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Abstract

We explore different gauge choices in the moving puncture formulation in order to improve

the accuracy of a linear momentum measure evaluated on the horizon of the remnant black

hole produced by the merger of a binary. In particular, motivated by the study of gauges in

which the damping term in the shift mη takes on a constant value, we design a gauge via a

variable shift parameter mη(~r(t)). This parameter takes a low value asymptotically, 1/mi,

and then takes on a value of approximately 2 at the final hole horizon. This η then follows the

remnant black hole as it moves due to its net recoil velocity. We find that this choice keeps the

accuracy of the binary evolution. Furthermore, if the asymptotic value of the parameter mη

is chosen about or below 1.0, it produces more accurate results for the recoil velocity than the

corresponding evaluation of the radiated linear momentum at infinity, for typical numerical

resolutions.

Detailed studies of an unequal mass q = m1/m2 = 1/3 nonspinning binary are pro-

vided and then verified for other mass ratios (q = 1/2, 1/5) and spinning (q = 1) binary

black hole mergers. We also use a position and black hole mass dependent damping term,

η[~x1(t), ~x2(t),m1,m2], in the shift evolution, rather than a constant or conformal-factor de-

pendent choice. We have found that this substantially reduces noise generation at the start

of the numerical integration and keeps the numerical grid stable around both black holes,

allowing for more accuracy with lower resolutions. We test our choices for this gauge in detail

in a case study of a binary with a 7:1 mass ratio, and then use 15:1 and 32:1 binaries for a

convergence study. Finally, we apply our new gauge to a 64:1 binary and a 128:1 binary to

well cover the comparable and small mass ratio regimes.

Finally, we perform an analytic study of two nonspinning binary systems with q = 1 and

q = 1/3 that use Brill-Lindquist initial data. These spacetimes are rotated into a frame that

is transverse, with two of the five Weyl scalars vanishing, and quasi-Kinnersley. We derive

and evaluate an index D that, when used in conjunction with the Baker-Campanelli Specialty

index S, allows us to analyze and classify these spacetimes into Petrov types in the strong-field

regime and between the black holes.

ii



Also included is an appendix to be utilized in conjunction with the RIT Catalog. It

provides scripts for generation of fitting coefficients for analytic formulae developed in [1], [2],

and [3] for specific subsets of the full 777 waveform RIT Catalog. Finally, we use these scripts

to generate fitting coefficients for all non-precessing binaries in the catalog.
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Chapter 1

Introduction

1.1 First Detection of Gravitational Waves

On September 14, 2015, the Laser Interferometer Gravitational Wave Observatory (LIGO) de-

tected a gravitational wave signal from the merger of two binary black holes approximately 1.3

billion light-years away [5]. The detection of gravitational waves from this system (GW150914)

was the first of its kind. This detection confirmed the existence of gravitational waves and

assured of the correctness of the Theory of General Relativity, spurring newfound interest in

relativistic research from both the observational and computational sides. In the years since,

LIGO and its European counterpart, Virgo, have detected 50 signals from merging compact

objects, including a neutron star/neutron star pair (GW170817) and suspected black hole/neu-

tron star pairs. These detections have pushed researchers to study not only black hole binary

simulations, but also mergers of compact objects containing matter.

1.1.1 How do we detect gravitational waves?

The gravitational wave detectors that are currently active are ground-based Michelson interfer-

ometers. Currently, there are three active detectors; two are part of LIGO: one in Livingston,

Louisiana, and one in Hanford, Washington, and one is part of Virgo, located in Italy. More

detectors are planned in Japan and India, and sensitivity upgrades to currently active detec-

tors increase the number of compact object mergers we can observe. Many powerful detectors
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placed at significant distances from each other not only help to verify that a detection is ac-

tually a gravitational wave and eliminate sources of noise, but also constrain the source sky

localization [9, 10, 11, 12, 13, 14].

Also planned is a space-based detector, the Laser-Interferometer Space Antenna (LISA),

developed by an international consortium of scientists [15, 16, 17, 18, 19, 20, 21]. LISA will

be triangular, with three 2.5 million km long arms, and will be trailing Earth, in its orbit

around the sun, by 20 degrees. LISA’s proposed sensitivity falls in the low-frequency, high-

gravitational wave strain region - in other words, it will be able to detect mergers of compact

objects that orbit around each other for a long time before merging (referred to as long inspiral

periods). These are undetectable by LIGO/Virgo because the frequency of the gravitational

waveforms is too low. Typically, these types of objects are expected to be highly precessing or

of very high mass-ratio (i.e. one black hole is many times the size of the other). LISA’s approval

has motivated the study of such pairs of binary black holes and, recently, RIT researchers have

been able to simulate a binary black hole pair with mass-ratio q = m1/m2 = 1/128 [22], which

is the smallest mass-ratio to ever have been simulated.

Figure 1.1 helps to illustrate exactly how a LIGO Interferometer works. This detector uses

very powerful lasers to detect the Earth’s stretching and squeezing due to the passage of a

gravitational wave.
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Figure 1.1: An infographic of LIGO. Each of the Fabry-Perot cavities (arms) is 4 km long. A
laser is sent through a beam splitter, down each of the arms, reflected, and then recombined
in the photodetector. If a gravitational wave has passed through the detector, there will
be interference that is measurable by the photodetector when the beams are recombined.
Schematic taken from [4].

Figure 1.1 shows cartoon of a LIGO interferometer with its components labeled. It works

by shooting a laser into the beam splitter, which sends photons down each of the 4km long

perpendicular arms to mirrors that reflect each laser nearly 280 times before the split lasers

merge again. These reflections help increase the sensitivity of the detector by increasing the

distance traveled by each beam of photons from 4 km to 1120 km. High sensitivity is vital,

since gravitational waves produce a variation in arm length on the order of less than 1/10000th

the size of a proton [5].

When a gravitational wave (GW) passes through the LIGO interferometer, the length of

one arm will be shortened and the other lengthened by a very small amount, and as the wave

passes through the detector, the sizes of the arms oscillate back and forth. This change in arm

length causes the lasers in each of the arms to become slightly out of phase with each other,

which is measurable when the two beams are recombined in the beam splitter and sent to the
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photodetector. This interference pattern is what is detected, measured, and plotted by LIGO,

and both detectors’ results are compared to eliminate sources of external noise and verify that

a GW source has actually passed through the detector.

1.1.2 First Detection

During the first (O1) run of LIGO, a signal was detected on September 14, 2015 and determined

to be a gravitational wave with a confidence level of 5.1σ [5]. Comparison with Numerical

Relativity simulations of gravitational wave strain from binary black hole mergers allowed for

the determination of the total mass of the system (62+4
−3 solar masses), the mass of each black

hole (36+5
−4 and 29+4

−4 solar masses), and the amount of mass radiated away in gravitational

waves (3+0.5
−0.5 solar masses) [5] during the inspiral and merger. Figure 1.2, from [5], shows the

observed gravitational wave strain overlaid with Numerical Relativity simulations whose black

holes produce gravitational waveforms matching those observed by the detector.

Figure 1.2: Figure from [5]. The observed gravitational waves in LIGO Hanford and Livingston
(top panel) versus a matching gravitational wave produced by Numerical Relativity simulations
(bottom panel).

In order to verify that what passed through LIGO’s detectors on September 14, 2015 was in

fact a gravitational wave, there needed to be a model with which to compare the observations.

Numerical relativists produced models of gravitational waveforms (as in the bottom panel

of Figure 1.2) by solving the Einstein field equations on a four dimensional spacetime grid
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(3 spatial dimensions + 1 time dimension). These types of simulations are highly nontrivial

and require weeks to months of supercomputer time to produce accurate results. In fact,

until fairly recently, numerical relativists were unable to evolve a binary black hole system

through merger. In 2005, three separate research groups [23], [8], and [24] produced three

independent codes to solve the ten coupled Einstein field equations; two codes use a moving-

puncture approach and adaptive mesh refinement while the third uses excision of the black

hole horizons. We will discuss some of the techniques used in a more sophisticated fashion

throughout the dissertation, however, an in depth comparison among the techniques is given

in [25].

The radiation output of these numerical relativistic simulations is compared directly to

gravitational wave data obtained by the LIGO Scientific Collaboration (LSC). The current

generation of GW detectors are able to identify many coalescing BHBs per year [11, 26,

27, 28, 29, 30] over a broad range of (redshifted) masses between 20M� and 200M� where

1M� indicates 1 solar mass. These BHBs are generally of comparable mass, are spinning

and precessing, and have a short, but rich, multimodal signal. In much of this mass region,

Numerical Relativity and hybrids are immediately actionable, with waveforms and frequency

content comparable to relevant data. The signal brevity – relatively few cycles can be detected

due to LIGO’s frequency band range – also ensures a broad posterior distribution, comparable

to inter-simulation spacing. For this reason, Numerical Relativity has an extremely significant

role to play in the interpretation of these kinds of events, both as synthetic signals used to

validate existing search and parameter estimation algorithms, as well as parameter estimation

templates, directly comparable to the data itself.

While the LIGO detectors’ sensitivities are attuned to comparable mass binary black hole

pairs, with the third generation of gravitational wave detectors on the horizon, researchers

will be able to detect binaries with extreme differences in size. As such, numerical simulation

accuracy as well as thorough coverage of the parameter space are vitally important.

The more advanced, space-based detector, the Laser Interferometer Space Antenna (LISA),

is proposed to be launched in 2034. It is meant to trail Earth’s orbit around the sun, at an
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angle of 20 degrees. Instead of the traditional T shape, LISA will be triangular, with detectors

at each node and 2.5 million km long arms [21]. LISA’s design allows for the detection of

low-frequency long inspiral gravitational waves, such as continuous waves or those produced

by binaries with very small mass ratios.

For a number of reasons that will be discussed throughout this dissertation, these types

of binaries are very challenging to numerically simulate. They have long inspiral periods, and

require precise calculations of the binary parameters (mass, spin, and linear momentum) and

radiated output in order to be accurately compared with the waveforms that will be detected

by LISA. Over the next decade, advancements must be made in the numerical relativistic

simulations of small mass-ratio binaries in order to verify that the detections received from

next-generation gravitational wave detectors can be successfully identified as BBH mergers.

1.2 The importance of Numerical Relativity

"I have bet these numerical relativists that gravitational waves will be detected from black-hole

collisions before their computations are sophisticated enough to simulate them. I expect to

win, but hope to lose, because the simulation results are crucial to interpreting the observed

waves.”

-Reference: K.S. Thorne, "Spacetime Warps and the Quantum World:

Speculations About the Future," in R.H. Price, ed.,

‘The Future of Spacetime’ (W.W. Norton, New York, 2002).

In fact, this problem was solved in 2005 with the breakthroughs in Numerical Relativity; in

particular by the first generic, long term Binary Black Hole (BBH) evolutions of [31].

Numerical Relativity uses an algorithmic, iterative approach to solve the ten coupled non-

linear partial differential equations of general relativity. To do this, relativists must employ

supercomputers to study the coalescence of compact binary objects. A typical simulation is

carried out as follows; first the initial data of the system is calculated based on what we want

the system to look like - particularly, the mass ratio q, the magnitudes and directions of the
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spins a1 and a2 of the black holes, the initial momenta of the individual black holes, and

the initial separation d of the binary, all in geometrized units which are scaled such that the

gravitational constant and speed of light are G = c = 1, respectively. This initial data is

then used in conjunction with the Einstein ToolKit1, a collaborative code used specifically for

solving the Einstein field equations and setting up the computational grid that is contributed

to by groups across the world. RIT has its own set of initial data and evolution “thorns” in

the Toolkit (HiSPID and LazEv, respectively), which are used in conjunction with the Cactus

thorns to structure the four-dimensional grid.

Numerical Relativity simulations have the benefit of providing us with a solution that

is both correct (often up to machine precision) and informative. It is important to have

very accurate results for the physical parameters (mass, spin, momentum, etc.), as well as

the gravitational waveform for accurate comparison to detector output. A large catalogue of

waveforms helps to fill out the parameter space so that more extremal (in mass and spin)

binaries can be studied, and analytic formulae that take in the binary’s initial parameter and

return approximated quantities of the remnant can be perfected [1, 32, 33, 3].

The detriment of the high accuracy requirement of Numerical Relativity (NR) on solutions

to the Einstein field equations (EFEs) is the significant computational cost. Increasing grid

resolution to improve output accuracy is not always feasible. The grid itself discretizes the

spacetime into millions of points on a three dimensional grid, and the Einstein field equations

must be solved at each of these points as well as evolved through time. In spite of this,

RIT’s catalog [2, 34, 35] consists of 777 simulations of binary pairs, all with different initial

masses, spins, and separations, along with precessing and eccentric binaries. The parameter

space is well covered with the exception of the extreme cases - binaries with high spin and/or

small mass-ratios. Highly spinning binaries require high resolution around the black holes

in order to properly capture the dynamics [36]. Small mass-ratio binaries require very high

resolution around the small black hole in order for it to be resolved. RIT has been successful

in evolving binaries with mass-ratios of up to q = 1/128 [22], but such a small mass-ratio

binary can take more than 6 months on the fastest computers available today. The coming
1https://einsteintoolkit.org/
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generations of gravitational wave detectors will be able to detect low-frequency, long-inspiral

waveforms, possibly in the extreme mass-ratio regime. We would like to fill the parameter

space with these types of binaries so that our catalogue is robust prior to these detections.

Since computational expense will always be an issue that requires mitigation, finding methods

of improving simulation accuracy, without requiring resolution increase, is vital and will be a

main focus of this dissertation.

Accuracy improvements can also be done at the level of radiation extraction. RIT extracts

gravitational radiation using one of the five Weyl scalars, Ψ4, that is representative of outgo-

ing radiation in the system. The scalars Ψ0 and Ψ2 represent the ingoing radiation and the

Coulomb field, respectively, but Ψ1 and Ψ3 do not have physical meaning in a matter-free

spacetime. Theoretically, one can choose a tetrad that rotates the Weyl scalars into a frame

that forces Ψ1 = Ψ3 = 0. This can be done, and has been, far from the black holes. In

fact, work has been done by [37], [38], [39], and [40] on an analytical method to extract a

gravitational waveform from specific vectors associated with the spacetime, and introduced

a scalar that measures the total amount of ingoing and outgoing gravitational radiation in a

spacetime, ξ = Ψ0Ψ4. This method can currently be applied to our own ability to extract

gravitational waves by allowing us to extract at an earlier simulation time (or, equivalently,

closer to the binary) without losing accuracy. We would also like to be able to do this trans-

formation into a transverse (Ψ1 = Ψ3 = 0) frame close to the black holes, and then use the

resultant Weyl scalars to analytically classify the spacetime in this strong-field region. There

are expectations for what the spacetime should look like far from the black holes, but we have

no a priori information about what will happen near and between them. A more technical

discussion on this follows in Chapter 4.

At its most fundamental level, a BBH simulation is just a numerical computation of the

two-body problem for general relativity, the solution of which has far-reaching applications.

In addition to studying the merger of compact objects, improvements in NR techniques will

allow us to make great strides in fields such as strong gravity and high-energy physics, higher-

dimensional black holes, Trans-Planckian scattering, and alternative theories of gravity. More
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information on any of these topics can be found in [41], but no further discussion will be

provided here.

We seek to improve upon and contribute to the current techniques used in Numerical Rel-

ativity simulations of binary black hole systems. First, a very brief review of theory necessary

for this dissertation will be provided, but the bulk of the theoretical discussion will be saved

for the Chapters in which dissertation results are presented.

1.3 Brief Review of Theory

This dissertation will have two primary focuses: first, on gauge choices and their effects on

horizon quantities, and second, on that of gravitational wave extraction and spacetime classi-

fication. As discussed, the first sections will be on the gauge conditions of the BBH system,

both the initial data given to the gauge equations, as well as choices for the damping coefficient

η during evolution. We will then study the rotation of the spacetime into a frame in which

more of the physically outgoing radiation can be captured and extracted. However, before

these results are discussed, it is important to contextualize this research in the broader scope

of the full field of Numerical Relativity.

This section will include a brief introduction of necessary components of Einstein’s Theory

of Relativity and numerical relativistic techniques used to perform simulations of binary black

hole mergers. Basic knowledge of the mathematical structures of the field, including metric

tensors, important (pseudo-)tensors, such as Christoffel symbols, and tensor mathematics will

be assumed. Then, a discussion about how these equations are actually solved in practice will

proceed, which will include brief synopses of the the 3+1 and BSSN Formalisms.

1.3.1 Einstein’s Field Equations

The spacetime metric gµν describes the interval between two events at particular points in

spacetime (t, x, y, z). The metric is symmetric, and invariant under Lorentz transformations

(so observers in different reference frames will measure the same interval between events A

and B). It also has a signature, which defines the signs of its eigenvalues. Relativists generally
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choose (−,+,+,+) instead of (+,−,−,−). If a spacetime has no curvature, it can be simply

described by the flat metric gµν = ηµν , where

ηµν =



−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


(1.3.1)

which describes Minkowski spacetime.

The spacetime itself is encoded in the Christoffel symbols

Γαβµ =
1

2
gαγ (gγβ,µ + gγµ,β − gβµ,γ) (1.3.2)

where via an arbitrary spacetime metric gµν .

The Riemann curvature tensor

Rαβµν = ∂µΓαβν − ∂νΓαβµ + ΓαρµΓρβν − ΓαρµΓρβµ, (1.3.3)

where and

∂µV
ν =

∂

∂xµ
V ν , (1.3.4)

describes how a particular spacetime curves. In flat spacetime it is such that Rαβµν = 0 since

there is no curvature and the spacetime is described by the flat metric ηµν. The Riemann

tensor obeys the following identities:

• Antisymmetry in its first two indices, last two indices, and symmetry between pairs of

indices:

Rαβµν = −Rβαµν Rαβµν = −Rαβνµ Rαβµν = Rµναβ (1.3.5)

• Cyclic identity:

Rαβµν +Rανβµ +Rαµνβ = 0 (1.3.6)
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• Bianchi identities:

∇γRαβµν +∇νRαβγµ +∇µRαβνγ = 0. (1.3.7)

Using Rαβµν we can find coordinates from which the Ricci tensor and Ricci scalar (respectively)

Rαβ = Rγαγβ, (1.3.8)

R = Rαα, (1.3.9)

can be satisfied. The Ricci tensor Rαβ has ten independent components and is the trace of

Rαβµν [42]. The trace-free component is known as the Weyl Tensor Cαβµν , which will be

discussed in great detail in Chapter 4.

The Einstein Field Equations

Rµν − 1

2
gµνR+ Λgµν = 8πTµν (1.3.10)

are a system of 10 (by symmetries) coupled, nonlinear partial differential equations [43]. In

the vacuum solution, the stress energy tensor Tµν = 0 and the constant Λ is negligible when

considering black hole spacetimes so we set Λ = 0 during our evolutions. The cosmological

constant is relevant only when considering problems on a much larger scale, such as the

expansion of the universe. Therefore, for the remainder of this thesis the reader should assume

Λ = 0 in the construction of the EFEs and their subsequent numerical evolution.

Furthermore, symmetries of the Riemann tensor allow Equations (1.3.10) to be reduced in

number from 16 to 10. These equations, while elegant, are not situated well for computational

solutions and require a very significant rewrite in order to be solved numerically.

1.3.2 3+1 Formalism

The equations in 3+1 formalism are equivalent to the standard equations of General Relativity.

Writing the EFEs in 3+1 formalism evolves 12 purely spatial quantities and forces them to

satisfy specific constraints on particular time slices (spatial hypersurfaces at an instant of time
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t). The development of the 3+1 formalism is motivated by the necessity of a numerical solution

for the GR equations since analytic solutions are unobtainable. When studying time dependent

solutions to differential equations, one considers dynamical changes in the equation system

between timesteps. Equations (1.3.10) do not clearly differentiate between space and time,

therefore making computational solutions to them, as written, impossible even numerically. It

is then necessary to perform a “3+1 split” of the spacetime, which separates the three spatial

dimensions from the singular time dimension. The spacetime is foliated into distinct spacelike

hypersurfaces Σt separated by timesteps t0 = 0, t1 = dt, t2 = 2dt, . . . etc. These hypersurfaces

can be seen in Figure 1.3.

Determination of the geometry between these hypersurfaces is parameterized by three

things: the lapse α of proper time between adjacent hypersurfaces Σt and Σdt as measured

by observers normal to the hypersurfaces, the shift βi, a 3-vector that measures the relative

velocity between normal observers and lines of constant spatial coordinates, and the spatial

metric γij , where i, j are purely spatial indices, on each hypersurface. Geometric depictions of

the lapse and shift can be seen in Figure 1.3 The lapse and shift, known as the gauge equations,

Figure 1.3: A schematic of the 3+1 split of spacetime, including the foliation of spatial hyper-
surface Σ a very good explanation of how the lapse and shift equations describe the coordinates.
Taken from [6], page 46.

are independent of the evolution equations, and can be freely specified, but do define the
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coordinates. Different choices for these equations, known as slicings of the spacetime, vary the

stability of the solutions of the field equations. Therefore, these equations can be fine-tuned to

increase accuracy, but a poor choice of gauge can cause a numerical simulation to fail. For our

simulations, we typically choose a 1+log slicing for the lapse and a modified Gamma-driver

shift condition, ((1.3.11) and (1.3.12) respectively) [44, 8],

∂0α = (∂t − βi∂i)α = −2αK (1.3.11)

∂tβa =
3

4
Γ̃a − η(xk, t)βa. (1.3.12)

where K is the trace of the extrinsic curvature, Γ̃ is a normalized Christoffel, α is the lapse

and β is the shift. The initial values are defined by an initial shift vanishing and an initial

lapse choice of α(t = 0) = 2
1+ψ4

BL
where ψBL is the Boyer-Lindquist conformal factor. The

function η(xk, t) is typically chosen to be a constant η = 2/m and should be assumed to be so

unless otherwise specified. The metric can be written in terms of the lapse, shift, and spatial

metric exclusively, which is known as the 3+1 split of the metric:

ds2 = (−α2 + βiβ
i)dt2 + 2βidtdx

i + γijdx
idxj (1.3.13)

where γij is the spatial 3−metric. Now, the Einstein Field Equations themselves must be

rewritten in terms of 3+1 language. Four of the equations specified are the Hamiltonian and

momentum constraint equations. The Hamiltonian constraint equations in vacuum are defined

as

R+K2 −KµνK
µν = 16πnµnνTµν = 0 (1.3.14)

where R is the three dimensional Ricci scalar, which is found by contracting twice the Riemann

tensor (Rµαµβ = Rαβ and Rαα = R), Kµν is the extrinsic curvature

Kαβ = −1

2
Lnγαβ (1.3.15)

for Lie derivative L along unit normal nµ. The momentum constraint equations in vacuum
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are defined as

Dµ(Kαµ − γαµK) = −8πPαµnνTµν = 0 (1.3.16)

where Dµ is the covariant derivative. Both (1.3.14) and (1.3.16) are vanishing only in vacuum

spacetime. These are constraint equations and not evolution equations because, while all four

are coupled to the other 6 field equations, neither contain time derivatives or any components

of the gauge equations.

These equations must be satisfied to a high degree on each spatial hypersurface. Since we

work in vacuum in a BHB system, ideally both Eqs. (1.3.14) and (1.3.16) would be identically

zero. However, in practical numerical simulations, that is impossible; therefore their deviations

from zero are a good measure of both the quality of the gauge choice, and how accurately the

spacetime is evolving. As long as the values of these equations converge to zero as resolution

increases, we assume we are in a convergence regime.

There is much more formalism that needs to be laid out in order to fully grasp the numer-

ical 3 + 1 split of the Einstein Field Equations, such as the construction of the remaining 6

equations and the corresponding Arnowitt-Deser-Misner (ADM) evolution equations [45, 46],

which recast second order derivatives as first order. In the interest of brevity, and since the

results discussed in later sections of this proposal are explicitly dependent on only the Hamil-

tonian and momentum constraints, we will not include the full set of 3+1 equations. Instead,

we will proceed to the presentation of the full BSSNOK [47, 48, 49] formalism.

1.3.3 BSSNOK

Although the 3 + 1 split provides a set of evolution equations, it can be shown that these are

not unique [43] because arbitrary multiples of the constraints can be added to provide equally

valid constructions of the evolution equations. Furthermore, the ADM evolution equations

have been shown to be only weakly hyperbolic [50] since the system’s characteristic matrix

has real eigenvalues, but does not have a corresponding full set of eigenvectors [6]; the weak

hyperbolicity of the equations implies that the problem, in the ADM formalism, is not well-

posed. Using the fact that the constraints vanish analytically, one can add arbitrary multiples
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of them to the evolution equations, therefore changing the appearance of higher-order deriva-

tives in the characteristic matrix. Using these methodologies, the problem can be recast in

such a way that is it strongly hyperbolic and therefore well-posed. The BSSN [48, 51, 52]

formalism is standardly used to recast the ADM equations into a more suitable form for evo-

lution. The theory relies on the resacaling of the spatial metric γij by a conformal factor of

the form

γ̃ij = e−4φγij (1.3.17)

with the constraint that

φ =
1

12
ln
(
γ

η

)
(1.3.18)

where γ and η are the determinants of the spatial and flat metric respectively. The extrinsic

curvature’s trace (Aij) and trace-free (Kij) components are split, and the trace is rescaled by

the same conformal factor as in (1.3.17)

Ãij = e−4φAij (1.3.19)

which allows us to rewrite the extrinsic curvature Kij as

Kij = e4φÃij +
1

3
γijK. (1.3.20)

and the Hamiltonian and momentum constrain equations as

H = γ̃ijD̃iD̃je
φ − eφ

8
R̃+

e5φ

8
ÃijÃ

ij − e5φ

12
K2 + 2πe5φρ (1.3.21)

Mi = D̄j(e
6φÃji)− 2

3
e6φD̄iK − 8πe6φSi (1.3.22)

whereDj is the spatial covariant derivative, Si is the momentum density measured by a normal

observer and ρ is the total energy density. Both constraint equations should be vanishing in

a matter-free spacetime. The evolution equation for the spatial metric γij is split into two

Chapter 1. Introduction 15



1.3. Brief Review of Theory

equations:

∂tφ = −1

6
αK + βi∂iφ+

1

6
∂tβ

i, (1.3.23)

∂tγ̄ij = −2αÃij + βk∂kγ̄ij + γ̄ik∂jβ
k + γ̄kj∂iβ

k − 2

3
γ̄ij∂kβ

k. (1.3.24)

The extrinsic curvature Kij is also split into two equations:

∂tK = −γijDjDiα+ α(ÃijÃ
ij +

1

3
K2) + 4πα(ρ+ S) + βi∂iK, (1.3.25)

∂tÃij = e4φ
[
−(DiDjα)TF + α(RTFij − 8πSTFij )

]
+ α(KÃij − 2ÃilÃ

l
j) (1.3.26)

+ βk∂kÃij + Ãik∂jβ
k + Ãkj∂iβ

k − 2

3
Ãij∂kβ

k (1.3.27)

where the superscript TF denotes the trace-free part of the tensor. More detail can be found

in Box 11.1 in [6]. The BSSN system presented above is strongly hyperbolic. Furthermore,

zero-speed modes that violate the momentum constraint can be made to have nonzero speed

by adding the momentum constraint to the evolution equation Γ̃i, and therefore these modes

will propagate off the grid and encourage numerical stabilization.

All of our simulations, unless otherwise specified, use Bowen-York initial data [53], in

which the momentum constraint is solved analytically, and the Hamiltonian constraint is left

to be solved numerically. The form that this constraint takes is dependent on spacetime

assumptions such as conformal flatness and type of slicing. It is then solved with the puncture

approach, and evolved using the moving puncture method [8]. The puncture approach recasts

the constraint equations so that singularities are absorbed into analytical terms, which leads

to a regular equation that can then be solved numerically.

1.3.4 Evolution of BBH systems

In 2005, breakthroughs were made by Frans Pretorius, and then by the Campanelli and Baker

research groups, all three of which allowed for the evolution through merger of black hole

binaries [23], [8], [24]. The approach [23] uses the fact that the interior and exterior of the

black hole, separated by the event horizon, are causally disconnected, which means that the
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interior of the black hole can be excised from the computational grid without sacrificing any of

the physics occurring outside of the horizon. The other codes, [8] and [24] use puncture initial

data; these initial data absorb singularities within the black hole into an analytical expression

and then solve the EFEs. The gauge conditions used in these approaches are known as the

"1+log" slicing condition for the lapse and the "gamma-driver" shift condition, equations

(1.3.11) and (1.3.12). These allow for stable evolutions of the BHBs through merger and

damp large, potentially catastrophic, oscillations in the gauge. Our code employs the “moving

puncture method” [8]. In brief, this method decomposes the metric as a sum of one analytic

term that contains the singularity, and a numerical correction. Since the singularity has been

factored out, this numerical correction is regular and can be evolved.

These systems are evolved using Adaptive Mesh Refinement, which has nested square

grids, with three or four levels, surrounding both compact objects, and then, closer to the

black holes, into two grids surrounding each individual horizon that follow their trajectories

during evolution. Typically, each grid level increases in resolution by a factor of two, with

the coarsest level being located farthest from the horizons. We maintain a constant Courant

factor of 1/3 or 1/4 depending on the parameters of the binary. Specifics of the individual

simulations performed will be outlined in Chapters 2, 3, and 4. Chapters 2 and 3 present

methods of improving the results of physical parameters associated with the system via a

parameter η that damps oscillations in the gauge, first using a constant η and then a variable

η specifically tuned to small mass-ratio binaries. In Chapter 4 a discussion will be presented

of a method which should, in principle, improve accuracy of the gravitational wave extraction.

We will then use the techniques of that method to study the strong-field region of the binary

in an analytic way. Finally, Chapter 5 will conclude the thesis and provide some ideas for

extending the results of these projects in the future. The Appendix A presents updated

coefficients for remnant fitting formulae developed in [1, 3] that use the full RIT simulations

catalog of 777 waveforms, as well as a code that allows fitting coefficients to be calculated for

different subsets of the catalog data.
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Chapter 2

Adapted gauge to a quasi-local

measure of black hole recoil

2.1 Introduction

Over the past several years, theoretical explorations have begun to evaluate the possibility

of directly detecting the effects of recoil on gravitational waves observed by LIGO [54] and

LISA [55, 56]. Numerical relativistic waveforms used for direct comparison with observations

of gravitational waves require accurate modeling and good coverage of the parameter space

[9]. There are already successful descriptions for the GW150914 [25, 34] and GW170104[57]

events and the analysis of the rest of the O1/O2 events [13] is well underway [58].

The accurate modeling of the final remnant of the merger of binary black holes is of high

interest for applications to gravitational wave modeling and tests of gravity [59, 14]. The

computation of the final remnant mass and spin can be performed in three independent ways;

first, by a fit to the quasinormal modes of the final remnant Kerr black hole [60, 61, 62]. Second,

by a computation of the energy and angular momentum carried away by the gravitational

radiation to evaluate the deficit from the initial to final mass and spins. Finally, by doing

a quasilocal computation of the mass and spin directly on the horizons themselves using

the isolated horizon formulas [63]. Comparison of the three methods has been carried out
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in [64, 54], with the conclusion that at the typical resolutions used in production numerical

relativity simulations the horizon quasilocal measures are an order of magnitude more accurate

than the radiation or quasinormal modes fittings.

Of interest to numerical relativists is the ability to accurately infer quantities of the rem-

nant (mass, spin, recoil) from the parameters of the initial binary. Using the isolated horizon

formulae leads to very accurate modeling of the final mass and spins from the initial binary

configuration. In particular for nonprecessing binaries, the modeling [3] warrants errors typ-

ically 0.03% for the mass and 0.16% for the spin. Meanwhile, the modeling of the remnant

recoil uses the radiated linear momentum for fittings and this leads to errors on the order of

5%. A similarly accurate modeling of the recoil could be attempted by the use of a horizon

quasilocal measure instead of the corresponding radiated quantity.

In reference [65] a quasi-local formula for the linear momentum of black-hole horizons was

proposed, inspired by the formalism of quasi-local horizons. The formula is based on the

coordinate rotation and translation vectors

P[i] =
1

8π

∮
AH

ξa[i]R
b(Kab −Kγab)d2V, (2.1.1)

whereKab is the extrinsic curvature of the 3D-slice, d2V is the natural volume element intrinsic

to the horizon, Ra is the outward pointing unit vector normal to the horizon on the 3D-slice,

and ξi[`] = δi`.

This formula was tested using two complementary configurations: (i) by calculating the

large orbital linear momentum of the two black holes in an orbiting, unequal-mass, zero-spin,

quasi-circular binary and (ii) by calculating the very small recoil momentum imparted to

the remnant of the head-on collision of an equal-mass, anti-aligned-spin binary. The results

obtained were consistent with the horizon trajectory in the orbiting case, and consistent with

the radiated linear momentum for the much smaller head-on recoil velocity. A key observation

we will explore in this study is the dependence of the accuracy on a gauge parameter, η used

in our simulations to damp oscillations in the shift.

This Chapter is organized as follows: in Section 2.2 we discuss the numerical techniques
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used to evolve the BBH systems, including the gauge and the evolution thorns. In Section 2.3,

we summarize the methods used to study in detail the effects of choosing different (constant)

values of η, the damping parameter in the shift evolution equation, on the accuracy of the

quasilocal measure of the horizon linear momentum proposed in [65]. Section 2.4 discusses,

in detail, a prototype case of a nonspinning q = 1/3 binary. Other unequal mass cases and

one spinning case are verified as well. In Section 2.5, we perform additional studies of the

shift evolution equation for the alternative ∂0-gauge, variable η, and apply what we learned

in the previous section to develop a variable shift parameter η and to more extreme unequal

mass binary black hole mergers. In Section 2.6 we discuss the benefits of the use of values

of η different from our standard mη = 2 (see also [66]) for generic simulations, in particular

for those that involve an accurate computation of the remnant recoil and we also conclude by

noting the advantage of keeping the ∂t-gauge for evolutions over the ∂0-gauge. The results of

this study can be found in [67].

2.2 Numerical Techniques

Thanks to the 2005 breakthrough work [8] we are able to obtain accurate, convergent wave-

forms and horizon parameters by evolving the BSSNOK [47, 48, 49] system in conjunction

with a modified 1+log lapse and a modified Gamma-driver shift condition [44, 8],

∂0α = (∂t − βi∂i)α = −2αK, (2.2.2)

∂tβ
a =

3

4
Γ̃a − η(xk, t)βa. (2.2.3)

with an initial vanishing shift β and lapse α(t = 0) = 2/(1 + ψ4
BL). The parameter K is

extrinsic curvature and Γ̃a is a connection coefficient composed with the spatial metric γij . In

the subsequent text, we will refer to this set of equations (2.2.3) as the ∂t-gauge. Here, and

for the remainder of the dissertation, latin indices cover the spatial range i = 1, · · · , 3.
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An alternative moving puncture evolution can be achieved [24] by choosing [66]

∂0α = (∂t − βi∂i)α = −2αK, (2.2.4)

∂0β
a = (∂t − βi∂i)βa =

3

4
Γ̃a − η(xk, t)βa. (2.2.5)

These (2.2.5) will be referred to as the ∂0-gauge. Unless otherwise stated, all binary black hole

simulations in this paper use the ∂t gauge.

The parameter η (with dimension of one-over-mass: 1/m) in the shift equation regulates the

damping of gauge oscillations and is commonly chosen to be of order unity (we use η = 2/m)

as a compromise between the accuracy and stability of binary black hole evolutions. It was

found in [68] that coordinate dependent measurements, such as spin and linear momentum

direction, become more accurate as η is reduced (and resolution h→ 0). However, if η is too

small (η � 1/m), the runs may become unstable. Similarly, if η is too large (η � 10/m), then

grid stretching effects can cause the remnant horizon to continuously grow, eventually leading

to an unacceptable loss in accuracy at late times.

2.2.1 Simulation Parameters

To compute initial data for our binary system, we use the TwoPunctures [69] thorn. We

evolve these black-hole-binary data-sets using the LazEv [70] implementation of the moving

puncture formalism [8]. We use the Carpet [71, 72] mesh refinement driver to provide a ‘moving

boxes’ style mesh refinement and we use AHFinderDirect [73] to locate apparent horizons.

We compute the magnitude of the horizon spin using the isolated horizon (IH) algorithm

detailed in Ref. [74] (as implemented in Ref. [75]). Once we have the horizon spin, we can

calculate the horizon mass via the Christodoulou formula mH =
√
m2

irr + S2
H/(4m

2
irr) , where

mirr =
√
A/(16π) and A is the surface area of the horizon. We measure radiated energy,

linear momentum, and angular momentum, in terms of Ψ4, using the formulae provided in

Refs. [76, 77] and extrapolation to to I + is performed with the formulas given in Ref. [78].

Convergence studies of our simulations have been performed in Appendix A of Ref. [1],

in Appendix B of Ref. [33], and for nonspinning binaries are reported in Ref. [79]. For very
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highly spinning black holes (s/m2 = 0.99) convergence of evolutions was studied in Ref. [80],

for precessing s/m2 = 0.97 in Ref. [54], and for (s/m2 = 0.95) in Ref. [81] for unequal mass

binaries. These studies allow us to assess that the simulations presented in the following

sections, with similar grid structures, are well resolved by the adopted resolutions and are in

a convergence regime.

2.3 Horizon Formulae

Reference [65] introduced an alternative quasi-local measurement of the linear momentum P

of the individual (and final) black holes of the binary

P
(S)
ξ =

1

8π

∮
S

(Kij −Kγij)ξid2Sb (2.3.6)

where S is apparent horizon surface, Kij is the extrinsic curvature and K is its trace, and ξi

is a killing vector. The right hand side of this equation should be interpreted as the “flux” of

linear momentum between the horizon and infinity [65].

This formula was tested using two complementary configurations: (i) by calculating the

large orbital linear momentum of the two unequal-mass (q = 1/3), nonspinning, black holes in

a quasi-circular orbit and (ii) by calculating the very small recoil momentum imparted to the

remnant of the head-on collision of an equal-mass, anti-aligned-spin binary. When the gauge

parameter mη was reduced from 2 to 1 in the orbiting case, results consistent with the horizon

trajectory measure were obtained. Similarly for the head-on case, results consistent with the

net radiated linear momentum were found, however the remainder of the paper will focus on

a more detailed study of the orbiting case only.

Here, we expand upon these initial results, allowing for even smaller values of η and

assessing convergence of the results with both numerical resolution and extrapolation of η → 0.

This will allow us to assess when the quasilocal measure of linear momentum (2.1.1) can be

considered more accurate than the measure of radiated linear momentum at I +.

In our simulations, we normalize data such that the sum of the horizon masses, after
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2.4. Results for a q = 1/3 nonspinning binary

spurious radiation of initial data, is set to unity, i.e. mH1 +mH2 = 1. In the tables below, we

also introduce the difference of the ADM mass and angular momentum minus the final black

hole mass and spins, as ∆m = MADM −mf and ∆J = JADM − αf .

2.4 Results for a q = 1/3 nonspinning binary

As a prototypical case of study we will consider a binary with mass ratio q = m1/m2 = 1/3

and spinless black holes starting at an initial coordinate separation d = 9m, withm = m1+m2

the total mass of the system. From this separation the binary performs about 6 orbits before

the merger into a single final black hole at around t = 725m.

The final mass and final spin are measured very accurately by the horizon quasilocal

formulas [63, 75]; Figs. 2.1 provide a visualization of their respective values after merger

into the final settling black hole remnant. They display smaller variations versus time with

increasing resolutions.

In Figs. 2.2 the convergence of the Hamiltonian constraint (the momentum constraints show

a very similar convergent behavior) and the (`,m) = (2, 2)-mode of the gravitational waveform

around merger are displayed. The constraints show convergent behavior and small relative

error, as do the gravitational waveforms, therefore we can be confident that we are resolving

the binary system accurately. Figure ?? shows the quadratic convergence of the Hamiltonian

constraints from Figure 2.2 to provide a quantitative measure of their convergence.

As shown in the Tables 2.1 and 2.2 the computed final mass and spin of the remnant

black hole are well in the convergence regime at typical computation resolutions [2, 34]. We

calculate convergence order n using the formulas for a 3 point extrapolation to infinity, and
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2.4. Results for a q = 1/3 nonspinning binary

Figure 2.1: The horizon measure of the mass and spin after merger of a q = 1/3 nonspinning
binary versus time for mη = 2 at resolutions n100, n120, n140.

solve a system of equations of the form:

y1 = A+Bh1n (2.4.7)

y2 = A+Bh2n (2.4.8)

y3 = A+Bh3n (2.4.9)
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2.4. Results for a q = 1/3 nonspinning binary

Figure 2.2: The Hamiltonian constraint behavior versus time for mη = 2 at resolutions n100,
n120, n140 in the top left panel, the (2,2)-waveform as seen by an observer at r = 113m for the
q = 1/3 nonspinning binary from an initial separation D = 9m in the top right panel, the order
of convergence of the Hamiltonian constraint violations in the bottom left, the phase difference
(in radians), ∆ϕ, and the amplitude difference between resolutions, ∆A/A, with respect to the
infinite resolution extrapolation (n∞) in the bottom right panel (top and bottom respectively).

for parameters A,B, and n using known data points y1, y2, y3, and resolutions h1, h2, h3. A

is the extrapolation to infinite resolution and n is the convergence order. The parameter B is

the leading order approximant of the error. For our purposes, we take B to be the same for

all resolutions, but in reality is dependent on the hi chosen.

The convergence order n(AH) is measured assuming that A is known from the horizon

measure of a specific parameter. Then, the two highest resolution simulations are used to solve

for the convergence order. From these results, we get an n(AH) and B(AH).

Table 2.1 displays the difference between the initial total ADM mass and final horizon

mass and Table 2.2 displays the loss of ADM angular momentum from its initial value to the

final horizon spin for different resolutions and different (η-values) gauges. The computations
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hi/m mη = 2.0 mη = 1.0 mη = 0.5 mη → 0.0

1/100 0.97127 0.97127 0.97128 0.97127
1/120 0.97128 0.97129 0.97126 0.97128
1/140 0.97128 0.97128 0.97128 0.97128
→ 0 0.97131 0.97135 0.97135 0.97132
n 1.59 2.24 1.95 2.29
1/100 0.02046 0.02046 0.02047 0.02046
1/120 0.02046 0.02045 0.02045 0.02044
1/140 0.02045 0.02045 0.02045 0.02045

Table 2.1: The final black hole mass (mf/m) for different η and resolutions (top table).
Difference between final black hole and ADM masses (bottom table). Values for mη → 0.0
and resolution hi → 0 are extrapolated (the latter by order n).

give consistent values to 5-decimal places for each resolution, showing we are deep in the

convergence regime and also versus η, showing (as expected) that those computations are

gauge-invariant.

hi/m mη = 2.0 mη = 1.0 mη = 0.5 mη = 0.0

1/100 0.54060 0.54046 0.54060 0.54094
1/120 0.54059 0.54051 0.54060 0.54080
1/140 0.54059 0.54056 0.54059 0.54061
→ 0 0.54058 —– —– —–
n 3.56 —– —– —–
1/100 -0.19185 -0.19187 -0.19183 -0.19186
1/120 -0.19184 -0.19185 -0.19184 -0.19185
1/140 -0.19183 -0.19184 -0.19184 -0.19184

Table 2.2: The final black hole spin (αf/m2) for different η and resolutions (top table).
Difference between final black hole angular momentum αf and initial ADM angular momentum
JADM (bottom table). Values for mη = 0.0 are extrapolated as those for infinite resolution
hi → 0 with order n.

To evaluate the convergence rate with three resolutions hi with i = 1, 2, 3 we model the

errors of a measured quantity Mi = M(hi) as Aihni in such a way that the extrapolated to

infinite resolution quantityM∞ = M(0) can be written asM∞ = Mi+ 〈A〉hni , where 〈A〉 is an

averaged value of the Ai. Thus for the three resolutions we have a system of three equations

for the three unknowns, M∞, n, and 〈A〉, n representing the convergence rate and M∞ the

extrapolation to infinite resolution given in all tables in this chapter.

The corresponding computation of radiated energy and angular momentum from the wave-
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forms extrapolated to an observer at infinity (from an extraction at r = 113m) and summed

over all (`,m)-modes up to ` = 6 are displayed in Tables 2.3 and 2.4 showing consistent ap-

proximate 3rd order convergence for the three resolutions n100, n120, and n140. When using

the extrapolated to infinite resolution horizon values as exact, the convergence order increases,

and is over 4th order for the radiated angular momentum. In all cases, the computations are

consistent in the first 3 digits. While taking as the exact reference the extrapolated to infinite

resolution horizon values, the convergence is over 4th order. Consistent first 4-digits are com-

puted in all cases. Note that in all radiative computations we do not remove the initial data

(spurious) radiation content to allow direct comparison with the corresponding horizon quan-

tities. In particular, very weak dependence on η is found, again as expected on the ground of

gauge invariance of the gravitational waveform extrapolated to an observer at infinite location.

hi/m mη = 2.0 mη = 1.0 mη = 0.5 mη = 0.0

1/100 0.02017 0.02017 0.02017 0.02017
1/120 0.02030 0.02030 0.02029 0.02030
1/140 0.02036 0.02036 0.02036 0.02036
→ 0 0.02047 0.02045 0.02046 0.02046
n 3.03 3.23 3.08 3.10
n(AH) 3.31 3.23 3.18 —–

Table 2.3: Energy radiated away in gravitational waves up to ` = 6 for the q = 1/3 nonspinning
binary. Values for mη = 0.0 are extrapolated. Convergence order calculated from the three
resolutions, n, and using the two highest resolutions and assuming the converged value is the
value calculated on the horizon, n(AH).

hi/m mη = 2.0 mη = 1.0 mη = 0.5 mη = 0.0

1/100 -0.19075 -0.19073 -0.19070 -0.19076
1/120 -0.19128 -0.19130 -0.19125 -0.19128
1/140 -0.19157 -0.19157 -0.19154 -0.19157
→ 0 -0.19217 -0.19196 -0.19215 -0.19216
n 2.56 3.38 2.62 2.55
n(AH) 4.78 4.50 4.62 —–

Table 2.4: Angular momentum radiated away in gravitational waves up to ` = 6 for the q = 1/3
nonspinning binary. Values for mη = 0.0 are extrapolated. Convergence order calculated from
the three resolutions, n, and using the two highest resolutions and assuming the converged
value is the value calculated on the horizon, n(AH).
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Tables 2.3 and 2.4 also show that both radiative quantities, energy and angular momentum

show very small variations with respect to the extrapolated η → 0 values, as expected from

gauge invariant quantities.

Since the formula (2.1.1) is not gauge invariant when applied to the horizon of the final

black hole we expect to find stronger variation with η when we use it to evaluate the linear

momentum of the remnant. We will pursue this exploration in more detail next in order to

assess what values of η allow us to compute the recoil velocity of the final black hole with

good accuracy. We are interested in particular, for our typical numerical simulation resolutions,

what values of η can produce more accurate values of the recoil from the horizon by use of

(2.1.1) than from the evaluation of the radiated linear momentum at infinity.

Our starting point is the gauge choices that we have been using regularly in our systematic

studies of binary black hole mergers (mη = 2 and Eqs. (2.2.3)) and numerical resolutions

labeled by the resolution at the extraction level of radiation as n100, n120, n140, corresponding

to wavezone resolutions of h = 1/1.00m, 1/1.20m, 1/1.40m, respectively [2, 34]. We use 10

levels of refinement with an outer boundary at 400m. For each of these three resolutions we

add a set of simulations by decreasing η by factor of two, i.e. η = 1/m, 1/2m. The results of

those nine simulations are displayed in Fig. 2.3. For η = 2/m, the curves are very flat versus

time after the merger with the highest resolution run, n140, being notably so. However their

values for the evaluation of the recoil fall short compared to the estimate coming from the

extrapolation of the radiative linear momentum to infinite resolution, represented by the solid

black lines at about 177km/s.

The progression towards smaller η shows closer agreement with that extrapolated value.

The time dependence shows variations as we approach the smaller η but still converging with

resolution towards the expected 177km/s value and flatter for n140, but clearly the limit η → 0

requires much higher resolutions, as shown in Fig. 2.4. In our regime, reaching η = 1/m or

η = 0.5/m seems a good compromise of accuracy versus cost of the simulation.

Fig. 2.4 shows the progression of mη = 2.0, 1.5, 1.0, 0.5, 0.25 for simulations with resolution

n140. Notably they lie in a roughly linear convergence towards the expected higher recoil
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Figure 2.3: The horizon measure of the linear momentum (in km/s) after merger of a q = 1/3
nonspinning binary for the three resolutions n100 (dotted), n120 (dashed), and n140 (solid)
for η = 2/m (blue), 1/m (red), 0.5/m (green). The reference value of Vf (black solid line) is
found by extrapolation to infinite resolution of the radiated linear momentum.

velocity value 177km/s, but as we reach the smaller mη = 0.25 value it overshoots slightly,

an effect of the required higher resolution needed to resolve accurately smaller values of η. In

what follows we will restrict ourselves to values of mη = 2.0, 1.0, 0.5 to make sure we are in a

convergence regime for our standard resolutions n100, n120, n140. Note that we have verified

that the simulation with n140 and η = 0 does not crash, but leads to inaccurate results.

The radiation of linear momentum in terms of the Weyl scalar Ψ4, as given by the formulas

in [82], can be computed in a similar fashion as we compute the energy and angular momentum

radiated. For this study, we do not remove the initial burst of spurious radiation from the

linear momentum calculation since we are interested in comparing to the final velocity of

the merged BH. The burst will impart a (usually) small kick to the center of mass of the
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Figure 2.4: The horizon measure of the linear momentum (in km/s) after merger of a q = 1/3
nonspinning binary lowering values of η = 2 → 0 at resolution n140. The reference value
of Vf (black solid line) is found by extrapolation to infinite resolution of the radiated linear
momentum.

system. This allows direct comparison with horizon quantities in this paper. For astrophysical

applications the removal of the initial burst of radiation is done in the waveform time domain

and can be applied to remove their contributions to the final mass, spin and recoil velocity.

Table 2.5 shows that the radiation of linear momentum converges with resolution (at an

approximate 2.6-2.7th order) at similar rates than the radiated energy and momentum (roughly

3rd order), and still varies little with η, again this result is expected due to the gauge invariance

of radiated quantities.

The values extrapolated to infinite resolution lie in the 176-177km/s range, consistently

for all three values of mη = 2, 1, 0.5. Extrapolations of the recoil velocities to η → 0 are very

close to their values at mη = 2, 1, 0.5 for all three resolutions, again confirming the gauge
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hi/m mη = 2.0 mη = 1.0 mη = 0.5 mη = 0.0

1/100 163.648 163.753 163.759 163.760
1/120 168.569 168.678 168.660 168.662
1/140 171.256 171.314 171.324 171.326
→ 0 176.750 176.422 176.708 176.702
n 2.582 2.699 2.608 2.611
1/100 375.01◦ 374.67◦ 373.61◦ —–
1/120 374.93◦ 375.09◦ 374.54◦ —–
1/140 375.50◦ 375.59◦ 375.78◦ —–
→ 0 375.15◦ 375.12◦ —– —–
n 1.99 2.00 —– —–

Table 2.5: Total linear momentum radiated in gravitational waves up to ` = 6 for the q = 1/3
nonspinning binary in km/s. Values for mη = 0.0 are extrapolated. Convergence order n is
extrapolated to infinite resolution hi → 0. Bottom panel shows the angle (in degrees) of the
net momentum with respect to the initial x-axis.

hi/m mη = 2.0 mη = 1.0 mη = 0.5 mη = 0.0 order
1/100 137.515± 1.12 160.507± 1.14 171.977± 3.99 183.397 1.00
1/120 139.543± 0.86 161.615± 1.36 174.703± 2.80 193.765 0.75
1/140 139.194± 0.40 165.014± 1.55 174.948± 0.87 181.161 1.38
1/100 373.83◦ ± 0.27◦ 370.26◦ ± 0.29◦ 367.52◦ ± 0.86◦ 358.475◦ 0.38
1/120 373.87◦ ± 0.48◦ 371.83◦ ± 0.27◦ 373.64◦ ± 0.36◦ 372.909◦ 25.41
1/140 374.63◦ ± 0.58◦ 371.98◦ ± 0.09◦ 374.37◦ ± 0.16◦ 373.389◦ 27.46
→ 0 374.11◦ 372.36◦ 375.81◦ 373.418◦ —–
n 2.00 6.07 6.11 18.53 —–

Table 2.6: Horizon linear momentum measured at the interval t = 950m − 1250m for the
q = 1/3 nonspinning binary in km/s. The bottom panel gives the angle (in degrees) this
magnitude subtends with the initial x-axis. The measured standard deviation is given by the
± in the relevant quantities. Convergence order and extrapolations are given for hi → 0 and
η → 0.

independence of the results. In addition we display the angle (in degrees, reversed sign) the

net radiated momentum has with respect to the x-axis (line joining the black hole initially).

Table 2.6 displays the crucial result of recoil velocities very close to their desired values

for low resolutions when mη = 0.5. They do not vary so much with resolution, as expected

for horizon quantities, when compared to the variations with respect to the gauge choices.

We observe close to a linear dependence on η of the recoil values. Their extrapolation to

η → 0 overshoots the expected value by a few percent, but the values at mη = 0.5 are nearly

within 1%. This provides an effective way to compute recoils, since the corresponding radiative
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quantities are 3% away for n140. The horizon evaluations lie closer to the expected values by

a factor 3 over the radiative ones for all three resolutions. In addition we display the angle

the recoil velocity subtends with respect to the x-axis (line joining the black holes initially)

showing a notable agreement of this sensitive quantity with the results in Table 2.5.

The coordinate velocities do not benefit systematically from the small η gauges, but still

provide a good bulk value as shown in Table 2.7. This shows the benefits of having a quasilocal

measure of the momentum of the hole over its horizon compared to the local coordinate velocity

of the puncture.

hi/m mη = 2.0 mη = 1.0 mη = 0.5 mη = 0.0

1/100 154.448 158.513 184.809 153.705
1/120 155.051 167.205 159.472 162.479
1/140 158.123 165.702 165.957 165.966

Table 2.7: Coordinate trajectory velocity in km/s as measured at 575m after merger for the
q = 1/3 nonspinning binary.

2.4.1 Validation for other mass ratios (q = 1/2, 1/5)

In order to first validate our technique to extract the recoil velocity of the remnant black hole

from spinning binaries, we have considered another unequal mass (q = 1/2) binary with initial

separation d = 11m. The resulting recoil will be along the orbital plane and due entirely to the

asymmetry produced by the unequal masses. The results are presented in Table 2.8. Assuming

the extrapolation to infinite resolution of the radiative linear momentum computations is the

most accurate one leads to a recoil of 154.3±0.1km/s. Even for the lowest computed resolution,

n100, the horizon evaluation formη = 0.5 at 159.6km/s is a better approximation to that value

than any radiative evolution at the same resolution (145.9km/s), with errors of the order of

3%. This is also true for the other two resolutions n120, and n140. Although, as we have

seen before, the improvement of those horizon values are obtained by lowering the value of

mη → 0, rather than by higher resolution, as the horizon quasilocal measure has essentially

already converged at those resolutions.

Here we also provide the computation of the horizon evaluations for the mass and spin of
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Radiation Horizon Radiation Horizon
hi/m mη = 2.0 mη = 2.0 mη = 0.5 mη = 0.5

1/100 145.45 127.80± 0.65 145.91 159.57± 1.05
1/120 149.45 121.02± 0.79 149.64 152.48± 0.31
1/140 151.38 118.77± 0.65 151.48 152.92± 0.41
→ 0 154.28 117.08 154.39 150.98
n 3.31 5.49 3.18 6.20
1/100 384.43◦ 379.73◦ ± 1.35◦ 390.60◦ 388.57◦ ± 0.55◦

1/120 392.74◦ 387.84◦ ± 1.48◦ 391.04◦ 388.75◦ ± 0.24◦

1/140 392.54◦ 388.54◦ ± 1.41◦ 391.74◦ 389.80◦ ± 0.11◦

→ 0 394.75◦ 390.48◦ —– —–
n 6.17 6.14 —– —–

Table 2.8: Comparison of the computation of the recoil velocity (in km/s) of the remnant of
a q = 1/2, nonspinning binary by traditional radiation of linear momentum and the horizon
formula (2.1.1) averaged between t = 1550m and t = 1850m for the traditional η = 2 and for
the η = 0.5 case. Extrapolation to infinite resolution and convergence order is also given for
the horizon and radiative extraction. The bottom panel gives the angle (in degrees) of the
recoil velocity with respect to the x-axis. Standard deviations of horizon measurements are
given as ± for each quantity. Convergence with numerical resolution is also given.

the remnant black hole in Table 2.9. Those tables display the excellent agreement between the

horizon and radiative computation of the energy and angular momentum (with convergence

rates of the 3-4th order). It also displays the agreement of those radiative computations for

the mη = 2 and the mη = 0.5 cases, as expected on the ground of gauge invariance at the

extrapolated infinite observer location. The Table also shows the robustness of the horizon

computations at any of the used resolutions (generally 5 digits) and an overconvergence due

to those small differences.

We complete our nonspinning studies by simulating a smaller mass ratio (q = 1/5) binary

with initial separation d = 10.75m. The recoil from radiation of linear momentum extrapolates

to about 139km/s as shown in Table 2.11. The horizon evaluation for mη = 2 underevaluates

this by about 30%, while for mη = 2 the horizon formula is about 5% this value for the

medium and high resolution runs. Given the smaller mass ratio, the low resolution run is not

as accurate.

We also provide as a reference the computation of the of the horizon evaluations for the

mass and spin of the remnant black hole in Table 2.10. Those Tables display the excel-
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mη = 2.0

hi/m Erad/m Jrad/m
2 mf/m αf/m

2 ∆m/m −∆J/m2

1/100 0.02999 -0.30497 0.96126 0.62344 0.03029 -0.30617
1/120 0.03016 -0.30600 0.96125 0.62345 0.03030 -0.30617
1/140 0.03024 -0.30629 0.96125 0.62346 0.03030 -0.30617
→ 0 0.030337 -0.30646 0.96125 0.62346
n 3.70 6.36 13.36 6.09
mη = 0.5

1/100 0.02998 -0.30516 0.96124 0.62343 0.03031 -0.30620
1/120 0.03014 -0.30583 0.96125 0.62345 0.03030 -0.30617
1/140 0.03022 -0.30615 0.96126 0.62345 0.03030 -0.30617
→ 0 0.03033 -0.30662 0.96126 0.62345
n 3.42 3.39 7.20 8.62

Table 2.9: Comparison of the computation of the horizon mass and spin of the remnant of a
q = 1/2, nonspinning binary with the radiation of the energy and angular momentum for the
η = 2 and for the η = 0.5 cases. Extrapolation to infinite resolution and convergence order is
also given for the horizon computation and the radiative extraction.

lent agreement between the horizon and radiative computation of the energy and angular

momentum (with high convergence orders). We find excellent agreement of those radiative

computations for the mη = 2 and the mη = 0.5 cases, as expected from the gauge invariance

of the waveforms extrapolated to an infinite observer location. The Table also shows the ro-

bustness of the horizon computations at medium and high resolutions (generally 3 digits) and

an overconvergence due to those small differences.

2.4.2 Spinning black holes

In order to further verify our technique and to extend our results, we study the recoil velocity

of the remnant black hole of a pair of spinning binaries. Consider an equal mass (q = 1) binary

with spins (α1,2 = ±0.8) (anti)aligned with the orbital angular momentum. This system has

an initial separation of d = 10m. The resulting recoil will be along the orbital plane and due

entirely to the asymmetry produced by the opposing spins. The results are presented in Table

2.12, showing that the horizon evaluation for mη = 0.5 at 420km/s is as good to that value

than any radiative evolution at the same resolution (388km/s), with errors of the order of

4%, even for the lowest computed resolution, n100. Here, we have assumed that the radiated
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mη = 2.0

hi/m Erad/m Jrad/m
2 mf/m αf/m

2 ∆m/m −∆J/m2

1/100 0.01237 -0.15454 0.98217 0.41667 0.01253 -0.14804
1/120 0.01225 -0.14872 0.98235 0.41667 0.01235 -0.14790
1/140 0.01226 -0.14803 0.98237 0.41660 0.01232 -0.14796
→ 0 0.01227 -0.14788 0.98238 0.41667
n 11.59 11.41 10.78 -15.49
mη = 0.5

1/100 0.01310 -0.16762 0.98158 0.41572 0.01320 -0.14944
1/120 0.01241 -0.15479 0.98221 0.41670 0.01249 -0.14800
1/140 0.01227 -0.14859 0.98236 0.41663 0.01234 -0.14795
→ 0 0.01221 -0.13922 0.98242 0.41662
n 8.12 3.30 7.59 14.39

Table 2.10: Comparison of the computation of the horizon mass and spin of the remnant of a
q = 1/5, nonspinning binary with the radiation of the energy and angular momentum for the
η = 2 and for the η = 0.5 cases. Extrapolation to infinite resolution hi → 0 and convergence
order n is also given for the horizon computation and the radiative extraction.

linear momentum extrapolated to infinite resolution is the most accurate measure, leading to

a recoil of 403± 1km/s. As we have seen before, the improvement of those horizon values are

obtained by lowering the value of mη → 0, rather than by higher resolution, as the horizon

quasilocal measure has essentially already converged at those resolutions.

For the sake of completeness, and to verify the accuracy of the horizon evaluations for

the mass and spin of the remnant black hole, we provide their computation in Tables 2.13.

Those tables display the excellent agreement between the horizon and radiative computation

of the energy and angular momentum (with convergence rates of the 3rd-4th order). They

also show the agreement of radiative computations for the mη = 2 and the mη = 0.5 cases, as

is expected on the ground of gauge invariance at the extrapolated infinite observer location.

Further, the tables show the robustness of the horizon computations (generally accurate to 5

digits) at any of the chosen resolutions.

A final note on the convergence studies carried out in this section is that we observe a

good convergence rate of 3rd to 4th order for radiative quantities, while for horizon quantities,

we observe a wider range of values, sometimes even overconvergence. This is due to the fact

that the horizon evaluations (particularly for the mass and spin) lead to very accurate values,
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Radiation Horizon Radiation Horizon
hi/m mη = 2.0 mη = 2.0 mη = 0.5 mη = 0.5

1/100 129.40 98.67± 0.60 130.21 209.00± 2.16
1/120 133.91 102.53± 0.16 133.19 131.93± 1.22
1/140 135.94 101.62± 0.13 136.70 143.28± 0.17
→ 0 138.57 —– —– —–
n 3.72 —– —– —–
1/100 318.79◦ 317.09◦ ± 0.91◦ 333.20◦ 366.32◦ ± 0.56◦

1/120 374.99◦ 376.95◦ ± 0.33◦ 345.29◦ 293.68◦ ± 0.04◦

1/140 332.13◦ 329.04◦ ± 0.33◦ 385.40◦ 384.90◦ ± 0.11◦

Table 2.11: Comparison of the computation of the recoil velocity (in km/s) of the remnant of
a q = 1/5, nonspinning binary by traditional radiation of linear momentum and the horizon
formula (2.1.1) averaged between t = 2300m and t = 2500m for the traditional η = 2 and for
the η = 0.5 case. Extrapolation to infinite resolution hi → 0 and convergence order n is also
given for the horizon and radiative extraction. The bottom panel gives the angle (in degrees)
of the recoil velocity with respect to the x-axis. Standard deviations of horizon measurements
are given as ± for each quantity.

and hence small differences between the three resolutions chosen for the simulations (n100,

n120, and n140). In order to seek very significant differences between resolutions, factors

larger than our chosen 1.2 would be necessary. Such a study would require significantly more

computational resources. Nevertheless, we have been able to prove that horizon quantities can

be evaluated very accurately at any of the resolutions quoted above.

2.5 Studies with Alternative Gauges

Right after the breakthrough that allowed for the evolution of binary black holes with the

moving puncture formalism [8, 24], several papers analyzed extensions of the basic gauges

(2.2.3) - (2.2.5). In Refs. [83] and [66] several parametrizations of the shift conditions were

studied, and displayed some (slight) preference for the ∂0-gauge over the ∂t-gauge (See Table

I of Ref. [83] and Fig. 10 of Ref. [66]).

The sensitivity of the computed recoil on the gauge give us an opportunity to quantify the

relative accuracy of the ∂0-gauge versus the ∂t-gauge.

We will also exploit the possibility of using a variable η(xk(t)) to obtain both the benefits

of accuracy around the black holes and a good coordinate behavior connecting the horizon
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Radiation Horizon Radiation Horizon Radiation Horizon
hi/m mη = 2.0 mη = 2.0 mη = 1.0 mη = 1.0 mη = 0.5 mη = 0.5

1/100 387.92 331.98± 1.50 - - 388.13 419.89± 0.30
1/120 394.16 331.84± 1.41 394.13 396.41±0.22 394.16 421.02± 0.38
1/140 397.43 331.75± 1.49 - - 397.16 419.67± 0.86
→ 0 403.42 331.40 - - 402.00 -
n 2.82 1.46 - - 3.12 -
1/100 135.51◦ 135.81◦ ± 0.93◦ - - 135.70◦ 137.25◦ ± 0.27◦

1/120 136.70◦ 135.72◦ ± 0.92◦ 136.65◦ 135.51◦±0.27◦ 136.72◦ 136.65◦ ± 0.14◦

1/140 137.39◦ 135.80◦ ± 0.94◦ - - 137.15◦ 136.61◦ ± 0.13◦

→ 0 139.07◦ 135.78◦ - - 137.60◦ 136.83◦

n 2.23 4.26 - - 4.23 4.29

Table 2.12: Comparison of the computation of the recoil velocity (in km/s) of the remnant
of a q = 1, αi = ±0.8 binary by traditional radiation of linear momentum and the horizon
formula (2.1.1) averaged between t = 1050m and t = 1350m for the traditional η = 2 and the
η = 1 and 0.5 cases. Extrapolation to infinite resolution hi → 0 and convergence order n is
also given for the radiative extraction. The bottom panel gives the angle (in degrees) of the
recoil velocity with respect to the x-axis. Standard deviations of horizon measurements are
given as ± for each quantity. In this case mη = 1 produces a better measure of recoil velocity
than other choices of mη.

results with asymptotia.

In Fig. 2.5 we draw a comparative analysis of the final black hole horizon recoil as computed

in the ∂0 and ∂t gauges, at our highest resolution n140. In all three cases, mη = 2, 1, 0.5,

the computation in the ∂t-gauge is notably and systematically closer to the expected (Vf ∼

177km/s) recoil velocity. This also provides a scale of the accuracy of the evaluation of the

recoil for our new preferred value, mη = 0.5.

Convergence with resolution does not resolve the discrepancies in favor of the ∂t-gauge as

displayed in Fig. 2.6 for mη = 2 in in the ∂0-gauge at n100, n120, and n140 resolutions. The

limit η → 0 is even harder to resolve in the ∂0-gauge than in the ∂t-gauge case.

The results for the evolutions in the ∂0-gauge are summarized in Table 2.14. These results

should be compared with those in Tables 2.4-2.5, which are in the ∂t-gauge. While the indi-

vidual computations of the extracted radiation are comparable and convergent to essentially

the same values, i.e. a recoil magnitude of about 177km/s and an angle with the x-axis of

375◦, the closeness to those values in the ∂t-gauge is apparent for all values of η. A second

control case is studied in Table 2.15, were we consider the spinning binary system described
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mη = 2.0

hi/m Erad/m Jrad/m
2 mf/m αf/m

2 ∆m/m −∆J/m
1/100 0.03872 -0.34232 0.95071 0.68413 0.03936 -0.34403
1/120 0.03898 -0.34320 0.95071 0.68413 0.03936 -0.34403
1/140 0.03911 -0.34362 0.95071 0.68413 0.03936 -0.34404
→ 0 0.03930 -0.34421 0.95071 0.68413 - -
n 3.28 3.45 - - - -
mη = 1.0

1/120 0.038979 -0.34318 0.95071 0.68413 0.03936 0.34404
mη = 0.5

1/100 0.03872 -0.34232 0.95071 0.68413 0.03935 -0.34405
1/120 0.03898 -0.34318 0.95071 0.68413 0.03936 -0.34403
1/140 0.03911 -0.34358 0.95071 0.68413 0.03935 -0.34404
→ 0 0.03930 -0.34411 0.95071 0.68413 - -
n 3.30 3.58 - - - -

Table 2.13: Comparison of the computation of the horizon mass and spin of the remnant
of a q = 1, αi = ±0.8 binary with the radiation of the energy and angular momentum for
the mη = 2 and for the mη = 0.5 cases. Extrapolation to infinite resolution hi → 0 and
convergence order n is also given for the radiative extraction.

in Section 2.4.2. We directly compare the ∂0-gauge new simulations with the ∂t-gauge sim-

ulations reported in Table 2.12. Based on those results we expect recoil magnitudes in the

402-403km/s and angles in the 138◦− 139◦ ranges. The results for mη = 2 confirms the closer

to the expected recoils in the ∂t-gauge, and those of η = 0.5 bracket it, with preference for the

∂t-gauge. We also observe again that the horizon values are much more sensitive to the values

of η than to resolutions (at least for increases in resolution by a factor of 1.2).

2.5.1 ∂0-gauge

In conclusion, we have observed the advantage of working in the ∂t-gauge over the ∂0-gauge

regarding computation of recoil velocities from the horizon formula (2.1.1). This is in agree-

ment with our generic experience for binary black hole simulations being more accurate in our

standard ∂t-gauge at the same resolutions and same values of η, but now we have quantified

it in the recoil computations example. As we converge to higher resolutions, both gauges lead

to consistent and accurate solution in all studied quantities.
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Figure 2.5: Comparative results of the ∂t-gauge (solid) and ∂0-gauge (dashed) for the horizon
measure of the linear momentum (in km/s) after merger of a q = 1/3 nonspinning binary for
the n140 resolution for mη = 2 (blue), 1 (green), 0.5 (red). The reference value of Vf is found
by extrapolation to infinite resolution of the radiated linear momentum.

2.5.2 η-variable gauge

In addition to the changes in the (constant) values of η, different functional dependences for

η(xk, t) have been proposed in [70, 84, 85, 86, 87, 7].

Here we use a modified form motivated by the results of [65] and this paper that the

recoil velocities (of a merged binary) are more accurately computed when using the quasilocal

horizon measure of the momentum with smaller η and that the generic evolution is more

accurate and convergent for larger values of η.

We hence propose a simple variant for comparable masses binary

mη(xk, t) = mη∞ −Ae−r
2/s2 (2.5.11)
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Figure 2.6: The horizon measure of the linear momentum (in km/s) after merger of a q = 1/3
nonspinning binary for the three resolutions labeled as n100, n120, and n140 in the ∂0-gauge
for η = 2/m. The reference value of Vf is found by extrapolation to infinite resolution of the
radiated linear momentum in this ∂0-gauge.

where m = m1 + m2 and r = |~r − ~rcom| is the distance from the (Newtonian) center of mass

of the system [PN corrections could be added if needed [88]],

~rcom = (m1 ~x1 +m2 ~x2)/m (2.5.12)

where ~x1(t) and ~x2(t) are the punctures location, and s is a width of the Gaussian that can

be conveniently chosen, for instance, s = 2m. Typically for our simulations normalization is

chosen such that m ∼ 1 (and MADM < 1).

The choice to center the Gaussian correction to the η∞ at the center of mass is to provide a

simple way of following the final black hole after merger, even if acquired a large recoil velocity.

The motivation to set different values around the black hole is to provide enough accuracy
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Radiation Horizon Radiation Horizon Radiation Horizon
hi/m mη = 2.0 mη = 2.0 mη = 1.0 mη = 1.0 mη = 0.5 mη = 0.5

1/100 163.67 127.11± 0.87 —– —– —– —–
1/120 168.57 129.10± 0.98 —– —– —– —–
1/140 171.24 128.84± 0.57 171.30 152.11± 1.92 171.33 160.9± 1.55
→ 0 176.65 129.43 —– —– —– —–
n 2.60 6.12 —– —– —– —–
1/100 375.82◦ 369.58◦ ± 0.29◦ —– —– —– —–
1/120 375.17◦ 368.99◦ ± 0.53◦ —– —– —– —–
1/140 375.63◦ 369.14◦ ± 0.63◦ 375.67◦ 371.55◦ ± 0.09◦ 375.88◦ 373.93◦ ± 0.10◦

→ 0 —– 369.24◦ —– —– —– —–
n —– 4.14 —– —– —– —–

Table 2.14: Comparison of the computation of the recoil velocity (in km/s) of the remnant of a
q = 1/3, αi = ±0 binary by traditional radiation of linear momentum and the horizon formula
(2.1.1) measured 75m after merger. Computation uses the ∂0-gaugemη = 2 case for resolutions
n100 n120 and n140 and ∂0-gauge mη = 1, 0.5 cases for resolution n140. Extrapolation to
infinite resolution hi → 0 and convergence order n is also given for the radiative extraction for
appropriate cases. The bottom panel gives the angle (in degrees) of the recoil velocity with
respect to the x-axis. Standard deviations of horizon measurements are given as ± for each
quantity. Compare this results with those of Tables 2.5-2.6.

and convergence in the strong field regime, while preserving the benefits of the coordinates

adapted to recoil measurements away from the remnant hole.

In order to assess those statements we have considered two cases labeled as N10 and N12,

respectively determined by the − and + in

mη(xk, t) = 1∓ e−r
2/(2m)2 (2.5.13)

with the same reference asymptotic value of 1 at infinity and vanishing or taking the standard

value of 2 at the (final) hole location.

The simulations (in the standard ∂t-gauge) make use of this (2.5.13) dependence during

the whole run, not only during the post-merger phase, but the horizon of the final black hole

is only found and evaluated for linear momentum after the merger occurs (about t ∼ 725m).

The results of the two cases are displayed in Fig. 2.7. Each case has been studied at our

standard n100, n120, n140 resolutions to convey an idea of the convergence. The upper panel

displays a very good agreement with the expected recoil, particularly for the medium and
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Gauge Radiation Horizon Radiation Horizon
hi/m ∂0, ∂t mη = 2.0 mη = 2.0 mη = 0.5 mη = 0.5

1/100 ∂0 387.94 294.93± 2.43 388.01 377.37± 1.56
1/100 ∂t 387.92 331.98± 1.50 388.13 419.89± 0.30
1/120 ∂0 394.18 294.82± 2.41 394.13 376.89± 0.94
1/120 ∂t 394.16 331.84± 1.41 394.16 421.02± 0.38

1/100 ∂0 135.53◦ 135.71◦ ± 1.00◦ 135.78◦ 137.31◦ ± 0.27◦

1/100 ∂t 135.51◦ 135.81◦ ± 0.93◦ 135.70◦ 137.25◦ ± 0.27◦

1/120 ∂0 136.71◦ 135.62◦ ± 1.00◦ 136.69◦ 136.65◦ ± 0.18◦

1/120 ∂t 136.70◦ 135.72◦ ± 0.92◦ 136.72◦ 136.65◦ ± 0.14◦

Table 2.15: Top panel shows the comparison of the computation of the recoil velocity (in km/s)
of the remnant of a q = 1, αi = ±0.80 binary by traditional radiation of linear momentum
and the horizon formula (2.1.1) averaged from t/m = 1050 to 1350 using the ∂0-gauge with
mη = 2 and mη = 0.5 case at resolutions n100 and n120. The bottom panel gives the angle (in
degrees) of the recoil velocity with respect to the x-axis. Both panels give also the ∂t results
from Table 2.12 for comparison. Standard deviations of horizon measurements are given as ±
for each quantity.

high resolutions. The agreement is even better than the constant mη = 1 case, displayed in

the central panel of Fig. 2.3, which lies in between the N12 and N10 cases. To confirm the

improvements reached by this variable-η gauge, the case N10, where the asymptotic value is

the same, equal to 1, but where the η is reduced near the black hole, notably reduces the

accuracy necessary to compute the linear momentum of the horizon and convergence is still

more challenging than in the previous N12 case.

Those results for the variable η-gauge, as in (2.5.13), are summarized in Table 2.16 where

we compare results with those in Tables 2.4-2.5 in the η = 1-gauge. While the computation

of the extracted radiation are comparable and convergent to essentially the same values, i.e. a

recoil magnitude of about 176-7km/s and an angle with the x-axis of 375-6◦, the closeness to

those values in the N12-gauge is apparent followed by the mη = 1 (the reference value) and

lagged by the N10-gauge, indicating that while the same asymptotic mη = 1 value is shared

by the three gauges, that with mη → 2 near the horizon of the black hole produces the most

accurate results for the recoil computed via the horizon formula (2.1.1).

A second control case is studied in Table 2.17, where we consider the spinning binary

system described in Section 2.4.2. We directly compare the N12-N10-gauge new simulations
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Rad. Horizon Rad. Horizon Rad. Horizon
hi/m N12 N12 N10 N10 mη = 1 mη = 1

1/100 163.65 169.88± 1.29 163.71 150.54± 1.18 163.75 160.51±1.14
1/120 168.59 172.56± 0.75 168.61 153.52± 0.86 168.66 161.62±1.36
1/140 171.20 177.64± 1.78 171.26 155.31± 1.75 171.31 165.01±1.55
→ 0 176.09 —– 176.52 160.14 176.42 —–
n 2.78 —– 2.64 2.04 2.70 —–
1/100 373.01◦ 371.21◦ ± 0.93◦ 374.39◦ 364.97◦ ± 0.27◦ 374.67◦ 370.26◦±0.29◦
1/120 374.02◦ 373.17◦ ± 0.92◦ 374.85◦ 366.81◦ ± 0.14◦ 375.09◦ 371.83◦±0.27◦
1/140 374.72◦ 377.24◦ ± 0.94◦ 375.57◦ 367.90◦ ± 0.13◦ 375.59◦ 371.98◦±0.09◦
→ 0 378.40◦ —– —– —– 375.12◦ 372.36◦

n 1.13 —– —– —– 2.00 6.07

Table 2.16: Comparison of the computation of the recoil velocity (in km/s) of the remnant of
a q = 1/3, αi = 0 binary by traditional radiation of linear momentum and the horizon formula
(2.1.1) measured 75m after merger for the modified N12 and N10 gauges. The standard
mη = 1 from Tables 2.5 and 2.6 is also provided for reference. Extrapolation to infinite
resolution hi → 0 and convergence order n is also given for the radiative extraction. The
bottom panel gives the angle (in degrees) of the recoil velocity with respect to the x-axis.
Standard deviations of horizon measurements are given as ± for each quantity.

Radiation Horizon Radiation Horizon Radiation Horizon
hi/m N12 N12 N10 N10 mη = 1.0 mη = 1.0

1/120 394.88 379.66± 0.80 393.87 335.74± 1.10 394.13 396.41±0.22
1/120 137.44◦ 141.54◦ ± 0.46◦ 136.38◦ 128.90◦ ± 0.08◦ 136.65◦ 135.51◦±0.27◦

Table 2.17: Comparison of the computation of the recoil velocity (in km/s) of the remnant
of a q = 1, αi = ±0.80 binary by traditional radiation of linear momentum and the horizon
formula (2.1.1) measured from t/m = 1050 to 1350 for the modified N12 and N10 gauges using
mη → 1 asymptotically, as well as mη = 1.0 for comparison. The bottom panel gives the angle
(in degrees) of the recoil velocity with respect to the x-axis. Standard deviations of horizon
measurements are given as ± for each horizon quantity.

with each other using the radiation values as the more accurate references, and again find

confirmation that the N12 results are much closer to the expected results than the N10 ones.

In conclusion, a first exploration of an η-variable leads to immediate benefits and opens the

possibilities for further parameter refinement to include improvements to both accuracy and

precision in numerical simulations of merging binary black holes. A more in-depth study of

these variable gauges will be presented, specifically for small mass-ratio binaries, in Chapter 3.
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Figure 2.7: The horizon measure of the linear momentum after merger of a q = 1/3 nonspinning
binary for the three resolutions labeled as n100 (dotted), n120 (dashed), and n140 (solid) for
η = N12 (red) and N10 (blue), top to bottom respectively. The reference value of Vf is found
by extrapolation to infinite resolution of the radiated linear momentum.

2.6 Discussion

The purpose of this study was to assess which choices of η lead to accurate measures of the

linear momentum on the horizon with the non-gauge-independent formula (2.1.1), and we

found that for small values 0.25 ≤ mη ≤ 0.5 this is a reliable measure and can compete with

the measurement at I + of the radiated momentum carried by the gravitational waves. As

with the computations of the mass and angular momentum of the remnant via the horizon

measure and at infinity, it is important to have two concurrent methods to assess errors of those

measures. Further accuracy could be achieved by the use of a variable η (See Eq. (2.5.11). Our

results indicate that the choice of mη = 2 at the horizon, with lower values at asymptotically

far distances from the source(s), produce the best results for evaluation of the recoil).
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Since these different gauges were studied in detail for a nonspinning q = 1/3 binary and

verified with q = 1/2 and q = 1/5 as control cases, as well as for a q = 1 spinning case, we

expect these conclusions to be general and plan to apply the findings to simulations where the

computation of recoil is important, including precessing binaries. Cross checking with radiated

linear momentum, extrapolated to infinity, will provide a method of evaluating these gauges’

applicability and can be carried out concurrently in each simulation.

Finally, we assessed the relative accuracy of the two original moving puncture choices for

the shift, the ∂t and ∂0 gauges, to evaluate the recoil, and found the ∂t-gauge superior at the

current typical numerical resolutions.
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Chapter 3

An adapted gauge for small mass ratio

binaries

3.1 Introduction

The 2005 breakthrough in numerical relativity techniques [23, 8, 24] has allowed for the produc-

tion of thousands of binary black hole simulations (see for instance the catalogs [89, 90, 34, 35]).

Improvements in hardware and numerical techniques contribute by speeding up simulations,

however, some corners of the binary’s parameter space remain relatively unexplored. Bi-

naries in the small mass-ratio regime are challenging to simulate; they can take months of

supercomputer time and require substantial computational resources to run accurate, long

term numerical evolutions. These types of binaries are of particular interest for third gener-

ation gravitational wave detectors [91] and for the space-based mission LISA [92] since they

have long, low frequency inspiral periods. Prototype small mass ratio simulations reaching

q = m1/m2 = 1/100 have been achieved with the moving puncture approach [7, 93] and

numerical convergence has been proven. Recently, another sequence of nonspinning binaries

with mass ratios q = 1/32, 1/64, 1/128 has been studied in [22]. Such simulations should be

considered proof of principle, but in order to become practical for production purposes, we

need improvements in both computational efficiency and accuracy of the numerical techniques.
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Of particular interest in this Chapter is to explore the choice for the numerical gauge, as well

as the initial values for the lapse and shift equations, as a means to achieve improvements in

accuracy without requiring more highly resolved (and hence more expensive) simulations.

One of the fundamental breakthroughs in 2005 was the optimization of the choice of the

gauge equations. The gauge was originally developed to force successful evolutions without

numerical simulations crashing. The moving puncture approach proved robust and produced

accurate waveforms, even allowing the evolution of multi-black hole systems [94]. However,

when studied in detail, subtleties appear with the convergence [95], and some gauge amplified

initial noise has been observed [96]. This is particularly relevant for binaries with small mass

ratios, as the amplitude of gravitational radiation scales like ∼ q. The initial noise then reflects

at the boundaries of the mesh refinement levels, which are necessary to efficiently describe the

different scales of the binary system, causing high frequency oscillations when those reflections

reach the observers.

In this Chapter we present work that has been accepted for publication by Physical Re-

view D and will appear in 2021.1 We will show that choices of the initial lapse and shift

damping parameter η in the gauge can cure those initial inaccuracies, and lead to a much

cleaner evolution of the binary black holes. We explore different choices of the initial lapse

and shift in Section 3.2.1 to improve the accuracy of the simulations. In [67] as well as in

Chapter 2 we studied the effect of different, constant shift damping parameters η on the ex-

traction of recoil velocities from the horizon of the final remnant black hole of comparable

mass (q = 1/2, 1/3, 1/5) binaries, we then began an exploration of a variable mη and saw that

it also provides a very good measure of quasi-local recoil. In Section 3.3.3 we will extend the

analysis to adapt η(~x1(t), ~x2(t)) to small mass ratio binaries. The results using these numerical

techniques on the simulation of a prototypical nonspinning binary with mass ratio q = 1/7 is

studied in detail in Section 3.4.1 with different choices for η and the initial lapse, as well as

control convergence studies of binaries with mass ratio q = 1/15 and then q = 1/32 in Sections

3.4.2 and 3.4.3 respectively. In Section 3.4.4, we provide results for the extremal q = 1/64

binary as well as the q = 1/128 binary using the gauge choice we determined to be optimal
1The manuscript can be found on the arxiv at https://arxiv.org/pdf/2103.09326.pdf.
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from the previous sections.

We conclude in Section 3.5 with an optimal selection of initial lapse and shift damping

parameter η that is simple to implement and numerically efficient, while still improves the

accuracy of the simulations in the small mass ratio regime.

3.2 Numerical Techniques

Recall from Chapter 2, that for standard BBH evolutions we choose a gauge with a modified

1+log lapse and a modified Gamma-driver shift condition [44, 8],

∂0α = (∂t − βi∂i)α = −2αK, (3.2.1)

∂tβ
a =

3

4
Γ̃a − η(xk, t)βa. (3.2.2)

with the initial shift vanishing and the initial lapse α0 = 2/(1 + ψ4
0), where the conformal

factor is defined as

ψ0 = 1 +
m1

2|~r − ~r1|
+

m2

2|~r − ~r2|
. (3.2.3)

The parameter η (dimensions one-over-mass: 1/m) in the shift equation regulates the

damping of the gauge oscillations. We have found in [68, 67] that coordinate dependent

measurements, such as spin and linear momentum direction, become more accurate as η is

reduced and the grid resolution is extrapolated to infinite (h → 0). However, if η becomes

too small (η � 1/m), the runs may become unstable. Similarly, if η is too large (η � 10/m),

then grid stretching effects can cause the remnant horizon to continuously grow, eventually

leading to an unacceptable loss in accuracy at late times. Therefore, η is commonly chosen

to be of order unity as a compromise between the accuracy and stability of binary black hole

evolutions; for comparable-mass binaries, our standard choice is η = 2/m.

To compute the initial data for the lapse and shift equations, we use the TwoPunc-

tures [69] thorn. These black-hole-binary (BHB) data-sets are then evolved using the LazEv [70]

implementation of the moving puncture formalism [8]. The Carpet [71] mesh refinement driver

provides a ‘moving boxes’ style mesh refinement and we use AHFinderDirect [73] to lo-
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cate apparent horizons. The magnitude of the horizon mass, spin, and linear momentum

are computed using the isolated horizon (IH) algorithm detailed in Ref. [74] (as implemented

in Ref. [75]). Once we have the horizon spin, we can calculate the horizon mass via the

Christodoulou formula mH =
√
m2

irr + S2
H/(4m

2
irr) , where mirr =

√
A/(16π) and A is the

surface area of the horizon. The radiated energy, linear momentum, and angular momentum

are all measured in terms of the Newman-Penrose Weyl scalar Ψ4, using the formulae pro-

vided in Refs. [76, 77], and extrapolation to to I + is performed with the formulas given in

Refs. [67, 78, 65].

Convergence studies of our simulations have been performed in Appendix A of Ref. [1],

in Appendix B of Ref. [33], and for nonspinning binaries are reported in Ref. [79]. For very

highly spinning black holes (s/m2 = 0.99) convergence of evolutions was studied in Ref. [80],

for precessing s/m2 = 0.97 in Ref. [54], and for (s/m2 = 0.95) in Ref. [81] for unequal mass

binaries. These studies allow us to assess that the simulations presented here, with similar grid

structures, are well resolved by the adopted resolutions and are well within in a convergence

regime.

3.2.1 The Initial Gauge

In this section we will derive the form of a new set of equations for the initial lapse and

shift. The goal is to approximate those of the trumpet slice in quasi-isotropic coordinates

r [97], both near the puncture r = 0 and far from source as powers of 1/r. We expect that

these “Trumpet-sliced" initial data will better match the evolved shape of the lapse and shift,

therefore hopefully reducing the time necessary for the gauge to settle to its final, evolved

shape. We will first construct these initial data for a single Schwarzschild black hole, then

show how it is adapted for a binary. Our goal is to have this initial data take into account

the full set of initial parameters of the binary, so we will then include terms that encode the

initial linear and angular momenta in the expressions for the initial lapse and shift.
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3.2.1.1 Initial Lapse

To construct the trumpet-like Late Time initial Lapse (LTL), we begin by proposing the

following form:

αLTL = α0(ψ0) =
a

1 + bψn0 + cψn+1
0 + dψn−1

0

(3.2.4)

where a, b, c and d are constants to be determined by matching to trumpet data in isotropic

coordinates close to the punctures, and to the behavior of the lapse far away α ∼ (1−m/r)/(1+

m/r). The value n is a function of an unknown constant γ, which is to be determined later.

The initial lapse is chosen to be a function of the conformal factor ψ0, defined in Eq. (3.2.3),

as an extension of our original standard form for the lapse

α0 = 2/(1 + ψ4
0). (3.2.5)

We have the option of superposing the individual initial lapses for each puncture, so that

α =
∑

i=1,2 αLTL(ψi)− 1 where

ψi = 1 +
mi

2|~r − ~ri|
, (3.2.6)

which would make our new initial lapse

αLTL = α1 + α2 − 1 (3.2.7)

but this leads to negative values near the punctures. Instead, we would like value of the lapse

to be 0 at the punctures, and approaching 1 as r →∞.

To obtain the desired behavior in Eq. (3.2.4), we begin by expanding the Schwarzschild

lapse in isotropic coordinates in powers of 1
r to obtain

αSch = (1−m/2r)/(1 +m/2r) = 1− 1/r + 1/2r2 +O(1/r3). (3.2.8)
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Near the puncture, the expected trumpet-like behavior is

α ∼ Ar1/γ (3.2.9)

where (by Eq. (48) of [98])

γ = (2−R0)/(6− 4R0) = 0.9163407461; (3.2.10)

R0 = 1.312408290 (3.2.11)

and according to numerical computations of [99], A = 0.54. Using this value will allow us to to

match the numerical behavior rather than strictly the isotropic coordinates, as in [98], where

an alternative computation of A is done. In tests, we found that using A = 0.54 provides the

best approximation of the settled shape of the lapse.

Choosing n+ 1 = 1/γ in Eq. (3.2.4) above and taking the limit as r → 0, we obtain that

2.131254761(c/a) = A = 0.54 (3.2.12)

which is approximated to be a/c = 1/4. Setting the other constants b, c, d to match the three

orders of the expansion in Eq. (3.2.8), we find

a =
2 γ − 1

6 γ − 1
, b = −10

2 γ − 1

6 γ − 1
, (3.2.13)

c = 4
2 γ − 1

6 γ − 1
, d = 2

4 γ − 3

6 γ − 1
, (3.2.14)

n = −γ − 1

γ

These expressions are finally inserted into Eq. (3.2.4) to construct this new choice for initial

lapse.

For a visual representation of the differences between the typical initial lapse α0 = 2/(1 +

ψ4
0) and αLTL, refer to Fig. 3.1, which shows the two choices for lapse in red and blue (respec-

tively) and their effects on a q = 1/3 binary with initial separation d = 8m. Here, we can see
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that αLTL (in blue) is tighter around the punctures than its counterpart in red α0, therefore

mimicking the shape of the settled lapse slightly more accurately.

3.2.1.2 Initial Shift

We would also like to find a formula to model the late-time behavior of the initial shift β

analogous to Eq. (3.2.4). From [98] [Eqs. (7) and (18)] we have analytic expressions for the

shift at distances close to the black hole

βr = rβ/R (3.2.15)

and at large r, the shift magnitude,

β2 = C exp(α)/R6, (3.2.16)

where r denotes isotropic coordinates andR denotes Schwarzschild ones and, C = 1.554309591.

Equating the equations (3.2.15) and (3.2.16),

βr/r =
√

(C) exp(α/2)/R3 (3.2.17)

→
√

(C)/R3
0 = 0.5515207650, (3.2.18)

for R→ 0 where from Eqs. (23) and (28) of [98] we have

C = e3−
√

10(3 +
√

(10)3/128

= 1.554309591R4
0 − 2R3

0 + C = 0, (3.2.19)

R0 = 1.312408290 (3.2.20)

This agrees well with the estimates derived from the numerical fittings (6) and (7) in [99].

From these, define

K ≈ 0.30− 0.92α; where K = βα′(R)/2. (3.2.21)
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From which we can find that the leading order term of the shift should be

βr/r = β/R = 2K/Rα′(R) (3.2.22)

→ 0.60/R0α
′(R0) ≈ 0.55, (3.2.23)

for r → 0. With the use of Eq. (31) in [98] we have

α′(R0) = (6− 4R0)/(2−R0)R0. (3.2.24)

On the other hand, to study the shift behavior at large distances from the BH we have in

the expansion of the eq. (3.2.17)

√
Ce1/2

r2
− 7/2

√
Ce1/2

r3
+

57

8

√
Ce1/2

r4
+O

(
r−5
)

(3.2.25)

where we have used that in isotropic coordinates,

αiso = (1−m/2r)/(1 +m/2r) (3.2.26)

far from the center of coordinates.

In a similar fashion as for the lapse, we propose the following representation for the initial

shift

βr0(ψ0) =
a(ψ0 − 1)2

1 + bψ0 + cψ2
0 + dψ3

0

(3.2.27)

Matching expansions (3.2.22) and (3.2.25) with (3.2.27), we get

a = −0.5368350604, b = −3.620281004,

c = 4.501732957, d = −1.946744690. (3.2.28)
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3.2.1.3 Two black holes

Figure 3.1: In red is shown the initial lapse α0(ψ0) and in blue is the late time lapse αLTL.
[This is for a case study withm2 = 3/4, m1 = 1/4, located at x1 = −6 and x2 = 2 respectively,
and where we have normalized so that m1 +m2 = 1].

When constructing this initial data for two black holes, we do not assume that the lapse

for each black hole adds linearly, but instead include the information about the binary in the

conformal factor ψ0. For an arbitrary binary, the ψ0 in Eq. (3.2.4) matches that in Eq. (3.2.3).

The resulting shape of the initial lapse is shown in Fig. 3.1 for a binary with m1 = 1/4,

m2 = 3/4, located at x1 = +6 and x2 = −2, respectively and normalized by m1 +m2 = 1.

In the case of the trumpet Late Time initial Shift (LTS), we do in fact assume it adds

linearly for the two black holes as this matches the settled shape of the evolved shift best:

βLTS = βr1(~r − ~r1)/|~r − ~r1|+ βr2(~r − ~r2)/|~r − ~r2|. (3.2.29)

Fig. 3.2 displays the behaviors of the initial shifts (zero-shift in red, and LTS in blue) for the

same case study as above. The LTS initial data pushes the shift away from the black holes at

the punctures and damps to zero far away, whereas our original β0 was vanishing everywhere.
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We have chosen to not superpose the lapse and to superpose the shifts because, while testing

different configurations, we found that those choices best matched the late-time behavior of

the lapse and shift. Since these initial values for the gauge are ours to choose, we have this

freedom. The construction presented in this section ignores the motion of the black holes. The

Figure 3.2: In red is the usual zero initial shift, and in blue is the superposition of the individual
shifts showing the push away from each black hole. [This is for a case study with m2 = 3/4,
m1 = 1/4, located at x1 = 2 and x2 = −6, respectively].

inclusion of initial linear and angular momentum of the holes into the analytic expressions for

the initial lapse and shift can be done in terms of a Lorentz boost and a Kerr shift. We provide

explicit expressions in Section 3.3.

3.3 Initial lapse and shift for Boosted and Spinning Black Holes

3.3.1 Lorentz-boosted black holes:

Since we are considering binaries with initial orbital momentum, it is of interest to include

corrections in the configurations of the initial lapse and shift that account for this. To construct

initial lapse data for a black hole system with boost, the conformal factor ψ0 is modified so
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that its order 1
r term is multiplied by the boost

γ =
1√

1− |v|2

where |v| is the magnitude of the boost velocity. The conformal factor becomes

ψ0 = 1 +
γm

2r
.

It is then used in Eq. (3.2.4) to calculate the initial boosted lapse.

To construct initial shift data for a black hole system with boost, we must calculate the

shift term from a boosted Schwarzschild black hole metric in Cartesian coordinates. Then,

βi terms can be added linearly onto the unboosted terms in Eq. (3.2.27). First, take the

unboosted Schwarzschild metric

gµν =



−(α)2 0 0 0

0 ψ4
0 0 0

0 0 ψ4
0 0

0 0 0 ψ4
0


(3.3.30)

then apply a general boost transformation Λµν on the metric gµν

g̃µν = ΛσµΛξνgσξ (3.3.31)

where

Λνµ =



γ −v1γ −v2γ −v3γ

−v1γ 1 +
(γ−1)v21
|v|2

(γ−1)v1v2
|v|2

(γ−1)v1v3
|v|2

−v2γ
(γ−1)v2v1
|v|2 1 +

(γ−1)v22
|v|2

(γ−1)v2v3
|v|2

−v3γ
(γ−1)v3v1
|v|2

(γ−1)v3v2
|v|2 1 +

(γ−1)v23
|v|2


. (3.3.32)
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Then, the shift can be read off from the inverse spatial metric γ̃ij as

βi =
vi(−η2 + ψ2

0)

|v|η2 − ψ4
0

(3.3.33)

for ψ0(m, r) = 1 + m
2r , η(m, r) =

1−m
2r

ψ0
= αsch, and

vi ≈ P i

m

where P i are the momentum components of the boost. The terms βi are added linearly onto

the corresponding terms in Eq. (3.2.27) to construct an analytic representation for a boosted,

nonspinning BBH system.

Figure 3.3: For small r, βy for an initial velocity v = 0.1 versus ψ0 = 1 +m/(2r). The horizon
of this Schwarzschild black hole is located at ψH = 2 and spatial infinity is at ψ∞ = 1. We
see that the shift decays slowly, like ψ0 − 1.
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We can try to force a stronger fall-off via asymptotic matching or an attenuation function.

Another alternative is to directly consider the trumpet Initial Data for Boosted Black Holes:

See details in Ref. [100]. For trumpet Slices in Kerr Spacetimes, see details in Ref. [101].

3.3.1.1 Results

We would like to be able to use the Late-Time Lapse, Late-Time Shift, and Lorentz boost

correction to improve the early part of the binary’s inspiral. To this end, we have tested the

Late-Time Lapse and Shift initial data as well as the Lorentz boost correction configuration

on a binary with mass ratio q = 1/3, beginning at d = 7m separation with no spin. This will

be compared with the typical vanishing shift and α0 = 2/(1 +ψ4
0) choice for initial gauge. We

use a grid resolution of n100 at the waveform extraction observer on the third coarsest level,

which is somewhat over-resolved for such a simple case, but should still give a good idea of the

effectiveness of these new initial data. These simulations use the 1+log lapse with Gamma-

driver shift conditions for the gauge (in Eqs. (3.2.2)) and mη = 2 with merger occuring at

t/m = 725. For consistency with the rest of this work, they also use the Lousto-Zlochower

(LZ) gauge that Ref. [7] introduced, where η(W ) (W =
√
χ = exp(−2φ) with φ = φ( 1

ψ0
), and

the conformal factor suggested by [102]).

To evaluate the results, we will look at the constraint violations, the horizon masses and

the dominant mode of Weyl scalar Ψ2,2
4 , which we use for gravitational wave extraction. We

are hoping to see improvements between the early parts of simulations with the original initial

gauge α0 and β0 and the Late-time Lapse/Shift additions and also the LTL/LTS additions

and the boost-corrected versions. To that end, we expect that the simulations should settle

to the same gauge and therefore will focus our study on the first 200m of simulation time.

Figure 3.4 shows the L2 norm of violations to the Hamiltonian constraint versus time

for the initial data choices α0/β0 from Eqs.(3.2.2), the LTL/LTS (LTLS) choices, and the

LTL/LTS + Boost (B) (LTLS + B) correction. All simulations that use LT initial data show

an early spike in constraint violations, but then within t = 20m they drop to acceptable levels.

The LT+B initial gauge choice produces constraint violations that are slightly higher than the
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Original (O) initial gauge choice, whereas the LT-only simulation does reduce violations to

the constraints. Since the simulations exist in different gauges, the constraint violations could

be rescaled, and they therefore may not necessarily be reflective of the differences between

gauges.

Figure 3.4: L2 norm of the Hamiltonian constraint violations versus time for the simulations
with q = 1/3 and d = 7m separation with initial gauge choices α0/β0 from Eqs.(3.2.2), the
LTL/LTS choices, and the LTL/LTS + Boost (B) correction. Both of the LT simulations show
an early increase in constraint violations, but then drop to acceptable levels within t = 20m.

To get an accurate idea of how the LTLS/LTLS+B initial gauges affect our simulation,

we must instead look to gauge invariant measures such as physical parameters. Figure 3.5

shows the horizon masses of both black holes using the three different choices for initial gauge.

The LTLS and LTLS+B initial gauge choices (blue and yellow curves, respectively), cause

mass loss in m2 and mass accumulation in m1, whereas the simulation with the original initial

data choice remains relatively constant. We also looked at the gravitational waveform for all

simulations, and saw no substantial differences between the three different gauges. To assess

the origin of the issues in the masses, we then moved on to performing some further tests that

studied LTL and LTS individually. In these, we found that the inclusion of the Late-Time

Shift is the cause of mass-loss in the large black hole m2 and mass increase in the small black
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Figure 3.5: Horizon mass of the small black hole m1 (top) and the large black hole m2

(bottom) for a binary with q = 1/3 and d = 7m separation with initial gauge choices α0/β0

from Eqs.(3.2.2), the LTL/LTS choices, and the LTL/LTS + Boost (B) correction. Both of
the simulations that use LT initial data show deviations from constancy of mass - the large
black hole m2 shows mass loss and the small black hole m1 shows mass increase.

hole m1 as shown in the top and bottom panels of Figure 3.5 respectively. For a well-resolved

system like q = 1/3 this is not prohibitive, but if applied to small mass-ratio binaries, this

could lead to inaccuracies in the results. If we include only the Late-Time Lapse, the mass-loss
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is mitigated. This is the configuration we will use in Section 3.4.1 when we study a q = 1/7

binary in-depth. Since the boost-correction to the lapse is very small in these cases, we have

chosen not to include it in further studies here, however, its inclusion could be extremely useful

for head-on collision black hole configurations.

3.3.2 Spinning black holes:

To construct initial lapse data for a black hole system with spin, the conformal factor ψ0 is

modified so that its leading order term includes the magnitude of the spin a = Sz/m
2.

ψ0 = 1 +
γ
√
m2 + a2

2r
.

It is then used in Eq. (3.2.4) to calculate the initial boosted lapse.

To construct a spinning initial model for the shift, as in the boosted case, the spin terms

are added linearly onto the boosted initial model for the shift. They are calculated from the

conformal Kerr metric in Cartesian spacetime

gµν =



(σ − 1)r2/ρ2 aσy/ρ2 −aσx/ρ2 0

aσy/ρ2 1 + a2hy2 −a2hxy 0

−aσx/ρ2 −a2hxy 1 + a2hx2 0

0 0 0 1


(3.3.34)

with coordinates xµ = (t, x, y, z) and

r =
√
x2 + y2 + z2, (3.3.35)

r̄ = r

(
1 +

m+ a

2r

)(
1 +

m− a
2r

)
, (3.3.36)

ρ2 = r̄2 +
(az
r

)2
, (3.3.37)

σ =
2mr̄

ρ2
, (3.3.38)

h =
1 + σ

ρ2
r2, (3.3.39)
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where r is the quasi-isotropic radial coordinate, r̄ is the Boyer-Lindquist radial coordinate,

and the spin a = Sz/m
2. The shift can be read off as

βi = g0i (3.3.40)

for i spatial. In practice,

βi = γijβj (3.3.41)

is used. The shift components also must be rotated so that they are valid for arbitrary spin

orientations, not just spins along the z− axis. To do this, we must perform three rotations of

the shift vector

z → z z → x z → y
y → y y → y y → −z
x→ x x→ −z x→ x

and then sum up the results. This produces

βx =
axa

2
zxyzρ

2
yσx(1 + σz)− ρ2

x(−azr2yρ2
yσz + ayzσy(r

2ρ2
z + (azx)2(1 + σz))

(ρxρy)2((rρy)2 + a2
z(x

2 + y2)(1 + σz)
, (3.3.42)

βy =
axzρ

2
yσx(r2ρ2

z + a2
zy

2(1 + σz))− azxρ2
x(r2ρ2

yσz + ayazyzσy(1 + σz))

(ρxρy)2((rρy)2 + a2
z(x

2 + y2)(1 + σz)
, (3.3.43)

βz =
−axyσx
ρ2
x

+
ayxσy
ρ2
y

(3.3.44)

as the spin-corrected terms for the Kerr initial shift.

3.3.3 Shift damping parameter η

The principal purpose of this study is to investigate whether the accuracy of small mass ratio

binaries can be improved by modifications to the gauge equations Eq. (3.2.2). In this Section,

we seek to develop a superposed Gaussian model for the shift damping parameter η. For

comparable mass q > 1/10 binary evolutions, our simulations typically use a constant η; in

general we choose η = 2/m, but recent studies have shown that η = 1/m may provide a better

measure of recoil velocity at the horizon of the remnant black hole [65] (as in [67], in which
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we studied binaries as small as q = 1/5).

For mass ratios smaller that q = 1/10, a non-constant η is required for simulation stability,

especially at lower grid resolutions. Ref. [7] introduced η(W ) (W =
√
χ = exp(−2φ) where

φ = φ( 1
ψ0

), with the conformal factor suggested by [102]), or modified (as below in equations

(3.2.3)-(3.3.46)). The modification we use is based on the superposition of weighted Gaussians

with peaks at the punctures. Alternatives for the conformal factor have been suggested by

Refs. [84, 103, 104, 87, 86], but they were not investigated with respect to small-mass ratio

binaries.

Here we bring back some of those ideas, where we evaluate η(~r1(t), ~r2(t)) parameterized by

the black holes’ punctures trajectories (~r1(t), ~r2(t)). The (initial form of the) conformal factor

evaluated at every time step is given by Eq. (3.2.3) and we can define, analogously to η(W ),

mηψ = A+ B

√
|~∇rψ0|2

(1− ψ0
a)b

. (3.3.45)

An example of this ηψ is plotted in Fig. 3.6. At the ith-puncture miη = 1 and at the center of

mass mη = 1, but Eq. (3.3.45) goes through a minimum mη = 0 in between the holes and at

this point, as well as at the punctures, η is C0. Since the gauge condition Eq. (3.2.2) involves

an integration not a derivative, this does not affect numerical evolutions.

A second alternative for smoother behavior is the superposition of Gaussians (See similarly

[104])

ηG =
A
m

+
B
m1

(
~r1(t)2

~r1(t)2 + σ2
2

)n
e−|~r−~r1(t)|2/σ2

1

+
C
m2

(
~r2(t)2

~r2(t)2 + σ2
1

)n
e−|~r−~r2(t)|2/σ2

2 , (3.3.46)

which, for the punctures of the previous example, is displayed in Fig. 3.7 (with n = 0), and

behaves like m2ηG = 1.25 at the first puncture, and as m1ηG = 1.75 at the second puncture,

and it goes to 1 in between and far away from the binary. In [104], the authors present a

function similar to Eq. (3.3.46) and study its effects, as well as the effects of another position-
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Figure 3.6: ηψ profile for (m = m1 +m2 = 1 here) m2 = 3/4, m1 = 1/4; x1 = 2.5, x2 = −7.5;
a = 1, b = 2; A = 1, B = 1. Note that this is technically different from the η(W ) used in [7]
since we use the specific form (3.2.3) for ψ0 instead of the evolved variable, which is related
to the inverse of the conformal factor W =

√
χ [8].

dependent form of η, on the shift equations using a q = 1, d = 10m separated binary and a

q = 1/4, d = 5m separated binary. They use A = 2/m whereas we use A = 1/m. Even so, we

find good agreement with their results; they find reduced noise in the dominant gravitational

waveform mode, as well as reduced coordinate size of the horizons when compared to a constant

value of η. We include factors of

(
~ri(t)

2

~ri(t)2 + σ2
j

)n
(3.3.47)

for i = {1, 2} and j = {2, 1} respectively with n ∈ N. The authors of [104] expect their

results to hold for small mass ratio binaries and show good agreement with the results that
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are presented in this paper.

Figure 3.7: ηG profile for (m = m1 +m2 = 1 here) m2 = 3/4, m1 = 1/4; x1 = 2.5, x2 = −7.5;
A = 1, B = 1, C = 1; σ1 = 2m1, σ2 = 2m2. At large separations, n = 0 and n = 2 show
good agreement.

We have applied Eq. (3.3.46) (labelled n = 0) to simulations of small-mass ratio binaries

(as ηG or G), and compared the physical output to both the constant η = 2/m as well as the

η(W ) gauges. The results are forthcoming in the following sections. The introduction of the

n = 2 case is to model smaller effective spikes once the black holes are merged as shown in

Fig. 3.8. For larger separation n = 0 and n = 2 essentially agree with each other as shown in

Fig. 3.7.
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Figure 3.8: ηG profile for (m = m1 +m2 = 1 here) m2 = 3/4, m1 = 1/4; x1 = 0.5, x2 = −1.5;
A = 1, B = 1, C = 1; σ1 = 2m1, σ2 = 2m2. At small separations n = 2 reduces the peaks in
Eq. (3.3.46) that using n = 0 is designed to produce.

3.4 Simulation Results

Here we present the results of our simulations using different choices of initial lapse and choices

for η. We proceed in a descendent mass ratio, from the q = 1/7 and q = 1/15, and then onto

the more challenging q = 1/32 to find the best gauge choices and apply them to the most

challenging cases, with mass ratio q = 1/64 and q = 1/128. For the rest of this work, the

following notation will be used: ‘LZ’ denotes the Lousto-Zlochower η = η(W ) gauge, ‘2’

denotes the constant η = 2/m, ‘G’ denotes the Gaussian in Eq. (3.3.46) with n = 0, and the

‘+ LTL’ denotes the addition of the Late Time Lapse choice for initial data. Table 3.1 shows

a full list of all the simulations performed for this Chapter and their initial parameters. All

simulations use 8th order finite differencing in space.
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Run q D x1/m x2/m Pr/m Pt/m mη CFL Resolution
1 1/7 11m 1.375 -9.625 -1.42e-4 0.0396 LZ 1/3 n100
2 1/7 11m 1.375 -9.625 -1.42e-4 0.0396 2/m 1/3 n100
3 1/7 11m 1.375 -9.625 -1.42e-4 0.0396 G 1/3 n100
4 1/7 11m 1.375 -9.625 -1.42e-4 0.0396 LTL+G 1/3 n100
5-7 1/15 8.5m 0.5378 -7.9622 -1.04e-4 0.0256 LZ 1/3 n084,n100,n120
8 1/15 8.5m 0.5378 -7.9622 -1.04e-4 0.0256 2/m 1/4 n084
9,10 1/15 8.5m 0.5378 -7.9622 -1.04e-4 0.0256 2/m 1/3 n100,n120
11-13 1/15 8.5m 0.5378 -7.9622 -1.04e-4 0.0256 G 1/3 n084,n100,n120
14-16 1/32 8.00m 0.2424 -7.7576 -3.32e-5 0.0135 LZ 1/4 n084,n100,n120
17 1/32 8.00m 0.2424 -7.7576 -3.32e-5 0.0135 2/m 1/4 n100
18-20 1/32 8.00m 0.2424 -7.7576 -3.32e-5 0.0135 G 1/4 n084,n100,n120
21,22 1/64 7.00m 0.1077 -6.8923 -1.49e-5 0.0077 LZ 1/4 n084,n100
23 1/64 7.00m 0.1077 -6.8923 -1.49e-5 0.0077 G 1/4 n100
24 1/128 7.00m 0.0543 -6.9457 -3.85e-6 0.0039 LZ 1/4 n100
25 1/128 7.00m 0.0543 -6.9457 -3.85e-6 0.0039 G 1/4 n100

Table 3.1: A full of initial data parameters for the simulations performed. The smaller black
hole is labeled 2 and larger black hole labeled 1. The punctures are located at ri = (xi, 0, 0)
with initial momenta P = ±(Pr, Pt, 0) and mass-ratio q. All simulations are nonspinning. A
full study with 3 resolutions for all gauge choices was done on the q = 1/15 binary, but results
are shown for simulations 5-7, 9, and 11-13 because simulation 8 could only be completed with
a in increase in time resolution (CFL 1/3→ 1/4). The q = 1/32 binary has three resolutions
for the LZ and G gauge choices. The smaller q = 1/64 and q = 1/128 as well as the larger
q = 1/7 mass ratios are used for verification. All simulations use eighth order finite differencing
in space.

The resolutions in Table 3.1 are listed in the form nXXX where XXX is the number of

gridpoints on the coarsest level (i.e. n100 has 100 points on the coarsest grid level). This

notation translates directly to the resolution in the wavezone dx; for n100 → dx = m/1.00

and in general, nXXX → dx = m/X.XX. The mesh increases by a factor of two in resolution

per refinement level, with the most refined levels surrounding the individual punctures.

3.4.1 Results for a q = 1/7 nonspinning binary

In this section we will begin our analysis by studying the effects of different gauge modifications

on the physical parameters of a binary system. We will first verify it works on a comparable

mass binary, with mass ratio q = m1/m2 = 1/7 and binary separation d = 11m. This system,

while not as computationally intensive as the smaller mass ratio binaries studied later on,
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is still fairly nontrivial, and will serve to help generalize our results for the other mass-ratio

systems.

For this system we did four runs with four different choices for the gauge all at our typical

production resolution n100. The first uses the choice LZ, and does not modify initial lapse

and shift from the standard α0 = 2/(1 + ψ4
0) and β0 = 0. This is our reference choice for

η for small mass ratio runs. The second simulation uses G, the third run uses the constant

choice η = 2/m and, finally, the fourth run uses G + LTL. All use eighth order spatial finite

differencing stencils and fourth order Runge-Kutta in time, with a Courant Factor of 1/3.

The Hamiltonian and momentum constraint equations are integrated over a masked volume

V and their norms are given by

||H|| =
√∫
V H2d3x, (3.4.48)

||Mi|| =
√∫
V(Mi)2d3x (3.4.49)

and should be non increasing [96]. Conservation of these constraints is not imposed. Error

is accumulated in a small way, but should be kept under control and not left to grow expo-

nentially. The evolution equations are not corrected such that constraints are forced to zero

because this would lead to numerical instability. Even so, measures of the constraints’ devi-

ations from zero are commonly used as way to assess convergence with respect to numerical

resolution. However, these simulations are all run in different gauges which makes it difficult to

draw definitive conclusions based solely on violations to the constraints, since different gauges

can change the scales of these violations. The constraint violations can still give us an idea of

performance as well as allow us to compare different resolutions of the same gauge to ensure

convergence. In Figure 3.9 the violations to the Hamiltonian constraint (top panel) as well

as the x−component of the momentum constraint (bottom panel) are shown for the q = 1/7

simulations with η = 2/m in yellow, G in red, G+LTL in purple, and LZ in blue.

The set up for the simulation in this subsection with η = 2/m resembles that which was

used to build up the RIT Catalog [2, 34, 35], with CFL=1/3 to achieve production speed.

However, here we use eighth order finite differencing stencils instead of sixth order to simulate
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smaller mass-ratios, as opposed to the RIT Catalog simulations, which are mainly comparable

mass.

It is pertinent to reiterate that the comparison of constraint violations cannot be used as

an accurate measure of simulation performance between simulations with different values for

η. These simulations exist in different gauges and therefore may rescale the constraint viola-

tions, making comparisons between them an inaccurate method of ranking gauge performance.

Notwithstanding, we would like to mention that the pair of simulations with initial data G

and G+LTL seem to settle to approximately the same gauge, as only in the early part of the

simulation we see a slight reduction of the violation of the constraints. The constant choice,

η = 2/m (in yellow) performs well throughout the course of the simulation. The LZ gauge

has Hamiltonian constraint violations that are about one order of magnitude larger than the

simulations with η = 2/m, G, or G+LTL, however, this may be due to a rescaling of the

constraints. In general, all four simulations produce constraint violations within an acceptable

range and, therefore, are considered viable candidates for production-level runs.

In order to quantitatively compare the different choices for the gauge damping parameter

η, it is pertinent to asses the different gauges’ effects on physical quantities such as horizon

mass, spin, and gravitational waveforms. Fig. 3.10 shows the mass of each black hole m1

and m2 measured at the horizon using LZ, G, G+LTL and η = 2/m gauges. The figures

are generated using a 200-point running average to smooth fluctuations in the data and to

better present a general trend without the distraction of numerical noise. In the masses, we

are looking for constancy over the course of the inspiral from t = (0− 1000).

The top panel of Fig. 3.10 shows the horizon mass of the large black hole m2 versus

simulation time. The G and G+LTL gauges both are able to maintain the horizon measure of

mass well until the simulation approaches merger, when we see some growth in the masses. The

constant gauge η = 2/m shows continuous growth over the course of the simulation; although

the scale on which this growth occurs is small, O(10−5), this may be indicative of an issue as

the mass ratio decreases. The mass m2 in the LZ gauge has relatively large oscillations over

the duration of the inspiral as well as growth that is on the order of that seen in the η = 2/m
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Figure 3.9: Violations to the Hamiltonian constraint (top) and the x−component of the mo-
mentum constraint (bottom) for the q = 1/7 binary using resolution n100 with the different
gauge choices: G, G+LTL, η = 2/m and LZ in red, purple, yellow, and blue respectively. Both
G and G+LTL settle to a similar gauge. All gauges produce acceptably-valued constraint vi-
olations.

simulation.

The second panel of Fig. 3.10 shows the mass of the smaller black hole, m1, measured at

the horizon. The G and G+LTL gauges both are able to maintain the horizon measure of

mass well over the course of the simulation. In fact, they seem to behave the same way with

G+LTL being shifted by a constant factor, indicating that the G and G+LTL settle to similar

gauges since they differ only in initial data. The η = 2/m and LZ runs show continuous

declines in their respective horizon masses of m1 over the inspiral period. As we will see in the

next section, this may be the symptom of a resolution issue, especially at smaller mass ratios.

Although not as vital as in smaller mass ratio systems, such as the q = 1/15 or q = 1/32

binaries studied in Sections 3.4.2 and 3.4.3, here constancy in m1 is strongly desired.

It is of interest to investigate the gauges’ effects on the dominant (2, 2)-mode of the Newman

Penrose Weyl scalar Ψ4 since this scalar is what we use to calculate outgoing gravitational

radiation. The top panel of Figure 3.11 shows the early part of the amplitude of Ψ2,2
4 with
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Figure 3.10: Horizon masses for m1 and m2 versus time for the q = 1/7 n100 simulations with
different choices for mη = G, LZ, and 2/m, and the initial lapse, LTL. The η = 2/m and LZ
gauges produce continuous growth (mass-loss) over the course of the simulation in m2 (m1).
The G and G+LTL choices maintain both horizon masses well.

respect to time. The observer sits at 113m from the origin of coordinates. In the early part,

there is a clear initial burst of noise present in the simulation that uses the LZ gauge which
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is damped by the use of G, G+LTL or η = 2/m. The second panel shows the amplitude

of Ψ2,2
4 over the timescale t = (200 − 800)m with reflections at refinement boundaries visible

between (400−450)m and (550−600)m. This result holds and was verified for modes (l,m) =

(2, 0), (2, 1), (3, 0), (3, 1), (3, 2), (3, 3) as well.

As a final test of the efficiency of each of the gauge choices, one can consider their individual

effects on the quasi-local computation of remnant recoil velocity, which is measured on the

horizon of the remnant (in column 4 of Table 3.2). This is compared to the total amount of

linear momentum radiated away via gravitational waves (column 5). Using the modified gauge

G improves the horizon measure of recoil velocity over the η = 2/m and LZ gauges by about

17% and 15% respectively. This is likely due to the fact that the G gauge damps to 1 far from

the remnant, and we have already shown in [67] that this leads to a more accurate measure of

quasi-local linear momentum.

mη CFL Resolution Horizon Radiated
LZ 1/3 n100 111.2450 92.6987
2 1/3 n100 80.8354 94.3036
G 1/3 n100 95.1882 94.1923
G+LTL 1/3 n100 95.8015 94.2094

Table 3.2: For the q = 1/7 binary, the total linear momentum (km/s) calculated in two ways:
(1) measured quasi-locally on the horizon averaged over t = (2600−2800)m, in column 4, and
(2) measured by the amount radiated away in gravitational waves, in column 5. All simulations
have resolution n100 as well as CFL=1/3 and 8th order finite differencing stencils. The gauges
G and G+LTL allow for the most accurate measure of horizon recoil when compared against
the radiated value.

3.4.2 Results for a q = 1/15 nonspinning binary

Since the purpose of the G gauge is to improve simulations with mass ratios q < 1/10, next

we investigate a nonspinning system with mass ratio q = m1/m2 = 1/15 starting at an initial

coordinate separation d = 8.5m. The simulation was run through merger so that we can also

investigate the gauges’ effects on the remnant’s recoil velocity as well as the ringdown phase

of merger.

All these simulations have CFL=1/3, except the lowest resolution (n084) simulation with
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Figure 3.11: The amplitude of the dominant (2,2)-mode of Weyl scalar Ψ4 for the q = 1/7
binary as seen by an observer situated r = 113m from the origin of coordinates. Higher
frequency noise of the LZ gauge is apparent at t ∼ (75 − 135)m (in the top panel) as is its
bounce at the next refinement level at t ∼ (200 − 600)m (in the bottom panel). The other
gauge choices G, G+LTL, and η = 2/m show no high frequency noise early on, as well as
substantially reduce high frequency oscillations during inspiral (shown in the bottom panel).
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constant η = 2/m which dies at about 100m with this configuration. This particular simulation

runs successfully with CFL=1/4, but only with increased resolution in time. All q = 1/15

simulations use eighth order finite-differencing stencils in space.

As with the q = 1/7 binary, our results for the smaller mass ratio systems will be focused

on analysis of the physical quantities of the system such as masses, spins, and gravitational

waveforms. These quantities are invariant with respect to the gauge, and therefore can be

used to measure differences in results using each gauge. Once the remnant is settled, we can

compare the kicks calculated at the horizon by the isolated horizon formulae [63] to those

extracted from the radiated linear momentum at infinity.

The top panel of Fig. 3.12 shows the evolution of the horizon mass of the large black hole

m2 for seven simulations: G and LZ with resolutions n084, n100, and n120, and η = 2/m for

n100. For the remainder of this work, the low resolution n084 will be a dashed line, n100 will

be dot-dashed, and n120 will be solid.

In Fig. 3.12, we can see that all gauges maintain the mass to at least O(1e-4), but the

η = 2/m n100 and G n100 and n120 simulations show the best constancy in mass. The figures

are generated using a 20-point running average to smooth fluctuations in the data and to better

present a general trend. Table 3.3 can be used in conjunction with Fig. 3.12. It shows the

slopes of a linear fit to the data for each simulation over the inspiral period t = (100−1000)m.

The results of this fit are given in columns 3 and 5 of Table 3.3 with the root mean square

error

εi = err =

√∑N
k=1(mk

i − m̂k
i )

2

N
(3.4.50)

where mk
i are the actual mass values for black holes labeled i = 1, 2, measured at time points

t and m̂k
i = At+ b.

Initially, the black holes grow due to an influx of radiation from the initial data, but then

are expected to settle to a value that remains almost constant until merger. The top panel

shows the horizon mass of the larger black hole; in the simulation using the LZ gauge there are

low frequency oscillations later on in the inspiral, in the n084 simulation, which is reflected in

the increase in ε1 between the linear fits of G and LZ (ε1 = 0.0215 ·10−6 vs. ε1 = 0.0397 ·10−6
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respectively).

The bottom panel shows the horizon mass of the smaller black hole; in the n084 LZ

gauge, the mass, after the settling of the initial data, declines fairly steadily, with A1 =

−0.3482 · 10−7 and ε1 = 0.7943 · 10−6. This occurs in the G gauge as well, although its slope

is A1 = −0.2810 · 10−7 with error ε1 = 0.5177 · 10−6. Although neither gauge maintains m1

very well at this resolution, m1 in the G gauge has a much shallower decline than the m1 in

the LZ gauge, as well as smaller error overall.

In the n100 simulations, η = 2/m outperforms G in terms of linearity by < 5% in m1 and

by > 200% in m2, although in each case η = 2/m has higher error than G. In LZ n100 and

n120, there occurs a substantial dip in the mass of m2 between t = (800 − 1200)m that is

reflected in an increase in the error of the linear fits.

Gauge Res. m1 m2

A · 10−7 err.·10−6 A · 10−7 err.·10−4

G n084 -0.2810 0.5177 0.6613 0.0215
LZ n084 -0.3482 0.7943 0.6462 0.0397
2/m n100 -0.0258 0.3551 0.2564 0.0131
G n100 -0.0683 0.2546 0.2655 0.0079
LZ n100 -0.0641 0.5688 -0.6248 0.1543
G n120 -0.0463 0.3206 0.1620 0.0082
LZ n120 -0.0245 0.2238 -0.2601 0.0467

Table 3.3: The slopes (A, columns 3 and 5) of linear fits to the horizon masses m1 and m2

computed over the inspiral t = 100m to 1000 for the q = 1/15 binary using η =G, LZ, and
2/m. Error is calculated via root mean square error over the interval, and is shown in columns
4 and 6. The time frame is chosen so a linear fit is a reasonable approximation of the mass
curves. The G and LZ simulations have 3 resolutions: n084, n100, n120, and the η = 2/m
simulation has 1 resolution: n100. The G gauge produces a reliably constant value for the
horizon mass, even at low resolution, whereas the mid- and low- resolution LZ simulations
show large changes in mass (reflected in the slopes A) as well as higher error values overall.

It is informative to study the growth of the apparent horizon of each black hole in numerical

(radial) coordinates for each different gauge. An extended horizon requires a large number of

grid points to evaluate quantities over its surface, but the numerical evolution “loses” those

points in the interior of the black hole. These are points that could be used to otherwise

resolve the dynamics of the system.
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Figure 3.12: Horizon masses for m2 (top) and m1 (bottom) versus time for the q = 1/15
simulation with the different choices for mη, G, LZ, and η = 2/m. The dashed, dot-dashed,
and solid lines are the low n084, medium n100, and high n120 resolutions respectively. The
horizon masses m1 and m2 deviate from constant most dramatically when the LZ gauge is
used. Both the η = 2/m and G gauges maintain the masses of the horizons well over the
course of the simulation, except at the lowest resolution n084.
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The top panel of Fig. 3.13 shows the the initial growth of the larger black hole m2, which

grows from t = (0 − 25)m using all three gauge choices. This growth is due to an influx of

radiation content from the initial data, and is expected. The growth in the small black hole

(bottom panel), m1, happens within the first few iterations and then immediately stabilizes.

To minimize the loss of gridpoints in the simulation, ideally the horizon will grow quickly and

then settle down to maintain its coordinate size, so this rapid stabilization is critical.

The horizon coordinate sizes for the low, medium, and high resolutions of G lie directly

on top of each other in both panels of Fig. 3.13. The same is true for all resolutions of LZ.

Furthermore, the gauges G and LZ, regardless of resolution, maintain a constant coordinate

size of the apparent horizons of m1 and m2 well over the course of the run. However, the

η = 2/m simulation, shown in yellow, exhibits continuous growth of both horizons. This

means that gridpoints are constantly being lost inside the black hole horizons, and, in the case

of m2, it is possible that the horizon grows so large it crosses a refinement level boundary,

reducing computational accuracy and wasting resources. While this growth does not prohibit

completion of the q = 1/15 binary at n100, further investigations should be done on its effects

on more extreme mass-ratio pairs. This growth also may be related to the fact that when

using η = 2/m, the low resolution q = 1/15 (n084) requires a CFL decrease from 1/3 → 1/4

in order for the simulation to be successful, whereas the other gauges G and LZ can be run

at n084 with CFL of 1/3. Therefore, using a well-chosen gauge allows for an increase in

computational efficiency at lower resolutions, and using a poorly chosen gauge may cause

issues at low resolutions.

An important and physically relevant method of assessing the accuracy and effectiveness

of different gauges is to look at the early behavior of gravitational waveforms as seen by an

observer far from the binary orbit. In our case, we will consider an observer sitting at r = 113m

from the origin of coordinates. Fig. 3.14 displays the amplitude of the leading waveform mode

` = 2,m = 2 of the Weyl scalar Ψ4. In the top panel the amplitude of the waveform from

t = (75− 135)m is shown. One can observe high frequency noise at t ∼ (90− 100)m produced

by the LZ gauge choice, in blue, that was also present in the q = 1/7 waveform (as shown
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Figure 3.13: Radial average size of each of the horizons of the q = 1/15 binary versus evolution
time for the different gauge choices. The three resolutions using the LZ gauge lie on top of
each other, as do the three resolutions using the G gauge. In both m1 and m2 these gauges
maintain the coordinate size of the horizons well over the full inspiral. The η = 2/m is only
shown in one resolution (n100), and the associated horizons m1 and m2 grow continuously
throughout the simulation.
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in Fig. 3.11). The noise has higher amplitude in the n100 (dot-dash) LZ simulation than the

n084 (dash) LZ simulation. This is not indicative of improvement with decreasing resolution,

but is instead due to the n084 resolution under-resolving the grid. This noise is eradicated

solely by choosing either G or η = 2/m for the gauge, which is also consistent with what was

found in Fig. 3.11.

The second panel of Fig. 3.14 shows a later time in the binary’s evolution (from t ∼

(200 − 600)m). High frequency noise during this period of the inspiral, present even in the

highest resolution (n120) simulation using the LZ gauge, is significantly damped when using

the G or 2/m choice for η instead of the typical LZ. At t ∼ (500m − 550)m, there is an

increase in the amplitude of these oscillations across all simulations. This corresponds to the

bounce of noise over a grid refinement level back to the observer’s location. This effect is also

damped when G or η = 2/m are chosen, thus confirming the benefits of the introduction of

the new gauges. We verified that similar features appear in other next to leading order modes

(`,m) = (2, 1), (2, 0), (3, 0), (3, 1), (3, 2), (3, 3), etc.

Table 3.4 contains the remnant quantities (energy, angular momentum, and linear momen-

tum) of the q = 1/15 binary including a three-point extrapolation to infinity (n∞) as well as

convergence order in the cases where we use three resolutions and have convergence. Columns

3-5 show the mass, and angular and linear momentum measured on the horizon of the black

hole using the isolated horizon formulae (See Ref. [65] and Eq. (2.3.6)). Columns 6-8 are the

same quantities but calculated from the energy, angular, and linear momentum carried away

by gravitational waves off to an observer located at infinity. Excellent agreement is observed

between radiation and horizon measurements for the final mass and spin. In general, the hori-

zon linear momenta are measured well at the typical production resolutions of n100 and n120

using the G gauge, coming within 12% of the radiated measure for n100 and 28% for n120.

Compare this with the LZ gauge, which is off wildly (by 716% using n100) or the η = 2/m

gauge which is off by 35% using n100.

Since η = 1/m gives a more accurate measure of recoil velocity than η = 2/m [67], and G

damps to 1 far from the center of coordinates, we expected improvement between η = 2/m and
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Figure 3.14: The amplitude of the dominant mode of Ψ4 for the q = 1/15 binary extracted at
an observer location of r = 113m. The waveform is shown for G and LZ in three resolutions
and η = 2/m in one. In the top panel, higher frequency noise of the LZ gauge early on
at t ∼ (75 − 135)m and its bounce at the next refinement level in the second panel from
t ∼ (200− 600)m is apparent.
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G. Additionally, the strong improvement between G and LZ may prove critical in measuring

the horizon quantities accurately when considering extremely small mass ratios, such as the

q = 1/32 or q = 1/64 binaries considered here.

Horizon Radiated
Gauge Resolution E/m J/m2 L(km/s) E/m J/m2 L(km/s)

n084 0.9949 0.1863 178.7939 0.9950 0.1889 31.5722
n100 0.9949 0.1870 36.3859 0.9950 0.1880 32.9681

G n120 0.9949 0.1870 44.79436 0.9949 0.1877 35.0123
n∞ 0.9950 0.1870 44.3255 0.9949 0.1874 -
CO 4.64 15.50 15.52 3.51 5.05 -
n084 0.9949 0.1865 232.3947 0.9950 0.1881 31.0327
n100 0.9948 0.1862 241.2582 0.9949 0.1876 34.3328

LZ n120 0.9949 0.1872 43.4521 0.9949 0.1874 35.0915
n∞ 0.9948 - - 0.9949 0.1874 35.3179
CO 3.11 - - 5.88 7.12 8.06

2/m n100 0.9949 0.1870 21.1410 0.9950 0.1884 32.7075

Table 3.4: For the q = 1/15 binary, the total mass, angular, and linear momentum (1) mea-
sured by the amount radiated away in gravitational waves, in columns 3-5, and (2) measured
quasi-locally on the horizon, in columns 6-8. Extrapolations to infinite resolution (n∞) and
convergence order (CO) are included where applicable. All simulations have resolution speci-
fied in column 3 as well as CFL=1/3 and 8th order finite differencing stencils. A dash indicates
no convergence was found.

3.4.3 Results for a q = 1/32 nonspinning binary

We also performed an in-depth study on a smaller nonspinning binary with a mass-ratio of

q = 1/32 and an initial binary separation of d = 8m. It uses a Courant factor of 1/4 as well

as 8th order finite differencing stencils in space, and was run using three resolutions (n084,

n100, n120), with both the G and LZ gauges as well as one resolution (n100) of η = 2/m.

Fig. 3.15 shows the horizon masses for the seven q = 1/32 simulations during inspiral

from t = 0m through t = 1200m, which is just before merger. In these figures, we are again

looking for the masses to be held constant (after settling down initially) for the duration of

the inspiral, as this will indicate a more accurate computation of horizon masses. The lowest

resolution (n084) simulations using the G and LZ gauges show the most growth in m2 (top

panel) or mass-loss in m1 (bottom panel), while the G n120 simulation holds both masses
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most constant over time. The n100 LZ gauge shows a relatively large dip in m2 mass between

t = (800−1200)m, which is consistent with our findings for the q = 1/15 binary. The η = 2/m

n100 simulation holds m2 constant until t = 800m and then begins to grow at the same rate as

the LZ n084 simulation. In m1, η = 2/m begins with mass loss from t = (0−200)m then stays

relatively constant until t = 1100m where it begins to lose mass again. While not prohibitive

to the completion of this particular simulation, this mass loss in the small black hole might

pose issues at lower resolutions or mass ratios.

To assess continuity of the horizon mass parameters quantitatively, we performed a linear

fit to the data for each simulation over the inspiral period t = (100 − 1000)m. The results

of this fit are given in columns 3 and 5 of Table 3.5 with the root mean square error as in

Eq. (3.4.50).

The LZ n084 m1 and m2 have slopes of A1 = −0.2529 · 10−7 and A2 = 0.2332 · 10−7

(respectively), whereas G has slopes A1 − 0.1354 · 10−7 and A2 = 0.6370 · 10−7. The slope of

m2 is most constant using LZ, as well as has the lower error. However, the more difficult to

resolve black hole is the smaller horizon, whose mass is better computed using the G gauge.

As resolution increases, so does the stability of the masses of each black hole; using G at

n100 provides horizon mass measurements that are closer to constant as well as using η = 2/m,

however, because of the dip using LZ at t = (800− 1200)m, the slopes for LZ n100 are similar

to those of n084. The G n100 gauge matches the G n120 gauge well throughout most of the

inspiral period. However, η = 2/m exhibits growth in the mass that is superlinear and is

reflected in the increase in root mean squared error between the horizon masses in G and

η = 2/m (n100), respectively at εG1 = 0.1507 · 10−6 and εG2 = 0.0402 · 10−4 and η = 2/m at

ε
2/m
1 = 0.4051 · 10−6 and ε2/m2 = 0.0407 · 10−4. A full list of the mean slopes of the horizon

masses and their corresponding errors can be found in Table 3.5.

In Fig. 3.16, the amplitude of the gravitational wave scalar Ψ2,2
4 is plotted versus time for

all seven simulations. The top panel shows the early part of the waveform, from t = 75−135m.

Between t = 90 − 100m, there is noise in the LZ simulations that is damped by the G and

η = 2/m simulations across all resolutions which is consistent with our findings for the q = 1/15
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Gauge Res. m1 m2

A · 10−7 err.·10−6 A · 10−7 err.·10−4

G n084 -0.1354 0.0977 0.6370 0.0222
LZ n084 -0.2529 0.5638 0.2332 0.0275
2/m n100 -0.0410 0.4051 0.2620 0.0407
G n100 -0.0231 0.1507 0.1739 0.0402
LZ n100 -0.0310 0.2049 -0.5344 0.1673
G n120 -0.0163 0.1054 0.0659 0.0171

Table 3.5: The slopes (A, columns 3 and 5) of linear fits to the horizon masses m1 and m2

computed over the inspiral t = (0−1000)m for the q = 1/32 binary using η =G, LZ, and 2/m.
Error is calculated via root mean square error over the interval, and is shown in columns 4 and
6. The time frame is chosen so a linear fit is a reasonable approximation of the mass curves.
The G and LZ simulations have 3 resolutions: n084, n100, n120, and the η = 2/m simulation
has 1 resolution: n100. The G gauge provides an effective gain in resolution of a factor of 2 in
the horizon mass.

and q = 1/7 binaries. This means that smaller mass-ratios benefit significantly from the use

of an adaptive gauge like G or a constant choice like η = 2/m. However, recall that lower

resolutions of η = 2/m may require at least increases in time resolution (via CFL) which are

not necessarily computationally practical, especially as mass-ratios decrease.

The bottom panel of Fig. 3.16 shows the inspiral period of Ψ2,2
4 from t = (200 − 900)m.

Compare the low resolution G (n084, red dashed) and the n100 (blue, dot dashed) resolution

of the same gauge between 400m and 450m. The n100 curve shows noise reflected at the

mesh refinement boundary, but the G n084 curve seems to damp this noise. This is due to

n084 under-resolving the grid, which is also the cause of the increase in initial noise between

LZ n084 and n100. The high-frequency oscillations occurring from the subsequent reflection

between t = (500 − 600)m also do not appear in the G n084 simulation, whereas they do in

the G n100 and G n120 simulations, which supports the hypothesis that n084 has too few

gridpoints to properly resolve the system.

The LZ gauge in n084 (blue, dashed) shows high frequency oscillations over the course

of the inspiral, which are somewhat damped by increasing the resolution to n100 (blue, dot-

dashed). The G n100 simulation (red, dot-dashed) exhibits less oscillatory behavior when

compared to the waveform in the other gauges, η = 2/m and LZ, at resolution n100.

For smaller mass ratios, comparing the waveforms in the near-merger inspiral and ringdown
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Figure 3.15: Horizon masses for m2 (top) and m1 (bottom) versus time for the q = 1/32
simulation with the different choices for mη, G, LZ, and η = 2/m. The dashed, dot-dashed,
and solid lines are the low n084, medium n100, and high n120 resolutions respectively. The
horizon masses m1 and m2 deviate from constant most dramatically when the LZ gauge is
used. Both the η = 2/m and G gauges maintain the mass of the horizon well over the course
of the simulation, except at the lowest resolution n084.
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Figure 3.16: The amplitude of the Ψ4 waveform of the q = 1/32 binary extracted at an
observer located at r = 113m. The top panel shows the early part of the waveform from
t = (75 − 135)m, and the bottom panel shows the inspiral period from t = (200 − 900)m.
Higher frequency noise of the LZ gauge is apparent at t ∼ (90− 100)m, which is damped by
the G and η = 2/m gauges. Refinement boundary reflections of the high frequency noise are
apparent in the second panel, which shows a longer inspiral.
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phases is also a good method of quantifying gauge performance. Fig. 3.17 shows two different

sections of the amplitude of the dominant mode of the gravitational wave strain h2,2 for the

q = 1/32 binary, using the G, LZ and η = 2/m gauges at resolution n100, extrapolated to an

observer at ∞. The merger times for all simulations are matched for easy comparison. The

top panel of Fig. 3.17 shows the inspiral portion of the waveform, from t = (300−1300)m and

the bottom panel shows the ringdown period post-merger from t = (1500− 1530)m.

In Fig. 3.17, we are interested in comparing the effects of the different gauges on low fre-

quency oscillations before and after merger. Using the constant choice η = 2/m introduces

low frequency oscillations in the inspiral portion (top panel) of the strain h2,2 that are damped

by choosing an alternative, variable gauge such as G or LZ. This suggests that using a gauge

with peaks at the black holes resolves the binary’s dynamics well in the strong field region,

effectively damping oscillations in the gauge that propagate from the black holes. The ring-

down phase (bottom panel) shows significant oscillations in gravitational waveforms that use

the LZ gauge. Using η = 2/m or G produces waveforms without these oscillations, which sug-

gest that the low frequency oscillations come from the choice of gauge itself. We are currently

investigating a gauge that uses G for the inspiral and then flattens to a near-constant η = 1/m

post-merger, i.e. Eq. (3.3.46) with n = 2.

As a follow up to [67], we would like to investigate the effects of different gauge choices

on the horizon quantities of small mass ratio binaries as well. Table 3.6 shows the results of

this study. It includes all 7 runs with mass ratio q = 1/32 (3 resolutions for G and LZ, and

one for η = 2/m) as well as a 3-point extrapolation to infinity in the row labeled n∞ and

the order of convergence (CO) where they exist. The Horizon columns show the results of

the energy and angular momentum calculated using the isolated horizon formulae, and the

Radiated columns show the results of calculating the same three quantities as carried away by

gravitational waves.

Our new gauge G does a good job of measuring mass and angular momentum on the

horizon when compared to its radiated counterpart. The horizon energy and radiated energy

converge to the same value (within 10−4), as do the horizon and radiated angular momentum.
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However, at the resolutions we used for these simulations, G, and our typical variable

gauge, LZ, do a very poor job of measuring kick on the horizon when compared to the linear

momentum carried away by gravitational waves. For this reason, we have chosen to omit these

results from Table 3.6. It is worth mentioning that G performs slightly better, at least reaching

the correct order by the highest resolution - 20.85 km/s measured on the horizon vs. 9.94 km/s

measured at infinity, where LZ estimates 219.96 km/s instead of 9.73 km/s. For both G and

LZ, the approximation does improve with resolution, however for an accurate measurement

of horizon linear momentum we need to increase the resolution again to n144. The constant

gauge η = 2/m, was only simulated for one resolution, n100, of q = 1/32; because of the

increase in CFL that was required for the lowest resolution q = 1/15, we have discounted

η = 2/m as a viable option.

Horizon Radiated
Gauge Resolution E/m J/m2 E/m J/m2 L (km/s)

n084 0.9979 0.0985 0.9979 0.0982 8.4673
n100 0.9979 0.0972 0.9979 0.0979 9.7856

G n120 0.9979 0.0977 0.9979 0.0978 9.9423
n∞ 0.9978 0.0976 0.9979 0.0977 9.9634
CO 2.00 4.42 4.82 6.04 11.68
n084 0.9979 0.0974 0.9979 0.0978 7.3265
n100 0.9979 0.1002 0.9979 0.0978 9.5137

LZ n120 0.9979 0.0967 0.9979 0.0976 9.7311
n∞ 0.9979 - 0.9980 0.0971 9.7551
CO 4.23 - 0.90 0.06 12.66

2/m n100 0.9979 0.0976 0.9979 0.0978 9.3891

Table 3.6: For the q = 1/32 binaries using G, LZ, and η = 2/m, the resolutions are given in
column 2. The horizon quantities (energy and angular momentum) are in columns 3 and 4, and
the corresponding radiated quantities are in columns 5-7. All simulations use CFL=1/4 and
8th order finite differencing stencils. The G gauge does a good job of measuring the horizon
mass and spin, however, the horizon linear momentum requires high resolution to approach
the radiated linear momentum.

3.4.4 Results for a q = 1/64 and q = 1/128 nonspinning binary

We also performed a study on extremely small mass ratio, nonspinning binaries with q = 1/64

and q = 1/128 and initial binary separation of d = 7m. The simulations use a Courant
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factor of 1/4 as well as 8th order finite differencing stencils. The q = 1/64 was run with two

resolutions (n084, n100) in the LZ gauge and one resolution (n100) in the G gauge. As a follow

up to [22], the q = 1/128 n100 simulation in the LZ gauge generated for that work is included

here to compare with preliminary results for the n100 G gauge.

In Fig. 3.18, the masses measured on the horizon of the black holes (top: m2, bottom:

m1) are shown for q = 1/64. The LZ gauge is in blue and the G gauge is in red with different

resolutions denoted by different line types. In m2, both gauges produce masses that are

similarly constant at our typical production resolution of n100. The resolution n084 is quite

a bit under-resolved for this extremal simulation, and therefore the LZ gauge does not do a

good job of maintaining constancy in either m1 or m2. However, the smaller black hole m1 is

more difficult to resolve, and using the G gauge at n100, its mass is held more constant than

using the LZ gauge at the same resolution.

For the more extreme mass ratio binary, q = 1/128, we will consider only the early part

(through t/m = 1000 of the n100 simulation in the G gauge; the simulation was not run

through merger. This will be compared to a full simulation of the binary in the LZ gauge

since it was completed for [22]. These runs are very computationally difficult to do, but

comparing the results of the early part of the simulations will give us a good idea of the

benefits of using G instead of LZ here. Fig. 3.19 shows both horizon masses versus simulation

time in the G and LZ gauges in one resolution (n100). Since n100 is still under-resolved for

the q = 1/128 binary, neither m1 nor m2 is held constant. However, m2 in the LZ gauge has

slightly less mass-gain than in the G gauge, whereas the G gauge has a significant reduction

in noise over the LZ gauge. Neither gauge prevents mass loss/gain in m1 - in order to see

benefits of the G gauge it is likely we would need to increase resolution by at least a factor of

1.2 (to n120).

Fig. 3.20 shows the amplitude of the gravitational wave scalar Ψ2,2
4 versus simulation time

for the three different runs with mass ratio q = 1/64. The top panel shows the early part

of the inspiral, and the numerical noise present when the LZ gauge is chosen is visible again

between t = (95 − 100)m, however it has decreased substantially in amplitude. Using the
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G gauge damps this noise completely, as well as reduces other oscillations present in the LZ

gauge simulation with n100 resolution (blue, dot-dashed) at t = 150m.

The bottom panel shows the inspiral period of Ψ2,2
4 from t = (200−800)m. The simulation

with the LZ gauge in resolution n100 has high frequency oscillations between t = (200−500)m

which are nonphysical. These are damped away almost completely by making the choice of

G for mη. There are reflections of noise at the grid refinement boundaries visible between

t = (300− 400)m and t = (500− 600)m.

Similarly, we can consider the effects of the different gauges on the inspiral period of the

q = 1/128 binary. In contrast to the horizon masses, when the gravitational waveform is

considered, the G gauge shows obvious improvement over LZ. Fig. 3.21 shows the inspiral

from t = (75− 135)m in the top panel and t = (200− 800)m in the bottom panel using both

G and LZ in resolution n100. In the top panel, between t = (95− 100)m, we can see an initial

burst of nonphysical noise that is consistent with our results for all other mass-ratios. This is

damped by choosing the G gauge, which is hugely beneficial for such a demanding simulation.

The bottom panel of Fig. 3.21 shows the inspiral period of Ψ2,2
4 up to just before merger.

In the LZ gauge, there is a substantial amount of high frequency noise present in the waveform

until about t = 600m. Using the G gauge, this noise is almost completely damped, producing

a cleaner and more accurate gravitational waveform for no increase in computational expense.

As the mass-ratio of the binary decreases, the inspiral and ringdown oscillations in the

dominant mode of the gravitational wave strain increase in amplitude. Consider Fig. 3.22.

The top panel shows the inspiral, t = (250 − 950)m of h2,2 for q = 1/64 using gauges G and

LZ in resolutions n084 and n100. Both G and LZ produce low-frequency oscillations in the

inspiral. As shown in in the dot-dashed curves, these oscillations are comparable, but small,

in amplitude at the production resolution n100. This is consistent with our findings for the

q = 1/32 binary, and is further evidence of the benefit of using a variable gauge during inspiral.

The bottom panel of Fig. 3.22 shows the ringdown phase of the evolution from t = (1020−

1070)m. The oscillations in the ringdown of the simulation with the lowest resolution in the
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LZ gauge are fairly severe, however they damp away with an increase in resolution to n100.

With the use of the new G gauge, the oscillations in the ringdown of h2,2 are decreased in both

frequency and amplitude when compared to the corresponding ringdown in h2,2 using the LZ

gauge. We expect further improvements could be made with a gauge that has a near constant

value post-merger, or an increase in resolution up to n144.

For such computationally demanding simulations as q = 1/64 and q = 1/128, the ability

to accurately measure horizon quantities at lower resolution has substantial benefits in terms

of computational expense. Table 3.7 shows the energy and angular momentum as measured

on the horizon (columns 4 and 5), as well as the same quantities calculated from the amount

of each carried away by gravitational waves (columns 6 and 7). It also includes the kicks for

these simulations, but only measured by the amount of linear momentum carried away by

gravitational waves (column 8). This measurement of linear momentum is significantly more

consistent than using the measurement on the horizon, so the horizon results are not included

since they are not the main focus of this work. An improvement in the horizon measure of

linear momentum would require an increase in resolution to n120 or even n144 which is not

necessarily practical for such a small mass-ratio binary.

Horizon Radiated
q Gauge Resolution E/m J/m2 E/m J/m2 L(km/s)

1/64 G n100 0.9990 0.0529 0.9990 0.0516 2.8065
1/64 LZ n084 0.9990 0.0457 0.9990 0.0516 2.7216
1/64 LZ n100 0.9990 0.0519 0.9990 0.0516 2.4303
1/128 LZ n100 0.9996 0.0239 0.9995 0.0267 0.9703

Table 3.7: The horizon quantities for the q = 1/64 binary using the G and LZ gauges and the
q = 1/128 binary using the LZ gauge. The remnant quantities for the q = 1/128 binary in the
G gauge are not included since that simulation was not run through merger. The resolutions are
given in column 3. The horizon quantities (energy and angular momentum) are in columns 4-5,
and the corresponding radiated quantities are in columns 6-8. All simulations use CFL=1/4
and 8th order finite differencing stencils. The G gauge does a good job of measuring the
horizon mass and spin, however, the horizon linear momentum requires high resolution to get
close to the radiated measure, and is therefore not shown.

This is consistent with our findings in for the q = 1/32 binary, where the use of G and

LZ to compute horizon linear momentum does improve with resolution but requires higher
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resolution simulations than those performed here. This can be combined with our findings

in [67], in which a low-value constant η, such as 1 or 0.5, was able to very accurately measure

recoil velocity on the horizon even at low resolutions, to construct a variable gauge that damps

to a constant η post-merger.

However, the other horizon quantities (mass and angular momentum) are measured very

accurately in both the G and LZ gauge. The exception, of course, is when resolution is too

low (n084) to properly resolve the grid. There is an obvious improvement with respect to

resolution, and an increase to n120 would likely produce horizon quantities that are on par

with their radiated counterparts.

3.4.5 Noise/spurious radiation versus mass ratio

The study of waveform amplitudes and phases can also provide an invariant measure of ac-

curacy of the full numerical simulations. It has already been mentioned that this new gauge

G completely damps the initial burst of noise at the beginning of the gravitational waveform,

present when the LZ gauge is used, as well as its subsequent reflections at the refinement

boundaries. In fact, this noise can be shown to be inversely proportional to the size of the

peak in the spurious radiation generated at the beginning of the waveform due to initial data.

Fig. 3.23 shows the peak amplitude of the noise in Ψ2,2
4 , Npeak, over the peak amplitude of

the spurious radiation in Ψ2,2
4 , Speak, for each mass ratio q = 1/7, 1/15, 1/32, 1/64, and 1/128

extracted at r = 113m. This figure uses the n100 simulations since we have those for every

mass ratio. We can generate a power-law fit that is a function of the mass-ratio q, which takes

the form

F (q) = Pqm (3.4.51)

where m = 0.8557± 0.0448 and P = 9.5739± 0.0463 are dimensionless constants. The fit has

errors at each data point shown in Table 3.8. Although the absolute difference between the fit

and data points scale with q, the relative error increases as q gets smaller. If we had higher

resolution simulations for the smaller mass ratios, likely they would show that Npeak/Speak

does in fact follow a power law. This means that the noise is in fact reduced significantly in
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q |F (q)− |Npeak/Speak|
|F (q)− |N/Speak|
|Npeak/Speak|

1/7 0.1012 0.0529
1/15 0.0367 0.0405
1/32 0.0260 0.0500
1/64 0.0511 0.2308
1/128 0.0229 0.1321

Table 3.8: The absolute and relative errors between F (q) for all q and Npeak/Speak and stan-
dard deviation for Ψ2,2

4 extracted at r = 113m using resolution n100.

amplitude in the small q-regime.

3.5 Discussion and conclusions

The gauge choices were crucial to the moving punctures breakthrough formalism that allowed

numerical relativists to successfully evolve binary black holes [8, 24]. Here we explored choices

of the initial lapse, α0, and shift, β0, as well as the damping parameter η in the Equations

(3.2.2).

In the construction of the waveform catalogs [2, 34, 35] we used a Courant factor of 1/3

and sixth order spatial finite differencing for non-highly spinning and comparable masses

binaries evolutions. This prioritized speed of the creation and therefore population of the

initial catalogs to evaluate gravitational waves events observed by LIGO and Virgo [58]. For

highly spinning binaries [36, 80, 81] and the small mass ratio systems we study here (q ≤ 1/32)

require a reduction of the Courant factor to 1/4 and the use of 8th order finite differencing

stencils to achieve good accuracy [95].

In our study of the improved choices of the initial lapse and shift inspired by their late

time behavior we found some benefits in introducing the initial lapse as described in Section

3.4.1. In some preliminary studies we did on nonspinning binaries using an initial shift dif-

ferent from zero, we found the shift damped quickly to zero and then oscillated around zero

during the binary’s evolution before settling to the proposed initial form, without any obvious

improvements to the system’s physical parameters.

For comparable mass binaries of q ≥ 1/15, the damping parameter η is chosen to be a small,
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but constant value of order unity. Reduction of the mass ratio of the binary to q = 1/15 and

beyond benefits from η variable in order to counteract the so called grid-stretching produced

by the growth of the horizon in the numerical coordinates (See Fig. 3.13) and thus depleting

those gridpoints to resolve the fields in the exterior of the black holes. Of course, one can

compensate by introducing more points via higher resolutions, but this comes at an increased

computational cost.

The form of this damping parameter η =G given in Eq. (3.3.46) provides a good general

form valid for a wide range of mass ratios q. In addition to better maintaining of the physical

parameters such as mass and spin, this choice of η also removes unwanted initial noise in the

waveforms, as well as its corresponding reflection on the mesh refinement levels when compared

the alternative original choice [7, 22] (See also Eq. (3.3.45)) as displayed in Figs. 3.14 and

3.16. We have also found that the computational cost of introducing a variable η is negligible

compared to the whole evolution system of equations; the change is within 5% of the speed of

the η = 2/m and is about 10% faster than choosing LZ.

The constraint violation studies we performed are a useful measure of convergence with

numerical resolution within a given gauge, but are not so useful when comparing different

gauges. We chose then to turn to analysis of physical parameters to determine the benefits

of using different gauges. The conservation of the horizon masses and spins (as shown in

Figs. 3.10 and 3.12) are a gauge independent measures of the accuracy of the simulations

(Since absorption is an order of magnitude smaller of an effect during inspiral and merger).

The evaluation of the horizon recoils also benefits from the property that G→ 1 far from the

black holes, as shown in Table 3.4.

Additionally, we have looked in particular to the amplitude’s behavior pre- and post- merger

(see Figs. 3.17 and 3.22). To this end we have also introduced the n = 2 in the ηG choices

in Eq. (3.3.46) and Fig. 3.8 that smooths the values of η around the smaller horizon, once

the binary forms a common horizon (from when we normally drop the innermost refinement

level).

In conclusion we recommend the use of the choices (α0, β0 = 0, ηG) parameters for the
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moving puncture evolutions due to its reasonable computational cost as well as the simplicity

of its implementation. This gauge choice shows a wide range of improvements when dealing

with essentially all possible mass ratios, q ≤ 1.
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Figure 3.17: Inspiral (top) and ringdown (bottom) periods of the gravitational wave strain
h2,2 of the mid-resolution simulations of the q = 1/32 binary using the G, LZ, and η = 2/m
gauges. In the inspiral, the waveform using the η = 2/m gauge exhibits oscillatory behavior
which is not present in either of the variable gauges. However, post-merger, the waveform
using LZ exhibits oscillations, whereas the G and η = 2/m waveforms do not. This suggests
that a variable gauge is useful during inspiral, and a more constant gauge is most effective
post-merger.
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Figure 3.18: Horizon masses for m1 and m2 versus time for the q = 1/64 simulation. The
masses in the LZ gauge are shown in two resolutions n084 and n100, and the masses in the G
gauge are shown in only n100. The masses using G are more constant than their counterparts
that use the LZ gauge, especially in the case of the small black hole m1.
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Figure 3.19: Horizon masses for m1 and m2 versus time for the q = 1/128 simulation. The
masses in both the LZ and G gauges are shown in only n100. The large black holem2 using the
LZ gauge is held slightly more constant than its counterpart that uses the G gauge, however
the LZ gauge simulation has significantly more noise than the G gauge one.
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Figure 3.20: The amplitude of the Ψ4 waveform of the q = 1/64 extracted at an observer
located at r = 113m. The top panel shows the early part of the waveform from t = (75−135)m,
and the bottom panel shows the inspiral period from t = (200 − 900)m. Higher frequency
noise of the LZ gauge is apparent at t ∼ (95−100)m, which is damped by the G and η = 2/m
gauges. Refinement boundary reflections of the high frequency noise are apparent in the second
panel, which shows a longer inspiral.
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Figure 3.21: The amplitude of the Ψ4 waveform of the q = 1/128 extracted at an observer
located at r = 113m. The top panel shows the early part of the waveform from t = (75−135)m,
and the bottom panel shows the inspiral period from t = (200 − 800)m. Higher frequency
noise of the LZ gauge is apparent at t ∼ (95−100)m, which is damped by the G and η = 2/m
gauges. Refinement boundary reflections of the high frequency noise are apparent in the second
panel, which shows a longer inspiral.
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Figure 3.22: Inspiral (top) and ringdown (bottom) amplitudes for the q = 1/64 binary using
the G and LZ gauges with resolutions n084 and n100. There is no clear difference between
gauges in the inspiral, however, in the ringdown period, h2,2 using the LZ gauge exhibits
oscillations that are larger in amplitude and slightly higher in frequency than h2,2 using the
G gauge.
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Figure 3.23: The data points show the ratio Npeak/Speak of Ψ2,2
4 extracted at r = 113m for

each mass ratio q. The black line is a power law fit to the data F (q) = 9.9753q0.8557. Errors
are shown in Table 3.8.
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Chapter 4

Analytic Analysis of Spacetimes in

Generic Transverse Frames.

With the new generation of gravitational wave detectors on the horizon, such as the space-

based detector LISA and the constant advancements to the LIGO and VIRGO detectors, it

is of interest to develop more accurate, less computationally expensive methods of extracting

gravitational wave signals from binary compact object mergers. Typical gravitational wave

signals produce long waveforms, especially systems with precession or eccentricity, so the

theoretical predictions from the numerical solutions of Einstein’s Field Equations must be

accurate to an extremely high order to capture as much of the waveform as possible.

In Chapters 2 and 3, we have already studied methods of improving the accuracy of chal-

lenging numerical simulations of binary black hole pairs. These improvements are all made

to the evolution code - the variable η is calculated at every timestep, and the initial lapse α

and shift β are used as initial date for the gauge equations which define the coordinates of the

spacetime.

Post-merger, the spacetime can be rotated into a frame that pushes more physical infor-

mation into the scalar, Ψ4, that we use to calculate outgoing gravitational radiation. This, in
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turn, improves the computation of gravitational wave strain h since

Ψ4 = −ḧ+ + iḧ× = ḧ (4.0.1)

which implies

h = −
∫ t

−∞

∫ t′

−∞
Ψ4dt

′′dt′. (4.0.2)

This means that if we rotate the spacetime into a frame that encodes more of the physical

outgoing gravitational radiation into Ψ4, we will be able to extract more accurate gravitational

waveforms and therefore improve our post-simulation analysis of BBH systems.

The extraction of gravitational waves in different frames is not new, however, it is mostly

done in the asymptotic regime. We are interested primarily in using these frames to study the

spacetime in the strong-field regime - very close to and in between the binary. We have a priori

knowledge of the spacetime should be as r →∞ - it is expected to be Kerr-like in nature [37] -

but no information about its classification as r → 0. This Chapter will develop the necessary

framework to rotate a spacetime into a frame with more physical information in Section 4.1

through Section 4.4. In Section 4.6 we will develop and test a new index which helps to classify

the strong-field region of the spacetime locally (at each point), bearing in mind the numerical

applications. We also introduce the concept of approximately local Petrov types. Then we will

study several systems with Brill-Lindquist (head-on collision) initial data. Much of the work

in this Chapter is included in an article1 that has been accepted for publication to Physical

Review D.

4.1 Accurate Extraction of Gravitational Waves:

From the Weyl Tensor to the quasi-Kinnersley frame

Gravitational radiation in general relativity is defined in regions of the spacetime known as

“radiation zones”. Their geometry is characterized by two distinctive length scales
1Rosato, Nakano, Lousto. Local and Approximate Classification of Spacetimes in the Transverse Frames.

Phys. Rev. D, accepted 2021.
The arXiv version can be found at https://arxiv.org/pdf/2106.05991.pdf.

Chapter 4. Analytic Analysis of Spacetimes in Generic Transverse Frames. 103



4.1. Accurate Extraction of Gravitational Waves:
From the Weyl Tensor to the quasi-Kinnersley frame

1. the average radius of the spacetime’s curvature and

2. the wavelength of the gravitational waves.

These scales are distinguishable by very small changes in the curvature caused by the passing of

gravitational wavew through the spacetime. There are two main approaches to gravitational

wave extraction - both based on perturbation theory. The first, the Reggie-Wheeler-Zerilli

approach, allows for the direct extraction of gravitational radiation from 3+1 fields. The

other, Teukolsky’s approach, [105, 106], describes radiation fields near a Kerr black hole. This

study will focus on the second approach.

Teukolsky, in 1972, presented separable equations for the radiative parts of electromagnetic

and gravitational perturbations on a Kerr background in Boyer-Lindquist coordinates, derived

from a formalism introduced by Newman and Penrose in 1962 [107]. This Newman-Penrose

formalism uses the Weyl tensor

Cabcd (4.1.3)

which is the trace-free component of the Riemann curvature tensor Rabcd, to develop a for-

malism that re-expresses the 10 independent components of the Weyl tensor in terms of five

complex scalars Ψ0, . . .Ψ4, the Newman-Penrose (Weyl) scalars. In a matter-free spacetime,

asymptotically Ψ0,Ψ2 and Ψ4 represent ingoing radiation, the Coulomb field, and outgoing

radiation, respectively. Mathematically, they are formed by contraction of the Weyl tensor

with an arbitrary (complex) null tetrad (la, na,ma, m̄a). The tetrad itself is formed from com-

binations of also arbitrary, but orthonormal basis vectors. The Weyl tensor and associated

tetrad vectors are contracted in the following way:

Ψ0 = Cabcdl
amblcmd (4.1.4)

Ψ1 = Cabcdl
anblcmd (4.1.5)

Ψ2 = Cabcdl
ambm̄cnd (4.1.6)

Ψ3 = Cabcdl
anbm̄lcnd (4.1.7)

Ψ4 = Cabcdn
am̄bncm̄d (4.1.8)
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The only constraints on the tetrad are that it must satisfy the relationships lana = −1 and

mam̄a = 1, and have all other inner products vanishing.

Teukolsky uses this formalism to specify a null tetrad, which differs from the background

Kinnersley tetrad [108] (in which the only nonvanishing Weyl scalar is Ψ2), by leading order

perturbations. The Kinnersley tetrad has {lα} and {nα}, which are vectors along the two

principal null directions (PNDs) [109].

At late times in a binary black hole merger, Teukolsky’s perturbed Kinnersley tetrad is

expected to have Ψ1 = Ψ3 = 0, which is the condition that characterizes a transverse frame.

The Teukolsky formalism requires classification of a tetrad into a specific transverse frame.

There are three possible transverse frames in any generic spacetime and choosing among them

is nontrivial.

The transverse frame is used in a number of different analytical applications. For instance,

it was used in the Lazarus project [110, 111]. This work constructs Cauchy data for the

Teukolsky evolution [110] and then [111] rotates the resultant scalars into the quasi-Kinnersley

frame, which allows for the extraction of information about the background Kerr solution and,

in turn, the gravitational radiation. We are also interested in using the associated non-quasi-

Kinnersley, but still transverse, frames to analyze and classify the spacetime very close to the

black holes.

In 2001, the Lazarus project [110] showed that late-time evolutions of a BHB spacetime can

be seen as a perturbed Kerr spacetime, and used this to extract information about gravitational

radiation. In 2006, the second iteration of this project [111] sought to improve late-time

gravitational wave extraction by rotation further of a spacetime into a “quasi-”Kinnersley

frame (QKF), and then explored the late-time behavior of a merged BHB system, which

should differ only perturbatively from Kerr. The QKF is transverse, which means the Weyl

scalars Ψ1 = Ψ3 = 0, since they are nonphysical in a matter-free spacetime. This means that

more physical information is encoded in the gravitational wave scalar Ψ4, the ingoing radiation

scalar Ψ0 and the Coulomb field Ψ2.

The QKF has since been explored in greater detail in a series of articles by Beetle, Bruni,
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Burko, and Nerozzi [37], [38], [39], and [40]. The first paper extends the analytic work done

in [111] to the numerical regime, by outlining the limits of the quasi-Kinnersley frame, and

establishing methodologies for incorporating it into full numerical relativistic simulations.

Beetle et. al. [37] propose the construction of a set of transverse null tetrads that are

equivalent under spin-boost and exchange transformations. However, only one frame will be

quasi-Kinnersley, and explicit rules for its identification are presented in the paper. We will

use their definitions extensively in the coming sections.

The first paper defines the framework for [38] which performs analytic rotations of the

five Weyl Scalars Ψ0, . . . ,Ψ4 using Type I and Type II rotations, and solves for two constant,

complex parameters ā and b necessary to rotate into a quasi-Kinnersley frame (the overbar

signifies the complex conjugate of a). The Type I and Type II rotations of the Weyl scalars in

the original frame lead to two equations for Ψ
′′
1 and Ψ

′′
3 which can be solved for ā and b (see

Eqs. (4.2.18) and (4.2.23)) below. The double apostrophe delineates a doubly transformed

scalar. The polynomial Ψ
′′
1 is sixth order in ā, but Nerozzi et. al. provide a method of

reducing it to fourth order. When the spacetime is perturbatively close to Kerr, namely at

late times (post-merger) or at distances far from the binary (r → ∞), the quasi-Kinnersley

frame approximates the background Kinnersley frame. The correct transverse frame is chosen

by identifying the eigenvalues of the Weyl tensor (i.e. of Eq. (4.2.11) below) that approach Ψ2

asymptotically.

The authors go on to discuss how to differentiate between the quasi-Kinnersley frame

and other transverse frames, they introduce a new curvature scalar ξ = Ψ0Ψ4, and finally

provide analytic rotations into the QKF of the Weyl scalars in algebraically special spacetimes.

Using the Newman-Penrose formalism, the authors provide a fully analytic prescription for

constructing the three transverse frames and identifying the one that is quasi-Kinnersley.

Finally, [39] goes further in-depth on the Beetle-Burko radiation scalar ξ = Ψ0Ψ4, the

curvature invariant for general relativistic spacetimes. The scalar measures the total amount

of radiation - ingoing, outgoing, and spurious, in a spacetime. The paper applies it to a number

of initial data sets describing single black-hole spacetimes. The analysis is done entirely in the
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quasi-Kinnersley frame, identified by demanding continuity in Ψ2 and ξ → 0 as r →∞.

We apply the techniques of [38] to analytic initial data of black hole pairs in order to rotate

a particular spacetime into a transverse frame that is quasi-Kinnersley far from the binary,

and generically transverse close to them. We will specifically study the strong-field regime

of these spacetimes and classify interesting regions into different Petrov types. We will also

present a new index D that, when used in conjunction with the Baker-Campanelli speciality

invariant S = 27J2/I3, will allow us to differentiate between Petrov Type D and II in the

strong field regime where there is no a priori knowledge of the spacetime’s classification2.

This Chapter will proceed as follows: first, we will discuss the analytic method presented

by [38] for rotation into the quasi-Kinnersley frame. Then, we will show that the quasi-

Kinnersley frame can be used to classify the spacetime close to the black holes, and then

discuss where this definition breaks down. Finally, we will construct the D index and use it,

in conjunction with S and a transverse frame (other than the QKF), to successfully classify

the strong-field region of a set of black hole binaries that use Brill-Lindquist initial data.

4.2 Analytic Null Rotation into the quasi-Kinnersley Frame

To rotate into the quasi-Kinnersley frame, begin with any arbitrary frame F characterized by

a set of arbitrary null tetrad vectors (la, na,mam̄a). From the tetrad vectors, the Weyl scalars

in F can be built up via Eqs. (4.1.4-8). Then, one can write the eigenvalue (λ) equation

associated with the Weyl Tensor (as in [109])

1

2
CαβµνX

µν = λXαβ (4.2.9)

where Cαβµν is the Weyl tensor and X is an associated eigenbivector. This can be reduced to

Qabr
b = λra. (4.2.10)

2Full definitions of all six Petrov types can be found in Section 4.2.1
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The complex, symmetric matrix Qab takes the form

Qab =


Ψ2 − Ψ0+Ψ4

2
i(Ψ4−Ψ0)

2 Ψ1 −Ψ3

i(Ψ4−Ψ0)
2 Ψ2 + Ψ0+Ψ4

2 i(Ψ1 + Ψ3)

Ψ1 −Ψ3 i(Ψ1 + Ψ3) −2Ψ2

 . (4.2.11)

Qab can also be written in terms of the electric and magnetic parts Eab and Bab of the Weyl

Tensor

Qab = Eab − iBab. (4.2.12)

This definition is included to provide some physical motivation for matrix Qab, but we will use

exclusively Eq. (4.2.11) since it is written in terms of the Weyl scalars. For more information

on Eq. (4.2.12), or the definitions of Eab and Bab in terms of the Weyl tensor see [43] Chapter

8. In vector notation, this is

Qr = λr. (4.2.13)

The eigenvalues λ of Q are found by setting

det|Q− λI| = 0 (4.2.14)

and solving for λ. For a general 4D spacetime, Q ∈ C3×3, which means that there are 3

complex eigenvalues λ1, λ2, λ3. The characteristic polynomial to solve is

λ3 − Iλ+ 2J = 0 (4.2.15)

where I and J are spacetime invariants which can be written in terms of the Weyl scalars as

I = Ψ4Ψ0 − 4Ψ3Ψ1 + 3Ψ2
2 (4.2.16)
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and

J = det

∣∣∣∣∣∣∣∣∣∣
Ψ4 Ψ3 Ψ2

Ψ3 Ψ2 Ψ1

Ψ2 Ψ1 Ψ0

∣∣∣∣∣∣∣∣∣∣
. (4.2.17)

All three eigenvalues of Qab are associated with their own individual transverse frame, in which

the Weyl scalars adhere to Ψ1 = Ψ3 = 0. There will be one eigenvalue (λP ) considered to

be principal and specifically associated with the quasi-Kinnersley frame. Due to the complex

nature of the roots of Eq. (4.2.15), choosing the principal eigenvalue is nuanced and nontrivial

- continuity must be forced in the strong field region [37]. A discussion on methods of choosing

λP will proceed in Section 4.3. Once the principal eigenvalue is chosen at every point in the

3D space, it is used to construct the rotation parameter ā. This is used to transform the Weyl

scalars by a Type I rotation:

Ψ′0 → Ψ0 (4.2.18)

Ψ′1 → Ψ1 + āΨ0 (4.2.19)

Ψ′2 → Ψ2 + 2āΨ1 + ā2Ψ0 (4.2.20)

Ψ′3 → Ψ3 + 3āΨ2 + 3ā2Ψ1 + ā3Ψ0 (4.2.21)

Ψ′4 → Ψ4 + 4āΨ3 + 6ā2Ψ2 + 4ā3Ψ1 + ā4Ψ0. (4.2.22)

Then, rotation parameter b is constructed from ā, and a Type II rotation is performed via:

Ψ′0 → Ψ0 + 4bΨ1 + 6b2Ψ2 + 4b3Ψ3 + b4Ψ4 (4.2.23)

Ψ′1 → Ψ1 + 3bΨ2 + 3b2Ψ3 + b3Ψ4 (4.2.24)

Ψ′2 → Ψ2 + 2bΨ3 + b2Ψ4 (4.2.25)

Ψ′3 → Ψ3 + bΨ4 (4.2.26)

Ψ′4 → Ψ4. (4.2.27)
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Equivalently the null vectors, la, na,ma, can be transformed using ā and b, and then can be

used to reconstruct the quasi-Kinnersley Weyl Scalars ΨQK
a by contraction with the Weyl

tensor. There are equivalent rotations in terms of the tetrad vectors; a Type I rotation:

l′ → l (4.2.28)

m′ → m+ al (4.2.29)

m̄′ → m̄+ āl (4.2.30)

n′ → n+ ām+ am̄+ aāl (4.2.31)

and a Type II rotation:

n′ → n (4.2.32)

m′ → m+ bn (4.2.33)

m̄′ → m̄+ b̄n (4.2.34)

l′ → l + b̄m+ bm̄+ bb̄l. (4.2.35)

Both rotation methods require the calculation of complex rotation parameters a and b. An in

depth discussion of the rotation will be discussed in Section 4.4.

4.2.1 Petrov Types

We would like to be able to use the transverse-frame Weyl scalars to differentiate between

Petrov types of the spacetime. These classifiers provide insight into the dynamics of the

spacetime and describe physical properties of the system. There are six Petrov types [112]

1. Petrov Type I: A spacetime in which a tetrad can be chosen so that only Ψ1, Ψ2, and

Ψ3 are different from 0. There are 4 independent principal null directions (PNDs).

2. Petrov Type II: A spacetime in which a tetrad can be chosen so that only Ψ2 and Ψ3 are

different from 0. This corresponds to a Coulombic spacetime. There are two coincident

PNDs.
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3. Petrov Type III: A spacetime in which a tetrad can be chosen so that all scalars except

Ψ3 vanish. There are three coincident PNDs.

4. Petrov Type N: A spacetime in which a tetrad can be chosen so that all scalars except

Ψ4 vanish. There are four coincident PNDs.

5. Petrov Type D: A spacetime in which a tetrad can be chosen to rotate the Weyl scalars

so that only Ψ2 is nonzero. Kerr or Schwarzschild correspond to Type D spacetimes.

The PNDs agree in pairs.

6. Petrov Type O: Conformally flat spacetime; all Weyl scalars vanish.

A detailed explanation of the Petrov types can be found in [43] or [113].

The remainder of this Chapter is organized as follows: Section 4.3 will discuss the choice

of principal eigenvalue λP , then Section 4.4 will discuss how to find rotation parameters ā and

b to rotate general Weyl scalars into a quasi-Kinnersley frame, and Section 4.6 will discuss

the results of performing this rotation at each point on a binary with Brill-Lindquist initial

data, which is head on collision initial data for two black holes (beginning on the z−axis).

Section 4.5 derives a new index D that differentiates locally between Petrov Types II and D,

and applies it to the strong field region of two Brill-Lindquist black hole systems. For the

remainder of this Chapter, non-QK Weyl scalars will be written as Ψa, and Weyl scalars in

the quasi-Kinnersley frame will be written as ΨQK
a .

4.3 Finding the Principal Eigenvalue

Each eigenvalue of Qab in Eq. (4.2.11) corresponds to a reference frame from which the Weyl

scalars Ψa can be computed. One can freely rotate among frames using constants ā and b,

and all such frames constructed using the eigenvalues λ are transverse. One specific frame, the

quasi-Kinnersley frame, is associated with an eigenvalue λP of Qab that we will consider to be

principal. The identification of the principal eigenvalue is trivial in the wavezone - it needs only

to be twice the magnitude of each of the other two eigenvalues (see below [38]). One would like
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this principal eigenvalue to be at least C1 over the whole spacetime, but the invariants used to

construct the eigenvalues are complex, and the eigenvalues themselves contain complex cube

roots. These roots introduce branch cuts in the eigenvalues unless the principal is forced to be

continuous at each point in space in either real or imaginary part. This condition requires that

λP move out of the quasi-Kinnersley frame and into an alternate transverse frame as r → 0.

Notice that since (4.2.15) is only a cubic equation, there exists a fully analytic solution for

the three eigenvalues of Qab [38]

λ1 = −(P +
I

3P
) (4.3.36)

λ2 = −
(
e

4πi
3 P + e

2πi
3

I

3P

)
(4.3.37)

λ3 = −
(
e

2πi
3 P + e

4πi
3

I

3P

)
(4.3.38)

(4.3.39)

where

P =

J +

√
J2 −

(
I

3

)3
 1

3

. (4.3.40)

We are now left with the task of choosing which eigenvalue is quasi-Kinnersley at every point.

This will correspond with λP asymptotically, but it is not necessarily true that λP = λQK in

the strong-field region. We have already discussed how, asymptotically, λP should be twice the

magnitude of either of the other eigenvalues [38, 37]. Explicitly, it can be said that as r →∞,

λP = maxk|λk|. However, in the strong-field region, we will show that this definition breaks

down. Figure 4.1 shows these eigenvalues for a system that uses analytic Brill-Lindquist initial

data, which describes two black holes in a head-on collision from rest, as in Figure 4.2. This

system in particular uses two equal mass, nonspinning black holes on the z−axis at z = ±5.

The set up is shown in Figure 4.2. This system was chosen because neither the invariants nor

the eigenvalues nor the Weyl scalars have any imaginary components - all are purely real since

P = I
3P , but this is not the case in general. Figure 4.3 shows the corresponding speciality

invariant S = 27J2

I3
on the equatorial plane θ = π

2 ; when S = 1, the spacetime is either Petrov
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4.3. Finding the Principal Eigenvalue

Figure 4.1: Eigenvalues for a BBH system with Brill-Lindquist initial data for q = 1 on the
equatorial plane θ = π/2. The black holes are at z = ±5. At approximately r = 5.2, the
principal eigenvalue must be switched from λ1 so that it remains smooth.

Figure 4.2: The grid set up for our initial data simulation of two equal-mass black holes in a
head-on collision.

Type D or Type II.

There are several points of interest in Figures 4.1 and 4.3. We will first discuss the regions

where in Fig. 4.3 S → 1. Notice in Figure 4.1 that as r → ∞, λP = maxk|λk| = λ1. At

r ≈ 5.2, the principal eigenvalue switches branches to maintain continuity. Next, consider the
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Figure 4.3: S invariant for the q = 1, d = 10 BL initial data system. At approximately r = 5.2,
S = 1. This corresponds to the location where the principal eigenvalue must be switched from
λ1.

location where S = 1 at r ≈ 5.2m between the two points where S = 0.

S = 1 =
27J2

I3
(4.3.41)

=⇒ I = 3J
2
3 (4.3.42)

then, the characteristic polynomial becomes

λ3 − 3J
2
3λ+ 2J = 0 (4.3.43)

with

P =

J +

√√√√J2 −

(
3J

2
3

3

)3


1
3

(4.3.44)

= J
1
3 . (4.3.45)

which means the eigenvalues become

λ1 = −2J
1
3 , λ2 = J

1
3 , λ3 = J

1
3
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Here it is necessary to switch branches to maintain continuity, since, at this point a cusp exists

in two of the eigenvalues. This means that λP moves out of the transverse frame associated

with λ1 and into the transverse frame associated with λ3. We use λ3 as principal in this region

because it allows us to define the QKF continuously over the whole spacetime, even into the

strong field regime. Another interesting feature may occur at all points in Fig. 4.3 where

Figure 4.4: Eigenvalues for a BBH system with Brill-Lindquist initial data for q = 1 at θ = π/2,
but with forced branch cuts when J = 0. The black holes are at z = ±5. Before determining
the principal branch, here it would be necessary to force continuity in the eigenvalues except
at the point r ≈ 5.2.

S → 0, since by definition it must also be true that J → 0. These r values correspond with

locations where λ3 = 0, λ2, λ1 = ±
√
I. At these points, J changes sign, and between them,

a relabeling of which eigenvalue is which might need to occur in order to maintain continuity.

This is shown in Figure 4.4.

However, the branch cuts shown are purely a numerical issue, and completely compiler

dependent. An analytic way of interpreting this begins by writing P as

P = (−1)1/3

−J −
√
J2 −

(
I

3

)3
1/3

(4.3.46)
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and (−1) has 3-roots of unity:

(−1)1/3 =


−1

−e
2πi
3

−e
4πi
3

(4.3.47)

Choosing the first branch of (4.3.47) means P =

[
J +

√
J2 −

(
I
3

)3]1/3

, and no relabeling

occurs. Now, assume P traverses a circle once, meaning J changes sign one time. Then, P

picks up a factor of e2πi and

P = −e
2πi
3

−J −
√
J2 −

(
I

3

)3
1/3

(4.3.48)

which relabels

λ′3 → λ1, λ′2 → λ3, λ′1 → λ2.

The primes indicate a relabeling of the eigenvalues. Then, assume P traverses a circle a second

time, and J changes sign again Then, P picks up another factor of e2πi and

P = −e
−2πi

3

−J −
√
J2 −

(
I

3

)3
1/3

(4.3.49)

which relabels

λ′′3 → λ2, λ′′2 → λ1, λ′′1 → λ3.

Another flip of sign in J rotates the eigenvalues to their original labeling. In practice, the

computer handles all of this behind the scenes, but the relabeling is dependent on the language

chosen. For all of this work, unless otherwise specified, we use Mathematica which natively

handles branch cuts by choosing a continuous branch when it can. We can explicitly force these

cuts to appear, as in Figure 4.4, to emphasize that they do in fact occur when J = 0. Languages

like C do not natively force continuity when doing complex calculations, and therefore these

branch cuts will need to be taken into account in numerical simulations. These are not an

Chapter 4. Analytic Analysis of Spacetimes in Generic Transverse Frames. 116



4.4. Calculation of Rotation Parameters ā and b

issue with the process of rotating into the quasi-Kinnersley frame, but in fact, come from the

practical numerical computations themselves.

4.4 Calculation of Rotation Parameters ā and b

Since, in Section 4.3, we outlined an analytic methodology of choosing λP at each point in

space for a particular time-slice, we are now ready to rotate the Weyl scalars into a QK frame.

This is done by performing a Type I then a Type II rotation on the scalars using rotation

parameters ā and b. The computations in this section are analogous to performing a Type

II and then a Type I rotation (Eqs. (4.2.28-35)). To do this, [38] suggests setting up two

equations for the two unknowns by rotating both Ψ1 and Ψ3 into a transverse frame as follows

Ψ3 + 3āΨ2 + 3ā2Ψ1 + ā3Ψ0 (4.4.50)

+ b(Ψ4 + 4āΨ3 + 6ā2Ψ2 + 4ā3Ψ1 + ā4Ψ0) = 0 (4.4.51)

Ψ1 + āΨ0 + 3b(Ψ2 + 2āΨ1 + ā2Ψ0) (4.4.52)

+ 3b2(Ψ3 + 3āΨ2 + 3ā2Ψ1 + ā3Ψ0) (4.4.53)

+ b3(Ψ4 + 4āΨ3 + 6ā2Ψ2 + 4ā3Ψ1 + ā4Ψ0) = 0. (4.4.54)

Then b can be written as a function of ā as follows

b = − Ψ3 + 3āΨ2 + 3ā2Ψ1 + ā3Ψ0

Ψ4 + 4āΨ3 + 6ā2Ψ2 + 4ā3Ψ1 + ā4Ψ0
(4.4.55)

and all that is necessary to do is to find ā. Equation (4.4.50) provides a sixth order polynomial

to be solved for ā

A1ā6 +A2ā5 +A3ā4 +A4ā3 +A5ā2 +A6ā+A7 = 0 (4.4.56)
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with coefficients

A1 = −Ψ3Ψ2
0 − 2Ψ3

1 + 3Ψ2Ψ1Ψ0 (4.4.57)

A2 = −2Ψ3Ψ1Ψ0 −Ψ2
0Ψ4 + 9Ψ2

2Ψ0 − 6Ψ2Ψ2
1 (4.4.58)

A3 = −5Ψ1Ψ4Ψ0 − 10Ψ3Ψ2
1 + 15Ψ3Ψ2Ψ0 (4.4.59)

A4 = −10Ψ4Ψ2
1 + 10Ψ2

3Ψ0 (4.4.60)

A5 = 5Ψ3Ψ0Ψ4 + 10Ψ1Ψ2
3 − 15Ψ1Ψ2Ψ4 (4.4.61)

A6 = 2Ψ3Ψ1Ψ4 + Ψ2
4Ψ0 − 9Ψ2

2Ψ4 + 6Ψ2Ψ2
3 (4.4.62)

A7 = Ψ1Ψ2
4 + 2Ψ3

3 − 3Ψ2Ψ3Ψ4 (4.4.63)

which can only be solved using numerical methods. Therefore, it is necessary to find which

root, of the six, is associated with the quasi-Kinnersley frame. Due to the computational

complexity of solving a sixth-order polynomial, Nerozzi et. al. reduce the polynomial order of

Eq. (4.4.56) to fourth order.

4.4.1 Reduction to Fourth Order

The authors of [38] begin by rotating an arbitrary tetrad so that n (or l) is a principal null

direction and Ψ4 (Ψ0) vanishes. We will outline their method here, as its result will be useful

to us later on. Begin by performing a Type I transformation on Ψ4, and setting it to zero.

b4Ψ4 + 4b3Ψ3 + 6b2Ψ2 + 4bΨ1 + Ψ0 = 0. (4.4.64)

This can be reduced to a depressed quartic by making the substitution ẑ = Ψ4b+ Ψ3:

ẑ4 + 6Ĥẑ2 + 4Ĝẑ + K̂ = 0. (4.4.65)
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for

Ĥ = Ψ4Ψ2 −Ψ2
3 (4.4.66)

Ĝ = Ψ2
4Ψ1 − 3Ψ4Ψ3Ψ2 + 2Ψ3

3 (4.4.67)

K̂ = Ψ2
4I − 3Ĥ2 (4.4.68)

where the variables

α̂2 = 2Ψ4λ1 − 4Ĥ (4.4.69)

β̂2 = 2Ψ4λ2 − 4Ĥ (4.4.70)

γ̂2 = 2Ψ4λ3 − 4Ĥ (4.4.71)

can be combined so that

α̂β̂γ̂ = 4Ĝ. (4.4.72)

Note that unhatted variables are obtained (equivalent to performing an n null vector rotation)

by substituting Ψ4 ↔ Ψ0 and Ψ1 ↔ Ψ3.

Rotating Ĝ under a Type I transformation will reproduce the sixth order equation for ā

in Eq. (4.4.56). This means that the polynomial can be written in terms of α̂, β̂ and γ̂.

α̂2β̂2γ̂2

16
= Ĝ2 (4.4.73)

which increases the order of the polynomial from 6 to 12. However, it is now written as the

product of three quartic equations. One of these equations, α̂2, is associated with the principal

eigenvalue λP , and thus the quasi-Kinnersley frame.

Under a Type I rotation, α̂2 has the form

α̂2 = B1ā4 +B2ā3 +B3ā2 +B4ā+B5 (4.4.74)
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with coefficients

B1 = λ1Ψ0 + 2Ψ2
1 − 2Ψ0Ψ2 (4.4.75)

B2 = 4λ1Ψ1 + Ψ1Ψ2 −Ψ0Ψ3 (4.4.76)

B3 = 6λ1Ψ2 + 6Ψ2
2 − 4Ψ1Ψ3 − 2Ψ0Ψ4 (4.4.77)

B4 = λ1Ψ3 + Ψ2Ψ3 −Ψ1Ψ4 (4.4.78)

B5 = 2Ψ2
3 + Ψ4(λ1 − 2Ψ2) (4.4.79)

Instead of using this quartic directly, the authors go on to use a reduced variable

z = Ψ0ā+ Ψ1 (4.4.80)

to obtain a quartic

Q1z4 +Q2z3 +Q3z2 +Q4z +Q5 = 0 (4.4.81)

whose coefficients are

Q1 = 1 (4.4.82)

Q2 =
−4G

λ1Ψ0 − 2H
(4.4.83)

Q3 =
6Ψ0λ1H + 6H3 − 2K

λ1Ψ0 − 2H
(4.4.84)

Q4 =
4G(H + Ψ0λ1)

λ1Ψ0 − 2H
(4.4.85)

Q5 =
−2KH + 2G2 + Ψ0λ1K

λ1Ψ0 − 2H
(4.4.86)

where

G = Ψ2
0Ψ3 − 3Ψ0Ψ1Ψ2 + 2Ψ3

1 (4.4.87)

H = Ψ0Ψ2 −Ψ2
1 (4.4.88)

K = Ψ2
0I − 3H2. (4.4.89)
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This means the sixth-order equation has been successfully reduced to fourth order. Solving the

depressed quartic equation (4.4.65) can be done analytically or numerically. In the following

sections, the solution is found via Mathematica’s built in Solve function. While testing, we

also employed an analytic method to reduce the quartic to a cubic equation, solved for the

roots of the new cubic, and used them to construct the roots of the quartic. This is a standard

analytic technique to find quartic equation solutions. Once the roots of the quartic are found,

they are used in conjunction with Eqs. (4.2.18) (4.2.23) to rotate the Weyl scalars into the

quasi-Kinnerlsey frame.

In the following sections, we will employ both the quasi-Kinnerlsey frame, as well as the

other transverse frames corresponding to the roots of β2 and γ2 or, equivalently and more

simply, the eigenvalues not associated with the QK frame, in order to classify the strong-field

region of an analytic spacetime.

4.5 Analytic Classification of the Spacetime

The goal of this project is twofold: first, we would like to be able to use the quasi-Kinnersley

frame to more accurately extract gravitational waves from a binary black hole system. Second,

we would like to be able to locally classify an arbitrary black hole spacetime into its approx-

imate Petrov Type. The speciality invariant S we studied in the earlier part of this chapter

was introduced as a way to measure distortions from a Kerr (Petrov Type D) spacetime [114].

However, the invariant does not differentiate between Type D and Type II. For r → ∞ it is

known that typical gravitational wave spacetimes are Type D, but in the strong field region, we

have seen that there are regions of algebraic speciality. Here, we introduce an index D which,

if used in conjunction with S, can differentiate between a Type II and a Type D spacetime at

points of algebraic speciality.

D =

√
12

I

(
Ψ2 −

Ψ2
3

Ψ4

)
(4.5.90)

To derive D, return to Eqs. (4.4.87-9). The Petrov types can be characterized in terms of

these scalars as shown in Table 4.1. The D index can be derived from the condition in row 2
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Table 4.1: Special Petrov types in terms of G, H and K.

Petrov type Characteristics
II G 6= 0, K − 9H2 6= 0
D G = 0, K − 9H2 = 0, K 6= 0
III, N, O J = 0, I = 0
N G = 0, H = 0
O G = 0, K = 0, H = 0

of Table 4.1, under the transformation Ψ0 ↔ Ψ4 and Ψ1 ↔ Ψ3;

K − 9H2 = 0 (4.5.91)

Ψ2
4I − 12H2 = 0 (4.5.92)

1− 12H2/(Ψ2
4I) = 1− 12/I(Ψ2 −Ψ2

3/Ψ4) = 0 (4.5.93)

1−D2 = 0. (4.5.94)

This means that when D → ±1 in an arbitrary frame that is not QK, the spacetime heads to

either Petrov type D and this index will allow us to differentiate between Petrov types II and

D for a region of algebraic speciality.

In a quasi-Kinnersley frame, DQK = ±2 in a Petrov Type D spacetime. This can be proven

as follows

DQK =

√
12

I

(
Ψ′′2 −

Ψ′′23

Ψ′′4

)
(4.5.95)

=

√
12

3Ψ′′22 − 4Ψ′′3Ψ′′1 + Ψ′′4Ψ′′0

(
Ψ′′2 −

Ψ′′23

Ψ′′4

)
(4.5.96)

=

√
12

3Ψ′′22

(
Ψ′′2
)

(4.5.97)

=

√
12

3
= ±2, (4.5.98)

whereas for an arbitrary transverse frame that is not quasi-Kinnersley, D = ±1 if a spacetime

is Type D.

For a spacetime in which Ψ4 = 0, the equivalent version of the D index, with Ψ0 6= 0

Chapter 4. Analytic Analysis of Spacetimes in Generic Transverse Frames. 122



4.6. Analytic Results for Brill-Lindquist Initial Data

can be obtained under the transformations Ψ1 ↔ Ψ3 and Ψ0 ↔ Ψ4. A symmetrized version

can also be obtained by adding the (averaged) corresponding H,G,K with Ψ4 → Ψ0 and

Ψ3 → Ψ1 terms. Other expressions can also be obtained by including multiples of G since it

is vanishing for a type D spacetime. Those expressions will be equivalent once we choose a

transverse frame. Note that while D is invariant under Type II and Type III (boost) tetrad

rotations, it is frame dependent.

4.6 Analytic Results for Brill-Lindquist Initial Data

In order to (1) verify that we are able to successfully rotate a spacetime into a quasi-Kinnersley

frame and then (2) classify the strong-field region into different Petrov Types, we have con-

structed a series of initial data tests on analytic systems of binary black hole pairs. The first

tests we performed of this rotation use analytic Brill-Lindquist initial data on an equal-mass

binary system. The black holes are located at z = ±2.5, .., 7.5, and start from rest, so have

separations d = 5m, ..., 15m in increments of 1m. The system we will look at in-depth has

d = 10m and z = ±5.

We also studied a system with mass ratio q = 1
3 . In this system, the large black hole is

located at z = 1.75 and the small black hole is at z = −5.25 with masses m1 = 0.75 and

m2 = 0.25 respectively. We will begin by showing in-depth results of the equal mass binary

and then will move on to the unequal mass case. For this study, we will use the non-QK frame

for classification. The lapse and shift we use are −N2 = −(1−2m/r) and βi = 0. The explicit
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values of the Weyl scalars in spherical polar coordinates are

Ψ0 =
1

r2N4ψ6

{
−ψ2N,2θ +Nψ [−2N,θ ψ,θ +ψ(− cot θN,θ +N,θθ )] +N2

[
3ψ,2θ +ψ(cot θψ,θ −ψ,θθ )

]}
,

(4.6.99)

Ψ1 =
1

2
√

2r2N2ψ6
{−rψ2N,θN,r +Nψ [2r(ψ,θN,r +2N,θ ψ,r ) + ψ(2Nθ − rNrθ)]

− 2N2 [3rψ,θ ψ,r +ψ(ψ,θ −rψ,rθ )]} , (4.6.100)

Ψ2 =
1

6r2N2ψ6
{−2ψ2N,2θ +4NψN,θ ψ,θ +N2

[
−3ψ,2θ +ψ(cot θψ,θ +ψ,θθ ) + ψ2(−1 + r2N,2r )

]
+ rN3ψ [−6rN,r ψ,r +ψ(−2N,r +rN,rr )] +N4

[
ψ2 + 6r2ψ,2r +2rψ(ψ,r −rψ,rr )

]
} ,(4.6.101)

Ψ3 =
1

4
√

2r2ψ6
{rψ2N,θN,r +Nψ [−2r(ψ,θN,r +2N,θ ψ,r ) + ψ(−2N,θ +rN,rθ )]

+ 2N2 [3rψ,θ ψ,r +ψ(ψ,θ −rψ,rθ )]} ,

(4.6.102)

Ψ4 =
1

4r2ψ6
{−ψ2N,2θ +Nψ [−2N,θ ψ,θ +ψ(−cotθN,θ +N,θθ )] +N2

[
3ψ,2θ +ψ(cot θψ,θ −ψ,θθ )

]
} ,

(4.6.103)

with conformal factor ψ. They are constructed using the numerical tetrad [43]

lµ =
1√
2

(eµ0 − e
µ
1 ) (4.6.104)

nµ =
1√
2

(eµ0 + eµ1 ) (4.6.105)

mµ =
1√
2

(eµ2 − ie
µ
3 ) (4.6.106)

m̄µ =
1√
2

(eµ2 + ieµ3 ), (4.6.107)

where eµi are orthonormal basis vectors, and then rotated into a transverse frame using the

process in Sections 4.2-4.4.
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4.6.0.1 Equal Mass d = 10 case.

Figure 4.5 shows all three choices for the eigenvalues λ as well as highlights the principal

eigenvalue λP (in red) that is associated with the quasi-Kinnersley frame. These correspond

to analytic initial data for a Brill-Lindquist binary with separation d = 10m and equal masses

versus r, and are shown on the symmetry plane θ = π/2. Notice first that at r = 5m (which we

Figure 4.5: Eigenvalues for a BBH system with Brill-Lindquist initial data for q = 1 on the
symmetry plane θ = π/2. The black holes are at r = ±5 on the z−axis. At approximately
r = 5m, the principal eigenvalue must be switched from λ1 so that it remains smooth.

will henceforth refer to as r = rRing) λP changes branches from λ1 to λ3. This is done because

we can, in fact, demand continuity from our principal eigenvalue [37]. The eigenvalue branch

that is quasi-Kinnersley only need be switched when r = rRing, not necessarily whenever

S = 1, which is true not only at r = rRing, but also asymptotically and between the black

holes.

Notice that one could choose λ2 to be principal everywhere since it is continuous, use

this to do the rotation, and transform the Weyl scalars into a transverse frame. Since this

eigenvalue does not satisfy λP = maxk|λk| as r → ∞, the frame that uses λ2 as principal is

transverse, but is not quasi-Kinnersley and therefore asymptotically may not lead to tetrad

vectors that are near Kinnersley. It will, however, be of interest to us later on to use these

alternative transverse frames to classify the spacetime into different Petrov Types.

When we look just off the symmetry plane (for example, if θ = 8π
15 ), the principal eigenvalue

remains λP = λ1 for the whole spacetime, which means that the surface r = rRing is one
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dimensional in shape. Figure 4.6 shows this case, with the principal branch in red. We can

clearly see that all three eigenvalues, and thus transverse frames, are continuous even in the

strong-field region. This means that that the points at (rRing, θRing) = (rRing, π/2) are the

Figure 4.6: Eigenvalues for a BBH system with Brill-Lindquist initial data for q = 1 at θ = 8π
15 .

The black holes are at z = ±5. On the whole spacetime, the principal eigenvalue remains λ1.

only locations where the eigenvalues have a cusp when S = 1. They form a one dimensional

ring of points, rather than a three dimensional doughnut shape. This will be studied more in

Section 4.6.1.

Moving back to the symmetry plane θ = π/2, we have found a principal eigenvalue that is

continuous throughout the whole spacetime and can now insert it into Eqs. (4.4.82) to construct

the quartic equation (4.4.74). Solving any quartic gives at most four roots a1, a2, a3, a4. Of

these four solutions, only two are associated with the quasi-Kinnersley frame (two instead of

one due to l↔ n degeneracy).

To determine which two roots we want, we will introduce the radiation scalar ξQK =

ΨQK
0 ΨQK

4 in the quasi-Kinnersley frame which is used to classify the spacetime in [38] in

the far-field region. However, no classification criteria beyond continuity are provided for the

strong-field region. Since in the QK frame, both ΨQK
4 ,ΨQK

0 → 0 when S → 1, it must be true

that ξ → 0 as well. This will be used to help us choose the correct root from ai.

Figure 4.7 shows log|ξ| on the equatorial plane for all four transverse frames associated

with roots a1, a2, a3, a4. The values of ξ for roots a1 and a4 and roots a2 and a3 (respectively)

coincide. Since ξ2 and ξ3 head to 0 as r → ∞ and are both continuous, the roots associated
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with the quasi-Kinnersley frame are a2 and a3. Interestingly, at r = rRing, which is where we

switch which eigenvalue branch is chosen as principal, ξ1 and ξ4 coincide with ξ2 and ξ3 (hence

the red point at r = rRing located at about ξ = 10−15 on the green curve). This supports

the claim that at r = rRing only one transverse frame exists, since all roots produce the same

value of the Weyl scalars at this point. (We will then show that this is characteristic of Petrov

Type II spacetimes).

Figure 4.7: A plot of log|ξ = ΨQK
0 ΨQK

4 | for Ψ0 and Ψ4 in all four transverse frames on the
plane θ = π

2 . The scalars ξ2 and ξ3 are quasi-Kinnersley since ξ → 0 as S → 1 (equivalently,
r →∞. The red point in the green curve comes from the fact that there is only one transverse
frame at that point, so all four values of ξ coincide. This will be discussed in Section 4.6.1.

The disadvantage to this method of root classification is that ξ must be computed for all

four roots at each point in the entire spacetime (not just on the symmetry plane, as is shown

in Fig. 4.7). This requires both a Type I and Type II rotation of both Ψ0 and Ψ4, and at least

a Type I rotation of all other Weyl Scalars. For a small-scale analytic calculation, this is not

a problem. For a large scale numerical BBH simulation where this must be done at all points

on a 3D grid at every timestep, it could become computationally inefficient.

Even though there are two “correct” choices for the root associated with the quasi-Kinnersley

frame, it may be true that Ψ0 or Ψ4 do not tend to 0 as r → ∞. It follows that in order to

determine which of the two transverse frames associated with a2 and a3 is quasi-Kinnersley,

one can look at the values of Ψ0 and Ψ4 individually as r →∞. This choice can be made by

choosing the root that minimizes the magnitude of both Ψ0 and Ψ4 for large r. Both a2 and
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a3 produce Ψ0 that are continuous and head to 0 as r →∞. However, there are differences in

asymptotic behavior in Ψ4: using a2, Ψ4 is continuous and heads to 0 as r → ∞, but using

a3, Ψ4 grows exponentially as r → ∞. Figure 4.8 show the real parts of Ψ4 calculated using

the roots a2 and a3 respectively. Once the correct root is chosen, we can compute the Weyl

Figure 4.8: The value of Ψ4 for the two roots a2 and a3 (left and right), where ξ → 0 as S → 1.
For root 2, Ψ4 has the expected behavior, heading to 0 as r →∞, for root 3, Ψ4 diverges.

scalars in the quasi-Kinnersley frame. Using this construction, first verify that Ψ1 = Ψ3 = 0

to ensure we have indeed entered a transverse frame (this should be redundant, but is a good

sanity check). Figures 4.9 show the three nonzero quasi-Kinnersley frame Weyl scalars on the

symmetry plane θ = π
2 .

Figure 4.9: The Weyl scalars log|ΨQK
0 |, log|ΨQK

2 |, and log|ΨQK
4 | shown on the xy−plane for

the head-on, equal mass BBH case.

The implementation of this method is not so straightforward. In addition to the choices

that need to be made asymptotically, we are attempting to demand continuity in the strong

field region as well. This is subject to complex number arithmetic issues, as well as branch

changes, among other practical difficulties, especially for binaries that are orbiting or spin-
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ning. This is why we have chosen to begin with only analytic results for a head on collision

configurations. Future work should be done to extend these analyses to the strong-field region

of more complicated systems in order to use it for extraction of gravitational waves.

4.6.1 Study of the location of the ring where S = 1

Figure 4.10: The radius of the ring rRing versus the initial binary separation d of the q = 1
Brill-Lindquist system. The ring is always on the equatorial plane, and is always approximately
the same distance from the origin on the xy−plane as the singularities are on the z−axis.

In Section 4.6.0.1, we have shown that there is a value of θ, specifically θ = π/2, where the

eigenvalue branch must be switched. One cannot assume, however, that the location of this

ring is the same for all binary separations. Figure 4.10 shows the relationship between rRing

and the binary separation for the q = 1 case.

We studied the ring for a number of different separations: d = 5m, · · · , 10m all with q = 1

and the center of mass at the origin. All pairs had the ring only on the symmetry plane, at

a radius of approximately, but not exactly, rRing = d/2, which corresponds with the location

of the binaries on the z−axis. Figure 4.10 shows the radius of the ring versus the binary

separation for all ten pairs. The slope of the line connecting the points is exactly 0.5.
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4.6.2 Results: Characterization of maxima, minima, and zeros of S and D.

The goal of our work is to use D in conjunction with S to do a point-by-point analysis of the

approximate Petrov Type of a spacetime, with a specific focus on the strong field region and

between the black holes where there is no a priori knowledge of the spacetime’s Petrov Type.

For this work, consider again the q = 1, d = 10m Brill-Lindquist initial data binary.

To begin, look at the invariant S on the xy− and xz−planes (Figure 4.11, left and right

respectively). Recall that when S = 1, the spacetime is algebraically special. As r → ∞ we

expect the spacetime to be Type D and therefore algebraically special, and in fact, in this

region, S → 1 in both the left- and right-hand plots of Figure 4.11. The xy-plane exhibits

algebraic speciality between the black holes in addition to when r →∞. Interestingly, but not

unexpectedly given our earlier analysis, there is a ring of algebraic speciality at rRing. This is

visible in the xz−plane (right-handed figure) as well - there are two points at x = ±rRing where

S = 1. In fact, on the xz−plane, S → 1 everywhere except in ellipsoidal regions surrounding

the points where r = rRing.

Figure 4.11: The Speciality invariant S on the xy− and xz−planes (left/right) for a q = 1
binary with separation d = 10m located on the z − axis. Other than far from the black holes
and between the black holes, the only region of algebraic speciality is located in a ring on the
x− axis at r = 5m.

Where S → 1, it is known the spacetime is either Type II or Type D [114]. Close to and

between the black holes, S → 1 does not characterize the Petrov Type of the points of the
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spacetime since it cannot differentiate between Petrov Type II and a Type D where there is

no a priori knowledge of the spacetime’s behavior. To remedy this, we propose using the D

index from Eq. (4.5.90) to provide an approximate Petrov characterization of the points in the

strong-field region.

Recall Figure 4.5; which shows the eigenvalues of the matrix Qab for this system on a slice

through the equatorial plane at time t = 0. The eigenvalues λ1 and λ3 have cusps when S = 1

at rRing. This means that the only eigenvalue that exists on this ring of algebraic speciality

is λ2. This is particularly interesting; it implies that only one transverse frame actually exists

here and this frame must not be quasi-Kinnersley since λ2 is not associated with the QK

frame. In fact, according to Appendix C of [38], a spacetime with exactly one transverse

frame must be Petrov Type II3 and infinitely many transverse frames in a spacetime that is

Petrov Type D. This means that we can use DQK for classification in the far-field region, but

at r = rRing we cannot. The only viable transverse frame, the one that is continuous over the

whole spacetime, is associated with λ2, which is consistent with the frame being Type II at

rRing. We will call the associated classification index D2. Figure 4.12 shows the corresponding

D index in all three transverse frames - the quasi-Kinnersley frame as well as the other two

non-QK transverse frames, and the S-invariant.

At rRing, D2 = 2. This means that the points of the spacetime on rRing should be Type

II, and we can prove this as follows

D2 =

√
12

I

(
Ψ′′2 −

Ψ′′23

Ψ′′4

)
(4.6.108)

=

√
12

3Ψ′′22 − 4Ψ′′3Ψ′′1 + Ψ′′4Ψ′′0

(
Ψ′′2 −

Ψ′′23

Ψ′′4

)
. (4.6.109)

(4.6.110)

3In Appendix C of [38], there is a typo: Ψ4Ψ0 = 9
4
instead of 3

2
. This makes D = 1 for a Type D spacetime.
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Figure 4.12: D and S invariants in the quasi-Kinnersley frame for the q = 1, d = 10m, binary
black hole case with Brill-Lindquist initial data on a slice through the symmetry plane θ = π

2 .
The index D associated with the quasi-Kinnersley frame goes to -2 asymptotically, intersects
with D3 and then switches branches to be on the branch associated with λ3.

We have already seen that Ψ′′4Ψ′′0 → 0, and since our frame is transverse, Ψ′′3 = 0 as well. So,

=

√
12

3Ψ′′22

(
Ψ′′2
)

(4.6.111)

=

√
12

3
= ±2. (4.6.112)

Note that Ψ4Ψ0 vanishes by Table I of [38] in a Type II spacetime.

Where r < rRing, our QK frame definition requires continuity through r = rRing in λP

instead of continuing on the branch λP = λ1. Therefore, between the black holes, where

r = 0m and D = S = 1 the spacetime heads to Petrov Type D. Because this switching

between frames is done, we would need to shift how we characterize the spacetime when we

move past r = rRing which can easily lead to classification errors, so it is best to use a branch

that is natively continuous throughout the whole spacetime. In our Brill-Lindquist system,

we have already determined that is the one associated with λ2. We can therefore look to D2

which, as r → 0, heads to 1. This is verification that the Petrov Type between the black holes

approaches D.

Chapter 4. Analytic Analysis of Spacetimes in Generic Transverse Frames. 132



4.6. Analytic Results for Brill-Lindquist Initial Data

4.6.2.1 Classification of the region where S = 0

In Figure 4.12, at approximately r = 3.68m and 7.28m, D = S = 0. In a spacetime where

S = J = 0, it can be shown that D = ±
√

3 or 0:

D =

√
12

I
Ψ′′2

=

√
12Ψ′′22

3Ψ′′22 + Ψ′′0Ψ′′4

J = 0 =⇒ Ψ′′0Ψ′′4 = Ψ′′22

=

√
12Ψ′′22

3Ψ′′22 + Ψ′′22

=
√

3

Recall again the plots in Figure 4.11. In both the xy− and xz−planes, there exist regions of

the spacetime where S → 0. Unlike the S → 1 ring, S → 0 at two points on θ = π/2 (z = 0),

one to the left of rRing at r = 3.68m and one to the right at r = 7.28m. In fact, S = 0 on a

ring on the xz−plane itself. The left-hand side of Figure 4.13 shows this ring in Quadrants I

and IV of the xz−plane, but the φ−symmetry of this system means the ring rotates around

the z−axis to form a hollow "doughnut"-shape (right hand side of Figure 4.13). The S = 0

Figure 4.13: The ring of points on the xz−axis where S = 0 (left). This ring rotates around
the z−axis, forming a hollow "doughnut" of points in space where S = 0 (right). As resolution
increases, the points will approach a continuous ring on the xz-plane.

doughnut’s outer and inner rings have radii of 7.28m and 3.68m from the origin, respectively,

along the x−axis. The doughnut has z−maxima at (x, z) = (±5.90, 1.25) and minima at
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(x, z) = (±5.90,−1.25). This region of spacetime surrounds the surface of algebraic speciality

located at rRing ≈ 5.2m, but is not itself algebraically special since S = 0, and is instead a

general Type I.

Since we have concluded that r = 0m and r →∞ are Type D and rRing is Type II, we will

argue that on this doughnut where S = 0, the spacetime is transitioning between Type II and

Type D. To investigate this region, we will use the D index in the transverse frame associated

with λ2 because it is continuous through the point rRing, rather than the QK frame. This

ensures that we are not switching between frames, that all interesting points exist, and reduces

the likelihood of classification error. Recall that this means that D = 1 in a Type D spacetime.

We have already shown that when D = ±2 the spacetime is Type II in Eqs. (4.6.108).

In Figure 4.12, notice that D2 is not symmetric around rRing. Even so, on the left and

right hand side at x = 3.68m and x = 7.28m respectively, D2 = 1.73. Interestingly, this means

that the spacetime should be closer to Type II than Type D at these points because a larger

value of D2 implies a smaller value of Ψ′′4Ψ′′0 which leads to D2 → −2.

Table 4.2 shows the r locations of important values on θ = π/2. Namely, the location of

the ring, and the values of D and S at important points in different transverse frames (QK,

2, or 3).

4.6.3 Classification off the symmetry plane

If we move off of the symmetry plane θ = π/2 to a neighboring region, say the cone θ = 8π/15

to be consistent with Figure 4.6, we can use any of the transverse frames for classification

since they are all continuous. Figure 4.14 shows the corresponding values of D and S for

the transverse frames associated with the cone θ = 8π/15. As r → 0 and r → ∞, the two

transverse, but not QK, frames, D2 and D3 go to 1, whereas DQK → 2. This is consistent

with Type D behavior in these regions. At rRing, the values of D do not quite reach 2 (for

non-QK) and 1 (for QK), and therefore the spacetime is never exactly Type II, but only Type

I in the region between the points where S = 0. This is consistent with our findings since (1)

S 6= 1 in this region, so there is no point of algebraic speciality, and (2) all three transverse
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Transverse Frame S D r/m Petrov type
1 -2 0 D
0.5 0.52 2.68 I
0 0 3.8 I

1 0.5 -1.41 4.9 I
1 -1 5.05 II

QK (1→ 3) 0.5 -1.41 5.1 I
0.32 -1.5 6.27 I
0 -1.73 7.20 I
0.5 -1.93 9.88 I
1 -2 ∞ D
1 1 0 D
0.5 1.41 2.68 I
0.31 1.5 2.97 I
0 1.73 3.8 I
0.5 1.91 4.9 I

2 1 2 5.05 II
0.5 1.91 5.1 I
0 1.73 7.2 I

0.31 1.5 8.97 I
0.5 1.41 9.88 I
1 1 ∞ D
1 1 0 D
0.5 -1.93 2.68 I
0 -1.73 3.80 I

0.32 -1.5 4.26 I
0.5 -.42 4.9 I

3 1 -1 5.05 II
0.5 -.42 5.1 I
0 0 7.2 I
0.5 0.52 9.88 I
1 1 ∞ D

Table 4.2: Summary of the values of the scalars S and D at different r-locations in different
Transverse frames (QK, 2, and 3) and the associated Petrov type for the q = 1 Brill-Lindquist
binary on θ = π/2. We are using the transverse frame 2 for classification. When D = ±1.73
and S = 0 the spacetime is Petrov type I, but is closer to Petrov type II than Petrov type D.
When D = ±1.5, the spacetime is halfway between Petrov types II and D.

frames exist - that cannot be the case in a Type II spacetime.

From these studies, we can draw the conclusion that between the points where S = 0

(namely, around r = rRing, the spacetime is actually closer to Type II than it is to Type D

and is exactly Type II only on the one dimensional ring at θ = π/2.
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Figure 4.14: D-ality and S invariants in the quasi-Kinnersley frame for the q = 1, D = 10m,
binary black hole case with Brill-Lindquist initial data on a slice through cone θ = 8π

15 .

4.7 Classification Results: Unequal Mass Binary Study

To generalize our results from Section 4.6, we studied a spacetime with an unequal mass binary

whose mass ratio is q = 1/3. This system also has analytic Brill-Lindquist initial data with

d = 7m separated black holes and rp = 1.75m and rm = −5.25m with the center of mass

located on the origin of coordinates.

In particular, we are interested in (1) the value of rRing, studied in Section 4.7.1, (2) the

Petrov classification using the D index, studied in Section 4.7.2, and (3) the location of the

doughnut S = 0, studied in Section 4.7.3.

4.7.1 The Surface rRing

Let us consider the system with BL initial data with mass ratio q = 1/3 and varying separations

d = 5m, 7m, 9m, 11m. The black holes have masses 3m1 = 0.75 = m2 and are located at

respective distances of r1 = −d/(1 + q) and r2 = dq/(1 + q) on the z−axis so that the center

of mass is always located at the origin. We are looking to find the one dimensional surface

characterized by some (rRing, θRing). We know that, if it exists, the circle occurs at some

region where |S − 1| = 0. This will also be the location that, in order to maintain continuity

in the eigenvalues λ of the associated matrices Qab, the eigenvalue branch must be flipped.
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In our implementation, we used that as our criteria for selecting the appropriate (r, θ) pair to

define the location of (rRing, θRing).

Figure 4.15 shows the radius of the ring versus the binary separation for all four pairs.

In fact, we found the ring is located on a cone at θRing = 19π/15 and is the same for all

separations d, which means that it is determined by the mass ratio of the black holes. The

Figure 4.15: The radius of the ring rRing versus the initial binary separation d of the q = 1/3
Brill-Lindquist system. The ring always occurs near θ ≈ 19π/15 (shown here). There is a
distinctly linear relationship between rRing for each binary and the binary’s separation.

takeaway from this analysis should be that rRing has a linear relationship with respect to the

separation d between the black holes whereas θRing is independent of separation, and is instead

solely a function of mass-ratio q.

4.7.2 Classifying the Spacetime

We would like to generalize the classification results we saw in our study of the q = 1 binary

in Section 4.5 by extending that work to the case of the q = 1/3 binary (and hence infer

about other qs). This, again, will be done with the use of the index D in conjunction with the

Baker-Campanelli speciality invariant S. Figure 4.16 shows the S-invariant on the xy− and

xz−planes in the left and right panels, respectively. Note the change in color scale between the
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Figure 4.16: The Speciality invariant S on the xy− and xz−planes (left/right) for a q = 1/3
binary with separation d = 7m located on the z − axis. Other than far from the black holes
and between the black holes, the only region of algebraic speciality is located in a ring with
radii in the centers of the “eyes" in the right hand plot. The coordinates of the ring are
(rRing, θRing) ≈ (4.6, 19π/15)

two figures. The xy−plane, Figure 4.16 (a), is symmetric on both axes due to φ−symmetry,

and has the property that S = 1 both between the black holes as well as asymptotically. It

drops to S ≈ 0.9 on a ring that corresponds to where the “eyes” cross the x−axis in Figure 4.16

(b). On the xz−plane, the blue ellipsoidal regions are where S = 0. When rotated around

the z−axis they become “doughnut-like” in shape, which corresponds with what we saw in

Figure 4.11 (b). The value of S at points asymptotically and between the black holes is 1,

indicating a region of algebraic speciality over the whole spacetime except near the doughnut.

There also exist points where S = 1 inside of the doughnut at (rRing, θRing) ≈ (4.6, 19π/15)

which, when rotated around the z−axis, these form the ring of algebraic speciality - and

consequently the location where two of the three eigenvalues λ cease to exist. We expect this

ring is Type II, and seek to show that in what follows.

Figure 4.17 shows the values of D in the quasi-Kinnersley frame as well as in the two other

transverse frames overlayed with S. All are shown on the cone θRing ≈ 19π/15. Analogously

to Figure 4.12, D3 and DQK cross at rRing, so forcing continuity means we have to switch

frames when crossing rRing. Furthermore, the frames themselves do not exist at the point of

crossing, and only one transverse frame, associated with D2 exists and is equal to +2. This
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means that at the point rRing the spacetime is of Petrov Type II, which is consistent with our

results for the q = 1 case. Far away from, as well as between the black holes, D2 = S = 1

which indicates that the spacetime is of Petrov Type D in these regions.

Figure 4.17: D-ality and S invariants in the quasi-Kinnersley frame for the q = 1/3, d = 7m,
binary black hole case with Brill-Lindquist initial data on the conical slice θ = 19π

15 .

4.7.3 Location of Doughnut S = 0

Now that our classification results from the q = 1 case are confirmed for a q = 1/3 binary,

we can look at the region that we expect is Petrov Type I. The “doughnut” where S = 0

exists in this unequal mass case, as well as in the equal mass binary. The ellipsoid shown in

Figure 4.18: The location of the doughnut S = 0 on the xz−plane for the q = 1/3, d = 7m
separated Brill-Lindquist system (left). Because of φ−symmetry, the ellipsoid shown is rotated
around the z−axis forming a hollow doughnut where S = 0 (right).

Figure 4.18 outlines the region where S = 0 on the xz−plane (left side) and, when rotated
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around the z−axis, will form the “doughnut” shape (right side). Interestingly, on the bounds

of this region, D2 = −1.73, which is the same as in the equal mass case (results shown in

Table 4.2). This is a good indication that D and S on θRing have a consistent relationship

among different mass-ratios. We can hence safely say that the interior of the doughnut is

approximately of Petrov Type I, transitioning to Type II at rRing.

Table 4.3 shows the r locations of important values on the cone θ = 19π/15 - namely the

approximate location of the ring and the values of D and S at important points in different

transverse frames (QK, 2, or 3).

Transverse Frame S D r Petrov Type
1 -2 0 D

1 0 -1.73 3.8 I
1 -1 4.9 II

QK (1→ 3) 0 -1.73 5.8 I
1 -2 ∞ D
1 1 0 D
0 1.73 3.8 I

2 1 2 4.9 II
0 1.73 5.8 I
1 1 ∞ D
1 1 0 D
0 0 3.8 I

3 1 -1 4.9 II
0 0 5.8 I
1 1 ∞ D

Table 4.3: Summary of the values of the scalars S and D at different r− locations in different
Transverse frames (QK, 2, and 3) and the associated Petrov Type for the q = 1 Brill-Lindquist
binary on θ = 19π/15. Note that for r ≤ rRing, frames QK and 3 flip places when S = 1 at
rRing.

4.8 Numerical Results: Weyl Scalars

In the previous sections, all our computations were done analytically in Mathematica. For

practical numerial simulations, the quasi-Kinnersley frame rotation should be reproduced in C

(or FORTRAN) in order to be used in conjunction with the existing TwoPunctures thorn. This

means we need to explicitly solve for the analytic roots of the quartic (Eq. (4.4.74)), so that
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we have control over which roots are chosen at which points. We find them by first reducing

Eq. (4.4.74) to a depressed quartic, and then to a cubic whose roots we can use to reconstruct

the roots to the quartic. This is a standard technique for solving a quartic equation, known

as Euler’s method [115], but for consistency, we will provide our steps explicitly below:

• Construct a depressed quartic of the form y4 + Py2 + Qy + R = 0 by making the

substitution x = y − b
4a where

P =
c

a
− 3b2

8a2
(4.8.113)

Q =
d

a
− bc

2a2
+

b3

8a3
(4.8.114)

R =
e

a
− bd

4a2
+

cb2

16a3
− 3b4

356a4
(4.8.115)

• Solve the cubic equation

z3 + 2Pz2 + (P 2 − 4R)z −Q2 = 0 (4.8.116)

=⇒ Az3 +Bz2 + Cz +D = 0 (4.8.117)

for roots z1, z2, z3.

– Construct D0 = B2 − 3AC and D1 = 2B3 − 9ABC + 27A2D.

– Construct C0 =

(
D1±
√
D2

1−4D3
0

2

) 1
3

(the choice between ± is arbitrary, but must

not lead to C0 = 0).

– Construct the roots

zk =
−1

3A

(
B + ξkC0 +

D0

ξkC0

)
(4.8.118)

where k = (0, 1, 2) and ξ = −1+
√
−3

2 .
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• Use those roots to construct the solutions to the depressed quartic

y1 =
1

2
(
√
z1 +

√
z2 +

√
z3) (4.8.119)

y2 =
1

2
(
√
z1 −

√
z2 −

√
z3) (4.8.120)

y3 =
1

2
(−
√
z1 +

√
z2 −

√
z3) (4.8.121)

y4 =
1

2
(−
√
z1 −

√
z2 +

√
z3) (4.8.122)

and then choose signs of the square roots such that
√
z1
√
z2
√
z3 = −Q.

Using these roots, we are able to construct Weyl scalars for a q = 1, d = 10m binary with Brill

Lindquist initial data whose nonvanishing parts are shown in Figures 4.19-4.21. They are in

the QK frame, so Ψ1 = Ψ3 = 0, and calculated using numerical initial data generated by the

TwoPunctures thorn.

Figure 4.19: Real part of Ψ0 for a q = 1, d = 10m binary with Brill Lindquist initial data in
the QK frame calculated using numerical initial data generated by the TwoPunctures thorn.
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Figure 4.20: Real part of Ψ2 for a q = 1, d = 10m binary with Brill Lindquist initial data in
the QK frame calculated using numerical initial data generated by the TwoPunctures thorn.

Figure 4.21: Real part of Ψ4 for a q = 1, d = 10m binary with Brill Lindquist initial data in
the QK frame calculated using numerical initial data generated by the TwoPunctures thorn.
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4.9. Future Work: Extension to Full Numerical Simulation

4.9 Future Work: Extension to Full Numerical Simulation

We have shown that it is possible to successfully rotate the initial data of a nonspinning, equal

mass, head on binary into a quasi-Kinnersley frame. We have also used a transverse, but

not quasi-Kinnersley frame, to classify interesting points in a Brill Lindquist spacetime into

appropriate Petrov Types. Finally, we have included this into the TwoPunctures thorn and

shown that it works for this equal-mass case.

Once the rotation is successfully completed on the initial data of a binary with orbital

momentum, this work can be extended to full numerical simulations. It would be useful to

have the transverse frame rotation implemented and tested for full numerical simulations, for

both classification and gravitational wave extraction. We expect gravitational waves extracted

in the quasi-Kinnersley frame can be extracted closer to the black holes with the same or

higher accuracy as those extracted using our typical numerical tetrad. Using full numerical

simulations in transverse frames, we can analyze and classify a dynamical spacetime rather

than just the initial setup. The D index can be used, in conjunction with the S invariant to

characterize parts of the spacetime that were previously ambiguously defined, where S = 1 as

Type D or Type II, and where S 6= 1 as Type I.
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Chapter 5

Conclusion and Future Work

The first detection of gravitational waves on September 14, 2015 helped to generate renewed

interest in the field of numerical relativity. It has become increasingly accessible to newcomers

in the field, as well as new programs at different universities, there has been more collaboration

among groups, and a newfound popular-science interest in black holes. With these exciting

developments comes opportunities for significant advancement in the field. Over the past

decade, there has been a push for more accurate simulations of binary black hole mergers

for lower computational cost to increase the number of numerical simulations that can be

compared with detections. LIGO/Virgo are now detecting binary black hole pairs regularly,

and as the detectors’ sensitivity increases, the likelihood of detecting a binary with a high

mass-ratio increases. With third generation ground-based gravitational wave detectors and

LISA, these detections will become reality.

Numerical relativists have studied binaries with many different configurations, but regions

of the parameter space that are very challenging to simulate are fairly unexplored. RIT

has been able to successfully evolve a q = 1/128 binary through merger and ringdown [22],

but at significant computational cost. The steep computational resource requirement means

that simulation accuracy is absolutely crucial. Methods of accuracy improvement have been

proposed such as using quantities of the binary (mass, angular/linear momentum) that are

calculated on the horizon instead of from gravitational waves radiated to infinity [65] [67].
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These quantities can be used in a series of formulae that use the parameters of the binary

to calculate specific properties of the remnant and the gravitational wave emission. Using

horizon quantities, these fitting formulae can achieve very high accuracy when compared to

the actual numerical relativistically calculated remnant quantities - within 0.05% for the mass

and 0.03% for the spin, but only to within 5% for the linear momentum.

To this end, in Section 2, we studied different constant values of gauge damping parameter

η lead to the most accurate measures of the linear momentum of the horizon with the non-

gauge-independent formula (2.1.1). We found that for small values 0.25 ≥ mη ≤ 0.5 the

horizon linear momentum is a reliable measure and can compete with the measurement at

I + of the radiated momentum carried by the gravitational waves.

We studied these different gauges in detail for a nonspinning q = 1/3 binary and verified

the results using q = 1/2 and q = 1/5 as control cases, as well as for a q = 1 spinning case,

and therefore expect these conclusions to be able to be generalized to different configurations.

One could extend this study by applying our findings to simulations where the computation

of recoil is important, including precessing binaries.

In Chapter 3 we studied a variable η proposed first in Chapter 2 on different binary

configurations, with a focus on small mass-ratio pairs. We performed an in-depth study on

q = 1/15 and q = 1/32 binaries, with confirmation studies on q = 1/7 and q = 1/64, as well as

applied our variable η to the q = 1/128 binary. We found that, in general, a constant choice

for η can be used, even for small mass-ratios, provided enough resolution is given on the time

axis. In binaries such as q = 1/15, where we typically choose a Courant factor of 1/3, we

are instead required to use 1/4. This increase in computational cost, while not prohibitive,

is unappealing. We chose to analyze physical parameters to determine the benefits of using

different gauges, since gauge-dependent measures of accuracy such as constraint violations

cannot be reliably used here.

Overall, we found that using the variable η gauge G, made up of two superposed Gaussians,

performs as good as or better than our traditional choice for small mass ratios LZ or a constant

value. In the smaller mass-ratio binary q = 1/32, we found that using η = 2/m produced
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oscillations in the dominant mode of the gravitational wave strain during the inspiral, which

were damped by using G. This G gauge also has the benefit of damping very high frequency

noise early on in the waveforms, and during inspiral, as well as better maintained horizon

quantities, when compared with the gauge we typically use for small mass-ratio binaries (LZ).

Both the variable ηs: G and LZ, introduced oscillations to the strain during the ringdown

phase, so it was proposed that a more accurate choice would be a gauge that is variable pre-

merger, and then constant post-merger. To this end, we introduced ηG2 which is a modified

version of our original ηG that damps some peaks in η that appear when the black holes are

close together. In conjunction with modified lapse and zero shift, we recommend a variable η

(either G or G2) to be used because of its robustness when handling both small and comparable

mass ratio binaries.

Some improvements to BBH simulations can be made to equations that dictate the coor-

dinates, like the gauge improvements presented in Chapters 2 and 3, but it is also helpful to

find improved methods of analyzing the output of the simulation. Chapter 4 presents a more

accurate frame in which to study the spacetime, as well as a new method of classifying the

approximate Petrov Type of the spacetime. These improvements allow us to have a better

idea of the behavior of the spacetime in the strong-field region - most interestingly near the

black holes and in a region where the spacetime is approximately algebraically special. Where

previously, we could not differentiate between Type II and Type D in this region.

There is much work to be done here still. In this thesis, we looked at these systems

from the perspective of analytic initial data and “moved" the black holes towards each other

using different separations d, but it would be very interesting to see how the spacetime develops

during a full head-on (or orbiting) evolution of the binary in both a QK frame and an arbitrary

transverse frame.

Improving the evolution of BBH mergers is very important if we are to keep pushing

the boundaries on black hole mass-ratio and spin. These types of binaries are of particular

interest for third generation gravitational wave detectors [91] and for the space-based mis-

sion LISA [92] since they have long inspiral periods. Small mass ratio simulations reaching
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100:1 have been achieved with the moving puncture approach [7, 93] and numerical con-

vergence has been proven, and another sequence of nonspinning binaries with mass ratios

q = m1/m2 = 1/32, 1/64, 1/128 has been studied in [22]. However, these simulations should

be considered proof of principle. In order to become practical for production purposes, they

need improvements, such as the ones presented here, in both computational efficiency and

accuracy of the numerical techniques.

The analytic spacetime analysis we present in Chapter 4 is interesting from a theoretical

perspective. It provides us with more insight into the spacetime itself and unique ways to

analyze the strong-field region of the BBH system and its merger product. This region, since

such strong gravitational fields are present, is not particularly well studied and methods need

to be developed to accurately analyze what happens near the black holes themselves.

This thesis sought to improve current numerical relativistic techniques from a numeric

perspective, and improve analysis of spacetimes from an analytic perspective. Together, these

studies provide a way of studying and understanding all parts of a binary black hole system

from initial data all the way through merger.
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Appendix A

Remnant Fitting:

A convenient method of calculating

remnant fits in conjunction with the

RIT catalog

Improvements on the breakthrough in 2005 has made simulating binary black hole and binary

compact object mergers more widely accessible. As a consequence, the parameter space of

binaries that have been simulated through merger has begun to fill. The more finely discretized

parameter space has sparked interest in modeling quantities associated with the remnant, such

as mass, spin, and kick, based on parameters of the initial binary. As more waveforms are

produced, constraints on the fitting functions are tightened, and the accuracy of such models

increases.

First attempts at such models were inspired by Post-Newtonian formulas. However, due to

the complicated nature of PN terms, a more simplistic approach was desired. Boyle et. al. [116]

were the first to use basic symmetry arguments to develop a mapping from the initial mass and

angular momentum of the binary to the final mass, spin, and kick of the remnant. They apply

their symmetry arguments to a well-chosen Taylor series expansion to construct their remnant
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formulae. In this work, the mass ratio of the binary is used as a weight, in conjunction with

the binary’s angular momentum. The formulae provided give a fairly accurate approximation

of the final remnant quantities, although improvements can always be made.

In [117], Taylor series formulae for the mass and spin for non-precessing binaries were

developed based on Post-Newtonian inspired variables. Recoil velocity formulae were included

in [117] and precessing binaries were included in [32]. RIT’s research group, in [1], provides

a catalog of 36 non-precessing black hole binaries, which are used to develop models for the

mass, spin, and kick of the remnant. These quantities are defined as functions of the mass

difference and spins of the initial black holes and are constructed to very high order. This

work also calculated the maximum linear momenta of the remnants for the 36 simulations.

In [33], new simulations were included. In addition to assessing the accuracy of the fitting

forumlae with the new simulations, the authors included a model for the peak luminosity of

the gravitational waves based on the parameters of the initial binary.

Included in [2] are 71 new simulations to further refine the remnant formulae coefficients

provided in [1]. The models in this work have accuracy is within one half of one percent of

the expected value, which is calculated from the radiated quantities extrapolated to infinity,

for the mass, spin, and kick, and within 5% for the peak luminosity, when compared to the

direct output from numerical relativity simulations.

Subsequent iterations of this methodology sought to further refine the coefficients’ values

by including more varied simulations and increasing the size of the catalog. A 2018 paper [3]

provided 74 new simulations. This paper also studied the hangup effect of black holes, which

is the role of the black holes’ initial parameters in delaying or accelerating the time of merger.

This work specifically considered unequal mass non-precesssing binaries.

Most recently, RIT put out a catalog of 777 binary black hole waveforms [35] made up

of 477 non-precessing binaries as well as 300 precessing binaries. Of course this catalog is

built up for the purpose of comparing directly to observational data from gravitational wave

detectors. From these simulations, we can also extract information about the merger remnant

such as mass, spin, and linear momentum (mf , αf , Vf ). Empirical formulas to calculate these
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quantities to within 0.03% accuracy for the mass, 0.16% accuracy for the spin, and 0.5%

accuracy for the linear momentum have been proposed using polynomial fits. These studies

also include generalized fits for the peak frequency of the 2,2-mode Ωpeak
2,2 , peak waveform

amplitude Apeak2,2 , and peak luminosity [1, 32, 117, 33, 79, 3]. These formulas are fourth

order expansions with 17 (recoil), or 19 (mass, spin, peak luminosity, peak frequency, peak

gravitational wave emission) coefficients. The full formulae can be found in [3] but will be

reproduced here for completeness.

A.1 Fitting Formulas

In Ref. [1] the fitting formula for the remnant mass Mrem was given by,

Mrem

m
= (4η)2

{
M0 +K1S̃‖ +K2a ∆̃‖δm+

K2b S̃
2
‖ +K2c ∆̃2

‖ +K2d δm
2 +

K3a ∆̃‖S̃‖δm+K3b S̃‖∆̃
2
‖ +K3c S̃

3
‖ +

K3d S̃‖δm
2 +K4a ∆̃‖S̃

2
‖δm+

K4b ∆̃3
‖δm+K4c ∆̃4

‖ +K4d S̃
4
‖ +

K4e ∆̃2
‖S̃

2
‖ +K4f δm

4 +K4g ∆̃‖δm
3 +

K4h ∆̃2
‖δm

2 +K4i S̃
2
‖δm

2
}

+[
1 + η(ẼISCO + 11)

]
δm6. (1.1.1)

With all 19 Ki being fitting parameters. As in Ref. [1] the fitting formula for the final spin

has the form,
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αrem =
Srem

M2
rem

= (4η)2
{
L0 + L1 S̃‖ +

L2a ∆̃‖δm+ L2b S̃
2
‖ + L2c ∆̃2

‖ + L2d δm
2 +

L3a ∆̃‖S̃‖δm+ L3b S̃‖∆̃
2
‖ + L3c S̃

3
‖ +

L3d S̃‖δm
2 + L4a ∆̃‖S̃

2
‖δm+ L4b ∆̃3

‖δm+

L4c ∆̃4
‖ + L4d S̃

4
‖ + L4e ∆̃2

‖S̃
2
‖ +

L4f δm
4 + L4g ∆̃‖δm

3 +

L4h ∆̃2
‖δm

2 + L4i S̃
2
‖δm

2
}

+

S̃‖(1 + 8η)δm4 + ηJ̃ISCOδm
6. (1.1.2)

With 19 Li fitting parameters. The formulas for the mass and spin impose the particle limit

by including ISCO dependencies (see [1, 118] for more information).

The total remnant recoil is modeled using the methods in [1].

v⊥ = Hη2
(

∆̃‖ +H2aS̃‖δm+H2b∆̃‖S̃‖ +H3a∆̃
2
‖δm

+H3bS̃
2
‖δm+H3c∆̃‖S̃

2
‖ +H3d∆̃

3
‖

+H3e∆̃‖δm
2 +H4aS̃‖∆̃

2
‖δm+H4bS̃

3
‖δm

+H4cS̃‖δm
3 +H4d∆̃‖S̃‖δm

2

+H4e∆̃‖S̃
3
‖ +H4f S̃‖∆̃

3
‖

)
,

ξ = a+ b S̃‖ + c δm∆̃‖ (1.1.3)

vm = η2δm
(
A+B δm2 + C δm4

)
. (1.1.4)

where ξ measures the angle between the “unequal mass” and “spin” contributions to the recoil

velocity in the orbital plane, and and according to Ref. [79] we have A = −8712 km/s, and

B = −6516 km/s and C = 3907 km/s. These are then used in

~Vrecoil(q, ~αi) = vm ê1 + v⊥(cos(ξ) ê1 + sin(ξ) ê2), (1.1.5)
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which has ê1, ê2 are orthogonal unit vectors in the orbital plane.

In [33] the fitting formula for peak luminosity was proposed

Lpeak = (4η)2
{
N0 +N1S̃‖ +N2a ∆̃‖δm+N2b S̃

2
‖ +

N2c ∆̃2
‖ +N2d δm

2 +N3a ∆̃‖S̃‖δm+

N3b S̃‖∆̃
2
‖ +N3c S̃

3
‖ +

N3d S̃‖δm
2 +N4a ∆̃‖S̃

2
‖δm+

N4b ∆̃3
‖δm+N4c ∆̃4

‖ +N4d S̃
4
‖ +

N4e ∆̃2
‖S̃

2
‖ +N4f δm

4 +N4g ∆̃‖δm
3 +

N4h ∆̃2
‖δm

2 +N4i S̃
2
‖δm

2
}
. (1.1.6)

Note that the radiated power in the particle limit scales as η2 (See Ref. [119], Eq. (16)

and (20); evaluated at the ISCO for its peak value).

The peak gravitational wave strain amplitude can be modeled as in [3], for aligned spin

binaries, by

(r/m)hpeak
22 = (4η)

{
A0 +A1S̃‖ +A2a ∆̃‖δm+

A2b S̃
2
‖ +A2c ∆̃2

‖ +A2d δm
2 +

A3a ∆̃‖S̃‖δm+A3b S̃‖∆̃
2
‖ +A3c S̃

3
‖ +

A3d S̃‖δm
2 +A4a ∆̃‖S̃

2
‖δm+

A4b ∆̃3
‖δm+A4c ∆̃4

‖ +A4d S̃
4
‖ +

A4e ∆̃2
‖S̃

2
‖ +A4f δm

4 +A4g ∆̃‖δm
3 +

A4h ∆̃2
‖δm

2 +A4i S̃
2
‖δm

2
}
. (1.1.7)

with all Ai fitting parameters. Similarly, expressions provided for peak frequency for nonspin-
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ning binaries provided in [79] were generalized in [3] to

mωpeak
22 =

{
W0 +W1S̃‖ +W2a ∆̃‖δm+

W2b S̃
2
‖ +W2c ∆̃2

‖ +W2d δm
2 +

W3a ∆̃‖S̃‖δm+W3b S̃‖∆̃
2
‖ +W3c S̃

3
‖ +

W3d S̃‖δm
2 +W4a ∆̃‖S̃

2
‖δm+

W4b ∆̃3
‖δm+W4c ∆̃4

‖ +W4d S̃
4
‖ +

W4e ∆̃2
‖S̃

2
‖ +W4f δm

4 +W4g ∆̃‖δm
3 +

W4h ∆̃2
‖δm

2 +W4i S̃
2
‖δm

2
}

(1.1.8)

with all Wi fitting parameters. More information on the performance of these formulas can

be found in [3] and references thereof.

A.2 Program for Generalized Fitting Coefficients

With the release of each new iteration of RIT’s catalog, it would be useful to be able to quickly

output all the coefficients for the fits to include with the full catalog release. We would also

like to be able to pull a specific set of simulations from the catalog (say, aligned spins), and

produce fitting formulae specific to that subset of cases.

We have created a set of scripts that do just that. They require the catalog data to be

in-hand, but once it is, can first extract the relevant simulations from the catalog, then make

extensive use of code written by Dr. James Healy, which performs the actual fits, and finally

outputs them into text files that can be easily transferred and used in various applications.

The main piece of the code is a bash script that parses the catalog based on different

options. The script can be run with the following command:

./generateRunList.sh a A q Q 1 p T n

with options

• a: All simulations with aligned spins.
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• A: All simulations with anti-aligned spins.

• s All simulations with mass ratio q < 1/10.

• q: All simulations with unequal mass ratio.

• 1: All equal-mass simulations.

• p: All precessing simulations.

• T: All simulations.

• n: All non-spinning simulations.

• no options: Defaults to “best_list.txt" which is a list of simulations that give coefficients

associated with [3].

This script generates a file ”run_list_out.txt" which is the list of simulations that is the

union of all options. The other file, “run_list_int.txt" is a file that contains the intersection

of all options, and will be empty if, for example, options a and A are chosen since there are

no simulations which have both aligned spins and anti-aligned spins.

The user then runs

runPrivateCatalog.sh run\_list\_*.txt

which calls several subscripts:

1. make_data_file.sh: for all files in your list of runs, it calls Jim Healy’s script “print_final_state.perl"

which gathers all data necessary for performing the fits from each run’s Metadata file.

This is put into a text file called “df".

2. parseData.py: which reads the data from “df" and then writes it to directories

Spin, Mass, Kick, Am22, Om22, PLum

for use in the fitting script.
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3. mkdirs.sh: creates necessary subdirectories in each of the six directories from the previous

step for data/figure output (DAT/PNG respectively). For example, Spin>DAT and

Spin>PNG

4. The final line is a matlab command that calls ‘callcript.m’ in the terminal.

• “callscript.m" calls Dr. Jim Healy’s set of fitting scripts for each of the six remnant

formulas with a specific set of initial data that works for each case. If necessary,

each formula is run repeatedly until a the variation between subsequent iterations

drops below a tolerance, or for a fixed number of iterations.

The output is collected into subdirectories DAT for easy use and any figures are stored in

the PNG subdirectory, for example Spin>DAT>*.asc contains the data and Spin>PNG>*.png

contains the figures.

A.3 Run on Aligned-Spin only Binaries

As an example we will compute the fitting coefficients for the fitting formulae when only the 186

aligned-spin binaries are chosen. Table A.1 gives the coefficients for Eqs. (1.1.1) and (1.1.2).

Table A.2 gives the coefficients for Eqs. (1.1.3) and (1.1.6). Table A.3 gives the coefficients for

Eqs. (1.1.7) and (1.1.8).

To measure the goodness of the fits, we will use them to recompute the known values of

remnant mass, spin, kick, and peak luminosity, peak amplitude, and peak frequency of the

gravitational wave and compare them to data. Figures A.1- A.6 show these results for the 477

aligned spin runs in the top panels and the log of the residuals in the bottom panels. Overall,

the fits generated using our coefficients show good agreement with the outputted data for all

simulations.
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M0 0.95168588± 0.00001123 L0 0.68681869± 0.00000556
K1 −0.05157442± 0.00005534 L1 0.61540145± 0.00004189
K2a −0.00494573± 0.00013159 L2a −0.14750539± 0.00018362
K2b −0.06071780± 0.00015093 L2b −0.11411091± 0.00005944
K2c −0.00122411± 0.00005339 L2c −0.00412194± 0.00004156
K2d 1.99456701± 0.00017056 L2d 0.80155973± 0.00014449
K3a −0.00718707± 0.00137593 L3a −0.06246567± 0.00014994
K3b −0.00515254± 0.00033257 L3b −0.01320338± 0.00027624
K3c −0.11386952± 0.00045410 L3c −0.08326776± 0.00025636
K3d 0.00749896± 0.00067505 L3d 1.53431358± 0.00093854
K4a −0.04958630± 0.00180684 L4a −0.05705237± 0.00167054
K4b 0.00053360± 0.00030777 L4b −0.00262570± 0.00047047
K4c 0.00000670± 0.00000077 L4c −0.00046736± 0.00003218
K4d −0.14403831± 0.00081503 L4d −0.05805254± 0.00074401
K4e −0.01354250± 0.00136846 L4e −0.00061581± 0.00003539
K4f 2.97970458± 0.00042614 L4f 0.94853491± 0.00037299
K4g −0.00589503± 0.00104667 L4g −0.12144283± 0.00054422
K4h 0.00448195± 0.00034878 L4h −0.00349776± 0.00029782
K4i 0.07634813± 0.00204839 L4i −0.07666742± 0.00156035

Table A.1: Table of fitting parameters for mass and spin formulae using only aligned spin
binaries.

H 7558.04066901± 200.55472673 P0 0.00100582± 0.00017362
H2a −2.06826567± 0.01979304 P1 0.00090869± 0.00058136
H2b −0.64752284± 0.00574375 P2a −0.00002188± 0.00019420
H3a −0.13045427± 0.02785753 P2b 0.00120091± 0.00169321b
H3b 0.12609249± 0.07885353 P2c 0.00004962± 0.00035766
H3c −1.76030567± 0.02556123 P2d −0.00034773± 0.00139493
H3d −0.02346497± 0.00366556 P3a 0.00046358± 0.00507424
H3e −1.15704123± 0.08684921 P3b 0.00013847± 0.00148325
H4a −0.76951362± 0.09074279 P3c 0.00145053± 0.00411024
H4b −0.57451531± 0.05732186 P3d −0.00056374± 0.00218745
H4c 0.50243640± 0.15256858 P4a 0.00106563± 0.00723171
H4d 2.37749576± 0.13104749 P4b −0.00008133± 0.00049388
H4e −1.33516490± 0.06107957 P4c −0.00000029± 0.000004117
H4f 0.16093566± 0.02970174 P4d 0.00066939± 0.00728816
aa 2.42041777± 0.00688169 P4e 0.00009949± 0.001222700
bb 1.68714236± 0.01849701 P4f 0.00019742± 0.00210712
cc 0.66888956± 0.03677792 P4g −0.00006484± 0.00086665

P4h 0.00016965± 0.00178448
P4i −0.00083487± 0.00508529

Table A.2: Table of fitting parameters for recoil (in Km/s) and peak luminosity formulae using
only aligned spin binaries.
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A1 −0.00281019± 0.00010337 W1 0.14362223± 0.00001913
A2a 0.00292364± 0.00005788 W2a 0.00485530± 0.00004060
A2b 0.00733798± 0.00013015 W2b 0.07503231± 0.00016237
A2c −0.00037101± 0.00003190 W2c 0.00176503± 0.00002066
A3a 0.02683710± 0.00106601 W3a −0.06417348± 0.00025740
A3b 0.01799817± 0.00033511 W3b 0.04288594± 0.00010840
A3c 0.03384736± 0.00064514 W3c 0.08917775± 0.00009411
A3d 0.04631301± 0.00057743 W3d −0.07856534± 0.00019233
A4a 0.07210901± 0.00167853 W4a 0.00923800± 0.00018100
A4b 0.00151506± 0.00017390 W4b 0.05179638± 0.00022259
A4c 0.00213403± 0.00005764 W4c −0.00327501± 0.00004273
A4d 0.05288653± 0.00070580 W4d 0.15498216± 0.00075424
A4e −0.01506572± 0.00092618 W4e −0.04188317± 0.00038937
A4g 0.00181752± 0.00039222 W4g −0.01231470± 0.00017606
A4h 0.00387155± 0.00061244 W4h −0.06555392± 0.00008528
A4i −0.01987491± 0.00060695 W4i −0.07559977± 0.00034319

Table A.3: Table of fitting parameters for peak amplitude and peak frequency formulae using
only aligned spin binaries.
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Figure A.1: (Top) Known values of remnant horizon mass for all 477 aligned spin runs (blue
circles) and reproduced values using the fitting formula (red cross). (Bottom) Natural log of
residuals between fits and data points.
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Figure A.2: (Top) Known values of remnant horizon spin for all 477 aligned spin runs (blue
circles) and reproduced values using the fitting formula (red cross). (Bottom) Natural log of
residuals between fits and data points.
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Figure A.3: (Top) Known values of remnant horizon recoil velocity for all 477 aligned spin runs
(blue circles) and reproduced values using the fitting formula (red cross). (Bottom) Natural
log of residuals between fits and data points.
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Figure A.4: (Top) Known values of peak luminosity for all 477 aligned spin runs (blue circles)
and reproduced values using the fitting formula (red cross). (Bottom) Natural log of residuals
between fits and data points.
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Figure A.5: (Top) Known values of gravitational wave amplitude for all 477 aligned spin runs
(blue circles) and reproduced values using the fitting formula (red cross). (Bottom) Natural
log of residuals between fits and data points.
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Figure A.6: (Top) Known values of gravitational wave frequency for all 477 aligned spin runs
(blue circles) and reproduced values using the fitting formula (red cross). (Bottom) Natural
log of residuals between fits and data points.
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