
Rochester Institute of Technology Rochester Institute of Technology

RIT Digital Institutional Repository RIT Digital Institutional Repository

Theses

8-8-2021

Comparative DNA Degradation Automation for Identifinders Comparative DNA Degradation Automation for Identifinders

Jennifer Pfaff
jp9863@rit.edu

Follow this and additional works at: https://repository.rit.edu/theses

Recommended Citation Recommended Citation
Pfaff, Jennifer, "Comparative DNA Degradation Automation for Identifinders" (2021). Thesis. Rochester
Institute of Technology. Accessed from

This Thesis is brought to you for free and open access by the RIT Libraries. For more information, please contact
repository@rit.edu.

https://repository.rit.edu/
https://repository.rit.edu/theses
https://repository.rit.edu/theses?utm_source=repository.rit.edu%2Ftheses%2F10906&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.rit.edu/theses/10906?utm_source=repository.rit.edu%2Ftheses%2F10906&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository@rit.edu

1

Comparative DNA Degradation Automation for Identifinders

Jennifer Pfaff

A Thesis Submitted in Partial Fulfillment for the

Requirements for the Degree of Master of Science of Bioinformatics and Computational

Biology at the Rochester Institute of Technology.

Thomas H. Gosnell School of Life Sciences

College of Science

Rochester Institute of Technology

Rochester, NY

August 8th, 2021

2

Rochester Institute of Technology
Thomas H. Gosnell School of Life Sciences

Bioinformatics Program

To: Head, Thomas H. Gosnell School of Life Sciences

The undersigned state that Jennifer Pfaff, a candidate for the Master of Science degree
in Bioinformatics, has submitted her thesis and has satisfactorily defended it.

This completes the requirements for the Master of Science degree in Bioinformatics at
Rochester Institute of Technology.

Thesis committee members:

Name Date

___ _______________
Gary R. Skuse, Ph.D.

 Thesis Advisor

___ _________________
 Colleen Fitzpatrick, Ph.D.

__ _________________
 Feng Cui, Ph.D.

3

List of Figures

Figure 1 Process flow of the Comparative DNA Degradation Automation program. 13

Figure 2 CDDA gives an error when the input file is not found. 14

Figure 3 The printed statistics at the end of a completed CDDA run. 17

Figure 4 The graphical user interface for CDDA. 18

Figure 4 CDDA run using PowerShell 20

4

List of Tables

Table 1 SNP Markers in Ancestry and 23andMe 11

Table 2 Time taken for CDDA to complete a run in seconds. 21

S1 Desktop specifications 32

S2 Lenovo Thinkpad specifications 32

S3 Surface Pro specifications 32

S4 For-Loop run times 32

S5 Hashmap run times 33

5

Acknowledgements

I would like to thank Dr. Colleen Fitzpatrick who allowed me to work on this project and supplied

the data needed for testing. I also want to recognize her work in the forensic genealogy field and

thank her for her dedication to helping others.

I would like to thank all my professors who inspired a love of learning in me, my family for

supporting me, and a special thanks to my husband who always believed in me.

6

Table of Contents

Thesis Committee 2

List of Figures 3

List of Tables 4

Acknowledgements 5

Table of Contents 6

Abstract 7

Introduction 8

Methods 12

Overview 12

DNA Profile Files 13

I/O 14

Parsing 15

Simulating DNA Data 16

Writing the Output 16

Statistics and Prints 17

Rounding 17

Graphical User Interface (GUI) 18

Building For Windows 19

Building for Command Line 20

Results 20

Speed 20

Accuracy 21

Discussion 22

Efficiency 22

Compiling and Privileges 23

Future Work 24

Batches 24

Automation 26

Multithreading 27

Conclusion 27

References 29

Supplementary Data 32

Testing Computer Specifications 32

Program Run Times 32

For-loop method 32

Hashmap Method 33

Instructions for Compiling CDDA in Windows 33

7

Abstract

The degradation of DNA in forensic genetic genealogy can hinder timely results in victim

or perpetrator identification. Identification of an unidentified victim, a “Doe”, involves analyzing

the degraded DNA against reference genomes. Organizations like the DNA Doe Project and

Identifinders currently manually compares the genomes in a spreadsheet with data input

slowing down the investigative process. I propose a program to automate the data input and

comparison to increase the speed at which Identifinders can continue their research into

identifying victims. Comparative DNA Degradation Automation (CDDA) automates the process

of creating a simulated degraded DNA profile in less than a second on average. This program

could be used not only by organizations like Identifinders and the DNA Doe Project, but also

used in future research where natural DNA decomposition is not possible.

8

Introduction

Forensic work with DNA has been used in criminal cases for over thirty years (Arnaud,

2017) to help solve crimes by helping identify suspects for law enforcement, but it can also be

used to help identify the victims of these crimes. Genetic fingerprinting, or DNA fingerprinting, is

a technique that shows an individual has unique DNA sequences that could be used in

identification (Jeffreys et al., 1985). Microsatellites, or short tandem repeats (STR) of about

100bp long, were used in 1990 to create DNA fingerprints from bone samples that had a small

sample size (Zagorski, 2006). STR typing was used to aid in the identification of deteriorated

skeletal remains (Jeffreys et. al, 1992). DNA fingerprinting with STR typing showed that this

technique can be used on degraded and small sized DNA samples.

In England a murder case used DNA profiling with STR typing in 1986. Showing that two

samples could be from the same individual, the police sought to confirm the confession of a

suspected murderer. With no national DNA data banks at the time, the suspect’s DNA was

compared to the DNA found on victims and found that while the victims were both killed by the

same person, it was not the current suspect (Cobain, 2016). The test was repeated and the

results showed the consistency of DNA fingerprinting and proving a suspect’s innocence.

In the United States, DNA fingerprinting helped solve a case just one year later

(Calandro et al., 2005). A defense attorney argued that the DNA testing was unreliable and that

there could be errors in the lab work but experts testified that the DNA fingerprinting in the case

was reliable (New York Times, 1988). There have been standards that scientific evidence has

to meet to be admissible in courts, as in 1923 the Frye standard was created where it was

decided that scientific evidence provided must be “sufficiently established to have gained

general acceptance in the particular field in which it belongs.” (D.C. Cir., 1923).

9

It was not until 1994 that a standard was created for DNA testing, and with it a national

database. The DNA Identification Act of 1994 set up state labs to perform DNA fingerprinting

using a standardized procedure, going beyond the 1923 Frye standard (Edwards, 1994). This

new act allowed for the creation of a national index where the government can now store DNA

identification of criminals, the results of the analysis of samples from crime scenes and from

unidentified human remains. On a federal level, the database and software used for criminal

justice work is the Combined DNA Index System (CODIS), but CODIS is a generic term for the

whole system. CODIS is made of different databases and tools, one is the National DNA Index

System (NDIS) which is the part of CODIS that is what most people associate with DNA

searches by the FBI, and there is one for states (SDIS) and at a local level, such as counties

(LDIS).

The DNA information in the profiles is made up of short tandem repeats,and until 2017,

13 different loci were used in profiles. As of January 1st, 2017, there are 20 core STR loci. This

expansion was to increase accuracy, international compatibility, and discriminatory power

(Hares, 2015). As of June 2021, the NDIS contains over 14 million profiles and has helped over

half a million cases according to the FBI (FBI n.d.).

While the CODIS program has helped many cases, there are still many cold cases that

need to be solved. The rate of cold cases being solved has dropped to around 60% from 80%

since the 1960’s (Martin et. al, 2020). A new method to solve cases based on Single Nucleotide

Polymorphisms (SNPs), forensic genetic genealogy, has become a more common technique to

help investigations. Forensic genetic genealogy can be used in forensics to help track familial

relations using DNA matches. Using a SNP profile, a family tree can be built using information

from GEDmatch, which is a website that allows users to upload DNA files from different direct-

to-consumer genetic testing companies and match genetic profiles to possible relations (DNA

Doe Project, 2018).

10

In December of 2019 GEDmatch announced that Verogen had acquired it. Verogen is a

company that works with forensic laboratories by supplying products and services based around

Illumina products (Genomeweb, 2019). Verogen CEO said the acquisition was to improve the

tools available and make the website user friendly (Taylor, 2019).

Though the idea of a genetic genealogical database is new, the idea of a genealogical

database is not a new concept. In 1894 the Genealogical Society of Utah was founded by the

Church of Latter-Day Saints to keep genealogical records (Durrant, 2010). The website

FamilySearch.org was created in 1999 by the Church of Latter-Day Saints, and just three years

later posted the 1880 census for the United States to help members trace their family tree.

FamilySearch, as of 2020, has over 13 million users (FamilySearch, 2021). This website does

not allow users to submit their own DNA profiles, but has a guide on their website explaining

some of the process and linking to other companies’ websites for interested users.

Direct-to-consumer (DTC) at home testing kits has become popular with over 30 million

people purchasing kits by 2020 (Molla, 2020). As Ancestry and 23andMe both allow downloads

of the raw data, potentially millions of entries could be uploaded to sites like GEDmatch if DTC

users choose to upload their data.

DNA home testing kits are based on SNPs. The move to use SNPs over STR typing in

home testing kits has been for a few reasons such as SNPs are abundant in genomes, have

lower mutation rates than STR, and having variation at a SNP can be linked to phenotypes

(Gray et al., 2000). As next-generation sequencing technology advances, the cost and time

taken to process genotyping has decreased (Xiao et al., 2016). According to the International

Society of Genetic Genealogy, 23andMe tests for fewer SNPs than Ancestry (table 1) (Janzen,

2021). There are millions of SNPs in a person’s genome; some can be unique to a person or in

groups of people (NIH MedlinePlus, n.d.). The variations that SNPs show can be used in at-

11

home genetic testing kits as markers for possible traits such as appearance or health

(23andMe, n.d.). Forensic genetic genealogists have used GEDmatch’s database to identify a

John or Jane Doe or the perpetrator of a violent crime.

Table 1. Number of SNPs markers in Ancestry and 23andMe

 Autosomal X Y Mitochondrial

Ancestry 637,639 28,892 1,691 263

23andMe 630,132 16,530 3,733 4,318

The organization Identifinders was started in 2008 while the DNA Doe Project is a more

recent organization formed in 2017. Identifinders and the DNA Doe Project are contacted by law

enforcement agencies to help their cases using genetic genealogy. Once a case is accepted,

the DNA is genotyped by whole genome sequencing. The whole sequenced DNA profile is not

needed so the results are converted to a file that can be read by GEDmatch by creating a DNA

profile with DNA markers that GEDmatch recognizes. This file is then uploaded to GEDmatch to

check for other profiles that have similarities which could lead to possible relatives. Using these

methods to search for relatives, along with informational archives and public data, can lead to a

tentative identification.

A press release from the DNA Doe Project on one of their early successes stated that

after a few hours of using GEDmatch after the profile’s upload, possible matches were found

12

with a possible first cousin even though the sample was highly degraded. Detective Steven

Hickey said the case was forensically groundbreaking (Augenstein, 2018).

As of 2020, Dr. Colleen Fitzpatrick has left the DNA Doe Project that she had co-

founded to focus on her original company, Identifinders. Identifinders has had many high-profile

successes in identifying remains as well. Some notable cases Identifinders has worked on are

the remains of the crash of Northwest Flight 4422, the “Unknown Child of the Titanic'', and they

have helped police departments identify suspects in violent crimes (Identifinders, 2021).

Identifinders has access to an assortment of tools that they use in their work. One tool

Dr. Fitzpatrick used included spreadsheets to simulate degradation based on a non-degraded

DNA profile. This tool allows comparison of results from degraded and non-degraded files to

test validity of results from GEDmatch . This way to simulate degraded DNA was time

consuming and could be improved. I have proposed a program to automate degradation

simulation using parsing and hashmap comparison in Java.

Methods

Overview

The program Comparative DNA Degradation Automation (CDDA) was created in core

Java and Swing, and uses the WiX toolset to build an executable package for native system

support on Windows systems. The basic flow of the program is to parse, compare, then output

the results (Figure 1). CDDA first parses two user-submitted files using a class that stores the

information in string hashmaps. A third hashmap is then created to store the matching

information from the two user submitted files. This third hashmap is saved via output to the

user’s hard drive in the location from which the program was run. The program was written with

13

accurate results as the top priority, with speed being a secondary concern. Once accuracy and

speed were within acceptable ranges a graphical user interface was added to increase

accessibility of the software. WiX was required as an efficient method of compiling an

executable file from Java (Mensching, 2021).

Figure 1. Process flow of the Comparative DNA Degradation Automation program.

DNA Profile Files

Dr. Colleen Fitzpatrick from Identifinders supplied full DNA profile files from her previous

work for use in testing the software. Files were provided under a non-disclosure agreement for

privacy reasons. All references to any personal demographics were removed from the project.

Hereafter the files are referred to as the FullDNA file, the DegradedDNA file, and the

ExpectedResults file.

14

I/O

The user interface version of the CDDA program requires the user to manually select the

file location on the hard drive using the Swing toolset’s file browser. Because of the way the file

browser functions, it is not necessary to verify a file exists after user selection in the GUI as the

user will be unable to select a file that does not exist. Once the file is selected, the name of the

file is displayed above the selection button so that the user can visually verify that they have

selected the appropriate project file. This is true of both the FullDNA file and the DegradedDNA

file.

The original command line version of the CDDA program requires the user to type in the

file location and then runs the code’s fileCheck function to ensure the input file exists before it

can move on to parsing (Figure 2).

Figure 2. CDDA gives an error when the input file is not found.

The user input is pulled using Java’s scanner tool, and in the event of a mistyped file

name or missing file the fileCheck method will notify the user that their file couldn’t be found and

prompt them to enter their filename into the scanner again.

 The output file name can be any that the user desires, and will default to being created

in the working directory of the program.

15

Parsing

The next step was to take in the DegradedDNA profile and the FullDNA files and extract

pertinent information by parsing the necessary data. The DNA reports used in this project were

generated by a direct-to-consumer genetic testing company. The files from this company had

excess information that did not need to be processed for the purposes of CDDA. Only the

relevant information was needed: the RSID numbers, chromosome, position on chromosome,

and the genotype. The information not needed was formatted in a way similar to commenting in

code so that the lines started with a pound sign, or hashtag mark. These irrelevant lines were

located at the top of the file. This information was searched for first and removed from the file

parsing.

Before editing out this information, the DNA files were read into a new file in the program

so as to preserve the original files. The Java BufferedReader class was used to wrap, or work

with, the FileReader class to ensure the process was efficient to keep the program from taking a

long time to run and any line that started with a pound sign was ignored while the rest of the file

was read into a split string format using string arrays. Each line represented one sequenced

SNP and each line was broken into the RSID, chromosome, location, and genotype columns.

The files were mostly uniform, but there were times that multiple spaces were used instead of a

tab, so parsing with a split at a tab would not work. Therefore, the split was used on any

whitespace in the line that was larger than 2 spaces. Once broken up into sections by

whitespace, the pieces were sorted into two parts, a key and a value.

Java hashmaps require a single key value for each entry into their map, and the rest of

the data is the value associated with the key. The information in the files had two unique

identifiers that could be used as a key to organize the information, the RSID numbers and the

chromosome position. Being that the RSID numbers are already considered an identification

number, and that it was listed before the chromosome on the line, the RSID numbers were used

16

as the key value for the hashmaps. The rest of the information connected to the RSID was

stored in the hashmap as one entity in the value. The parsing class did this process to each line

in the DNA files until a line was read that was null. This indicated that the full file had been read

and all data had been parsed, leaving the program with two hashmaps; one with the FullDNA

data, and one with the DegradedDNA data.

Simulating DNA Data

With the two hashmaps populated by the parsing process, CDDA can begin creating a

third hashmap that contains a simulated version of the FullDNA data as degraded dna using the

FullDNA and DegradedDNA as sources. In most speed tests, it took less than a full second for

the code to find matching RSIDs between the two data sources and piece together a simulated

degraded DNA hashmap using those matched tags.

The program uses a simple loop that takes advantage of Java hashmap’s abilities to compare

key values for exact matches very quickly. The matching keys are kept along with the

associated values, and those are stored in the third hashmap. The result of this efficiency is that

the brunt of the program’s work is usually done in a fraction of a second, leaving the software

with a third and final hashmap ready to be outputted to the user.

Writing the Output

At this point in the process the simulated data that has been created, and a blank file

that represents the desired output of the software, are used to output a tab delimited version of

the final results from the software. By passing the Java class writeFile method a blank file, the

user selects what the output will be named based upon their individual needs. It is

advantageous to select a name that ends in “.txt” as it allows the file to be opened in any text

17

editor by default, but any name is permissible so that the output can match the user’s desired

preference.

In the case of the output file the program does not take into account the possibility of a

pre-existing duplicate file in the working directory. This means that if the user inserts the name

of a file that already exists in the directory, that file will be overwritten when the new output file is

created.

Statistics and Prints

In the console version of the software, after the output file has been written, the software

runs some minor statistical data for the user (Figure 3). The total RSIDs were counted from the

full DNA sample as the software ran. The number of matching RSIDs between the full DNA and

the Degraded DNA were also counted. This allows the program to determine a percent of

matching RSIDs to the full source file, information that might be of immediate interest to

someone running the CDDA program.

Figure 3. The printed statistics at the end of a completed CDDA run.

Rounding

Often when calculating a percentage the math leaves one with a long decimal number

that is precise, but also difficult to read. The rounding method in this code is used to

appropriately round a percentage to a given decimal place to give the user an easier to digest

number to work with. This work is handled by Java’s built-in math module, particularly the

BigDecimal and RoundingMode classes.

18

Graphical User Interface (GUI)

Figure 4. The graphical user interface for CDDA.

The GUI for CDDA consists of a list of visual components, a list of ActionListeners, and a

storage component for static variables. CDDA’s graphical interface is built using the Swing

library for Java. Swing is a graphical library that contains prebuilt tools for creating visual

elements that allows a programmer to build an easy and accessible frontend for their software.

The visual components used in CDDA consist of a popup window made from JPanel that

contains three JButtons, three JLabels, and a JFormatedTextField (Figure 4). The buttons are

interactable objects that the user can press, two of which open JFileChooser, a Swing element

that allows a user to browse their computer file system for a file (as in this case) or a file

directory. The third JButton runs the software’s primary function, which is the production of a

simulated degraded DNA sample. Two of the JLabels are used to identify the file selected by

the user so that they can verify they have selected the appropriate file. The other JLabel informs

the user that they can insert their desired output file name in the JFormatedTextField that is

directly adjacent to the label.

 The functions for the GUI elements are controlled by a set of ActionListeners, which are

19

functions that “listen” for the input of the user, and do something based upon that input. In this

case, the two JButtons that let the user select files are triggered when pressed, and those

functions activate JFileChooser.

 ActionListeners are non-static objects in Java. As such, to store information gathered

inside of them in such a way that we can use it outside of the listeners, we must create a static

instance of our input files that the ActionListeners can modify. The DNAWork method in the GUI

code does this. The static variables within the method can be accessed and modified by directly

calling DNAWork, so we can use the files stored there inside of any ActionListener.

The ActionListener attached to the “Run” button has been set to gather the full DNA file, the

degraded DNA file, and the output filename so that it can send this information to our main

simulation processing method.

Building For Windows

In order to create a version of the software that can be run natively in Windows, the

installation of the WiX toolset (Mensching, 2021) is necessary. WiX makes building an

executable Windows file from Java source code more efficient and can be set to allow

integrated development environments (IDEs) to build new versions of the executable file with

every new build of the software. This allows for quick revisions and testing of the code on

multiple systems.

20

Building for Command Line

Figure 5. CDDA run using PowerShell.

Running CDDA using a GUI is not needed as it can also be run from the command line

or with Windows PowerShell (Figure 5). The Main.java file can be used to run the code from any

directory and is especially useful in cases where storage may be an issue, or where the user

might be working from a Unix based operating system such as Linux or Apple’s OSX. In these

cases, as long as the system has a version of the Java SDK that is 16 or higher, a runnable

class file can be compiled from the source Main.java file. The exact method of doing this will

vary by operating system, but usually only takes a single command from the system’s console.

Results

Speed

Three different computers ran the Comparative DNA Degradation Automation (CDDA)

program, a desktop and two laptops. Each computer had different specifications (Supplemental

data). All three machines ran the program with the looping method and the final hashmap

version.

21

Table 2. Average time taken for CDDA to complete a run in seconds.

Computer Loop Method (s) Hashmap Method (s)

Desktop 47566.447 0.236

Lenovo Thinkpad 47128.510 0.394

Surface Pro 44849.298 1.086

The first version of CDDA that ran with a for-loop method took over 40,000 milliseconds

on average on each of the three computers which came to 12 to 13 hours of run time per

simulation (Table 1).

The second version of the program used matching key values in Java hashmaps which

reduced the run time significantly. Of the three machines used, only one machine had a run time

longer than one second. On the Surface Pro computer the first two runs took about one second

each. The program was run 5 more times and those remaining runs were similar in time to the

other two machines. Removing the two outlying large times, the Surface Pro average run time

with the hashmap method was 388.25 milliseconds (Supplemental data).

Accuracy

The output file generated by CDDA was compared with the ExpectedResults file

supplied by Identifinders. The results matched in that all the RSID that were in both files were in

the output file. The order of the matches do not descend in the same order as the

ExpectedResults file due to the hashmap sort method. The output line order is consistent with

each run and the file can be saved as a .csv or imported into a spreadsheet program and then

sorted to the preference of the user.

22

Discussion

Efficiency

Manually comparing two files with between 600,000 and 1,000,000 lines of data and

then preparing a file of the matches can be time consuming. The first version of the program

that ran for around half a day would still be more efficient, but the second version of CDDA

using hashmaps is significantly faster in comparison. With the first version taking a long time to

compute, it left the program vulnerable to occurrences that would have stopped the program

such as the computer restarting or a power outage, which would lose a large amount of work

done. With CDDA’s faster method the program was completed almost instantly and frees up a

lot of time that would be used manually comparing files that can now be used on other aspects

of their projects. As seen in the test runs, the speed at which the program completes can vary

from run to run and by the computer specifications.

Working on projects with DNA degradation or a case at Identifinders can have users with

varying technical skills running CDDA. To ensure the program was approachable no matter the

technical background, a GUI was created. The program can be run by command line as well to

fit into a pipeline as needed. To help with the approachability, the program can also be run as

an executable file. CDDA does not need a formal install and registry access and instead can be

used from the directory it was placed in.

Currently CDDA overwrites output files without asking the user if that is their intent. That

is something that could be addressed in a future build. There are a few different methods for

handling this problem. Checking to see if the file exists and rejecting the file name if it does is

the most obvious method for dealing with this situation. Another way to handle this would be to

automatically rename the file when the software determines a file with that name already exists.

Appending a number to the end of the file name would work, though the file would then have to

23

be checked again and another number would need to be appended in the event of a further

duplicate. Another solution would be to read the system time and date from the computer and

add that to the output name given by the user, allowing a timestamp to track when the program

had completed.

The outputs of CDDA had all the data that should be in the final output via the

ExpectedResults file. Multiple runs of the provided DNA profile dataset have shown consistent

output. Though all the data is contained in the output file, the order the data is output in the file

differs from the ExpectedResults file. Further modifications to the program could adjust the final

output to sort the RSID values the same way the ExpectedResults file was formatted. Opening

the file in a spreadsheet program can adjust the way the results are sorted and the RSID values

can be changed to ascend or descend in the order the user wishes.

Compiling and Privileges

Currently there are three versions of the software. For Windows users there is a

compiled executable file that can be copied into an empty directory and run from anywhere. This

version has a GUI. For Linux and Mac users there is a version of the file with a .java extension

that can be compiled and run from the system console. This version is the command prompt

only version of the software with no GUI. The third version is the IDE version of the software

where the source code can be run in a user’s IDE.

To create the Windows version of the software WiX was employed. WiX is a toolset

designed with porting Java applications to a Windows system executable as the primary focus.

The software was installed on the working machine, and then a “platform specific package”

version of the program for Windows was selected as an additional output when building CDDA

from an IDE. WiX creates an installable executable version of the software that can be added or

removed using the built-in Windows installation wizard. Once installed, CDDA can be moved

24

and used from any directory, but it defaults to installing in C:/Program Files/DNA Gui/ on a

Windows system.

To run the software from this install directory it is imperative that the user right-click the

file and select “Run as Administrator” because “Program Files” is a protected folder and if CDDA

is run without administrative privileges it will not have the file system access rights it needs to

create the output file. Moving the program to an unprotected folder anywhere else on the user’s

computer will allow the software to be run without administrative privileges.

Future Work

Batches

Working on large batches of files to improve efficiency would be a priority going forward

with the software. The ability to set the software to run on a list of many jobs will allow for users

to move on to other tasks while CDDA takes care of what was once time consuming work. To

achieve this there are some modifications necessary to the current code that could be done in

future work, though many of the current program’s methods can currently be adapted to running

batches without needing to be changed in any way. Instead of taking two files as input, it would

be most efficient to take in two directories. One of the directories would store the Full DNA

sources, and the other would store the Degraded DNA sources, with files named in such a way

that they would be directly associated. For example, the files in the Full DNA source folder might

look like this: Case01Full.txt, Case02Full.txt, Case03Full.txt. The Degraded DNA sources would

then look like this: Case01Degraded.txt, Case02Degraded.txt, Case03Degraded.txt. This will

allow the software to easily pair up the appropriate files by the file names as it runs through the

directories.

25

The output files could be automatically named so that the user does not have to input a

name for each out from the individual pair of files. With automation the file name could be either

a combination of the source file names, or a date and time stamp appended to a file format, or

some combination of these two. It would be a high priority in batch work to ensure the user

could easily match the input pairs to the output file.

One advantage to reading files in from a directory is that the program would not need to

verify each file exists before moving on. Scanning the directory and cycling through the files it

contains eliminates that need but it also introduces new complications. Instead of verifying a file

exists, we now need to check that the file contains the proper information and format, and

CDDA will need to make sure each file matched up with the appropriate file from the other

folder. For instance, Case01Full needs to be paired to Case01Degraded or the results would be

incorrect and the program would have to be run again. In the event that there are files in the

folder that are not part of the batch that needs to be run, then those files will need to be ignored

through the use of data verification with parsing.

 Parsing provides an opportune time to scan the contents of a file to see if it contains the

necessary data for CDDA to process the simulation. In its current version CDDA assumes that

you are selecting valid data files for it to parse, but for the purpose of running batches of jobs it

would be appropriate to create a parsing process that looks for exactly what CDDA needs to

work, and rejects files that don’t contain that data. For example, if the parser isn’t locating RSID

values, then it should reject that file and tell the software to move on to the next file.

Additionally, if the parser is processing a file called “Case01Full” and then a file called

“Case04Degraded.txt,” it should be programmed to try and compare those file names so it only

processes matches. Part of this future work could include giving the user the ability to control

whether or not it can reuse samples from one folder or another in case there is a reason to run a

group of degraded files versus a single full file, such as “Case01Full” paired with each different

degraded file.

26

The graphical user interface for the current application will need to undergo several

changes before it can be used for batch files. An option to switch between batch mode and

individual jobs could make the process easier than creating two separate versions of the

program. This could be created as either a radial button or a dropdown menu. Activating batch

mode would switch the file loading buttons to directory loading buttons, allowing the user to

choose input folders where their files would be located. Instead of allowing them to name the

output directly, giving the user a dropdown menu with different naming convention options

would be a user-friendly way of automating the output process. A button will be necessary as

well to allow the user to pick the desired output folder, though defaulting it to the root directory

could also be an option.

Automation

Beyond batch jobs, automation of processes could make the handling of raw files faster

and more efficient. For future work, it may be possible to create a version of CDDA that handles

the processing of files with no more direct input necessary from the user. By modifying the

CDDA program so that it stays in system memory and periodically scans certain directories, the

program could automatically work in the background. Scanned files could be read and sorted by

the app before processing and outputting the necessary file into a “finished” folder so they are

not automatically processed repeatedly.

 The program could log the process to a file so that it could be periodically checked or

referenced by the user. Files could be dynamically named based upon the source files and the

date or time of processing, and the finished output could be stored as separate files, a

combined file, or packaged into a storage container like a zip archive for keeping all the files

together. The only input that would be necessary for the user is dropping the files into the

appropriate folders. CDDA could be set up in a way that the user could adjust the file directory

paths as needed.

27

Multithreading

After batch jobs and automation are built into the software, the next upgrade for the

software in the future could be to include multithreaded tasking. If the software was to run

multiple jobs at one time, then it could more efficiently finish the work if it took advantage of the

modern CPU’s ability to create multiple threads of work. Most modern CPUs have at least two

cores, and often those cores are capable of running additional work on their own separately.

Many high end machines can run 16 operations at a time, which could be a substantial

reduction in calculation times.

Currently CDDA can finish a single run in under a second most of the time, but with a

larger workload such as thousands of samples to run through the timing can greatly increase.

Multicore and multithreaded processing allowing more than one file at a time could show a

significant increase in speed versus single core operation.

Building in batch and automation support would be a priority in future work, but threaded

workloads are a logical next step once that has been implemented. Keeping split workloads in

mind as the batch processes are programmed into CDDA will make for an easier transition to

this kind of computing in the future.

Conclusion

In conclusion, Comparative DNA Degradation Automation (CDDA) successfully

automated the process of simulating degraded DNA profiles from a provided full DNA profile.

The completed program processes a pair of DNA profiles in less than a second on average. Use

of the program by groups that work in forensics or genetic genealogy, such as Identifinders, can

free up time to focus on different parts of their projects. The program could also be used in

future research when waiting for a DNA sample to degrade and then sequencing the profile

28

would take too much time. Future work can continue to improve the efficiency of the program

and allow for more data to be processed at once.

29

References

23andMe. 23andMe - Genetics 101: What Are SNPs?

https://www.23andme.com/gen101/snps/. Accessed 7 Aug. 2021.

Arnaud, Celia. “Thirty Years of DNA Forensics: How DNA Has Revolutionized Criminal

Investigations.” Chemical & Engineering News, 2017. cen.acs.org,

https://cen.acs.org/articles/95/i37/Thirty-years-DNA-forensics-DNA.html.

Augenstein, Seth. “‘Buck Skin Girl’ Case Break Is Success of New DNA Doe Project.”

Foresnic Magazine, 12 May 2018,

https://web.archive.org/web/20180512010806/https://www.forensicmag.com/news/201

8/04/buck-skin-girl-case-break-success-new-dna-doe-project.

Calandro, Lisa, et al. “Evolution of DNA Evidence for Crime Solving - A Judicial and

Legislative History.” Foresnic Magazine, 6 Jan. 2005,

https://web.archive.org/web/20170502224346/https://www.forensicmag.com/article/200

5/01/evolution-dna-evidence-crime-solving-judicial-and-legislative-history.

Cobain, Ian. “Killer Breakthrough – the Day DNA Evidence First Nailed a Murderer.” The

Guardian, 7 June 2016, http://www.theguardian.com/uk-news/2016/jun/07/killer-dna-

evidence-genetic-profiling-criminal-investigation.

D.C. Cir., 293 F. 1013. Frye v. United States, 293 F. 1013. 1923,

https://casetext.com/case/frye-v-united-states-7.

DNA Doe Project. “Buckskin Girl Press Release.” DNA Doe Project Cases, 11 Apr. 2018,

https://dnadoeproject.org/press-release-for-buckskin-girl/.

Durrant, George. Genealogical Society of Utah - The Encyclopedia of Mormonism. 18 May

2010, https://eom.byu.edu/index.php/Genealogical_Society_of_Utah.

Edwards, Don. H.R.829 - 103rd Congress (1993-1994): DNA Identification Act of 1993. 30

Mar. 1993, https://www.congress.gov/bill/103rd-congress/house-bill/829. 1993/1994.

https://www.23andme.com/gen101/snps/
https://www.23andme.com/gen101/snps/
https://www.23andme.com/gen101/snps/
https://cen.acs.org/articles/95/i37/Thirty-years-DNA-forensics-DNA.html
https://cen.acs.org/articles/95/i37/Thirty-years-DNA-forensics-DNA.html
https://cen.acs.org/articles/95/i37/Thirty-years-DNA-forensics-DNA.html
https://web.archive.org/web/20180512010806/https:/www.forensicmag.com/news/2018/04/buck-skin-girl-case-break-success-new-dna-doe-project
https://web.archive.org/web/20180512010806/https:/www.forensicmag.com/news/2018/04/buck-skin-girl-case-break-success-new-dna-doe-project
https://web.archive.org/web/20180512010806/https:/www.forensicmag.com/news/2018/04/buck-skin-girl-case-break-success-new-dna-doe-project
https://web.archive.org/web/20180512010806/https:/www.forensicmag.com/news/2018/04/buck-skin-girl-case-break-success-new-dna-doe-project
https://web.archive.org/web/20170502224346/https:/www.forensicmag.com/article/2005/01/evolution-dna-evidence-crime-solving-judicial-and-legislative-history
https://web.archive.org/web/20170502224346/https:/www.forensicmag.com/article/2005/01/evolution-dna-evidence-crime-solving-judicial-and-legislative-history
https://web.archive.org/web/20170502224346/https:/www.forensicmag.com/article/2005/01/evolution-dna-evidence-crime-solving-judicial-and-legislative-history
https://web.archive.org/web/20170502224346/https:/www.forensicmag.com/article/2005/01/evolution-dna-evidence-crime-solving-judicial-and-legislative-history
http://www.theguardian.com/uk-news/2016/jun/07/killer-dna-evidence-genetic-profiling-criminal-investigation
http://www.theguardian.com/uk-news/2016/jun/07/killer-dna-evidence-genetic-profiling-criminal-investigation
http://www.theguardian.com/uk-news/2016/jun/07/killer-dna-evidence-genetic-profiling-criminal-investigation
https://casetext.com/case/frye-v-united-states-7
https://casetext.com/case/frye-v-united-states-7
https://casetext.com/case/frye-v-united-states-7
https://dnadoeproject.org/press-release-for-buckskin-girl/
https://dnadoeproject.org/press-release-for-buckskin-girl/
https://dnadoeproject.org/press-release-for-buckskin-girl/
https://eom.byu.edu/index.php/Genealogical_Society_of_Utah
https://eom.byu.edu/index.php/Genealogical_Society_of_Utah
https://www.congress.gov/bill/103rd-congress/house-bill/829
https://www.congress.gov/bill/103rd-congress/house-bill/829

30

FamilySearch. Privacy Policy — FamilySearch.Org. 6 Apr. 2021,

https://www.familysearch.org/legal/privacy.

F.B.I. “CODIS - NDIS Statistics.” Federal Bureau of Investigation,

https://www.fbi.gov/services/laboratory/biometric-analysis/codis/ndis-statistics.

Accessed 1 Aug. 2021.

Genomeweb. “Forensic Genomics Firm Verogen Acquires Genealogy Website GEDmatch.”

GenomeWeb, 2019, https://www.genomeweb.com/sequencing/forensic-genomics-firm-

verogen-acquires-genealogy-website-gedmatch.

Gray, Ian C., et al. “Single Nucleotide Polymorphisms as Tools in Human Genetics.”

Human Molecular Genetics, vol. 9, no. 16, Oct. 2000, pp. 2403–08. Silverchair,

https://doi.org/10.1093/hmg/9.16.2403.

Hares, Douglas R. “Selection and Implementation of Expanded CODIS Core Loci in the

United States.” Forensic Science International: Genetics, vol. 17, July 2015, pp. 33–34.

DOI.org (Crossref), https://doi.org/10.1016/j.fsigen.2015.03.006.

Identifinders. IdentiFinders - Case Histories. http://www.identifinders.com/histories.html.

Accessed 15 Apr. 2021.

Janzen, Tim. “Autosomal DNA Testing Comparison Chart - ISOGG Wiki.” International

Society of Genetic Genealogy, 22 June 2021,

https://isogg.org/wiki/Autosomal_DNA_testing_comparison_chart.

Jeffreys, Alec J., Maxine J. Allen, et al. “Identification of the Skeletal Remains of Josef

Mengele by DNA Analysis.” Forensic Science International, vol. 56, no. 1, Sept. 1992,

pp. 65–76. DOI.org (Crossref), https://doi.org/10.1016/0379-0738(92)90148-P.

Jeffreys, Alec J., John F. Y. Brookfield, et al. “Positive Identification of an Immigration Test-

Case Using Human DNA Fingerprints.” Nature, vol. 317, no. 6040, Oct. 1985, pp. 818–

19. DOI.org (Crossref), https://doi.org/10.1038/317818a0.

https://www.familysearch.org/legal/privacy
https://www.familysearch.org/legal/privacy
https://www.familysearch.org/legal/privacy
https://www.fbi.gov/services/laboratory/biometric-analysis/codis/ndis-statistics
https://www.fbi.gov/services/laboratory/biometric-analysis/codis/ndis-statistics
https://www.fbi.gov/services/laboratory/biometric-analysis/codis/ndis-statistics
https://www.genomeweb.com/sequencing/forensic-genomics-firm-verogen-acquires-genealogy-website-gedmatch
https://www.genomeweb.com/sequencing/forensic-genomics-firm-verogen-acquires-genealogy-website-gedmatch
https://www.genomeweb.com/sequencing/forensic-genomics-firm-verogen-acquires-genealogy-website-gedmatch
https://doi.org/10.1093/hmg/9.16.2403
https://doi.org/10.1093/hmg/9.16.2403
https://doi.org/10.1093/hmg/9.16.2403
https://doi.org/10.1016/j.fsigen.2015.03.006
https://doi.org/10.1016/j.fsigen.2015.03.006
http://www.identifinders.com/histories.html
http://www.identifinders.com/histories.html
https://isogg.org/wiki/Autosomal_DNA_testing_comparison_chart
https://isogg.org/wiki/Autosomal_DNA_testing_comparison_chart
https://isogg.org/wiki/Autosomal_DNA_testing_comparison_chart
https://doi.org/10.1016/0379-0738(92)90148-P
https://doi.org/10.1016/0379-0738(92)90148-P
https://doi.org/10.1038/317818a0
https://doi.org/10.1038/317818a0

31

Martin, Eric, et al. “Serial Killer Connections Through Cold Cases.” National Institute of

Justice, 15 June 2020, https://nij.ojp.gov/topics/articles/serial-killer-connections-

through-cold-cases.

Molla, Rani. “Why DNA Tests Are Suddenly Unpopular.” Vox, 13 Feb. 2020,

https://www.vox.com/recode/2020/2/13/21129177/consumer-dna-tests-23andme-

ancestry-sales-decline.

New York Times. Rapist Convicted on DNA Match - NYTimes.Com. 6 Feb. 1988,

https://web.archive.org/web/20171106131127/https://www.nytimes.com/1988/02/06/us/

rapist-convicted-on-dna-match.html.

NIH MedlinePlus. What Are Single Nucleotide Polymorphisms (SNPs)?: MedlinePlus

Genetics. https://medlineplus.gov/genetics/understanding/genomicresearch/snp/.

Accessed 7 Aug. 2021.

Taylor, Michelle. “Verogen CEO: ‘GEDmatch Will Be Improved, Not Changed.’”

Forensicmag, 2019, http://www.forensicmag.com/559058-Verogen-CEO-GEDmatch-

Will-Be-Improved-Not-Changed/.

Xiao, Shijun, et al. “Whole-Genome Single-Nucleotide Polymorphism (SNP) Marker

Discovery and Association Analysis with the Eicosapentaenoic Acid (EPA) and

Docosahexaenoic Acid (DHA) Content in Larimichthys Crocea.” PeerJ, vol. 4, Dec.

2016, p. e2664. PubMed Central, https://doi.org/10.7717/peerj.2664.

Zagorski, Nick. “Profile of Alec J. Jeffreys.” Proceedings of the National Academy of

Sciences of the United States of America, vol. 103, no. 24, June 2006, pp. 8918–20.

PubMed Central, https://doi.org/10.1073/pnas.0603953103.

https://nij.ojp.gov/topics/articles/serial-killer-connections-through-cold-cases
https://nij.ojp.gov/topics/articles/serial-killer-connections-through-cold-cases
https://nij.ojp.gov/topics/articles/serial-killer-connections-through-cold-cases
https://www.vox.com/recode/2020/2/13/21129177/consumer-dna-tests-23andme-ancestry-sales-decline
https://www.vox.com/recode/2020/2/13/21129177/consumer-dna-tests-23andme-ancestry-sales-decline
https://www.vox.com/recode/2020/2/13/21129177/consumer-dna-tests-23andme-ancestry-sales-decline
https://www.vox.com/recode/2020/2/13/21129177/consumer-dna-tests-23andme-ancestry-sales-decline
https://web.archive.org/web/20171106131127/https:/www.nytimes.com/1988/02/06/us/rapist-convicted-on-dna-match.html
https://web.archive.org/web/20171106131127/https:/www.nytimes.com/1988/02/06/us/rapist-convicted-on-dna-match.html
https://web.archive.org/web/20171106131127/https:/www.nytimes.com/1988/02/06/us/rapist-convicted-on-dna-match.html
https://web.archive.org/web/20171106131127/https:/www.nytimes.com/1988/02/06/us/rapist-convicted-on-dna-match.html
https://medlineplus.gov/genetics/understanding/genomicresearch/snp/
https://medlineplus.gov/genetics/understanding/genomicresearch/snp/
http://www.forensicmag.com/559058-Verogen-CEO-GEDmatch-Will-Be-Improved-Not-Changed/
http://www.forensicmag.com/559058-Verogen-CEO-GEDmatch-Will-Be-Improved-Not-Changed/
http://www.forensicmag.com/559058-Verogen-CEO-GEDmatch-Will-Be-Improved-Not-Changed/
https://doi.org/10.7717/peerj.2664
https://doi.org/10.7717/peerj.2664
https://doi.org/10.1073/pnas.0603953103
https://doi.org/10.1073/pnas.0603953103

32

Supplementary Data

Testing Computer Specifications

Supplementary Table 1. Desktop computer specifications

Processor AMD Ryzen 5 3600 6-Core Processor 3.60 GHz

Ram 16.0 GB

System Type 64-bit operating system, x64-based processor

Supplementary Table 2. Lenovo Thinkpad computer specifications

Processor Intel(R) Core(TM) i7-5600U CPU @ 2.60GHz 2.59 GHz

Ram 8.0 GB

System Type 64-bit operating system, x64-based processor

Supplementary Table 3. Surface Pro 4 computer specifications

Processor Intel(R) Core(TM) i5-6300U CPU @ 2.40GHz 2.50 GHz

Ram 4.0 GB

System Type 64-bit operating system, x64-based processor

Program Run Times

For-loop method

Supplementary Table 4. Run time for the for-loop version of the program in milliseconds

 Desktop Lenovo Surface

Run 1 47566447 47128510 44849298

33

Run 2 47566447 --- 48353074

The Lenovo was not available for a second run of the program.

Hashmap Method

Supplementary Table 5. Run times for the hashmap version of the program in milliseconds

 Desktop Lenovo Surface

Run 1 255 254 3348

Run 2 249 363 4409

Run 3 252 685 282

Run 4 206 466 391

Run 5 245 316 406

Run 6 201 461 251

Run 7 202 436 485

Run 8 258 341 328

Run 9 247 312 531

Run 10 245 309 432

Instructions for Compiling CDDA in Windows

For running this from Windows the commands are as follows:

1. Open a command prompt by either typing “cmd” in the windows search bar and clicking

on the Command Prompt app, or open power shell by using File Explorer to browse to

the directory containing Main.Java and right-clicking while holding down shift. This will

bring up a menu that has the option “Open PowerShell window here.”

2. Make certain the command prompt is in the same directory as your Main.java file. If it is

not, you can use the “cd” command to change directories such as “cd yourDirectory”.

34

3. Type “javac Main.java” and press enter. Wait for compiling to finish. The command line

will move to a new line when it is finished.

4. Type “java Main” and press enter again. This will start the software. Follow the on-

screen prompts from this point.

	Comparative DNA Degradation Automation for Identifinders
	Recommended Citation

	tmp.1629389968.pdf.QT2YS

