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Abstract 

In silico methods have contributed greatly to our understanding of the molecular world. 

PyMOL, an open-source 3D molecular visualization software, produces high quality images and 

videos of proteins. Here, we discuss a plugin called ProMOL that augments PyMOL’s 

capabilities by adding a way to decipher unknown proteins using template-based structural 

alignment. Software is constantly updated to meet the demands of users. ProMOL fell behind in 

this regard and required a major overhaul in its code to work with older and newer versions of 

PyMOL. This included multiple API updates, Python language migration, and code 

optimizations. The result of the overhaul produced two versions of ProMOL. ProMOL 5.5 is a 

working version used with PyMOL 1.8 and ProMOL 6.0 partially works with PyMOL 2.4. 

Outdated software stymies scientific progress and innovation. The right tools in the right hands 

can lead to phenomenal discoveries. 
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Introduction 

Purpose 

With the advent of the information age, data has become an essential resource in 

biological databases. However, this data is nigh useless without proper tools to make sense of it 

all. The hallmark of understanding proteins is their relationship between structure and function. 

New structures are constantly being discovered and added to repositories [1], but in many cases 

their functions have yet to be elucidated. The Protein Data Bank (PDB) is one such repository 

that contains information on the sequences and structures of the peptide chains, coordinates, and 

distances which are in a text file in the PDB format [2, 3, 4].  

Molecular visualization software, such as PyMOL, reads the PDB file to produce a 3-

dimensional image of the protein in question. When the baseline toolkit of a software is not quite 

enough to accomplish a task, plugins are developed to accommodate missing features. Plugin’s 

augment and enhance baseline tools by providing extra functionality that allows us to extrapolate 

new ideas and theories [5]. ProMOL [6] is a plugin that assists with deciphering unknown 

protein functions based on the structure by comparing to proteins with known functions [7]. 

Just as the information age is an ever-changing system, so too are the fundamental 

aspects that allow us to communicate the information. Both PyMOL and ProMOL are written in 

the programming language known as Python. The developers of Python overhauled their syntax 

when they upgraded from Python 2 to Python 3 [8], which prompted PyMOL to update their 

code in adherence to the new Python. Unfortunately, ProMOL fell behind and had not been 

updated to the new standards of Python. ProMOL also needed to be updated to communicate 

with PDB properly due to changes in the PDB’s Application Programming Interface (API) [9]. 
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What are APIs? 

 API stands for Application Programming Interface. An API’s purpose is to help 

developers build a piece of software with ease [10, 11]. It allows two applications to talk to each 

other by one requesting information from the other then sending the necessary information back. 

One benefit an API can provide is security while still allowing public access for third party 

developers [12]. Public access promotes developer’s innovation and collaboration to make 

products the best they can be. 

APIs are written in their own dedicated query language such as GraphQL (Graph query 

language) and REST (Representational state transfer). Query languages focus on requesting and 

retrieving information from a database. When a user enters their query, a command will be 

executed to search and extract the data [13]. Figure 1 gives a representation of the differences 

between REST and GraphQL in how they handle requests and fetch data from the servers. 
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Figure 1: Depiction of how REST and GraphQL fetch and retrieve information. REST makes multiple calls 
and gets a fixed amount of data returned. GraphQL needs only to make a single call to get specific 

information. Retrieved from https://devopedia.org/graphql 

 

 The Research Collaboration for Structural Biology, which hosts the Protein Data Bank 

(PDB), has started replacing REST with GraphQL due to the way it handles requests [9]. 

GraphQL is faster and more efficient by only retrieving the necessary information the user wants 

whereas REST would also retrieve extra unneeded information. Even if the retrieval of 

information is changed ever so slightly, the benefits add up drastically when hundreds of 

thousands of requests are being made to the server. Since the PDB has updated the way it 

communicates with other software, the software also needs to be updated with the correct syntax. 

Otherwise, trying to fetch and retrieve information would always result in an error or nothing 

happening. 

  

 

https://devopedia.org/graphql
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Why Python 3? 

 Just as dictionaries are being rewritten with new words to reflect the times, so too 

programming languages are rewritten. Python 2 was released in the year 2000 but is no longer 

supported since January 1, 2020 [14]. Python 3 was initially released in 2008 and continues to be 

used today in 2021. As a result of Python 2’s discontinuation, any program using the old version 

must be updated to the new Python 3.  

 Python 3 offers more than Python 2 in the way of ease of use and performance. Text and 

binary data have been separated more clearly in Python 3 so that there isn’t any confusion and 

less bugs will be introduced into the code [15]. Originally Python had been written to use ASCII 

text which only could be used by people who used the Romanized alphabet. In Python 3, the 

switch from ASCII to Unicode text happened, allowing the language to be more universally used 

around the world. The language itself also changed so that programs could run faster and more 

efficient. 

 

PyMOL 

PyMOL is a tool that is open-source software by Schrödinger and can be downloaded via 

their website (https://pymol.org/2/). It allows the user to visualize molecular structures in 3-

dimensional space [16].  It is able to pull molecular data from the PDB which houses information 

on the sequences and structures of the peptide chains, coordinates, and distances within a PDB 

text file [2, 4]. Viewing molecular structures can be altered to show them as ribbons, cartoon, 

ball & stick, wireframe, and much more. If the object being visualized has multiple states with 

the correct coordinates associated, then a short video can be made of it changing between the 

states [16]. Figure 2 shows how a molecule is portrayed when its PDB file is loaded into PyMOL. 
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Figure 2: Structure of the complex of L-Benzylsuccinate with wheat serine carboxypeptidase II at 2.0 
Angstroms Resolution shown in the PyMOL viewer. Alpha helices are shown as ribbons while the beta 

sheets can be seen in the background as sheets with arrows. 

 

Specific regions of a molecule can be singled out in the PyMOL viewer, such as a motif, 

either by selecting them directly from the viewer or by searching from the amino acid sequence. 

As open-source software, PyMOL’s uses are constrained only by the imagination of developers. 

Many third-party plugins exist that work with PyMOL to deliver extra information to the user. 

For example, plugins can be designed to look at specific localized features in proteins, known as 

motifs, which can help scientists discover protein functions. 

 

Motifs 

A motif, also known as a super-secondary structure, consists of a recurring combination 

of secondary structures – alpha helices or beta sheets – found in different proteins [17]. 

Structural motif templates [18] can be described at high levels that include large portions of 

secondary structure, but local structural motif templates, consisting of a collection of amino acids 
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in an active site or ligand binding domain, can also be described. Motifs can be one of the key 

components to revealing the function of an unknown protein. To reiterate, structure is vital to 

unlocking the function of a protein. Because small, localized motifs can act as the site where 

catalytic reactions occur, it is reasonable to conclude that other proteins with this same or highly 

similar structure also have similar function. This is one way in which proteins are classified and 

their functions revealed [19]. This technique is known as template-based structural alignment. 

These entries allow unknown structures to be clarified by examining residue identities and 

spatial arrangements then cross referencing with known structures that have specific catalytic 

functions [19]. Motifs corresponding to enzyme active sites are generally highly conserved 

regions between related proteins due to common ancestors and convergent evolution [7]. 

 

Active Sites 

Knowing where and what the active sites are in a protein are integral in determining its 

function. One catalog of enzyme active sites can be retrieved from the Mechanism and Catalytic 

Site Atlas (M-CSA) and used for template-based alignment against unknown structures [20]. M-

CSA version 1.0 originally contained only 177 hand-annotated entries and 2608 homologous 

entries in the year 2004 [19, 21]. As of March 2021, these numbers have jumped drastically to 

964 and 15487 respectively [22].  

Searching for enzymatic function in the M-CSA catalog can be done by PDB ID, UniProt 

ID or Enzyme Commission (EC) number [21]. The European Bioinformatics Institute (EBI) 

updates and maintains relevant information regarding EC numbers and any meta information. 

The EC number is composed of four numbers that classifies an enzyme based on its “class, 

subclass, sub-subclass, … [and] a serial within the sub-subclass” [23]. It essentially conveys 
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what class an enzyme is, what donor group the enzyme acts on, with what type of compound as 

an acceptor, and then a more specific compound is denoted as a serial identifier [24]. The seven 

classes are oxidoreductase, transferase, hydrolase, lyase, isomerase, ligase, and translocase. For 

example, 3.1.21.4 is a hydrolase (EC 3) acting on an ester bond (EC 3.1), an alpha 

endodeoxyribonuclease producing 5’-phophomonoesters (EC 3.1.21) and is a type II site-specific 

deoxyribonuclease (EC 3.1.21.4).  

 

ProMOL 

ProMOL is a plugin designed to work with PyMOL to explore proteins of unknown 

function. A working version of this can be downloaded at http://www.promol.org/ [6]. ProMOL 

is designed to assemble motif templates that can then query an unknown structure for enzyme 

active sites [25].  The main features it provides are the ability to make and save templates of 

motifs, view the best possible alignment between a motif template and query structure, calculate 

root-mean square deviation (RMSD) and Levenshtein distance between the template and query, 

request alignments using subsets of the motifs via a template source and/or the EC number, and 

lastly describe the nature of a structure with an unknown function using in silico methods [6]. 

One capability of ProMOL, in more depth, includes the Motif Maker whereby the user 

can create a new motif template by using the PDB ID for a given protein, the Enzyme 

Commission number, and a list of active site residues obtained from the M-CSA.  The ProMOL 

algorithm starts building the motif and begins by evaluating it against itself. ProMOL will then 

display a group of residues that adhere to distance constraints [25]. Users can design new motif 

and then test them against homologs of the protein (looking for true positives and false 

negatives), then against random PDB entries (looking for true negatives and false positives). 

http://www.promol.org/
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ProMOL can then use the Motif Finder to screen against query structures where the method of 

the search is stringent upon the relative distances of catalytic site residues as shown in Figure 3. 

 

Figure 3: Using ProMOL's Motif Finder capabilities on the protein PDB ID 1wht against the known protein 
PDB ID 1whs. Five residues were selected using the Motif Maker to search for in 1wht. The white portion 
shows 1whs and its similarity to the red portion of 1wht.This image is from using PyMOLl 1.7 and ProMol 

5.4. 

Goals 

Programs are constantly improving in their functionality, ease of use, and optimization 

[26]. As such, ProMOL is no longer compatible with the most recent version of PyMOL which is 

currently PyMOL 2.4. PyMOL 2.4 has had its code migrated from Python 2.7 to Python 3.7 

whereas ProMOL is still running on Python 2.7.  

The main goal of this project is to go through each file in ProMOL and migrate from 

Python 2.7 to Python 3.x, so that it is compatible with the newer versions of PyMOL. Any code 
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that is part of the Legacy API needs to be updated to the new GraphQL PDB API. Careful and 

well-documented changes in the code will be placed on GitHub. A working version of ProMol 

with any version of PyMOL is the first hurdle to overcome. 

There are a number of additional goals for the project as well. The first is essential 

because not only has Python been updated, but the PDB has also updated their Application 

Programming Interface (API) [9]. This has affected the way in which ProMol fetches and 

searches for PDB files and no longer works. PDB's API has recently discontinued their 'Legacy' 

API in favor of the new and improved version [27]. The only way to use ProMol is to use older 

versions of PyMOL which is not convenient for end users as older versions are more difficult to 

obtain and download. Some additional goals for improving ProMol involve the user interface and 

user manual. Some portions of the user interface in ProMol are not intuitive and require a bit of 

finesse to figure out how to work. Text within the interface will be added to clarify the usage of 

the different options. While the user manual is helpful in installing and using ProMol, it will also 

be updated to be more user friendly and easier to follow. One of the main reason’s users give up 

on software is the frustration with using it, whether for the challenging installation process, 

confusing interface, or incompatibility. By creating a more user-friendly experience, ProMol has 

the potential to help in the discovery of new, unknown proteins. 

 

Materials and Methods 

Documentation 

 When doing any coding updates, it is essential to have good documentation of the 

changes being done in case the newly introduced code breaks the program. A safety net to revert 

to the most recent working version will save time and increase efficiency. GitHub 
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(https://github.com/) is a web-based platform that provides the tools necessary to keep track of 

alterations in the code. A separate application called GitHub Desktop works in conjunction with 

GitHub to ease uploading changes to ProMOL’s code.  

 ProMOL is open to the public and its source code can be downloaded 

(https://github.com/mr2893/promol-5.5). For this project, ProMOL was downloaded onto the 

desktop and then within the GitHub Desktop, the ProMOL folder was selected to be the initial 

commit to store the original files on GitHub. A new folder was automatically created inside the 

ProMOL folder named “.git” to store all future changes. A clear depiction of the line(s) being 

removed or added to each file can be displayed using the GitHub Desktop interface. The user can 

make additional notes to new versions being pushed to GitHub as seen in Figure 4. 

 

Figure 4: When new versions of ProMOL were pushed to GitHub, a short, required summary of changes 
was provided along with the version number. 

Visual Studio Code (VS Code) 

Visual Studio Code (VS Code) is a code editor used to help develop programs by giving 

visual cues that allows users to know their location in the coding file in a glance. In this project 

VS Code was used to quickly visualize errors produced by Python’s interpreter. Three extensions 

were installed to help facilitate changes which were called Python, Pylance, and Jupyter. The last 

two extensions came bundled with Python. One of the useful features of the Python extension is 

intellisense which provides code completion, parameter info, and quick info via a drop-down box. 

Some great features include importing an entire folder of content and searching for every 

https://github.com/mr2893/promol-5.5
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occurrence of specific syntax, replacing all instances of a variable with a new variable name in 

quick manner, and showing where code blocks begin and end to easily know the scope of the 

variables and/or functions. 

Importing a folder into VS Code is a simple process. Use the following steps to open the 

drop-down menu: Click on File → Open Folder → Locate and Click on desired folder. All files 

and folders show up in the explorer tab upon a successful import. Using the magnifying glass on 

the left side allows the user to search for a word or phrase in any of the files. Results will show 

up in the explorer tab and can be clicked on to automatically open that file and takes the user to 

the line with the word or phrase. Figure 5 shows what the layout should look like when the folder 

has successfully been imported into VS Code. 

 

Figure 5: Visual Studio Code window showing ProMOL-6.0 folder being imported on the left side. The 
magnifying glass in the left column can then be used to search for any word or phrase with the results 

populating in the Explorer tab. 
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Setting up PyMOL and ProMOL (Old Versions) 

 The first step to successfully updating ProMOL required using PyMOL version 1.8 which 

was written in Python 2. This changed the least number of variables to pinpoint the initial 

problem of fetching PDB IDs. Installation files of PyMOL 1.8 can be found at sourceforge as a 

tar.bz2 (https://sourceforge.net/projects/pymol/files/pymol/1.8/). ProMOL 5.4 can be 

downloaded from https://sourceforge.net/projects/sbevsl/files/ProMOL/ProMOL-5/. After both 

have been downloaded and decompressed, it was necessary to move all of ProMOL contents to 

the directory where PyMOL had been installed, specifically in the directory 

“PyMOL\modules\pmg_tk\startup\.” Next, the “remote_pdb_load.py” inside the 

“remote_pdb_load_plugin” folder also had to be copied and pasted into the 

“PyMOL\modules\pmg_tk\startup” to replace the old remote_pdb_load.py. If ProMOL is 

properly installed, the Plugin drop down menu should show ProMOL when PyMOL.exe is 

opened. Clicking on it will bring up the GUI interface as shown in Figure 6 with an error being 

produced. 

https://sourceforge.net/projects/pymol/files/pymol/1.8/
https://sourceforge.net/projects/sbevsl/files/ProMOL/ProMOL-5/
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Figure 6: ProMOL's GUI interface. The Fetch PDB button does not work with PDB's API update and 
produces an error. The incorrect API connects to the wrong database because it no longer exists, 

regardless of internet connection. 

 

Setting up PyMOL and ProMOL (New Versions) 

 The most up to date version of PyMOL (2.4) can be found at https://pymol.org/2/ and can 

be installed by following the instructions upon downloading it. For this project, the original 
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version of ProMOL was downloaded to the desktop and as it was being updated, it would 

become the backup once it was being tested in PyMOL 2.4. Connecting the two requires less 

effort by the user to install compared to the old versions. In PyMOL, the Plugin drop-down menu 

has a Plugin Manager option. When it is open, there is an Install New Plugin tab where the user 

must choose the file location of ProMOL and select the correct python file which is 

C:\Users\name\Desktop\ProMol-6.0\ProMol\__init__.py. Now that the two are connected, 

updating the code and testing may begin. 

  

Updating PDB API 

 Twenty-four files with hundreds of lines of code made it difficult to pinpoint exactly 

where the fetch error was occurring. PDB services had changed the URL for downloading files. 

A list of where the new files can be downloaded can be found on their website at 

https://www.rcsb.org/docs/programmatic-access/file-download-services under PDB entry file as 

shown in Figure 7. Once the first instance of the error was located, any instances of the incorrect 

URL were replaced with the correct one. In this case, ‘http://files.rcsb.org/download/’ replaced 

any old or no longer working URLs.  This process was expedited by importing the entire 

ProMOL folder into VS Code and using the search bar to locate any files that contained the 

incorrect fetch URL. The line number would also be shown to easily see where in the file the 

error occurred. 

https://www.rcsb.org/docs/programmatic-access/file-download-services
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Figure 7: A screen capture from the PDB website of the locations to download different file types. Only 
the first two types are shown here. The first is an uncompressed file of PDB ID 1hh3 which requires more 

memory and computational power to download than the second one listed. The second is a GNU zip 
compression file that is far faster to download than the first. Retrieved from the PDB website. 

 

Updating Python 2 to Python 3 

 One major change in moving from Python2 to Python 3 was in the naming and calling of 

many of Python’s libraries. Luckily, there is a tool named 2to3 which automates the process. All 

that is required is setting up Python 3.x from https://www.python.org/downloads/. By using the 

Command Prompt (for Windows users), the working directory must be where the desired python 

file is located. The user must know where Python was installed to use the 2to3 tool. This can 

easily be determined by taking the following steps on a Windows operating system as shown in 

Figure 8: 

1. Press the Windows Key 

2. Type in “Command Prompt” and open it. 

3. Change to the root directory 

4. Search for the file and wait. 

https://www.python.org/downloads/
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Once the location is known, the 2to3 tool can be utilized by executing the line of code found 

in Figure 9. The file in question (code.py in this case) was overwritten with the correct Python 3 

code and a backup file was also automatically created within the same folder of the original 

Python 2 

syntax.

 

Figure 9: An example of how to use the 2to3 Python tool. The first line shows the working directory to run 
python.exe. The remaining lines tell the directory where 2to3 is located, so that it can be run on the file 
called code.py. 

 

 Anytime a file was changed using 2to3, it was tested with PyMOL / ProMOL and the 

traceback calls dictated the path to follow. The translation tool did not catch all the lines that 

C:\Users\name\Desktop\ProMol-6.0\ProMol>python.exe 

C:\Users\name\AppData\Local\Programs\Python\Python39\

Tools\scripts\2to3.py -w code.py 

Figure 8: An example showing how to locate a file anywhere on a Windows computer. “cd \” tells the 
computer to change to the root directory – the highest folder in the hierarchy. The second line “dir 

“\2to3.py” /s” will search for all file locations containing 2to3.py. The result shows that 2to3.py exists in 
Directory of C:\Users\jkell\AppData\Local\Programs\Python\Python39\Tools\scripts 



P a g e  | 17 

 

needed to be changed for ProMOL to work. Due to Python’s desire to delineate between strings 

and binary more clearly, many of the functions produced incompatibility errors. Based on the 

surrounding code, Python 2 would decide what data type (i.e. string or binary) a variable would 

be. In Python 3, the programmer now must explicitly tell the program what the data type is. In 

the long run, less bugs would be introduced at a slight cost to convenience to the programmer. 

The initial errors dealt with syntax and incorrect library names that could easily be fixed 

with 2to3. All print statements became a function that can take in arguments / parameters. Many 

of the changes for this project deal with Python 2’s Tkinter package and importing of renamed 

libraries with changed functions. The Tkinter package from Python 2 was renamed to tkinter in 

Python 3 and the correct syntax just needed to be implemented for Python 3 compatibility in 

ProMOL. This mostly involved changing the import statements near the top of python files and 

calling of different functions throughout the file. 

 

Obtaining a User-Friendly Experience 

 The original installation process was not intuitive and required some obscure files to be 

moved to another obscure location in order for ProMOL to communicate properly with PyMOL 

and load correctly. To streamline the process, folders have been moved around while ensuring all 

files could still access each other using the right imports. The user only needs to tell PyMOL 

select a specific file (__init__.py) and the installation process is complete.  

 The View Options tabs presented some unique challenges. It contains many sliders to 

adjust features in the different views (cartoons, spheres, sticks, surface, ambient light). It is 

unclear how many of the sliders displayed in Figure 10 interact with the molecule in PyMOL’s 

viewer window. On default settings, the right-hand sliders do not alter anything about how the 
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molecule is portrayed which may leave the user puzzled. The user must select the EZ-Viz tab to 

change the surface type of the molecule as seen in Figure 11. The corresponding surface type can 

be changed via the sliders back in Figure 10. Any place there are unclear interactions between 

options was solved by placing instructions on how to use it within the ProMOL window, right 

where the user can see it by the options. A more comprehensive overview of the View Options 

will be discussed in the results section. 

 

Figure 10: The View Options tab contains options to change how large sphere size and stick radius should 
be. These options seem to have no effect on the molecule visually without changing other options. 
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Figure 11: EZ-Viz option tab. The surfaces drop down menu interacts with some of the View Options 
sliders such as sphere and sticks. 

 

Testing ProMOL 

 PyMOL’s command line shows traceback calls when an error occurs. Troubleshooting 

the problem requires looking at the last step in the traceback call. The key information to take 

away from the traceback call are the name of the file where the error is located in, the line 

number, and syntax/function/statement that describes the error which can be seen in Figure 12.  

 

Figure 12: An example of a traceback call when an error occurs. ProMOL is trying to show an alignment 
between two molecules but is encountering a problem. 

 

 Each time a change to the code occurred in ProMOL, another test had to be done to check 

if the problem was fixed. This involved using the Plugin Manager to uninstall ProMOL and close 

down PyMOL, reopen PyMOL and install ProMOL from the Plugin Manager again. This process 
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was repeated until no errors were produced from the command line. Upon installation, the errors 

could be found right away due to the incompatibility between the Python 2 code in ProMOL and 

the Python 3 code in PyMOL.  

 Once each file had been successfully translated from Python 2 to Python 3, each button 

from the Graphical User Interface (GUI) was tested. PyMOL has its own API and command line 

syntax, both of which are very similar in structure. PyMOL also changed some of their API and 

commands that no longer work with the old ProMOL 5.4 version and thus required more 

diligence in deciphering the problem. It was not always clear if the error occurred in PyMOL’s 

API/commands, PDB’s API, or Python’s new packages/library system. In order to figure out 

which of the three possibilities it was, one would have to search all three for any documentation. 

As an example, PyMOL’s command reference (https://pymol.org/pymol-command-ref.html) 

assisted in revealing the changes they made. The command to ‘fetch’ downloads produced an 

error. According to the command reference in Figure 14, the ‘async’ argument now has a default 

value of 0, meaning it no longer has to be specified. As shown in Figure 13, all that needed to be 

done was remove ‘async=0’ and the problem was resolved since no errors were produced upon 

testing ProMOL. 

 

 

Figure 13: A simple fix of removing one small part to an error that required reading many different 
documents. 

https://pymol.org/pymol-command-ref.html
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Figure 14: PyMOL's command reference guide to 'fetch.' In order, it shows what fetch does, how to use it, 
the arguments/parameters it takes, how to use it with cmd, and additional notes. 

Miscellaneous Updates 

 The user manual will be updated to include helpful tips. Major revisions will be done to 

the installation process section and using the View Options tab within ProMOL. The direction 

for the installation steps needed to be more concise and straightforward with more emphasis on 

finding where things such as ProMOL or PyMOL are installed on the user’s computer. Knowing 

the locations for these files is extremely important to a successful installation.  
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 Inside ProMOL folders is a readme.txt describing the general changes made and a 

promol-changes.txt with more specific changes made. Anything GitHub has recorded will also 

be saved to these files.  

 

Results 

ProMOL Version 5.5 (Updated PDB API) 

 As shown in Figure 15, ProMOL 5.5 was able to fetch PDB ID 1wht and tell PyMOL to 

show it in PyMOL viewer when coupled to PyMOL version 1.8. A simple replacement of an 

outdated URL as shown in Figure 16 solved the Connection Error when using Fetch PDB. All of 

the outdated URLs were removed and updated throughout the ProMOL directory, and a working 

version could finally be used.  

 

Figure 15: ProMOL and PyMOL were successfully communicating with each other after the API was 
updated. The molecule being displayed is PDB ID 1wht, a structure of the complex of L-Benzylsuccinate 

with wheat serine carboxypeptidase II. 



P a g e  | 23 

 

 

 

Figure 16: GitHub Desktop showing the changes being made to one line of code. The red highlighted line 
shows what is being removed. The green highlighted line shows what has been added. Anything else 

remained untouched. 

 Motif Maker was tested, as shown in Figure 17, using PDB ID 1WHS, another structure 

of the complex of L-Benzylsuccinate with wheat serine carboxypeptidase II with an EC # 

3.4.16.6. This can be broken down as a class of hydrolases (3) acting on peptide bonds (3.4) and 

is a serine-type carboxypeptidase (3.4.16) D (3.4.16.6). The next few lines ask the user for 

residues to test for. For example, the first residue is Ser (Serine) on Chain A of the protein at 

position number 146 and the backbone residues are not involved in the active site. Pressing the 

Save button will save to C:\Users\jkell\AppData\Roaming\SBEVSL\ProMol\UserMotifs so that 

the user won’t have to input this information every time. Figure 17 tests it against itself before 

testing against other proteins.  
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Figure 17: Five residues (right side) were filled in by the user and tested against itself. The result can be 
seen in the PyMOL viewer (bottom left side). The five selected red areas correspond to the five residues 

from the Motif Maker. The command line shows the behind-the-scenes work (upper left side). 

  

Figure 18 shows the Motif Finder working as intended. Saved motifs show up under the 

results section categorized first by the PDB IDs to be searched then by the first EC number, 

which in this case is 3. The user can choose whether or not to show alignment of the selected 

motif and/or to show Root Mean Square Deviation (RMSD) values. RMSD values are useful in 

comparing multiple alignments and determining which fits best, or most similar. The lower the 

RMSD value, the more similar the two alignments would be [28]. PyMOL’s viewer shows only 

the residues that produced a significantly close alignment from the saved motifs and queried 

PDB IDs. Specific RMSD values can be seen in the command line. 
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Figure 18: PDB entries are listed in the right window that are produced in response to the query. Here, 0-
3: U_1whs_3_4_16_6 had been double clicked to tell PyMOL viewer to show alignment between the 

motif saved earlier and the one highlighted in blue. On the left side, the red color shows the motif saved 
by the user while the white color shows the PDB entry to be searched which is 0-3: U_1whs_3_4_16_6. 

RMSD values can be seen in the command line window (upper left side). 

 These were the features being tested in ProMOL 5.5 since they are the primary purpose 

of this plugin. Options from the other tabs had been tested with success as they deal with the 

appearance of the molecule in the PyMOL viewer. Moreover, examples of the behavior of these 

options will be discussed in further detail with ProMOL version 6.0.x. 

 

ProMOL Version 6.0.X 

 Prior to migrating from Python 2 to Python 3, ProMOL would not even connect with 

PyMOL version 2.4. Successful translation would show a pop-up window telling the user that it 

had been installed without error. Currently, ProMOL works with older APBS plugin which can 

be found in PyMOL’s dropdown menu under Plugin→Legacy Plugins→APBS Tools2.1 

(placeholder). APBS Tools2.1 (placeholder) must be clicked before ProMOL is able to load. The 

Fetch PDB button still correctly shows the desired PDB protein in the PyMOL viewer.  
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 Testing out the Motif Maker with the same parameters as ProMOL 5.5 shows similar 

results using PDB ID 1whs and EC# 3.4.16.6 with the same residues tested against itself. 

PyMOL 2.4 now shows more detail than PyMOL 1.8 in the viewer area as can be seen in Figure 

19. The residues show double bonds instead of every bond looking as if it were single.  This 

makes it easier to verify the identity of a residue instead of having to select each one individually. 

 

 

Figure 19: ProMOL 6.0.12 testing 1whs EC# 3.4.16.6 against itself. Residues show up in red on the 
window with new double bonds in PyMOL 2.4. 

 

 The next step tests the Motif Finder. Half of the program works before an unexpected 

result occurs. As can be seen in Figure 20, the window on the right was populated with the same 

information as ProMOL 5.5 in Figure 18. Unfortunately, a window pops up that states: “Error in 

background function.” Even though “Show alignment” was selected, only a part of one molecule 

(1wht) was displayed in the viewer. Molecule 1whs was not shown overlapping 1wht. This also 
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means that RMSD values could not be calculated. This gap will need to be addressed in future 

development of ProMOL. 

 

Figure 20: ProMOL 6.0.12 Is not correctly communicating to PyMOL to show alignment of the two 
molecules. Part of the error message can be seen in the command line in the upper left. 

 

 The primary features have been discussed above and the secondary features are next. 

While not the main focus of the program, ProMOL has made viewing molecules in different 

ways accessible via the EZ-Viz and View Options tab. As stated earlier, the different sub-

categories named Cartoon, Spheres, Sticks, Surface, and Ambient Light aren’t easily understood 

when the user adjusts the sliders because an expected change to the displayed molecule doesn’t 

happen. To help alleviate this issue, a small explanation was added below the sub-categories on 

the View Options tab as seen in Figure 21. Adding an additional text message to the bottom 

wasn’t as simple as adding a new line of code because it ended up shifting the location of all the 

other options. Certain configurations displayed the right column of sub-categories completely 

off-screen unless the user expanded the window or options would overlap each other. 
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Figure 21: A new explanation at the bottom of the View Options tab about how to use the sliders. 

Miscellaneous Updates 

 Additions to the user manual involved the installation process and opening of ProMOL in 

PyMOL. It is important to note that only one operating system, Windows, has been updated for 

installation due to unavailability of a Linux/Unix or Macintosh operating system. The user 

manual can be found within the ProMOL folder labeled “ProMOL_User_Guide.pdf” and the 

installation process for ProMOL 6.0.x can be found on page 27 as seen in Figure 22. While 
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GitHub serves as a source of version control and documentation of ProMOL, the readme.txt file 

has had more revision descriptions added to the list under the Change Log section. For this 

project, ‘Revision 368’ through ‘Revision 372’ has been appended in the change log as shown in 

Figure 23.  

 

 

Figure 22: The ProMOL_User_Guide.pdf file showing the addition of the installation process for ProMOL 
Version 6.0.x and how to open it in PyMol 2. 
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Figure 23: This readme.txt file contains a section for the changes made with dates, author(s) specified, 
and a short description of the modifications. Each time a major revision is made to ProMOL's code, it is 

documented in this text file as another form of documentation. 

 

Discussion 

 Much needed updates to ProMOL have allowed it to work in conjunction with newer 

versions of PyMOL. There are obvious rooms for improvement as not all modules are quite 

working yet, but a large stride in the right direction has been taken. Before any updates had been 

done, ProMOL was unable to function at all because of the new API changes to PDB. Now,  

ProMOL 5.5 (https://github.com/mr2893/promol-5.5) works with PyMOL 1.8 and it is open to 

https://github.com/mr2893/promol-5.5
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the public. While only a few lines of code needed to be changed, it is vital knowing where the 

problem was happening and what needed to be changed. Altering code in the wrong place can 

break the program even further and in the worst case, kill the project. Having excellent 

documentation plus backups of the program can save time and money. GitHub has more than 

sufficed for this project. Their GitHub Desktop application has especially made documenting any 

changes a breeze. Their interface is easy to navigate, and users can quickly look at previous 

changes made. In this project, changes were reverted to the original code when it clearly was not 

executing properly or had unintended consequences. It was easy as a couple of clicks of a button, 

thus saving a lot of time. ProMOL 5.5 was a success in terms of accomplishing a working 

version with the older version – PyMOL 1.8. 

 With ProMOL 6.0.x (https://github.com/mr2893/ProMol-6.0), I was able to make some 

major strides in working with the most up to date software and Python language. First, all Python 

files were translated using the 2to3 tool allowing ProMOL and PyMOL to be compatible with 

one another. While they could now communicate with each other, that did not mean they could 

work together as intended. Not only was Python and PDB updating their own projects, PyMOL 

updated some of their commands and API, too. Luckily, all three of them had some sort of 

documentation that could be referenced.  

 Updating to ProMOL 6.0.x was much more difficult to fix since the errors were more 

numerous and far more varied compared to updating to ProMOL 5.5. Unfortunately, not 

everything was in working order, but about 3/4 tabs were able to function without errors. EZ-Viz, 

Motif Maker, and View Options had no issues interacting with PyMOL 2.4. The Motif Finder tab 

partially works when searching PDB entries for predetermined motifs. It will successfully 

populate the expected list in the right-hand column, but double clicking on the predetermined 

https://github.com/mr2893/ProMol-6.0
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motifs with “Show alignment” selected does not produce the correct results in the PyMOL 

viewer. Rather than showing both molecular sections, only the queried PDB entry is shown. 

Lastly, 3/4 buttons located along the bottom of ProMOL work flawlessly. “Open PDB” opened a 

PDB file on the computer correctly and show it in the PyMOL viewer. “Fetch PDB” pulled the 

desired PDB ID from the website and the PyMOL viewer displayed it. “Clear” just removed any 

existing molecule in the PyMOL viewer. The “Random PDB” button produces an error that 

could be traced using the command line, but the command line states: ‘Error-fetch: unable to 

load X.’ It is currently unclear if the URL associated with clicking “Random PDB” no longer 

works or there is still an underlying problem with the code. Regardless, ProMOL as a whole has 

ascended to new heights where its legacy can be continued by another. 

 

Conclusion 

 Open-source software is important to advancing society and pushing the boundaries of 

scientific knowledge. Allowing anyone to use these types of tools can assist in the discovery of 

new and amazing molecules that may have never been characterized. Characterizing new 

molecules has the potential to illuminate new ways to combat diseases/pathogens or develop 

different approaches to solving man-made problems. The possibilities are endless when intellect 

is not restricted by expensive software. Other developers are even working on homology-based 

motif generation. A collaboration between developers may accelerate the process of creating an 

unparalleled algorithm. 

 Software that is widely used by researchers or anyone must have a user interface that is 

smooth and seamless. Atrocious designs leave a bad impression that will cause people to 

immediately give up trying to learn the software. If navigating the software is not intuitive, end-
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users will likely seek out other applications that do the same thing only better. ProMOL is far 

from perfect, but the essential necessities are laid out in a reasonable fashion.  

 

Future Opportunities 

In future iterations, ProMOL could be simplified in its design by combining a couple of 

the tabs that actually interact with each other. As it currently stands, some confusion arises when 

certain menus appear to not work. This may require updating the aesthetic to make the important 

options stand out more. Tooltips are always helpful when learning a program. Cluttering the 

window with superfluous tips should be avoided. However, hovering over an option to reveal a 

tooltip with an extra explanation can be very useful for the user. While the user manual may 

serve this purpose, convenience goes a long way to bring in new users. 

Only the Windows installation process has been introduced in the user manual for 

ProMOL 6.0.x. Linux/Unix and Macintosh users are currently not included and the manual needs 

to be updated for them. Leaving out part of the user-base is not good practice nor respectful, 

especially when there exist instructions for them with older versions. 

 The APBS Tools2.1 plugin has been updated to APBS Electrostatics. Currently APBS 

Tools2.1 appears to be used in conjunction with ProMOL and further updates to ProMOL may 

be required to work with the Electrostatics version. In order to open up ProMOL 6.0.x, the user 

has to click APBS Tools2.1 first, then click on ProMOL for it to work. It is unclear when or if 

the original plugin will be discontinued sometime in the near future. Another possibility that may 

fix this problem involves changing from Tkinter to PyQT5 Python library for creating a GUI 

framework. According to PyMOL’s Plugin Architecture page, legacy plugins are still supported 

that use the Tkinter package. This update may remove ProMOL from the legacy plugins menu in 
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PyMOL and remove the need to play around with the outdated APBS Tools2.1 plugin. As a final 

note, Table 1 shows a list to quickly glance at for all the buttons in ProMOL that needs 

troubleshooting.  

Interactable 
Options Functional 

Not 
Functional Notes/Thoughts 

Open PDB x   

Fetch PDB x   

Random PDB  x 

Binary vs Text - seems to be only storing one 
letter/number in the database list instead of four 
(for the PDB ID) 

Clear x   

Surfaces x   

Cartoons x   

By Residue x   

Preset Movies  x 
The only drop-down option that doesn't work is 
Highlight Chains. Everything else works 

Miscellaneous x   

Electron Density x   

Roving x   

Roving Detail x  

Move the slider then select the same Roving 
Option to see differences 

Select x   

Show x   

Color x   

Update Selection x   

Hide x   

Stereo x   

Background Color x   

Color Space x   

Internal GUI x   

Start x   

Cancel x   

PDB file name… x   

PDB entry list … x   

Clear input x   

Export… x   

Show alignment  x 
The checkbox is fine, but double clicking the 
results is what produces the error 

Calculate RMSD  x 
This is probably tied to Show alignment and may 
fix itself once the other is fixed 
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PDB field x   

EC #: field x   

Radial Button x  Used with the move up/move down button 

Residue x   

Chain x   

Number x   

Backbone x   

Tolerance x   

Move Up x   

Move Down x   

Auto  x 
Unclear of the purpose of this button (not 
explained in user manual) 

Clear x   

Export x  

It does produce a traceback call if nothing is in 
the fields (maybe make that a pop-up window 
with explanation?) 

Save x   

Self x   

Homolog x   

Random  x Same issue as Random PDB button 

Select x   

Update Selection x   

Reset x   

Width x   

Thickness x   

Transparency x   

Tube Radius x   

Ambient Light  x 
Might be the ambient command? 
https://pymolwiki.org/index.php/Ambient 

Size (Spheres) x   
Transparency 

(Spheres) x   

Radius (Sticks) x   
Transparency 

(Sticks) x   
Transparency 

(Surface) x   
Table 1: The left column shows all interactable options in ProMOL. Each colored category corresponds to 

a tab in the GUI interface. Yellow indicates the buttons seen on all tabs, blue corresponds to EZ-Viz, 
green corresponds to Motif Finder, purple corresponds to Motif Maker, and red corresponds to View 

Options. The next two columns indicate if the interactable options are working as intended or not. The 
last column contains information that may be helpful to the next programmer for successfully 

troubleshooting the issue. 
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