

ground concepts for this work and related academic studies is provided in Chapter 2. Chapter 3

describes the three studies I designed to analyze practitioner-authored test cases, Q&A posts, and

grey literature. The state of practice for security unit testing is examined in Chapters 4-5; each

chapter describes this phenomena through one of the three lenses represented by my research ques-

tions: Practices (Chapter 4), Perspectives & Guidelines (Chapter 6), and Pain Points (Chapter 5).

These insights facilitate the data-driven discussion and recommendations I provide in Chapter 7,

where in I summarize the state of practice holistically and make recommendations for mitigating

the barriers and support gaps this research has revealed, towards shifting security into developer’s

testing workflows.



Chapter 2

Background and Related Work

2.1 The Software Development Lifecycle

Software is engineered when a “systematic, disciplined, quantified approach” is applied to the “de-

velopment, operation, and maintenance of software” [101]. Such approaches are referred to as

process models or methodologies in practice, and they help bring “order to chaos” [109] by guiding

project teams through the six core phases of the Software Development Lifecycle (SDLC): com-

munication (requirements), planning (analysis), modeling (design), construction (implementation),

testing, and deployment (maintenance) [35, 150]. Each model defines a unique flow (e.g. incre-

mental, iterative) through the SDLC and prescribes a set of practices to be completed in each

phase [35,143,150,187].

Technological advances continually expand the capabilities (e.g. internet, artificial intelligence),

applications (e.g. critical systems, social media), and availability (e.g. mobile, IoT) of software

systems. Many aspects of daily life are now reliant on software either implicitly (e.g. transportation)

or explicitly (e.g. social media), and society places a great deal of trust on these systems to securely

manage sensitive data and make safety critical decisions.

2.2 Shifting Security Left

The risks introduced by the rapid increases in software connectivity, extensibility, & complexity

have sparked renewed interest in the secure construction of software, i.e. “building security in [to

software]” [123,204]. Yet, without SDLCs that support this notion [99], security is often considered

only in post-development testing [13, 169]. This has prompted the introduction of several models

6



CHAPTER 2. BACKGROUND AND RELATED WORK 7

and frameworks that guide organizations through integrating security activities into each develop-

ment phase [57]. Two of the most common secure development frameworks are Microsoft’s Secure

Development Lifecycle (SDL) [99] and the Secure Application Maturity Model (SAMM) [55] from

OWASP, the Open Web Application Security Project. Some SDLC models have also begun to

adapt themselves, e.g. “Secure DevOps” / “DevSecOps” [152,203].

2.2.1 Microsoft Secure Development Lifecycle (SDL)

In the Microsoft Secure Development Lifecycle, security is everyone’s responsibility. This is reflected

in its core concepts: education, continuous process improvement, and accountability [40]. The

SDL itself is comprised of practices that map to the traditional five software development phases:

requirements, design, implementation, verification, & release [99]. The first (security training) and

last (response process) practices are mapped to pre- and post- SDL phases. Three practices are

directly security testing activities: practice 2 is to perform static analysis during implementation,

and practices 11 and 12 are to perform dynamic analysis and fuzz testing during verification. Six

practices also influence testing in requirements (2 & 4), design (5 & 7), and post-SDL (13 & 15).

2.2.2 OWASP Secure Application Maturity Model (SAMM)

The OWASP SAMM places heavy emphasis on business and management concepts with a focus on

using organizational introspection to develop a customized security strategy. The model is based

on 15 security practices organized by ‘business functions’ that map to development phases. Each

practice encompasses several activities that correspond to three maturity levels. Starting from

level 0 (no activities applied) organizations progress through the model until they have applied

each activity at a target level. This model does not distribute testing activities to each phase:

‘requirements-driven testing’ and ’security testing’ are delegated to the post-implementation ‘ver-

ification’ function. The activities for these practices are less specific than the SDL. For example,

level 1 of security testing is ”Perform security testing (both manual and tool based) to discover

security defects [55]”. The ‘baseline’ for this activity is to use ‘automated security testing tools’,

and for a ‘deep understanding’ it suggests manual testing of ‘high risk components’ [55].

2.2.3 DevSecOps: Adding Continuous Security to the DevOps Model

Secure DevOps, also called ‘DevSecOps’ or ‘SecDevOps’ is an evolution of the DevOps model [152,

203] that incorporates security through use of activities and techniques that suit the highly au-

tomated and collaborative nature of the model. This concept is not quite a new model nor a

framework; it is more of an ideal which organizations realize in different ways. However, some
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activities are more common than others, such as automated security monitoring, code review, and

testing [152]. Automated security testing techniques such as static analysis are highly recommended

as they are easy to include in pre-existing continuous integration pipelines [203].

2.3 Security Practices

In this section, I describe the secure software development practices most relevant to this work:

how practitioners design security into their systems, techniques used to test security throughout

the development lifecycle, and prior work that has examined human factors associated with the use

and integration of these practices.

2.3.1 Building Security In: Architectural Tactics and Control Mechanisms

Once the requirements for a system have been established, the design phase begins. Here, the

architect defines the components, structures, and controls that will comprise the system and their

respective relationships and behaviors [24]. The software industry has matured such that architects

can leverage established patterns [68] to satisfy functional requirements and tactics [24] for quality

requirements.

There are six (primary) security tactics that can be introduced to a system at the design level [24]:

• Authenticate Users: Confirmation of user identity

• Authorize Users: Confirmation of user privileges

• Maintain Data Confidentiality : Prevention of unauthorized access to sensitive data

• Maintain Integrity : Protection of data from malicious or unintended manipulation

• Limit Exposure: Keeping components separated, to prevent “all eggs in one basket” scenarios

• Limit Access: Protection via granting “minimum required access”

These tactics are intentionally vague, because they represent principals that are applicable to

software in general; at each phase of the development lifecycle they become more concrete and

tangible parts of the system. It is the role of the architect to determine which tactics relate to

security requirements, and then determine the controls that should be used to realize them in the

implementation. For example, the Authenticate Users tactic could be incorporated into a web

application with controls such as login forms and sessions. This would be realized in the system
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by requiring users to register for an account and provide credentials through a login form when

they want access. Once authenticated, the user’s established identity could be maintained across

multiple requests by creating and managing a session in the browser.

During implementation, security tactics from the design are realized as security control mechanisms.

This is a complicated process , as their functionality often requires multiple interacting components

across several application layers. To alleviate some of the complexity, security frameworks like

Spring Security [9] are often used. Additional decisions are made at the implementation phase.

For example, to implement authentication controls there are several mechanisms (e.g. password,

PIN), types (e.g. token, session), and protocols (e.g. SAML [18], LDAP [151]) to choose from, and

systems can be designed to handle more than one configuration.

2.3.2 Testing Security Throughout the SDLC

As a project moves through each lifecycle phase, it is crucial that the system is tested to ensure

that no design decision or implementation error deviates from the requirements. This is especially

critical for security requirements; the complexity of security control implementations elicits many

opportunities for mistakes. This is not to be taken lightly either as even simple mistakes like failing

to validate input can cause vulnerabilities [201].

Testing Objectives

Security testing is a specialized form of software testing with two objectives. Both relate to the

security controls & mechanisms incorporated into the system’s design and implementation to sat-

isfy its security requirements. The first objective is to make sure these security controls behave

correctly, i.e. as expected based on requirements [169]. This can also be referred to as as security

vulnerability testing [196] or risk-based security testing [149]. The second objective is to ensure

security controls have been implemented correctly, i.e. they do not themselves contain vulnerabili-

ties [169]. Applying security test techniques to this goal is known as security functional testing [196]

or testing security mechanisms [149].

Ultimately the two objectives are closely related, as vulnerabilities are introduced into a system via

missing or incorrectly implemented security controls (mechanisms). However they are unique in

the planning, actions, and mindset necessary to achieve them. For example, security vulnerability

testing is uniquely conducted through the perspective of an attacker (e.g. penetration testing)

and requires in-depth knowledge of common vulnerabilities, exploits, and attack scenarios whereas

security functional testing (e.g. static analysis) relies more on knowledge of a system’s design,
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implementation, and requirements.

Testing Techniques

Organizations tend to choose only one technique for their projects, but in reality there is no single

‘silver bullet’ technique that can effectively verify security at all the necessary scopes and project

stages [169]. Thus, meeting these objectives requires applying several security testing techniques

throughout of the development lifecycle. A basic understanding of the benefits and limitations

of the most common techniques, and their place in the development lifecycle will suffice and is

provided here. For a deeper exploration into the taxonomy of security testing techniques, several

existing resources are recommended [62,149,196,213].

Requirements and Design Phase Security Testing: In the earliest phases of a software project, model-

based security testing (MBST) can be applied to establish, verify, and refine security require-

ments, specifications, and designs before development begins. As the name implies, the system

under test is modeled from security requirements, sequence diagrams, known potential vulnerabil-

ities, threat models, etc. and can be represented in several ways such as UML and finite state

machines [196]. Manually selected algorithms automatically design and generate a suite of test

cases for the given model(s), driven by test generation criteria defined by the modeler to focus test

efforts on desired threats, requirements, or attacks [175].

Development Phase Security Testing: Once development has begun, several techniques can be used

for functional and vulnerability testing. Teams can conduct manual secure code reviews or

run static analysis security testing (SAST) tools to ensure continued adherence to security

requirements and correct realization of security controls included in the system’s design. In both

techniques, code is analyzed but not executed, with the objective of detecting violations of secure

coding practices. Any identified issues can be addressed before the code moves forward in the

lifecycle, reducing cost and time to fix. Secure code reviews are usually conducted manually and

require participants with extensive security knowledge and awareness of the threats and vulnera-

bilities most applicable to the system under test. SAST is essentially an automated code review

that relies on pre-defined patterns, which it will attempt to match in the code. Again, security

expertise is needed to establish correct and relevant patterns. Security unit testing is discussed in

more detail (being the topic of this reseearch) in Section 2.3.3.

Post-Development Phase Security Testing Once a running instance of a system is available, veri-

fication efforts are devoted to security vulnerability testing. Several techniques can be applied at

this point to evaluate the performance of the security controls under normal and attack condi-
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tions. Penetration testing allows elaborate simulations of real attacks. “Pen-testers” attempt

several strategies to gain unauthorized access to a system; once inside, they try to collect valuable

assets and make malicious changes. Other techniques like fuzzing and dynamic taint analy-

sis use specially crafted data to evaluate how date flows through the system and its handling of

malicious inputs. These techniques are good for catching vulnerabilities such as SQL injection

and buffer overflows. Finally, security regression testing can be used to monitor how system

changes affect security controls; these automated techniques can select and prioritize test cases that

are relevant to the given changes, and optimize test suites.

2.3.3 Security Unit Testing

Security unit testing is a encouraged by respected security organizations [44, 169] and practition-

ers [25,29,48,50,203], but its use in practice is not well understood and these recommendations are

not appropriately supported with actionable guidelines [82, 171]. Although security unit tests can

be used for functional [25, 29, 44, 203, 215] and vulnerability testing [51, 52, 128, 129, 159, 160, 161,

171, 172, 173], the limited body of academic work regarding these tests focuses only on technical

strategies for generating vulnerability unit tests. My efforts to understand how developers write

functional security unit tests is motivated by the need to address this gap so that similar techniques

can be applied for this purpose.

Mohammadi et al. have created a program-analysis based technique for automatically generating

unit tests to detect cross-site scripting (XSS) vulnerabilities [128,129]. One benefit of this approach

is that it bases the test cases, inputs, and subjects-under-test only on the project itself, meaning a

source of external information is not needed to identify these components. This is possible because a

pattern-based approach can be used to identify vulnerabilities like XSS in different contexts, in this

case “improper encoding of untrusted data” [129]. Other vulnerability security testing techniques

(i.e. static/dynamic analysis, fuzzing) are also based on these patterns.

Salva and Regainia have made several contributions [159, 160, 161, 171, 172, 173] towards helping

developers in the early stages of the SDLC plan and generate vulnerability unit tests after threat

modeling has been conducted. They first devised an approach for curating a knowledge base for

security patterns and attack sequences [160,161,172,173]. In later work [159,171] they extend the

approach towards actionable support; the knowledge base is used to guide developers in creating

Attack-Defense trees, which are used to automatically generate abstract vulnerability test cases

in the Gherkin Given, When, Then format [183]. This approach is an important effort towards

creating developer supports, and generating test cases in this format allows them to be applied at

different scopes and test levels in addition to unit. However, the knowledge base focuses on “black
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box” patterns and attack sequences, therefore functional security unit tests are out of scope for this

system. Nonetheless this approach could potentially be extended or adapted to support developers

planning functional security test cases if a comprehensive knowledge base could be curated.

My Contributions

To create similar support systems for functional security unit testing, the lack of resources outlining

patterns or unit-level test cases forming the basis of these works must be addressed. My work

towards understanding the current state of practice for security unit testing in terms of practices,

perspectives, and pain points are the critical and previously missing pre-requisite for doing so. I

discuss in Chapter 6.3 how existing online guides lack the data that would be needed for this effort to

succeed, and make data-driven recommendations based on perspectives (Chapter 6) and pain points

(Chapter 5) observed. I have also produced a more immediate and actionable resource by using

findings from my study of authentication unit tests (Chapter 4.1) to develop a token authentication

unit testing guide that presents test cases in a pattern-like format geared towards providing step-

by-step guidance for developers to implement them [82]. To produce the generalization and level

of detail needed for widespread use, no technology or context-dependent data was included in our

descriptions of the emergent test cases, which were also presented as a breakdown of their key

elements and organized by scenario.

Important!

This work uses the term (security) unit tests to represent both unit

and integration level (security) tests written by developers using

automated testing frameworks (e.g. JUnit)

More information about (general) automated unit and integration testing is provided in Section 2.4.

2.3.4 Human Factors Influencing Developer’s Security Practices

An increasing number of organizations are shifting to process models that incorporate security into

every phase of the software development lifecycle. In response, research studying technical and

human aspects of secure development and testing have grown in popularity [4,5,12,13,14,22,42,98,

130,131,146,152,200,209]. Unfortunately, there are no works providing specific usage measurements

for security unit testing. A few researchers have reported other observations relating to security
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unit testing, but most relevant for this work, there are several studies of developer’s perspectives

and challenges regarding secure development & testing practices.

Assal and Chiasson have reported three studies related to developer’s software security (de)motivations,

perspectives, and practices [12, 13, 14]. In [12] they interviewed 13 practitioners and performed

a grounded theory analysis of the transcripts to identify motivators and de-motivators for soft-

ware security practices. They found that the participants were motivated by a desire for “self-

improvement”, as well as “professional responsibility”, “company reputation”, and “pressure” by

superiors. Demotivates identified include lack of confidence, interest, relevance (“not my responsi-

bility”), and perceived value. In [13] they studied of developer’s attention to security across lifecycle

phases, they found that “security consideration is virtually non-existent” in developer testing phase.

They note that functionality is the driving motivator at this phase. Their latest study [14] was

a survey of 123 North American software engineers their key findings was that developer’s were

self-motivated to practice secure software development but their primary barrier was a lack of or-

ganizational and process support (e.g. security plans). This reflects a need for future research to

include organizational factors or as the authors put it “look beyond the individual” when investi-

gated security practices. They also noted that participants reported little “security effort” during

developer testing, consistent with their previous findings [13].

In [200], Van der Linden et al. studied security rationale of 44 mobile app developers, noting a

pattern of relying on external testers for security concerns instead of writing test code. Cruzes et

al. [42] noted in their case study of four agile development teams that there is a lack of guidance

and knowledge related to security testing. For the teams studied, automated testing was not

security-focused. Morrison et al. [130] conducted a case study of security practices in use at IBM

and noted that developers must write a unit test for any changes made, implying that security

unit testing is practiced but not necessarily motivated by security. Rahman and Williams studied

practitioners perspectives and practices related to security in DevOps environments through grey

literature review (n = 66) and nine practitioner interviews [152]. They found three artifacts related

to automated testing, and five of the nine practitioners interviewed felt automated testing was

beneficial for security.

2.4 Automated Unit and Integration Testing

Modern development models recognize the benefits of early and repeated testing and work to “shift

testing left” by incorporating appropriate testing activities into each lifecycle phase [184]. Unit and

integration tests are written by developers to evaluate system behavior at different levels during



CHAPTER 2. BACKGROUND AND RELATED WORK 14

implementation. As their names imply, unit tests focus on the behavior of isolated ‘units’

(classes or methods) in the code, while integration tests verify interactions between multiple units

or components [28]. A suite (collection) of unit and integration tests can be executed automatically

as part of a continuous integration (CI) pipeline to test changes as they are submitted or manually

by a developer to test changes as they are implemented.

In practice, the distinction between unit and integration tests can be unclear; most automated

testing frameworks can be used to write and execute both, and defect detection performance has

been shown to be similar in prior studies [141,197]. Developers may not care about this distinction

in practice [194] and do not always specify which they are writing in Q&A posts or grey literature.

Key Components of Unit and Integration Tests

The following terms represent key elements of unit and integration tests. Their definitions are given

as they were applied for this work, and are heavily referenced in Chapters 4 & 5:

Context: Pre-conditions and test setup e.g., object initialization

Subject-Under-Test: The component, method etc. being evaluated in the test

Action: Manipulations of the subject-under-test, e.g. a method call

Scenario: A single phrase representation of a unique combination of context and action

Condition: A state or event that influences the action, e.g. a null argument to a method call

Expected Outcome: The desired state of the subject-under-test after the action is performed, e.g.

a method call returning True

Test Case: A unique combination of a context, action, condition, and expected outcome that is

represented in natural language

The Software Testing Lifecycle

The testing lifecycle consists of four phases: planning, design, construction, and execution. First,

in the planning phase, developers determine what test cases they need to write for the code-under-

test. The most common stopping criteria (how much to test) used by developers is coverage, i.e.

the percentage of code branches, paths, or statements that are exercised by a test suite. During

the design phase, test fixtures are created to initialize the system-under-test and satisfy any

preconditions needed to create each test case. Developers then use these fixtures and an automated
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unit testing framework (e.g. JUnit) in the construction phase to implement test methods for the

planned test cases. Finally, after test execution the results are evaluated: if the value matches a

pre-determined expected outcome the test passes, otherwise it fails.

2.4.1 Use in Practice

Developer’s adoption of unit and integration testing has been measured in numerous prior works [10,

26, 46, 69, 73, 74, 75, 83, 90, 91, 106, 115, 138, 168, 212]. A few studies focused exclusively on unit test

practices [26,46,83,168], but most considered software testing practices in general, which included

findings related to unit testing [10, 69, 73, 74, 75, 90, 91, 106, 115, 138, 212]. Others scoped their

investigation to practices within a specific country [69,73,74,75,138].

In 2004, Ng et al. studied testing practices in Austrailia [138] by surveying managers & testers

from 65 organizations. The authors found that out of 42 (64.6%) organizations using a “structured

testing methodology”, only 16 (38.10%) employed “white-box” testing. Geras et al. conducted a

similar 2004 study of testing practices in Alberta [75]; of the 55 practitioners surveyed fewer than

80% claimed to use unit testing.

In [91], Grindal et al. interviewed test managers from 12 software organizations to measure “test

maturity” of software organizations. Participants were asked to self-report the percentage of their

time spent in each phase of testing; an average of 20% was reported for component (unit) testing.

The authors also noted that these findings were consistent with those of [138] and [75]. Also in

2006, Wojcicki and Strooper [212] reported that most (82.86%) of the 35 practitioners surveyed in

their investigation of testing practices in concurrent systems claimed to use unit testing.

In 2010 Garousi and Varma replicated Geras et al.’s study [75] and found a slight increase in the

use of unit testing since 2004 (96% of 35 companies) [73].

Lee et al. [115] surveyed testing practitioners in 2012 to gauge current practices and improvement

areas. Specifically, they asked participants if they use software testing methods (“...techniques,

procedures, patterns, or templates...”) or tools (“...provide automated or semi-automated sup-

port...”) [115] at each test level. For unit testing, 33% of the 20 participants claimed to use

methods and 26% claimed to use tools. In Greiler et al.’s 2012 investigation of testing practices for

plug-in systems [89, 90] they surveyed & interviewed 151 practitioners from the Eclipse (an open

source plugin-based IDE) development community. They did not quantify use of unit testing but

through grounded theory analysis of the interview transcripts, found that unit testing “plays a key

role” in this community and was in fact the primary means of testing.
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Garousi and Zhi (2013) [74] conducted a comprehensive survey of testing practices in Canada with

246 practitioners. Unit testing was used by 79.67% of participants, and the mean percentage of

effort dedicated to unit testing was 20% (consistent with [91]). However, 59.35% reported using

Test-Last Development rather than models promoting early testing like Test-Driven Development

(20.33%) or Behavior-Driven Development (< 20%).

In 2015, Garousi et al. surveyed 202 developers to “characterize and grasp a high-level view of”

software engineering practices in Turkey [69]. The authors studied testing practices but did not

report an exact measurement of unit test adoption. However the survey did reveal that “formal

review of unit tests” was not often practiced, and the previously-reported [74] preference for Test-

Last Development over TDD or BDD applied to Turkish developers as well. The same year, Beller et

al. reported their findings from a field study of 416 software engineers writing Java code using the

Eclipse IDE [26]; only 43% of participants wrote, executed, or read unit tests.

Finally, in a 2017 study I led a large-scale empirical study of the use of unit test patterns in open

source software [83]. Towards our goal of measuring the use of unit test patterns [126] we mined

and analyzed 82,447 open source repositories for software written in 48 languages. Ultimately, only

17.17% of these projects contained unit tests.

Table 2.1: Summary of Prior Findings for Practitioner’s Use of Unit Testing

Year Study Subjects % Unit Testing Alternative Finding

2004 [138] 65 24.62%

2004 [75] 55 < 80%

2006 [91] 12 Not reported Mean 20% of effort spent on unit testing

2006 [212] 35 82.86%

2010 [73] 35 96%

2012 [115] 20 33%

2012 [90] 151 Not reported Unit testing ”plays key role in Eclipse

community”

2013 [74] 246 79.67% Mean 20% of effort spent on unit testing

2015 [69] 202 Not reported ”formal review of unit tests” not often

practiced

2015 [26] 416 43%

2017 [83] 82,447

(projects)

17.17%
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Table 2.1 summarizes the research on unit test adoption. Over time, adoption rates do not follow

a consistent trend but fluctuate within a range of 17.17% to 96%. It is interesting to note that the

two studies which empirically measured use of unit tests [26,83] reported rates < 50%.

Three studies did not explicitly report the percentage of their subjects who use unit testing. Alter-

natively, Grindal et al. [91] reported that an average of 20% of development efforts were dedicated

to unit testing (also found by [74]), Greiler et al. [90] found testing in the Eclipse community focuses

on the unit level, and Garousi et al. [69] noted unit tests do not often undergo “formal review”.

2.4.2 Human Factors Influencing Developer’s Testing Practices

Several prior works also investigated practitioner’s motivations, opinions and perceptions of testing

practices [10,26,46,75,106,138,168,212]. While quantitative measurements of unit testing adoption

are valuable, it is important to supplement such objective data with such context. In doing so,

implications of the findings are clearer and can help researchers design future studies that are

empirically relevant to practitioner’s obstacles and needs.

Andersson and Runeson ran a workshop series and conducted interviews to study the verification

and validation practices of 9 companies [10]. Concerning unit testing, they found that most module

(unit) testing was done informally by developers. Ng et al. [138] asked their participants to describe

any barriers they faced that prevented or dissuaded them from adopting software testing practices;

the dominant barrier identified was a lack of expertise, followed by time consuming to use. As part

of their investigation into testing practices, Geras et al. [75] noted that fewer management-level

respondents ( 75%) reported their projects used unit testing than non-management respondents

( 92%), indicating a lack of communication between organization levels.

Per Runeson surveyed 17 practitioners about how they define unit testing and what they consider

to be its strengths and weaknesses [168]. These practitioners felt that unit testing was a strong

technique for developers to independently and continuously test small modules. However, they

struggle with identifying appropriate units, documentation, test selection, metrics, stopping criteria,

and reconciling costs. The participants of this study form a small but representative sample of

organization size and domain which improves generalization, and the primary takeaway as proposed

by the author is that the findings should guide larger future studies. Findings from a later (2008)

study by Smith and Williams [182] investigating developer’s techniques for determining when to

stop writing tests supports the notion of “ad-hoc” testing by developers.

Kasurinen et al. [106] interviewed 55 practitioners and conducted a parallel qualitative study of



CHAPTER 2. BACKGROUND AND RELATED WORK 18

12 organizations to characterize the use of test automation and identify areas for improvement.

This study did not explicit ask participants if they conducted unit testing, but measured their

perceptions of the importance & benefit of each testing level and common automation techniques.

Their participants felt that quality was built during development, not testing and favored late-stage

test levels (e.g. functional, system) over early-stage test levels (e.g. unit, integration). However,

they did consider unit testing one of the most efficient activities to automate.

Wojcicki and Strooper’s study focused on practitioner’s processes for selecting (which) verification

and validation (V&V) techniques to use [212]. Their key findings were (1) unit testing frame-

works were the primary method of automating V&V, (2) practitioners were very concerned about

cost-effectiveness when designing their testing approach, and (3) practitioners want case studies

evaluating V&V technologies to use real defects.

In 2014 Daka and Fraser surveyed 171 software developers about their unit testing motivation,

practices, and problems to identify research problems that align with industry needs [46]. Their

findings on unit testing weaknesses and struggles aligned with those of Runeson [168]: developers

need more support determining what to test, but current research trends towards automated unit

testing approaches that fail to appropriately address this need. Participants also felt that unit tests

must be realistic and maintainable; this is an important consideration when developing guidelines

& sample test cases.

Finally, Beller et al.’s 2015 field study balanced measurements of developer’s testing practices

(what & how) with probes into their rationales (why) as they investigated patterns and needs [26].

Their three key findings were (1) developers test less than they perceive/report, (2) testing, as

measured within an IDE, is not a popular activity, and (3) Test-Driven Development is not a

popular development model. This study highlights the importance of “mixed-methods” research

when studying software engineering phenomena — there is a disconnect between practitioners

expectations, beliefs, perceptions, and actual behavior. They also highlight the disconnect between

researcher’s beliefs regarding the wants and needs of developers and reality.

To summarize, below are the key findings from these studies:

• Unit testing is often an informal practice conducted independently by developers [10,168,182]

• There is a disconnect between different stakeholders (researchers, developers, managers) [46,

75,212] regarding practices and challenges.

• Developer’s perceptions of their unit testing behavior is not always consistent with empirical
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observations and measurements of their actual practices [26].

• A lack of experience and guidance for unit testing can be a de-motivator or challenge for

developers, especially concerning what to test [46,138,168].

• Unit testing is unpopular even though developers recognize the benefits [26,106].

2.5 Empirical Studies of Developer’s Q&A Posts

As knowledge workers, the tasks performed by software engineers are primarily related to finding,

processing, and generating information [135]. In troubleshooting scenarios, wherein they seek

information that will help them solve a problem, a common practice is to pose a question to their

peers online. Stack Exchange is a network of specialized question and answer (Q&A) websites.

Their flagship website is Stack Overflow (SO), an extremely popular site for computer programming

Q&A and discussion [17]. Since it’s debut in 2008 more than 21 million questions have been

posted to Stack Overflow, and visiting the site is integrated into the problem solving processes of

many developers [142]. Security Stack Exchange (SSE) is another popular Q&A community where

developers and security engineers discuss topics related to Information Security [16].

This has made them popular amongst software engineering researchers (e.g. [8, 19, 23, 94, 95, 110,

116,117,118,119,124,136,163,165,195,205,214,217,219]), who have developed efficient and accurate

techniques for mining, filtering and analyzing post data to study a diverse set of software devel-

opment concerns and subjects. Meldrum et al.’s 2017 systematic mapping study (n = 265) [124]

and Ahmad et al.’s 2018 literature review (n = 166) [8] have quantified the research community’s

growing interest in Stack Overflow, popular topics, and common analysis techniques. Barua et

al. and Ye et al. have conducted broad studies using all posts on Stack Overflow to explore key

discussion topics [23] and the structure and dynamics of Stack Overflow from a knowledge net-

work perspective [217]. Other works have used Stack Overflow to study a wide variety of soft-

ware development topics including but not limited to: cloud computer vision [43], mobile develop-

ment [27,165,205], software testing [110], software architecture [195], web development [19], Apache

Spark [163], Java [219], Docker [95], and deep learning [94].

Security Topics & Challenges

Several studies have used Stack Overflow to study developer’s discussion topics and challenges

related to security [118, 119, 136, 214]. Unlike this work, these studies did not include data from
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Security Stack Exchange. Yang et al. [214] wanted to investigate what security-related topics de-

velopers ask questions about; to identify relevant posts, they used two tag-based heuristics. An

automated approach was used to analyze and group posts by topic, specifically feature model-

ing and LDA. As a result they identified 30 topics, and investigated the distribution of posts to

topic, most popular topic, and which topics were most difficult to answer questions about. From

these insights the authors suggest researchers should investigate assistive solutions for the most

popular and difficult topics, educators should focus on web security, and practitioners could use

the difficulty metrics to assign topic-based work by level of expertise. Topic-based studies such as

this demonstrate how this data can be used to identify specific technical concerns developers face

relating to security, and these insights can help researchers maintain relevancy with their work.

Human factors relating to secure software development has become a popular research area, as we

seek to understand how developers perceive, respond to, and overcome security challenges [2, 3].

Since Stack Overflow is widely-used by developers when faced with technical challenges, Lopez et

al. [118, 119] conducted 2 studies which applied qualitative methods (coding) to analyze a small

sample (20) of highly-rated security posts and their answers to explore the social context of se-

curity knowledge sharing. Their first analysis revealed insights into three dimensions: advice and

assessment, values and attitudes, and community involvement. They found that security awareness

grows through discussing suggested solutions, and although most questions are technical, develop-

ers also discuss rationale, return-on-investment, balancing developers needs with external influences

(regulations, organization-level requirements), and the effectiveness and circumstances of suggested

solutions. Developers perspectives are often embedded in answers to technical questions, and the

authors identified common themes: principles, trust, fear, pride, and responsibilities. Given the

evolving nature of security, questions “belong to the community” and discussion activity can persist

years after the original posting date. [118].

In their second study, Lopez et al. focused on finer-grained details of participation in the same set

of questions, examining features of the discussion environment such as time, edits, quoting, and

naming techniques. They observed differences in the question and answer comment streams; for

example, answer comment streams focus more on technical details vs the perspectives found in

question streams. [119]. While a small sample was used for these studies, their findings reveal the

multi-dimensional nature of security discussions on Stack Overflow, and support the notion that

both technical (challenges, concepts) and social (perspectives, opinions) factors relating to security

topics can be learned by studying data from this platform.

Nadi et al. [136] manually analyzed 100 Stack Overflow posts as part of a study conducted to
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understand tasks developers perform with Java cryptography APIs, and the challenges they face.

Their study was motivated by a need to understand what developers need help with in this regard,

and which support mechanisms would be most effective. Findings from the post analysis were

supplemented with two developer surveys (question askers and API-users) and an analysis of 100

GitHub repositories using Java cryptography APIs. They observed that posters with some domain

knowledge struggled primarily with correct usage of the API, such as the correct sequence of

method calls needed to perform a task. Also noted was posters lacking domain knowledge struggled

with choosing the correct algorithm for their needs or which libraries to use. These findings are

of particular interest to this work, as most security controls are implemented using third-party

libraries, which might influence the questions asked about testing.

Testing Topics & Challenges

Key discussion topics and difficulties related to testing have been studied from the general per-

spective by Kochar et al. [110] and for Android development specifically by Villanes et al. [205].

Kochar et al.’s study used a similar mixed-method approach that combines LDA topic model in-

sights with deeper qualitative analysis. They identified eight key testing topics from over 38,000

testing-related questions. Consistent with this work, Login and Client/Server were identified

amongst others unrelated to security (e.g. Test Framework) in the Q&A post analysis conducted for

this work (see Chapter 4.1). They supplemented the topic results with several smaller exploratory

analysis about temporal trends, view-based topic popularity, and a special look at mobile testing

concerns. They also manually reviewed 50 posts to identify challenges; these were associated di-

rectly to topics but show that, similar to the pain points identified in this work (see Chapter 5),

many relate to conceptual knowledge gaps and design confusions.

2.6 Grey Literature Reviews in Software Engineering

In empirical software engineering research, primary (generated by the individual) data about devel-

oper’s practices, opinions, and challenges is typically collected from software artifacts (e.g. source

code, repository metadata) and human-subject studies (e.g. interviews, surveys) with practitioners.

Further, researchers often limit their search for related studies & data to peer-reviewed sources such

as academic publications. While these are valuable sources of data for studying software engineer-

ing phenomena, there is another, under-utilized source of practitioner-generated data that provides

tantamount data regarding their experiences, perspectives, beliefs, practices, and challenges. Re-

ferred to as grey literature, this includes non-peer-reviewed artifacts like wiki and news articles,

blog posts, presentations, videos, Q&A forum posts, and white papers [70].
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There are two key benefits to considering grey literature for empirical software engineering research.

First, like interviews and surveys, the data comes from a primary source but collecting the data

does not require analogous time, cost, or effort as recruiting participants & conducting an interview

or disseminating & following up on a survey. Instead, such data can be mined and analyzed similar

to other textual software artifacts.

Second, critically, prior studies have shown that developers find information generated by other

practitioners as the most valuable [56, 155]. A 2003 study conducted by Rainer et al. analyzed

transcripts of interviews with developers form 13 companies to investigate practitioner’s opinion of

software processes’ and process opinion. The primary finding was that while developers want to

use empirical evidence when formulating their opinions, they prefer information generated by other

“local” practitioners. The authors infer that this preference correlates to a developer’s ability to

relate information to their specific situation [155]. In 2016 Devanbu et al. [56] interviewed over 500

Microsoft employees who collectively ranked research papers as the data source that least influenced

their opinions.

To support researchers as they begin to consider grey literature in their work, several “methods”

papers providing guidelines for the inclusion of grey literature in empirical SE studies have been

published. In 2017, Austen Rainer examined how argumentation theory could be adapted to analyze

blog posts authored by developers to study “practitioners’ evidence, inference, and beliefs.” [154],

and in [156] Rainer and Williams propose a set of heuristics intended to “improve the relevance and

rigor” of studies that include grey literature. Garousi et al. outlined best practices for conducting

multi-vocal literature reviews that include grey literature in 2019 [70].

An important consideration when using grey literature is that, unlike peer-reviewed publications

or objective software artifacts, quality, reliability, and accuracy cannot be guaranteed. To this

end, Rainier and Williams have studied perspectives and techniques used by empirical software

engineering researchers when evaluating the credibility of blog posts written by practitioners [211].

The major finding of this study was that researchers consider a variety of factors when evaluating

credibility, but the four most-consistently reported factors were the clarity of writing and the

reporting (by the practitioner) of empirical data, methods of data collection, and reasoning related

to the post contents. Additionally, Rainer and Williams have curated a set of guidelines similar

to [70] focused only on the use of blog posts [157]. Along with a suggested methodology for

collection, filtering, and analysis the authors also enumerated the benefits & challenges of using

grey literature, prior work, and potential resources.

In the empirical software engineering research landscape, grey literature has been included in a
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limited number of recent “multi-vocal” literature reviews [72,139,158] and at least one exclusively

grey literature review [186]. Further, mining Q&A forums, specifically Stack Overflow, is gaining

popularity; a 2018 literature review identified 166 publications which used Stack Overflow data

from it’s creation to 2016 [8]. Baltes et al. [21] have also released a mining tool and dataset which

expedites the collection process.

To summarize, empirical software engineering researchers recognize the benefits of analyzing grey

literature to understand practitioner’s beliefs, perceptions, and practices and several recent studies

have been published which use the technique exclusively or as part of broader literature reviews.

Further, researchers have realized the need for and subsequently produced guidelines and heuristic

to support future studies.



Chapter 3

Research Design

Motivation: This dissertation is motivated by the disconnect between promotion of security unit

testing and the lack of empirical evidence on how it is and can be applied.

Goal: My goal was to understand the state of practice for security unit testing towards identifying

data-driven, actionable strategies to promote wider adoption and mitigate observed challenges.

Approach: I took an empirical software engineering approach to meet this goal, conducting three

mixed-method studies of artifacts created by practitioners — unit test code, Q&A posts, and grey

(not peer-reviewed) literature. To establish a holistic framework for the state of practice, both

technical and socio-technical (human) factors must be understood. Accordingly, these studies were

designed to use the practitioner artifacts to examine this phenomena through three lenses: Practices

(Chapter 4), Perspectives & Guidelines (Chapter 6), and Pain Points (Chapter 5).

A mixture of qualitative and quantitative methods have been applied to support the development

of data-driven and actionable insights, which requires examining a study subject with breadth and

depth [180]. Automated techniques for content analysis like unsupervised topic modeling make it

feasible to extract quantitative measurements from large-scale datasets (breadth), which can then be

contextualized and expanded (depth) with smaller, qualitative analyses e.g. data coding. Scripting

tools were created to automate mining and processing of test code and Q&A post text.

Chapter Organization: The rest of this chapter provides high-level overview of the three study

designs and the methods used to collect, process, and analyze each type of artifact. Subsequent

chapters synthesize findings from all three studies for broader discussion of the state of practice for

security unit testing.

24
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3.1 Study 1: Grounded Theory Analysis of Unit Test Code

Towards gaining a deeper understanding of how developers test security controls (Chapter 4), I

designed a “classical” grounded theory inductive analysis [77] of 481 authentication unit tests

mined from open source projects. The scope of this study was limited to facilitate the manual

efforts of qualitative analysis, but care was taken to address generalizability by selecting a popular

language (Java), testing framework (JUnit) and security framework (Spring Security [9]).

A grounded theory (GT) [77] is a systematic inductive method for conducting qualitative research

when little is known about a phenomenon of interest, which for this study was formally defined

as unit testing of authentication implementations. Although developers also write unit tests for

other controls (see Chapter 4.1), I chose to focused on authentication for this “deep dive” into

security unit testing practices due to its ubiquity and complexity.

This methodology is driven by emergence of concepts [76,192], i.e. the progressive identification and

integration of concepts from data that lead to discoveries directly supported by empirical evidence

and grounded in the data [192]. The core activities are: identification of topic of interest, theoretical

sampling, open, selective and theoretical data coding, constant comparative analysis, memo writing

and sorting, and finally write up & literature review. Figure 3.1 shows an overview of this process.

Scenario: JWT Filter Invalid Token
Given …
When …
Then …

Metadata:
…

Codes: Token-Authentication,
Filter-Chain,
multiple-assertion,...

Testing Guide
Feature: Token Authentication
Scenario: Token passed to 
Authenticating Servlet Filters using 
HTTP Request
Condition: Token is invalid
Expected Outcome: Authentication Fails

Test Smell Analysis
Assertion Roulette

Open Coding & Memoing

Selective Coding

Theoretical Coding

Memo Sorting

token authentication, filter 
chain, multiple-assertion,…

Codes

Authentication fails when an invalid 
token is passed to an authenticating 
servlet filter

Test Casepublic class JWTFilterTest {
private TokenProvider tokenProvider;
private JWTFilter jwtFilter;

@Before
public void setup() { //… }

@Test
void testJWTFilterInvalidToken()
{ //… }

Constant Comparative Analysis

1

2

3

4

JUnit Test File Gherkin Memo

Figure 3.1: Grounded Theory Approach for Inductive Analysis of Security Unit Tests

Rationale: I chose to apply an inductive reasoning approach rather than the deductive method

of formulating hypotheses at the beginning of the analysis process because the nature of the test

cases (aside from relevance to authentication) was not know in advance. This allows all findings

on what and how developers write tests to emerge from, and be supported by the data.

Additional Details: The unabridged methodology for this study can be found in Appendix A,

including the data collection process and extended explanation of how we conducted these activities.

This work is also published in the Proceedings of the 17th International Conference on Mining

Software Repositories (MSR 2020) as Did You Remember to Test Your Tokens? [82].
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3.2 Study 2: Mixed-Method Analysis of Developer’s Q&A Posts

Towards a broader examination of what security unit tests developers write (Chapter 4.1) and any

challenges they experience doing so (Chapter 5), I designed a mixed-method empirical study on

525 security unit testing Q&A posts mined from Stack Overflow and Security Stack

Exchange. Developers lean on their peers for problem solving help by posting questions to Q&A

websites [142], making them a good source of data regarding security unit testing challenges.

Formally, this study was designed to answer the following research questions:

RQ 1. What are the key discussion topics in Q&A posts related to security unit testing?

To answer this question, the Latent Dirichlet Allocation (LDA) algorithm [32] was used to

conduct an unsupervised topic modeling analysis of the security unit testing Q&A posts. This

approach is often used to study Q&A posts [19, 23, 94, 95, 110, 163, 165, 205, 214, 219] as it enables

latent topics to be extracted from large corpora that would be unreasonable to analyze manually.

Rationale: The motivation for this analysis is twofold. First, prior studies show this approach

is well-suited to identifying key discussion topics related to developer challenges. Second, this

technique can be applied to large textual datasets, meaning the topics can be used to reason about

findings from smaller, qualitative analyses. The topics identified in this study represent commonly-

tested security controls, scenarios, and components.

RQ 2. What pain points do developers experience when writing security unit tests?

To identify potential barriers to shifting security testing left, 50 randomly selected Q&A posts

from the dataset were manually analyzed using data coding [39]. Conducting such in-depth

analysis is critical to achieve the goal of creating an ontology of pain points unique to security-

related tests enriched with sufficient contextual data to drive efforts to address them.

Rationale: The decision to use a subset of the Q&A posts collected was influenced by the rigor

and effort required for manual analysis and designs used in prior work [110, 136] that supplement

topic insights with qualitative study. My approach is further designed to define pain points that are

associated with but not strictly dependent on specific technical contexts to improve generalizability.

Additional Details: The unabridged methodology applied for these analyses can be found in

Appendix B. At the time of writing, this work has been accepted to the upcoming 15th ACM/IEEE

International Symposium on Empirical Software Engineering and Measurement (ESEM 2021).
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3.3 Study 3: Qualitative Analysis of Grey Literature

Towards exploring practitioner’s perspectives and available guidelines for security unit testing

(Chapter 6), I chose to conduct a systematic grey literature review of 51 practitioner-authored

artifacts. Practitioners publish a variety of security-related grey literature, ranging from anecdo-

tal blog posts to expert-curated guides. This makes them a rich source of primary data to study

practitioner’s personal perspectives and examine available guidelines and support resources.

The scope of this study was grey literature that explicitly discusses security unit testing and

was authored by a software practitioner(s). After characterizing the type, tone, and source

of each artifact to maintain the distinction between subjective and objective content throughout

this study, they were manually analyzed via data coding [39].The grey literature collected and

their characteristics are described in Tables 6.1, 6.2, & 6.3 and further discussed in Chapter 6.1.1.

Analysis was guided by the following research questions:

RQ 1. What security unit testing perspectives, recommendations, and experiences

do practitioners share and discuss in grey literature?

Rationale: Practitioners seeking information often ignore peer-reviewed academic work in favor

of grey literature from their peers in the form of white papers, online articles, blog posts, etc. [56].

Further, these sociotechnical insights are important to understand how security unit testing can

be applied and integrated into developer workflows. This should influence the content and form of

future guidelines, tools, and support systems towards this goal.

RQ 2. What guidelines and strategies for conducting or adopting security unit testing

are provided in instructional grey literature?

Rationale: With the rising interest in automated security testing, the need for developer-centric

support systems and workflow integration strategies will also increase. Yet there has been no

prior investigation into the breadth, depth, and content of security unit testing discussions in grey

literature to identify gaps between what information is available and what is needed to empower

developers in their efforts to adopt this technique.

Additional Details: At the time of writing, this work is under preparation for future publication.



Chapter 4

Security Unit Testing in Practice

Automated security testing is an expert-recommended technique for shifting security into developer

workflows [48, 55, 99, 203, 213], including at the unit and integration levels. Thus, it is reasonable

to assume that developers are writing some unit tests for security controls, even if it is not an

explicitly security-minded activity. In this chapter I discuss findings from two studies conducted

to explore what security controls developers test at these levels and how they do so.

4.1 What Security Controls Are Unit Tested?

Insights from Developer’s Security Unit Testing Q&A Posts

To examine what subjects-under-test developers discuss when seeking help on Q&A websites, we

conducted an LDA topic modeling analysis on 525 posts related to security unit testing (Study 2).

As Table 4.1 shows, the resulting topics (except Error) represent the security controls, components

and scenarios that developers commonly test at the unit and integration levels.

Table 4.1: Controls, Components, & Scenarios Discussed in Security Unit Testing Q&A Posts

Topic Label Terms

SSL Certificate “certif”, “ssl”, “api”, “applic”, “error”, “perform”, “respons”, “key”, “server”, “issu”

Encryption “integr”, “code”, “unit”, “encrypt”, “write”, “control”, “call”, “exampl”, “method”, “authent”

Cookie Authentication “user”, “app”, “authent”, “password”, “cooki”, “work”, “load”, “login”, “web”, “fail”

Token Authentication “user”, “applic”, “api”, “sign”, “author”, “token”, “creat”, “integr”, “id”, “work”

Basic Authentication “password”, “connect”, “server”, “usernam”, “like”, “would”, “unit”, “way”, “basic”, “client”

Login “login”, “page”, “valid”, “script”, “work”, “password”, “credenti”, “user”, “usernam”, “pass”

Protected Resource “web”, “authent”, “access”, “ad”, “file”, “like”, “creat”, “key”, “want”, “servic”

Client/Server “jmeter”, “unit”, “certif”, “client”, “token”, “server”, “ad”, “http”, “send”, “valid”

HTTP Request “request”, “servic”, “secur”, “applic”, “log”, “http”, “authent”, “code”, “work”, “would”

Error “error”, “develop”, “work”, “fail”, “gener”, “problem”, “code”, “server”, “follow”, “configur”

28
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Encryption and Authentication were the most-discussed security controls; consistent with the com-

plex and highly customizable nature of authentication [82], distinct topics emerged for three pro-

tocols: Cookie, Token, and Basic. Frequent discussion of concepts related to Login and Protected

Resource indicate these are frequently-tested scenarios imply for access controls. Developers also

frequently discussed HTTP Requests, Client/Server and SSL Certificates in their security testing

posts, suggesting many seek help testing scenarios involve these components. The appearance of

Error as a distinct topic is not surprising considering the data comes from Q&A websites and

implies developers tend to seek help solving problems faced during test execution.

Insights from Grey Literature

In the grey literature reviewed to study perspectives (Study 3), practitioners suggested, instructed,

or demonstrated a variety of Use Cases (Chapter 6.2) for security unit testing. As shown in

Figure 6.7 practitioners often recommend concerns, controls, or scenarios they feel are well-suited

for testing at the unit level. Most use cases were associated with vulnerability unit testing, such

as Input Validation, Buffer Overflow Attacks, and Man-in-the-Middle Attacks. In more formal

guidelines, these type of vulnerability tests are also discussed in the context of using unit tests to

further ensure adherence to preventative secure coding practices [44,169].

I chose to scope my research to functional security unit testing to address the lack of empirically-

based insights into these tests. To this end, additional evidence of what functional security unit

tests are actually written in practice emerged from the more instructional artifacts (Chapter 6.3),

especially tutorials. Interestingly, the subjects-under-test for which actionable guidelines

were shared by practitioners and experts [169] map to five of the topics identified

in the Q&A posts: Authentication, Protected Resources, Login, Encryption, and HTTP Request.

Unfortunately, the sparsity and extremely context-dependent nature (e.g. language,framework,tool)

of these guidelines make it difficult to extract more generalized insights like those in this Chapter.

4.2 How Do Developers Unit Test Authentication?

Insights from Security Unit Test Code

For a deeper exploration of developer’s functional security unit testing practices, a full grounded

theory inductive analysis was performed on 481 real authentication unit test cases mined from open

source (Study 1). The findings from this analysis are presented here as a taxonomy of 53 unique test

cases, representing unique combinations of 17 scenarios, 40 conditions, and 30 expected outcomes

that were evaluated in these tests. The flow diagrams created for each feature (Figures 4.1-4.5)

serve two purposes: to make the purpose of each test case clear by explicitly outlining the key
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elements (scenario, condition, expected outcome) and to emphasize that for each scenario there are

multiple conditions and outcomes that should be evaluated.

Token Authentication

Figure 4.1 shows the 4 scenarios and 16 Unit Test Cases for using tokens to store and authenticate

user credentials. A token stores the user’s principal (e.g. username) & credentials (e.g. password)

during and after authentication. Unit Test Cases for this feature focus on scenarios that occur

during authentication of a token that has already been initialized with user data.
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Figure 4.1: Unit Test Cases for Token Authentication

The first scenario is Token passed to authenticator. Tests for this scenario ensure that authentica-

tion fails when the object responsible for authenticating is given tokens containing four different

types of invalid user data, such as an incorrect password. An additional test checks the ‘happy

path’, where authentication proceeds when the authenticator is given a token with valid data. The

second scenario is Token passed to authenticating Serlvet Filter via HTTP request. Unit test cases

for this scenario verify that when a Filter intercepts and attempts to authenticate incoming HTTP

requests, authentication fails when the request is invalid, such as one without a header or with

an invalid token. Similar to the first scenario, there is an additional test case ensuring that au-

thentication proceed with a valid request. Next is the Application supports multiple authentication

types scenario. Many applications support different types of authentication: Username/Password,

OpenID, OAuth 2.0, etc. For example, consider many websites allow you to login using your

Facebook or Google credentials. The two tests for this scenario verify that when an incompatible
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authenticator attempts authentication or there is no compatible authenticator, then authentication

is not successful. For example, a JAAS authentication token should not be successfully authenti-

cated by an OAuth authenticator. The last scenario is Authentication succeeds. Each of the three

tests have a unique expected outcome reflecting three events that should occur in this scenario:

the user should be recognized as an authenticated user, the Security Context should contain the

authenticated token, and the user’s properties should be stored there correctly.

Token Manipulation

Figure 4.2 shows the five scenarios and 15 test cases related to manipulating tokens used for

authentication. This a distinct feature from Token Authentication that focuses on the state of the

token and it’s stored properties before and after authentication occurs. Token creation, access, and

validation scenarios should be tested with correct and incorrect inputs.
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Figure 4.2: Unit Test Cases for Token Manipulation

The first scenario for this feature is Token initialized with user details. The three tests for this sce-

nario check that initialization fails when one or more user details (such as username or password)

are missing or incorrect, and proceeds when valid details are provided. The Initialization succeeds

test ensures that the user data stored in the newly-initialized token are consistent with the pro-

vided values when retrieved. After initialization but before authenticating, the user data properties

stored in the token should be checked to ensure it was stored correctly and can be retrieved. These

properties should also be verified after Successful authentication, because unlike the companion

scenario for Token Authentication, this test case evaluates consistency of the authenticated token’s
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user data before it is stored in the application’s Security Context, which stores all active security

information. The fourth scenario is Token retrieval attempted from storage mechanism. For au-

thentication implementations with storage mechanisms (e.g. OAuth 2.0), token retrieval should be

tested to ensure that the application validates inputs for token requests. Two test cases check

that no token is returned for requests with invalid user data or for non-existent tokens. A third

test ensures that the application raises an exception for the non-existent case. Finally, a token

should be returned when valid user details are provided in a request for an existing token. The fifth

scenario is Token passed to validator containing five tests; validation should fail when an invalid

(null, empty, unsupported, or partially provided) token is provided and pass for a valid token.

Refresh Token

Figure 4.3 shows the two scenarios and ten test cases related to Refresh tokens, which are specific to

OAuth 2.0 authentication. These tokens are renewals of an original “access” token. This approach

enables tokens to have short expiry dates, and generating new tokens does not require frequent

re-authenticating. Applications supporting this refresh tokens should be tested to ensure that the

properties of new tokens are consistent with the original token and creation/access behaviors only

succeed with valid inputs.
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Figure 4.3: Unit Test Cases for Refresh Tokens

The first scenario is Refresh token requested. Two unit test cases for this scenario ensure that

a token is not returned when the Client ID is incorrect or (for applications using the OpenID

Connect refresh request mechanism) the “offline access scope” parameter is not included in the

access token’s initialization. Another test checks that when request parameters are correct and the

client is configured to allow refresh tokens, a refresh token is returned. Five tests verify that when
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the client receives the requested refresh token, the user properties are consistent with the original

token, the new expiry date is correct, and the token ID is correct.

Login

Figure 4.4 shows the three scenarios and seven unit test cases for the Login feature. Login behavior

should be tested to ensure that the application appropriately responds to successful & unsuccessful

login form submissions and unconventional request behaviors.
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Figure 4.4: Unit Test Cases for Login

The first scenario, Login request initiated is related to form submission and its 3 test cases ensure

that users are directed to the requested resource if login is successful and unsuccessful login results in

the user being denied access and (re-)prompted to authenticate. The second scenario is User directly

requests access to the protected resource. For example, consider an attempt to navigate directly to

your personal Facebook page instead of the homepage. The 3 tests for this scenario ensure than an

authenticated user is granted access and (similar to failed login) unauthenticated users are denied

access and prompted to authenticate. Finally, if Multiple login requests are received for the same

user (e.g. repeated clicks of the ‘submit’ button), the application’s record of authenticated users

should not have a duplicate entry for the user.

Logout

Figure 4.5 shows the three scenarios and four test cases for the Logout feature. These should be

tested to ensure that the application state is updated and the User is redirected appropriately.

The first scenario is Logout triggered by user (e.g. hitting the ‘logout’ button) and 1 test case ensures

that the user is redirected to a designated location that is ‘safe’ for unauthenticated users, such as

a login screen. The second test case is for the User is currently logged in scenario. Applications
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should be expected to automatically trigger a logout if the user’s credentials are no longer valid.

For example, if you change your Facebook password on a computer, you should be automatically

logged out of the mobile app until you re-authenticate with the new password. The last scenario,

Logout complete has 2 tests that check application state: the user’s token should now be invalid

and the Security Context should have a null authentication token.

L
og

ou
t

Scenarios Expected OutcomesConditions

Logout triggered by 
user

User currently 
logged in

Logout is complete

User is redirected

Redirection target is 
designed for 

unauthenticated access 
(e.g. login screen)

User’s credentials are 
no longer valid

User is no longer 
authenticated

Logout is triggered by 
application

Security Context’s 
Authentication Token 

property is null

User’s Token is invalid

Figure 4.5: Unit Test Cases for Logout

4.3 Conclusion

A majority of the authentication scenarios are concerned with tokens and user credentials. We

believe the dominance of these type of tests is due to the design of the Spring Security API, which

provides interfaces for many classes used for the creation and retrieval of user details (e.g. user-

name, password) or token manipulation with OAuth2. Framework users are required to implement

application-specific methods for these interfaces, resulting in the many scenarios from the dataset

focusing on these properties. The complexity of security frameworks and more general implement-

ing security controls, particularly authentication was an influential factor for many of the pain

points identified for security unit testing; see Chapter 5 for details.

4.4 Study Limitations

Here I discuss the limitations of the authentication testing practices study in terms of validity

threats and how we mitigated them. Threats related to the Q&A analysis are found in Chapter 5,

and those related to the grey literature review in Chapter 6. For this study, we applied the core

activities of grounded theory to develop a taxonomy of authentication unit test cases in order to

understand how this security control is tested in practice.
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Qualitative data-coding analyses must consider whether emergent codes accurately represent the

source contents; this was of great importance for this study, as we sought to identify and re-present

test cases in a different format. To mitigate this threat, we closely followed the key principles of

grounded theory to conduct the open, selective, and theoretical coding and consistently reviewed the

process to avoid deviations. Further, the resulting codes were peer reviewed to ensure consistency.

The manual analysis approach used to analyze the of unit test methods can be prone to bias and

errors, which we mitigated with frequent review and discussions of agreement. The coding task

was performed by two researchers with multiple years of experience with the Java programming

language, JUnit, and automated unit testing. Emerging codes were constantly discussed and com-

pared among existing ones to observe commonalities and differences. Feedback and interviews with

2 practitioners and 2 authors of dataset tests, who found the results valuable and important in

practice were conducted (see [82]) to show the study’s practical significance.

This analysis of authentication unit testing practices was based only on open-source projects, with

further limitations being that the source code was implemented using Java and Spring Security

and tested using JUnit. It was important to collect as may tests as possible for such a state of

practice investigation, and mining GitHub repositories is often used for this purpose. To mitigate

generalization issues, the findings extracted from this data are represented in a generic format that

is applicable to other security frameworks. As argued by Wieringa et.al [210], describing the context

of studied cases as we did allows us to “generalize” our findings by analogy; i.e. findings may apply

to other security frameworks that provide an API for implementing token based authentication,

token manipulation, refresh tokens, and user login/logout. To verify that the derived test cases

are generalizable to other Java web security frameworks, documentation was reviewed for JAAS

and Apache Shiro. Only framework-agnostic objects (e.g. Security Context, Servlet Filter) are

identified by name in test cases. Further, including other languages or frameworks would have

minimal impact on the final results, as token authentication follows a generic flow [179] and the

APIs use language-agnostic protocols such as OAuth2 (RFC 6749) and OpenID Connect.



Chapter 5

Security Unit Testing Pain Points

Insights from Developer’s Security Unit Testing Q&A Posts

Security, as a non-functional quality attribute, has traditionally been tested late in the development

lifecycle. In most cases these tests were executed manually on fully-functional system instances by

security experts with no involvement in their design or construction [62]. However, the evolution

of software engineering processes and models towards shifting security left [203] has motivated the

integration of automated security testing into developer workflows.

For developers, security unit testing is a non-traditional application of infrastructure and practices

they are already familiar with, and presently there is little insight into any potential barriers that

would impede explicitly security-focused testing at this level. These challenges must influence the

creation or enhancement of strategies and guidelines, as there is already an observed gap between

available security resources for developers and the tasks they struggle with [2, 3, 136].

5.1 The Unique Pain Points of Writing Security Unit Tests

From qualitative analysis of 50 randomly-selected Q&A posts emerged seven pain points uniquely

experienced by developers when writing unit tests involving security controls. Summarized in

Table 5.1, they span all test phases and affect tests involving the 9 security controls, scenarios, and

components identified by the topic model (Table 4.1) as discussed in Chapter 4.1.

Mocking Security Components

Before individual test methods can be written, a test environment (i.e. fixture) must be setup to

satisfy preconditions that recreate the system state needed for each test scenario. For example,

an active session with an authenticated user must be established to test logout scenarios for a

36
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Table 5.1: An Ontology of Security Unit Testing Pain Points from Q&A Posts

Pain Point Description Example (Excerpts from a Related Question)

Mocking

Security

Components

Developers struggled to correctly design and configure

mocks for complex security components or providers

implemented using third-party security frameworks

(e.g. Spring Security) and had trouble debugging as-

sociated test failures and errors.

”I’m trying to test my spring OAuth2 authoriza-

tion and authentication...using spring’s MockMvc

class...The fundamental issue I’m facing is the fact that

my custom authentication provider is never called

even if I have registered it as one of the authentication

providers used by spring security.” (Post ID: 49079406)

Interacting

with Security

Services and

APIs

Not knowing ”how to test” scenarios that involve dis-

tributed or third-party security services and APIs (e.g.

OpenID, Paypal) can be an obstacle, often due to un-

certainty of what should be simulated.

”I want to write unit test to test my Paypal Express

Checkout integration. I have problem in the step

where buyer authorize payment in Paypal screen...Is

there a way to simulate this action in my test

code?” (Post ID: 19763494)

Creating

User

Fixtures

The unique ways security controls interact with user

data make this task particularly frustrating when test-

ing login and password validation scenarios. Developers

struggle to understand how to design appropriate fix-

tures, and incorrectly configured credentials can lead to

confusing test failures.

”I’ve verified that [fake user fixture] is correctly

being loaded into the test database time and time again.

I can grab the User object...I can verify the password is

correct...The user is active. Yet, invariably, [login

command] FAILS. I’m baffled as to why. I think I’ve

read every single Internet discussion pertaining to this.”

(Post ID: 2619102)

Bypassing

Access

Controls for

Protected

Resources

The procedure for simulating authenticated state or

”skipping” authentication often depends on the system-

under-test’s design and the security tools, libraries, etc.

used to implement these controls. Developers sought

help designing tests and debugging errors and failures

caused by missing or incorrectly-implemented steps.

”I currently have an ASP 5/ASP Core Web API that

I need to integration test with the OWIN Test

Server...I use IdentityServer as the authorization server

in production and I do not want to include the au-

thorization as part of my integration testing...How

can I successfully fake authenticate the user and by-

pass the [Authorize]...?” (Post ID: 37223397)

Designing

Authentication

Flows

Due to the complexity and framework-specific prop-

erties of most authentication control implementations,

developers had a hard time identifying the sequence of

events (”flow”) needed to recreate low-level scenarios

and mock components.

”...I want to login a user...using forms authen-

tication...My question is how do I write a test to

justify this code? Is there a way to check that the

SetAuthCookie method was called with the correct pa-

rameters? Is there any way of injecting a fake/mock

FormsAuthentication? (Post ID: 366388)

Creating

HTTP

Request

Objects

Errors caused by incorrectly configured login routes and

trouble attaching certificates, csrf tokens, or credentials

to request objects were obstacles to testing scenarios in-

volving security controllers and authentication. Usually

developers knew how to do this in production but were

confused about how to do so in their test environment.

”...In writing functional tests for [their API’s user

authentication controller]...I am running in to an

issue testing HTTP Basic auth... I have found nu-

merous blogs that mention [code snippet] should be used to

spoof headers...[authenticate method] does not see the

headers and therefore is returning false even in the

presence of valid credentials. (Post ID: 1165478)

Configuring

Systems for

Test

Environments

Identifying the appropriate system settings, build con-

figurations, etc. that must be adjusted, and the cor-

rect approach to change them, was a painful process

for developers who wanted to use custom or mocked

components. Settings related to certificates and (real)

distributed components were especially difficult.

”I have tried instructing Maven to use a local key-

store, the one that comes with the JRE, in an effort

to keep the expired cert [used by Embedded Glass-

fish] from being used...the expired cert is still being

found in whatever trusted keystore it defaults to.”

(Post ID: 18304232)
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web application. Fixtures are often initialized in setUp methods accessible by test methods to

ensure the consistent system state needed for repeatable tests. As part of this process, it is often

necessary to simulate (i.e. mock) some system components, objects, or functionality. For example,

edit or delete scenarios may be tested with fake users to avoid compromising the confidentiality,

integrity, or availability of real user’s data. Mocking security-related components was the

most frequently-observed pain point in our entire analysis. Attempts to write tests without

mocking (when appropriate) or incorrectly implementing a mock often lead to errors and unexpected

test failures that were difficult to debug. The rationale behind the mocking decisions observed were

not investigated in this study but Spadini et al. [188] suggests developers are often influenced by

application-specific factors and individual preferences. Correctly recreating interactions between

mocked fixtures and “real” system components can also be a frustrating process.

In the example given for this pain point in Table 5.1, the post author is trying to test OAuth-

based authentication and authorization controls that were implemented with the Spring Security

framework. Their test fixture uses the MockMVC class provided by Spring Security to simulate

communication with API endpoints. Despite referencing multiple tutorials and related Q&A posts,

the author can not figure out why their custom authentication provider is not being called in this

context, which causes the given test method to throw a 401 error when executed. None of the three

answers to this question were accepted, but the discussions indicate that the author has missed a

configuration step.

Interacting With Security Services & APIs

A wide variety of services and APIs are available that developers can use for their control implemen-

tations. This is considered a good practice [121] because it reduces the developer’s responsibility for

correctly implementing the actual functionality of complex controls. Instead, developers integrate

them into their code bases and configure mechanisms to enable distributed communication. Many

of the posts examined involved distributed third-party services for authentication like OAuth, Okta,

and OpenSSO, and OpenID. Developers struggled to recreate these interactions within their test

environments. They asked for help constructing tests for scenarios that require accessing and ma-

nipulating session properties, communicating with an application’s web API, and communicating

with servers within test environments. Interactions between services and APIs that are distributed

(outside of the test environment) and/or controlled by a third-party were especially difficult.

Other types of services were also being used in the posts examined; the example post provided

for this pain point in Table 5.1 is asking how to unit test interactions with a Paypal (financial

transactions) API. Based on the question description, the author was attempting to communicate



CHAPTER 5. SECURITY UNIT TESTING PAIN POINTS 39

with the API’s live interface from a sandbox account, but did not know how to simulate buyer

authentication. In this case, the accepted answer suggests to mock the interface instead, and links

to documentation for the sandbox to help.

Creating User Fixtures

Security controls are designed and built into software to protect the confidentiality, integrity, and

availability (CIA) of system services and data. The these controls must therefore be tested to

ensure they have been correctly implemented and data is not compromised when exercised under

different conditions and scenarios. Naturally most security functionality involves manipulating data

related to users, especially credentials. Creating user fixtures may be a painful experience when

testing other components like databases that interact with user data. However, testing security

control behaviors requires unique access to and manipulations of user data, namely credentials,

that warrant its inclusion as a security unit and integration testing pain point. Namely, developers

struggled with user fixtures when testing login and password validation scenarios. There was a clear

lack of awareness that the unique relationship between security controls and users should influence

the design of these fixtures. Posts seeking design recommendations (“How do I test this?”) indicate

developers did not know how to create user objects, and discussed options like creating local user

objects with hard-coded credentials and dynamically initializing fake users to store in a database.

Developers also had a hard time debugging test failures caused by mis-configured user fixtures.

Table 5.1 lists an example question for this pain point that demonstrates these challenges. The

author cannot figure out why a login test for their Django application fails, describing their fixture

setup and the code used to initialize users. The accepted answer points out that this problem can be

traced to incorrect initialization of the user object. The question author incorrectly initialized their

user due to an apparent misunderstanding of how the user creation method handles the credential

parameters. accidentally set their raw password string as the hashed value. Because they did not

realize this method interpreted the password argument as the hashed value, they used the same

string to call the login function. The author allegedly looked for answers elsewhere (“I think I’ve

read every single Internet discussion pertaining to this.”) before posting, but does not disclose

whether they checked documentation for the framework used to implement the login function.

Bypassing Access Controls

An important observation stemming from this pain point is that developers may need to write tests

involving security controls even when they are not the subject-under-test. Protected Resources was

identified as key topic in the full dataset, and in the manual analysis a clear pattern was observed in

which developers sought help designing and debugging tests that attempt to bypass access controls.
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The appropriate procedure to achieve this often depends on the system-under-test’s design and the

security tools, libraries, etc. used in the implementation, and several posts sought help debugging

errors and failures caused by missing or incorrectly-implemented steps.

In the example post for this pain point (Table 5.1), the author asks how to write tests for their

web API that bypass the authorization server used in production. The accepted answer is from the

post author themselves, who seems to have identified the correct configurations needed to do so.

These observations also show pain points can emerge even when developers want to avoid testing

security-related scenarios.

Designing Authentication Flows

The fine-grained nature of unit and integration testing forces developers to recreate the scenarios-

under-test using a similar process applied to implement them, i.e. executing a sequence of state-

ments calling methods or manipulating isolated components. The complexity of security control

implementations made it difficult for developers to identify correct sequences, or “flows” for many

scenarios, but observations made during post analysis indicate developers had an especially hard

time designing authentication flows. This may be influenced by the wide variety of protocols that

can be used, as evidenced by the emergence of Token, Cookie, & Basic Authentication as distinct

key discussion topics in the entire post dataset.

The example post (Table 5.1) for this pain point follows a common (“how do I test this?”) question

pattern, in this case asking how to test form authentication (the protocol was not specified). The

only (accepted) answer provides a code snippet explaining the technology-specific process, but

neither this response or any of the comments link to any resource that would help. This is consistent

with other studies highlighting the need for more example-based [136] security documentation and

usage guidelines [3] for testing at this level.

Creating HTTP Request Objects

HTTP Requests are an essential aspect of distributed interactions which are a significant factor for

web application development, including but not limited to Client/Server communication. Security

functionality is often facilitated through such requests (e.g. submitting a login form) due to the

distributed nature of security controls implementations. Even though request-based communication

is a well-known concept that is not specific to security or testing, developers in the posts analyzed

described challenges that made this task a uniquely painful experience when writing security unit

and integration tests. They had the most trouble constructing requests for scenarios involving

mocked security fixtures; when creating requests for authorization and authentication scenarios,

developers asked how to attach SSL Certificates, credentials, and tokens. Other posts revealed
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difficulty or confusion when selecting the correct request headers and configuring routing behavior.

In the example given for this pain point (Table 5.1), the post author asks for help debugging an

unexpected failure they encountered when testing the Basic Authentication component of their

web API. In the description, the author implies they have tried using recommended methods for

spoofing request headers from “numerous blogs” (not linked) with no success. The only (accepted)

answer provides a solution via code snippet but does not link other resources.

Configuring Systems for Test Environment

Aside from creating test fixtures, other system settings related to build and runtime behavior may

need to be specially configured to correctly recreate the necessary state using a mixture of real and

simulated components. In this context, developers asked questions about how to secure storage of

sensitive data, change settings for system components they have limited access to, configure build

tools to use mocked certificates, and set runtime to trust all certificates. Configuring settings related

to SSL Certificates was difficult for developers whether or not they were using real certificates.

In the example (Table 5.1) given for this pain point the post author is seeking help configuring

their Maven build tool to reference a local keystore rather than the default used in production in

an effort to circumvent an issue they had with their Embedded Glassfish testing server, which was

using an expired certificate.

Common Factors Across Pain Points

Although the 7 pain points identified are distinct, they can co-occur, e.g. Interacting with Security

Services and APIs and Bypassing Access Controls for Protected Resources. All pain points were

influenced by the inherent complexity and customizability of security control designs. The third-

party services, tools, libraries, and frameworks developers rely on to implement them abstract away

much of the functionality, which can compound these negative influences. This is the driving force

behind pain points such as Designing Authentication Flows but play some role in making all of the

tasks in Table 5.1 painful.

5.2 Conclusion

The ubiquity of unit and integration testing means software projects usually already have the

necessary infrastructure and writing these tests is a familiar practice for most developers. Therefore,

shifting security testing to this level can be achieved by helping developers adapt their existing

skills to this context instead of introducing an entirely new tool. It follows that the identified pain

points may be barriers to success and should therefore influence the development of strategies and

guidelines. I make recommendations towards this in Chapter 7.
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5.3 Study Limitations

This section acknowledges the limitations of our Q&A post analysis in terms of threats to the

validity and our mitigations. The topics mentioned herein were discussed in Practices (Chapter 4)

as they represent subjects-under-test in the posts. Topics and pain points were identified by an-

alyzing 525 Q&A posts from Stack Overflow and Security Stack Exchange. No claim is made

that the results are exhaustive, but findings from the quantitative topic model experiment, which

used the entire dataset, were compared to the qualitative findings and considered holistically to

strengthen confidence in their representation and domain or technology dependent factors were

not used to define pain points to ensure generalizability. The limitations of keyword-based meth-

ods of identifying posts related to a specific subject [23] can affect internal validity (i.e. capturing

all available data), and this was mitigated in data collection by sourcing candidate posts from a

security-focused site (SSE) and basing the SO search on a dataset of post IDs already verified as

security related [114]. The keyword based filtering that was used to ensure relevant to unit and

integration testing specifically was manually evaluated for recall and precision. Construct validity

threats were mitigated using techniques from prior work [19, 110, 136, 195], i.e. randomly selecting

50 of the top 200 most-viewed posts.



Chapter 6

Perspectives and Guidelines

Insights from Grey Literature

To understand the state of practice, it is important to investigate human factors that may influence

behavior. For this purpose, grey literature is an excellent source of primary data, as practitioners

freely share their beliefs, expertise, and experiences with their peers through blogs, white pa-

pers, etc. [71,157]. Practitioners also trust and prefer these artifacts over peer-reviewed, academic

literature [56, 155] — hence by reviewing “grey” guidelines and references we can examine the

contents of resources developers are most likely to refer to in practice. We conducted a manual

analysis of 51 grey literature artifacts (Study 3) to explore how security unit testing is discussed

in practice and examine existing resources. To study perspectives, we investigated the contexts in

which security unit testing is discussed and what practitioners perceive as the motivations, limita-

tions, and use cases for integrating this practice into development workflows. We also investigated

how these concepts are presented in instructional resources and guidelines, but the primary focus

for these artifacts was identifying what support was and was not provided for security unit testing.

6.1 Characterization of Practitioner-Authored Grey Literature

Before discussing the findings from this analysis, this section provides a characterization of the grey

literature from which these insights were learned. As mentioned in Chapter 3.3, the artifacts were

first classified by a number of properties, e.g. source, scope, and tone. These attributes are defined

in Tables 6.2 & 6.3, which also show the percentage of artifacts with each value. Figures 6.1-6.5

provide visual representations of these distributions. Each artifact has a unique ID based on this

classification: [Tone][Type][Count]. For example, the first Blended Article has ID BA1 [47]. These

identifiers are used throughout this work. A listing of the grey literature artifacts analyzed for this

study and their individual classifications is provided in Table 6.1.
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Table 6.1: Characterization of Grey Literature Artifacts Discussing Security Unit Testing

ID Year Type Tone Source Scope Purpose Content

BA1 [47] 2015 Article Blended Company Developer Security Testing Recommend Strategies and Tools

BA3 [111] 2005 Article Blended Media Security Unit Testing Persuade to Adopt Use Cases

BA4 [132] 2020 Article Blended Company DevSecOps Recommend Strategies and Tools

BB1 [15] 2018 Blog Blended Company Security Unit Testing Share Experiences Tool Demo

BB11 [134] 2016 Blog Blended Company DevSecOps Recommend Strategies and Tools

BB12 [147] 2019 Blog Blended Personal Security Unit Testing Share Experiences Tutorial

BB13 [164] 2014 Blog Blended Personal Security Unit Testing Share Experiences Tutorial

BB15 [181] 2019 Blog Blended Company DevSecOps Recommend Strategies and Tools

BB17 [198] 2014 Blog Blended Company DevSecOps Recommend Strategies and Tools

BB2 [20] 2014 Blog Blended Company Developer Security Testing Recommend Strategies and Tools

BB4 [45] 2016 Blog Blended Personal Security Unit Testing Share Experiences Tutorial

BB5 [54] 2018 Blog Blended Company Security Unit Testing Recommend Strategies and Tools

BB6 [63] 2020 Blog Blended Company DevSecOps Persuade to Adopt Strategies and Tools

BB7 [100] 2014 Blog Blended Company Security Unit Testing Demonstrate Use Cases

BB8 [102] 2019 Blog Blended Company DevSecOps Recommend Strategies and Tools

BB9 [105] 2019 Blog Blended Company DevSecOps Recommend Strategies and Tools

BBk1 [30] 2016 Book Blended Personal DevSecOps Recommend Strategies and Tools

BBk2 [122] 2006 Book Blended Personal Risk-Based Security Testing Recommend Strategies and Tools

BP1 [104] 2018 Presentation Blended Organization DevSecOps Recommend Strategies and Tools

BP2 [113] 2017 Presentation Blended Company Security Unit Testing Persuade to Adopt Strategies and Tools

BP3 [41] 2019 Presentation Blended Government DevSecOps Recommend Strategies and Tools

BW1 [53] 2020 White Paper Blended Company DevSecOps Demonstrate Use Cases

BW2 [49] 2006 White Paper Blended Organization Security Unit Testing Demonstrate Use Cases

BW3 [107] 2019 White Paper Blended Company Developer Security Testing Persuade to Adopt Strategies and Tools

IA1 [38] 2013 Article Instructional Government Developer Security Testing Recommend Strategies and Tools

IA2 [92] 2013 Article Instructional Media Security Unit Testing Advise Tutorial

IA6 [153] 2015 Article Instructional Organization Security Unit Testing Advise Tutorial

IB1 [7] 2017 Blog Instructional Personal Security Unit Testing Share Experiences Tutorial

IB10 [207] 2017 Blog Instructional Company DevSecOps Recommend Strategies and Tools

IB2 [34] 2017 Blog Instructional Personal DevSecOps Recommend Strategies and Tools

IB3 [58] 2020 Blog Instructional Personal Security Unit Testing Share Experiences Tutorial

IB4 [93] 2007 Blog Instructional Personal Security Unit Testing Share Experiences Tutorial

IB7 [125] 2016 Blog Instructional Company Security Unit Testing Demonstrate Use Cases

IB8 [202] 2020 Blog Instructional Company DevSecOps Recommend Strategies and Tools

IB9 [144] 2020 Blog Instructional Company Security Unit Testing Advise Tutorial

IBk1 [216] 2020 Book Instructional Personal Security Unit Testing Recommend Use Cases

ID1 [66] 2016 Documentation Instructional Organization Security Unit Testing Advise Tutorial

ID2 [86] 2020 Documentation Instructional Company Security Unit Testing Advise Tutorial

ID3 [170] 2020 Documentation Instructional Company Security Unit Testing Advise Tutorial

ID4 [178] 2017 Documentation Instructional Company Security Unit Testing Advise Tutorial

ID5 [177] 2020 Documentation Instructional Organization Security Unit Testing Advise Tutorial

ID6 [96] 2019 Documentation Instructional Company Security Unit Testing Advise Tutorial

IG1 [6] 2019 Guide Instructional Government DevSecOps Advise Strategies and Use Cases

IG3 [44] 2020 Guide Instructional Organization Application Security Testing Advise Strategies and Use Cases

IG6 [169] 2020 Guide Instructional Organization Application Security Testing Advise Strategies and Use Cases

IP1 [60] 2006 Presentation Instructional Company Application Security Testing Demonstrate Strategies and Use Cases

IP2 [88] 2017 Presentation Instructional Company Security Unit Testing Demonstrate Strategies and Use Cases

PA2 [140] 2013 Article Perspective Company DevSecOps Share Experiences Strategies and Tools

PB2 [31] 2014 Blog Perspective Personal Security Unit Testing Demonstrate Use Cases

PB3 [97] 2019 Blog Perspective Company Developer Security Testing Persuade to Adopt Strategies and Tools

PB4 [208] 2017 Blog Perspective Personal Security Unit Testing Share Experiences Strategies and Tools
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6.1.1 Sources, Types, and Tones

This section describes the formats of the grey literature practitioners wrote to share their thoughts,

recommendations, and experiences with security unit testing. The definitions and distributions for

these attributes are shown in Table 6.2.

Table 6.2: Sources, Types, and Tones of Security Unit Testing Grey Literature

Source Count Classification Definition % of Total

Company 27 Work for Profit 52.94%

Personal 12 Individual Representing Themselves 23.53%

Organization 7 Work for Common Goal 13.73%

Government 3 Owned or Funded by Govt. 5.88%

Media 2 Hosts Contributions from Multiple Authors 3.92%

Type Count Classification Definition % of Total

Blog 24 Explicitly Labeled by Source 47.06%

Article 7 ”Other” 13.73%

Documentation 6 Instructions for Using a Product from Owner 11.76%

Presentation 5 Slides or Video, Not a Lecture 9.80%

Book 3 Published and has ISBN 5.88%

Guide 3 Standalone Document, Explicitly Labeled by Source 5.88%

WhitePaper 3 Explicitly Labeled By Source, Industry, Marketing 5.88%

Tone Count Classification Definition % of Total

Blended 24 Mix of Subjective & Objective Content 47.06%

Instructional 23 Objective, Actionable: ”how”, ”tutorial”, ”example” 45.10%

Perspective 4 Subjective, Opinions, Persuasive: ”should”, ”why”, ”experts” 7.84%

An important consideration for this analysis was the need to maintain the distinction between what

practitioners believe and what they actually do. There is sometimes a disconnect between these

two concepts, as evidenced by a prior study that compared empirical measurements of developer’s

(general) unit testing practices and their perceptions of these practices [26]. One of the benefits to

using grey literature to study state of practice is that it is easy to seek out and compare insights

for the same concept through both lenses in multiple contexts. For example, a developer may

share their process for writing security unit tests in the form of a tutorial (e.g. IB4 [93]), or an

example test might be shown as part of a Company’s persuasive argument for adopting the practice

(e.g. BB7 [100]).
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Figure 6.1: Distribution of Grey Literature by Type and Source

Figure 6.2: Distribution of Grey Literature by Tone and Source



CHAPTER 6. PERSPECTIVES AND GUIDELINES 47

Figure 6.3: Distribution of Grey Literature by Tone and Type

Types and Sources of Security Unit Testing Grey Literature

Practitioners share perspectives and guidelines for security unit testing in the form of blogs, articles,

documentation, presentations, books, guides, and white papers. Figure 6.1 shows the distribution

of artifacts by type and source.

Almost half (47.06%) of the literature came from Blogs published by two sources: 62.50% were

written by practitioners representing private Companies. The other nine blog posts were written

by individuals (Personal) representing themselves. Articles and Documentation comprise 25.50% of

the literature and also came predominantly from Companies. Three of the five Presentations were

also given by practitioners representing Companies. None of the three Books or Guides found in

the search came from this source, however. The Guides came from Organizations (OWASP) and in

one case a Government agency, while all of the Books were authored by individuals. Organizations

were the second most-common source of a variety of grey literature, producing at least one of every

type except Books. The most source-diverse artifact type were Articles, a label used when published

on a site not explicitly labeled as a Blog.

Instructional, Perspective, and Blended : Tones of Security Unit Testing GL

The data one is able to extract from an artifact is dependent on its tone, which represents the

objectivity or subjectivity of the artifact’s content and ties back to distinguishing practice from

perception. The three tones defined for this review were Instructional, Perspective, and Blended ;

Figure 6.3 shows the distribution of grey literature by tone and type and Figure 6.2 shows this
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distribution in terms of tone and source.

Subjective Perspectives: Practitioners shared their subjective or opinion-based Perspectives on

security unit testing in four artifacts, labeled as such due to a complete focus on persuading the

reader to do something mixed with a lack of actionable or sourced instruction. Three of these

artifacts were Blog posts, two of which were produced by Companies. From these artifacts we can

learn about practitioner’s personal feelings and challenges in specific technical contexts, but do not

consider content when discussing practices or guidelines.

Objective Instruction: Artifacts with this tone are written to inform the reader of security testing

techniques or guide the reader through applying these techniques in practice. Blogs and Documen-

tation make up about 60% of Instructional grey literature. Documentation, provided by Companies

and Organizations, is naturally very technology-dependent and difficult to use in generalizations

about the state of practice. Practitioners on the other hand used their Personal Blogs to share

experiences and expertise with security unit testing in the form of tutorials, and one Personal Book

provides guidance and example tests for functional security unit testing of firmware without making

persuasive arguments for or against the practice. The analysis of existing guidelines and resources

is based on these artifacts, but we do not examine them for opinions or challenges.

Blending Perspectives with Instruction: Most often, practitioner discussed security unit testing by

using objective facts or data as support for their personal opinions or suggestions. These artifacts

usually take a form similar to ”What is X and Why You Should Do X”. About 47% of the grey

literature discussing security unit testing uses this blended tone, so many of the insights into

practitioner’s perspectives about this practice are based on these artifacts.

6.1.2 Scopes, Purposes, and Content Types

Table 6.3 defines the scope, purpose, and content type attributes used to classify the artifacts and

shows the percentage with each value. Figures 6.6 & 6.5 visualize these distributions in pairs.
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Table 6.3: Scopes, Purposes, and Content Types of of Security Unit Testing Grey Literature

Scope Count Classification Definition % of Total

Security Unit Testing 26 Only topic is security unit testing 50.98%

DevSecOps 16 Multiple topics re: shifting security into DevOps or CI/CD 31.37%

Developer Security Testing 5 Multiple topics re: develoment-phase security testing 9.80%

Application Security Testing 3 Multiple topics re: security testing throughout SDLC 5.88%

Risk-Based Security Testing 1 Multiple topics re: risk-based testing strategies 1.96%

Purpose Count Classification Definition % of Total

Recommend 18 Lacks actionable guidance and/or includes subjective content 35.29%

Advise 12 Gives actionable guidance w/o subjective content 23.53%

Share Experiences 9 Describe how or what to do based on personal experiences 17.65%

Demonstrate 7 Show how to do [content] in a specific context 13.73%

Persuade to Adopt 5 Motivate reader to use [content] using obj. or sub. arguments 9.80%

Content Type Count Classification Definition % of Total

Strategies and Tools 23 Describe best practices or tips and tools 45.10%

Tutorial 15 Step-by-step instructions for completing a specific task 29.41%

Use Cases 7 Contexts or subjects for utilizing a technique, strategy, or tool 13.73%

Strategies and Use Cases 5 Describe best practices or tips and contexts or subjects 9.80%

Tool Demo 1 Demonstration use of a tool to acheive a specific goal 1.96%

Figure 6.4: Distribution of Grey Literature by Scope and Content Type
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Figure 6.5: Distribution of Grey Literature by Content Type and Purpose

Figure 6.6: Distribution of Grey Literature by Scope and Purpose

Purposes: Practitioner’s Aims When Writing Grey Literature

Without asking them (or unless explicitly written) it is not possible to definitively identify a practi-

tioner’s motivation for publishing grey literature. However, an artifact’s purpose, or in other words

what the practitioner intends to achieve by writing it, can be inferred by considering its contents
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in conjunction with the attributes discussed prior. The literature reviewed was written to Advise,

Demonstrate, Persuade to Adopt, Recommend, and Share Experiences.

The most common artifact purpose (35.29%) was to Recommend some type of content to the reader.

The majority (72.22%) of these artifacts had a Blended tone, and the others were Instructional.

The 23.53% of grey literature meant to Advise readers all have Instructional tones. The distinction

between these purposes is how actionable the content is and whether subjective content is included;

for example, a practitioner can Recommend a set of security testing tools based on personal opinions

of their benefits (e.g. BB17 [198]) or Advise readers how to use a tool (e.g. IA2 [92]).

Practitioners also wrote to Share Experiences — for example IB4 [93] is a tutorial based on the

author’s personal experience writing unit tests for a specific authorization attribute. Similar to

the previous two purposes, practitioners also create grey literature to Demonstrate a use case for

a specific type of content. For example, BB7 [100] and PB2 [31] were written to demonstrate how

security unit testing could have prevented previous security exploits in a specific context. Finally,

almost 10% of the grey literature was written to Persuade (readers) to Adopt something. In these

artifacts, practitioners explicitly express their desire to convince the reader to take some action,

with or without actionable suggestions for doing so or evidence for the benefits.

Scopes and Types of Content in Security Unit Testing Grey Literature

Practitioners shared five types or combinations of content in the grey literature reviewed: Strategies

and Tools (45.10%), Tutorials (29.41%), Use Cases (45.10%), Strategies and Use Cases (9.80%),

and one artifact was a Tool Demo. All of the grey literature studied is related to security unit

testing, and 50.98% of the artifacts only discuss this topic. Practitioners seek to Advise or Share

Experiences with security unit testing in these artifacts, usually in the form of a Tutorial. The

remaining grey literature have larger scopes, where security unit testing is one of several topics

of discussion. The main subject of 31.37% of the grey literature was DevSecOps; practitioners

often Recommend security unit testing as one of multiple Strategies and Tools for integrating

security into DevOps workflows. Practitioners also share perspectives on security unit testing when

discussing Strategies, Tools, and Use Cases for Developer Security Testing, Application Security

Testing, and in one case, Risk-Based Security Testing.

In the following sections, I report the results of the qualitative analysis of these grey literature.

An description of the process used to synthesize these insights is given in Chapter 3.3. Section 6.2

focuses on practitioner’s perspectives whereas Section 6.3 is a thorough examination of the action-

able Instruction and Advice regarding security unit testing in existing guidelines.
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6.2 Perspectives on Security Unit Testing

This section focuses on insights that emerged from analyzing literature with Blended and Perspective

tones, i.e. those artifacts written to share personal beliefs and feelings or to provide lightweight

recommendations. Figure 6.7 summarizes these perspectives.

Requires Maintenance
Infrastructure is Framework Dependent

Utility
Focused on Functionality
Focused on Verifying Behaviors
Misses “Tricky Edge Cases”
Misses Security Vulnerabilities

Scope
Adds Workload for Developers
Time Consuming
Developers Lack Motivation
Mocking is Difficult
Requires Sec. & Dev. Collaboration

Pain Points

Limitations

`

Secure Code Review
Validation of Static Analysis Results
Satisfaction of Security Requirements
Flow Analysis

To Support...
Concurrency Defects
Man-in-the-Middle Attacks
Input Validation
Memory Leaks
Buffer Overflow Attacks
Introducing Vulnerabilities in Changes
Late Vulnerability Detection
Security Regression
Security Bugs

To Detect or Prevent...

Use Cases

Workflow Integration Strategies

Document All Probable Scenarios
Use Human-Readable Approach
Include Alternative & Uncommon Scenarios
Include Negative Use Cases
Include Abuse Cases

How to Plan/Write
CI/CD Pipelines
After Every Contribution/Update
After Static Analysis 
Before Code Review
After Development

When to Execute
Make Tests a Distinct Deliverable
Use Negative Test Fails as Success Criteria
Use Coverage as Stop Criteria
Use Existing Automated Test Infrastructure

How to Manage

Benefits

Incremental Application
Any Developer Can Run/Update Tests
No Extra Tools Required
Easy to Change
Easy to Write
Fast Execution
Operates Close to Source Code
Static Execution
Self-Documenting
Unit Testing Already Part of Workflow

Ease of Use
Catch Regressions Early
Inexpensive
Easier & Faster Debugging
Fast Feedback
Increases Developer Buy-In of Security
Increased Security Test Coverage
Increased Traceability to Security Requirements
Prevent Vulnerabilities
More Robust Applications

Project Improvements

Higher Accuracy
Fewer False Negatives
Considers Developer Intent
Lower Overhead

Advantages Over 
Scanning Tools

Commit-Phase Security Testing
Early Vulnerability Detection
Functional Testing of Security Controls
Integrating Security into Workflow

As A Technique For...

Figure 6.7: Practitioner Perspectives on Security Unit Testing
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Although evidence from all three studies in this work suggest that security unit testing is not

widely-adopted, practitioners regard this practice positively in their writing and perceive it as a

technique well-suited for shifting security testing (further) left in the development lifecycle. The

rationales given for these perspectives enumerate or demonstrate its benefits, limitations, and use

cases. Also shared were recommendations for developer-centric strategies to integrating this practice

into automated testing workflows.

Practitioners praised and recommended security unit testing to their peers, sharing a number of

benefits to adopting the practice. They highlight it’s Advantages Over Scanning Tools, describe

attributes contributing to its Ease of Use, and give examples of Project Improvements that can

stem from use of this technique. They seldom shared what they perceived as the limitations,

however those mentioned are related to the Utility, Scope, and perceived Pain Points of security

unit testing. Practitioners also supplement their recommendations and persuasive arguments for

security unit testing with descriptions of appropriate use cases and strategies for integration

into developer workflows. They suggested three types of use case: As A Technique For.. achieving

select security goals, To Support... other security activities or efforts, and To Detect or Prevent...

nine types of functional or vulnerability-based concerns. Their strategic perspectives for workflow

integration concentrate on How to Plan/Write tests, How to Manage security unit test suites, and

When to Execute the tests. These perspectives are presented independently in Figure 6.7, but in

the remainder of this section I describe them in a blended narrative to better summarize them and

preserve relationships between perspectives and rationales.

6.2.1 When, How, & Why Practitioners Want You to Write Security Unit Tests

Practitioners share their perspectives on security unit testing in the context of strategies for

shifting security “left” into the development phase, usually towards securing continuous work-

flows i.e. moving from DevOps to DevSecOps. A few artifacts begin by acknowledging that most

attention in this phase is focused on automated static or dynamic analysis testing tools (SAST/-

DAST), which scan code to identify violations of secure coding standards or known vulnerabilities

(e.g. BB4 [45], BA4 [132], BB13 [164]). However, security unit testing is never suggested as a re-

placement for these tools, regardless of whether its “underdog” status is acknowledged. Instead,

security unit testing is perceived as a complement to scanning tools; one practitioner

cited this when contemplating how unit tests could have prevented a past exploit:

“Static analysis tools are getting better at detecting duplicate code, but programmers

writing unit tests are still the first and most effective line of defense.”

(PB2 [31])
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The context of these discussions is also reflected in the Use Cases suggested for security unit testing

in that they recommend and demonstrate how this technique can be used as a means to

shift security left. They don’t always express this so explicitly, but mention related activities e.g.

functional testing of security controls, integrate security into existing workflows, and commit-phase

security testing. Other use cases take the form of specific vulnerabilities and concerns that are

well-suited for testing at the unit level. Many of the Blended artifacts, which mix technical content

with subjective comments, focus on these examples. However, suggesting that input validation can

be unit tested is not the same as providing actionable guidelines for actually writing such tests.

What practitioners consider as the Benefits of security testing are mostly the same or similar

to those given for automated unit testing in general [184, 194]. In short, practitioner’s main

argument in favor of security unit testing is that it is an adaptation of already-standard

practices and infrastructure, whose benefits can be inherited to improve the security

posture of a project with minimal disruption to developer’s current workflows.

As one practitioner put it,

“The first tactic [for building a DevSecOps pipeline] is weaponizing your unit tests; you

already have them, so why not reuse them?” (BB8 [102])

Some unique benefits emerged as well, particularly when discussing how use of security unit testing

can lead to Project Improvements. For example, in BW2 [49] the author supports their argument

that “security can, and should, be integrated into unit, integration, and acceptance testing” by

claiming that doing so results in “A shorter security testing phase”, “More robust applications...”,

and increased “Developer buy-in to the security process”.

Following the thread of security unit testing as a ready-made technique, the Workflow Integra-

tion Strategies proposed in this literature are based on adapting existing practices and concepts.

Practitioners highlight that, by using automated unit testing infrastructure for security testing,

these tests can be run repeatedly (continuously, even) in the existing CI/CD pipelines after ev-

ery update and even post-development. Of particular interest are the suggestions for planning

and writing security unit tests. Across the literature, practitioners suggest leveraging the closer

relationship between security and development teams in DevOps workflows to support developers

identifying what to test, which is noted as a barrier to security unit testing (BB5 [54]). Several

practitioners shared the perspective that developers are familiar with “happy path” test cases and

using techniques like equivalence partitioning to plan tests. This highlights a key sociotechnical

factor that should be considered when providing adaptation-based guidelines. In fact, practitioners
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(e.g. BA1 [47], BP1 [104]) and experts (e.g. IG6 [169], IB2 [34]) use this sentiment as a rationale for

suggesting that helping developers devise negative, alternative, and abuse cases is a critical part

of adapting this practice. This notion of developer’s focus on positive scenarios and the need for

collaboration with security teams have also been given as reasons why adoption is currently low

(e.g. in BP1 [104]).

As a few practitioners acknowledged, adaptations can also suffer from the same limitations. Most

of the limitations were used to support the use of automated unit testing in conjunction with

SAST/DAST to shift security left. One artifact in particular (PB3 [97]) championed this perspective,

although three other practitioners (BB15 [181], BP1 [104], BP2 [113]) mention them in a more off-

hand way. These practitioners noted that Utility is limited in the sense that unit tests require

maintenance (BP1 [104]) and automated testing frameworks are language and framework dependent

(BP2 [113]).

Personal opinions about developer behavior were sometimes mixed with more objective (or at least,

measurable) comments about pain points in these arguments. For example:

“Most developers agree that unit testing is a good idea but they don’t tend

to do it. They often don’t have the time or motivation to do so and manual unit

testing is time consuming and tedious. Also, unit testing requires stubbing and

mocking which is an added workload. Unit tests are themselves code and add to the

maintenance workload since changes in the unit under test can mean changes to the

unit test code.” (PB3 [97])

Prior work studying human factors of unit testing (Chapter 2.4) support my claim that most of the

Pain Points mentioned are also inherited. However, in the security context developers may require

extra support not provided by those developed to alleviate general unit testing challenges. I dis-

cuss this in-depth in the next Chapter, but note here that the difficulty of mocking security-related

fixtures expressed in these artifacts was a common theme in security unit testing pain points that

emerged from analysis of Q&A posts. Supporting developers in identifying and mitigating these

challenges will require additional research and workflow adaptations; see Chapter 7 for recommen-

dations. The Scope limitations mentioned were vague and not well supported; I report them but

also wish to highlight that many of the strategies given for workflow integration ( e.g. including

negative and abuse cases in test plans) serve to mitigate them. Also, as demonstrated by Mo-

hammadi et al. [128] and Salva and Regainia [171] unit tests can be used for security vulnerability

testing. In fact, while the grey literature promoted both functional and vulnerability tests, the
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latter was mentioned most often.

In the next section, I will describe how security unit testing is represented (or not) in the objective,

instructional security testing material curated by practitioners and expert groups for developers.

6.3 Instruction and Guidelines for Security Unit Testing

Grey literature in which practitioners shared objective or evidence-based guidelines, instructions,

and integration strategies without interjecting personal opinions or experiences were analyzed to

understand in greater detail the breadth and depth of actionable support currently available. Many

of the suggestions and recommendations provided in the artifacts discussed prior are mirrored in

these literature — I reiterate that they are discussed separately to maintain distinction between

opinion and practice as well as identifying concrete actionable guidance.

6.3.1 In Formal Security Testing Guides

We identified only three formal (curated and maintained by experts and organizations) security

testing guides that explicitly discuss security unit testing. These guides enumerate abstract

functional and vulnerability security test cases but do not demonstrate or explain how

to write tests. The OWASP Application Security Verification Standard (ASVS) [44] (IG3 [44]),

a respected resource for security requirements and test cases, says the following about using it as

a guide for security unit testing:

“By building unit and integration tests that test for specific and relevant fuzz

and abuse cases, the application becomes nearly self-verifying with each and every

build. For example, additional tests can be crafted for the test suite for a login controller,

testing the username parameter for common default usernames, account enumeration,

brute forcing, LDAP and SQL injection, and XSS. Similarly, a test on the password

parameter should include common passwords, password length, null byte injection, re-

moving the parameter, XSS, and more.” (IG3, [44, pg.13])

The suggestions given in this statement are a mix of functional and vulnerability test cases. The

authors of this guide also highlight functional testing concerns that are only possible to automate

at the unit and integration level:

“Business logic flaws and access control testing is only possible using human as-

sistance. These should be turned into unit and integration tests.” (IG3, [44, pg.10])
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This is the only place where security unit testing is mentioned explicitly; the test cases/requirements

that comprise the remainder of this guide are provided in natural language. This is without question

a valuable resource for security testing at any level, including unit and integration tests. However,

it is left to the developer to determine how such tests should be designed and implemented as no

examples or concrete guidance is provided.

IG6 is another resource from OWASP, the Web Security Testing Guide (WSTG) [169]; this guide

also mentions security unit testing in its introductory material, suggesting developers use it to

“ensure they are producing secure code” as part of “normal code and unit testing procedures” [169,

pg.6]. Unlike the previous guide, however, an entire page is devoted to discussing strategies for

security unit test planning and workflow integration.

Mirroring perspectives shared by individual practitioners, this guide Advises the following:

“A good practice for developers is to build security test cases as a generic

security test suite that is part of the existing unit testing framework. A

generic security test suite could be derived from previously defined use and misuse

cases to security test functions, methods and classes.” (IG6, [169, pg.30])

The other security unit testing-specific strategies in IG6 [169] relate to verifying adherence to secure

coding guidelines, in associated with vulnerability testing. The test cases in this guide are also

presented in natural language without guidelines or examples for translation to unit test format.

6.3.2 In Informal Guidelines from Practitioners

Section 6.2 described the Perspective (subjective) and the less-objective Blended -toned literature

practitioners shared to Recommend and Persuade readers to adopt Strategies and Tools for shift-

left security. These artifacts provided only high-level discussion and explanation of their subjects.

However, practitioners also publish resources with Instructional or Blended (objective-subjective

mix) tones whose Content Types are primarily Tutorials and Use Cases. The target audience for

these resources are individual developers, to whom they Advise, Demonstrate, and Share Experiences

with writing security unit tests. The topics covered in these informal guidelines are consistent with

those developers most commonly discussed in security unit testing-related Q&A posts (Chapter 4.1):

Authentication, Protected Resources, Login, Encryption, Client/Server, and HTTP Requests.

These resources most commonly took the form of Tutorials, which are the more actionable but less

generalizable than other guidelines due to their technology and context-dependent scopes. Com-

panies and Organizations that produce APIs and frameworks sometimes include Tutorials in of-
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ficial Documentation; for example, ID1 [66] shows how to set up fixtures for unit and integration

tests involving components of the Java security framework Apache Shiro. In Personal Tutorials,

individual practitioners show their peers how they construct functional and vulnerability-detecting

security unit tests.

6.4 Conclusion

To understand how practitioners perceive security unit testing and examine available resources we

conducted a rigorous, we conducted a qualitative analysis of 51 grey literature in which security

unit testing is explicitly discussed. As part of this analysis, we characterized these artifacts to

understand the tone, purpose, etc. in which they were written.

Although analyzed separately, upon review we found that many of the use cases and workflow

integration strategies that practitioners shared in blog posts, articles, etc. were also suggested in

expert-curated guides and other Instructional artifacts. Across all categories of literature reviewed

much of the discourse and recommendations shared were unhelpfully abstract, failing to provide

or direct readers to resources with specific steps that can be taken to realize the activities sug-

gested. The exception to this are the informal guidelines meant to Advise, Demonstrate, and Share

Experiences individual developers through actionable Tutorials and Use Cases. However, these

artifacts focus on test design and construction without much attention to planning and are are

heavily dependent on technological context, making them less generalizable.

With this study we contribute empirical evidence of practitioners’ enthusiasm for more widespread

adoption of security unit testing, especially in DevSecOps and continuous security contexts. Ad-

mittedly, relative to the large volume of literature discussing secure development and automated

testing, the number of artifacts that explicitly discuss the intersection of these practices is lim-

ited. This is, however, a reflection of the ad-hoc adoption observed in my Practices study and

the overall obscurity of this technique. Nonetheless, examining these literature allowed us to learn

practitioner’s security unit testing beliefs, opinions, recommendations, and experiences in their own

words. This data is a valuable baseline for future empirical studies and these perspectives form the

basis of the integration strategies and recommendations to promote I provide in Chapter 7.

6.5 Study Limitations

This section discusses the limitations of using grey literature to study perspectives and resources,

including threats to validity and our efforts to mitigate them.
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We identified 51 artifacts that directly and explicitly refer to security unit testing. This small

sample size, relative to the body of literature available for security and unit testing in general,

and the high variability of quality, content, and format in grey literature [71] could affect how

representative the findings are (external validity) to general practice. There is also the threat

of selection bias in which some valid literature may have been missed in the search process. To

mitigate these threats we followed guidelines prescribed for grey literature reviews in software

engineering [70, 71, 156, 157]: research questions and exclusion criteria were established prior to

the search, and as stopping criteria we used theoretical saturation (no new concepts emerged) and

when conducting the search. Further, in these artifacts practitioners discussed security unit testing

in a wide variety of contexts as described in Section 6.1.1. We are therefore confident that this

collection is sufficiently representative of practitioner’s publicly-shared perspectives on the subject

of security unit testing, even if some literature was somehow missed by our search parameters.

Following this line of thought, construct validity could be threatened by our choice to use grey

literature to study perspectives rather than other common methods i.e. interviews and surveys.

This was a deliberate decision made to make a novel contribution to existing empirical evidence of

security and testing perspectives. As discussed in Chapters 2.4 and 2.4, there are a large number

of interview and survey-based academic studies on developer’s perspectives on security and testing.

As security unit testing lies at the intersection of these concepts many of these study’s findings

also apply. Grey literature review is recommended in empirical software engineering guidelines as

a equally valid technique for collecting perspectives and insights on poorly understood and under-

studied concepts, although care must be taken to avoid biases or misrepresentation [71].

Figure 6.8 from Garousi et al.’s guidelines for using GL in software engineering research [70], lists

conditions where inclusion is appropriate; this work meets conditions 2, 3, 6, and 7.V. Garousi et al. Information and Software Technology 106 (2019) 101–121 
Table 4 Questions to decide whether to include the GL in software engineering reviews. 

# Question Possible answers MLR-AutoTest 
1 Is the subject “complex ” and not solvable by considering only the formal literature? Yes/No Yes 2 Is there a lack of volume or quality of evidence, or a lack of consensus of outcome measurement in the formal literature? Yes/No Yes 3 Is the contextual information important to the subject under study? Yes/No Yes 4 Is it the goal to validate or corroborate scientific outcomes with practical experiences? Yes/No Yes 5 Is it the goal to challenge assumptions or falsify results from practice using academic research or vice versa? Yes/No Yes 6 Would a synthesis of insights and evidence from the industrial and academic community be useful to one or even both communities? Yes/No Yes 7 Is there a large volume of practitioner sources indicating high practitioner interest in a topic? Yes/No Yes 

Note: One or more “yes ” responses suggest inclusion of GL . 
Based on [81] and [17] and our experience, we present our synthe- sized decision aid in Table 4 . Note that, one or more “yes ” responses suggest the inclusion of GL. Items 1 to 5 are adopted from prior sources [17, 81] , while items 6 and 7 are added based on our own experience in conducting MLRs. For example, item #3 originally [17, 81] was: “Is the context important to the outcome or to implementing intervention? ”. We have adopted it as shown in Table 4 . It is increasingly discussed in the SE community that “contextual ” information (e.g., what approach works for whom, where, when, and why?) [86-89] are critical for most of SE research topics and shall be carefully considered. Since GL sometimes provide contextual information, including them and conducting a MLR would be important. It is true that question 3 would (almost) always be yes for most SE topics, but we still would like to keep it in the list of questions, in case. In Table 4 , we also apply the checklist of [81] to our running MLR example (MLR-AutoTest) as an “a-posteriori ” analysis. While some of the seven criteria in this list may seem subjective, we think that a team of researchers can assess each aspect objectively. For MLR-AutoTest, the sum of “Yes ” answers is seven as all items have “Yes ” answers. The larger the sum the higher is the need for conducting an MLR on that topic. 
• Guideline 3: The decision whether to include the GL in a re- view study and to conduct an MLR study (instead of a conven- tional SLR) should be made systematically using a well-defined set of criteria/questions (e.g., using the criteria in Table 4 ). 

4.3. Setting the goal and raising the research questions 
The SLR guidelines of Kitchenham and Charters [22] state that spec- ifying the RQs is the most important part of any systematic review. To make the connection among the review’s goal, research (review) ques- tions (RQs) as well as the metrics to collect in a more structured and traceable way, we have often made use of the Goal-Question-Metric (GQM) methodology [90] in our previous SM, SLR and MLR studies [34–36, 64–68] . In fact, the RQs drive the entire review by affecting the following aspects directly: 

• The search process must identify primary studies that address the RQs 
• The data extraction process must extract the data items needed to answer the RQs 
• The data analysis (synthesis) phase must synthesize the data in such a way that the RQs are properly answered Table 5 shows the RQs raised in the example MLR. MLR-AutoTest raised four RQs and several sub-RQs under some of the top-level RQs. This style was also applied in many other SM and SLR studies to group the RQs in categories. RQs should also match specific needs of the target audience. For example, in the planning phase of the MLR-AutoTest, we paid close at- tention to ensure the usefulness of that MLR for its intended audience (practitioners) by raising RQs which would benefit them, e.g., what fac- tors should be considered for the when/what questions? 

Table 5 The RQs raised in the example MLR (MLR-AutoTest). 
MLR study RQs 
MLR-AutoTest 

• RQ 1-Mapping of sources by contribution and research-method types: 
○ RQ 1.1- How many studies present methods, techniques, tools, models, metrics, or processes for the when/what to automate questions? 
○ RQ 1.2- What type of research methods have been used in the studies in this area? 

• RQ 2-What factors are considered in the when/what questions? 
• RQ 3- What tools have been proposed to support the when/what questions? 
• RQ 4- What are attributes of those systems and projects? 

○ RQ 4.1- How many software systems or projects under analysis have been used in each source? 
○ RQ 4.2- What are the domains of the software systems or projects under analysis that have been studied in the sources (e.g., embedded, safety-critical, and control software)? 
○ RQ 4.3- What types of measurements, in the context of the software systems under analysis, to support the when/what questions have been provided? 

Another important criteria in raising RQs is to ensure that they are as objective and measurable as possible. Open-ended and exploratory RQs are okay but RQs should not be fuzzy or vague. 

• Guideline 4: Based on your research goal and target audience, define the research (or “review ”) questions (RQs) in a way to (1) clearly relate to and systematically address the review goal, (2) match specific needs of the target audience, and (3) be as objective and measurable as possible. 

Based on our own experience, it would also be beneficial to be explicit about the proper type of the raised RQs. Easterbrook et al. [91] provide a classification of RQ types that we used to classify a total of 267 RQs studied in a pool of 101 literature reviews in software testing [29] . The adopted RQ classification scheme [91] and examples RQs from the reviewed studies in [29] are shown in Table 6 . The findings of the study [29] showed that, in its pool of studies, descriptive-classification RQs were the most popular by large margin. The study [29] further reported that there is a shortage or lack of RQs in types towards the bottom of the classification scheme. For example, among all the studies, no single RQ of type Causality-Comparative Interaction or Design was raised. 
109 

Figure 6.8: Garousi et al.’s Criteria for Including Grey Literature in SE Reviews [70]

Future work, however, should include interview or survey studies to to evaluate interventions or sup-
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port systems that stem from the findings of this study and to corroborate with private perspectives

not shared in grey literature.

The internal validity of the work may be threatened by the analysis process used to identify and

interpret concepts from the literature. To mitigate this, we followed prior work in using open and

axial coding techniques [39,70,158], which is well-suited for exploring poorly understood phenomena

and ensures findings are grounded in, and can be linked directly to, the data. Myself and another

researcher independently analyzed the literature and applied codes as they emerged, guided by

a broad set of categories to ensure the insights needed to answer the research questions were

collected. We then conducted two rounds of review and agreement discussion to ensure that our

interpretations were consistent and valid.



Chapter 7

Discussion

In this section I summarize the state of practice for security unit testing, and make recommendations

for supporting and empowering developer’s efforts to integrate this technique into their workflows.

This includes immediately actionable strategies as well as a roadmap for future research.

7.1 The State of Practice for Security Unit Testing

It is clear that security unit testing is, in practice, an ad-hoc and informal activity.

Relative to what is available for security testing and automated testing at-large, artifacts that

explicitly discuss this technique are sparse. This could in part be explained by the omission of

security unit testing as a formal activity in secure process models and frameworks like the Microsoft

Secure Development Lifecycle (SDL) that practitioners use to integrate security across the software

development lifecycle. In its place are recommendations for vulnerability-focused automated static

and dynamic scanning tools, and as a result these models and other guidelines fail to encourage

practitioners to write security tests during unit and integration testing.

Practitioners hail security unit testing as a means to reduce workflow interruptions

in shift-left efforts because the infrastructure and procedures are already part of con-

tinuous development pipelines. In their writing, they outline benefits, limitations, use cases,

and suggest workflow integration strategies in the context of DevSecOps and continuous security.

Many of their persuasive arguments are based on benefits that are inherited from the general prac-

tice of automated unit testing, e.g. speed, low cost, easier debugging, earlier defect detection etc..

Both subjective and objective literature focus more on vulnerability testing than functional security

control testing although both are discussed and recommended.

61
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Our analysis of real security unit tests and Q&A posts are evidence that developers do write these

tests, even if they do so in an ad-hoc manner or without a security testing mindset. From all

artifacts collected, we observed a common set of security controls, components, and scenarios as

subjects-under-test, with authentication being the primary control tested at this level.

Developers experience seven pain points unique to writing security-related unit tests

associated with these test subjects, and we found that even generic unit testing tasks like Creating

HTTP Request Objects and Creating User Fixtures can be unexpectedly difficult due to the unique

properties of security control implementations.

A fair number of guidelines, which we consider any artifact that provides actionable and/or ob-

jective content, support or recommend security unit testing. We compared the Content Types

and Purposes of formal guides (e.g. IG3, [44]) that are curated and maintained by authorities

and expert groups, and informal guides (e.g. IB1 [7]) produced by individuals). Formal guide-

lines provide abstract workflow integration strategies, context-agnostic requirements, and generic

test cases making them a good resource for team-level activities like security requirements, de-

sign, and test planning. Informal guidelines, usually written as Tutorials, provide developers with

narrowly-scoped but actionable instructions for designing and writing security unit tests. Although

some Companies include fixture setup Tutorials for unit testing within their security API Docu-

mentation (e.g. ID1 [66]), it does not appear sufficient to help developers mitigate associated pain

points. This is consistent with prior work examining the contents of developer-oriented security

resources [5] and the usability of cryptography APIs [1,136], which recommend security API owners

provide more task and example-based documentation.

Neither formal or informal guidelines provide concrete support to help developers

implement unit test methods for security requirements or abstract test cases. Unit

testing is unique to other types of software testing in that developers implement these tests as

executable methods using xUnit frameworks and the system’s own source code. To write tests for

other functional requirements, developers identify their underlying scenarios, actions, and expected

outcomes (see Chapter 2.4), which can be traced back to the code. However, this familiar practice

can be challenging to adapt for security requirements without adequate security expertise or guid-

ance. Consider, for example, this test case for weak passwords that is recommended in the OWASP

Web Security Testing Guide IG6 [169, pg.159]: “Is the user prevented from using his username or

other account information (such as first or last name) in the password?” — to write a unit test for

this case, the developer must map this description to the preconditions (scenario), code-under-test

(action), and the appropriate behavior (expected outcome) as they are represented in the source

code. To implement security controls, developers rely heavily on third-party frameworks and APIs
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that can exacerbate the obscurity and complexity of a control’s inherent design and make this

process more difficult than it is for other functionality. This problem motivated us to leverage our

taxonomy of authentication test cases (Chapter 4.1) to produce a unit testing guide formatted to

relieve developers of this cognitive burden [82].

7.2 Recommendations

The following recommendations are, in part, a culmination of strategies, guidelines, recommenda-

tions etc. practitioners have shared over the last decade which until now, have not been compiled in

a formal matter. I supplement these with novel insights that emerged from analyzing by-products

of security unit testing efforts, i.e. test code and Q&A posts. The following are steps that practi-

tioners can take immediately to begin integrating this technique into their workflows and promote

wider adoption. In the next section I discuss future work towards developing support systems and

pain point mitigations that would further empower developers in writing security unit tests.

7.2.1 Who Should Follow This Advice?

In an ideal world security unit testing would be a part of every development project. However

these recommendations are given under non-ideal conditions as it can not be said that that every

software project meets the prerequisites, i.e. (1) uses a secure development model and (2) has made

automated unit testing a formal part of the development workflow. It follows that projects without

these practices in place likely are not or could not be motivated to adopt security unit testing.

The teams in the best position to adopt security unit testing today are those that

follow DevOps, DevSecOps, or continuous testing models and have already

committed to shift security into their development workflows.

I make the distinction about prior commitment to emphasize that motivating teams to shift secu-

rity left in general is out of scope for this work. As long as these conditions are met, this

technique can be adopted regardless of a team or project’s current security posture.

They will already have the automated testing infrastructure in place, so learning how to design

and write security-related tests would truly be an adaptation of existing workflows. Introducing a

testing framework at the same time would pose a greater interruption to developer’s current prac-

tices, which can negatively impact productivity [36]. Practitioner’s enthusiasm for shifting security

left, especially in continuous workflows, is evident from the recent “boom” in activity around the

development of frameworks, guidelines, tools, etc. for DevSecOps. It is therefore reasonable to
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assert that now is the ideal time to “close the gap” between perception and practice

for security unit testing by introducing it through these initiatives.

In the next section I discuss how the secure development community can promote and support

more formal adoption of security unit testing in this context and recommend workflow integration

strategies for software organizations and teams.

7.2.2 Strategies for Formalization and Workflow Integration

The findings of my work suggests that the choice to write security unit tests is an ad hoc decision

made by individual developers rather than a formal one made at the team level. Developers may

be demotivated to adopt security practices by a lack of organizational and process support [14], so

formalization is a key element of my strategy for integration and promotion. The following actions

can be take immediately to address this at the community and team levels.

Add Security Unit Testing to SSDLC Frameworks, Especially for DevSecOps

Security unit testing is praised by practitioners and listed as a recommended practice in many

in expert-curated test guides. However, it has been consistently omitted from secure software

development lifecycle (SSDLC) frameworks and models produced by respected authorities such as

the Microsoft SDL [99], OWASP SAMM [55], and the NIST SSDF [57]. These resources outline

security activities for each phase of the development lifecycle and help teams track their adoption

progress by mapping these actions to maturity levels. Scoping to abstract lifecycle phases and

keeping activity suggestions broad (e.g. “use scanning tools during development”) facilitates more

widespread applicability. However, prior studies on DevOps adoption, namely the seminal work of

Forsgren et al. [64,65], provide evidence that practitioners also value support provided by context-

aware models and frameworks for evaluating progress and measuring effectiveness of new practices.

To better leverage and integrate with the unique infrastructure and workflows inherent of DevOps,

these authoritative groups have begun development of DevSecOps frameworks. Unfortunately,

security unit testing is not presently a recommended activity in the Microsoft Secure DevOps

framework 1, the NIST DevSecOps framework 2, or OWASP’s DevSecOps Guidelines 3 and Maturity

Model 4. Given the reasonable emphasis on techniques for vulnerability detection and prevention in

secure development discourse, it makes sense that these frameworks recommend SAST and DAST

1https://www.microsoft.com/en-us/securityengineering/devsecops
2https://csrc.nist.gov/Projects/devsecops
3https://owasp.org/www-project-devsecops-guideline/
4https://owasp.org/www-project-devsecops-maturity-model/

https://www.microsoft.com/en-us/securityengineering/devsecops
https://csrc.nist.gov/Projects/devsecops
https://owasp.org/www-project-devsecops-guideline/
https://owasp.org/www-project-devsecops-maturity-model/
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tools over security unit testing. Although vulnerability prevention is one of the recommended use

cases for security unit testing in grey literature and the focus of academic efforts in this area [129,

171] it appears that many practitioners have not considered unit tests for non-functional purposes.

This is reflected in these framework’s failure to formally encourage functional security testing, for

which security unit testing is uniquely well-suited. Therefore, I recommend adding security

unit testing to DevSecOps frameworks as a functional security testing activity to

formally motivate and support adoption.

Empower Your Developers to Apply a “Security Mindset” to Unit Testing

The primary benefit and motivator for this technique as cited by practitioners is that it can be con-

ducted by adapting the existing infrastructure used for automated testing. Accordingly workflow

integration strategies for security unit testing are based on helping developers write

and design tests with a security mindset . However, the burden of obtaining and maintain

expert-level security knowledge in addition to their other priorities should not be placed solely or

immediately on developers. This can pose a challenge to shift-left efforts, as teams must find an

appropriate strategy to reconcile this with the desire to include security-related activities in devel-

oper’s workflows. The key to solving this problem is to Avoid placing the burden of security

expertise immediately or solely on developers by empowering them to develop these

skills over time. Teams and organizations should provide training, encourage collaboration with

security champions, and engage developers in other security activities e.g. threat modeling.

A common perspective amongst practitioners is that developers tend to plan tests only for “happy

paths”; to adapt this practice, these efforts should focus on helping developers identify nega-

tive, alternative, abuse, misuse, etc. cases they should test for security controls. This is

applicable for testing both functional security scenarios (e.g. login with invalid token) and vulner-

abilities (e.g. buffer overflow). However, I recommend teams who already apply static or dynamic

analysis (SAST/DAST) concentrate on supporting functional security test planning at the unit

level — these tools are better suited for vulnerability testing because they can look for the same

pattern across the entire system, whereas a unit test would have to be written for each associated

component. The pain point analysis in Chapter 5 also indicates that developers sometimes write

unit tests involving security controls outside of a security context, for example when testing pro-

tected resources. Hence, another approach to consider is one that would help developers design

and write security-related unit tests regardless of motivation. As a complement to my previous

recommendation, I suggest that all test cases that will evaluate or include security-related

code should be explicitly identified and documented during test planning. This activity

would force the team to actively and preemptively think about which security-related classes and
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components will be involved, and reveal points of uncertainty or potential complexity. Security li-

aisons can then help developers design the appropriate fixtures and test environments. Over time,

teams can leverage the products of these collaborations to create reusable and project-

specific test plans, security test suites and fixtures classes. Conducting these activities as a

team is a step towards motivating developers with organizational support; making these resources

available to developers and involving them in the creation process are further steps towards empow-

ering developers with the expertise needed for independent efforts. I do acknowledge that security

resource and personnel availability will vary across teams and organizations, and that this type

of communication can be difficult to acheive at-scale [29]. To truly follow DevSecOps principles

a security champion [11, 25, 29,185,206] should be identified and made available to developers but

in any case independent and collaborative test planning efforts can leverage external

references such as the OWASP Application Security Verification Standard (IG3 [44])

to identify test cases and requirements.

7.2.3 Summary & Important Considerations

In this section I described strategies for promoting security unit testing as a formal DevSecOps

practice that are grounded in practitioner’s perspectives and existing guidelines. Following their

top-down approach, I first call upon security authorities to include functional security unit testing

as a development-phase activity in Secure Development Lifecycle (SSDLC) models and frameworks

as a means of encouraging organizational-level adoption support. Next, I recommend teams lever-

age the DevOps principle of cross-team (Dev + Sec) communication to help their developers apply

a “security mindset” to adapt their current unit testing procedures and acquire security expertise

that will empower them to work more independently over time. These are important first steps

designed to shift from ad-hoc to formalized and sustained adoption by providing developers with

organizational support (extrinsic motivation) and empowering them to increase their own security

expertise (intrinsic motivation) through active participation in security activities. However these

data-driven recommendations reflect the community’s general lack of attention to-

wards accommodating developer’s existing priorities and mitigating pain points they

may experience beyond test planning. This is likely a consequence of not understanding the

current state-of practice (addressed by this work); for example we are the first to identify and de-

fine pain points unique to writing security-related unit tests. In the next section, I outline research

directions and community efforts that must be undertaken to develop such support systems.
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7.3 A Roadmap to Supporting Developer-Driven Security Testing

The previous section discussed strategies to support integrating security unit testing into developer

workflows, with a strong focus on promoting formalized adoption and helping developers apply

a “security mindset” to identify test cases. Beyond test case planning, developers will need

new support systems to overcome unique pain points associated with designing and

constructing security unit tests. At this stage in the testing lifecycle, developers need support

systems that can help them recreate fine-grained security functionality (e.g. password validation)

and configure fixtures and mocks for security components (e.g. fake certificates).

The research directions and support system recommendations described herein focus on creating

reference material and automated tools to help developers independently overcome security unit

testing pain points. In Section 7.2.2 I suggested that over time, consistent developer-security

collaborations for test planning could produce reusable resources such as generic security test

fixtures. However, the resource-availability assumption underlying this recommendation impacts

its widespread applicability and places it in the realm of what is possible under “ideal conditions”.

To remain pragmatic, this section makes no assumptions about the availability or involvement of

security personnel. In any case, unit test design and construction require in-depth knowledge of

the system under test’s implementation details that security personnel should not be expected to

maintain, just as developers are not expected to hold expert-level security knowledge.

7.3.1 Towards Actionable Guidelines for Test Design & Construction

Challenges inherent to developer testing are well studied, and many resources enumerating best

practices, patterns, etc. for avoiding them are available [108,127]. Likewise, there are guidelines and

best practices for security testing such as those provided by OWASP [44,169]. Security unit testing

lies at the intersection of these concepts, but presents unique challenges. I call upon researchers

and practitioners to work together towards creating more developer-centric security

testing guidelines, using the following directions as a starting point. The extensive supply

of security APIs, tools, frameworks etc. available and the ever-evolving nature of security make

independent efforts impractical, hence a community effort is needed for sustained improvement.

Task & Example-Based Documentation for Security APIs, Frameworks, Tools:

Contextual Support for Recreating Security Scenarios in Test Environments

The lack of actionable guidelines to support developers in adapting unit testing practices for security

are consistent with those from Acar et al.’s investigations into developer-centric security resources [3,

5]: testing guides focused on post-deployment techniques, support for ‘automated testing’ tools was
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restricted to static analyzers or fuzzers, and guidelines fall short in helping developers use security

libraries and APIs. Developers generally lack the security expertise needed to implement

complex security controls and instead follow the best practice [121] of using those

provided by third-party APIs and frameworks, making their usability an important

attribute. Prior work on the usability of cryptography APIs found that developers struggle to use

them for implementation tasks and want more task and example-based documentation [1, 136].

Our study of security unit testing pain points (Chapter 5) suggests that developers also experi-

ence unique pain points when trying to write unit and integration tests with security APIs and

frameworks. A consequence of relying on them to implement security controls is that fine-grained

implementation details are abstracted from the developer. This obfuscation, combined with the

inherent complexity of APIs themselves, were underlying factors for five of the seven pain points

identified, most notably Mocking Security Components, Designing Authentication Flows, and In-

teracting With (Distributed) Security Services & APIs in test environments. Although some

efforts have been made to provide support for these challenges, available resources

still do not appear to sufficiently cover or address all the needs of developers. We first

found evidence of this gap in our Q&A post analysis wherein we observed that documentation wikis

and tool repository links (which may also contain documentation) were frequently added by post

authors to indicate the resources they have checked before turning to their peers. Spring Security

framework goes as far as providing libraries with additional components to support fixture design

with corresponding example-based documentation to help developers use it [189], but our review

found that developers still struggled to design test fixtures using these components; see the first

pain point description in Table 5.1 for an example. In our grey literature review (Chapter 6.3)

we noted that the topics and use cases described in the instructive material shared by practition-

ers match the subjects under test in these posts, further evidence of developer’s reliance on peer

support to guide them when more official sources fall short [2, 3].

The overall lack of task or example-based documentation for security APIs & frame-

works and their limited use case coverage negatively affect developer’s experiences

using them for implementation and testing purposes. I encourage practitioners to continue

sharing tutorials and demonstrations for challenges they have overcome, but the community should

not rely on these to support developers due to the ad-hoc manner in which they are shared and

updated. Instead, we can begin to work towards providing developers with the support

they need by focusing on adding concrete solutions for the most troublesome scenar-

ios and tasks to official documentation, using the pain points defined this work as a

starting point. Our study was the first to provide such a examination of documentation needs
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and challenges for security unit testing, but more research should be also conducted to extend and

further contextualize our pain point ontology, including looking beyond Q&A posts.

Guides and Resources for Developer-Driven Security Testing:

Support for Realizing Abstract Test Cases as Executable Test Methods

Unit tests 5 are unique from other testing techniques because they are implemented (with the help

of automated testing frameworks) as executable methods that directly exercise specific components

of the system-under-test to recreate and evaluate fine-grained system behaviors. Identifying the

correct components, sequence of method calls, etc. to realize a test case requires in-depth knowledge

of the system-under-test’s design and it’s implementation. The abstraction resulting from using

third-party security frameworks, tools, and APIs can make this task even more difficult in addition

to the previously-discussed challenges this introduces to security unit testing. As such developers

may find it difficult to receive the help they need post-planning from security personnel

whose may lack sufficient depth-of-knowledge for control implementations.

The need to trace test cases and requirements to specific source components and lines of code for

unit testing can impact the usability of existing security references that present these only in nat-

ural language. This choice is appropriate to ensure these guides can be used regardless of technical

context, and I do not suggest trying to augment these with unit testing details. Instead, new

references that supplement the authoritative security guides (e.g. [44,162,169]) already

embraced by the community could provide developer-centric support to apply these

guidelines in continuous security and DevSecOps contexts. Future work should explore

different approaches and directions for identifying and curating the appropriate content as well as

evaluating format and delivery mechanisms. One of the first barriers to security unit testing is

knowing what can be tested at this level. From our novel investigation of current practices (Chap-

ter 4.1) we know that developers already write tests for at least nine security controls, components,

and scenarios (Table 4.1) and our review of grey literature (Chapter 6) indicates this is consistent

with those suggested as appropriate use cases by expert groups and independent practitioners. The

OWASP Application Security Verification Standard [44] is a good starting point to derive formally-

defined test cases and requirements that are unit-testable given its indications of categories that

are well or poorly suited to this level of testing.

Many existing resources understandably orient their requirement and test recommendations to-

wards detecting vulnerabilities and secure coding enforcement, so to ”close the gaps” between

5As noted in Chapter 2.3.3, this work uses the term unit tests to represent unit and integration-level tests,

security or otherwise, that are written by developers using automated testing frameworks (e.g. JUnit).
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recommendations and guidelines, new references are also needed to help developers

write functional unit tests for security controls. We took the initiative on creating func-

tional security unit testing guidelines by publishing one for token authentication [82] 6. This guide

presents the taxonomy of test cases that emerged from our grounded theory analysis of unit test

code (Chapter 4.1) in a format that relieves developers of the cognitive burden of identifying the

“unit test format” for each test cases. Specifically we pair visual flow diagrams (Figures 4.1- 4.5)

with natural language test case descriptions and additional contextual information. An excerpt

from the guide showing tests for Refresh Tokens is given in Figure 7.1.

Tests for Refresh Tokens (OAuth 2.0) 
Applications that allow authentication via OAuth 2.0 should verify that refresh token properties are 
correct and creation/access behaviors succeed only for valid inputs. 
 

 
 
Scenario: Refresh token requested 
 

Requests for refresh tokens should be tested to ensure that they are only when allowed: 
• When the OpenID Connect refresh request mechanism is implemented, and the 

offline_access scope is not included in the access token's initialization, a Refresh Token 
should not be returned when requested 

• If the client is configured to allow refresh tokens, then the access token should return a valid 
refresh token when requested 

• If a refresh token is requested but the Client ID is incorrect, an Exception (e.g. 
InvalidTokenException) should be thrown 

 
Scenario: Refresh token returned 
 

Properties of the refresh token should be verified for consistency with the original access token: 
• The refreshed token should contain the same principal 
• The refreshed token should contain the same credentials 
• The refreshed token's expiration date should be consistent with configured validity limits 
• When an access token is provided to retrieve a refresh token from a token store, the returned 

token ID is correct 

 
 Figure 7.1: Excerpt from our Token Authentication Unit Test Guide

To evaluate the usefulness and accuracy of the testing guide, we sought feedback from practitioners.

We corresponded with 4 practitioners from two groups: unit test authors, who wrote unit tests we

analyzed in this study and external practitioners, who did not contribute to our data set but have

6The full guide is publicly available for download and viewing at https://github.com/daniellegonzalez/

awesome-security-unit-testing/blob/main/TokenAuthentication-UnitTestGuide.pdf

https://github.com/daniellegonzalez/awesome-security-unit-testing/blob/main/TokenAuthentication-UnitTestGuide.pdf
https://github.com/daniellegonzalez/awesome-security-unit-testing/blob/main/TokenAuthentication-UnitTestGuide.pdf
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experience with implementing authentication in Java. Overall, practitioners consider the token

authentication unit testing guide to be useful, and none of the included test cases were marked as

invalid. The guide’s narrow scope and some missing test cases were the only significant drawbacks

brought to our attention. Both unit test authors, who are on opposite ends of the authentication

experience spectrum, felt the guide was useful. Their main concern was, in practice, developers plan

testing from the coverage perspective. However, one felt they would benefit from using the guide

for retrospective or later-stage testing — this insight was influential to the research directions for

automated support I describe in the next section. We incorporated most of the minor formatting

suggestions and missing test cases into the final version of the test guide. More details about this

evaluation are available in the published version of this work [82].

7.3.2 Towards Automated Tools that Recognize Developer’s Needs & Priorities

In this section, I will propose two new research directions towards creating automated support

systems to improve the security unit testing experience by further empowering developers to inde-

pendently and actively engage in their team’s security efforts while limiting workflow interruptions.

Both are designed to accommodate developer’s pre-existing priorities and responsibilities, keeping

them in control of when and to what degree these tools are applied. Human (i.e. sociotechnical)

factors can influence adoption of security practices, as evidenced by the vast body of research ex-

ploring developer’s experiences and challenges. A “developers as users” mindset can be applied to

examine the usability of support systems from the developer perspective [3,33,112], or explorations

and interventions can be studied to further explore “developer centered security” [146,193].

Insights into the perspectives and challenges that influence developer’s security behavior (discussed

further in Chapter 2.3.4) are highly relevant to the automation-heavy strategies proposed to shift

security left, which often focus on introducing new tools (e.g. scanners) to continuous development

pipelines. Practitioners are enthusiastic about security unit testing because it can be applied by

adapting existing practices without adding new tools. Nonetheless, existing tools and frameworks

for automated unit testing can potentially be augmented or supplemented to address some of the

unique challenges of adapting this technique for security. It follows that as security unit testing lies

at the intersection of secure development and functional unit testing, it is important to understand

and account for the effect that developer’s prior experiences with secure development and unit

testing may have on their response to these efforts. My work towards establishing a holistic,

empirical understanding of the state of practice for security unit testing takes this a step further

by allowing factors unique to this technique to be incorporated as well.
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Help Me (By) Mock(ing) This:

Automated Generation of Test Fixtures for Security Controls

Action research for unit testing is mostly centered on removing the responsibility from developers

though the automatic generation of test cases, oracles, and inputs. However, the findings from

this study indicate developers would benefit from automated tools that can guide them through the

process of designing security unit tests. Research could examine potential strategies for automatic

generation of security fixtures (especially mocks), which was a major pain point observed in this

study. Some language-based automated solutions have been proposed (e.g. [61]), but the unique

challenges associated with testing security controls make them a prime candidate for focused efforts.

Code Coverage Now, Security Coverage Later:

Test Suite Auditors as On-Demand Support for Test Management and Planning

To verify the findings from our grounded theory analysis of security unit test code and evaluate

the applicability of our resulting token authentication unit testing guide we sought feedback from

practitioners, some of whom authored tests that we analyzed. Developer’s unit testing practices

are motivated and driven by code coverage — our evaluation indicates that developer’s priori-

tization of meeting coverage goals may influence their interest in adding security unit

testing to their workflow. Even when asked about their thought processes when writing secu-

rity unit tests that we analyzed, the interviewed developers insisted that they were only trying to

achieve higher coverage overall and were not using a “security mindset”. After reviewing our

testing guide, practitioner’s feedback suggested that they would find it useful for tak-

ing a retroactive look at how well their security controls were tested. I consider this one

of the most promising directions for automated security unit testing support, because it is satisfies

many of the criteria I have outlined throughout this chapter for successful adoption. Namely, it

accounts for developer’s existing priorities and motivations, provides support for security expertise,

and would keep them engaged and in control of the process. Future work should investigate

potential solutions for aggregating and updating the data needed to develop a system

to compare the contents of a unit test suite to a checklist of test cases that should be

included to achieve high coverage of security-related scenarios and behaviors. These

efforts can draw from work and advances made in related areas such as automated test case gen-

eration, API misuse detection, and developer-centric security tooling. As demonstrated by similar

efforts for security vulnerability testing [159,160,161,171,172,173], tools and resources designed for

Behavior-Driven Development can help maintain the needed trace links and provide a standardized

and human-readable format for automatic maintenance of test case knowledge bases.
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Conclusions

This work provides a comprehensive examination on the state of practice for security unit testing,

an adaptive technique for shifting security testing into development workflows using existing in-

frastructure. I have examined this phenomena through three practitioner-centric lenses: Practices

(what they do), Perspectives and Guidelines (what/how they think it should be done), and Pain

Points (what challenges/barriers they face) to incorporate technical and socio-technical factors.

I have applied an empirical, mixed method approach to design three studies in which we ana-

lyzed primary, practitioner-authored artifacts (unit test code, Q&A posts, and grey literature) to

understand the state of practice from their point-of-view and reconcile beliefs with actual behavior.

This empirical understanding of current practices and barriers is a necessary precondition to devel-

oping strategies for workflow integration, providing developers with the right resources to address

barriers, and to conduct further action research towards additional supportive interventions. To this

end, I have highlighted gaps in existing guidelines that should be addressed to support unit-level

functional security testing, taking the initiative on these efforts by producing a token authentica-

tion unit test guide built from the taxonomy of text cases that emerged from the analysis of unit

test code. I have also made data-driven recommendations for immediately-applicable strategies

to empower developers to write these tests as well as highlighting research directions to further

mitigate barriers for which no support currently exists.
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Appendix A

Grounded Theory Analysis of

Security Unit Test Code

This appendix provides the unabridged methodology for the unit test code analysis to supple-

ment the description given in Chapter 3.1. Data Collection and Processing

To study our phenomena of interest, we needed access to authentication unit tests from real projects.

Therefore, we targeted data sources that were freely accessible to us. In this context, we focused

on open source projects that implemented authentication and have corresponding unit tests. To

facilitate the use of an automated approach to mine a large and rich dataset for our analysis, we

set the following narrowing criteria for language, authentication framework, and testing framework:

the projects must be implemented in Java, use the Spring Security framework for authentication,

and unit tests must be written using the JUnit framework. Java was selected because it is a pop-

ular choice for back-end development of web applications [103]. The Spring Security framework is

a very popular framework used to implement authentication in Java, and JUnit is the mainstream

testing framework for Java projects [83,103].

The final data set used for analysis consisted of 481 test methods from 125 unique test files,

mined from 53 projects. These tests were collected using the following procedure:

Data Source: We selected GitHub as a repository source. GHTorrent [87] and the REAPER

tool [133] were used to automatically identify, clone, and filter 100,000 randomly selected Java

projects from GitHub. The data set was filtered for empty, duplicate, and inactive (no commits

or recent updates) repositories using metadata from GitHub API: size, commits, and date of last
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push. The test ratio metric from REAPER was used to discard projects with no JUnit tests, leaving

33,090 candidate projects. An automated script was developed to parse these projects and verify

use of Spring Security, the target authentication framework.

Detecting Use of Spring Security: A package-search approach was used to identify projects that used

Spring Security to implement authentication. To curate a list of relevant packages, we reviewed sev-

eral forms of documentation provided by Spring: an overview of the framework’s architecture [174],

the comprehensive reference document [9], and the API documentation [190]. First, we identified

objects required to implement authentication such as an Authentication Provider. These were

used as a starting point to find the root packages providing each component in the API. Next, we

reviewed all root packages in the API documentation to identify packages for flexible components

such as the numerous authentication mechanisms (e.g. LDAP, SAML) Spring Security can integrate

with. We excluded packages related to sessions to prevent extending the phenomena under study

to session management. Table A.1 lists the final set of 18 root packages with descriptions.

Identifying Relevant JUnit Test Files Included in REAPER’s repository analysis was a list of

JUnit test files for each project. Our script used these lists and our authentication package list

to automatically search each test file for imports of one or more of these packages. We addedan

additional rule that test files importing the Security Context Holder or User Details packages should

also import at least one more from the list, because these packages are also used to implement

authorization. We randomly selected 50 resulting test files to ensure there were no false positives.

This search identified 229 test files from 150 projects.

Duplicate Removal: A major component GitHub’s contribution workflow is forking, or making a

copy, of a repository. Forks in our data set were identified from the GHTorrent metadata. If forks

were discovered, the original repository was kept and all forks were discarded. Forks containing

unique and relevant tests would have been kept, but this situation did not arise.

We also discovered that several projects in the dataset were built using the JHipster development

platform [199]. This platform helps developers build highly customizable web applications with a

Spring-based server side. JHipster also provides a test suite for the code it generates, that includes

relevant authentication tests. In our dataset, we found 81 projects that only included the provided

test file without adding additional related tests to this file or others (as detected by our tools). To

avoid adding duplicates of the same test method to our dataset, we excluded these projects but

included the original file with the authentication test cases from the JHipster [199] repository.

Identifying Relevant JUnit Test Methods: Next, we built another tool that utilized the Java-
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Table A.1: Spring Security API Packages Used To Detect JUnit Tests For Authentication

Package Name Description From API Documentation

security.authentication Core classes and interfaces related to user authentication

security.core.authentication Represents tokens for authentication requests or an authen-

ticated principal

security.saml Allows combination of SAML 2.0 and authentication & fed-

eration mechanisms in a single application

security.kerberos An extension for using Kerberos concepts with Spring

security.oauth Support for using Spring Security with OAuth (1a)

security.oauth2 Support for using Spring Security with OAuth 2.0

security.config.oauth2 Core classes and interfaces providing support for OAuth 2.0

security.config.authentication Parsing of Authentication Manager and related elements

security.openid Authenticates standard web browser users via OpenID

security.cas.authentication An Authentication Provider that can process CAS service

& proxy tickets

security.cas.web.authentication Authentication processing mechanisms that allow submit-

ting credentials using CAS

security.web.authentication Authentication processing mechanisms that allow submit-

ting credentials using various protocols

security.web.server.authentication Authentication mechanisms specific to server authentication

security.config.annotation.authentication Interface for operating on a SecurityBuilder that creates a

ProviderManager

security.config.annotation.web.configurers.oauth2 Contains AbstractHttpConfigurers for OAuth 2.0

security.ldap.authentication Spring Security’s LDAP module

security.core.context.SecurityContextHolder Associates a given SecurityContext with the current execu-

tion thread

security.core.userdetails The standard interfaces for implementing user data DAOs

Parser [59] Symbol Solver to identify individual test methods within these files that used objects

from the imported packages. This AST parser uses the test file and the source project to identify

the package of origin for an object. Our tool was configured to record all test methods that had

at least one object originating from one of the 18 root packages on our list, with the additional

rule for the Security Context Holder and User Details packages from test file selection. To verify

the automated identification (see Section A), we performed a manual validation of 50 randomly

selected results, and discarded test methods that did not use packages from our candidate set. Our

final dataset contained 481 unique test methods.
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Grounded Theory Analysis

The 7 core activities of “classic” grounded theory were performed on the unit test methods as

follows. Figure 3.1 in Chapter 3.1 (Study Design) also provides an overview of this process.

Open Coding & Memoing: Two authors independently performed open coding [76, 192] by anno-

tating the 481 test methods in our data set with organically-derived codes reflecting concepts and

themes present in the test (cf. ¬ in Figure 3.1). Authors reviewed each test method and its setup

& helper methods. Accurately identifying themes and concepts requires thorough understanding of

each test method. Prior work in test summarization [218] has shown that test comprehension can

be achieved by identifying a test’s context : precondition(s) & setup; action: manipulation(s) of the

subject-under-test; and expected outcome: desired state and result(s) after performing the action.

We captured these concepts in memos formatted as Gherkin scenarios [183]. Gherkin is used in

behavior-driven development to capture scenarios in a non-technical & readable format. Test com-

ponents are represented using three keywords: Given (context), When (action), & Then (expected

outcome). The And keyword is used when a components spans multiple statements in a test. When

an existing memo fully represented a new test method, no new memo was created to avoid duplicate

memos. However, the test was still annotated with codes. We attached the codes as well as more

data in a custom Metadata section in each scenario (cf. bottom block in Listing A.2), which is not

part of the official Gherkin syntax.

Listing A.1 shows a unit test testJWTFilterInvalidtoken() that verifies whether a request con-

taining an invalid JSON Web token (JWT) is filtered and no authentication occurs. Also shown are

setup and helper methods from the test class that provide additional context. Listing A.2 shows

the test’s corresponding memo in the Gherkin syntax. The Token-Authentication and Filter-Chain

codes represent core authentication concepts in the test.

Constant Comparative Analysis: In open coding, concepts are organically extracted from the data

rather than assigned from an existing set. Initial codes are often broad, but additional analysis will

reveal more specific patterns and concepts. To accommodate this in our analysis we incorporated

constant comparative analysis [77] into the open coding process. Test methods & memos were

constantly compared to identify reoccurring themes and note variations. New codes were constantly

compared against the existing set to merge codes that were too fine-grained (not enough data points)

and refine overly-broad codes. For example, one initial code was tokens, which are objects used

to store and authenticate user credentials. As more test methods were reviewed this code was

refined into 3 new codes representing these actions: verify token properties, token authentication,

and refresh token. Another code (verify user properties) was merged with verify token properties
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public class JWTFilterTest {

private TokenProvider tokenProvider;

private JWTFilter jwtFilter;

@Before

public void setup() {

JHipsterProperties jHipsterProperties = new JHipsterProperties ();

tokenProvider = new TokenProvider(jHipsterProperties);

ReflectionTestUtils.setField(tokenProvider , "secretKey", "test secret");

ReflectionTestUtils.setField(tokenProvider , "tokenValidityInMilliseconds",

60000);

jwtFilter = new JWTFilter(tokenProvider);

SecurityContextHolder.getContext ().setAuthentication(null);

}

@Test

public void testJWTFilterInvalidToken () throws Exception {

String jwt = "wrong_jwt";

MockHttpServletRequest request = new MockHttpServletRequest ();

request.addHeader(JWTConfigurer.AUTHORIZATION_HEADER , "Bearer " + jwt);

request.setRequestURI("/api/test");

MockHttpServletResponse response = new MockHttpServletResponse ();

MockFilterChain filterChain = new MockFilterChain ();

jwtFilter.doFilter(request , response , filterChain);

assertThat(response.getStatus ()).isEqualTo(HttpStatus.OK.value());

assertThat(SecurityContextHolder.getContext ().getAuthentication ()).isNull ();

}

// ..

}

Listing A.1 An example JUnit test from the data set with corresponding setup & helper methods.

Scenario: JWT Filter Invalid Token

Given A new JHipster Properties Object is initialized

And A Token Provider is initialized with the JHipster Properties Object

And The Token Provider ’s secretKey attribute is initialized

And The Token Provider ’s tokenValidityInMilliseconds attribute is initialized

And A new JWT Filter is initialized with the Token Provider

And The Security Context ’s Authentication Token Object is set to null

And A "wrong" String representation of a token is created

And A new Mock HTTP Servlet Request is initialized and its Authorization

header is set with the wrong String Token

And the Mock HTTP Servlet Request ’s Request URI is set

And A new Mock HTTP Servlet Response is initialized

And A new Mock Filter Chain is initialized

When The JWT FIlter ’s doFilter method is called with the Mock HTTP Servlet

Request , Mock HTTP Servlet Response , and Mock Filter Chain

Then The Status of the HTTP Servlet Response is 200

And The Security Context ’s Authentication property is null

Metadata:

ProjectName: loja

FileName: JWTFilterTest.java

TestName: JWTFilterInvalidToken

Codes: Token-Authentication, Filter-Chain, multiple-assertion

Listing A.2 Sample memo & codes for the test in Listing A.1.
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because further analysis revealed that in all cases, these properties were retrieved from a token.

Selective Coding: After all the unit tests were annotated, codes were compared to review concepts

and themes discovered. During selective coding [77] deeper analysis was conducted to refine the

identified concepts (cf.  in Figure 3.1). For each code, all relevant unit test methods were ana-

lyzed in-depth to capture all unique combinations of test contexts, actions, conditions, & expected

outcomes) associated with the code. Constant comparative analysis was applied to modify existing

codes to incorporate these combinations. For example, verify token properties was refined into

four new codes: input validation during token initialization, pre-authentication verification of token

properties, post-authentication verification of token properties, and token validation fails with in-

correct input. As selective coding progressed, multiple tests sharing the same unique combination

of these elements were iteratively merged into natural language test cases. The resulting collection

of unique authentication test cases grouped by code form the basis for the study’s conclusions.

Memo Sorting: During the selective coding phase, the memos related to authentication concepts

were merged to form natural language test cases. These and the test smell memos were then sorted

by concept to relate test cases to corresponding smells (cf. ® in Figure 3.1).

Theoretical Coding: To connect related codes and construct a taxonomy of token authentication unit

tests (cf. ¯ in Figure 3.1), theoretical coding [77] was then performed. Concepts were integrated and

organized using a hierarchical coding paradigm. High-level authentication concepts were structures

into features such as Token Manipulation and Login. Concepts reflecting unique combinations

of context and action related to each feature were structured as scenarios. For example, the

Token Authentication feature has four scenarios: token passed to authenticator, token passed to

authenticating servlet filter via HTTP request, application supports multiple authentication types,

and authentication succeeds. In this paradigm, test cases within a feature can share a scenario and

an expected outcome, but have a unique condition. For instance, 4 test cases in the token passed

to authenticator scenario have the expected outcome authentication fails. Each test case reflects a

unique condition that may cause this: (1) the token value is empty, (2) the token is expired, (3) one

or more user details are missing, and (4) one or more user details are incorrect. These condition

can cause failures or defects if not handled correctly, and all should be verified.This hierarchy was

adapted from the concept of equivalence class partitions used in test planning [37,145].

Write-up and Literature Review: The final two activities are the reporting of results and a formal

review of related prior work. The literature review is conducted as the last step to avoid biasing

the analysis. All findings from this study are reported Chapter 4 as part of a broader discussion of

security unit testing in practice.



Appendix B

Mixed-Method Analysis of

Developer’s Q&A Posts

This appendix provides the unabridged methodology for the Q&A post study that was omitted

from the research design overview in Chapter 3.2 for readability.

Data Collection and Processing

For this work, we mined Q&A posts from Stack Overflow (SO) and Security Stack Exchange (SSE).

As both sites are on the same platform, we were able to mine all the post data using the Stack

Exchange API and Stack Exchange Data Explorer.

Mining Candidate Q&A Posts: One challenge that studies using Q&A data must address is searching

and filtering for relevant posts. The standard approach used in prior work is to perform tag and

content-based filtering, where keywords for the study topic are used to identify relevant posts [8,124].

To build a candidate set of posts from Stack Overflow, we used Le et al. [114]’s dataset of 97,051

security-related posts as our initial search space. Their collection is the largest to-date, and was

curated using a novel automated learning framework designed to mitigate limitations of keyword

and supervised filtering approaches. It was not necessary to filter post content for security relevance

when searching Security Stack Exchange. Instead, the criteria used to identify candidate posts from

this site was relevance to unit and integration testing. A query for posts with ‘unit’ and ‘integrat‘

in their title, tags, or body yielded a candidate set of 1,310 posts.

Identifying Relevant Posts: Candidate posts from both sources then underwent a second filtering.

The goal was to extract the SO posts specifically related to security unit testing and confirm

relevance of the SSE posts. The title, body, and tags of each post were scanned using an automated
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script to look for the following keywords: “unit-test”,“unittest”, “unit-tests”, “unittesting”, “unit-

testing”, “unit test”, “unit testing”, “unit tests”, “testing”, “JUnit”, “pyunit”, “phpunit”, “tdd”,

“bdd”, “integration-test”, “integration-testing”, “integration test”, “integration testing”. These

terms were chosen after manual experimentation with tag-based search on Stack Overflow. The

three ‘xUnit’ terms (“JUnit”, “pyunit”, “phpunit”) were included because they were recommended

by Stack Overflow as popular tags related to “unit-test”. Several variations of the same terms are

also considered to ensure that matches in tags (which use ‘-’ for multiple terms) and title/body text

would be captured. Regular expressions were used for the search to ensure that sub-strings were not

considered matches. When a post has one or more matches, a record was also created mapping the

matches to the field (e.g. title) they were found in. After manually reviewing preliminary results,

posts that only had “test” or “testing” keywords in one of the three fields were removed because

they were usually not related to unit or integration testing.

Final Dataset: After discarding posts unrelated to security unit testing, the dataset consisted of

512 posts from Stack Overflow and 513 from Security Stack Exchange. As Security Stack Exchange

focuses on information security, the small number of posts about testing at the unit and integration

level from that source was expected. Combined, the dataset used for this analysis consisted

of 525 security unit testing Q&A posts. Posts were created between 2008 and 2020, and 71%

have an accepted answer. Table B.1 shows statistics for post scores, views, and answer counts.

Table B.1: Descriptive Statistics for Q&A Posts

Score # Views # Answers

Mean 2.09 1,673.24 1.43

Median 1 688 1

Mode 0 110 1

Range 87 38,317 9

Minimum -4 17 0

Maximum 83 38,334 9

Quantitative Analysis: Unsupervised Topic Modeling

The LDA topic modeling algorithm [32] was used to identify key discussion topics in the 525 security

unit and integration testing Q&A posts mined from Stack Overflow and Security Stack Exchange.

Text Pre-Processing The following pre-processing pipeline was used to transform the textual

contents of the Q&A posts for use in the topic modeling analysis:
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Remove Links, Code Snippets and HTML Tags: The first step was removing these from the text, as

this information is not relevant to the topic model [23]. To extract links, the text was searched for

the <a> tag. Code snippets were identified by searching for the <code> tag, and similarly general

HTML tags (e.g. <p>, <a>, <br/>) were also removed to reduce noise.

Remove Punctuation and Tokenize Text: After removing all punctuation characters, sentences

were tokenized into lists of terms. The default approach is to isolate each individual word, but it

is also possible to allow groups of words (i.e. n-grams) as a single term. During parameter tuning

(described later in this Section), bigrams (e.g. “unit test”) and trigrams (e.g. “Latent Dirichlet

Allocation”) were considered, but the optimal configuration used single terms.

Remove Stop Words: This step removes overly-common words and numbers, known as stop words,

which are core elements of the text language (e.g.“the”, “a”,“in”) and thus do not provide topic

content. Without this step, the high frequency of such terms would bias the model.

Normalize Terms: Terms were normalized to their canonical forms for consistency. This ensures that

multiple forms of the same term (e.g. “configure”,“configuring”, “configuration”) are not considered

unique terms. There are two approaches for normalization, lemmatization and stemming. Each

produces a different result for the same word; for example “configuring” would be lemmatized as

“configure” and stemmed to “configur”. Both approaches were considered during tuning to account

for influences on model performance and output readability; ultimately stemming was used.

Document Frequency Filtering: After normalization, frequency outliers were removed to reduce

noise. This is based on the notion of removing the least and most frequently occurring terms, i.e.

“extreme terms” that appear in less than X documents or in more that Y % of all documents.

Several values for X and Y were tested during parameter tuning.

Final Transformation: Finally, the list of terms was transformed into a ‘bag of words’ vector [221].

Parameter Tuning: Like the ‘number of topics’ parameter, some choices made during pre-

processing can influence the performance of the model. Thus, to determine the optimal config-

uration for this data, we compared the performance of LDA models with 246 unique value combi-

nations for the following ‘parameters’: term frequency filtering, term normalization, n-grams, and

number of topics. Table B.2 describes these parameters, the values tested for each, and the optimal

values selected after evaluation. For this work the gensim [222] implementation of LDA was used;

the default values for the alpha and beta (word and topic density) hyper-parameters were found

to be sufficient in preliminary experiments. Standard coherence and perplexity metrics [137, 191]

were used to identify the optimal configuration for the dataset; these measures indicate the perfor-
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mance of an LDA model in terms of its ability to identify distinct but understandable topics. The

optimal configuration removed terms found in less than 50 posts or more than 60% of all posts,

used stemming to normalize terms, considered only 1-grams, and generated 10 topics.

Table B.2: Parameters Tuned for Q&A Post Topic Model (LDA)

Name Description Tested Values Best

Frequency Filter Remove “extreme terms” that

appear in below B documents

or above A% of all documents

Below 10 & Above 25%,

Below 20 & Above 40%,

Below 20 & Above 50%,

Below 20 & Above 60%,

Below 50 & Above 40%,

Below 50 & Above 50%,

Below 50 & Above 60%,

None (no filtering)

Below 50 & Above 60%

Transform Normalize terms by trimming

to their canonical form

Stemming,

Lemmatization

Stemming

N-Grams Length of multi-word (N)

phrases to consider as 1 term

1, 2, 3 1

Topics Number of topics 5, 10, 15, 20, 25 10

Topic Labeling: Topics generated by an LDA model are represented by a list of terms and their

frequency (weight) within the topic. Labels were assigned for each topic manually; two authors

independently reviewed terms for each topic to derive label sets. These were compared, merged

and revised until full agreement was reached.

Qualitative Pain Point Analysis: Open Coding

Consistent with other studies applying qualitative methods to analyze Q&A posts [19,110,136,195],

50 posts were randomly selected from the ‘top’ 200 posts after sorting by number of views and

score. Open coding [176] was applied for this analysis to guide the identification and synthesis of

concepts related to the context, problem, and subject under test for each post. This was performed

independently by two authors, who then discussed and merged the code sets collaboratively to

ensure agreement. Codes were sorted, grouped, and combined as needed until a set of distinct pain

points emerged that captured all of the challenges observed.
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