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Chapter 1

Introduction

1.1 Introduction

The emergence of Data Science is an entirely new research field; the resurgence of
Neural Networks is through the rise to prominence of deep learning. Deep learning
has regained tremendous popularity in both practical and methodological statistical
machine learning circles in recent years, owing to their remarkable good predictive
performances. Some practitioners have relied on Deep Neural Networks to implic-
itly/indirectly insinuate that Deep Neural Networks might be the holy grail in prac-
tical statistical machine learning. Indeed, in the words of the co-inventors in the
most common incarnation of Deep Neural Networks (LeCun, Bengio, and Hinton,
2015),

Deep learning allows computational models that are composed of multiple pro-
cessing layers to learn representations of data with various levels of abstraction.
These methods have dramatically improved the state-of-the-art in speech recog-
nition, visual object recognition, object detection, and many other domains such
as drug discovery and genomics.

FIGURE 1.1: The comparison of Deep Neural Networks and Human
Brain Cell picture sauce: http://www.mplsvpn.info/

Deep Neural Networks, as a machine learning technique, attempts to mimic the
human brain. Figure 1.1 shows the similarity of Deep Neural Networks and the hu-
man brain. The brain cells, or neurons, provide the primary function of the brain.

http://www.mplsvpn.info/2017/11/what-is-neuron-and-artificial-neuron-in.html
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Neurons have dendrites, which help to deliver signals between neurons. The neural
is surrounded by dendrites, receives all the signs and sum them and forward them
to axons. Axons help to transfer these signals to the subsequent neurons. For Deep
Neural Networks, a neuron is a node with as many inputs and one output. Similar
to brain networks, Neural Network consists of many neurons. It could be described
that receives data at the information and provides a response. The Neural Network
learns to correlate input and output signals in the learning section, and then the
Neural Network begins to work. It receives more new data, and delivers the output
signals based on the accumulated knowledge.

FIGURE 1.2: Example of handwritten digits from Modified National
Institute of Standards and Technology database (MNIST)

Neural Networks have infused tremendous new energy into the statistical ma-
chine learning and artificial intelligence fields. In fact since their inception in the
mid-1980s Deep learning helps with solving a wide variety of significant problems
(Dechter, 1986; Hassoun, 1995; Fukushima, 2004). Neural Networks have enjoyed
sustained tremendous success in a wide variety of machine learning tasks like image
processing, audio processing, medical diagnostics, marketing research, and various
science (Krizhevsky, Sutskever, and Hinton, 2012; LeCun, Bengio, and Hinton, 2015;
Schmidhuber, 2015; Kawahara et al., 2017; Liu et al., 2017; Snyder et al., 2017; Tian
et al., 2018; Alfaro-Almagro et al., 2018). One well-known example is the famous
handwritten digit recognition machine leaning task, [shown in Figure 1.2], which
is called "Modified National Institute of Standards and Technology database" short
as MNIST from United States Postal Service (USPS). It is a dataset of 60,000 small
square 28×28 pixel grayscale images of handwritten single digits between 0 and 9.
The task is to classify a given image of a handwritten digit into one of 10 classes
representing integer values from 0 to 9, inclusively. Deep learning could achieve a
classification accuracy of above 99% on the hold-out test dataset. It has been draw-
ing lots of attention in the machine learning field ever since Deep Neural Network’s
success in this entirely different task.

Deep learning can also be used for unsupervised learning. For example, word
embedding, image encoding into lower or higher dimensions, extensions of PCA



1.2. Thesis Scope 3

like autoencoders and variational autoencoders (Amarbayasgalan, Jargalsaikhan,
and Ryu, 2018 etc). Neural Networks can also be applied to reinforcement learning
and deep reinforcement learning. There is now a prospect of a wide-scale deploy-
ment of DNN in safety-critical applications such as self-driving cars, which will play
an essential role in the years to come. Some small-scale applications already benefit
a lot in our life, such as Apple’s Siri, Amazon’s Echo, and Google’s "hey Google".

1.2 Thesis Scope

Deep learning has indeed become an active research area in the past few years. For
a Deep Neural Network machine, good performance could be expected by utiliz-
ing neurons and adjusting the weights. However, depending on the problems, the
computational stages may require a long time for training the DNN model. Fur-
thermore, when the sample size is not big enough, DNN will have an overfitting
problem. Other machine learning algorithms may be more efficient for this prob-
lem, such as Support Vector Machines (SVM).

The growing number of applications of Deep Neural Networks has caused peo-
ple to go as far as thinking that Deep Neural Networks should be the only machines
among all. DNN is indeed a mighty machine, but does the "no free lunch" not apply
to DNN? Is DNN universally superior to all other learning machines on all possible
data sets?

In this thesis, we explore several fascinating topics:

• What are the similarities and dissimilarities between neural networks and ker-
nel learning machines?

• What is the computational and methodological price Deep Neural Networks
need to pay to achieve what is known as their spectacular superiority in a wide
range of applications?

• Even more crucially, is it the case that Deep Neural Networks outperform Ker-
nel machines across all possible datasets?

Throughout this thesis, we focus solely on supervised learning with equal em-
phasis on classification and regression. Specifically, we consider an input space X
and an output space Y , and we seek to build learning machines

f : X −→ Y (1.1)

that capture the relationship between the elements of X and those of Y . Typically,
a huge part of the statistical machine learning process consists of choosing/selecting
function space or hypothesis space H from which the learning machine f is drawn
i.e. f ∈H , with H ⊂ Y X . Note here that Y X is the universal space of all possible
functions (mappings) from X to Y . Using the nomenclature from Fokoué, 2020, the
learning process proceeds by using random sample

Dn = {(xi, yi)
iid∼ pxy(x, y), xi ∈ X , yi ∈ Y , i = 1, · · · , n}, (1.2)
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along with the suitably chosen function space H to empirically construct estimators
f̂H ,n ∈ H of f . It is important to note that all datasets throughout this thesis will
assumed to be random samples generated/drawn according to the joint probabil-
ity density/mass function pxy(x, y) appearing in (1.2). Now, the process of building
f̂H ,n from Dn via some optimization method or algorithm A (Dn; H , Λ) is the learn-
ing process. In a sense, the actual realized learning machine f̂H ,n is the output of the
algorithm used, so that

f̂H ,n := A (Dn; H , Λ), (1.3)

where Λ at this point generically denotes the collection of all hyperparameters. The
theoretical framework of which A (Dn; H , Λ) is a manifestation, is the so-called the-
oretical risk minimization principle which is based of the definition of the theoretical
risk functional R( f ) representing the population error made by a learning machine
(function) f ∈ Y X . The theoretical risk functional id defined as

R( f ) = E
[
L(Y, f (X))

]
=
∫

X ×Y
L(x, y)pxy(x, y)dxdy, (1.4)

where L(., .) is the loss function. The loss function plays a central role in statistical
machine learning, as it helps with in the evaluation of how well the machine learn-
ing models fits the data. More rigorously, a loss function L(·, ·) is a nonnegative
bivariate function L : Y ×Y −→ R+, such that given a, b ∈ Y , the value of L(a, b)
measures the discrepancy between a and b, or the deviance of a from b, or the loss in-
curred from using b in place of a. For classification learning, the natural loss function
is the so-called zero One Loss defined as follows:

L(y, f (x)) = 1(y 6= f (x)) =
{

0 if y = f (x),
1 if y 6= f (x). (1.5)

For Regression learning, the most commonly used loss function is the so-called
squared error loss, defined as follows.

L(y, f (x)) = (y− f (x))2. (1.6)

Although these two functions are the most commonly used in their respective con-
texts when it comes to evaluating learning machines, many other loss functions exist
and are used for a wide variety of specific machine learning scenarios deemed more
suitable. Given a suitable chosen loss function along with the risk functional de-
fined in (1.4), one ideally wants to find the universal best function f ? ∈ Y X , that
minimizes the risk over all possible functions, i.e.,

f ∗ = arginf
f∈Y X

{
R( f )

}
= arginf

f∈Y X

{
E[L(Y, f (x))]

}
. (1.7)

Partly due to the fact the universal space Y X is infinitely large, and also crucially
to the fact that pxy(x, y) is never known in practice, the ideal universe best f ? of
(1.7) is never known in practice. Instead, a slightly less intangible way to compare
functions (learning machines) is to define the risk function within the function class
H , namely

RH ( f ) = E
[
L(Y, f (X))| f ∈H

]
=
∫

X ×Y
L(x, y)pxy(x, y)dxdy, (1.8)
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and seek f ?H ∈H such that

f ?H = arginf
f∈H

{
RH ( f )

}
. (1.9)

Note that f ?H ∈H is not as universal as f ? ∈ Y X because the former is restricted to
the function space H while the latter has no restriction, being universal. Through-
out this thesis, (1.9) will play a central role, because we will consider different func-
tion spaces, and it will be of interest to find out which one performs better. For
clarity, given two function spaces H1 and H2, we would prefer H1 over H2 is the
realized best function from H1 has smaller theoretical risk than the realized best
function from H2. In other words,

If R?
H1

< R?
H2

choose H1, (1.10)

where R?
H1

= RH1( f ?H1
) and R?

H2
= RH1( f ?H2

).
Specifically in this thesis we are interested in two function spaces, namely the function

space HDNN of deep neural networks and the function space HKLM of kernel learning machines.
As stated earlier, our overarching goal in this thesis is find out if

R?
HDNN

< R?
HKLM

. (1.11)

It turns out that checking the inequality in (1.11) as it is constitutes a gigantic the-
oretical task far beyond the scope of this thesis, partly due to the fact that the theo-
retical manipulations involved are either not even known yet or are very complex.
Rather than seeking to compare the true risks for each of the function spaces, the
thesis adopts adopt the comparison of various statistics around the test error com-
puted from the given data Dn. Recall that RH ( f ) for a function space H is the
generalization error or true error of f in space H . Stochastic Hold Out is widely
used for estimating the generalization error of statistical machine learning models
as discussed in Fokoué, 2020. As depicted in Algorithm (1), the given dataset Dn is
randomly split into a training and test repeated, and summaries of the replicas of
the test error are used as estimates of the generalization error.

Algorithm 1: Stochastic Hold Out for Generalization

for s = 1 to S do
Generate the sth random split of Dn into D

(s)
tr and D

(s)
te , such that and

|D (s)
te | = (1− τ)|Dn|

and Dn = D
(s)
tr ∪D

(s)
te , and n = |Dn| = |D (s)

tr |+ |D
(s)
te |

for m = 1 to M do

Build and refine the mth learning machine f̂ (D
(s)
tr )

m (·) using D
(s)
tr

Compute predictions f̂ (D
(s)
tr )

m (xi) for zi ∈ D
(s)
te

Compute the test error for the mth learning machine

ε̂sm = R̂te( f̂ (s)m ) =
1

|D (s)
te |

n

∑
i=1

1(zi ∈ D
(s)
te )L(yi, f̂ (D

(s)
tr )

m (xi))

Essentially then, given a dataset Dn and a collection of potential function spaces
H1, H2, · · · , HM, we set a number S of replications (splits), along with a proportion
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τ ∈ (0, 1/2) of the data Dn to be allocated to the test set at each split. Upon splitting
S times using D

(s)
n = D

(s)
tr ∪ D

(s)
te , we create for each dataset Dn, the matrix E of

realizations of the test error as seen in (1.12).

E =



ε11 ε12 · · · ε1m · · · ε1M
ε21 ε22 · · · ε2m · · · ε2M
...

...
...

...
...

...
εs1 εs2 · · · εsm · · · εsM
...

...
...

...
...

...
εS1 εS2 · · · εSm · · · εSM


(1.12)

For further clarity, it is important to see for the matrix E, that

εsm = R̂te( f̂ (s)m ) = te( f̂ (D
(s)
tr )

m )

= Error of f̂ (D
(s)
tr )

m (·) on D
(s)
te . (1.13)

where

R̂te( f ) =
1
|Dte|

n

∑
j=1
L(yj, f (xj))1(zj ∈ Dte), (1.14)

and crucially, f̂ (D
(s)
tr )

m is the best learning machine from function space Hm, learned
using the sth training split D

(s)
tr along with refinement and model selection via V-

fold cross validation.

f̂ (D
(s)
tr )

m := argmin
f̂∈Hm

{
CV( f̂ ; D (s)

tr )
}

(1.15)

It is worth repeating here that εsm which the realized test error of the mth learning
machine on the sth replicate (split) of the data Dn, is the most important ingredient
for our overarching goal. In order to perform as thorough and complete a compari-
son of the estimated generalization errors as possible, we consider several statistical
summarises of the values of εsm, s = 1, · · · , S, m = 1, · · · , M. As will be seen in
Chapter 5, we will consider for each data set, an empirical counterpart of the theo-
retical generalization errors defined in Equation (1.10), namely, we will define

score(Hm|Dn) := R̂?
Hm

:= Empirical counterpart of R?
Hm

given Dn. (1.16)

For regression learning tasks, we end up considering the following scores. Since
we do consider several different datasets in the spirit of testing the so-called no free
lunch theorem (NFLT), it makes sense to reveal the dataset in the expression of εsm,
maybe by writing ε

(Dn)
sm .

1. Average Test Error Criterion

score(Hm|Dn) :=
1
S

S

∑
s=1

ε
(Dn)
sm . (1.17)

2. Median Test Error Criterion

score(Hm|Dn) := median
s=1,··· ,S

{ε(Dn)
sm }. (1.18)
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3. Maximum Test Error Criterion

score(Hm|Dn) := max
s=1,··· ,S

{ε(Dn)
sm }. (1.19)

4. Minimum Test Error Criterion

score(Hm|Dn) := min
s=1,··· ,S

{ε(Dn)
sm }. (1.20)

For any given data set, we will above scores as our criteria, and we will declare as winner
the Hm with the smallest score(Hm|Dn).

For classification learning tasks, we will use the same criteria as in regression
learning, but this the test accuracy will replace of the test error, namely

π
(Dn)
sm := 1− ε

(Dn)
sm .

Of course, this time, the winner will the Hm with the highest score.
Equipped with all the above scores and criteria, this thesis ultimately performs

an empirical comparison of the generalization performances of kernel learning ma-
chines against Deep Neural Networks. We use a wide variety of datasets differing
in size, shape, and data types, with the finality of finding out if there is any evidence
that Deep Neural Networks are predictively better across all datasets are claimed by
some practitioners. For thoroughness and completeness, we include both simulated
data and real-world data; we also consider datasets covering lots of different areas,
such as the medical sector, the economy, the transportation sector, etc. This thesis
does not to delve deep into the methodological and technical subtleties and details
of Deep Neural Networks and the corresponding estimation and prediction mecha-
nisms of deep learning, yet we believe that the thorough empirical comparisons of
the predictive performances of the machines do provide useful insights into their
respective strengths and weaknesses, which we deem of paramount importance to
practitioners.

1.3 Organization

The rest of this thesis is organized as follows: Chapter 2 provides a standard de-
scription of the architecture of Deep Neural Networks along with some elements of
their fundamental characteristics. Chapter 3 touches on the general description of
the kernel machines explored in this paper, focusing on Gaussian process-inspired
learning machines and support vector machines. Chapter 4 features some theoreti-
cal results and relationships mentioned earlier between Deep Neural Networks and
kernel machines. Chapter 5 gives a detailed description of the experimental setup
of our extensive computational comparison, focusing on the effect of the ratio of
the sample size to the dimensionality of the input space, on the one hand, and the
sheer diversity of entire data sets on the other. It clearly shows the metrics used in
our comparisons of predictive performances. This chapter also presents the detailed
computations with the actual comparisons of predictive performances and all the
relevant corresponding comments. Chapter 6 presents our discussion and conclu-
sion and the points we intend to explore in our future work on this fascinating and
fast-developing theme.
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Chapter 2

Neural Networks Learning
Machines

A Deep Neural Network (DNN) is an artificial neural network with multiple layers
between the input and output layers. It is a highly parameterized machine inspired
by the architecture of the human brain. Despite the existence of different kinds of
neural networks, they all always have in common the same components, namely:
neurons, weights, and activation functions. As we indicated right from the begin-
ning, the neural network learning paradigm has had so many practical and impact-
ful applications in real life that it makes sense for us to provide a refresher of their
fundamental building blocks. This chapter aims to provide a standard description
of the architecture of neural networks and deep neural networks in particular, with
a focus of some of their essential elements. We will not cover the actual learning pro-
cess used in the mechanics of deep learning because our ultimate treatment in this
thesis computational rather than methodological. Our description in this chapter
is aimed at highlighting those aspects of Deep Neural Networks that most directly
impact the crux of generalization that constitutes the goal of this thesis.

2.1 Functions Space for Deep Neural Networks

As we said before in Chapter 1, supervised learning typically requires the specifica-
tion of function space H assumed by the researcher/experimenter as the set from
which the best fit from the data is drawn. The overarching goal of this thesis is ul-
timately a comparison of the generalization performances of deep neural networks
against those of kernel learning machines.

2.1.1 Definition of the Function Space Hdnn

According to the comparison criterion defined in Chapter 1, namely (1.10), we really
need to define the function space that characterizes Deep Neural Networks (DNN).
Using the input space X and the output space Y , the function space that character-
izes a generic DNN is given by (2.1) below:

Hdnn :=
{

x 7→ ψ(W (L+1)ψ(W (L)ψ(· · ·W (2)ψ(W (1)x+w(1)
0 )+w(2)

0 ) · · · )+w(L+1)
0 )

}
,

(2.1)
where ψ(·) is the so-called activation function, herein applied vector-wise on the out-
put from the previous layer. These activation functions, especially the ones appear-
ing in the hidden layers, are intended to help capture nonlinearities. The activation
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vector a(`) = (1, a(`)1 , a(`)2 , · · · , a(`)m , · · · , a(`)d`
)> in the `th layer allows the component-

wise transformation

z(`)m = w(`−1)
m,0 +

d`−1

∑
c=1

wm,c
(`−1)a(`−1)

c , (2.2)

which is simply written in vector form as

z(`) = W (`−1)a(`−1) where a(`)m = h(`)(z(`)m ). (2.3)

More succinctly, h(`)(z(`)) = ψ(W (`)z(`) + w(`)
0 ); These latent quantities play in cen-

tral role in the neural networks learning paradigm.

2.1.2 Activation Functions

The Activation Function is a critical part of Deep Neural Networks. It defines how
the inputs weighted sum is transformed into an output from a node or nodes in a
layer of the network. According to the type of prediction problems, one could care-
fully choose a suitable activation function.Numerous activation functions already
exist. One of the newer activation functions called the ReLU is defined by:(Nair and
Hinton, 2010)

ψ(u) = max(0, u) = (u)+

It is one of the prevalent activation functions being used for the hidden layers. It
is simple but very efficient when compared to its peer activation functions (Figure
2.1a). One advantages of ReLu is that its less susceptible to vanish gradients which
prevent Deep Neural Network models from being trained. However, it does have
some problems such as "dead" units. As stated earlier, there are many kinds of acti-
vation functions, here are a few examples:

(A) ReLu (B) Sigmoid

FIGURE 2.1: Activation function

• The logistic sigmoid:

ψ(u) =
1

1 + e−u

which is one of the most commonly used activation function(Figure 2.1b);
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• The softmax:

ψ(u) = softmax(u) =
eug

∑G
j=1 euj

which adapted for multi-categorical tasks to softmax;

• Radial basis activation function:

ψ(u) = exp
(
−τu2)

• Linear activation function:

ψ(u) = α + uT β

The other aspect of neural network of paramount importance is the parameter
space as seen in the subsequent sections of this thesis.

2.2 Parameter space for Deep Neural Networks

It turns out that one of the most challenging bottlenecks with deep neural networks
stems from the sheer large numbers of weights to be learned/estimated. In fact, in
(2.1), the collection θ := {W (`) : ` = 1, · · · , L + 1} of all the weight matrices , forms
the set of parameters for the corresponding DNN model.

W (`) =



w(`)
1,0 w(`)

1,1 w(`)
1,2 · · · w(`)

1,c · · · w(`)
1,d`−1

w(`)
2,0 w(`)

2,1 w(`)
2,2 · · · w(`)

2,c · · · w(`)
2,d`−1

...
...

... · · · . . . · · ·
...

w(`)
m,0 w(`)

m,1 w(`)
m,2 · · · w(`)

m,c · · · w(`)
m,d`−1

...
...

... · · · . . . · · ·
...

w(`)
d`,0

w(`)
d`,1

w(`)
d`,2

· · · w(`)
d`,c

· · · w(`)
d`,d`−1


. (2.4)

Figure 2.2 shows a typical structure of a deep neural networks machine. There
are three layers: the input layer, hidden layers, and the output layer. However, there
could be more layers within the hidden layer and each hidden layer can also contain
many neurons.

2.2.1 Complexity of Deep Neural Networks

One of the most immediate remarks about Deep Neural Networks has do with
their complexity or more simply put their size or number of parameters needed
to be estimated from the data. Clearly, given that each weight matrix W (`) is po-
tentially quite large even for modest tasks, it is often the case that θ has a typi-
cally very large number of entries entries even for very moderate values of L since
each W (`) is itself already a large d` × (d`−1 + 1) matrix. If dim(X ) = q, and
dim(Y ) = r, and dim(Z`) = d`, then for a DNN with L hidden layers, θ will
have p = q + r + ∑L

`=1 d` × (d` + 1) entries, at least a priori. Now, given a data

set Dn = {(xi, yi)
iid∼ pxy(x, y), xi ∈ X , yi ∈ Y , i = 1, · · · , n}, the only hope of



2.3. Deep Learning: Training Neural Networks 11

FIGURE 2.2: Pictorial Representation of a generic Deep Neural Net-
work. This example shows a DNN with an input layer, 4 hidden lay-

ers, and an output layer.

learning a unique DNN rests on having n > p, ie more observations that parameters
needed to be estimated. It is crucial to note that for many tasks of great interest to
practitioners, one will typically have situations were n ≪ p, putting a dent on the
potential for DNN to be the right method for such tasks.

The number of Hidden Layers and Neurons determines the size of the Neural
Networks (NN) model. For instance, the number of nodes determines the param-
eters for a single hidden layer Neural Networks machine. The number of nodes is
also treated as a parameter. Because overfitting is one of the problems while building
an NN machine, we need to wisely control the number of nodes. The number of lay-
ers is another parameter that, along with the number of neurons in each layer, will
control the complexity of a NN machine. Instead of weight regularization, tuning
these parameters to control the complexity would be more efficient.

2.3 Deep Learning: Training Neural Networks

2.3.1 Empirical Risk Minimization and Deep Learning

As we can see so far, a Neural Networks model is very complex. f (x; W) ∈ H k is
a hierarchical function of the vector x and the weight collection W . For a given re-

gression training data set Dn = {(xi, yi)
iid∼ pxy(x, y), xi ∈ X , yi ∈ Y , i = 1, · · · , n}

and the loss function L(y, f (x)), we want to solve

minimize
W

{ 1
n
L[yi, f (xi, W))] + αJ(W)

}
(2.5)

α is a tuning parameter, and J(W) is a regularization term.

2.3.2 Dropout

Dropout in Neural Networks refers to dropping some neurons in layers. It is a form
of regularization and always used when learning a Neural Networks model. One
can apply different dropout rates to different layers. Dropout always works better
for DNN with the deeper and denser layers. The dropout rate is between 0 to 1; 0
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means no dropout, 1 means no output. Dropout has been widely used to prevent the
overfitting of Deep Neural Networks with many parameters. Goodfellow, Bengio,
and Courville, 2016

dropout is more effective than other standard computationally inexpen-
sive regularizers, such as weight decay, filter norm constraints and sparse
activity regularization. Dropout may also be combined with other forms
of regularization to yield a further improvement.

ŵi =

{
wi if p 6= 0
0 otherwise.

(2.6)

where p is the probability to keep a row in the weight matrix, wi is the real row
in the weight matrix, ŵi is the weight matrix after dropout.
Even though dropout appears to work quite well for many DNN architecture, Mur-
ray and Fokoué, 2021 just recently established that dropout fails to regularize for
nonparametric learners. Partly in response to the challenges paused by the com-
plexity of deep neural networks, especially in training, different types of neural
network architectures have been invented including reservoir computing learning
machines, of which echo state networks are a well known example. Wu, Fokoué,
and Kudithipudi, 2018 provide a quick review of the fundamentals of echo state net-
works as well as a characterization of the statistical and probabilistic properties of
the weights of the hidden layers.

There are some other parameters in the Neural Networks machines. For instance,
the choice of regularization is typical of a l1 and l2 mixture problem, and each of
them requires a tuning parameter. The l2 reduces problems with collinearity, and
the l1 can ignore irrelevant features. Both slow the rate of overfitting, especially
with over-parametrized networks. Another parameter is "Early Stop", but we are
less concerned about this parameter since the regularization is tuned adaptively to
avoid overfitting in a NN model.
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Chapter 3

Kernel Learning Machines

3.1 An Introduction to Kernel Methods

3.1.1 Generalities on kernel methods

In the late 1990s, kernel methods and kernel learning machines gained tremendous
popularity thanks to Support Vector Machines, Gaussian Process and Radial basis
function networks and relevance vector machines a bit later. Kernels and kernel
learning machines became into so popular that researchers sought to so-called "ker-
nelized" as many existing methods as possible, leading to powerful machines as
kernel PCA, kernel kMeans, kernel CCA, kernel regression just to name a few. In
fact, kernels have now touched both supervised and unsupervised learning very
deeply, extending even to reinforcement learning and beyond. Kernels have served
as the backbone of many data science methods since their very inception Fokoué
and Brimkov, 2018. It is worth noting that kernel Learning has also be applied to
ranking Regression Guimaraes Olinto and Fokoué, 2018. The key lies in the fact that
kernel methods consists internally of a transformation of the data into some feature
space that usually has a relatively larger dimension. Even though the dimension
gets larger, Baudat and Anouar, 2001 shows that the capacity of a generalization
depends on the geometrical characteristics of the training data, and not on the di-
mension of the input space. Interestingly and somewhat crucially, the direct use of
a kernel function reduces the complexity of finding the mapping function (Karat-
zoglou et al., 2004; Clarke, Fokoue, and Zhang, 2009). This is known as the kernel
trick. Kernel function allow the implicit computation of the feature space calcula-
tions with the function defined in the input space.

Kernels are used such that a point in the dataset will affect the nearby points
more than it affects the further away points. This is the reason why kernels in the
sense that we use them in this thesis are essentially measures of similarities.

For the purposes of the overarching goal of comparing predictive performances
of learning machines, it turns out that with suitable geometrical characteristics, the
generalization error could get smaller with the suitable kernel even though the fea-
ture space has a large dimension. What really do we mean by a kernel? It is impor-
tant to clarify this because the word kernel means different things even in different
areas of the same field of Mathematics.
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3.1.2 Definition of a kernel

Throughout this thesis, a kernelK, is a bivariate function defined on the input space.
For our purposes, it measures the similarity between two given elements from X

K : X ×X −→ R+

(xl , xm) 7−→ K(xl , xm) (3.1)

Here are some commonly used functions,

• Polynomial kernel with degree d:

K(xi, xj) = (βx>i xj + c)d (3.2)

where d is the degree of polynomial, b is the scale parameter and c is the offset
parameter, known as performing very well on image processing tasks;

• Linear kernel (vanilla):
K(xi, xj) = x>i xj (3.3)

which is the simplest among all the kernel function, and it works on the high
dimensional sparse data;

• Gaussian radial basis function:

K(xi, xj) = e−γ(xi−xj)
2
= e−γ(xi−xj)

>(xi−xj) (3.4)

this is the most used kernel when there is no prior knowledge on the data, and
γ is the bandwidth, by changing γ to help with solving a complex problem
model;

• Laplace radial basis kernel:

K(xi, xj) = e−γ||xi−xj|| (3.5)

γ is the bandwidth, and it used in the same context as the Gaussian kernel.
There are some other kernel functions. (Karatzoglou et al., 2004 Clarke, Fok-
oue, and Zhang, 2009)

Once a kernel K is chosen for the task of interest, the so-called Gram matrix K =
(K(xl , xm)), l.m = 1, · · · , n is formed and constitutes the most important object from
then on. It is easy to see that the Gram matrix K plays a role similar to the design
matrix or data matrix X in linear models.

K :=



K(x1, x1) K(x1, x2) · · · K(x1, xn)
K(x2, x1) K(x2, x2) · · · K(x2, xn)

...
... · · ·

...
K(xi, x1) K(xi, x2) · · · K(xi, xn)

...
... · · ·

...
K(xn, x1) K(xn, x2) · · · K(xn, xn)


(3.6)

Some learning machines like support vector machines do indeed require the kernel
to be positive definite in order to guarantee many convergence and stability proper-
ties of the learning process.
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3.1.3 Function Space for Kernel Machines Hklm

Just like we did before with neural networks in Chapter 2, it is important to specify
what the function space looks like when one is dealing kernel learning machines.

Given a dataset Dn = {(xi, yi)
iid∼ pxy(x, y), xi ∈ X , yi ∈ Y , i = 1, · · · , n} and a

suitable chosen kernel K, the corresponding function space is given by

Hklm := HK :=

{
x 7→ ϕ

(
n

∑
j=1

wjK(x, xj) + w0

)
, w0 ∈ R, wj ∈ R, j ∈ [n]

}
, (3.7)

ϕ(v) = v for regression or ϕ(v) = sign(v) for binary classification with labels
{−1,+1}. From a pure representation point of view, regression and classification
are not structurally different when it comes to kernel learning machines. Of course,
the actual mechanics of learning can differ quite substantially in some cases, espe-
cially because the change of loss functions can result in substantially changes in the
learning process. The actual development of kernel learning machines is beyond the
scope of this thesis. We will simply evoke and use all the kernel learning machines
of interest in the final forms. It is worth noting immediately that for any f ∈ Hklm,
we have

f (x) = ϕ

(
n

∑
j=1

wjK(x, xj) + w0

)
, (3.8)

so that any kernel learning machine in the sense intended in this work has at more
n + 1 weights playing the role of "parameters". All the kernel learning machines
used throughout this research of the form depicted in Equation (3.8), regardless of
whether the task is regression or binary classification. Multiclass classification is
handled slightly differently but with exactly the same main foundational form.

3.2 Kernel learning machines

Kernel methods provide very powerful tools in the portfolio of statistical machine
learning techniques. As a matter of fact, lots of algorithms can operate and indeed
have operated with kernels as we mentioned earlier. It is well-known that the very
popular support vector machines (SVM) are kernel learning machines. However, for
our purposes, we will also Gaussian processes that are powerful kernel learning ma-
chines in their own right. Both of these will ultimately compared with Deep Neural
Networks in Chapter 4 and Chapter 5.

3.2.1 Support Vector Machines

Support Vector Machines (SVM) are popular machine learning tools for both classi-
fication and regression. They were invented by Vladimir Vapnik and Alexis Chervo-
nenkis, and later developed and expanded by several other researchers around the
world, after they were found to be extremely powerful on several difficult problems,
especially in high dimensional tasks (Cortes and Vapnik, 1995; Drucker et al., 1997;
Scholkopf and Smola, 2018).
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The main differences between Support Vector Regression and Support Vector
Classification are the noise model and/or loss function but the paradigm of maxi-
mization of a margin is still the same. Here are the typical expressions of a Support
Vector binary Classification model and a Support Vector regression model.
Being kernel learning machines, support vector machines are of the form of Equation
(3.8), with only difference being in the way the weights are learned.

Support Vector Binary Classification: For a binary classification problem, Sup-
port Vector Machine with kernel could be expressed as following:

f̂SVM(x) = sign

(
n

∑
i=1

α̂iyiK(xi, x) + ŵ0

)
(3.9)

α̂i, i = 1, · · · , n are the Lagrange multipliers of used on the constrained optimiza-
tion task that defines the celebrated Support Vector Machine. The α̂i, i = 1, · · · , n
are estimated via quadratic programming. Those vectors xi for which α̂i 6= 0 are
correspond to the support vectors that gave the name to the machine.

f̂SVM(x) ∈ {−1,+1} is the kernelized binary classifier’s predicted label for the
input x whose true label y is being predicted;

Support Vector Regression Learning: The support Vector Regression Learning
machine is of the following form:

f̂SVM(x) =
n

∑
i=1

(α̂i − α̂?
i )K(xi, x) + ŵ0 (3.10)

where α̂i, α̂?
i , i = 1, · · · , n are once again the Lagrange multipliers just like before

and are estimated via quadratic programming.

3.2.2 Gaussian Process

A Gaussian Process (GP) is a powerful statistical learning machine (Rasmussen and
Williams, 2005), that builds for several convenient properties of the multivariate nor-
mal (Gaussian) distribution. Gaussian Process models are non-parametric proba-
bilistic models. Gaussian Process models can be naturally expressed in the Bayesian
inference framework by using kernel functions or other covariance functions. Gaus-
sian Processes are a powerful technique for modeling and making prediction on all
kinds of data. They are very flexible and can be used to model many different pat-
terns. They need fewer assumptions about the model compared to other machines.
Just like with Support Vector Machines, it turns out that Gaussian Processes can be
conveniently expressed using the form of Equation (3.8). Specifically, for Gaussian
Process we have:

f̂gpr(x) = ϕ

(
n

∑
j=1

ŵjK(xj, x) + ŵ0

)
. (3.11)

For regression under the Gaussian noise model with homoscedastic variance σ2,
ϕ(·) = id(·), and the weights are given by

ŵj = [(K + σ2I)−1Y ]i (3.12)

where Y = (y1, y2, · · · , yn)> is the n-dimensional vector of all the response values.
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Throughout Chapter 4 and Chapter 5, we will repeated make references both
these kernel learning machines for specific kernels.



18

Chapter 4

Conceptual, Methodological and
Theoretical Comparisons

As stated several times up to this point, the motivating theme for the thesis is the ex-
ploration of similarities and dissimilarities between deep neural networks and ker-
nel learning machines, and hopefully find out if deep neural networks just might be
holy grail of statistical machine learning and artificial intelligent. It is important to
mention that along with Neural Networks, other paradigms have continued to arise,
many of which have consistently challenged the claims of superiority attributed to
Neural Networks.

Through Park and Sandberg, 1993, Radial Basis Function Networks are formu-
lated as Neural Networks with one single hidden layer and later shown to be kernel
learning machines, with kernels of the specific type known as radial basis function
kernels. It’s important to note that many other kernel learning machines exist apart
from radial basis functions networks, developed from paradigms entirely foreign
in principle to Neural Networks, and many of those kernel learning machines have
proven to be excellent learning machines built on very solid and unshakable foun-
dations. While the single hidden layer Neural Network enjoys the perch of the uni-
versal approximation theorem as its supporting backbone and foundation, it is im-
portant to note that kernel learning machines are supported by the equally powerful
result known as the Representer Theorem Craven and Wahba, 1979, Wahba, 1990,
G., 1998, Wahba, 2000.

Among other things, we will revisit a long studied relationship between single
hidden layer Neural Networks and radial basis function networks, especially the
similarity of the form of the estimation function. We will also touch on the similarity
that arises via the celebrated Universal Approximation Theorem which appears for
both radial basis function networks and Single Hidden Layer Neural Networks in
almost indistinguishable manner.

We will then explore the appearance of Deep Neural Networks being far more
complex and supposedly more powerful predictively and establish that some newer
similarities via the so-called neural tangent kernel (NTK) but also some sharp differ-
ences, especially computational ones, stemming from the sheer complexity of deep
neural network architectures.
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4.1 Shallow Neural Networks Comparisons

It is interesting and somewhat profoundly thought-provoking to note that most of
the earlier successes of Neural Networks all came thanks to the one single hidden
layer incarnation, with the so-called MultiLayer Perceptron (MLP), a single hidden
layer feedforward Neural Network leading the charge. If we denote by H1HLNN, the
function space of all one single hidden layer Neural Networks, then ∀ f ∈ H1HLNN,
we must have ∀x ∈ X ∈ Rd,

f (x) = ϕ
(

W (2)ψ
(

W (1)x + w(1)
0

)
+ w(2)

0

)
. (4.1)

In fact, it was around this single hidden layer (L = 1) Neural Network that
some of the most impressive theoretical foundations of Neural Networks were set
and firmly established. Indeed along with all the successes in a wide variety of ap-
plications, various versions and incarnations of the so-called universal approximation
theorem sprang up, all establishing single hidden layer (1HLNN) Neural Networks
as formidable learning machines capable of learning any smooth function whether
in classification or in regression.

Barron et al., 2008 opened up to the statistics community the desirable functional
analysis properties of Neural Networks as a means of universal approximation of
functions. In fact, Barron, 1993 even provides an earlier foray in connection with in-
sights into the power of Neural Networks, interestingly based on just a single hidden
layer. Arguably one of the earliest if not the absolute earliest account on the univer-
sal approximation power of single hidden layer Neural Networks is provided by
Cybenko, 1988 and Cybenko, 1989a. Kůrková, 2002 revisits the Universal Approx-
imation Theorem featuring once again the Single hidden Layer multilayer percep-
tron Neural Networks, further strengthening the perception and acceptance of single
hidden layer Neural Networks as formidable learning machines. Interestingly, sim-
ilarities have long been established between single hidden layer Neural Networks
and some kernel learning machines, which begs the question as to whether it even
makes sense to fuss about the superiority of one of the learning paradigms over the
other.

This work will explore as thoroughly as possible all the similarities and differ-
ences between Deep Neural Networks and kernel learning machines. In their hey-
day, kernel learning machines, spearheaded by radial basis functions networks, also
made similar claims of being the holy grail in statistical machine learning and ar-
tificial intelligence. Which of the two is better then? Can that question even be
answered definitively? In the continuum ranging from rigid parametric models to
nonparametric to the so-called semi-parametric models, it might be interesting to
revisit the late 1990s theorem that establishes Gaussian Processes as the limit of a
Neural Network with an infinite number of nodes in the single hidden layer. Since
Gaussian process learning machines are pure nonparametric models this connection
may shed some light. What is the function space/class complexity of these good
candidate models? For Radial Basis Function Networks, the learning machine is of
the form given in Equation (4.1)

f (x) = ϕ

(
M

∑
m=1

wmψ(‖x− cm‖)
)

, (4.2)
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where ϕ(v) = v for regression or ϕ(v) = sign(v) for binary classification with labels
{−1,+1}. Interestingly, and somewhat crucially, the basis function ψ(·) admits a
reformulation in terms of a suitably chosen kernel K(·, ·), namely

ψ(‖x− cm‖) = K(x, cm) = exp
(
− 1

2τ2 ‖x− cm‖2
2

)
(4.3)

The corresponding radial basis function network is then expressed as

f (x) = ψ

(
n

∑
j=1

wjK(x, xj) + w0

)
. (4.4)

Note that the summation in (4.4) has n terms and uses the xj’s, whereas the one in
uses M terms with cm learned from the data. The form however is the same, which
makes our point of similarity of two learning machines.

Through a formulation like (4.3), the Radial basis function network which is cast
in the context of neural networks finds itself being a bona fide member of the fam-
ily of kernel learning machines. Note also that Equation (4.1) is similar to Equa-
tion (4.1). Interestingly, the similarities do not stop here. In fact, many of the early
theoretical results on the universality of neural networks could interchangeably be
expressed through radial basis function networks or through the kernel learning
machines equivalent, or counterparts.

Theorem 1 Cybenko, 1989b Let f : X −→ Y be a function of interest to be estimated.
Assume that for all x ∈ X , E[ f (x)] < ∞, and further assume that we have a function
ψ : R −→ R that is continuous with lim

x→+∞
ψ(x) → 1 and lim

x→−∞
ψ(x) → 0. Then, for any

ε > 0, there exists n = n(ε), such that

inf
{(ai ,bi ,wi)}

E

{∣∣∣∣∣ f (x)− 1
n

n

∑
i=1

aiψ(〈wi, x〉+ bi)

∣∣∣∣∣
}
≤ ε. (4.5)

Several other researchers like Hornik, Stinchcombe, and White, 1989 and Hornik,
1991, have contributed theoretical results of the same type around the approxima-
tion capabilities of multilayer feedforward networks, typically featuring the single
hidden layer architecture. At this point, it might appear (and rightly so) more in-
teresting to compare single hidden layer Neural Networks to kernel learning ma-
chines, thanks in part to intrinsic similarities but also because both paradigms are
supported by strong theoretical foundations. Such comparisons will be carried out
computationally later. Two natural questions arise in the presence of such an em-
phatic result as the universal approximation power of single hidden layer neural
networks namely:

(a) How can anyone justify the need/importance to study or develop any other
learning paradigm if one exists that is a kind of panacea?

(b) Even within the Neural Networks paradigm, why should anyone use more
than one hidden layer when one hidden layer has all the approximation power?
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4.2 Deep Neural Networks Comparisons

Owing to the rise to prominence of Deep Neural Networks i.e. Neural Networks
with more than one hidden layer, it is important to extend our comparison to Deep
Neural Networks. Hence our overarching question, namely: Are Deep Neural Net-
works (DNN) really predictively better than kernel learning machines (KLM) across the
board? This thought-provoking question, inspired by the surge in interest around
Deep Neural Networks, has led many researchers to seriously investigate the pre-
dictive performances of Deep Neural Networks relative to other learning paradigms.
Specifically, in recent months a number of authors have contributed several accounts
(most of them of a computational nature) of the predictive comparisons between
Deep Neural Networks and kernel learning machines.

Neal, 1996 provides the seminal account through which Gaussian processes are
linked to single hidden layer Neural Networks with an infinite number of nodes in
the hidden layer. He specifically established that "when the number of nodes in the
single hidden layer of a Neural Networks is allowed to grow to infinity, then one
can use a Gaussian process prior over such an infinite network and derive Gaus-
sian process learning machine as a regularized Neural Network. Considering the
fact that Gaussian process learning machines are kernel learning machines this re-
sult is quite arguably the first and most foundational foray into the now prevalent
and widespread effort aimed at comprehending Deep Neural Networks via Gaus-
sian processes. Amongst others Belkin, Ma, and Mandal, 2018 and He et al., 2020
are noteworthy. Belkin, Ma, and Mandal, 2018 declares that to understand deep learn-
ing we need to understand kernel learning. Taking a computational approach, He et al.,
2020 provide a comparison that is very similar in structure and in spirit to ours.

Their very title Deep neural networks and kernel regression achieve comparable accura-
cies for functional connectivity prediction of behavior and demographics, presents the very
same conclusion we end up arriving at, namely that the two learning paradigms are
very similar in terms of predictive performances.

More recent papers like Lee et al., 2019 centered around Wide Neural Networks
and G. Matthews et al., 2018 discussing Gaussian Process Behavior in Wide Deep
Neural Networks, can be rightly viewed as extensions of Neal, 1996 this time adapted
to Deep Neural Network architectures. Authors like Jacot, Gabriel, and Hongler,
2020 are actively continuing the burgeoning work around the so-called Neural Tan-
gent Kernel (NTK) used as one of the most promising way of establishing the link
between Deep Neural Networks and kernel learning machines, with the hope of
establishing with DNN the kind of firm similarity and analogy enjoyed by single
hidden layer neural networks. Very early on, Cho and Saul, 2009 proposed Kernel
Methods for Deep Learning, establishing somehow a strong connection between the
two paradigms. Both Jacot, Gabriel, and Hongler, 2018 and Jacot, Gabriel, and Hon-
gler, 2020 introduce the Neural Tangent Kernel which provides one of the strongest
similarity between deep neural networks and kernel learning machines. This work is
truly revolutionary and transformative as it established the strongest connection yet
between the two paradigms. Lee et al., 2019 proposes the exploration of Wide Neural
Networks of Any Depth Evolve as Linear Models Under Gradient Descent, following Lee
et al., 2018 who formulated Deep Neural Networks as Gaussian Processes. Even more
recently, Zhang et al., 2021 emphasizes that Understanding Deep Learning (Still) Re-
quires Rethinking Generalization. From a theoretical and methodological perspective,
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it appears that deep neural networks need kernel learning machines more than the
other way around, since we see from many authors that the formulation of DNN via
kernels is the pathway towards understanding DNN. In that sense, one may declare
the upper hand to kernel learning machines, although the equivalence of formula-
tion makes it hard to give the upper hand to any of the two paradigms.

Maybe the key lies with the kernel itself, in the sense that while the neural tan-
gent kernel might be a suitable device/mechanism for formulating a DNN as a ker-
nel learning machines, it might not be straightforward to compute it. Therefore,
one could see a methodological advantage in simply adopting traditional shallow
kernels rather than using the neural tangent kernel. Of course since choosing the
suitable kernel is akin to model selection which in turn has to do with the typically
unknown geometry of the pattern underlying the data, once could conceive of situa-
tions where the neural tangent kernel is the optimal choice, albeit with the challenges
of it computation.

Finally, it is crucial to mention that classical kernel learning machines commonly
used typically require the estimation of at most n + 1 weights, whereas the number
of weights needed for deep neural networks can quickly grow to extremely large
numbers. Each of the weight matrices W (`) is itself already a large d` × (d`−1 + 1)
matrix. If dim(X ) = q, and dim(Y ) = r, and dim(Z`) = d`, then for a DNN
with L hidden layers, θ will have p = q + r + ∑L

`=1 d` × (d` + 1) entries, at least a
priori. This makes a generic DNN far more complex than a classical kernel learning
machine. We will see in Chapter 5 that this complexity often hurts DNN when there
is not enough data to learn all the weights consistently.
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Chapter 5

Computational Explorations and
Demonstrations

Experimentation is the lifeblood of machine learning research. A significant amount
of effort and resources are invested in evaluating the usefulness of algorithms, find-
ing the optimal approach for applications, or just gaining some overall insight (for
example: the effect of a parameter). In this research, we intend to adopt an empirical
and experimental approach to investigate the predictive strengths of DNN and com-
pare it to Kernel Methods. We will use simulated and real-life data and make them
qualitatively and quantitatively different to explore all the paradigms’ strengths and
weaknesses fully.

This research aims to create a objective comparison between Deep Neural Net-
works and Kernel learning machines. The fairness is based on variable selection
techniques, tuning of parameters, choice of loss functions, and more. We evaluate
the machine learning models predictive performances on different types of machine
learning tasks. The challenging component is that due to the complex structure and
the numerous parameters of Deep Neural Networks, tuning the parameters is very
time-consuming and requires plenty of computational power. RIT computer labs
and online web servers were able to help solve this problem.

5.1 Tools for Computational Explorations

As we mentioned earlier, we use simulated and real-world dataset in this thesis. For
most of the data, we randomly choose 70% of the data as training data and the re-
maining 30% for the model performance and model evaluation. For each data set,
we run 50 replications. To make sure it is objective to all the machines, we normalize
the data before we run the methods. We compare the test error among five ma-
chines: Gaussian Process, Support vector machine with the linear kernel; Support
vector machine with the polynomial kernel; Support vector machine with radial ba-
sis function kernel, and Deep Neural Networks.In the rest of this chapter, we will
show the details of the data sets, experiments, and results.

Cross Validation: As we indicated right from Chapter 1, all the learning ma-
chines considered are tuned and selected via cross validation. Cross validation is a
well-known and widely used method for tuning the hyperparameters in statistical
learning and data mining. It divides the data into V chunks, and each chunk has

almost equal portions, such that
{

Dn = ∑V
v=1 Dv, for i = 1, · · · , V

}
, hold out the

portion I and fit the model from the rest of the data, then use the fitted model to pre-
dict the holdout samples, and the average the measure of predictive performance
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over the V different fits to get the cross validation score which is given by

CV( f̂ ) =
1
V

V

∑
v=1

ξ̂v (5.1)

where

ξv =
1
|Dv|

n

∑
i=1

1(zi ∈ Dv)L(yi, f̂ (−Dv)(xi))

Algorithm 2: V-fold cross validation

Input: Training data Dn = {zi = (x>i , yi), i = 1, 2, · · · , n},where
x>i ∈ X , yi ∈ Y , the function of interest is denoted by f ,
V : the number of fold, n: sample size.

Output: Cross Validation score CV( f̂ )
for v=1 to V do

Extract the validation set
Dv = zi ∈ Dn : i ∈ [1 + (v− 1)×m, v×m]
Extract the training set D c

v := Dn/Dv
Build the estimator f̂ (−Dv)(·) using D c

v
Compute predictions f̂ (−Dv)(xi) for z ∈ Dv
Compute the validation error for the vth chunk

ξv =
1
|Dv|

n

∑
i=1

1(zi ∈ Dv)L(yi, f̂ (−Dv)(xi))

Compute the output CV score

CV( f̂ ) =
1
V

V

∑
v=1

ξ̂v

Cross validation is one of the main techniques we used in this research to tune
the parameters for the machines. For instance, in figure 5.1, it shows tuning the
parameters for the support vector machine with Gaussian kernel, we could directly
visualize the best parameter in the plot, which is the lowest point.

Grid search: Grid Search is a naive but straightforward approach to trying every
possible configuration. Since Deep Neural Networks have many parameters (for ex-
ample: learning rate, dropout rate, batch size, etc.), the challenge of this approach is
"the curse of dimensionality." This means that the more dimensions we add, the more
the search will explode in time complexity and computing power. For example, we
want to create four hidden layers Neural Networks model, and for each layer, we
add a dropout rate, also add a batch size to tune, and each parameter we choose
from 2 potential good candidates, then we will need to run 29 = 512 times. Because
of this limitation the dimensions used in the experiments are less than or equal to 4,
and the number of neurons in each layer goes from 16 to 256 in this research. The R
package "tfruns," is a suite of tools for tracking, visualizing, and managing Tensor-
Flow training runs. Figure 5.4a shows the tuning error; we want two losses as close
as it could be. Figure 5.2b shows the saved hyperparameters. Using this table, we
could find the best combination of the hyperparameters.
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FIGURE 5.1: 5-fold cross validation to choose parameter for SVM with
gaussian kernel

(A) DNN (B) hyperparameters Table

FIGURE 5.2: Tuning hyperparameters for the Deep Neural Networks

5.2 Simulation Study

Simulation studies are the experiments that create data by pseudo-random sam-
pling. A key advantage of simulation studies is that one could control the generated
data. For example, one could change the parameters or control the sample size. By
using the simulation data, we can have a better sense on how the machines are per-
forming overall. In this section, we have regression and binary classification, two
kinds of simulation studies.
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5.2.1 Regression Example

In the regression simulation study, we generate 25 variables that are generated from
a multi-normal distribution. The response variable is simply a linear combination of
some of X and adds error ε which is generated from a normal distribution; the Y is
given by

Y = x>β? + ε (5.2)

Let β? = (β1, β2, · · · , βp)>. Let’s consider an example where β? ∈ Rp, with
p = 25, β?

j = 0 for j /∈ {3, 5, 7, 11, 13, 17, 19}, except for β?
3 = 0.3, β?

5 = 0.5, β?
7 = −0.7,

β?
11 = 0.11, β?

13 = 0.13, β?
17 = 0.17, β?

19 = 0.19.

By changing the number of data points (table 5.1), we get six sets of data. We
run five machines then compare the test error: (a) average test error; (b) median test
error. Figure 5.3 shows the median and mean of 50 runs of the Mean Squared Error
(MSE) on the test data; based on the plots, we could see all the methods improve
tremendously when sample size n changes from 25 to 50, SVM with linear kernel,
Gaussian kernel and polynomial kernel slightly improve after n = 500 compared to
DNN and GP. All the SVM with kernel outperformed the DNN, GP is catching up
with DNN at 250 data points, and starts to get better than DNN after that.

TABLE 5.1: Simulation data for regression Example

‘

SN partition n p κ = n/p

1 regression-25 25 25 1/1
2 regression-125 125 25 5/1
3 regression-250 250 25 10/1
4 regression-500 500 25 20/1
5 regression-750 750 25 30/1
6 regression-1250 1250 25 50/1

(A) Mean MSE plot (B) Median MSE plot

FIGURE 5.3: These two plots are the simulation regression results for
5 machines. The left image shows the mean MSE in the 50 runs. The

right image shows the median MSE in the 50 runs
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5.2.2 Classification Example

In the classification simulation study, we generate 100 variables. All variables are
generated from a multivariate Gaussian distribution, and the response variable Y is
generated from a Bernoulli distribution with the probability of success given by the
function:

(Y|x) ∼ Bernoulli(π(x)) where π(x) = Pr(Y = 1|x) = 1
1 + e−x>β

(5.3)

And changing the number of data points from 25 to 500, which will give us dif-
ferent values of κ = 1

4 , 1
2 , 1

1 , 2
1 , 5

1 . κ is an essential parameter in this thesis, and it
shows the models’ sensitiveness of the sample size. Table 5.2 shows the details of
the data used in the simulation classification study. We compare the test error: Ac-
curacy. We compare the median and mean of 50 runs of the accuracy on the test data.
Figure 5.4 shows the results. Based on the plots, we could see most of the methods
behaved much better when we increase the sample size from 25 to 50. SVM with
linear kernel and Gaussian kernel could even reach 100 % accuracy nearly all the
time. DNN is not a very competitive machine at first, but it starts to catch up when
we increased the sample size to 100. SVM with linear kernel works very well on this
data compared to the other machines. GP is not very competitive for this data set
but eventually caught up when we increased the data to 500.

TABLE 5.2: Simulation data for classification example

‘

SN partition n p κ = n/p

1 classification-25 25 100 1/4
2 classification-50 50 100 1/2
3 classification-100 100 100 1/1
4 classification-200 200 100 2/1
5 classification-500 500 100 5/1

(A) Mean ACC plot (B) Median ACC plot

FIGURE 5.4: These two plots are the simulation classification results
for 5 machines.The left image shows the mean MSE in the 50 runs.

The right image shows the median MSE in the 50 runs
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In the simulation study, both regression results and classification results show
that kernel machines have a better output than Deep Neural Networks most of the
time. Compared to the kernel models, DNN’s behavior depends more on the rich-
ness of the sample. In the next section, we present more results based on the real-
world data.

5.3 Computational Explorations for real life data

For the real-world data, we used 10 regression datasets, and 16 classification data
sets that included binary classification and multi-classification data. We thank Ogun-
depo and Fokoué, 2019 and MNIST (public data) for the contribution of the data
sets. We are trying to cover as many areas as possible, for instance: medical, traffic,
economic, etc. Table 5.3 and 5.4 briefly describe the data sets, the sample size, the
number of response variables and kappa = n

p which represents the informational
richness. For the classification data there are three comparison groups: nine data
sets for the binary classification, three data sets for the multi-classification, and four
data sets for the parameter κ’s influence.

TABLE 5.3: Regression Datasets table

SN Dataset n p κ = n/p

1 Airfoil 1503 6 250.5
2 Auto mpg 392 8 49
3 computer hardware 209 7 29.86
4 Concrete strength 1030 9 114.44
5 Diabetes 442 11 40.18
6 Ducan MBA 203 7 29
7 GPA 141 5 28.2
8 hprice 506 6 84.33
9 Istanbul stock 536 8 67

10 Mortality 992 4 233.75

5.4 Regression Results

For the regression study, there are ten data sets to be used to compare the five ma-
chines. The distribution of test errors of all the machines over 50 replications is
shown in Figure 5.3. Among the ten boxplots, we could see the SVM with kernels
are mostly better than DNN and have a smaller range compared to DNN. DNN only
outperformed GP once (the 3rd boxplot). DNN did slightly better than SVM with
the polynomial kernel. In the regression comparison, we would evaluate minimum,
median, maximum and mean of the test error which is shown in Table 5.5, 5.6, 5.8
and 5.7. Among all the tables, SVM with Gaussian kernel wins seven times in the
minimum table, six times in the median table, seven times in the mean table, and
seven times in the maximum table, which makes SVM with Gaussian kernel the
winner among the five learning machines. GP wins two times in the median table
and maximum table, and one time in the mean table. DNN only wins two times in
the minimum table, and there is a tie with the SVM with linear kernel.



5.4. Regression Results 29

TABLE 5.4: Classification Datasets table

SN Dataset n p Number of classes κ = n/p

1 Asthmatic 405 11 2 36.82
2 Breast cancer 569 10 2 56.90
3 Congressional voting 435 17 2 25.59
4 Cryotherapy 90 7 2 12.86
5 Social network 400 4 2 100
6 Gender voice 3168 21 2 150.86
7 Diabetic 1151 20 2 57.55
8 Sonar 208 61 2 3.41
9 Indian Liver Patien 538 11 2 53

10 Balance scale 625 5 3 125
11 Cars 1728 7 4 246.86
12 Seeds 210 8 3 26.25
13 MNIST-112 112 784 10 1/7
14 MNIST-300 300 784 10 0.38(appro 3/7)
15 MNIST-784 784 784 10 1
16 MNIST-1586 1586 784 10 2

TABLE 5.5: Regression minimum MSE table

Dataset SVM-rbf SVM-poly SVM-linear DNN GP

Airfoil 0.335 0.378 0.370 0.253 0.346
Auto mpg 2.33 2.50 2.75 2.65 2.38
computer hardware 28.41 31.55 31.58 31.71 33.89
Concrete. 5.65 6.09 9.56 6.72 6.45
Diabetes 49.66 50.33 49.58 50.28 50.59
Ducan MBA 0.168 0.177 0.166 0.166 0.174
GPA 0.265 0.270 0.272 0.350 0.271
hprice 2839.00 3075.46 4311.29 3613.33 3709.67
Istanbul stock 0.0124 0.0124 0.0124 0.0137 0.0143
Mortality 0.00008 0.00008 0.00045 0.00225 0.00012

TABLE 5.6: Regression mediam MSE table

Dataset SVM-rbf SVM-poly SVM-linear DNN GP

Airfoil 0.49 0.53 0.53 0.54 0.47
Auto mpg 2.84 3.01 3.43 3.47 2.97
computer hardware 55.37 73.00 68.19 64.22 124.89
Concrete 6.39 7.89 10.82 8.87 7.23
Diabetes 55.42 56.48 56.32 58.87 56.30
Ducan MBA 0.21 0.21 0.21 0.36 0.22
GPA 0.36 0.35 0.35 0.49 0.37
hprice 5077.29 5058.32 5631.73 5291.71 4966.83
Istanbul stock 0.01 0.01 0.01 0.02 0.02
Mortality 10.12 9.70 9.16 12.18 9.66
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TABLE 5.7: Regression mean MSE table

Dataset SVM-rbf SVM-poly SVM-linear DNN GP

Airfoil 0.49 0.54 0.55 0.53 0.47
Auto mpg 2.89 3.03 3.44 3.80 2.95
computer hardware 58.83 79.93 71.27 68.96 127.09
Concrete 6.42 7.61 10.81 9.25 7.25
Diabetes 55.18 55.92 55.98 59.19 56.32
Ducan MBA 0.21 0.22 0.21 0.37 0.22
GPA 0.36 0.35 0.35 0.53 0.36
hprice 4928.90 4893.10 5577.50 5155.59 4989.48
Istanbul stock 0.01 0.01 0.01 0.02 0.02
Mortality 9.50 8.76 8.30 12.03 8.89

TABLE 5.8: Regression maximum MSE table

Dataset SVM-rbf SVM-poly SVM-linear DNN GP

Airfoil 0.67 0.75 0.75 0.74 0.66
Auto mpg 3.69 3.88 4.22 6.50 4.06
computer hardware 112.15 156.68 130.46 119.84 222.77
Concrete 7.72 8.70 12.73 16.26 8.21
Diabetes 61.15 62.05 62.05 80.75 61.89
Ducan MBA 0.29 0.29 0.25 0.77 0.26
GPA 0.44 0.46 0.45 0.97 0.43
hprice 5907.38 5918.57 6703.37 6278.60 5982.95
Istanbul stock 0.02 0.02 0.02 0.03 0.02
Mortality 18.95 18.64 12.86 39.97 13.33

FIGURE 5.5: Comparison boxplots of MSE for 10 regression data sets



5.5. Classification Results 31

TABLE 5.9: Binary Classification maximum accuracy results table

Dataset SVM-rbf SVM-poly SVM-linear DNN GP

Asthmatic 0.913 0.898 0.913 0.891 0.896
breast cancer 0.988 0.981 0.981 0.987 0.982
congressional voting 0.992 0.992 0.992 0.986 0.976
cryotherapy 0.935 0.969 0.960 1.000 1.000
Social network 0.954 0.969 0.908 0.962 0.956
gender voice 0.984 0.992 0.981 0.981 0.984
Diabetic 0.785 0.787 0.788 0.771 0.764
Sonar 0.948 0.944 0.865 0.865 0.900
Indian Liver Patient 0.753 0.781 0.781 0.750 0.803

TABLE 5.10: Binary Classification median accuracy results table

Dataset SVM-rbf SVM-poly SVM-linear DNN GP

Asthmatic 0.837 0.838 0.845 0.823 0.830
breast cancer 0.961 0.962 0.958 0.957 0.958
congressional voting 0.958 0.955 0.957 0.953 0.947
cryotherapy 0.849 0.830 0.862 0.880 0.895
Social network 0.890 0.899 0.824 0.891 0.902
gender voice 0.976 0.981 0.975 0.970 0.972
Diabetic 0.742 0.734 0.741 0.707 0.692
Sonar 0.817 0.857 0.764 0.771 0.789
Indian Liver Patien 0.698 0.705 0.703 0.697 0.708

5.5 Classification Results

5.5.1 Binary Classification Results

In this section, we test five machines on nine binary classification datasets, we com-
pare the minimum, median, maximum and mean of the test error which shows in
table 5.12, 5.10, 5.11 and 5.9. We also generate distributions of the test error over 50
replications, which is shown in Figure 5.6. The boxplots show that DNN is compara-
ble with other machines. In the binary classification test, DNN performs better than
in the regression test and has a relatively smaller range of test error. In the maxi-
mum comparison table, SVM-RBF wins four times; SVM-poly and SVM-linear each
win three times; GP wins two times, and DNN wins one time, but it ties with GP in
this time. In the medium comparison table, SVM-poly and GP each win three times
SVM-RBF wins two times, SVM-linear wins one time, DNN wins 0 times. SVM-poly
wins four times in the mean table, DNN once but tie with SVM-poly and SVM-RBF
in this one time, GP win three times in the mean table. For the minimum table, DNN
only wins once, SVM-poly wins five times. So based on all the binary classification
results, SVM-poly is the winner among the five machines; DNN does not outper-
form other machines. Even though the Kernel machines still seem to give a better
predictive performance based on the tables and the boxplot, DNN is still comparable
good with other machines in these cases.
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TABLE 5.11: Binary Classification mean accuracy results table

Dataset SVM-rbf SVM-poly SVM-linear DNN GP

Asthmatic 0.843 0.840 0.846 0.822 0.830
breast cancer 0.959 0.959 0.958 0.957 0.956
congressional voting 0.956 0.956 0.955 0.956 0.945
cryotherapy 0.844 0.832 0.855 0.876 0.893
Social network 0.894 0.900 0.834 0.898 0.901
gender voice 0.976 0.981 0.974 0.971 0.972
Diabetic 0.745 0.734 0.744 0.708 0.695
Sonar 0.816 0.854 0.760 0.760 0.788
Indian Liver Patien 0.697 0.714 0.712 0.697 0.710

TABLE 5.12: Binary Classification minimum accuracy results table

Dataset SVM-rbf SVM-poly SVM-linear DNN GP

Asthmatic 0.765 0.755 0.775 0.716 0.745
breast cancer 0.912 0.916 0.906 0.912 0.894
congressional voting 0.917 0.915 0.919 0.907 0.911
cryotherapy 0.724 0.571 0.733 0.720 0.800
Social network 0.815 0.823 0.773 0.846 0.831
gender voice 0.962 0.974 0.962 0.959 0.964
Diabetic 0.682 0.692 0.675 0.618 0.637
Sonar 0.690 0.761 0.636 0.549 0.662
Indian Liver Patient 0.640 0.658 0.658 0.572 0.629
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FIGURE 5.6: Comparison boxplot of accuracy for 9 binary classifica-
tion data sets

TABLE 5.13: Multi Classification maximum accuracy results table

Dataset SVM-rbf SVM-poly SVM-linear DNN GP

balance scale 1.00 0.99 0.97 0.98 0.94
cars 1.00 0.99 0.88 0.98 0.91
seeds 0.99 0.99 1.00 0.97 0.99

5.5.2 Multi Classification Results

In the multi-class cases, we use seven datasets, divided into two sections. The first
section contains three datasets, and the second section contains four datasets that
explicitly test the κ effect of the prediction performance.

In the first section, we use three datasets to compare the minimum, median, max-
imum, and mean of the test error. Table 5.16 5.14 5.15 and 5.13 show the result. SVM-
RBF wins two times out of three in the maximum and minimum comparison table
and three times in the medium and mean comparison table, making it the winner
in the multi-classification test. DNN and GP do not win even one time among the
four comparison tables. However, based on the value of the 4 ACC tables, most
machines have an above 95% ACC value, which is an excellent result for the multi-
classification problem, and SVM-RBF has a couple 100% accuracy which makes this
machine excellent for these data sets.

TABLE 5.14: Multi Classification median accuracy results table

Dataset SVM-rbf SVM-poly SVM-linear DNN GP

balance scale 1.00 0.96 0.92 0.96 0.91
cars 0.98 0.98 0.85 0.96 0.89
seeds 0.95 0.93 0.95 0.93 0.93
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TABLE 5.15: Multi Classification mean accuracy results table

Dataset SVM-rbf SVM-poly SVM-linear DNN GP

balance scale 0.99 0.96 0.92 0.96 0.91
cars 0.98 0.98 0.85 0.96 0.89
seeds 0.94 0.92 0.94 0.92 0.92

TABLE 5.16: Multi Classification minimum accuracy results table

Dataset SVM-rbf SVM-poly SVM-linear DNN GP

balance scale 0.95 0.91 0.88 0.90 0.85
cars 0.96 0.97 0.82 0.94 0.85
seeds 0.80 0.84 0.82 0.83 0.82

FIGURE 5.7: Multi Classification accuracy comparison boxplot

5.5.3 Predictive Performances on MNIST a function of κ

Although the current study suggests that the kernel machines and DNN models per-
form very similarly, the predictive performance of DNN seems more dependent on
the richness of the data. In this section, we carry out an empirical study of the rich-
ness of the data (κ = n/p) affecting the performance.

The data we used in this section is MNIST data set. The MNIST databases men-
tioned earlier is a large database of handwritten digits from USPS. It has been com-
monly used for image recognition processing, and training and testing in the field of
machine learning. Figure 5.8 shows 16 sample digits of MNIST data. We randomly
take samples from the MNIST classification data set; we use 112, 300, 784, and 1568
samples as training data(table 5.17), and 100 samples as test data. We run each ma-
chine 50 times for each sample data and then compare the performance on test data.

TABLE 5.17: MNIST datasets

SN partition n p Number of classes κ = n/p

1 MNIST-112 112 784 10 1/7
2 MNIST-300 300 784 10 3/7
3 MNIST-784 784 784 10 1
4 MNIST-1586 1586 784 10 2
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FIGURE 5.8: 16 sample digits from MNIST

We compare the minimum, mean, maximum, and medium of the accuracy re-
sults. In Figure 5.10, we could tell SVM-RBF, SVM-poly and SVM-linear are excel-
lent machines for this task when using four different sizes of data. Next, let’s look
at the DNN’s performance. From box plot one to box plot four we notice that as
the sample sizes get larger, the range of DNN’s accuracy gets smaller and catches
up with SVM kernel machines. GP is falling behind all the times. In Figure 5.9, the
performance of all the algorithms increases with more data. When using 112 data
points which n/p is 1/7, the medium and maximum all start relatively low. When
we increase n/p to approximately 3/7, all the machines have their accuracy increase
tremendously, but the SVM kernel machines are still a lot better than DNN. From
3/7 to 1, the accuracy improves for all machines by a lot, but DNN model increases
more than other models, and it becomes more compatible with the SVM kernel ma-
chines. When increasing n/p to 2, DNN’s output is almost as good as SVM-RBF, but
the tuning time of the DNN model is a lot longer than SVM-RBF machine. So based
on these results, we could say that DNN is a greedy machine. It needs a rich data set
to do the job.
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(A) MNIST maximum accuracy plot (B) MNIST median accuracy plot

(C) MNIST mean accuracy plot (D) MNIST minimum accuracy plot

FIGURE 5.9: MNIST accuracy comparison plots

FIGURE 5.10: MNIST accuracy comparison boxplot
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Chapter 6

Conclusion and Discussion

The whole purpose of this thesis was to explore the similarities and differences be-
tween kernel learning machines and Deep Neural Networks.

Chapter 4 provided a discussion of the similarities and differences between ker-
nel learning machines and Neural Networks from a conceptual, methodological and
theoretical perspectives. It was found that there are some similarities between the
two learning paradigms, some of those similarities making the two paradigms al-
most identical at times. For instance, Gaussian processes turned out to be equiva-
lent to single hidden layer neural networks with an infinite number of nodes in the
hidden layer. Radial Basis Function Networks are formulated as Neural Networks
with one single hidden layer and later shown to be kernel learning machines, with
kernels of the specific type known as radial basis function kernels. In fact it turns
out that for many versions of the so-called universal approximation theorem, single
hidden layer neural networks are indistinguishable from kernel learning machines.

We later created objective experimental comparisons between Deep Neural Net-
works and Kernel machines in Chapter 5. We used many simulated and real-world
datasets to compare kernel machines and Deep Neural Networks. Based on our ex-
perimental results, Kernel machines offer very competitive predictive performances
and typically outperform Deep Neural Networks on almost all the data sets ex-
plored. Kernel machines also save resources compared to DNN according to the
number of parameters and the tuning time. Deep Neural Networks turned out to be
inordinately demanding in tuning time because of there complex internal structures,
requiring vast amounts of time and computer resources.

κ = n/p is one of the essential characteristic in this research, representing the rich-
ness of the data. Just as we anticipated, our results clearly show that the performance
of DNN strongly depends on the richness of the data. In conclusion, DNN does not
appear to be ideal for use if the dataset is small and limited. This is clearly more
evidence for neural networks with more that one hidden layer. In the event of data
poverty, i.e. when κ < 1, kernel methods appear to outperform DNN substantially.
This alone shows that the claim that DNN should be a panacea used on every con-
ceivable task, is at best an unsubstantiated claim.

Numerous articles based on the "No Free Lunch Theorem" have been published
that compare the performance of various machine learning algorithms (Wolpert,
Macready, et al., 1995;Wolpert and Macready, 1997; Ogundepo and Fokoué, 2019).
The central point of the "No Free Lunch Theorem" is that the class of models for
which a given learning technique is the adequate representation is limited. In other
words,no one technique will work well for all problems. Even though DNN has been a
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success in lots of very complex real life problems like self driving cars and complex
image classification tasks, they also seem not to work well on very many tasks of
importance to practitioners from all walks of life. Besides, our computational ex-
plorations did show that DNN do typically require relatively powerful computer
systems, for some users, which may not be an ideal choice; due to the complex
structure of DNN, which is also easier to lead to overfitting problems. DNN also
required large amounts of data in order to yield adequate predictive performances
comparable to those of kernel learning machines.

Our investigation found that kernel methods may be better suited for typical
practical applications. A natural sequel to our investigation would be using more
powerful computers to investigate how well DNN would perform with vast amounts
of data.
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Appendix A

Selected Code

A.1 Hyperparameters For Deep neural networks

# Libraries
library(keras)
library(tensorflow)
library(tfruns)

# Data
data <-
str(data)
X_n<-
Y_n<-

# Matrix
data <- as.matrix(data)
dimnames(data) <- NULL

# Normalize
data[, 1:X_n] <- normalize(data[,1::X_n])
data[,Y_n] <- as.numeric(data[,Y_n]) -1

# Partition

ind <- sample(2, nrow(data), replace = T, prob = c(0.7, 0.3))
training <- data[ind == 1, 1:X_n]
test <- data[ind == 2, 1:X_n]
trainingtarget <- data[ind == 1, Y_n]
testtarget <- data[ind == 2,Y_n]

# One-hot encoding
trainLabels <- to_categorical(trainingtarget)
testLabels <- to_categorical(testtarget)

# Hyperparameter tuning
runs <- tuning_run("tuning.R",

flags = list(dense_units1 = c(32, 64),
dense_units2 = c(32, 64),
dropout1=c(0.1,0.2),
dropout2=c(0.1,0.2),
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batch_size=c(32,64)))

# Best hyperparameter values
head(runs)

# Libraries
library(keras)
library(tensorflow)
library(tfruns)

# Data
data <-
str(data)
X_n<-
Y_n<-

# Matrix
data <- as.matrix(data)
dimnames(data) <- NULL

# Normalize
data[, 1:X_n] <- normalize(data[,1::X_n])
data[,Y_n] <- as.numeric(data[,Y_n]) -1

# Partition

ind <- sample(2, nrow(data), replace = T, prob = c(0.7, 0.3))
training <- data[ind == 1, 1:X_n]
test <- data[ind == 2, 1:X_n]
trainingtarget <- data[ind == 1, Y_n]
testtarget <- data[ind == 2,Y_n]

# One-hot encoding
trainLabels <- to_categorical(trainingtarget)
testLabels <- to_categorical(testtarget)

# Hyperparameter tuning
runs <- tuning_run("tuning.R",

flags = list(dense_units1 = c(32, 64),
dense_units2 = c(32, 64),
dropout1=c(0.1,0.2),
dropout2=c(0.1,0.2),
batch_size=c(32,64)))

# Best hyperparameter values
head(runs)
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A.2 Tuning.R code

FLAGS <- flags(flag_integer(’dense_units1’, 32),
flag_integer(’dense_units2’, 32),
flag_numeric(’dropout1’, 0.1),
flag_numeric(’dropout2’, 0.1),
flag_integer(’batcg_size’,32))

# Model
model <- keras_model_sequential() \%>\%

layer_dense(units = FLAGS$dense_units,
activation = ’relu’,
input_shape = c(X-no)) \%>\%

layer_dropout(rate = flags$dropout1) \%>\%
layer_dense(units = FLAGS$dense_units,

activation = ’relu’) \%>\%
layer_dropout(rate = flags$dropout2) \%>\%
layer_dense(units = 3, activation = ’softmax’)

# Compile
model \%>\% compile(loss = ’categorical_crossentropy’,

optimizer = ’adam’,
metrics = ’accuracy’)

# Fit
history <- model \%>\%

fit(training,
trainLabels,
epochs = 50,
batch_size = FLAGS\$batcg_size,
validation_split = 0.2)
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